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PRETACE

TO THE FIRST EDITION.

L RO PN

Tue original work of M. Bior was for many years
the Text Book in the U. 8. Military Academy at West
Point. It is justly regarded as the best elementary
treatise on Analytical Geometry that has yet appeared.
The general system of Biot has been strictly followed.
A short chapter on the principal Transcendental Curves
has been added, in which the generation of these
Curves and the method of finding their equations are
given. A Table of Trigonometrical Formule is also
appended, to aid the student in the course or his
study. ’

The design of the following pages has been to pre-
pare a Text Book, which may be readily embraced in
the usual Collegiate Course, without interfering with
the time devoted to other subjects, while at the same
time they contain a comprehensive treatisc on the
subject of which they treat.

Virginia Military Institute,
Jury, 1840,
@iv)



PREFACE

TO THE SECOND EDITION.

Tue application of Algebra to Geometry constitutes one
of the most important discoveries in the history of mathe-
matical science. Francis Vieta, a native of France, and one
of the most illustrious mathematicians of his age, was among
the first to apply Geometry to the construction of algebraic
expressions. He lived towards the close of the fifteenth cen-
tury. The applications of Vieta were, however, confined to
problems of deierminate geometry; and although gréater
brevity and power were thus attained, no hint is to be found
before the time of Des Cartes, of the general method of repre-
senting every curve by an equation between two indetermi-
nate variables, and deducing, by the ordinary rules of algebra,
all of the properties of the curve from its equation.

Rexe pes Cartes was born at Rennes in France in 1596.
At the early age of twenty vears, he was distinguished by
his solutions to many geometrical problems, which had defied
the ingenuity of the most illustrious mathematicians of his
age.

Generalizing a principle in every-day practice, by which
the position of an object is represented by its distances from
others that are known, Des Cartes conceived the idea that by
referring points in a plane to two arbitrary fixed lines, as
axes, the relations which would subsist betwecn the distances

1+ )
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of these points from the axes might be expressed by an alge-
braic equation, which would serve to define the line connect-
ing these points. If the relation between these distances, to
which the name of co-ordinates was applied, be such, that
there exist the equation x =y, # and y representing the co-
ordinates, it is plain that this equation would represent a
straight line, making an angle of 45° with the axis of x
Intimate as is the connection between this simple principle
and that applied in Geography, by which the position of places
is fixed by means of co-ordinates, which are called latitude
and longitude, yet it is to this conception that the science of
Analytical Geometry owes its origin.

Having advanced thus far, Des Cartes assumed the possi-
bility of expressing every curve by means of an equation,
which would serve to define the curve as perfectly as it could
be by any conceivable artifice. Operating then upon this
equation by the known rules of algebra, the character of the
curve could be ascertained, and its peculiar properties de-
veloped. The application of algebra to geometry would no
longer depend upon the ingenuity of the investigator. The
sole difficulty would consist in solving the equation represent-
ing the curve; for, as soon as its roots were obtained, the
nature and extent of the branches of the curve would at once
be known.

Many authors of deservedly high reputation have treated
upon Analytical Geometry. Among the most distinguished
is J. B. Biot, the author of the treatise of which the following
is a translation. '

The work of M. Biot has more to recommend it than the
mere style of composition, unexceptionable as that is. The
mode in which he has presented the subject is so peculiar and
felicitous, as to have drawn from the Princeton Review the
high eulogium upon his work, of being * the most perfect sci-
entific gem to be found wn any language” His discussion
of the Conic Sections is the finest specimen of mathematical
reasoning extant. He introduces his book, by showing how
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the positions of points may be fixed and defined, first as
relates to a plane, and then in space ; and by a series of cx-
amples, shows how analysis may be applied to determine
solutions to various problems of Indeterminate Geometry
In these discussions, a simple and general principle is applied
for determining all kinds of intersections, whether of straight
lines with each other or with curves, curves with curves

planes with each other or with surfaces, and, finally, of sur-
faces with surfaces. The principle is simple, inasmuch as it
involves nothing more than elimination between the equations
of the lines, curves, or surfaces which are considered; and
it is general, since it is applied to every kind of intersection.
In discussing the Conic Sections, two methods suggested them-
selves. Shall their equations be obtained by assuming a
property of each section; or, from the fact of their common
generation, shall the principle previously established, for deter-
mining any intersection, be applied to deduce their general
equation? Most authors adopt the former method, which,
though apparently more simple, tends really to obscure the
discussion, since it assumes a property not known to belong
to a Conic Section; and if this -be afterwards proved, the
proof is postponed too long to enable the student to realize,
while he is studying these curves, that they are in fact sec-
tions from a Cone. Biot, on the other hand, assumes nothing
with regard to these sections. He presumes, from their com-
mon generation, that they must possess common or similar
properties, since, by a simple variation in the inclination of

the cutting planes the different classes of these curves are
produced.

And so it is with the student. If he find that the circum-
ference of a circle has all of its points equally distant from
its centre, analogy leads him at once to seek for correspond-
ing properties in the other sections. Ile finds in the Ellipse
the relation between the lines drawn from the foci to points
of the curve, and that this relation recuces to the property
in the circle, when the eccentricity is zero. Corresponding
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results are also found in the Parabola and Hyperbola. Could
a student anticipate such a connection between these curves,
by following the method of discussion usually adopted ? Why
should he examine the Hyperbola any more than the Cycloid
for properties similar to those deduced from the Circle ! They
are treated us independent curves, and their equations are
found and properties developed, upon the general principles
of analysis, without the slightest reference to their common
origin. Further, the purely analytic method adopted by
Biot, prepares the mind for the discussion of the general
equation of the second degree in the sixth chapter, and that
of surfaces in the seventh, and certainly gives the student a
better knowledge of his subject than any other.

This edition has been most carefully revised. Some shght
changes have been made in the mode of discussing one or
two of the subjects, and copious numerical examples in illus-
tration have been added. The appendix also contains a fall
series of questions on Analytical Geometry, which it is be-
ieved will be of great service to the student.

Virginia Military Institute,
Avcusr, 1B46,
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ANALYTICAL GEOMETRY

CHAPTER I.
PRELIMINARY OBSERVATIONS.

1. Arceera is that branch of Mathematics in which quan-
tities are represented by letters, and the operations to be
performed upon them indicated by signs. It serves to ex-
press generally the relations which must exist between the
known and unknown parts of a problem, in order that the
conditions required by this problem may be fulfilled. These -
parts may be numbers, as in Arithmetic, or lines, surfaces, or
solids, as in Geometry.

2. Before we can apply Algebra to the resolution of Geo-
metrical problems, we must conceive of a magnitude of
known value, which may serve as a term of comparison with
other magnitudes of the same kind. A magnitude which is
thus used, to compare magnitudes with each other, is called
a unit of measure, and must always be of the same dimension
with the magnitudes compared.

3. In Linear Geometry the unit of measure is a line, as a
foot, a yard, &c., and the length of any other line is ex-
pressed by the number of these units, whether feet or yards,
which it contains

2 F 13



14 ANALYTICAL GEOMETRY. [Crar. L

>

Let CD and LF be two lines, which we wish to

ey
&

b 24
compare with each other: AB the unit of measure.
The line CD containing AB six times, and the line
EF containing the same unit three times, CD and
LF are evidently to cach as the numbers 6 and 3.
DI 4. In the same manner we may compare surfaces
with surfaces, and solids with solids, the unit of measure for

surfaceq lse,ng a known square, and for solids a known cube

. ‘We may now readily conceive lines to be added to,
.Sdbll‘&(‘t\(:a froim, or multiplied by, each other, since these
operations have only to be performed upon the numbers
which represent them. If, for example, we have two lines,
whose lengths are expressed numerically by @ and b, and it
were required to find a line whose length shall be equal to
their sum, representing the required line by x, we have from
the condition.
rx=a+ b,

- which enables us to calculate arithmetically the numerical
value of x, when @ and b are given. We may thus deduce
the line itself, when we know its ratio & to the unit of

measure.

6. But we may also resolve the proposed question geo-
metrically, and construct a line which shall be equal to the
sum of the two given lines. For, let [ represent the absolute
length of the line which has been chosen as the unit of mea-
sure, and A, B, and X, the absolute lengths of the given and
required lines. The numerical values a, b, x, will express
the ratios of these three lines to the unit of measure, that is,
we have,
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These expressions. being substituted in the place of a, b, =,
in the equation
r=ua -+ b,

the common denominator / disappears, and we have
X=A+B.
Hence, to obtain the required line,
draw the indefinite line AB, and lay 4 2
off from A in the direction AB the dis-
tance AC equal to A, and from C the distance CB equal to B,
AB will be the line sought.

7. The construction of an analytical expression, consists

&

in finding a geometrical figure, whose parts shall bear the
same relation to each other, respectively, as in the proposed
equation. y

8. The subtraction of lines is performed as readir as their
addition. Let @ be the numer.ca. vaiue of 1ne gres.er of the
two lines, b that of ine .ess, ana « tne renuired difference,
we have,

L= —b,

an expression whicp enables us to calculate the numerical
vatue of . wnen e and b are known. To construct this
vaiue, substitute as before, for the numerical values a, b, x,

the ratios -lli, ?, j_l{, of the corresponding lines to the unit of

measure; the common denominator ! disappears, and the
equation becomes

X=A—B,
which expresses the relation between the absolute lengths of
these three lines. Drawing the inde-
finite line AC, and laying off from A a D B ¢
a distance AB equal to A, and from
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B in the direction BA, a distance BD equal to B, AD will
express the difference between A and B.

9. Comparing this solution with that of the preceding
question, we see by the nature of the operations themselves,
that the direction of the line BD or B is changed; when the
sign which affects the numerical value of B is changed. This
analogy between the inversion in position of lines, and the
changes of sign in the letters which express their numerical
values, is often met with in the application of Algebra to
Geometry, and we shall have frequent occasion to verify it,
n the course of this treatise.

10. From the combination of quantities by addition and
subtraction, let us pass to their multiplication and division.
Let us suppose, for example, that an unknown line X depends
upon three given lines A, B, C, so that there exists between
their numerical values the following relation,

ab
==X
(o

This relation enables us to calculate the value of x, when
a, b, and c are known. To make the corresponding geome-
‘trical construction, substitute for «, &, ¢, and x, the ratios

.‘I:‘, TB’ 19’ %, of the corresponding lines to the unit of measure;

1 disappears from the fraction, and we have
- _AB

C
from which we see that the required line
is a fourth proportional to the three lines
A, B, C. Draw the indefinite lines MB
and MX, making any angle with each
other; Lay off MC = C, MB = B, and MA = A, join C and
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A, and draw BX parallel to CA, MX is the required line
For, the triangles MAC, MXB, being similar, we have
MC:MB:: MA: MX
C:B::A:X
_AB
1
which fulfils the required conditions.*

and consequently

11. In the example which we have just discussed, as well
as in the two preceding, when we have passed from the nu-
merical values of the lines, to the relations between their ab-
solute lengths, we have seen that the unit of measure / has
disappeared; so that the equation between the absolute
lengths was exactly the same as that between the numerical
values. We could have dispensed with this transformation
in these cases, and proceeded at once to the geometrical con-
struction, from the equation in @, b, and z, by considering
these letters as representing the lines themselves. But this
could not be done in general. For, this identity results from
the circumstance that the proposed equations contain only
the ratios of the lines to each other, independently of their
absolute ratio to the unit of measure. This will be evident
if we observe that the equations

x=a+b,x=a—b,x‘=‘l¢3_’
may be put under the following forms,
z z x z cx

* In this example, as well as those which follow, the large letters, A, B,
C, D, &c., are used to express the absolute lengths of the lines; and the
small letters, a, b, ¢, d, &c., their numerical values, the ratio of the unit
of measure to the lines.

2% c
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which express the ratios of «, b, ¢, and x, with each other,
and whose form will not be changed, if we substitute for these
letters the equivalent expressions f}, 1;., L(lz, %

12. But it will be otherwise, should the proposed equation
besides containing the ratios of the lines- A, B, C and X, with
each other, express the absolute ratio of any of ‘them to the

unit of measure. For example, if we had the equation

x = ab,
the numerical value of z can be easily calculated, since it is
the product of two abstract numbers, and this value being
known, we can casily construct the line which corresponds
to it. DBut, if we wished to pass from this equation to the
analytical relation between the absolute lengths of the

lines A, B, X, by substituting for «, b, x, the expressions

é, —B, §, I being of the square power in the denominator of
i 1 =

the second member, and of the first power in the first mem-
ber, it would no longer disappear, und we should have, after
reducing,

in which the line X is a fourth proportional to the lines /, A,
B In this, and all other analogous cases, we cannot suppose
the same relation to exist between the absolute lengths of the
lines as between their numerical values; and this impossibility
is shown from the equation itself. For, if @, b, and , repre-
sented lines, and not abstract numbers, the product @ § would
represent a surface, which could not be equal to a line z.

13. By the same principle, we may construct every equa-
tion of the form.
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a; bvevdl st
LN ST
m which a, b, ¢, d, b', ¢, d’, &c., are the numerical values of
so many given lines. If we suppose the equation homoge-
neous, which will be the case if the numerator contain one
factor more than the denominator, then substituting for the
numerical values their geometrical ratios, we have
‘ Vs g el

E=—gown T .

But the first part _1;_1’3 may be considered as representing a

line A”, the fourth proportional to B, A, and B. Combining

this line with the following ratio g,, the product il

’

will represent a new line A", the fourth proportional to C',

A", and C. This being combined with % would give a

1

Uy » which may be constructed in the same man-

product

ner. The last result will be a line, which will be the value
of x.

14. We have supposed the numerator to contain one more
factor than the denominator. If this had not been the case,
! would have remained in the equation to make it homoge-
neous. For example, take the equation

x—=abed

the transformed equation becomes

an expression which may be constructed in the same manner
as the preceding.

15. Besides the cases which we have just considered, the
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unknown yuantity is often given in terms of radical expres-
sions, as

g=vab, z=VE+Y, z= v I—0.

The first v/ ab, expresses a mean proportional between a

8 and b, or between the lines which these

j l:\ values represent. Laying off on the line

AD, AB=A, BD=B, and on AD as

5. : a diameter describing'-the semi-circle

AXD, BX perpendicular to AB at the point B, will be the

value of X. For, from the properties of the circle, the line

BX is a mean proportional between the segments of the

diameter.
16. If we take the example,
z=Vva&+5
it is evident that the required line is the hypothenuse of a
right angled triangle, of which the sides

»n

are AB= A, and BD = B; for we have
AD*= AP’ + BD*
or X2= A%+ B?
X=vA LB
17. We may also construct by the right angled triangle,

the expression B ol
=V =0
the required line being no longer the hypothenuse, but one of
the sides. Making BD = A, and DA = B, we have
' AB*= AD*—BD*
or X?=A*—PB?
X=VvA B
18. Let us now apply these principles to the example,
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r—2ax=—10

Solving the equation with respect to x, we get the two

100ts, P gy £
r=a+ v dE—b, zr=a—Ja—0

'The radical part of these expressions may be evidently
represented by a side of a right angled triangle, of which the
line A is the hypothenuse, and the line B the other side.
Draw the indefinite line

ZZ'; at any point B ¥ £ /'

erect a perpendicular, A"-.: Kz
z_a % AN

and make BC=B. From 2 B 7X

the point C as a centre \_-/

with a radius equal to A,
describe a circumference of a circle, which will cut ZZ',
generally, in two points X, X', equally distant from B. The
segment BX, or BX', will represent the radical v A*— B,
and if from the point B we lay off on ZZ, a length BA = A,
AX = VAT _B"+ A will represent the first value of X
ind AX' = A — V' A*— B will represent the second value.

19. If B= A, it is evident that the circle will not cut the
ine Z7', but be tangent to it at B. The two lines BX and
3X’ will reduce to a point, and AX and AX' will be equal to
ach other, and to the line A. This result corresponds
trictly with the change which the Algebraic expression
indergoes; for @ = b causes the radical v &*— & to dis-
appear, and reduces the second member to the first term, and
the two roots become equal to a.

20. If B> A, the circle described from the point C as a
centre will not meet the line ZZ', and the solution of the
question is impossible. This is also verified by the equation,
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for b> a makes the radical v «*—#* imaginary, and con-
sequently the two roots are impossible.

21. If the second member of the equation had been posi-
tive, the construction would have been a little different. In
this case we would have,

2 —2 ax = b

and the roots would be,

z=a+VvE+V, z=a—va+ W

Here the radical part is repre-
sented by the hypothenuse of a
right angled triangle, whose sides
are A and B. Take DB = B; at
the point B, ercct a perpendicular
BC = A: DC will be the radical

part common to the two roots. If,

then, from the point C as a centre, with a radius CB = A,
we describe a circumference of a circle, cutting DC in E,
and its prolongation in E, the line DE will be equal tq
A + v AT+ B, which will represent the first value of x
but the second segment DE'= AT+ B*'— A will onlJ)
represent the second root, by changing its sign, that is, the
root will be represented by — DEV. “

22. Here the change of sign is not susceptible of any
direct interpretation, since, admitting that it implies an in-
version of position, we do not see how this happens, as there
is no quantity from which DE' is to be taken. But the diffi-
culty disappears, if we consider the actual value of = as a
parficular case of a more general problerr, in which the
roots are,
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z=at+c+Vd+V, x=at+c—vi+V
¢, representing the numerical value of a new line, which is
also given. This form of the roots would make x depend
upon another equation of the second degree, which would be,
Z2—2@+Jx=0V—2ac—c%
in which, if we make ¢ = o, we obtain the original values
of x.

In the new example, the construction of the radical part
is precisely the same, for, taking DB = B and BC = A, the
hypothenuse DC will repre-
sent v/ A’ + B% From the
point C as a centre with a
radius equal to A, describe

a circumference of a circle,
DE = A+ v A* + B"and
—DE'=A— VA + B To
obtain the first root, we have only to add C to DE, which
is done by laying off DF = C, and FE will represent
C+A+VvA+B. To get the second root, it is evident
DE’ must be subtracted from DF. Laying off from D to E”,

in a contrary directicn, DE" = DE', FE" will be the root,
and will be equal to C + A — v A* + B? and this value
will be positive, if the subtraction is possible; that is if C or
its equal DF is greater than DE’, and negative, if less.

23. In general, when a negative sign is attached to a
result in Algebra, it is always the index of subtraction. If
the expresssion contain positive quantities, on which this sub-
traction can be performed, the indication of the sign Is satis-

fied. If not, the sign remains, to indicate the operation yet



21 ANALYTICAL GEOMETRY. [Crar. I

to be performed. To interpret the result in this case, we
must conceive a more general question, which contains
quantities, on which the indicated operation may be per-

formed, and discover the signification to be given to the
result.

EXAMPLES.
1. Construct abe + 7ef_ ghi.
m

2. Construct  a.

3. Construct + & + b + ¢ + &
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CHAPTER IIL.
DETERMINATE GEOMETRY.

24. Ananvrican GeoMerry 18 divided into two parts.

Ist. Determinate Geometry, which consists in the applica-
tion of Algebra to determinate problems, that is, to problems
which admit of only a finite number of solutions.

2dly. Indeterminate Geometry, which consists in the in-
vestigation of the general properties of lines, surfaces, and
solids, by means of analysis.

25. We will first apply the principles explained 1a the first
chapter, to the resolution and construction of problems of
Determinate Geometry.

Prob. 1. Having given the base and altitude of a triangle
it is required to find the side of the in-
scribed square. Let ABC be the pro-
posed triangle, of which AC is the base,
and BH the altitude. Designate the
base by ¥, and the altitude by %, and
let x be the side of the inscribed square. The side EF, being
parallel to AC, the triangles BEF and ABC are similar; and
we have,

B

N
N

D H

A

AC:BH :: EF : BI,
or bk —
Multiplying the means and the extremes together, and put
ting the products equal to each other, we have,
bh — bx = hx
bh
i Y |
D
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from which the numerical value of ¥ may be determined,
when b and % are known.

26. We may also from this expression find the value of z
py a geometrical construction, since it is evidently the fourth
- o proportional to the lines b + 7, b, and 4.
L s Produce AC to B, making CB' = A, erect
v N /L the perpendicular BH' = £, join A and

R IT', and through C draw CI' parallel to
H'B', it will be the side of the required square, and drawing
through I' a parallel to the base, DEFG will be the inscribed
square. For, the triangles AB'H', ACT being similar, we have.

L AR B A G CI’

or (3 ] (L] I A A e
bh

h e S A

ence £=7rr7

27. There are some questions of a more complicated nature
than the one which we have just considered, but which when
applied to analysis lead to the most simple and satisfactory
results.

Prob. 2. Draw through a given point a straight line, so
that the part intercepted between two given parallel lines
shall be of a given length.

Let A be the given point, BC and DE the given parallels

D G ] E

WL ;

“It is required to draw the line Al so that the part KI shall
be equal to C. Draw AG perpendicular to DE, AG and FG
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will be known; and designating AG by a, FG by b, and GI
by z, we have,

Al . AG :: KI : FG
or Al:a::¢c: 0, henceAI:aT)c-
But Al = v & + 2%,
hence %Ez Jm andx:d:%Jm
* From which we see that the problem admits of two solutions,

but becomes impossible when & > ¢, that is, when FG > KL
Construction—From F as a centre, with a radius equal to

C, describe the arc HH'; GIH will be equal to v &—107,
and AI parallel to FH will be the required line. For the
similar triangles FGH, AGI, give

FG : AG : : GH : G],
or b:a::vc—0V:x  hence m=3\/c2——ﬁ
The second solution is given by GI' = — GI.

28. Prob. 3. Let it be required to draw a common tangent
to two circles, situated in the same plane, their radii and the
distance between their centres being known.

Let us suppose the problem solved, and let MM' be the
common tangent. Produce MM’ until it meets the straight
line joining the centres at T. The angles CMT and C'M'T
being right the triangles CMT and C'M'T will be similar
and give the proportion,
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CM:CM ::CT:CT.

Designating the radii of the two circles by r and 7', the
distance between the centres by a, and the distance CT by
x, the above proportion becomes,

r:r::ix:xr—a,
or T —ra=rwcx;
hence r=—m>
r—r
which shows that the distance CT =z is a fourth propor-
tional to the three lines » —», @, and .

To draw the tangent line.

Through the centres C and C', draw any two parallel
radii CN, C'N’, the line NN’ joining their extremities will cut
the line joining the centres, at the same point T, from which,
if a tangent be drawn to one circle, it will be tangent to the
other also. For the triangles CNT, C'N'T, will still be
similar, since the angles at N and N' are equal, and will give
the same proportion. But to show the agreement of this
construction with the algebraic expression for 2, draw
through N’, N'D parallel to CC’, N'D will be equal to a, and
ND to r—7'; the triangles N'DN, CNT, being similar, give
the proportion,

ND : DN' :': NC : CT,
or r—r ta::r:CT;
ar

hence CT = -
1=t

’
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which is the same value found before. TMM'drawn tangent
to one circle, will also be tangent to the other. As two
tangents can be drawn from the point T, the question admits
of two solutions.

29. If we suppose, in this example, the radius r of the
large circle to remain constant, as well as the distance be
tween the centres, the product ar will be constant. Let the
radius ' of the small circle increase, as 7' increases, the de-

nominator r—r' will continually diminish, and will become

ar
zero, when r = »'. The value of x then becomes = _.
)

infinity. This appears also from the geometrical construc
tion, for when the radii are equal, the tangent and the line
joining the centres are parallel, and of course can only meet
at an infinite distance.

If # continue to increase, the denominator becomes nega-
tive, and since the numerator is positive, the value of z will
no longer be infinite, but negative, and equal to — CT, which
shows that the point T is changed in position (Art. 9), and
is now found on the left of the circle whose radius is r.

30. Prob. 4. To construct a rectangle, when its surface
and the diffcrence between its adjacent sides are given:

Let x be the greater side, 2a the difference, x — 2a will be
the less. Let b be the side of the square, whose surface is
equal to that of the rectangle. This condition will give

z(xr—a) = or 2* — 2ax = b*:
from which we obtain the two values,
r=a+Ja+b0, x=a—v &+ b

These are the same values of z constructed in Art. 18, the

S*
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first being represented by DI, the second by—DE. But

we can easily verify this, and show that DE = ¢ 4- v & + &
is the greater side of the rectangle. TFor, if we subtract from

this value the difference 2a, the remainder —a + v @@ + °
multiplied by the greater side, is equal to &*, the surface of the
rectangle, —a + Vv @ + B is therefore the smaller side.

3l. We see also that the second value of x taken with a
contrary sign, represents the smaller side of the rectangle.
Ilence the calculation not only gives us the greater side,
which alone was introduced as the unknown quantity, but
also the less. This arises from the general nature of all
algebraic results, by virtue of which the equation which ex-
presses the conditions of the problem, gives, at the same
time, every value of the unknown quantity which will satisfy
these conditions. In the example before us we have repre-
sented the greater side by + x, and have found that its value
depended upon the equation

2 — Qaz = .
If we Liad made the smaller side the unknown quantity, and

repr.ented its value by — a, which we were at liberty to
de, .« would have depended upon the equation

—x(—a + 2) =¥, or 2 — 2ax = 1,

which is the same equation as the preceding. Ience, this
equation should not only give us the greater side, which was
at first represented by 4 z, but also the less, which in this
instance is represented by — a.

32. The prccedinv examples are sufficient to indicate gene-
rally the steps to be taken, to express analytically the con-
ditions of geometrical problems:
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Ist. We commence by drawing a figure, which shall re-
present the several parts of the problem, and then such other
lines, as may from the nature of the problem lead to its
solution.

2d. Represent, as in Algebra, the known and unknown
parts by the letters of the alphabet.

3d. Express the relations which connect these parts by
means of equations, and form in this manner as many equa-
tions as unknown quantities ; the resolution of these equations
will determine the unknown quantities, and resolve the pro-

blem proposed.

EXAMPLES.

L. In a right-angled triangle, having given the base. and
the difference between the hypothenuse and perpendicular;
find the sides.

2. Having given the area of a rectangle, inscribed in a
given triangle ; determine the sides of the rectangle,

3. Determine a right-angled triangle; having given the
perimeter and the radius of the inscribed circle.

4. Having given the three sides of a triangle; find the
radius of the inscribed circle.

5. Determine a right-angled triangle, having given the
hypothenuse and the radius of the inscribed circle.

6. Determine the.radii of the three equal circles, described

ma giveh circle, which shall be tangent to each other, and
also to the circumference of the given circle.
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7. Draw through a given point taken in a given circle, a
chord, so that it may be divided at the given point into two
segments, which shall be in the ratio of m to n.

8. Having given two points and a straight line; describe
a circle so that its circumference shall pass through the
points and be tangent to the line.

9. Draw through a given point taken within a circle, a
chord whose length shall be equal to a given quantity.

10. Having given the radii of two circles, which inscribe
and circumscribe a triangle whose altitude is known; deter-
mine the triangle.

11. Draw through a given point taken within a given tri-
angle, a straight line which shall bisect the triangle.

12. Find the distance between the centres of the inseribed
ani circumscribed circles to a given triangle.
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CHAPTER III.

INDETERMINATE GEOMETRY.

33. I~ the questions which we have been considering, the
conditions have limited the values of the required parts.
We propose now to discuss some questions of Indeterminate
Geometry, which admit of an infinite number of solutions.

For example, let us consider any line
AMM'. " From the points M, M’, let fall
the perpendiculars MP, M'P’, upon the
line AX taken in the same plane. These

perpendiculars will have a determinate
length, which will depend upon the nature and position of
the line AMM’, and the distance between the points M, M/,
&c. Assuming any point A on the line AX, each length
AP will have its corresponding perpendicular MP, and the
relation which subsists between AP, PM; AP', P'M’; for
the different points of the line AMM’ will necessarily deter-
mine this line. Now, this relation may be such as to be
always expressed by an equation, from which the values of
AP, AP, &c., can be found, when those of PM, P'M’', are
known. For example, suppose AP = PM, AP' = P'M/, &e.,
representing the bases of these triangles by x, and the per-
pendiculars by y, we have the relation

v

In this case, the series of points M, M', &c., forms evidently
the straight line AMM’, making an angle of 45° with AX.
E
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34. Again, suppose that the condition established was

; such, that each of the lines

i PM, P'M, should be a mean

2 proportional between the dis-

Al p  lances of the points P, P'. &e.,

from the points A and B taken
on the line AB. Calling PM, y, AP, z, and the distance AB
2a, we would have,

' =2 (Ra—a), or,y’ =2axr—a
This eduation enables us to determine y when x is known,
and reciprocically, knowing the different values of x, we can
determine those of y. It is evident that this line is the cir-
cumference of a circle described on AB as a diameter.

35. The equations
y=2x and 3’ = 2ax —2*
are evidently indeferminate, since both x and y are unknown.
If values be given to one of the unknown quantities, the cor-
responding values of the other may be determined. Such
equations, therefore, lead to infinite solutions. But since we
can determine every value of y for every assumed value of z,
these equations serve to determine all the points of the straight
line and circle, and may be used to represent them.

36. Generalizing this result, we may regard every line as
susceptible of being represented by an equation between
two indeterminate variables; and, reciprocally, every equa-
tion between two indeterminates may be interpreted geo-
metrically, and considered as representing a line, the dif-
ferent points of which it enables us to determine. It is this
more extended application of Algebra to Geometry, that
constitutes the Science of Analytical Geometry.
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Of Points, and the Right Line in a Plane.

37. As all geometrical investigations refer to the positions
of points, our first step must be to show how these positions
are expressed and fixed by means of analysis.

38. Space is indefinite extension, in which we coneeive all
bodies to be situated. The absolute positions of bodies cannot
be determined, but their relative positions may be, by refer-
ring them to objects whose positions we suppose to be known.

39. The relative positions of all the points of a plane are
determined by referring them to two straight lines, taken at
pleasure, in that plane, and making any angle with each
other.

Let AX and AY be these two lines,
every point M situated in the plane of
these lines, is known, when we know
its distances from the lines AX and AY
measured on the parallels PM and QM
to these lines, respectively.

The lines QM, Q' M/, or their equals AP, AP, are called
abscissas, and the lines PM, P'M/, or their equals AQ, AQ',
ordinates. The line AX is called the azis of abscissas, or
simply the axis of 2's, and the line AY the axis of ordinates,
or the axis of y's. The ordinates and abscissas are designated
by the general term co-ordinates. AX and AY are then the
co-ordinate azes, and their intersection A is called the origin
of co-ordinates.

40. It may be proper here to remark, that the terms line
and plane are used in their most extensive signification,—
that is, they are supposed to extend indefinitely in both
directions.
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41. Let us represent the abscissas by x, and the ordinates
by y, z and y will be wariables,* which will have different
values for the different points which are considered. If, for
example, having measured the lengths AP, PM, which deter-
mne the point M, we find the first equal to a, and the second
equal to b, we shall have for the equations which fix this
point, o o y

These are called the equations of the point M.

492, If the abscissa AP remain constant, while the ordinate
PM diminishes, the point M will continually approach the
axis AX; and when PM = o, the point M will be on this
axis, and its equations become

z=a, Yy =o.

If the ordinate PM remain constant, while the abscissa
AP diminishes, the point M will continually approach the
axis AY, and will coincide with it when AP = o ; the equa-
tions will then be,

x = o, y=b.

Finally, if AP and PM become zero at the same time, the

point M will coincide with the point A, and we have,

z=0, Y=o,
for the equations of the origin of co-ordinates.

43. From this discussion we see that, in giving to the

variables x and y every possible positive value, from zero to

* Quantities whose values change in the same calculation are called
variables ; those whose values remain the same are called constants. 'The
first letters of the alphabet are generally used to designate constants, the
last letters variables.
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infinity, we may express the position of every point in the
angle YAX. But how may points situated in the other
angles of the co-ordinate axes be expressed !
Instead of taking YA for the

axis of y, take another line, Y'A', b o 7
parallel to YA and in the same
plane, at a distance AA' = A,
from the old axis.

: . Y
Calling «' the new abscissas, iz i
counted from the origin A', we

have for the point M, situated in the angle Y'A'X,
AP = AA’ + AP,
z=A+z.
But if we consider a point M’ in the angle Y'A'A, we
have,
AP’ = AA'— AP
2= A—2x,
Hence, in order that the same analytical expression,
r=A + 2/,

may be applicable to points situated in both these angles, we
must regard the values of 2’ as negative for the angle AA'Y",
so that the change of sign corresponds to the change of posi-
tion with respect to the axis A'Y".

44. To confirm this consequence, and show more clearly
how the preceding formula can connect the different points
in these different angles, let us consider a point on the axis
A'Y'. For this point we have &' = o, and the formula

r=A+4+
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becomes = 4+ A.

This is the value of the abscissa AA’ with respect to AX,
AY. But if we wish that this equation suit points on the
axis AY, for any point of this axis = o, and the preceding
formula will give,

which is the same value of the abscissa AA' referred to the
axis A'Y'. The analytical expression for this abscissa be-
comes then positive for the axis AY, and negative for the
axis A'Y’, when we consider the different points of the plane
connected by the equation

x=A + 2.

This result applies equally to the negative values of z, and
proves that they belong to points situated on the opposite
side of the axis AY to the positive values.

45. Moving the axis AX parallel to itself, and fixing the
new origin at A", making

AA" = B, and calling y’ the

o M new ordinates counted from

A", we have for the point M

M, AY = AA" + A"Y,
Y? o y= B o y:}

and AY"=AA"—A'Y",

/ or y=B—y

for the point M'. To express points situated on both sides
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of the axis A"X" by the same formula, we must regard those
points corresponding to negative values of ¥’ as lying on the
opposite side of the axes of A"X" to the positive values; and
as this applics equally to the axes AX and AY, we conclude
that the change of sign in the variable y corresponds to the
change of position of points with respect to the axis of ab-
scissas.

46. From what has been said, we conclude, -that if the
abscissas of points lying on the right of the axis of y be
assumed as positive, those of points lying on the left of this
axis will be negative; and also if the ordinates of points
ying above the axis of x be assumed as positive, those below
this axis will be negative. We shall have, therefore,

In the first angle, x positive and y positive;

In the second angle, x negative and y positive;

In the third angle, x negative and y negative;

In the fourth angle, x positive and y negative;
and the equations

which determine the position of a point in the angle YAX,
become successively,

r=—a, y=-+b;

= —a, —_

=+ a, y=—2»>.

e  47. Let us resume the equations z = a, y = b, which de
termine the positions of a point in a plane, a and b belnfr
any quantities whatever,
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The equation z = a considered by
itself, corresponds to every point whose
abscissa is equal to @. Take AP = a.
Every point of the line PM drawn
parallel to AY, and extending inde-
finitely in both directions, will satisfy

this condition. a = a is therefore the
equation of a line drawn parallel to the axis of y, and at a
distance from this axis equal to . In like manner y = b is
the equation of a straight line parallel to the axis of . The
point M, which is determined by the equations

Le="00" y=2>,

is therefore found at the intersection of two straight lines
drawn parallel to the co-ordinate axes. The line whose
equation is z = a will be on the positive side of the axis of y
if a is positive, and the reverse if a is negative. If a = o, it
will coincide with the axis of y, and the equation of this axis

will be
z =o.

The straight line whose equation is y = b will be situated
above or below the axis of «, according as y is positive or
negative. When y = o, it will coincide with the axis of ,
and the equation of this axis is therefore

y=o

Finally, the origin of co-ordinates being at the same time
on the two axes, will be defined by the equations

x=0, y=on,

as we have before found.
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48. The method which we have used to express analyti-
cally the position of a point, may be therefore used to de-
signate a series of points, situated on the same straight line
parallel to either of the co-ordinate axes. Generalizing this
result, we see, that if there exist the same relation between
the co-ordinates of all the points of any line whatever, the
equation in x and y which expresses this relation, must cha-
racterize the line. Reciprocally, the equation being given,
the nature of the line is determined, since for every value of
z or y we may find the corresponding value of the other co-
ordinate. ¢

49. An equation which expresses the relation which exists
between the co-ordinates of every point of a line, is called the
equation of that line.

Let it be required to find the equation of a straight line
passing through the origin of

co-ordinates, and making an

angle « with the axis of z.
Let the angle which the co-

ordinate axes make with each 3 o
A

other be called 8. From any Mﬂ\

point M draw PM parallel to the axis of y, we will have,

PM : AP : : sina : sin (8 —a)

PM sin a . sina
Befiger i doadeg AL A Wy Sy e BN
AP sin (8 — «) i sin (8 — «)
As the same relation between y and = will exist for every
point of the line AM, the equation
4= F
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= b
sin (8 —a)
1s the equation of a straight line referred to oblique axes.

The value of « is the same for every point of the line AM,
but varies from one line to another. If we suppose « to
diminish, the line AM will incline more and more to the axis
of x, and when « = o coincides with this axis. In this case
the analytical expression becomes y = o, which is the same
equation for the axis of & which was found before.

Again, let o increase. The line AM approaches the axis

AY and coincides with it when « = 8. In this case the sin
(B— «) = 0, and the equation becomes x = o, which is the

equation of the axis of y.
If o« continue to increase, (8-—«) becomes negative, and
the equation becomes

sin a
sin (B — &)
and is the equation of the line AM'. When « = 180°,
sin &« = 0, and the line coincides with the axis of x, and we

y=—=

have again y = o.
Finally, for « > 180° sin o is negative, as well as
sin (8 — o), and the equation becomes

sin a
— (Pt SAT e
sin (8 — o)
and represents the line MAM”. Hence the formula
y==x sin o
sin (8 — o)

is applicable to every straight line drawn thfough the origin
of co-ordinates, when referred to oblique axes.
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50. Let us now consider a line A'M' making the same
angle « with the axis of z,
but which does not pass
through the origin; and as
its inclination to the axis of =

does not determine its posi-
tion, suppose it cut the axis
of y at a distance AA’ from /3 rt 7
the origin, equal to &. The £

equation of a line parallel to A’M’, and passing through the

origin, will be ;
smn o
=y —————
Y sin (8 — a)

The value of any ordinate PM will be composed of the
part PN = « R - ad MN = AA’=10. Hence

sin (8 — a)

sin « b
Yy=7*5n (B—a) Fids
which is the most general equation of a straight line con-
sidered in a plane.

51. To find the point in which this line cuts the axis of «,
make y = o, which is the condition for every point of this
axis; and making z = o, determines the point in which it
cuts the axis of y.

Should the line A'M’ cat the axis of y below the origin of
co-ordinates, the value of the new ordinate would be less
than that of the ordinate of the line passing through the
origin, by the distance cut off on the axis of y; hence we
have for the equation of the line,

sin «

S =
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52. In this discussion we have supposed the co-ordinate
axes to make any angle 8 with each other. They are most
generally taken at right-angles, since it simplifies the calcu-
lation. If therefore 8 = 90°

sin (8 — &) = sin (90° — o) = Esv 4
and the equation (1) becomes
sin o
cos «

y=ux +b==zxtana-+ b.

Representing the tangent of « by a, this equation becomes
y=ax + b, ®)

which is the equation of a right line referred to rectangular
axes. In this equation a represents the tangent of the angle
which the line makes with the axis of z, and b the distance
from the origin at which it cuts the axis of .

53. If the line passed through the origin of co-ordinates,
b is zero, and the equation (2) becomes

y = ax,

which is the equation of a right line passing through the
origin of co-ordinates when referred to rectangular axes.

By making y = o in equation (2) we determine the point
in which the line cuts the axis of x, the abscissa of which is

LR

a
It therefore meets this axis on the left of the axis of y, and
b £t
at a distance — — from the origin.

By finding the value of z in equation (2) we get

1 b
x=zy-_—-—-: (3)

a
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as a represents the tangent of the angle « which the line

makes with the axis of z, L will be the cotangent of «, or
a

the tangent of the complement of «; but the complement of
e is the angle which the line makes with the axis of y;
hence, to find the angle which a line makes with the axis of
ordinates, we find the value of x in the equation of this line
referred to rectangular axes, and the co-efficient of y will be
the tangent of this angle.
54. The equation
y=-+ar+b

representing a straight line which cuts the axis of y at a
distance + b from the origin, and makes an angle whose
trigonometrical tangentis 4 a
with the axis of z, its posi-
tion will be as indicated by
the line A'M, the distance
AA’ being equal to -+ b, and
the angle ABM represent-

ing a.

But the position of the line A’M will evidently vary with
the signs of a and b, since the angle « will be acute for a
positive tangent, but obtuse for a nega-

tive one. And the line A'M will cut A

the axis of y above the axis of x for a ¥

positive value of b, but below this axis A % 2

for a negative value. We therefore /

conclude that for the equation A
y=+ar—5b

Fig. 1
the line has the position A'M (fig. 1). -
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Y
\
A
A \”ﬁ
N

When we have
Yy=-—axr+b

it assumes the direction A'M

% (fig. 2), and when

y=—axr—10

= it is situated as in fig. 3.

Fig. 3.
2 55. Should the Tine be
parallel to the axis of «
(fig. 4), the angles a =o¢
& b and @ = o, and the equa-
2 e tion becomes
y=+5b
— AT "
for the line A'M’, and
=—0
Fig. 4. for the line A"M".

66. If we put the equation of the line under the form

@ = ay == b, then, for the foregoing reasons, a will be the tan-
gent of the angle the line makes with the axis of y. If the

line be parallel to this axis, a becomes zero, and we have
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z=+0b
for the line on the right of the

axis, and a”
z=—20
for the line on the left of the

axis; becausea= co; therefore

b b
5 and + = also become equal

to o, and the line should coin-

cide with the axis of y. The
insufficiency of the text may
be readily overcome, and should be.

57. By giving to the constants ¢ and b particular values,
so many particular lines may be represented. When a =1
and b = 1, the line cuts the axis of y at a unit’s distance
from the origin, and makes an angle of 45° with the axis of
z. Since a = tang a = tang45° = 1.

58. The most general form of an equation of the first
degree between two variables is

Ay + Bz + C=o,

from which we have

B DAL
L o
R B O .
By making a = T and b = — — this equation reduces to
A
y=ax+b,

which is the equation of a straight line referred to rectan-
gular axcs as before found

EXAMPLES.

1. Construct the line whose equation is

y=—z—L ”
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2. Construct the line whose equation is
2y =4z —2.

3. Construct the line whose equation is

2w—3y—1=06x—y

4. Construct the line whose equation is

ly—3x+i=3%x+ 2

59. From what precedes we may find the analytical ex-
pression for the distance

MY between two points, when

we know their co-ordinates

B e referred torectangular axes.
Let M', M", be the given
points; draw M'Q’ parallel

to the axis of x, the triangle

MM'Q' gives

MM =Y MQ" +MQ"
Let z', y, represent the co-ordinates of the point M/, 2", y'
those of the point M"; M'Q = 2" —a',and M"Q' =y" —y/,
and representing the distances between the two points by D,
we have

D=y @ —ay+ U —y)
If the point M’ were placed at the origin A, we should have
17} y =o,
and the value of D reduces to
D=va®+y7

which is the expression for the distance of a point from the
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origin of co-ordinates. This value is
easily verified, for the triangle AMP
being right-angled gives

AM' = AP’ + PM,
D=vx ¥y~

60. Let it be required to find the equation of a straight
line, which shall pass through a given point.

Let o, y', be the co-ordinates of the given point M. As
the line is straight, its equation will be of the form (Art. 52)

y=az + b
Y
Since the required line must pass -
through the point M, whose co-or-
ainates are ', y/, its equation must /PA »

be satisfied when «' and y' are sub-
stituted for z and y; hence we
have the condition

Yy =ax' + b

But, as it is in general impossible for a straight line to pass
through a given point M, and cut the axis of y at a required
point P, (the distance AP being equal to b,) and make an
angle with the axis of , whose tangent shall be a, one of the
quantities @ or b must be eliminated. By subtracting the
second of the above equations from the first, this elimination
is effected, and we have

y—y=a@—2z) @
for the general equation of a straight line passing through one
point.  This equation requiring but two conditions to be ful-

filled, may be always satisfied by a straight line.
5 G
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61. If the given point be on the axis of z, then ¢’ = 0 and
the equation (4) becomes

y=a(z—xz)

should the point be upon the axis of y, 2’ = o, and we have
y—y =az,
y=uaxr + .

In the same manner, by giving particular values to «’ and ¥/,
the equation of any line passing through a given point may
be determined.

EXAMPLES.

1. Find the equation of a line which shall pass through a
point whose co-ordinates are ' = —1 ¢y’ = + 2
9. Find the cquation of a straight line which shall pass

through a point on the axis of « whose abscissa is equal to
—3.

62. Let us now find the equation of a straight line which
shall pass through two given points.

Let «', y’ be the co-ordinates of one of the points, 2", y"
those of the other. The line being straight, its equation will
be of the form

y=az + b.
Since the line must pass through the point whose co-ordinates
are ', y/', these co-ordinates must satisfy the equation of the
line, and we have

y' = ax' + b.
But it also passes through the point whose co-ordinates are

2", y", and we have the second condition,

y' =az" + 0.
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The line having to fulfil the two conditions of passing through
the two given points, the two constants @ and b must be eli-
minated. By subtracting the second-equation from the first,
and the third from the second, we have

y—y=a@—z)

y! _yn =a (.l" __xll)’

and by dividing these two last equations the one by the
other, we have

y—y =" @—2),

which is the equation of a straight line passing through two
given points, in which x and y are the general co-ordinates
of the line, and «', y', and 2", y”, the co-ordinates of the two
points. The angle which it makes with the axis of = has for
a tangent

yl — y"

' —x

e

Itis easy to show that the above equation fulfils the required
conditions; for, by supposing ' = 2" the line will become
parallel to the axis of y, and the value for the tangent becomes

y—y

= @
0 ]

the tangent being infinite, the angle which the line makes
with z is 50°.
If ¥ = 4", we have
0

VTR T

x —z
which is the condition of the line, being parallel to z ; since
the angle being o, the tangent is o.
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EXAMPLES.
1. Find the equation of a line passing through two points
he co-ordinates of whicharex' =1, ¥ =2, 2" =0 3" = 1.
2. Find the equation of a line which shall pass through a
point on the axis of =, the abscissa of which is —2, and
another on the axis of y, the ordinate of which is + 1, and
construct the line.

63. To find the conditions necessary that a straight line
be parallel to a given straight line.

Let
e y=axr+b
be the equation of the given line, in which ¢ and b are
known. That of the required line will be of the form

y=adx+7?,
in which o' and &' are unknown.
In order that these lines should be parallel, it is necessary

that they should make the same angle with the axis of .
Hence

!

a- =l
and the equation of the parallel, after substitution, becomes
y=az+b,

'in which ' is indeterminate, since an infinite number of lines

may be drawn parallel to a given line.

64. To find the angle included between two lines, given
by their equations.
Let
y'=ax +'b be the equation of the first line,

y=a'z + b the equation of the second line.
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The first line makes with the axis of x an angle, the trigo-
nometrical tangent of which is a;
the second, an angle whose tan-
gent is @'. The angle sought is
ABC = o — a, since BAX =
ACB + CBA. But we have from

Trigonometry,

tang o' — tang o
I + tang o tang o

tang (' —a) =

Calling ABC = V, and putting for tang « and tang o’ a and

@', we have
.a —a
il e
If the lines be parallel, V = o; and the tang V = o, which
gives a — a' = o and a = a’, which agrees with the condition
betore established (Art. 63).
If the lines be perpendicular to each other, V = 90° and

’

tang V = ]a—:a_Z’ = oo,
which gives
1+ aa'=o,

which is the condition that two straight lines should be per-
pendicular to each other. 1If one of the quantities a or a' be
known, the other is determined by this equation. .. & °

EXAMPLES.

I. Find the angles between the lines represented by the
equations
y=xz—1,
y=z+ L
e
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2. Iind the angles between the lines

YETRn

y=1.
3. I'ind the angles between the lines

y=o

Y=

4. Find the angle of intersection of two straight lines, the
tangent of the angle which one makes with the axis of
being + 1, that of the other LU TR

Ans. tang V = oo.

5. Find the angle of intersection whena =0 a' = 1.

65. To find the intersection of two straight lines, given
by their equations.
Let 3
y=a'z+0b, :
y=az+ 0,

be the equations of the two lines. As the point of intersec-
tion is on both of the lines, its co-ordinates must satisfy at
the same time the two equations. Combining them, we
shall deduce the values of « and y which correspond to the
point of intersection. We have by elimination,

b—0 _ab—ab
LY i

= —

When a = a/, these values become infinite. The lines are
then parallel, and can only intersect at an infinite distance.
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EXAMPLES.

1. Find the co-ordinates of the point of intersection of
two lines, whose equations are

y=3x+1,
y=2x+ 4.
Ans. z =3, y=10.

2. Find the co-ordinates of the point of intersection of

two lines, whose equations are

y—zx=o,

y—2z =1
Ans. z=1,y=1.

66. The method which we have just employed is genera.,
and may be used to determine the points of intersection of
two curve lines, situated in the same plane, when we know
their equations; for, as these points must be at the same
time on both curves, their co-ordinates must satisfy the equa-
tions of the curves. Hence, combining these equations, the
values we deduce for x and y will be the co-ordinates of the
points of intersection.

Of Points, and the Straight Line in Space.

67. A point is determined in space, when we know the
length and direction of three lines, drawn through the point,
parallel to three planes, and terminated by them.

68. For more simplicity we will suppose three planes at right
angles to each other, and let them be represented by Y'AX
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z XAZ, ZAY. Suppose
R<--~——Ml the point M at a dis-
1{’// it \/ tance MM’ from the
¢ RSB : first plase, MM" from
,,./'/a \1\? o second, and MM from

| |/ 6/‘ the third. If we draw

/r T ' through these lines three
planes parallel to the

rectangular planes, their intersection will give the point M.
The rectangular planes to which points in space are referred,
are called Co-ordinate Planes. They intersect each other in
the lines AX, AY, AZ, passing through the point A and per-
pendicular to each other. The distance MM’ of the point
M from the plane YAX may be laid off on the line AZ, and
is equal to AR. Likewise the distance MM" may be laid off on
AY,andis AQ. Finally, AP laid off on AX is equal to MM".

69. The lines AX, AY, AZ, on which hereafter the re-
spective distances of points from the co-ordinate planes will
be reckoned, are called the Co-ordinate Axes, and the point
A is the Origin.

70. Let us represent by x the distances laid off on the
first, which will be the axis of «, by y those laid off on Ay,
which will be the axis of y, and by z those laid off on AZ,
which will be the axis of z.

If then the distances AP, AQ, AR, be measured and found
equal to @, b, ¢, we shall have to determine the point M, the

three equations
r=a y=b z=c

These are called the Iiquations of the point M.
71. The points M’', M”, M, in which the perpendiculars
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from the point M meet the co-ordinate planes, are called the
Projections of the point M.

These projections are determined from the three equations
given above, for we obtain from them

y = b, * = a, which are the equations of the projection M,
g e G “ “ of the projection M",
=c,y=b « s & of the projection M";

and we see from the composition of these equations, that two
projections being given, the other follows necessarily.

In the geometrical construction they may be easily deduced
from each other. For example, M”, M, being given, draw
M"Q, M'P, parallel to AZ, and QM', PM/, parallel respect-
ively to AX and AY, M’ will be the third projection of the
point M. '

72. There results from what has been said, that all points
in space being referred to three rectangular planes, the points
in each of these planes are naturally referred to the two
perpendiculars, which are the intersections of this plane
with the other two.

The plane YAX is called the plane of s, and y's, or
simply xy ;

The plasne XAZ, that of 2s, and 2's, or xz ;

And the plane ZAY, that of z's, and y's, or 2y

The same interpretation is given to negative ordinates, as
we have before explained, and the signs of the co-ordinates
%, ¥, z, will make known the positions of points in the eight
angles of the co-ordinate planes.

73. Let us resume the equations,

r=ay y==>b"z='"c;
a, b, ¢, being indeterminate. .
H
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The first x==a considered by itself, belongs to every
point whose abscissa AP is equal to «. It belongs therefore
to the plane MM'PM", supposed indefinitely extended in
both directions. For every point of this plane, as it is pa-
rallel to the plane ZAY, satisfies this condition. The equa-
tion y = b corresponds to every point of the plane MM"
QM’', drawn through the point M parallel to ZAX, and
finally z = ¢ corresponds to every point of the plane MM”
RM" drawn through M parallel to the plane XAY. Hence
the equations

z=a, y=">b, z=c,

show that the point M is situated at the same time on three
planes drawn parallel respectively to the co-ordinate planes
and at distances represented by a, b, c.

When these distances are nothing, the equations become

r=o0, Yy=o0, z=0

which are the equations of the origin. The first of these
x = o corresponds to the plane yz, the second y = o to the
plane xz, and the third z = o to the plane xy. Since for every
point of these planes, these separate conditions exist.

74. To find the expression for the distance between two
points in space. Let M, M’, be the two points, the co-ordi-
nates of the first being 2/, ¥/, 2/, those of the second, z”, y", 2".
Draw MQ parallel to the plane of zy, and limited by the

=7
)
~

ordinate M'IN’, we shall have) s foe fowdieCae ARSI
[V S
1 mr-aw+ar, e 2R
foppd G nge Thee
or since MQ = NN/, 3

MM"™ =NN" + QM".
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Draw NR parallel to the

axis of x, we shall have z m
NN* = NR' + NR. - /
But \
NR =a"—2, &
and N:R:yn_yr, A X
hence /
Al N R
NN’ = (.r"——a:')’—l— (y"—y’)’,
And we have also Vs A

QM = M'N'— MN =" —=2".
Substituting the values of NN' and QM', we have
MM = (2" — ) + (¢ — ¥ + (" — )}
¥ MM =D=v @ —2)Y+ @y —y)+E —2).

75. If one of the points, as for example that whose co-or-

dinates are ', ¥, 2, coincide with the origin, the preceding
formula becomes

D=va™+y +775
which expresses the distance of a point in space from the
origin of co-ordinates. In fact,
the triangles MAM', AM'P being 3
right-angled at M’ and P, give M

AM® = MM® + A, /

i b l P X
AM' = MM” + P + AT, T \/
AN = 2% 4y + 27, Lo i

as we have just found.

We see by this result, that the square of the diagonal of a
rectangular parallelopipedon is equal to the sum of the squares
of its three edges.
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76. This last result gives a relation between the cosines of
the angles which any line AM makes with the co-ordinate
axes. For,let these three angles be represented by X, Y, Z;
call 7 the distance AM, in the right-angled triangle AMM'
we have

MM =2, AMM = MAZ=27.
Hence
2z =1rcos Z.

Reasoning in the same manner we have

y=rcosY,

= rcos X.

Squaring these three equations and adding them together we

have A

2® 4 4 + 22 =1 (cos* X + cos’Y + cos’ Z),
but ot =
Hence cos’X +cos’Y + cos*Z = 1,

which proves, that the sum of the squares of the cosines of the
angles which a straight line in space makes with the co-ordi-
nate axes is always equal to unity.

77. Let us now determine the equations of a straight line
in space.

To do this, we will remark that, if a plane be drawn
through a straight line in space, perpendicular to either of
the co-ordinate planes, its intersection with this plane will be
the projection of the line on that plane. The perpendicular
plane is called the projecting plane. There are therefore
three projecting planes, and also three projections; and as
each of the projecting planes contains the given line and one
of its projections, knowing two of the projections, we may
draw two projecting planes whese intersection will determine



Caar 1I1] ANALYTICAL GEOMETRY. ‘ 61

the line in space. Hence, two projections of a line in space
are sufficient lo determine it.

As these projections are straight lines, their equations will
be of the form,

x = az + a, for the projection on the plane of xz,

y=bz 48, « <4 on the plane of yz.

These equations fix the position of the line in space, since
they make known the projecting planes, whose intersection
determines the line.

If the given line passed through the origin of co-ordinates,
we should have a =0 and 8 =0, and the above equations
would become

z = az,
y=bz.
78. These results are easily verified; for the equation

r=az -+ a

being independent of y, is not only the equation of the pro-
jection of the given line on the plane of zz, but corresponds
to every point of the projecting plane of the given line, of
which this projection is the trace. It is therefore the equa-
tion of this plane.
Likewise the equation
y=bz+p

being independent of x, not only represents the equation of
the projection of the given line on the plane of yz, but is the
equation of the plane which projects this line on the plane
of yz. Consequently the system of equations

r=az + a, y=>bz+4 B,
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signifies that the given line is situated at the same time on
both these planes. Hence they determine its position.

79. Lliminating 2 from these equations, we get,

r—oa — B b
T Rl y-——B::—a—(m—-a),

whnich is the equation of the projection of the given line on
the plane of yx, and also corresponds to the plane which
projects this line on the plane of xy.

80. We conclude from these remarks that, in general, two
equations are necessary to fix the position of a line in space,
and these equations are those of the two planes, whose inter-
section determines the line. When a line is situated in one
of the co-ordinate planes, its projections on the other two are
in the axes., If, for example, it be in the plane of az, we
have for any line of this plane, :

b=o, Bi=lok
and its equations become
y=o, x=az+a.

The first shows that the projection of the line on the plane
of yz is in the axis, and the second is the equation of its pro-
jection on the plane of xz, which is the same as for the line
itself, with which it coincides.

81. Let us resume the equations

r=az + o, y=bz+4 B.

So long as the quantities, a, b, a, 8, are unknown, the posi-
tion of the line is undetermined. If one of them, « for ex-
ample, be known, this condition requires that the line shall

have such a position in space, that its projection on the plane
of az shall make an angle with the axis of z, the tangent of
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which is a. If « be also known, this projection must cut the
axis of x at this given distance from the origin, and these
two conditions will limit the line to a given plane.

If b be known, a similar condition will be required with
respect to the angle which its projection on the plane of yz
makes with the axis of z; and finally, if all fonr constants
be known, the line is completely determined.

82. The determination of the constants a, b, «, B, from
given conditions, and the combination of the lines which
result from them, lead to questions which are analogous to
those we have been considering.

Before proceeding to their discussion, we will remark, that
the methods which we have just used, may be applied to
curve as well as straight lines. In fact, if we know the
equations of the projections of a curve on two of the co-
ordinate planes, we can for every value of one of the varia-
bles x, y,or 2, find the corresponding values of the other two,
which will determine points on the curve in space.

83. The projection of a curve on a plane is the intersection
with this plane by a cylindrical surface, passed through the
curve perpendicular to the plane. '

If we know the equations of two of its projections, these
equations show that the curve lies on the surfaces of two
cylinders, passing through these projections, and perpendi-
cular to their planes respectively. Ilence their intersection
determines the curve.

The term Cylinder is used in its most general sense, and
applies to any surface generated by a right line moving pa-
rallel to itself along any curve.

84. To find the equations of a straight line passing through

o given poind.



64 ANAINTICAL GEOMETRY. [Caapr. IIL

Let 2, y', #', be the co-ordinates of the given point. The
equations of the line will be of the form

% lkgse 0aputing T 7ml~ Glhe Wdeds = az + o,
9 ; g7 o t Wk Tes ofe
5 Aegl ames ‘tw a  eryte Ly P:,, y= bz B B'

e et deeled iu w
But since the line must pass through the given point, these
equations must be satisfied when ', ¥, and 2’ are substituted

for z, y, and z. We have therefore the conditions
Q@R 0o s 02> bt Weee s e |

(w.\u-h:-‘( to awaet o 4. '=a? oF %y
y =b2 4+ 6.
Eliminating”« and £, by subtracting the two last equa-
tions from the two first, we have

] ‘.'u Qoo ewy

1 .,.,‘..E;. £

ft

Sea Gab. b0

z—z =a(z—2),
g o = bifpina),
#or the equations of a straight line passing through the point
ey A
EXAMPLES.

1. Find the equations of a straight line passing through

art. &4. . . ,
i 2 the point whose co-ordinates are @' =0, y' =0, z' = L.

2. Find the equations of a straight line passing through
the point whose co-ordinates are 2’ = —1, ¢y’ =0, 2' = 4 L.

85. To find the equations of a right line passing through
wwo given points.

Leta', y', 2', 2", y", 2", be the co-ordinates of these points.
‘The equations of the required line will be of the form

r=az -+ a
y=bz+ 5,

a, b, o, 8, being unknown. In order that the line pass through
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the point whose co-ordinates are ', ¥/, 2/, it is necessary
that these equations be satisfied when we substitute «', y'
and 2/, for x, y, and 2. Hence

' =az + a,
y =b+ 8.
For the same reason, the condition of its passing through

the point whose co-ordinates are z", y", 2", requires that we
have
1”
&'’ =az" + a,

y" = bZ" i ‘8.

These equations make known a, b, «, 3, and substituting
their values in the equation of the straight line, it is deter-
mined. Operating upon these equations as in Art. 84, we
have

(x—2z) =a(z—7), (' —a") =a (x'—2"),
G—y)=b(—z), @G—y)=b@—2")

from which we get

() " ’ n
e e RS g

? = ’
z/ =1 zll zl e Z”

@—2) =2 (t—2), yg—y=2" a—2).

2 —z 7 —z
The two last equations are those of the required line, the
other two make known the angles which its projections on the

planes of xz and yz make with the axis of z.
EXAMPLES.
1. Find the equations of a straight line passing through
the points, whose co-ordinates are ' = o, y' =0, 2’ = —1;

and 2" =1, y’" =0, z" =0, and construct the line.

2. Find the equations of the line passing through the origin
6 I
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of co-ordinates, and a point, the co-ordinates of which are
xu.: 1, yu = o0, 2 =-_1.
86. To find the angle included between two given lines.
Let

::Z::;g be the equations of the first line.
z=az+d

Ay g those of the second.

We will remark in the first place, that in space, two lines
may cross each other under different angles without meeting,
and their inclination is measured in every case by that of
two lines, drawn parallel respectively to the given lines
through the same point.

Draw through the origin of co-ordinates two lines respec-
tively parallel to those whose inclination is required, their
equations will be

% Zzg for the first,

= 0z

w—alzg for the second
y=1>bz

Take on the first any point at a distance 7' from the origin,
the co-ordinates of this point being «', ¥/, #’; and on the
second line take another point at a distance »” from the origin,
and call the co-ordinates of this
point z”, 4", 2", and let D repre-
sent the distance between these
two points. In the triangle formed
by the three lines #, ", and D,
the angle V included between »'
and r” will be (by Trigonometry),
given by the formula,
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$j t'r¥ Cos V 2 73 2
e 2 +r7—1
%‘"‘ cO0S Wie— —'—-;2-,—,,-— .
» r

We have only to determine r’, 7, and D.

Designating by X, Y, Z, the three angles which the first
line makes with the co-ordinate axes, respectively, and by
X', Y, Z, those made by the second line, we have by Art. 76,

x = r'cos X, y=rcosY, Z =1 cos Z,
' =7r"cos X/, y' =r"cosY, 2'=r"cosZ.

Besides, D being the distance between two points, we
have

D= (' —a) + (' —y)' + ' —5)

or
’

D2=x12+y:2+zg+wuz+yug+zl/2_2(max:l+y/yu+zz ;

Putting for z, ¥/, 2, &ec. their values in terms of the angles
we have

D*= ¢ {cos* X + cos* Y + cos® Z} + #* jcos* X' + cos* Y
+ cos? Z’} — 27 r”,%cos Xcos X' 4+ cos Ycos Y + cos Z
cos Z'}.

But we have (Art. 76),
cos’* X + cos®Y +cos*Z = 1,cos? X' + cos Y' + cos? Z' = 1;
hence
D?=7" 4+ r"*— 2 r" (cos X cos X' + cos Y cos Y’ + cos Z
cos Z').
~ Substituting this value of D? in the formula for the cosine
V, and dividing by 2/ #”’, we have

cos V = cos X cos X'+ cosYcos Y + cos Zcos Z;

which is the expression for the cosine of the angle formed in
space.
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87. We may also express cos V in functions of the co-efhi-
cients a, b, a, &', which enter into the equations of the lines
xr = az, z=daz,

y = bz, y=1"bz
For this purpose let us consider the point which we have
taken, on the first line, whose co-ordinates are ', y, z
These co-ordinates must have between them the relations
expressed by the equations of the line; hence
x = a7 o 4
yl — bzll;
and as we have always for the distance
7’"2 — w’2 g + y/z + z/!’
these three equations give

ar’ o r
= Sy e = ——y =,
drexl Y JTxaxF " Jite+b

But we have

’

x z
cosX=—-;,—s cosY=%: cosZ=-—;

r
hence
a b
cos X =—— CO Y:—-———-—
vit+a + ¥ : JIT+@+ 7
cos Z = )

JTiasp

Reasoning in the same manner on the equations of the
second line, we shall have
a b

) cos Y =
v1+a®+0b

X’: — T LI 9
o v1+a*+ 568
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1
Z' e e )
e v1+a®+0*

and these values being substituted in the general value of
cos V, it becomes

1 + aa' + b

V==% - .
- JVitd 1t Jlta +b°

This value of cos V is double, on account of the double
sign of the radicals in the denominator. One value belongs
o the acute angle, the other to the obtuse angle, which the
lines we are considering make with each other.

88. The different suppositions which we make on the angle
V being introduced into the general expression of cos V,
we shall obtain the corresponding analytical conditions. Let
V = 90°.

Cos V = o, and then the equation which gives the value of
cos V will give

1 4 aa' + b = o,

which is the condition necessary that the lines be perpendicular
to each other.

89. If the lines be parallel to each other,cos V = +1, and
this gives
1 4 aa" + 0¥

== s
Vi+ad+8¥ V14 a? 407

Making the denominator disappear, and squaring both mem-
bers, we may put the result under the form

(@ —a) + (' —b)* + (ab' — a'b)’ = o.

But the sum of the three squares cannot be equal to zero,
unless each is separately equal to zero, which gives
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a=a, b=10, abl' = a'b.

The two first indicate that the projections of the lines on

the planes of 2z and yz are parallel to each other; the third
is a consequence of the two others.

EXAMPLES.

1. Find the angle between the lines represented by the
equations

r=—2+4+2 =2 )
and
y=+z—1 Y=z 4+ 2
Ans. 90°.

2. Find the angle between the lines represented by the
equations
z=2:—3 Sy e 22—y
y=3z + 1 y=—2+1
3. Find the angle between the lines represented by the
equations

90. It is evident that the angles X, Y, Z, which a straight
line makes with the co-ordinate axes, are complements of the
angles which the same line makes with the co-ordinate planes
respectively perpendicular to the axes. Hence, if we desig-
nate by U, U’, U’/ the angles which this line makes with the
planes of yz, 2z, and xy, we shall have (Art. 87),

h a lilr b
COSX:‘SIHU:_H-{——?_—-{_-.P’ cosY =sinU =:'/‘-——1—_*:'ﬁ—32‘,
1
cos Z=sinU" =

Vit 16
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91. Let it be required to find the conditions necessary that
two lines should intersect in space and also find the co-ordi-

nates of their point of intersection.
Let

x=az + a, r=a'z+ o

y=1"bz+ B, y=>bz+ 8,

be the equations of the given lines. If they intersect, the
co-ordinates of their point of intersection must satisfy the
equations of these lines at the same time. Calling ', v, 2
the co-ordinates of this point, we have

' =az + a x'=a'z + o,
yl — bzl + ‘3, yl — blz' + 13'.

These four equations being more than sufficient to deter-
mine, the three quantities 2/, y', z', will lead to an equation
of condition between the constants a, b, o, B, o, 8, a', b,
which fix the positions of the lines, which condition must
be fulfilled in order that the lines intersect. Eliminating x
and vy, we have

(a—a)z +a—d =0, (B—0)2+B—F =0,
and afterwards z', we get
(¢—a)(B—B)—(a—a) (b —b) =0,

which is the equation of condition that the two lines should
intersect. If this condition be fulfilled, we may, from any
three of the preceding equations, find the values of z', ¥/, 2/,
and we get

o S B—pB |, ad—ae b3 — b'B

b—0

o — i) == y X' = y Y =
a—a' b— b a—'a’ y

These values become infinite when a = @' and b = b'.
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The point of intersection is then at an infinite distance. In-
deed, on this supposition the lines are parallel.

92. The method which has just been applied to the inter-
section of two straight lines, may also be used to determine
the points of intersection of two curves when their equations
are known. For these points being common to the two
curves, their co-ordinates must satisfy at the same time, the
equations of the curves. This consideration will generally
give one more equation than there are unknown quantities.
Eliminating the unknown quantities, we obtain an equation
of condition wnich must be satisfied, in order that the two
curves intersect. As the determination of these intersections
will be better understood when we have made the discussion
of curves, this subject will be resumed.

EXAMPLES.

L. Find the equations of a straight line in space, which
shall pass through a given point, and be parallel to a given
line.

2. Find the co-ordinates of the points in which a given
straight line in space meets the co-ordinate planes.

Of the Plane.

93. We have seen that a line is characterized when we
have an equation which expresses the relations between the
co-ordinates of each of its points. It is the same with sur-
faces, and their character is determined when we have an
equation between the co-ordinates , y, and z, of the points
which belong to it; for by giving values to two of these
variables, the third can be deduced, which will give a point
on the surface.
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94. The Equation of a Plane is an equation which ex-
presses the relations between the co-ordinates of every point
of the p]ane.' '

Let us find this equation.

A plane may be generated by considering it as the Jocus
of all the perpendiculars, drawn through one of the points
of a given straight line. Let ', ¢/, 2/, be the co-ordinates
of this point, we have (Art. 84),

r—a' =a(iz—z2)
y—y=>b(z—=2)

Those of another line drawn through the same point,
will be

for the equations of the given line.

x—ax'=a (z—72)
y—y =b(z—=2).
If these two lines be perpendicular, we have (Art. 88)
the condition
L 4 ad' + bb' = o,
@' and &' being constants for one perpendicular, but variables
from one perpendicular to another. If we substitute for '
and b’ their values drawn from the above equations, the
resulting equation will express a relation which will corre-
spond to all the perpendiculars, and this relation will be that
which must exist between the co-ordinates of the plane which
contains them. The elimination gives

z—z +a(@—2)+b(@y—y)=o,
which is the general equation of a plane, since ¢ and b are
entirely arbitrary, as well as &/, ¥, and 2"

95, If we make z = o, and y = 0, we have
7 K
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z=12 + ax' + by
for the ordinate of the

point C, at which the
plane cuts the axis of z.

Representing this dis-
tance by c, the equation

of the plane becomes

z+ar+by—c=o,

and we see that it is linear with respect to the variables
z, y, and z. It contains three arbitrary constants, a, b, ¢,
because three conditions are, in general, necessary to deter-
mine the position of a plane in space. If ¢ = o, the plane
passes through the origin.

96. To find the intersection of this plane with the plane
of zz, make y = o, and we have

y=0, z+ar—c=o,

for the equations of the intersection CD.

The first shows that its projection on the plane of zy is in
the axis of x, and the second gives the trigonometrical tan-
gent of the angle which it makes with the axis of a.

97. Making x = o, we obtain the intersection CD’, the
equations of which are,
x=0, z+by—c=o;
and z = o gives
z=0, arx+by—c=o,
for the equations of the intersection DD)'.

The intersections CD, CD', DD, are called the Traces of
the Plane.
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98. The projections of the line to which this plane is per-
pendicular, have for their equations

(xz—2)=a(z—12), (y—y)=0>b@—17).
Comparing them with those of the traces CD, CD’, put
under the form
c c
=T i o R

b

We see (Art. 64) that these lines are respectively perpen-
dicular to each other, since

1
l1+aX ——=o,
a
and

1
1+bx——b——0.

Hence, if a plane be perpendicular to a line in space, the
traces of the plane will be perpendicular to the projections of
the line.

99. Making z = o in the equations of the traces CD, CD’,
we have

[+
z=0 =0, I=—)»
y Y f) a
and
c
z=0, x=0, Y=

for the co-ordinates of the points D, D', in which the traces
meet the axes of x and y. These equations must satisfy the

" equations of the third trace DD, because this trace passes
through the points D and D'

100. Let us put the equation of the plane under the form
Az+By+Cz+ D=o,

which is the same form as the preceding, if we divide by C.
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We wish to show that every equation of this form is the
equation of a plane.

From the nature of a plane, we know that if two points
be assumed at pleasure on its surface, and connected by a
straight line, this line will lie wholly in the plane. If we
can prove that this property is enjoyed by the surface repre-
sented by the above equation, it will follow that this surface
is a plane.

X =az + o,

y=bz + f,

be the equations of the line, and let &', 4/, 2/, be the co-ordi-
nates of one of the points common to the line and surface.
They must satisfy the equations of the line as well as that
of the surface, and we have
r=ar+ao y=0b'+5,

and .

Az’ + By +Cz + D =o.
Substituting for 2’ and y' their values a? + «, b2 + 3, we

have
(Aa+Bb+C)z' + Aa+ BB+ D =o,

which is the equation of condition in order that the line and
surface have a common point.

Let 2", y" 2"', be the co-ordinates of another point common
to the line and surface. We deduce the corresponding con-
dition

(Aa+ Bb+ C)z" + Aa+ BB + D =o.

Now, these two equations cannot subsist at the same time,

unless we have separately

Aa+Bb+C=0, and Ao+ BB +D=o.
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These are, therefore, the necessary conditions that the line
and surface have two points common.

If the values of a, b, a, B, are such that these two condi-
tions are satisfied, every point of the line will be common to

the surface. For, if 2", y'", 2", be the co-ordinates of an-
other point, in order that it be on the surface, we must have

(Ac +Bb+C) 2" + Aa+ B8+ D =o.

But this equation is satisfied whenever the two others are,
and consequently this point is also common to the line and
surface.

As the same may be proved for every other point, it fol-
lows that every straight line which has two points in common
with the surface whose equation is

Az 4+ By +Cz+ D=y,

will coincide with it, and consequently this surface is a plane.
101. If we make y = o, we have

Ar+Cz+D=0o¢

for the equation of the trace CD, on the plane xz. If the
plane be perpendicular to the plane of yz, this trace will be
parallel to the axis of z, and its equation will be of the form
z = a, which requires that A = o, and the equation of the
plane becomes
By+ Cz+D=o.

We should in like manner have B = o, if the plane were
perpendicular to the plane of xz. Its trace on the plane of
yz would be parallel to the axis of y, and its equation

would be
Az 4+ Cz + D =o.

For a plane perpendicular to the plane of xy, we have the
equation
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This condition requires that we have C = o.
We may readily see that these different forms result from

A ! :
the fact that — ¢’ ¢’ represent the trigonometrical

tangents of the angles which the traces on the planes of xz
and yz make with the axes of x and .

102 There are many problems in relation to the plane
which may be resolved without difficulty after what has
been said. We will examine one or two of them.

Let it be required to find the equation of a plane passing
through three given points.

Let o', y,2'; 2",y",2"; 2", y",2"; be the co-ordinates
of these points, :

Ar +By+ Cz+ D =o,
will be the form of the equation of the required plane.
Since this plane must pass through the three points, we will
have the relations

Az + By 4+ C2 + D =o,

Az" + By" + Cz" + D = o,

Axr” 4+ By" + Cz” &+ D =o. .

Then these equations will give for A, B, C, expressions of

the form

A —PADEB B P RC =G,
A, By, C, being functions of the co-ordinates of the given
points.

Substituting these values in the equation of the plane, we
have

Az + By +Cz+ 1=o,
for the equation of a plane passing through three given
points.
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103. To find the intersection of two planes represented

by the equations
Ax + By + Cz + D = o,
Az +By+Cz+D =o.

These equations must subsist at the same time for the
points which are common to the two planes. We may then
determine these points by combining these equations.

If we eliminate one of the variables, z for example, we
have

(AC'— A'C)z + (BC'— BC) y + (DC' — D'C) = o.

This equation being of the first degree, belongs to a
straight line. It represents the equation of the projection
of this intersection on the plane of xy.

By eliminating z or y, we can in a similar manner find
the equation of its projection on the planes of yz and zz.

104. Generalizing this result, we may find the intersections
of any surfaces whatever. For, as their equations must
subsist at the same time for the points which are common,
by eliminating either of the variables, the resulting equations
will be those of the projections of the intersections on the
co-ordinate planes.

Of the Transformation of Co-ordinates.

105. We have seen that the form and position of a curve
are always expressed by the analytical relations which exist
between the co-ordinates of its different points. From this
fact, curves have been classified into different orders from.
the degree of their equations.
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106. Curves are divided into algebraic and transcendental
urves.

Algebraic Curves are thuse whose equations are purely
algebraic.

Transcendental Curves are those whose equations are ex-
pressed in terms of logarithmic, trigonometrical, or expo-
nential functions.

y* = a® —a* is an algebraic curve.
y=sinx, y=cosx, y=a% &c., are transcendental
curves.

107. Aigebraic Curves are classified from the degree of
their equation, and the order of the curve is indicated by the
exponent of this degree. For example, the straight line is
of the first order, because its equation is of the first degree
with respect to the variables x and y.

108. The discussion of a curve consists in classifying it
and determining its position and form from its equations,
This discussion may be very much facilitated by means of
analytical transformations, which, by simplifying the equa-
tions of the curve, enable us more readily to discover its
form and general properties. The methods used to effect
this simplification consist in changing the position of the
origin, and the direction of the co-ordinate axes, so that the
proposed equations, when referred to them, may have the
simplest form of which the nature of the curve will admit.

109. When we wish to pass from one system of co-ordi-
nates to another, we find, for any point, the values of the old
co-ordinates in terms of the new. Substituting these values
in the proposed equation, it will express the relations be
tween the co-ordinates of the same points referred to this
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new system. Consequently the properties of the curve will
remain the same, as we have only changed the manner of
expressing them.

110. The relatigns between the new and old co-ordinates
are easily established, when

the origin alone is changed x

without altering the direc- 7/, b

tion of the axes. For, let / 7 g

A’ be the new origin, and X
A'X’, A'Y, the new axes, P / / / 5 / 2
parallel to the old axes, AX, / 7 S

AY'. For any point M, we

have
AP=AB +BP, PM=PP'+ PM=AB + PM.

Making AB = @, and A'B = b, and representing by x and
y the old, and ', y' the new co-ordinates, these equations
become

z=a+2, y=b+y,

whnich are the equations of transformation from one system
of co-ordinate axes, to another system parallel to the first.

111. To pass from one system of rectangular co-ordinates
to another system oblique to the first, the origin remaining
the same.

Let AY, AX, be two axes at ¥ 2
right angles to each other, and
AY’, AX, two axes making any X
angle with each other. Through \"—' z
any point M, draw MP, MP, e ;
respectively parallel to AY and 4 = 2 =

AY’, and through P’ draw P'Q, P'R parallel to AX and AY,
we shall have

L
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2= AP = AR + P'Q,’ y= MP=MQ + PR.

But AR, P'R, MQ, PQ, are the sides of the right-angled
triangles AP'R, P'MQ, in which AP’ = 2/, and P'M = v,
We also know the angles PPAR =« and' MP'Q =«. We
deduce from these triangles

x=2xacosa +ycose, y=2asinae+ysina,

which are the relations which subsist between the co-ordi-
nates of the two systems.

112. If we wished to pass from the system whose co-ordi-
nates are 2’ and ¢’ to that of x and y, we have only to de-
duce the values 2" and ¢/ from the two last equations. We
find by elimination these values to be

Z sin o/ — 7 cos o’ Y €OS o — x sin o
o= 3 = y’ e e R AT B L -
sin (« — o) sin (o — o)

If the new axes of 2" and ¥ be rectangular also, we have

o —a = 90 and &' = 90° + «, sin (¢ — o) =sin 90° = L

sin &' = sin (90° + o) = sin a cos 90° + cos « sin 90° = cos «,
cos o/ = cos'90° cos « — sin 90° sin @ = — sin a.

Substituting these values, we have for the formulas for

passing from a system of rectangular co-ordinates to another
system also rectangular, the origin remaining the same,

x=a cosa—1y sina, y==a'sina+ 3 cosa.
113. To pass from a system of oblique co-ordinates to
another system also oblique, the origin remaining the same.
Let AX', AY' be the axes of &', 3/, and AX"”, AY", the new

axes whose co-ordinates are z”, y’. Let us take a third
system at right angles to each other as AX, AY, the co-or-
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Jinates being z, y. Calling a, o,
8, ‘2_5’, the angles which the axes of
x, o, x”, y’, make with the axis of
z, we have (Art. 111) for passing
from this system to the two systems
of oblique co-ordinates, the formulas

x = 2/ cosa + y cos o, = a'sm a + ¥ sin «,
z=2a"cos B+ y’cos 3, y=x"sin 8+ y"sin '
Eliminating z and y from these equations, we shall obtain

the equations which will express the relations between the
co-ordinates 2', ', and z”, y", which are

x' cos a 4 y' cos o' = " cos 3 + y" cos B

x'sin o« 4 y'sina’ = 2" sin B + ¥y sin B'
Multiplying the first by sin o, and subtracting from it the
second multiplied by cos «, we obtain the value of ¥

Operating in the same manner, we get the value of 2', and
the formulas become

0 x'" sin (o — B) + v" sin (¢' — B')

sin (o' — )
,_x"sin (B—a) + y"sin (8 — %)
LA sin («' — o)

114. Generalizing the foregoing remarks, we may easily
find the formulas for the transformation of co-ordinates in
space. We have only to find the value of the old co-ordi-
nates in terms of the new, and reciprocally. If the trans-
formation be to a parallel system, and a, b, ¢, represent the
co-ordinates of the new origin, we have the formulas

z=a+z, y=b+y, z2=c+7,
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in which x, y, and z, are the old, and «', ', and 2/, the new
co-ordinates.

115. Let us now suppose that the direction of the new

- axes is changed. As the introduction of the three dimen-
sions of space necessarily complicates the constructions of
the problems, if we can ascertain the form of the relations
which must exist between the old and new co-ordinates, this
difficulty may be obviated.

Now it can be proved, in general, that in passing from any
system of co-ordinates, the old co-ordinates must always be
expressed in linear functions of the new, and reciprocally.
This has been verified in the system of co-ordinates for a
plane, since the relations which we have obtained are of the
first degree. To show that this must also be the case with
transformations in space, let us conceive the values of x, 7, 2,
expressed in any functions of «', ¢/, 7', which we will designate
by ¢, =, 4, so that we have

=@,y ), y=7@"y,2), z2=4 (@ ,y,7).
If we substitute these values in the equation of the plane,
which is always of the form

Az + By + Cz + D = o,
it becomes

Ao, y,7) +Bx(@,y,2)) +C.4(«,9,7)) + D=o.

But the equation of the plane is always of the first degree,
whatever be the direction of the rectilinear axes to which it
is referred, since the equations of its linear generatrices are
always of the first degree. Hence, the preceding equations
must reduce to the form

Ad+ By +CZ +D =o,
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in which A’, B,, C' D’, are independent of «, ¢/, 2/, but de-
pendent upon the primitive constants A, B, C, D, and the
angles and distances which determine the relative positions
»f the two systems.

This reduction must take f)lace whatever be the values of
the primitive co-efficients A, B, C, D, and without there re-
sulting any condition from them. IHence this reduction
must exist in the functions ¢, =, 4, themselves, for if it were
otherwise, the terms of ¢ which are multiplied by A, would
not, in general, cause those of « and 4 to disappear, which
are multiplied by B and C. It would follow from this, that
the powers of ', ¥, 2/, higher than the first, would necessa-
rily remain in the transformed equation, if they existed in
the functions ¢, #, 4. These functions are therefore limited
by the condition that the new co-ordinates «, ¥, 2/, exist
only of the first power, and consequently the most general
form which we can suppose, will be

x=a+mc' +my 4+ m'y,

y=1>b + nx' + 2'y' + a'7,

z=c+ px' + py + p',
in which the co-efficients of &', ¥/, 2/, are unknown constants
which it is required to determine. But since they are con-
stants, their values will remain always the same, whatever
be those of 2, y', 2. We can then give particular values to

these variables, and thus determine those of the constants.
If we make

=0, y =0, 2 =o,
we have
r=a y=b, z=c,

which are the co-ordinates of the new origin with respect to

8
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the old. We will suppose for more simplicity that the di-
rection of the axes is changed, without removing the origin;
the preceding formulas become under this supposition
xr = mw’ + myyl + mtrzv,
y = nx' + a'y + a7,
z — Pwl + P'y’ + .pllzl'
To determine the constants, let us consider the points
placed on the axis of «', the equations of this axis are
Yy =o, z =o,
We have then for points situated on it,
t=mx' y=nx, z2=pz.

z Let AX' be this axis,

x and let the old axes AX,

2L AY, AZ, be taken at

- 2 x  right angles, for any point

il M we have AM = «,

P 3 MM’ = z, and the triangle

AMM' will give
2 = x' cos AMM',

The angle AMM' is that which the new axis of x' makes
with the old axis of z. Let us call it Z, and represent by
X and Y, the angles formed by this same axis AX', with AX
and AY. We shall have for points on this axis,

x=a'cosX, y==x'cosY, z=ua cosZ.
This result determines n, m, p, and gives
m=cos X, n=cosY, p=cosZ.

If we consider points on the axis of y', whose equations are

’

a="10} 7z =10, .
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we shall have relatively to these points
T = mlyl’ y i n’y’, 2 :pryr.
Designating by X', Y’, Z', the angles which this axis forms
with the axis of x, y, z, we have
m' =cosX, n'=cosY', p =cosZ.
Reasoning in the same manner with the axis 2/, we have
m’=cosX’, n'=cosY", p’"=cosZ’;
from which we get
=1 cos X + y cos X' 4 2" cos X',
y=a'cosY + y cos Y + 2 cos Y,
z=2a cos Z 4 y' cos Z' 4 2’ cos Z". (1)

116. We must join to these values, the equations of con-
dition which take place between the three angles, which a
straight line makes with the three axes, and which are
(Art. 76), YO

cos’ X + cos!Y + cos*Z =1,
cos’ X' + cos?Y' + cos*Z =1,
cos’ X"+ cos’Y” + cos’Z" = 1. )

These formulas are sufficient for the transformation of co-
ordinates, whatever be the angles which the new axes make
with each other.

117. Should it be required that the new axes make par-
ticular angles with each other, there will result new condi-
tions between X, Y, Z, X', &c., which must be joined to the
preceding equations. If we represent by V the angle
formed by the axis of ' with that of 3/, by U that made by

y with 2, and by W that made by 2z’ with &', we have by
Art. 86, 1Y

<
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cos YV = cos X cos X' + cos Y cos Y + cos Z cos Z,

cos U = cos X' cos X" + cos Y'cos Y’ + cos Z cos Z".
cos W = cos X cos X" 4 cos Y cos Y’ + cos Z cos Z", (3)
And these equations added to those of (1) and (2), will enable

us in every case to establish the conditions relative to the
new axes, in supposing the old rectangular.

118. If, for example, we wish the new system to be also
rectangular, we shall have
cos V= o, cos U = o, cos W = o,

and the second members of equations (3) will reduce to zero;
then adding together the squares of x, y, z, we find
Py +L=a4 y* 4 25

This condition must in fact be fulfilled, for in both sys-
tems the sum of the squares of the co-ordinates represents
the distance of the point we are considering, from the com-
mon origin.

119. If we wished to change the direction of two of the
axes only, as, for example, those of z and y, let us suppose
that they make an angle V with each other, and continue
perpendicular to the axis of z. We have from these con-
ditions,

cos U = o, cos W = o,
cos X' = o, cos Y' = o, cos Z' = 1.
Substituting these values in equations (3), we have

cos Z' = o, cos Z = o,

that is, the axes of &’ and ¥ are in the plane of ay
From this and equations (2), there results

cos Y=sinX, cosY =sinX.
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and the values of x, and y, become
z=acosX +y cosX, y=xsinX +ysinX';

which are the same formulas as those obtained (Art. 1113

Polar Co-ordinates.

120. Right lines are not the only co-ordinates which may
be used to define the position of points in space. We may
employ any system of lines, either straight or curved, whose
construction will determine these points.

For example, we may take for the co-ordinates of points
situated in a plane, the distance AM,
from a fixed point A taken in a plane,
and the angle MAX, made by the
line AM with any line AX drawn in zr'/
the same plane. For, if we have the J
angle MAP, the direction of the line *  *

AM is known; and if the distance AM be also known, the
position of the point M is determined.

121. The method of determining points by means of a
variable angle and distance, is called a System of Polar
Co-ordinates. The distance AM is called the Radius Vector,
and the fixed point A the Pole.

122. When we know the' equation of a line, referred to

> of
e

rectilinear co-ordinates, we may transpose it into polar co-
ordinates, by determining the values of the old co-ordinates
in terms of the new, and substituting them in the proposed
equation. For example, let A’ be taken
as the pole, whose co-ordinates are x= g,
y =b. Draw A’X’ parallel to the axis
of z, and designate the angle MA'X' by
v, the radius vector A'M by r, we have
8% M
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AX=AB +A'Q, PM=AB+ MQ,

or,
z=a+ AQ, y=0b+ MQ.

But in the right-angled triangle A'MQ, we have
‘ A'Q =rcosv, and MQ = r sino.
Substituting these values, we have
rt=a+rcosv, y=b+rsinv, (1)

which are the formulas for passing from rectangular co-ordi-
nates to polar co-ordinates.

123. If the pole coincide with the origin, a =0, b =0,
and we have
x=rcosv, Y=rsino.
If the line AX' make an angle « with the axis of z,
formulas (1) will become

x=a+rcos(v+a), y=>b-+rsin(-+a).

124. By giving to the angle v every value from o to 360°,
and varying the radius vector from zero to infinity, we may
determine the position of every point in a plane. But from
the equation

X =7rcosv
we get
(e
T=Cosv

Now, since the algebraic signs of the abscissa and cosine
vary together, that is, are both positive in the first and fourth
quadrants, and negative in the second and third, it follows
that the radius vector can never be negative, and we conclude
that should a problem lead to negative values for the radius
vector, it is impossible.
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125. Polar co-ordinates may also be used to determine the
position of points in space. For this purpose we make use
of the angle which Ny
the radius vector AM
makes with its pro-
jection on the plane
of ay, for example,
and that which this
projection makes with 0
the axisof z. MAM’
is the first of these
angles, and M'AP the s
second. Calling them

Y
¢ and 4, and repre-

senting the radius vector AM by r, and its projection AM’
by ', we have

- AP =AM cos M'AP,

or x=r7r"cos d;
PM' = AM'sin M'AP,
or y=r'sind;
MM'= AM sin MAM/,
or z =rsinq.

We have also
AM' = AM cos MAM,,

r' =7 cos g,
from which equations we deduce
Zz=rcosdcosp, y=rcospsind, z=rsing;

formulz which may be applied to every point, by attributing
to the variables 4, ¢, and r, every possible value.
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[Cuaap. IV

CHAPTER IV.

OF THE,CONIC SECTIONS.

126. Ir a right cone with a circular base, be intersected
by planes having different positions with respect to its axis,

the curves of intersection are called Conic Sections.

As this

common mode of generation establishes remarkable analo-

gies between these curves, we shall employ it to find their

general equation.

Let O be the origin of a system of rectangular co-

ordinates OX, OY, OZ. If
the line AC at the distance
OC = C from the origin, re-
volve about the axis OZ,
making a constant angle v
with the plane of ay, it will
generate the surface of a
right cone with a circular
base, of which C will be the
vertex and CO the axis. The
part CA will generate the
lower nappe, CA' the upper
nappe of the cone. To find
the equation of this surface.

The equation of a line passing through the point C, whose

co-ordinates are

/ !

*’ =o,

YE==10%

2 =g,
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is of the form (Art. 84),

z=a(z—c¢), y=b(iz—o);

the co-efficients a and b being constants for the same position
of the generatrix, but variables from one position to another
But we have (Art. 90),

e IS 1

s U—l+a,+b,,
from which we obtain

(a* + &%) tang*v = L.

Substituting for a and b, their values drawn from the equa-
tion of the generatrix, we shall have

(f + &) tang’v = (z — )"
This equatioh being independent of @ and b, it corresponds
to every position of the line AC in the generation: it is there-
fore the equation of the conic surface.

127. Let this surface be intersected by a plane BOY,
drawn through the origin O, and perpendicular to the plane
of xz.. Designating by u the angle BOX which it makes
with the plane of xy, its equation will be the same as that of
its trace BO, that is

z = x tang u.

If we combine this equation with that of the conic surface,
we shall obtain the equations of the projections of the curve
of intersection on the co-ordinate planes. But as. the pro-
perties of the curve may be better discovered, by referring
it to axes, taken in its own plane, let us find its equation re-
ferred to the two axes OB, OY, which are situated in its
plane, and at right angles to each other. Calling ' y' the
co-ordinates of any point, the old co-ordinates of which

hbs

b.e



04 ANALYTICAL GEOMETRY. [Cuar. 1V,

were x, Y, z, we shall have in the right-angled triangle
. OPP,

2=0P=x'cosu, 2=PP =ua'sinu;
and since the axes of y and ¥’ coincide, we shall also have
S
Substituting these values for x, y, z, in the equation of the

surface of the cone, we shall obtain for the equation of inter-
section,

y” tang *v + ' cos *u (tang *» — tang *u) + 20z’ sin u = ¢*;
or suppressing the accents,
y* tang *v -+ @’ cos *u (tang *v — tang *u) + 2cx sinu =

128. In order to obtain the different forms of the curves
of intersection of the plane and cone, it is evident that all
the varieties will be obtained by varying the angle » from o
to 90°. Commencing then by making

W= @)

which causes the cutting plane to coincide with the plane of
xy, the equation of the intersection becomes

s S
i < tang *v
which shows that all of its points are equally distant from
the axis of the cone. The intersection therefore is a circle,
described about O as a centre and with a radius equal
c

to tangj.

129. Let u increase, the plane will intersect the cone in
a re-entrant curve, so long as w <v, which will be found
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entirely on one nappe of the cone. But u < v makes tang
u < tang v, and the co-eficients of 2® and y* will be positive
in the equation of intersection. This condition characterizes
a class of curves, called Ellipses.

130. When u = v, the cutting plane is parallel to CD.
The curve of intersection is found limited to one nappe of
the cone, but extends indefinitely from B on this nappe.
The condition # = v causes
the co-efficient of 2* to dis- 8
appear, and the general equa-
tion of intersection reduces
to

y* tan *v + 2cx sin u = .

These curves are called

Parabolas.

131. Finally, when u > v, the
cutting plane intersects both nappes
of the cone, and the curve of inter-
section will be composed of two
branches, extending indefinitely on
each nappe. In this case tang u >
tang v, and the co-efficient of z*
becomes negative. This condition
characterizes a class of curves called

Hyperbolas.

132. If we suppose the cutting plane to pass through the
vertex of the cone, the circle and ellipse will reduce to a

paint, the parabola to a straight line, and the hyperbola to
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two straight lines intersecting at C. This becomes evident
from the equations of these different curves, by making
= o0, and also introducing the condition of u being less
than, equal to, or greater than, v.
We will now discuss each of these classes of curves, and
deduce from their general equation the form and character
of each variety.

Of the Circle.

133. If a right cone with a circular base be intersected
by a plane at a distance c, from the vertex, and perpendicular
to the axis, we have found for the equation of intersection

(Art. 128),

cz

yz+x2=g-—-.

ng-v

Representing the second member

¢
——— by R? we have
tang “v

2+ =R

In this equation, the co-ordinates x and y are rectangular,

the quantity +/a® 4 3 expresses therefore the distance of
any point of the curve from the origin of co-ordinates
(Art. 59). The above equation shows that this distance is
constant. The curve which it represents is evidently the
circumference of a circle, whose centre is at the origin of
co-ordinates, and whose radius is R.

134. To find the points in which the curve cuts the axis
of #, make y = o, and we have

o= AR

which shows that it cuts this axis in two different points,
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one on euch side of the origin, and at a distance R from the
axis of y. Making z = o, we find the points in which it cuts
the axis of y. We get

y==*xR,

which shows that the curve cuts this axis in two points, onc
above and the other below the axis of x, and at the same
distance R from it.

135. To follow the course of the curve in the intermediate
points, find the value of y from its equation, we get

y==xvR —a"

These values being equal and with contrary signs, it
follows that the curve is symmetrical with respect to the
axis of 2. If we suppose x positive or negative, the values
of y will increase as those of x diminish, and when x =0
we have y = = R, which gives the points D and D'. Asx
increases, y will diminish, and when

o)
x = == R the values of y become zero. =
This gives the points B and B'. If

x be taken greater than R, y be- @ A L 1g
comes imaginary. The curve therefore

does not extend beyond the value of

= 52 I D’

136. The equation of the circle may be put under the form,
¥= (R +2) (R—a).

R + x, and R — «, are the segments B'P and BP, into which
the ordinate y divides the diameter. This ordinate is there-
fore a mean proportional between these two segments.

137. Two straight lines drawn from a point on a curve to
9 N
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the extremities of a diameter, are called supplemental chords.

! s " The equation of a line passing through
the point B, whose co-ordinates are
y=o0, =+ R, is (Art. G0)

B A AN,
& y=a (x—R);
and for a line passing through the

point B', for which y =0 and 2 = —R,
y=d (z+R). :

In order that these lines should intersect on the circum
ference of the circle, these equations must subsist at the
same time with the equation of the circle. Combining the
equations with that of the circle, by multiplying the two first
together, and dividing by the equation of the circle, we have
first

Y = ad' (&* —R%;
and the division by 3* = (R* — 2%), gives

ad' = —1, oraa’ +1=0;

but this last equation expresses the condition that two lines
should be perpendicular to each other (Art. 64); hence,
the supplemental chords of the circle are perpendicular to
each other. :

138. The equation of the circle may be put under another
form, by referring it to a system of co-ordinate axes, whose
origin is at the extremity B’ of its diameter B'B. Tor any
point M, we have

AP =2 =BP —=BA =z"—R’

Substituting this value of z in the equation ¥* + 2* = R’,
we get

¥ + = —2Ra' = o.
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In this equation x' = o gives y = o, since the origin of co-
ordinates is a point of the curve. Discussing this equation
as we have done the preceding, we shall arrive at the same
results as those which have just been determined.

139. If the circle be referred to a system of rectangular
co-ordinates taken without the circle, calling x' and ¥ the
co-ordinates of the centre, and x and y those of any one of
its points, we shall have

z—x' =BC,y—y' = BD;

and calling the radius R,
we have (Art. 59),

(z—2) + (y—vy) =R} % g

which is the most general /

equation of the circle, re-
ferred to rectangular axes. |a

EXAMPLES.

1. Construct the equation
¥+ a4+ dy—4rx—8 =o.

By adding and subtracting 8, this equation can be put
under the form
: Y4+4y+44+a2"—40+4—16=o,
or Y+2+ (z—2)° =16
Comparing this equation with that of the general equation
(z—2)+@y—y) =R,
we see that 1t is the equation of a circle, in which the co-

ordinates of the centre are z' =2, y =—2, and whose
radius is 4.
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1G)

L2 W —dy—dx+l=0,2=1 4y =1, R=v3%
Y+ —0y+de—3=09, '=—2,y=3, R=4.

= W

. 6+ 62 —2ly—8x+14=0, a’'=+2, y=1, R=
Y+ +4dy—3r=0, =3 y=—2 R=
LY+ —dy=o, z'=o,.y'=2, R=2

(%]

i
.

Y+ a4 b6 =o, #=—3, y=0, R=3.
.Y+ —6x+8=o, =3, y=0, R=1.

w I

140. To find the equation of a tangent line to the circle,
let us resume the equation

2 +yt =R

Let 2", y", be the co-ordinates of the point of tangency,
they must satisfy the equation of the circle, and we have

xnz + yus . Ri.

The equation of the tangent line will be of the form

(Art. 60),
y—y'=a@—a");
it is required to determine a.

For this purpose, let the tangent be regarded as a secant,
and let us determine the co-ordinates of the points of inter-
section. These co-ordinates must satisfy the three preceding
equations, since the points to which they belong are common

to the line and circle. Combining these equations, by sub-
tracting the second from the first, we have

yz___yIIR + w2___w'rz= o,
or-(y—y) @y +y)+ @—aYe+a)=o
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Putting for y, its value y” + a (x—z") drawn from the
ejuation of the line, we get

W +a@—a)—y) (¢ +a@—a) +y") + (@—1")
(r+z")=a@—2") 2 +a(x—2") + (x—z") (x + 2")
={2ay" + & (z— 2" +z + 2"} (x—z") =o.

This equation will give the two values of # corresponding

to the two points of intersection. The co-ordinates of one
point are obtained by putting . ;

“

z—x" = 0,
which gives
x=2x", and y = y";
and those of the second point are made known by the
equation
2y’ + a*(x—a") + x4+ x" =o,
when @ is given.

If now we suppose the points of intersection to approach
each other, the secant line will become a tangent, when
those points coincide; but this supposition makes

z=ua", and y =y";
and the last equation becomes

2ay" + 2" = o,
from which we get

Substituting this value of @ in the equation of the tangent,
1t becomes

m'l .,
¥ =5 = —lEwes
hence e R A

which is the equation of a tangent line to the circle.
9*
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Putting it under the form

¥y x”‘w + 5}
ST T

and comparing this equation with that of the straight line in

o

TR
Art. 52, we see that T is the tangent of the angle which

the tangent line makes with the axis of .

The val'l‘xe which we have just found for a being single, it
follow's' that but one tangent can be drawn to the circle, at a
given point of the curve.

141, Aline drawn through the point of tangency perpen-
dicular to the tangent is called a Normal. Its equation will
be of the form

i y—y' =a (x—a").

The condition of its being perpendicular to the tangent

gives

1

ada+1=o0,0ra =—-—.

a
But we have found (Art. 140),

"
x
= —_——

"
hence,
Vo yu
a = m*,, ®

Substituting this value in the equation of the normal, it
becomes

yll
y—y' =5 E—a");
and reducing, we have
yl‘” ____ynx = o,

for the equation of the normal line to the circle.
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142. The normal line to the circle passes through its centre,
which, in this case, is the origin of co-ordinates. For, if we
make one of the variables equal to zero, the other will be
zero also. Hence the tangent to a circle is perpendicular to
the radius drawn through the point of tangency.

143. To draw a tangent to the circle, through a point
without the circle, let z' y' be the co-ordinates of this point.
Since it must be on the tangent, it must satisfy the equation
of this line, and we have eq. of tangent yy'’ + a2/’ = R?

Yy tala =R

We have besides,

y”2 + muz — RZ‘

These two equations will determine z” and ", the co-or-
dinates of the point of tangency, in terms of R and the co-
ordinates x' y' of the given point. Substituting these values
in the equation of the tangent, it will be determined.

The preceding equations being of the second degree, will
give two values for z” and y’. There will result conse-
quently two points of tangency, and hence two tangents

may be drawn to a circle from a given point without the
circle.

144. 'We have seen that the equation of the circle referred
to rectangular co-ordinates, having their origin at the centre,

only contains the squares of the variables x and y, and is of
the form

¥ + 2" =R
Let us seek if there be any other systems of axes, to
which, if the curve be referred, its equation will retain the
same form.

Let us refer the equation of the circle to systems having
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the same origin, and whose co-ordinates are represented by
2 and y'. Let a, o/, be the angles which these new axes
make with the axis of . We have for the formulas of trans-
formation (Art. 111),

x =2 cos a + y' cos o, y:w’si\na-{-y’ sin o

Substituting these values for  and y in the equation of
the circle, it becomes

y* (cos’o’ + sin’a’) + 2x'y’ cos (o — «) + x*
(cos’a + sin’a) = R*;
or, reducing,

yvz + Qx/yl Ccos (al N (l) + x;z — Rl.

The form of this equation differs from that of the given
equation, since it contains a term in «'y’. In order that this
term disappear, it is necessary that the angles « «' be such
that we have ~

cos (¢ —a) = o,
which gives (¢ — &) = 90°, or 270°;
hence o = a4 90° or o' = a + 270°,

which shows that the new axes must be perpendicular to
each other.

145. Conjugate Diameters are those diameters to which, if
the equation of the curve be referred, it will contain only the
square powers of the variables.. In the circle, we see that
these diameters are always at right angles to each other ; and
as an infinite number of diameters may be drawn in the
circle perpendicular to each other, it follows that there will
be an infinite number of conjugate diameters.
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Of the Polar Equation of the Circle.

146. To find the equation of the circle referred to polar
co-ordinates, let O be taken
as the pole, the co-ordinates of
which referred to rectangular
axes are ¢ and b; draw OX’
making any angle awith the axis
of . OM will be the radius
vector, and MOX' the variable
anglev. The formulas for trans-
formation are (Art. 123),

x=a+rcos(w+a), y=>4+ rsin (@ + a).
These values being substituted in the equation of the circle

¥+ a2=R’,
it becomes

ﬁ+2;acos(v+a)+bsin(v+a);r+a’+bﬂ—R*=o.

which is the most general polar equation of the circle.

This equation being of the second degree with respect to
r, will generally give two values to the radius vector. The
positive values alone must be considered, as the negative
values indicate points which do not exist (Art. 124).

147. By varying the position of the pole and the angle v,
this equation -will define the position of every point of the
circle.

If the pole be taken on the circumference, and we call a,
b, its co-ordinates, these co-ordinates must satisfy the equation
of the circle, and we have the relation

a@+V¥—R=o.
o
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The polar equation reduces to
7 +2jacos (v + o) + bsin(v+ o) 7} =o.
If OX' be parallel to the axis of , the angle « will be zero,
and this equation becomes
" + 2 (acosv + bsinv) r = o.

This equation may be satisfied by making » = 0. Hence,
one of the values of the radius vector is always zero, and it
may be satisfied by making

r + 2 (acosv + bsinv) = o,
which gives

r=—2(acosv + bsinv);
from which we may deduce a second value for the radius
vector for every value of the angle v.

148. If we have in this last equation r = o, the equation

becomes
‘acosv + bsinv=o,

sin v a
== e ]
cosv
a-
or tangv=—3,

a relation which has been before obtained (Art. 140).

149. If the pole be taken at the centre of the circle, @ and
b would be zero, and the formulas for transformation would be

x=rcosv, y=rsinv.

Of the Ellipse.

150. We have found (Art. 127,) for the general equation
of intersection of the cone and plane,

y* tang *v + #° cos*u (tang v — tang ) + 2exsinu = ¢},
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and that this equation represents a class of curves called
Lllipses, when v <v. We will now examine their peculiar
properties.

To facilitate the discussion, let us transfer the origin of
co-ordinates to the vertex B of the curve.

For any abscissa OP' = x, we would have

xz = OB — BP’;
or calling the new abscissas «’,
x=0B—2a, andy=y.

But in the triangle BOC we
have the angle C = 90°— v,
and the angle B =v + » and
the side OC = ¢, and we get

A in OCB- -
T sin (v u)
¢ cos v
sin (v + u)
¢ cos v
RS sin (v + )
from which results

€ oS v

sin (v + u)

Substituting this value ot «

T = — /.

in the equation of the curve,
we have

y*sin’v + 2% sin (v + ) sin (v — u) — 2z’ sinv
COS v COS u = 05
and suppressing the accents, we have
y*sin’v + 2’ sin (v + ) sin (v — u) — ez sin v
COS ¥ €OS % = 05

which is the general equation of the intersection of the cone
and plane, referred to the vertex B.
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151. To discuss this equation when « <v, let us first find
the points in which it meets the axis of x. Making y=o,
we have

" sin (v + ») sin (v — w) — 2ex sin v cos v cos u = o0;

which gives for the two values of x,

2c sin v cos v cos ©

=0, and 2 = — -
B e sin (v + u) sin (v—1u)

which shows that it cuts the axis of 2 in two points B
and B, one at the origin, the other at the distancq
2cx sin v cos v cos ©
sin (v 4 %) sin (v — u)

A Making x = o0, we have the points
P B in which it cuts the axis of y. This
\___/ supposition gives
¥=o,

which shows that the axis of y is tangent to the curve at B,
the origin of co-ordinates.

on the positive side of the axis of y.

Resolving this equation with respect to 7, we have

y:
1

sin v

\/—x"' sin (v+ %) sin (v—1u) + 2cx sin v cos  cos v.

These two values being equal, and with contrary signs,
the curve is symmetrical with respect to the axis of z. If
we suppose x negative, y becomes imaginary, since this sup-
position makes all the terms under the radical essentially
negative. The curve, therefore, is limited in the direction
of the negative abscissas. If, on the contrary, we suppose x
positive, the values of y will be real, so long as

a*sin (v + %) sin (v — u) < 2cx sin v cos v cos u,
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of,
¢ sin v COS v COS U

sin (v + @) sin (v —u)

and they become imaginary beyond this limit. The curve,
therefore, extends from the origin of co-ordinates a distance

2¢ sin v €OS v €OS ©

B = — : on the positive side of the
R sin (v + u) sin (v —u) i
axis of x.

Let us refer the curve to the D »

point A, the middle of BB'. The /"A\l\
formula for transformation will Bx-__’yB
be, for any point P, BC = AB 557

— AQC, or calling BC, x, and AC, «/,

e € sin v cos v cos «
sin (v + ») sin (v —u)

’

xX.

Substituting this value in the equation of the ellipse,
y*sin’v + a”sin (v + u) sin (v — #) — 2cx sin v cos v cos u = o,
and reducing, we have

c’sin®vcos’vecos’y

sin (v+u) sin (v—u)

which is the equation of the ellipse referred to the.point A.

Making y = o, we find the abscissas of the points Band B,
in which the curve cuts the axis of x.

y*sin*v + x?sin (v + «) sin (v—1u)

0,

csinv cosv cos u
sin (v + u)sin (v—u)’

AIBA—

€ sin v €os v COS
sin (v + «) sin (v — )’

and z = o gives the ordinates AD and AD'.

AB' =

€ COS v COS ¥
Vsin (v + ) sin (v— u)

10



110 ANALYTICAL GEOMETRY. [Crap. TV,

152. This equation takes a very simple and elegant form
when we introduce in it the co-ordinates of the points in
which the curve cuts the axes. For, if we suppose

A? ¢® sin v cos *v cos *u d
= = s an
sin® (v + w) sin® (v — «)

5 c*cos v cos *u
“ sin (v + u)sin(v—u)’

we have only to multiply all the terms of the equation in y
and &', by
¢’ cos®v cos*u
sin® (v + ) sin® (v—u)’

and putting x for a', we have

¥

¢’ sin v cos *v cos *u fiop ¢ cos *v cos u
St (0 + w) s (v —w) © s (0 4 w)sin (p—w)

¢ sin*v cos *v cos *u ¢ cos *v cos’u
sin* (v + ») sin®(v—u) ~ sin (v + u) sin (v—u)’

and making the necessary substitutions, we obtain
A + B’ = A'BY
The quantities 2A and 2B are called the Axes of the Lllipse.
2A is fhe‘ greater or transverse axis ; 2B the conjugate or less
axis. 'Tne point A is the centre of the ellipse, and the
equation
A% 4+ BP = A’B?
is therefore the equation of the Ellipse referred to its centre
and axes.
153. If the axes are equal we have A =B, and the equa-
tion reduces to

¥+ = A%

which 1s the equation of the circle.
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154. Every line drawn through the centre of the ellipse 13
called a Diameter, and since the curve is symmetrical, it is

easy to see that every diameter is bisected at the centre.
2

2B
155. The quantity TR is called the parameter of the

curve, and since we have
2B

2A:2B::2B:T,

it follows that the parameter of the ellipse is a third propor-
tional to the two axes.

156. Introducing the expressions of the semi-axes A and
B in the equation

y* sin®v + &% sin (v + ) sin (v —u) —2czsinv
COS v COS u = 0,
in which the origin is at the extremity of the transverse axis,.
by multiplying each term by the quantity.
¢ cos v cos *u
sin? (v + w) sin® (v —u)’

it becomes '

A’ + B — 2AB'x = o,

which may be put under the form

0= -l]i—: 2Ax —2°).

If we designate by ', ¥, 2", y”, the co-ordinates of anv
two points of the ellipse, we shall have
gi'z_ _ (A —2)
oY v
which shows that in the -ellipse, the squares of the ordinates
are to each other as the products of the distances from the foot
of each ordinate to the vertices of the curve.
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157. The equation of the ellipse referred to its ceutre and
axes may be put under the form

B!
y= Az (A*—2%).

If from the point A as a
centre with a radius AB = A,
we describe a circumference

of a circle, its equation will
be

= A'— 2,

Representing by y and Y the ordinates of the ellipse and
circle, which correspond to the same abscissa, we have, by
comparing these two equations.

3
y“:Yﬁzlg—:l y=%Y.

According as B is less or greater than A, y will be less
or greater than Y, hence if from the centre of the ellipse with
radit equal to each of its axes, two circles be described, the
ellipse will include the smaller and be inscribed within the
large circle.

158. From this property we deduce, Ist. That the trans-
verse axis is the longest diameter, and the conjugate the
shortest; 2dly. When we have the ordinates of the circle
described on one of the axes, to find those of the ellipse, we
have only to augment or diminish the former in the ratio of
B to A. This gives a method of describing the ellipse by
points when the axes are known.

From the point A as a centre with radii equal to the semi-
axes A and B, describe the circumferences of two circles,
draw any radius ANM, and through M draw MP perpen-
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dicular to AB, and through N draw NQ parallel to AB. The
point Q will be on the ellipse, for we have

AN B
PQ:A_MX P.M.=KX PM,
or,
yz%x AT

as in Art. 157.

159. We have seen that for every point on the ellipse,
the value of the ordinate is

v = e (A=),

For a point without the ellipse, the value of y would be
greater for the same value of x, and for a point within, the
value of y would be less. Hence,

For points without the ellipse,  A%* 4 B*2* — A*B*> 0.

For points on the ellipse, A 4+ B — AB* =0

For points within the ellipse, A%? + Ba* — A*B2 <.

160. If through the point B', whose co-ordinates are y = o

z =-—A, we draw a line, its equation will be
y=a(x+ A).
For a line passing through B, T
whose co-ordinates are y = o, ? a1
x= + A, we have ' o ;
g s B!/l/
If it be required that these -

lines should intersect on the el-

lipse, it is necessary that these equations subsist at the same
10 * P
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time with the equation of the cllipse. Multiplying them
together, we have ‘ :
Y= —aa' (A*—2Y);

and in order that this equation agree with that of the ellipse,

B?
Y =23 (AT —a?),

we must have
o : B?
—ad' =75 or ad' = — o
which establishes a constant relation between the tangents of
angles formed by the chords drawn from the extremities of
the transverse axis with this axis. In thecircle B = A, and

this relation becomes

as we have seen (Art. 137).

161. When the relation which has just been established
(Art. 160) takes place between the angles which any two
lines form with the axis of x, these lines are supplementary

; : A
chords of an ellipse, the ratio  of whose axes is = -

B

162. As we proceed in the examination of the properties
of the ellipse, we are struck with the great analogy between
this curve and the circle. We may trace this analogy farther.
In the circle we have seen that all the points of its circum-
ference are equally distant from the centre. Although this
property does not exist in the ellipse, we find something ana-
logous to it; for, if on the transverse axis we take two points

F, F', whose abscissas are =t +/ A2— B2, the sum of the dis-
tances of these points to the same point of the curve is al-
ways constant and equal to the transverse axis. To prove
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this; let = and y be the co-ordinates of any point M of the
ellipse; represent the abscissas of the points F, F' by ==

C*M”
K %
z’ 2 / i b4

Calh.ng D the distance MF, or MF’, we have (Art. 59),
D= (y—y) + (e—),

bat since y=o,

we have D=2 + (x—a)2

Putting for y its value drawn from the equation of the
ellipse, and substituting for 22 its value A?— B?, this expres-
sion becomes

2
D2=B’-——B‘£2 + 1*—2rx' + A2—B*=
22
A—A,L,B x?—Qxx’ + A%;

or, substituting for A?*—B? its value z?,

0
—2xx’ + A= (A—w—

e b T
'~ A

o

Extracting the square root of both members. we have

D=d:(A_-xT?

Taking the positive sign, and substituting for ' its two
values ==/ A?—B?, we have for the distance MF, or MF",
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7 AT
MF=A—‘”‘/AA e MF,=A+x~/AA—B2.

Adding these values together, we get
MF + MF' =24,
which proves that the sum of the distances of any point of the
ellipse to the points F, ¥, is constant and equal to the trans-
verse axis.
163. The points F, F', are called the Foci of the ellipse,

and their distance ‘== v/ A*—DB? to the centre of the ellipse
is called the ILccentricity. When A = B, the eccentricity
=o0. The fociin this case unite at the centre, and the ellipse
becomes a circle. The maximum value of the eccentricity is
when it is equal to the semi-transverse axis. In this suppo-
sition B =0, and the ellipse becomes a right line.

Making x === vV A? — B* in the equation of the ellipse,
we find

B 2B?

y::tK’ OI‘Q_?/::*:T

which proves that the double ordinate passing through the
focus is equal to the parameter.

164. The property demonstrated (Art. 162) leads to a
very simple construction for the ellipse. From the point B

: lay off any distance BK on the
-\‘\ axis BB. From the point F as
K F

B a centre, with a radius equal to

BK, describe an arc of a circle ;

s
-

and from F' as a centre, with a
radius B'K, describe another arc. The point M where these
arcs intersect, is a point of the ellipse. For

MF + MF' = 2A.
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When we wish to describe the ellipse mechanically, we
fix the extremities of a chord whose length is equal to the
transverse axis, at the foci, F, I, and stretch it by means of
a pin, which as it moves around describes the ellipse.

165. To find the equation of a tangent line to the ellipse,
let us resume its equation,

A%p + B = A*B.
Let 2", y", be the co-ordinates of the point of tangency,
they will verify the relation,
A?y”? + B2J:”2 —_ A2B2.

The tangent line passing through this point, its equation
will be of the form

y—y'=a(@—a").

It is required to determine a.

To do this, we will find the points in which this line con-
sidered as a secant meets the curve. For these points the
three preceding equations must subsist at the same time.
Subtracting the two first from each other, we have

AY—y )y +y) +BeE—a")(@+ta)=o

Putting for y its value 3" 4+ @ (x — x") drawn from the
equation of the line, we find

(x—a") 1A Qay" + @ @ —2")) + Bz + 2)} =0

This equation may be satisfied by making

r—2x"=o,
which gives
T = E",
from which we get

y=y';
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and also by making
A’ Ray' + @ (c—a) + B (x+2)=o.

Now when the secant becomes a tangent, we must have
z = 2", which gives
Aay’ + B =03
hence
BQxII

iy o

Y

Substituting this value of « in the equation of the tangent,
it becomes
DL
00 ol &z o ST\
Uheal = Azyn(aj x");
or reducing, and recollecting that A% 4 B%'? = A?B? we
have
Atyy' + Blax" = A*B?
for the equation of the tangent line to the ellipse.
166. If through the centre and the point of tangency we
draw a diameter, its equation will be of the form
' — a! xll’
from which we get

rn
a':y—”.
x

But we have just found the value of a, corresponding to
the tangent line, to be

W T
s
Multiplying these values of @ and a' together, we find
: B
aad = —— ¢

A2
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This relation being the same as that found in Arts. 160, 161,
shows that the tangent and the diameter passing through the
point of tangency, have the property of being the supple-
mentary chords of an ellipse, whose axes have the same

o A
ratio B Q

167. This furnishes a very simple method of determining
the direction of the tangent. For if we draw any two sup-
plementary chords, and designate by «, «’, the trigonometri-
cal tangents of the angles which they make with the axis,
we have always between them the relation

B2

i Sy

£

We may draw one of these chords parallel to the diameter,
passing through the point of tangency. In this case we have
. a = a
from which results also
a=a;
that is, the other chord will be parallel to the tangent.

168. To draw a tangent through a point M taken on the

:llipse, draw through this point AM, and through the ex-
remity B’ of the axis BB’ draw the chord B'N parallel to



120 ANALYTICAL GEOMETRY.  [Crmar. IV,

AM; MT parallel to BN will be the tangent required. We
see, by this construction also, that if we draw the diameter
AM' parallel to the chord BN, or to the tangent MT, the
tangent at the point M' will be parallel to the chord B'N, or
to the diameter AM.

169. When two diameters are so disposed that the tangent
drawn at the extremity of one is parallel to the other, they
are called Conjugate Diameters. It will be shown presently
that these diameters enjoy the same property in the ellipse
as those demounstrated for the circle (Arts. 144, 145).

170. To find the subtangent for the ellipse, make y = o in
the equation of the tangent line.

A%yy" + Bax" = A’B?,

we have for the abscissa of the point in which the tangent
meets the axis of x,

which is the value of AT. If we subtract from this ex-
pression AP = 2", we shall have the distance PT, from the
foot of the ordinate to the point in which the tangent meets
the axis of . This distance is called the subtangent. Its
expression is

This value being independent of the axis B, suits every
ellipse whose semi-transverse axis is A, and which is con-
centric with the one we are considering. It therefore cor-
responds to the circle, described from the centre of this
ellipse with a radius equal to A. Hence, extending the
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ordinate MP, until it meets
the circle at M’, and draw-
ing through this point the
tangent M'T, MT will be
tangent to the ellipse at the

point M. This construction
applies equally to the conjugate axis, on which the expression
for the subtangent would be independent of A.

171. To find the equation of a normal to the ellipse, its
equation will be of the form

y— yu' =da (.r—x”).
The condition of its being perpendicular to the tangent,
for which we have (Art. 165),
Bx"

a = —Az—y,, ’
requires that there exist between ¢ and ' the condition

aa +1=o,
which gives
A!yu

==
B

This value being substituted in the equation for the normal,
gives
2,1
s E ok S

172. To find the subnormal for the ellipse, make y = o in
the equation of the normal, and we have for the abscissa of
the point in which the normal meets the axis of x,
A*—PB?
T
11 Q

= o "
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This is the value of AN. Subtracting it from AP, which
is represented by «', we shall have the distance from the
foot of the ordinate to the foot of the normal. This distance
is the subnormal, and its value is found to be

2, .t
B

173. The equation of the ellipse being symmetrical with
respect to its axes, the properties which have just been de-
monstrated for the transverse, will be found applicable also
to the conjugate axis. _

174. The directions of the tangent and normal in the
ellipse have a remarkable relation with those of the lines,
drawn from the two foci to the point of tangency. If from
the focus F, for which y = 0 and x = v A*—B%, we draw
v a straight line to the
£ e point of tangency, its
/ , equation will be of the

« form

F’/A.N I T

If we make for more simplicity v A*— B*= ¢, the con-

dition of passing through the focus will give

NI yn = a (C—-'L'”),
hence,

"

y

C—'x”.

O == ——

But we have for the trigonometrical tangent which the
tangent line makes with the axis of x (Art. 165),
Bzxn

a—_-__m’.
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The angle FMT which the tangent makes with the nne
drawn from the focus will have for a trigonometrical
tangent (Art. 64),

a—u
1+ aa
Putting for @ and « their values, it reduces to
A2y72 + B2x!’2 -_e BZC.I'"
Aey’ — (A*— B) «" y" !

which reduces to

Bﬁ

? ?
in observing that the point of tangency is on the ellipse, and
that A* —B* = c.

In the same manner the equation of a line through the
focus F' is found by making x=-—c, and y=o0 in the
equation

y—y = @—a),
and we have ’

—y' =o' (—e—2a"),
hence

"

PEIE
The angle F'MT which this line makes with the tangent,
will have for a trigonometrical tangent,
a—o B’
e
when we put for @ and o' their values.
The angles FMT, F'MT, having their trigonometrical tan
gents equal, and with contrary signs, are supplements of each
other, hence

FMT + F'MT = 180°;
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but
F'MT 4+ F'M: = 180°,

hence
FMT = F'M¢,

which shows that in the ellipse, the lines drawn from the foci
to the point of tangency, make equal angles with the tangent ;
and it follows from this, that the normal bisects the angle
formed by the lines drawn from the point to the same point of
the curve.

175. The property just demonstrated, furnishes a very
simple construction for
drawing a tangent line
to the ellipse through a
given point. Let M be
the point at which the
tangent is to be drawn.
Draw FM, F'M, and pro-
duce F'M a quantity MK
= FM. Joining K and
F, the line MT, perpen-
dicular to FK, will be the tangent required; for from this
construction, the angles TMF, TMK, F'M¢, are equal to

each other.
We may see that the line MT has no other point common

besides M, since for any point ¢,
Ft + Ft > FMK > 2A.

If the given point be without the ellipse, as at ¢, then
from the point F' as a centre, with a radius F'K = 2A de-
scrihe an arc of a circle; from the point ¢ as a centre, with
a radius ¢F, describe another arc, cutting the first in K.
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Drawing F'K, the point M will be the point of tangency,
and joining M and ¢, M¢ will be the tangent required. For,
from the construction, we have tF' = tK. Besides F'M +
FM = 2A and 'M + MK = 2A. Hence

MF = MK.

The .ine Mt is then perpendicular at the middle of FK.
The angles FMT, F'M¢ are then equal, and tMT is tangent
to the ellipse.

The circles described from the points F' and ¢ as centres,
cutting each other in two points, two tangents may be drawn
from the point ¢ to the ellipse.

Of the Ellipse referred to its Conjugate Diameters.

176. There is an infinite number of systems of oblique
axes, to which, if the equation of the ellipse be referred, it
will contain only the square powers of the variables. Sup-
posing in the first place, that its equation admits of this re-
duction, it is easy to see that the origin of the system must
be at the centre of the ellipse. For, if we consider any
point of the curve, whose co-ordinates are expressed by
+ ', + y', since the transformed equation must contain only
the squares of these variables, it is evident it will be satisfied
by the points whose co-ordinates are + z', —y' ; — ', + Y
that is, by the points which are symmetrically situated 1n
the four angles of the co-ordinate axes. Hence every line
drawn though this origin will be bisected at this point, a
property which, in the ellipse, belongs only to its centre,

since 1t is the only point around which it is symmetrically
disposed.

11 %
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The oblique axes here supposed will always cut the ellipse
in two diameters, which will make such an angle with each
other as to produce the required reduction =~ These lines are
called Conjugate Diameters, which, besides the geometrical
property mentioned in Art. 169, possess the analytical
property of reducing the equation of the curve to those terms
which contain only the square powers of the variables.

177. The equation of the ellipse referred to its centre and
axes is

A'y* 4+ B = A®B®

To ascertain whether the ellipse has many systems of con-
jugate diameters, let us refer this equation to a system of
oblique co-ordinates, having its origin at the centre. The
formulas for transformation are (Art. 111),

x = &' cosa + ¥y cos o, y=2a'sina 4+ y' sina’.

Substituting these values for x and y in the equation of the

ellipse, it becomes .

(A’sin’a’ + B? cos®a') y® + (A*sin’a + B®cos®a) AR
x"® + 2 (A’sin asin o' + B cos a cos o) =’ ' '

In order that this equation reduce to the same form as
that when referred to its axes, it is necessary that the term
containing 'y’ disappear. As « and o are indeterminate,
we may give to them such values as to reduce its co-efficient
to zero, which gives the condition

A?sin asin o' 4 B?cos a cos o’ = o,

and the equation of the ellipse becomes

(A?sin%’ + B®cos®’) y* + (A%sin®x + B® cos %)
x®= A*B. .
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178. The condition which exists between a and «' is not
sufficient to determine both of these angles. It makes known
one of them, when the other is given. We may then assume
one at pleasure, and consequently there exists an infinile

number of conjugate diameters.

179. The axes of the ellipse enjoy the property of being
conjugate diameters, for the relation between « and o is
satisfied when we suppose sina = o, and cos o/ = 0, which
makes the axis of z’ coincide with that of z, and ¥ with that
of y. These suppositions reduce the equation to the same
form as that found for the ellipse referred to its axes. Or,
these conditions may be satisfied by making sin o’ = 0, and
cos o == 0, which will produce the same result, only a’ will
become ¥, and ¥/, .

180. The axes are the only systems of conjugate diameters
at right angles to each other. For, if we have others, they
must satisfy the condition

o —oa=290°% or « = 90° + q,
which gives
sin &’ = sin 90° cos a + cos 90° sin« = + cos a,

cos o« = cos 90° cos « — sin 90° sin @ = —sina;

but these values being substituted in the equation of condition

A’sinasina’ + B?cosacoso = o,
it becomes
(A* — B’ sin a cos a = o,

which can only be satisfied for the ellipse by making sina = o,
or cos a = o, suppositions which reduce to the two cases just
considered.
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181. If we make A®— B? = o0, we shall have A = B, the
ellipse will become a circle, and the equation of condition
being satisfied, whatever be the angle o, it follows that all the
conjugate diameters of the circle are perpendicular to each
other.

182. Making, successively, ' = o0, and y' = o0, we shall
have the points in which the curve cuts the diameters to
which it is referred. Calling these distances A’ and B', we
find

A2 B2 Ai Bﬁ

A= RIS 2 2 ° B?e= Fim-mmoe ] 3 R
A?sin®« 4 B? cos’a 7 Alsin’a’ 4 B*cos

and the equation of the ellipse becomes
A%y® + B?a® = A”B?,
2A’ and 2B’ representing the two conjugate diameters.
183. The parameter of a diameter is the third propor-
2
g
2

the parameter of the diameter 2A’, and B is that of its

tional to this diameter and its conjugate; is therefore

conjugate 2B'.
184. If we multiply the values of A* and B” (Art. 182)

together, we get

4 4
AmB’2= B 0 A B v ’
A* sin’e’ sin’e + A? B? (sin’a cos?’ -+ cos % sin’a’) 4- B* cos’acos”a

By adding and subtracting in the denominator of the
second member the expression

2A%B?sin a sin o cos a ¢os o,
and observing that
sin® (' — o) = sin *a cos "«’ — 2sin a sin o’ cos a cos o’ +
sin %’ cos %o,
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we have

s e A4 Bt

(A*sina’sina + B cos o’ cos a)® + A*Bsin® (o' — )

But we have, from Art. 180,
A®sin o' sina + B%cos o’ cos a = o,
and reducing the other terms of the fraction, we have

4 R A2B2
AR ==

which gives

AB = A'B’sin («/ — a).

(o' —a) is the expression of the angle B'AC’ which the
two conjugate diameters

make with each other

A'B'sin («' — a) expresses c. A\ n’ "
therefore the area of the %
parallelogram Ac¢ R'B, < R >
since B'sin («— =) is the %\ /
value of the altitude of 2

this parallelogram. This
area being equal to the rectangle AC RB formed on the axes,
we conclude, that in the ellipse, the parallelogram constructed

on any two conjugate diameters is equivalent to the rectangle
on the axes.

185. The equation of condition between the angles « and
o being divided by cosacosa’, becomes

A'tangatanga + B*=0. (1)

We may easily eliminate by means of this equation the
angle o from the value of B?, or the angle « from A”. For
R
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this purpose we have only to introduce the tangents of the
angles instead of their sines and cosines. Since we have
always

tang %« 1
Qe 1) () 2
sin’e = 2—pr; costa = ———p;
1 + tang®a’ 1 + tang’x’
tang % 1
c 9 0 =) 287
sin’e’ = ~———3; cos’d' = ——p.
1 + tang %'’ 1+ tang !

Substituting these values in the expressions for A? and B*?
1Art. 182), we have

A= A?B? (1 + tang®)

B2 — A?B? (1 + tang®a)
A’tang® + B* ~ A?tang® + B

To eliminate o' we have only to substitute for tang « its
B

value deduced from equation (1), tang o = B e and

after reduction, the value of B becomes
B — At tang %a + Bt ;
A? tang %o 4 B?
Adding this equation to the value of A%, the common nu-
merator
A?B? 4 A*B? tang*x + Aftang®x 4 Bt
may be put under the form
B?*(A? + B?) + A*tang®« (B + A%,
or i (A? 4 B?) (A? tang *a + B?),
and the same after reduction becomes
CA? 4 B = A? + B,

that is, in the ellipse the sum of the squares of any two con-
jugate diameters is always equal to the sum of the squares of
the two axes.
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186. The three equations
A’tangatang«’ + B'=o,
AB = A'B'sin (¢ —a),
A*+ B*= A"+ B?,

suffice to determine three of the quantities A, B, A’, B, «, o,
when the other three are known. They may consequently
serve to resolve every problem relative to conjugate diam-

eters, when we know the axes, and reciprocally.

187. Comparing the first of these equations with the rela-
tions found in Art. 160; when two lines are drawn from the
extremities of the transverse axis to a point of the ellipse,

we see that the angles «, o, satisfy this condition, since in
2
both cases we have aa' = — o It is then always pos-

sible to draw two supplementary chords from the vertices of
the transverse axis, which shall be parallel to two conjugate
diameters.

188. From this results a simple method of finding two
conjugate diameters, which shall make a given angle with
each other, when we know the axes. On one of the axes
describe a segment of a circle capable of containing the given
angle. Through one of the points in which it cuts the ellipse
draw supplementary chords to this axis. They will be par-
allel to the diameters sought, and drawing parallels through
the centre of the ellipse, we shall have these diameters. The
construction should be made upon the transverse axis, if the
angle be obtuse; and on the conjugate, if it be acute. When
the angle exceeds the limit assigned for conjugate diameters,
the problem becomes impossible.
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189. To apply this principle, let it be required to construc.
two conjugate diameters making an angle of 45° with eact
other.

Upon the congregate axis BB’

M u construct the segment BMM'B’

= capable of containing the given

angle. This is done by draw-

B% ¢ ing B'E, making EB'G = 45°.

B'O perpendicular to B'E will

give O, the centre of the required

segment, the radius of which
¥ will be B'O; for the angle BMB'

being measured by half of BAB'
= 45.° Hence BM and B'M will be supplementary chords,
making with each other the required angle; and the diam-
eters CF, CF', parallel to these chords, will be the conjugate
diameters required (Art. 168).

Of the Polar Equation of the Ellipse, and of the measure
of its surface.

190. To find the polar equation of the Ellipse, let o be
” taken as the pole, the co-ordinates of
which are ¢ and . Taking OX' parallel

i ‘ to CA’ the formulas for transformation

ﬁhjamme%
A

x=a+rcosv, y==b+rsino.

B

Substituting these values of z and y,
in the equation of the ellipse,

A% + B = AR,
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it becomes

A?sin% ? +2A%sinv | r + AW + B — AB* = o,
+ Bicosw | + 2B% cos v
which is the polar equation of the ellipse.

191. If the pole be taken at the centre of the ellipse, we

shall have
a=o0, and b =o0;

and the equation becomes
(A%sin? + B?cos?)r*= A’B%

192. If the pole be taken on the curve, this condition

would require that
A 4+ B%a?— A2B?* = o,

and the polar equation would reduce to

(A?sin?v + B? cos ) r*+ (2A% sin v 4 2B% cos v) r = o.

The results in this and the last article may be discussed in
the same manner as in the polar equation of the circle.

193. Let us now suppose the pole to be at one of the foci,
the co-ordinates of which are b =0, ¢ = + VA? — B2

These values being substituted in the general polar equation,
it becomes

(A?sin % + B? cos %) 7* 4 2B% cos v.r = B
Resolving this equation with respect to r, the numerato. of
the quantity under the radical becomes
Bt (A?sin® + B? cos %) + B*a? cos v ;
and putting for a® its value A?—B?, it reduces to

ABt (sin % + cos %), or A?B*:
12
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and we have for the two values of r,

B2 (acos v— A)
T A*sin® + Blcos®’

B2 (acosv + A)
T A*sin% + Blcos%’

r=

and r =

which may be put under another form, for we have

A?sin?v 4 B?cos v = A?— (A2— B?) cos % = A?— g2 cos?p
= (A—acosv) (A + acos v).

Making the substitutions, and reducing, we have

BZ B2

r=—_— ., r=— .
A + acosv A —a cos v

194. If now the pole be at the focus F, for which @ is
positive and less than A, as the cos v is less than unity, the
product @ cos v will be positive and less than A, so that
whatever sign cos v undergoes in the different quadrants,
A + acosv, and A — a cos v, will be both positive.  The
first value of » will then be always positive and give real
points of the curve, while the second will be always negative,
and must berejected (Art. 124). The same thing takes place
at the focus I, for although a is negative in this case, a cos v
will be always less than A, and the denominators of the two
values will be positive. The first value alone will give real
points of the curve.

195. If, for more simplicity, we make

A*—B?
—— = &,

A2
we shall have -

= A*(1 —¢?), and q = = Ae.
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These values being substituted in the positive value of r,

give
_A(l—e) _A(d—¢
ek o Sl com s

These formulas are of frequent use in Astronomy.

196. In the preceding discussion we have deduced from
the equation of the ellipse, all of its properties; reciprocally
one of its properties being known we way find its equation.

For example, let it be required to find the curve, the sum
of the distances of each of its points to two given points
being constant and equal to 2A.

Let F, F', be the two given 'l v tp
points, and A the middle of the - /—*\
line FF' the origin of co-ordi- /: %‘:’
nates. Represent FF' by 2¢. [ X
Suppose M to be a point of the ( g '/
curve, for which AP =z, PM fpai AT

=y, and designate the dis- i !
tances FM, F'M, by r, 7. 'We shall have

=1y 4 (c—x)%; =1y + (c + x)*
r+ r' = 2A.

Adding the two first equations together, and then subtract
ing the same equations, we shall have

P+ =2+ a2 + ¢, r? —r? = 4cx.
The second equation may be put under the form
(r'—r) (' +7) = 4cz.
Substituting for # + 7 its value 24, we get

) Yerx
¥—r=—,

A
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from which we deduce i 3
cx

7"=A+'C'A£1 r‘-A——-Xo

Putting these values in the equation whose first member is
“2 4 12 we have

2 2

A2 t g7 =¥+t +
or A?(y + 28 — ' = A (A —
When we make x = o, this equation gives

y¥=A—¢,

which is the square of the ordinate at the origin. As ¢ is
necessarily less than A, this ordinate is real, and representing
it by B, we have

B2= A2

If we find the value of ¢ from this result, and substitute it
in the equation of the curve, we have

A2y2 + B2x2 AQBQ

which is the equation of the ellipse referred to its centre and
axes.

197. We may readily find the expression for the area of
the ellipse. For we have seen (Art. 157) that if a circle be
described on the transverse axis as a diameter, the relation
between the ordinates of the circle and ellipse will be

y B

Ry
The areas of the ellipse and circle are to each other in the
same ratio of B to A.
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To prove this, inscribe in the
circumference BMM'B’any poly-

gon, and from each of its angles
draw perpendiculars to the axis

BB'. Joining the points in which
the perpendiculars cut the el-
lipse, an interior polygon will be

formed. Now the area of the
trapezoid P'N'NP is

(M) PP, or (zr—z) L y+y)
The trapezoid P'M'MP in the circle has for a measure
(PM + P'M) 3 e LNy + Y)

hence,
PNNP : PMMP ::5: Y :: B sl
These trapezoids will then be to each other in the constant
ratio of B to A. The surfaces of the inscribed polygons will
also be in the same ratio, and as this takes place, whatever
be the number of sides of the polygons, this ratio will be that
of their limits. Designating the areas of the ellipse and
circle by s and S, we will have
S
STA’
that is, the area of the ellipse is to that of the circle as the
semi-conjugate axis is to the semi-transverse. Designating
by = the semi-circumference of the circle whose radius is
unity, « A? will be the area of the circle described upon the
transverse axis. Ve shall then have for the area of the ellipse
s =a. AB.
12+ e
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The areas of any two ellipses are therefore to each other as
the rectangles constructed upon their axes.

Of the Parabola.

198. We have found for the general equation of intersec-
tion of the cone and plane, referred to the vertex of the cone
(Art. 150),

y*sin®v + 2?sin (v + %) sin (v —u) — 2cx sinv cosvcosu = o.

This equation represents a parabola (Art. 130) when u = v,

which gives
2cx cos v

— =0

sin v

y*sin % — 2cx sinv cos?v = o, or y* —

for the general equation of the parabola referred to its vertex.
Making y = o to find the points in which it cuts the axis
of x, we have i
x=o0,
hence the curve cuts this axis at the origin.
Making « = o, determines the points in which it cuts the
axis of y. This supposition gives
y¥=o,
hence the axis of y is tangent to the curve at the origin.

199. Resolving the equation with respect to y, we have

y=kcosv gﬂ

sinv
These two values being equal and with contrary signs, the
curve is symmetrical with respect to the axis of z. If we
suppose &« negative, the values of y become imaginary, since
the curve does not extend in the direction of the negative
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abscissas. For every positive value of x, those of y will be
real, hence the curve extends indefinitely in this direction.

200. The ratio between the square of the ordinate 3* to
the abscissa x, being the same for every point of the curve,
we conclude, that in the parabola the squares of the ordinates
are to each other as the corresponding abscissas.

201. The line AX is called the axis
of the parabola, the point A the vertex,

.. 2ccos
and the constant quantity ——— the
sin v
parameter.  For abbreviation make a X
2c cos %

B — 2p, the equation of the pa-

rabola becomes
y* = 2pu.
202. To describe the pa-
rabola, lay off on the axis /Q

AX in the direction AB, a
distance AB = 2p. From
any point C taken on the
same axis, and with a radius
equal to CB, describe a cir-

B €

cumference of a circle; from the extremity of its diameter

at P, erect the perpendicular PM; and drawing through the

point Q, QM parallel to the axis of z, the point M will be a

point of the parabola. For by this construction we have
PM = AQ, and AQ" = AB. AP;

hence,

MPD2 = 2p. AP,

¥ = 2pa.
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203. If we take on the axis of the pa-
¥ rabola the point F at a distance from the

; / vertex equal to f%’ we shall have for
? r x every point M of the parabola, the re-
) lation

=y + (o 5) = 2o + ' —

R\

px +1;—’=(x + %)’;
hence,

FM:m+§,

that is, the distance of any point of the parabola from this
point is equal to its abscissa, augmented by the distance of
the fixed point from the vertex. The point F is called the
focus of the parabola. Hence we see that in the parabola,
as well as the ellipse, the distance of any of its points from
the focus is expressed in rational functions of the abscissa.
It follows, from the above demonstration, that all the points
of the parabola are equally distant from the focus and a line

BL drawn parallel to the axis of vy, and at a distance %from

the vertex. The line BL is called the Directrix of the
Parabola.

204. From this property results a second method of de-
scribing the parabola when we know its parameter. From
the point A, lay off on both sides of the axis of ¥, distances
AB and AF, equal to a fourth of the parameter. Through
any point P of the axis erect the perpendicular- PM, and
from F as a centre with a radius equal to PB, describe an



Caar. IV.] ANALYTICAL GEOMETRY. 141

arc of a circle, cutting PM in the two points M M’, these
points will be on the parabola. For, from the construction.
we have

FM:AP+AB=w+%-

205. The same property enables us to describe the para-
bola mechanically. For this purpose, apply the triangle
EQR to the directrix BL. Take
a thread whose length is equal to L
QE, and fix one of its extremities >/\
at E, and the other at the focus F. Q
Press the thread by means of a /M .
pencil along the line QE, at the ~ B[4 ¥ X
same time slipping the triangle EQR
along the directrix, the pencil will

BN

describe a parabola. For,
FM + ME = QM + ME, or QM = MF.

R06. If we make x =1 p in the equation of the parabola,
we get

y¥=phory=np, or 2y = 2p.

Hence in the parabola, the double ordinate passing through
the focus, is equal to the parameter.

207. Let it be required to find the equation of a tangent
line to the parabola whose equation is

¥ = 2pux.

Let =" y” be the co-ordinates of the point of tangency,
they must satisfy the equation of the parabola, and we have

Y = 2pax”.
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The equation of the tangent line will be of the form

y—y' =a@x—a").

It is required to determine a.

Let the tangent be regarded as a secant, whose points of
intersection coincide. To determine the points of intersec-
tion, the three preceding equations must subsist at the same
time. Subtracting the second from the first, we have

G—9y) @y +y) =2 (@—a").

Putting for y its value drawn from the equation of the
tangent, we get

(Ray"’ + @* (x— ") — 2p) (x—2") = o.

This equation may be satisfied by making z — 2" = o,
which gives = 2" and y = y" for the co-ordinates of the
first point of intersection, or by making

2ay" + a*(x—a'") —2p =o.

This equation will make known the other value of 2 when
a is known. DBut when the secant becomes a tangent, the
points of intersection unite, and we have for this point also
x = ", which reduces the last equation to |

2ay" =2 ;
hence,

a:-—”.

Substituting this value in the equation of the tangent, it
becomes

UJ .p
S = = x—w",,
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or reducing and observing that y"* = 2px”, we have

yy'=p @ +a"),
for the equation of the tangent line.

208. By the aid of these formulas we may draw a tangent
to the parabola from a point without, whose co-ordinates are

x',yy. For this point being on the tangent, we have
yy' =p @+,
and joining with this the relation
y*=2px’,
we may from these equations determine the co-ordinates of
the point of tangency. The resulting equation being of the

second degree, there may in general be two tangents drawn
to the parabola, from a point without.

209. To find the point in which
the tangent meets the axis of wx,

B

i

l:
i\ } i

U/ I ;
y'=p @+ "), S| I ¥
we get
x=_xll &

which is the value of AT. Adding to it the abscissa AP,

without regarding the sign, we shall have the subtangert,

iR =11

b4 z,

make y = o in the equation

that is, in the parabola, the subtangent is double the abscissa.
This furnishes a very simple method of drawing a tangent
to the parabola, when we know the abscissa of the point of
tangency.
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210. The equation of a line passing through the point of
tangency is of the form

y—y'=a @—a).
In order that this line be perpendicular to the tangent, for

which we have (Art. 207),

a:———“,

Yy
it is necessary that we have
ad +1=o,
‘hence
a'=— L.
2

The equation of the normal becomes
" Yy "
— === (x—2x")
y—y i
Making y = o, we have
r— 2" =P’

which shows that in the parabola the subnormal is constant
and equal to half the parameter.

911. The directions of the tangent and normal have re-
markable relations with those of the lines drawn from the
focus to the point of tangency.

The equation of a line passing through the point of tan-
gency is

=l T

and the condition of its passing through the focus, for which
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y=o,x=%give5

"

il .
£—.‘L‘
2

The angle FMT which this line makes with the tangent
has for a trigonometrical tangent (Art. 64),

a—a
1 + aa’

Substituting for a its value !}/l » and for a’ that foana

above, and observing that y” = 2px”, we have
tang FMT = 57, = a;

hence, in the parabola, the tangent line makes equal angles
with the axis, and with a line drawn from the focus to the
point of tangency, so that the triangle FMT is always
isosceles; consequently, when the point of tangency M is
given, to draw a tangent, we have only to lay off from F
towards T a distance FT = FM. FM will be the tangent
required.

212. If through M we draw MF" parallel to the axis, the
tangent will make the same angle with this line as with the
axis, hence in the parabola the lines drawn from the point of
tangency to the focus and parallel to the axis make equal
angles with the tangent. From this results a very simple
method of drawing a iangent to the parabola from a point
without. Let G be the point, F the focus, BL the directrix.
From G as a centre, with a radius equal to GF, describe a
circumference of a circle, cutting BL, in L, L. From these

13 T

P;Sﬂ»
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S S points draw LM, L'M’, parallel to
T the axis. M and M’ will be the
points of ‘tangency, and GM, GM/,

will be the two tangents that may
M be drawn from the point G. For,
by the nature of the parabola ML
= MF, and by construction GF
= GL, the line GM has all of its points equally distant from

F and L. It is therefore perpendicular to the line FL, con-
sequently the angle LMG, or its opposite :MT", is equal to
the angle GMF. MG is therefore a tangent at the point M.
The same may be proved with regard to GM.

Of the Parabola referred to its Diameters.

213. Let us now examine if there are any systems of
oblique co-ordinates, relatively to which the equation of the
parabola will retain the same form as when it is referred to
its axis. The general formulas for transformation are

z=a + x' cosa + ¥y cos o, =b 4 a'sina + ¢ sina.
Y

These values being substituted in the equation of the
parabola

Y’ = pa,
it becomes
y? sin®e’ + 22'y’' sinasina’ + x”sin’e + ¥ — 2ap % e
+20sind —pcosa)y + 2(bsina—pcosa)x’ S
In order that this equation preserve the same form as the

preceding, we must have
sine' sina=o, sin®a =o0bsina'—p cosa’ =0, ' — 2ap = o,



Cuar. IV.] ANALYTICAL GEOMETRY. 147

and the equation reduces to
P

" sin’’

xz ;5

: F '
and putting for ST’ P we have
y:=2p'x.
214. The second of the preceding equations of conditions
shows that sin « = o, that is, the axis of &' is parallel to the

axis of x. Hence, all the diameters of the parabola are
parallel to the axis.

215. The two other equations give
b = 2ap,
and

The first shows that the co-ordinates @ and b of the new
origin satisfy the equation of the parabola. This origin is
therefore a point of the curve. The second determines the
inclination of the axis of %' to the axis of x, and shows that
this axis is tangent to the curve at the origin, since it makes
the same angle with the axis of x as the tangent line at this

point (Art. 207), for which a = y£”

216. The equation y* = 2p'x’, giving two equal values for
y', and with contrary signs for each value of 2/, each diameter
bisects the corresponding ordinates.

217. The equation of the parabola being of the same form
when referred to its diameters and axis, all of its properties
which are independent of the inclination of the co-ordinates
will be the same in these two systems. Thus, to describe a
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parabola when we know the parameter of one of its diameters,
and the inclination of the corresponding ordinates, describe
a parabola on this diameter as an axis with the given para-
meter, and then incline the ordinates without changing their
lengths, we shall have the parabola required.

Of the Polar Equation of the Parabola, and of the
Measure of its Surface.

918. Let us resume the equation of the parabola referred
to its axis,

/’ and take O for the position of the pole,

the co-ordinates of which are @ and b;
N . draw OX' parallel to the axis. The for-
mulas for transformation are (Art. 122),

A x
x=a+rcosv, y=>b+ rsinv.

Substituting these values in the equation of the parabola, it
becomes

#sin® + 2 (bsinv—pcos v) 7 + b —2pa =q.
If the pole be on the curve,
b — 2pa = o,
ind the equation reduces to
#sin® + 2 (bsinv—pcosv)r=o,
which may be satisfied by making

#=o0, or rsin® + 2 (bsin v—p cos v) = o.
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The last equation gives

_2(pcosv—bsinv)
73 sin v i

r

If this second value of r were zero, the radius vector
would be tangent to the curve. But this supposition requires
that we have

2p cosv—2bsinv =o,
which gives
sin v P
—— = tang v =
cos v g G,
which is the same value found for the inclination of the tan-

gent to the axis (Art. 207).
219. If the pole be placed at the focus of the parabola,

the co-ordinates of which are b =0 a = %, the general
polar equation becomes

?sin*v — 2p cos v. r = p*
and the values of r are

__p(cosv +1) __p(cosv—1)
= sin'v 15 sin*v

The second value of » being always negative, since cos
v<1 and (cosv— 1) consequently negative, must be re-
jected. The first value is always positive, and will give
real points to the curve. It may be simplified by putting
for sin *v, 1 — cos *v, which is equal to (1 + cos v) (1 — cos v),
and this. value reduces to

A p (1 + cosv) P
"= T+ cosv) (I—cosv) T—coso
13 *
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which is the polar equation of the parabola when the pole is
at the focus.

220. If v=o0, r= -Zg = infinity. Lvery other value of o
from zero to 360° will give finite values to . When
v=90°%cosv=o0and r=p. Whenv=180%cosv=—1

and r = %’ results which correspond with those already

found. ;

221. In the preceding discussion we have deduced all the
properties of the parabola from its equation; reciprocally
we may find its equation when one of these properties is
known,

Let it be required, for example, to find a curve such that
the distances of each of its points from a given line and
point shall be equal. Let F be the
x ar given point, BL the given line. Take
the line FB perpendicular to BL for the
axis of x, and place the origin at A, the
B A\ F T middle of BF, and make BF = p.

For every point M of the curve, we

shall have these relations
2

FM = + (= —% ;
But by the given conditions we have

FM =LM = BA + AP,

hence
FM =2z + £
eliminating FM we have
Yy = 2pz,

which is the equation of the parabola.
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222. To find the area of any portior of the parabola, let
APM be the parabolic segment q pLs
whose area is required. Draw  ¢—% 'I, P
MQ parallel and AQ perpen- @ |y
dicular to the axis. The area
of the segment APM is two-thirds -A{—pr——7p ps
of the rectangle APQM. \

Inscribe in the parabola any rectilinear polygon MM'M".
From the vertices of this polygon draw parallels to the lines
AP, PM, forming the interior rectangles PP'pM, P'P"p'M",
and the corresponding exterior rectangles QQq¢M'. Repre-
senting the first by P, P, P”, and the last P pls p's we
shall have

P=y@—a), p=z(@y—y),

which gives

but the points M, M', M", belong to the parabola, and we
have

yv'=2pz, y*= 2,
which give

gy

(.Z'—.’L"): 21) I — ==

Substituting these values, the ratio of P to p becomes
P yYy@—=v)_y+y
S s
The same reasoning will apply to all of the interior and

orresponding exterior rectangles, and we have the equations
P_yty

’

2 y
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LR S

P y'
ROV,
P! y’ll

The polygon M, M', M", being entirely arbitrary, we
may place the vertices in such a manner that designating by
u any constant quantity, we have always

y—y =uy
y! _yll _— uyll
y”'_“y”, — uy’l" &c.

which is equivalent to making y, ¢/, ¥, decrease in a geo-
metrical progression. But from this supposition we nave, by
adding 2y' to the members of the first equation, 2y"” to those
of the second, &c.,

and the several ratios become

P

— =2 4 u,
pP.
1?T=2+u;
P

L P
p
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Hence these ratios will be equal, whatever be u. By com-
position we have
P+ P+ P+ &ec.
p+p +p....

=2+ u;

but the numerator of the first member is the sum of the in-
terior rectangles, and the denominator that of the exterior
rectangles. As u diminishes, this ratio approaches more and
more the value of 2, and we may take u so small, that the
difference will be less than any assignable quantity. But,
under this supposition, the inscribed and circumscribed rec-
tangles approach a coincidence with the inscribed and cir-
cumscribed curvilinear segments, consequently the limit of
their ratio is equal to the ratio of the segments, and repre-
senting the first by S, and the second by s, we have

Z=9,
s

which gives

and dividing these equations member by member,
2
S = § (S + S) H

but S + s is the sum of the inscribed and circumscribed
segments, and is consequently the surface of the rectangle
APMQ. Hence, the area of the parabolic segment APM is
equal to two-thirds of the rectangle described upon its abscissa
and ordinate.

223. Quadrable Curves are those curves any portion of
U
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whose area may be expressed in a finite number of alge-
braic terms. The parabola is quadrable, while the ellipse
is not.

Of the Hyperbola.

224. We have found (Art. 150) for the general equation
of the conic sections,

¥’ sin®v + 2*sin (v + ) sin (v — w) — 2cx sin v cos v cos u = o,

and (Art. 131) that this equation represents a class of curves
called Hyperbolas, when u > v.

To discuss this curve, let us find the points in which it
cuts the axis of x; make y = o, we have ,

2? sin (v + u) sin (v — u) — 2cx sinv cosv cos u = o,
which gives for the two values of

_ Z2csinvcosvcosu
~ sin (v + %) sin (v— u)

‘ which show that the curve

\ /T/ cuts this axis at two points
2} ——85—= BB, one of which is at the
\ origin, and the other at a dis-

2c¢ sin v cos v cos u

sin (v+ ) sin (v—u)

zx=o0, T

tance BB'=

from the origin, and on the negative side of the axis of y,
since sin (v — u) is negative. Making « = o, we find

y=o;

hence the axis of y is tangent to the curve at the origin.
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225. Resolving this equation with respect to y, we have

1

sin v ¥V —a’sin (v + u) sin (v — u) + 2cx sinv cos v cos u.

s e

These two values being equal, and with contrary signs,
the curve is symmetrical with respect to the axis of . For
every positive value of x, we shall have a real value of vy,
since sin (v— u) being negative, the sign of the first term
under the radical is essentially positive. The curve therefore
extends indefinitely on the positive side of the axis of y. If
x be negative, y will only have real values when — «sin
(v + u) sin (v — u) > 2cx sin v cos v cos u. Putting the value
of y under the form

y:

¢ sin v cos v COS u)

=~z \/——x sin (v + u) sin (v — ) (x E s s i
Since sin (v —u) is negative, the first factor

—zsin (v + u) sin (v —u)
will be negative for every negative value of . The sign of

the quantity under the radical will then depend upon that
of the second factor

( S ¢ sin v cos v €oS © )
sin (v + ») sin(v — u)/"

But this factor will be positive so long as

¢ sin v Cos v COS U
sin(v+ w)sin(v—u)

2 <

since
2¢ sin v oS v COS U
sin (v + u) sin (v — u)

is essentially positive.
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But for negative values of x which are greater than
2c sin v cos v cos u
sin (v + u) sin (v — %)
and the quantity under the radical positive. The values of

y will therefore be imaginary for negative values of x between
the values

the second factor will be negative,

¢ sin v €os v COSs u

R emb el sin (v + w) sin (v —u)

that is, between B' and B’;and real for all negative values

2c sin v €Os v COS ©

of x greater than e

There is therefore no part of the curve between B, and B/,
but it extends indefinitely from B’ negatively.
226. Let the origin of co-ordinates be taken at A, the
middle of BB’.
The formula for transformation is,
¢ sin v ¢os v cos u

since — ; — . is essentially negative
sin (v 4 ) sin (0 —u) € e

C sin v cos v cos u
sin (v + u) sin (v — u)

Substituting this value of # in the equation of the curve,
and reducing, we have

r=q +

¢*sin *v cos *v cos *u

y* sin*v+ 2% sin (v+u) sin (v—u)— iRt open (v—£5=0' (1)

Making y = o, to find the point in which it cuts the axis of
z, we find

¢ sin v cos v cos u
sin (v + ) sin (v — u) {

=AB= =+

but for ' = o, we find that the values of y are imaginary;
the curve therefore does not intersect the axis of y.
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If we make
5 & sin’v cos *v cos*u
R S e == » and
sin® (v + w) sin’® (v — u)

<0 ¢* cos®v cos'u
= " sin (v + u)sin (p—u)’

and multiply the two members of the equation (1) by

& cos v cos’u
sin® (v + u) sin® (v — u) ’

and put x for z', we shall have

Al — B = — A'B?
for the equation of the hyperbola referred to its centre and
axes.

227. The quantities 2A, 2B, are called the axes of the
hyperbola. The point A is the centre. Every line drawn
through the centre and terminated in the curve is called a
diameter, and there results from the symmetrical form of the
hyperbola that every diameter is bisected at the centre.

228. The equation of the ellipse referred to its centre and
axes, is

A%y + Ba® = A’B

Comparing this equation with that of the hyperbola, we
see that to pass from one to the other we have only to change
Binto B v —1. This simple analogy is important from the
facility it affords in passing from the properties of the ellipse
to those of the hyperbola.

229. When the two axes of the hyperbola are equal, its

equation becomes
ya_ o ey 10 A’;

we say then that the hyperbola is equilateral.
14
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When the axes of the ellipse are equal, its equation

becomes

y2 + x2= Aﬁ,
which is the equation of a circle. The equilateral hyper-
bola is then to the common hyperbola what the circle is to
the ellipse.

230. It follows from this analogy between the ellipse and
hyperbola, that if these curves have equal axes and are
placed one upon the other, the ellipse will be comprehended
within the limits, between which the hyperbola becomes
imaginary, and reciprocally, the hyperbola will have real
ordinates, when those of the ellipse are imaginary.

231. The equation of a line passing through the point B,
for which y =0, 2 =—A, is

y=a(x+ A)

That of a line passing through
B, for which y =0,z = + A, is

y=ad'(z— A).

In order that these lines intersect on the hyperbola, these
equations must subsist at the same time with that of the

hyperbola. Multiplying them member by member, we have
Y = aa’ (@' — A?).
Combining this with the equation of the hyperbola, put
under the form
BS
y'= Al (1," = Az);
we have

BZ

aa =P’
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which establishes a constant relation between the tangents of the
angles which the supplementary chords make with the axis of 2.

232. When the hyperbola is equilateral B = A, and this
relation reduces to

aa =1,
hence
1
a= —»
a
or tang a« = cot o,

which shows that in the equilateral hyperbola, the sum of the
two acute angles which the supplementary chords make with
the transverse axis, on the same side, is equal to a right angle.

233. If we put z in the place of y and y for x in the equa-

tion of the hyperbola, it becomes
B — A% = A’BY.

If in this equation we make z = o, y becomes real, and
y = o makes x imaginary. Hence
the curve cuts the axis of y, but does
not meet with that of x. It is then \ b 2
situated as in the figure, the trans-

- . . -B A B
verse axis being b, #. The curve is /
said to be referred to its conjugate k

axis, because the abscissas are reck-
oned on this axis.

234. The analogy between the ellipse and hyperbola,
leads us to inquire if there are not points in the hyperbola
corresponding to the foci of the ellipse.

In the ellipse the abscissas of these points were

x =% JA*—B.
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Changing B into B v—1, we have for the hyperbola
® == JAT+ B
Let us for simplicity make
c== VA + B,

AR and let F, I, be the points at this
distance from the centre, we will

have

2
FM'=9"+ (x—c)’ = _/% (*— A% + & —2cx + ¢,
from which we obtain

cx
FM:K—A.

In the same manner we will have

cx

FM = A

+ A,

that is, the distances FM, F'M, are expressed in rational
Sunctions of the abscissa x.

Subtracting these equations from each other, we get
FM —FM = 2A.

Hence, the difference of these distances is constant and

equal to the transverse axis.

235. To find the position of the foci geometrically, erect
at one of the extremities of the transverse axis a perpen-
dicular BE = B the semi-conjugate axis, and draw AE.
From the point A as a centre with a radius AE, describe a
ccircumference of a circle, cutting the axis in F, F'. These
points are the foci of the hyperbola.
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236. The preceding properties enable us to construct the
hyperbola. From the focus
T as a centre with a radius
BO, describe a circumference
of a circlee. From F' as a

centre with a radius BO =
BB' + BO describe another
circumference. The points
M, M, in which they intersect, are points of the hyperbola,
for

FM — FM = 2A.

237. By following the same course explained in Art. 165,
for the ellipse, we may find the equation of a tangent line to
the hyperbola. But this equation may be at once obtained

by making B= DB +—1 in the equation of a tangent line to
the ellipse, and we have

Aﬁyyu___Bzxxn o _A!B!
for the equation of a tangent line to the hyperbola.

238. The equation of a line passing through the centre
and point of tangency is

y' =az",
which gives
r W
@ =5

Multiplying this by the value of a corresponding to the tan-
207
gent, which is a = K,—:;T,y we have

14» v
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Comparing this result with Art. 231, we find the same value
for aa’. Hence, the angles which the supplementary chords
make with the axis of x, are equal to those which the tangent
line and the diameter, drawn through the point of tangency,
make with the same axis. The supplementary chords are
therefore parallel to the tangent line and this diameter.

Hence, to draw a tangent line to the hyperbola at any point
M, draw the diameter AM, then through B’ draw the chord

B'N parallel to AM ; MT parallel to BN will be the tangent
required.

Of the Hyperbola referred to its Conjugate Diameters.

239. The properties of the hyperbola referred to its diam-
eters may be easily deduced from those of the ellipse. By

making B'= B' v/ —1 in the equation of the ellipse (Art.
182), we find

Aliyn__Ble 2 ELAM WY ArﬁBrl.

The quantities 2A", 2B, are called the conjugate diameters
of the hyperbola.
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This equation could be also obtained by the same method
demonstrated for finding the equation of the ellipse.

240. In the same manner, by making B=B v —1, and
B =B+ —1 in the equations Art. 186, we have the
relation

A —B?=A*"—B},
A'B' sin («' —a) = AB,

A’tangatang o' — B* = o,

The first signifies that the difference of the squares con-
structed on the conjugate diamelers is always equal to the
difference of the squares constructed on the axes. Hence the
conjugate diameters of the hyperbola are unequal. The
supposition of A’ = B’ gives A = B, and reciprocally. The
equilateral hyperbola is the only one which has equal conjugate
diameters.

The second of the preceding equations shows that the
parallelogram constructed on the conjugate diameters is al-
ways equivalent to the rectangle on the axes.

The third relation compared with that of Art. 248, shows
that the supplementary chords drawn to the transverse azis are
respectively parallel to two conjugate diameters.

Of the Asymptotes of the Hyperbola, and of the Properties
of the Hyperbola referred to its Asymptotes.

241. The indefinite extension of the branches of the hyper-
bola introduces a very remarkable law which is peculiar to
1it. The equation of the hyperbola referred to its centre and
axes may be put under the form

= @ — A,
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which gives for the two values of v,
Bz \3
y aakla)
Developing the second member, it becomes
A? At A®

1—} = — 3 = — & = &e.;
Ema ?.:C‘* wxs ’

and multiplying by == %ﬁ, it becomes

Bx BA  BA? BAs
y =z (X—%?~%?—TIF?’&C')'
In proportion as « augments A, and B remaining constant,

A 3
the terms ]—3;—, ]%% » &c., will diminish. The values of y

! . Bz
will continually approach to those of the first term =
As x is indefinite, we may give it such a value as to make
the difference smaller than any assignable quantity. If]
therefore, we construct the two lines whose equations are

represented by

R _ B
Bt O aenrer

these lines will be the limits of the branches of the hyper-
bola, which they will continually approach without ever
meeting. And this may be readily shown, for we have
B ’
i A2 — B? for points on the hyperbola;

B ¢ 3
§ e i for points on the lines;

which shows that the ordinates corresponding to the same
abscissas are always smaller for the curve than for the lines.
These lines are called JAsympiotes.
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242. We can easily prove from the preceding expressions
that the asymptotes continually approach the hyperbola;
for, subtracting the first from the second, and designating
the ordinates of the asymptotes by y', we have

y12 ] y2 — B‘Z’
or,
G —y @ +y) =B
hence,
B‘Z

Al e,

y —y is the difference of the ordinates of the asymptotes
and hyperbola. The fraction which expresses this value has
a constant numerator, while the denominator varies with y
and . The more y and y' increase, the smaller will be this
difference. As there is no limit to the values of y and ¥/,
the difference may be made smaller than any assignable
quantity.

243. To construct the asymptotes of the hyperbola, draw
through the extremity of the transverse axis a perpendicular,
on which lay off above and below the axis of x two distances
equal to half of the conjugate axis. Through the centre of
the hyperbola and the extremities of these distances, draw
two lines; they will be the asymptotes required, for they
make with the axis of x, angles whose trigonometrical tan-

gents are :t:};.

244. If the hyperbola be equilateral, B = A, aad the
asymptotes make angles of 45° and 135° with the aass of .

245. The asymptotes are the limits of all tangents drawn
to the hyperbola. In fact, the equation of a tangent line to
this curve being (Art. 237),
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Atyy" — Bl = — A’B?,

the point in which it meets the axis of the hyperbola, has for
an abscissa
A2

T= -

il

In proportion as «”, which is the abscissa of the point of
tangency, increases, the value of x diminishes; and when
2’ = infinity, 2 = o. In this supposition the value of " be-

L x .
comes also infinite and equal to &= —— » so that, substi-
1 A
qu
tuting this value in the expression for @, which is A5 e
find

B
a=:|:K,

which is the value of a, corresponding to the asymptotes.

246. The equation of the hyperbola takes a remarkable
form when we refer it to the asymptotes as axes. The
general formulas for transformation are

=a'cosa + y' cosa, y==z'sine+ ¢y sina.
But, as the asymptotes make with the axis of x angles

B
whose tangents are == —, we have

A
tang « = — —> tang o' = + E
9 A 2 A
Substituting the values of x and y in the equation of the
hyperbola,
A’y — B = — A’BY,
it becomes

(A?sin 0’ — B?cos *a) y?+ (A? sin*x —DB? cos *a) L e
z'? + 2 (A?sin a sin o' — B?cos a cos o) ' '
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¥4 K
L
VARSE Q <D i A
B A =
/ T

The co-efficients of 2, y'* disappear in virtue of the pre-

ceding values of tang a, tang «, and that of z' y' reduces to
4A*B? .
— IR and the equation of the curve becomes
e A2 + B2
4 =

’,

which is the equation of the hyperbola referred to its asymp-
totes.
If we deduce the value of y', we have
A2 + BZ'
4’

!

as «’ increases y' diminishes, and when z' = o, Yy = o, which
proves the same property of the asymptotes continually
approaching the curve, which has been just stated.

247. If we take the line BB’ for the transverse axis of the
hyperbola, and AX', AY’, for the asymptotes, BE parallel to
AX', will be equal to vA? £ B But BK drawn perpen-
dicular to BB at B is equal to AE. Hence, AK = BE, and
AD = BD. As the same thing may be shown with respect
to the other asymptote, ADBD’ will be a rhombus, whose

AT LR
side AD =} AK= %Ei - Let (8 represent the angle

X'AY’ which the asymptotes make with each other, the pre-
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ceding equation of the hyperbola multiplied by sin 8 gives

x'y sinB = ﬁ—}g sin 8.

The first member represents the area of the parallelogram
APMQ), constructed upon the co-ordinates AP, PM, of any
point of the hyperbola; the second member represents the
area of the parallelogram ADBD’, constructed upon the co-
ordinates AD’, D'B, of the vertex B of the hyperbola. Hence
the area APMQ is equivalent to that of the figure ADBD',
The rhombus BEB'E', which is equal to four times ADBD, is
called the Power of the Hyperbola.

248. When the hyperbola is equilateral A = B, angle
B =90° sinf =1, and the rhombus ADBD’ becomes a

square which is equivalent to the rectangle of the co-ordi-
2 2
nates. For more simplicity, put ¥ = M?, and suppress

the accents of x, y', we shall have
oy =M,
for the equations of the hypefbola referred to its asymptotes.

249. Let it be required to find the equation of a tangent
line to the hyperbola referred to its asymptotes.

Let ", y/', be the co-ordinates of the point of tangency.
They must satisfy the equation of the hyperbola, and hence
we have

z'y" = M= <)

The general equation of the tangent line is

y—y' =a(x—a"),

it is required to determine a.
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Regarding the tangent line as a secant whose points of
intersection coincide, we have by subtracting equation (2)
from

zy = M,
the equation
xy—xll y" — 0’

which may be put under the form
2(y—y)ty (@—a")=o
Putting for y —y", its value, we have
(x—2") (ax + y") = 0.
This equation is satisfied when
z—z' =o,

which gives z = 2" and y = y”, and these values determine
the co-ordinates of the first point of intersection. Placing
the other factor equal to zero, we have

ax + y" = o,
when the secant becomes a tangent,

| ) z=2z", and y =y,
which gives

e

%

ax’ +y' =0, ora=—7%;,

8

Substituting this value of @ in the equation of the tangent,
it becomes

"

y—y' == )

Making y — o gives the point in which it cuts the axis of
x, and x = z" will be the subtangent, which we find to be

Aty '
r—x'=2a",

that is, the subtangent is equal to the abscissa of the pots
15 w
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of tangency. To draw the tangent, take on the asymptote
a length PT = AP = «”, MT will be the tangent required.
We see by this construction, that if we produce the line MT
until it meets the other asymptote at ¢, we shall have Mt =
MT. The portion of the tangent which is comprehended
between the asymptotes is therefore bisected at the point of
tangency.

250. The equation of a line passing through any point M”,
whose co-ordinates are z", y”, is

y—y' =a@—2a").

The other point M in which this line
meets the curve, is determined from the

equation (Art. 249),

ax + Yy’ =o,
which gives
e ALy
a

This is the value of the abscissa AP”. But if we make
y = o in the equation of the straight line, it gives also

x—a =— S
in which x represents the abscissa AQ” of the point in which
this line meets the axis AX, and x — 2’ is the value of P"Q".
Hence P"Q7 = AP”. Consequently if we draw M”'Q pa-
rallel to AX, the triangles P"M"Q’, QM”Q" will be equal,
and the lines M"Q”, M"’'Q”, will be also equal; that is, ¢f
through any point of the hyperbola, a straight line be drawn
terminated in the asymptotes, the portions of this line compre-
hended between the asymptotes and the curve will be equal
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251. This furnishes us with a very simple method of
describing the hyperbola by points, when we know one
point M” and the position of its asymptotes, for drawing
through this point any line Q"M"Q” terminated by the
asymptotes, and laying off from Q" to M" the distance Q"M"
M" will be a point of the curve. Drawing any other line
through either of these points, we may in the same way find
other points of the curve. This construction may also be
used when we know the centre and axes of the hyperbola.

For with these given, we may easily construct the asymptotes.

Of the Polar Equation of the Hyperbola, and of the
Measure of its Surface.

252. Resuming the equation of the hyperbola referred to
its centre and axes,

A% — B2 =— AR,

we derive its polar equation, by substituting for z and y
their values drawn from the formulas :

r=a -+ rcosv,
y=2b +rsinv.
The substitution gives
st oteamn §7 A0=Ber AT =0
for the general polar equation of the hyperbola.
253. When the pole is at one of the foci, we have a = %=

VA*+ B. b=o0; taking the positive value of a, corres-
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ponding to the point F, the substitution gives for the twe
values of r,
B B

A —acosv

r =

T A —acosv

If we make v = o, the
radius vector takes the
position FX. Then cos v
= 1, the denominator of 7

becomes A — a = A —

VAT I BT a quantity

which is essentially nega-
tive. Hence the curve has no real points in this direction,
and this will be the case until cos v is so small, that the pro-
duct « cos v shall be less than A. The condition will be
fulfilled when A + a cosv =0, which gives

el
Cos v = i \/Kr-{‘-:ﬁ;

This value of the angle v is the same which the asymptotes
make with the axis. The radius vector then becomes real,
and is infinite. For every value of v greater than this limit,
but less than 90°, « cos v is positive, and less than A; when
v>90°, a cos v becomes negative, and — a cos v positive.
In this case A — a cos v is positive as well as ». The points
which this value of r gives, correspond then to the branch
of the hyperbola situated on the positive side of the axis of x.

254. But in discussing the second root, we shall see that
it belongs to the other branch. In fact, it gives imaginary
values for all values of the cos v between the limits cos v =1

A
and cosv = —_- All the other values of v greater than
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that of the second limit will give positive values for r, and
when v = 180°, the radius vector will determine the vertex B'.

255. To put the preceding expressions under the form
adopted in the ellipse, make
VAT+ B
A ’

a
e=-—_-y QOre=

A

in which e represents the ratio of the eccentricity to the
semi-transverse axis, and the values of » become
A(l—¢) A(l—¢)

y = — a————— r=+4-—-—-
l1—ecosv 1 +ecosv

These two equations determine points situated on the two
branches of the hyperbola.

256. We have seen that a similar transformation gives
two values for the radius vector in the ellipse, but that one
of these values is constantly negative and consequently
belongs to no point of the curve, while for the hyperbola we
find two separate and rational values for r, corresponding to
the two branches of the hyperbola. Let us examine this
difference. If in the first of the preceding equations, we
count the angle v from the vertex of the curve, it will be
necessary to change v into 180°— v, and we have then
| ialig

1 +ecosv

This value of r will equally give every point of the branch
to which it belongs by attributing suitable angles to v. But
operating in the same way in Art. 194 on the ellipse, that is,
counting the angle v from the nearest vertex, we get

=Ad=&

1 +ecosv

r

15+
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This equation is therefore absolutely the same for the two
cases, only in the ellipse e is less than unity, while it is
greater in the hyperbola. Besides, the sign of A is changed.
Let us now make e = 1 and A = infinity, we shall have,
making A (1 — &) =p,

p"‘—_’
1 + coswv

r=

which is the polar equation of the parabola. Hence we see
that the equation
_AQ—9
1 +ecosv’

may in general represent all the conic sections, by giving
suitable values to A and e.

257. We may deduce the equation of the hyperbola in the
same manner as we have that of the ellipse in Art. 196, by
introducing one of its properties which characterize it. The
method being similar to that of the ellipse, it will be unne-
cessary to repeat it here.

258. We have seen that the equilateral hyperbola bears
the same relation to other hyperbolas that the circle does to
the ellipse. In applying here what has been said (Art. 215),
we may compare a portion of any hyperbola, to the corres-
ponding area of an equilateral hyperbola having the same
transverse axis, and there results that these are to each
other in the ratio of the conjugate axes. The absolute areas
however can only be obtained by means of logarithms.

259. We have found (Art. 156) for the equation of the
Ellipse referred to its vertex,

y= %g RAz —2%);
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for the equation of the parabola, we have

y =2z,
and for the hyperbola

32
y’ = A—, (QAIL‘ + CL’Q).
These equations may all be put under the form
y' = mx + na,

in which m is the parameter of the curve, and » the square
of the ratio of the semi-axes.

In the ellipse » is negative, in the hyperbola it is positive,
and in the parabola it is zero.
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CHAPTER V.
DISCUSSION OF EQUATIONS.

260. Havine discussed in detail the particular equations of
the Circle, Ellipse, Parabola, and Hyperbola, we will apply
the principles which have been established to the discussion
of the general equation of the second degree between two
indeterminates.

Let us take the general equation

Ay’ + Bxy + Cz*+ Dy + Ex + F =0,

in which = and y represent rectangular co-ordinates. Let
us seek the form and position of the curves which it repre-
sents, according to the different values of the independent
coefficients A, B, C, D, E, F. Resolving this equation with
respect to y, we have

=t
Bz+D 6 1 (B—4AC)#+2(BD—2AE)x+ D*—4AF
9A° — 2A

In consequence of the double sign of the radical, there
will, in general, be two ordinates corresponding to the same
abscissa, which we may determine and construct, if the values
given to  cause the radical to be real. If they reduce it to
zero, there will be but one value of y, and if they render it
imaginary, there will be no point of the curve corresponding
to these abscissas.

Hence, to determine the extent of the curve in the direc-
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tion of the axis of , we must seek whether the values given
to « render the radical, real, zero, or imaginary.

261. In this discussion we will suppose that the general
equation contains the second power of at least one of the
variables z or y. For, if the equation were independent of
these terms, its discussion would be rendered very simple,
and the curve which it represents immediately determined.
The general equation under this supposition would reduce to

Bzy + Dy + Ex + F = o,

which may be put under the form

B(x+§)(y+%—)—%@+F=o,

and making

&)
Il
i

D _
x-!-B =z, y+
it becomes

DE —BF
= _-Bz s

L)

which is the equation of an hyperbola referred to its asymp
totes (Art. 246).

262. The result would be still more simple if the coeffi-
cients A, B, C, reduced the three terms in 2% 3%, and ay, to
zero. In this case the general equation would become of the
first degree, and would evidently represent a straight line,
which could be readily constructed. These particular cases
presenting no difficulty, we will suppose in this discussion
that the square of the variable y enters into the general
equation.

X
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263. Resuming the value of y deduced from the general
equation,

Bx + D j:_l_ \/ (B*—4AC)2* +2(BD—2AE)x+D*—4AF
SN
we see that the circumstances which determine the reality

of y depend upon the sign of the quantity under the radical.
But we know from Algebra, that in an expression of this
kind, we can always give such a value to «, as to make the
sign of this polynomial depend upon that of the first term:
and since x* is positive for all real values of «, the’sign will
depend upon that of the quantity (B* — 4AC). We may
therefore conclude,

Ist. When B* — 4AC is negative, there will be values of x
both positive and negative, for which the values of y will be
imaginary. The curve is therefore limited on both sides of
the axis of v.

2dly. When (B*—4AC) = o, the first term of the poly-
nomial disappears, and the sign of the polynomial will then
depend upon that of the second term (BD — 2AE) x. If
(BD — 2AE) be positive, the. curve will extend indefinitely
for all values of « that are positive. But if x be negative, y
becomes imaginary. -The curve is therefore limited on the
side of the negative abscissas. The reverse will be the case
if (BD — 2AE) is negative. The curve will in this case
extend indefinitely when x is negative, and be limited for
positive values of .

3dly. When (B*—4AC) is positive, there will be positive
and negative values for x, beyond which those of y will be
always real. The curve will therefore extend indefinitely in
both directions-
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264. We are therefore led to divide curves of the second
order into three classes, to wit,
1. Curves limited in every direction;
Character, ... BB —4AC <o.
2. Curves limited in one direction, and indefinite in the
opposite ;
Character, . . . BB—4AC = o.
3. Curves indefinite in all directions;
Character, . . . BB —4AC > o.
The ellipse is comprehended in the first class, the parabola
mn the second, and the hyperbola in the third. We will dis
cuss each of these classes.

First Crass.—Curves limited in every direction.

Analytical Character, B*—4AC <o.
265. Let us resume the general value of y,
y T —

Bx-{-D 1 \/(B2—4AC)12+2(BD—2AE)x+D2-—4AF.
98 oz '

This expression shows, that, to find points in the curve
we must construct for every abscissa AP an ordinate equal

B D L
‘40 — %-%—.——% which will determine a point N, above

and below which we must lay off the
distance represented by the radical.
From which it follows that each of
the points N bisects the corresponding
line MM', which is limited by the
Bz +D }

curve. This quantity — {
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which varies with «, is the ordinate of a straight line whose

= Bx + D
A i

This line is, therefore, the locus of the points N, which we

equation is

have just considered. Hence, it bisects all the lines drawn
parallel to the axis of y and limited by the curve. This line
is called the diameter of the curve.

266. Let us now determine the limit of the curve in the
direction of the axis of ®. For this purpose we may put the
polynomial under the radical under another form,

25 Be- D
ARt ]

1\/2 BD — 2AE D’ — 4AF\
o (B-——4AC)(x“’+QB,_4ACx+Bg_4AC,

and if we represent by x’ and z" the two roots of the

equation
BD—2AE  D*—4AF

LR o T GRALE - e Y

the value of y will take the form

Bx+D 1 (B* —4AC) (o —2') (x — ).

Y i e a3 L

Hence we see, the values of y will be real or imaginary
according to the signs of the factors (x — ') and (x — "),
and consequently, the limits of the curve will depend upon
the values of ' and . These values may be real and un-
equal, real and equal, or imaginary. We will examine these
three cases.

267. 1st. If the roots are real and unequal, all the value
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of z greater than 2’ and less than ", will give contrary
signs to the factors # — z', x — ", and this product will be
negative, but as B*—4AC is also negative, the quantity
(B* —4AC) (x — ') (x — ") will be positive, and the ordi-
nate y will have two real values. If wé make x=a' or
x = ", the radical will disappear, the two values of y will
be real and equal to — E{QT.:B + In this case the abscissas
x’ and z' belong to the points in which the curve meets its
diameter, that is, to the vertices of the curve. Finally, for
x positive or negative, but greater than 2’ and x”, the two
actors (z — '), (x — z"), will have like signs, and their
product (z— ) (x— z") will be positive ; and since B*—
4AC is negative, the quantity (B’ —4AC) (x— ') (x —a")
will be negative also, and both values of y will be imaginary.

268. We see from this discussion that the curve is con-
tinuous between the abscissas z', "', but does not extend
beyond them; and if at their extremities we draw two per-
pendiculars to the axis of x, these lines will limit the curve,
and be tangent to it, since we may regard them as secants
whose points of intersection have united.

269. By resolving the equation with respect to x, we
would arrive at similar conclusions, and the limits of the
curve in the direction of the axis of y, would be the tangents
to the curve drawn parallel to the axis of x.

270. Having thus found four points of the curve, we could
ascertain the points in which the curve cuts the co-ordinate
axes. By making x =0, we have

Ay + Dy +F =o,

and the roots of this equation will give the points in which
16
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the curve cuts the axis of y. According as the values of y
are real and unequal, real and equal, or imaginary, the curve
will have two points of intersection with the axis of y, be
tangent to it, or not meet it at all.

271. By making y = o, we have
Cs? + Ex+ F=o,

and the roots of this equation will in the same manner deter-
mine the points in which the curve cuts the axis of z.

272. In comparing this curve with those of the Conic
Sections, we see at once its similarity to the Ellipse. Its

position will depend upon the particular values of the co-
efficients A, B, C, &e.

278. Let us apply these principles to a numerical example,
and construct the curve represented by the equation

Y — 2y + 2 — 2 + 2z =o.
In this example we have

A=1, B=—92 and C= 2,
hence

B'—4AC=4—8<o.

The curve which this equation represents belongs to the
first class of curves, which corresponds, as we shall presently
see, to the Ellipse.

Resolving this equation with respect to y, we have

y=@+1)xv@+1))—2@x+1)
The equation
y=(@+1),
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is that of the diameter of the curve, and laying off on the
axis of y a distance AB equal to ’
1, and drawing BC making an angle ?
of 45° with the axis of z, BC will z ¥
be this diameter. The roots of the

equation /B
@+ 1)Y—22@x+ 1) =0 -

& F)

are
x = 4+ 1, = —1TF.
Laying off on both sides of the axis of y distance AC and
AD equai to 1, the perpendiculars CP, DP’, will limit the

curve in this direction. Substituting the values of z in the
original equation, we have the corresponding values of v,

y=+2, y=o.

The first gives the point P, the second the point C.
Making & = o, the equation becomes
y¥—2y=o,
which gives
y=o, y=+2,

for the points A and H, in which the curve cuts the axis of .
For y =0, we have
4+ r=o0,
and
r=90, r=—1,
corresponding to the points A and C on the axis of x.

274. The following examples may be discussed in the same
manner :
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2. ¥ — 2y + 22" — 2% = 0.

o

// 3.y —2uy + 2+ 2 +x+3=o0.

/)

9275. There is a particular case comprehended under this

class, which it would be well to examine. It is that in whica
A = C and B = o in the general equation. This supposition
gives

23

Ay + A+ Dy + Ex + F =o;
or dividing by A,
D E F
y’-l—.’)cz-f-xy-l-xw'i-x:o.

D2 + 2
If we add AT

be put under the form

D), §. B D+E—dAF
y+ax YRR R T AR

to both sides of this equation, it may
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If the co-ordinates x, y, are rectangular, this equation is of
the same form as that in Art. 139,and therefore represents a

: 5 D E
circle, the co-ordinates of whose centre are — K’ TToA?
DI+ B2 4AF
and whose radius is AR 4AF- In order that this

2A
circle be real, it is necessary that the quantity (D* + E* —
4AF) be positive. If D* + E* —4AF = o, the circle reduces
to a point. If the system of co-ordinates be oblique, this
equation will be that of an ellipse.

276. We now come to the second supposition, in which
the roots x', 2", are equal. The product (x—ux') (x—x")
becomes (x — ')’, and the general value of y is

Br+D  z—2 mov—7r
y=— 2A—:!: oA v B 4AC.

Whatever value we give to x which does not reduce x — x’
to zero, will give imaginary values for y, since B*—4AC is
negative. But if x = ', there will be but one value for y,
Bz 4+ D ;
+ In this
2A
case the curve reduces to a single point, situated on the

which will be real and equal to — 3

diameter, the co-ordinates of which are

, Bx+D
x:x,y:-—— ——Q—A—- .

EXAMPLES.
Z2+y=0 y+a—22+1=o0.
277. Finally, when the roots are imaginary. In this case

the product (x — z') (x — z"') will always be positive, what-
16 * Y
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ever value be given to . For the roots 2, and z", are of the
form

#==xp+qgv—1,

e =p—qv=T,
hence,

@—a) (z—2) = EPr+p'+ ¢ =@xp) + 7,
which last expression is always positive for any real value of
x. The product (x — ') (x — «"") being positive, and (B*—
4AC) negative, the quantity under the radical is negative,
and the values of.y become imaginary. There is therefore
no curve. ;

EXAMPLES.
vY+aey+lt+lrty+l=0 y¥+22+2 +2=0,
which may be put under the forms respectively

Rytxz+1P+322+3=0, ¥+ (@+1°+1=0.

278. There results from the preceding discussion, that the
curves of the second order, comprehended in the first class,
for which B> —4AC is negative, are in general re-entrant
curves as the ellipse, but the secondary conditions give rise
to three varieties, which are the Point, the Imaginary Curve,
and the Curcle.

Seconp Crass.—Curves limited in one direction and indefinite
in the opposite.

Analytical Character, B'— 4AC = o.

279. In this case the general value of y becomes

K Bx+Di1\/2(BD—2AE)x+D’—4AF'.
I AR, BA
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Making, for more simplicity,
D' —4AF
2(BD —2AE) —
it may be put under the form
BJc-!-D:t 1 2 (BD — 2AL) (x — x').

ST SO

If BD —2AE is positive, so long as « is greater than «,

"

the factor x — ' will be positive, and the radical will be
real. If « = «/, the radical will disappear, and if « be less
than ', the factor £ —a’ will be negative, and the radical
will be imaginary. The curve therefore extends indefinitely
from x = z' to x = + infinity. The ordinate corresponding
to x = x/, will be tangent to the curve at this point.

280. The contrary will be the case if BD — 2AE is nega-
tive. The curve will extend indefinitely on the side of the
negative abscissas, and will be limited in the opposite
direction. ’

In both cases the straight line whose equation is

_ Bx+D
i T

will be the diameter of the curve.

EXAMPLES.

£52

Ly—2y+at+r=o
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b

SN

2y —2y+ a4+ Y=0

/ 3. ¥ —2y+ 2+ WY+ 1=0

“

A

4 y'— %y + 2*—2
"‘.1 = 0.
/ il




Caap. V.] ANALYTICAL GEOMETRY. 189

5.y — 2y 4+ 2*— 2
— 2z = o. /
/

&

281. If BD — 2AE = o, the value of y becomes
ek ng+D§ii D*— 4AT.

24 § T 2A
The curve becomes two parallel straight lines, which will

be real, one straight line, or two imaginary lines, according
as D*— 4AF is positive, nothing, or negative.

EXAMPLES.

e
lL.y—2y+at—1=o /
e

/]

v
2y +day+4Ff—4=o \ \\
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i

/ 3 ¥—2y+2+ 2 —2 1 =0

4. ' —4ay 4+ 4a® =0,

5.+ 2y +a*—1=o0

6.y +y+l=o

-

9289. There results from this discussion, that the curves of
the second order, comprehended in the second class, for
which B*— 4AC = o, are in general indefinite in one direc-
tion, as the parabola, but include as varieties two parallel
straight lines, one straight line, and two imaginary straight
lines.

Tuirp Crass.—Curves indefinite in every direction.
Analytical Character, B*—4AC > o.
283. The discussion of this class of curves presents no
difficulty, as the method is precisely similar to that of the
first.class. Resuming the general value of g,
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__BeaD b F CBD—8AE  TF—dAF
Y= =LV T m ke T AT
and representing by z’, 2, the roots of the equation

BD—2AE D' —4AF
B'_—4AC T BF—4AC

&+ 2

0,

the value of y becomes

Bx+D 1
= - oRaen

v (B*—4AQC) (z—2') (x —x").

So long as «’ and «” are real, the curve will be imaginary
between the limits z', 2", since (B*—4AC) is positive, but
for all values of z, positive as well as negative, beyond this
limit, the values of y will be real. The abscissas ', &, cor-
respond to the points in whieh the curve intersects its dia-
meter: and the equation of this diameter is,

EXAMPLES.

Ly—2y—a+2=0

o=
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\ 2y —a*+2%2—2 4+ 1=o0.

N

A

/\ 3 y—2y—a'—2 +
2 4+ 3=o.

B

S | 7

/ 4.y —%'—2 + 6z—3=0.
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284. We may find the points in which the curve cuts the
axes by the methods pursued in Arts. 287 and 288.
285. When the roots «, ", are equal, the product (x — a)
(x— ") would reduce to (x— ')}, and we would have
Bz4+D  ax—2

o o B—3AC.
y= oi— £~ ¥B — 4AC.

This equation represents two straight lines, which are
always real, since B'— 4AC is positive.

EXAMPLES.

Nofof

Ly—2'+2%+1=0 \

2 y—a'=o

3. ¥ +ay—2W' +3xr—1=o.

17 4
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286, When o’ and «” are imaginary, the quantity under
the radical will be always positive, since (x — ') (x — ') is
positive, whatever value be given to x (Art. 203), and B* —
4AC is positive for this class of curves. Hence, whatever
value we give to z, that of y will be real, and will give points
of the curve. This curve will be composed of two separate
branches, and the line represented by the equation

Bx—D
Geda e
will be its diameter.

As the radical v (B*—4AC) (x— ') (x — ') can never
reduce to zero, this diameter does not cut the curve.

EXAMPLEFES.

- Ly—2y—r=*—2=o

XNy
24+ 2y —a* + 2w+ WY—1=0.
/"‘\\\
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\_/
. ¥y —2ry—2*— 2 —2:=0. :

JEh ey

287. If A = — C, and B = o, the general equation
becomes
Ay— A2 + Dy + Ex+ F =o,

or,
D FoitirTip
¥y —a + Ky+Xx+X=o,
which may be put under the form

D\’ E\' D'— E'—d4AF
(-’/+2—A) “(‘”_ﬁ) = 1A® i

Hence we see, that if the co-ordinates = and y are rectan-
gular, this equation represents an equilateral hyperbola, the

. D E
co-ordinates of whose centre are — %’ + 94’ and whose

. D’—E*—4AF : ’
power is ——rg—— This case is analogous to that

of the circle (Art. 291).

288. We conclude from this discussion that the curves of
the second order, comprehended in the third class, for which
B* — 4AC is positive, are always curves composed of two
separate and infinite branches, as the hyperbola, and that
they include, as varietics, two straight lines and the equilateral
hyperbala.
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ANALYTICAL GEOMETRY.

GENERAL EXAMPLES.

. Construct the equation

Y — 2y + 3 + Wy —4x—3=o0.

. Construct the equation

Y — 2y —2 —4y—ax + 10=o0.

. Construct the equation

Yy —R2y + 2% —2 +4=0.

Construct the equation
Y —dxy 4+ 52 +2c + 1 =0

. Construct the equation

% —y—a* +y+4x—10=n0.

. Construct the equation

¥ —day+ 42+ 2 —Tx—1=0.

. Construct the equation

Y+ %y + 2 — 6y + 9 =o.

Construct the equation

4y —dzy + 2* — 2 — 4z + 10 =0

9. Construct the equation

y'—2%y + 2 —3y=o.

10. Construct the equation

V+daoy+ 42+ +4x+1=0.

[Crap. V.
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Of the Centres and Diameters of Plane Curves.

289. The centre of a curve is that point through which, if
any line be drawn terminated in the curve, the points of
-ntersection will be equal in number, and the line will be
bisected at the centre.

290. If we suppose this condition satisfied, and that the
origin of co-ordinates is transferred to this point, then it fol-
lows, that if + &', 4 ', represent the co-ordinates of one of
the points in which the line drawn through the centre inter-
sects the curve, the curve will have another point, of which
the co-ordinates will be — ', — ¥/, that is, its equation will
be satisfied when —a', —y’, are substituted for + z', + ¢’
This condition will evidently be fulfilled if the equation of
the curve contain only the even powers of the variables «
and y, for these terms will undergo no change when — ' is
substituted for + «', and — ¢’ for 4 ¢y'. To determine,
therefore, whether a given curve has a centre, we must ex-
amine if it have a point in its plane, to which, if the curve
be referred as the origin of co-ordinates, the transformed
equation will contain variable terms of an even dimension
only.

291. For example, to determine whether curves of the
second order represented by the general equation

Ay + Bey + C2* + Dy + Ex + F = o,
have centres, we must substitute for x and y, expressions of
the form
x=a+x, y=>b+y,

in which @ and b are the co-ordinates of the new origin, and

17 *
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see whether we can dispose of these quantities in such a
manner as to cause every term of an uneven dimension to
disappear from the transformed equation. If this substitu-
tion be made, the transformed equzilion will generally con-
tain two terms of an uneven dimension, to wit, (2Ab + Ba
+ D)y’ and (2Ca + Bb + E)a:’ And in order that these
terms disappear, a and b must be susceptible of such values
as to make

2Ab +Ba 4+ D=0, 2Ca+Bb+ E =,
and then the equation referred to the new origin becomes
Ay*®+ Bx'y' + Ca” + AV’ + Bab 4 Ca’ 4+ Db + Ea + F =0;

and under this form we see that it undergoes no change
when —a', — ¥/, are substituted for + ', + v\

292. The relations which exist between the co-ordinates
a and b are of the first degree, and represent two straight
lines. These lines can only intersect in one poini.' Hence,
curves of the second order have only one centre.

In fact these equations give for « and b, the following
values,

2AE — BD _ 2CD—BE

G e b

BT—4AC’ 7 B ARG

and these values are single. They become infinite when

b

B? — 4AC = o, which shows that there is no centre, or that
it is at an infinite distance from the origin, which is the case
with curves of the second class. Here the two lines whose
intersection determines the centre become parallel. If one
of the numerators be zero at the same time with the denomi-
nator, the values of @ and ) become indeterminate. This
arises from the fact, that this supposition reduces the two
equations to a single one, which is not sufficient to determine
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two unknown quantities. For if we suppose

2AE —BD =o,
and B*—4AC =,
we have from the first equation
2AE
Bi= Ty
which value being substituted in the second equation, it
becomes
AE:—DC = o,
hence
AE
= B

Substituting this value of C in the numerator of the value
of b, it becomes after reduction

2AE —BD,

which is the same expression as the numerator of the valuc
of a. ’

The two equations thus reducing to one, are not sufficient
to make known the values of a and 4, and are consequently
tndeterminate. 'There are therefore an infinite number of
centres situated on the same straight line. But when BD —
2AE = o, and B* — 4AC = o, the curve reduces to two par-
allel straight lines (Art. 297), and all the centres are found
on a line between the two.

293. The diameter of a curve is any straight line which
bisects a system of parallel chords. If, therefore, we take a
diameter for the axis of x, and take the axis of y parallel to
the chords which are bisected by this diameter, the trans-
formed equation will be such, that if it be satisfied by the
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values + z', + ¥/, it must also be by + ', — ¢/, that is, by
the same ordinate taken in an opposite direction. Conse-
quently, to ascertain whether a curve has one or more
diameters, we must change the direction of the axes by
means of the general formulas

z=a+x' cosa+y cosa’, y=>b+ a'sina + y sina,

and after substituting these values we must determine a, b
a, o', in such a manner, that all the terms affected with un-
even powers of one of the variables disappear, without the
variables themselves ceasing to be indeterminate. If this be
possible, the direction of the other variable will be a diameter
of the curve.

294, Let us apply these principles to the general equation
Ay +Bay + Cz' + Dy + Ex + F = 0.
Making the substitutions, we shall find, that the transformed
equation will generally contain three terms, in which one of
the variables 2, y', will be of an uneven degree, and these
terins are
;QA sin e sin o + B (sin a cos o' + sin ' cosa) +
2C cos o cos oc'z @)%
+$(2Ab + Ba + D) sina + (2Ca 4+ Bb + E) cos a}x
+§(2A0 + Ba + D) sin«’ + (2Ca + Bb + E) cose’{y.
Now, if we wish to render x' a diamet:ar, the co-efficients

of the terms in y' must disappear, which requires that wa
make
{2A sinasina’ + B (sin a cos &' 4 sin o’ cos o) 4 2C cos a
cos o } 2y =o;

or, what is the same thing,
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2C + B (tang o’ + tang o) + 2A tang a tang o’ =0, (1)

and that we also have

{(2Ab + Ba + D) sina’ + (2Ca + Bb + E) cos o'}y’ = 0. (2)

If, on the contrary, we wished the axis of ' to be a diam-
eter, the co-efficients of the terms in 2’ must disappear. But
this supposition would also require equation (1) to be satisfied
and that, in addition to this, we have

{(2Ab + Ba + D) sina + (2Ca + Bb 4 E)cosa} 2’ = 0. (3)

295. Let us examine what these equations indicate.

We see in the first place, that whichever axis we select for
a diameter, equation (1) must always exist, and it is also
necessary to connect with it one of the equations (2) or (3).
The first equation determines the relation between a and o',
and when one of them is given, it assigns a real value to the
other. But after this equation is thus satisfied, the second
cquation (2) or (3) which is connected with it, can only be
fulfilled by giving proper values to @ and b; so that while
equation (1) assigns a direction to the chords which are
bisected by the diameter, equation (2) or (3) between a and
b, will be the equation of this diameter relatively to the first
co-ordinate axes.

296. Equations (2) and (3) are evidently both satisfied
- when we make '

2Ab 4+ Ba + D =o, 2a+Bb+ E=0. (4

Hence the values of @ and & given by these conditions
belong to a point which is common to every diameter. But
these conditions are the same as those which determine the
centre (Art. 307).

24
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Hence cvery diameter of curves of the second order passes
through the centre, and reciprocally every line drawn through
the centre is a diameter.

297. If both of the axes «', ¥, be diameters, the trans-
formed equation will not contain the uneven powers of either
of the variables. For equations (1), (2), and (3) must in
this case exist. ‘

298. This condition is always fulfilled in curves of the
second order, when the origin of the co-ordinate axes is taken
at the centre, and their direction satisfies equation (1). For,
in this case, the first powers of 2’ and y’ having disappeared,
as well as the term in x'y’, the equation will contain only the
square powers of the variables. These systems of diameters
are called Conjugate Diameters. But the condition of passing
through the centre really limits this property to the Ellipse
and Hyperbola, the only cases in which equation (4) can be
satisfied for finite values of ¢ and &.

299. When the transformed equation contains only even
powers of the variables, it is evident that if this equation be
satisfied by the values + z', 4+ v/, it will also be for —a,
+y; —z, —y; +2, —y'; thatis, in the four angles
of the co-ordinate axes, there will be a point whose co-ordi-
nates will only vary in signs. If the axes be rectangular,
the form of the curve will be identically the same in each ot
these angles. In this case, it is said to be symmetrical with
respect to the axes. In the ellipse and hyperbola, for ex-
ample, these curves are symmetrically situated, when the
co-ordinate axes coincide with the axes of the curves. When
x' and y' are at right angles, we have o' = a 4+ 90°, and elimi-
nating «' from equation (1), we have
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—2Csinacosa + B (cos*x — sin®x) 4- 2A sinacos o = o,
and
(A—C)tang2a + B =o,
an equation which will always give a real value for tang 2a,
from which we deduce two real values for tanga. For

2 tang o

tang 20 = ,
= 1 — tang®«

hence,

(A SOy At g~ U = lana s

2
1 —tang®a

+B=o,
and
2(A—C)tanga = —DB + Btang’a,

from which we get

tang e — o s tanga = 1.

B

This equation will make known the two values of «.

But the product of the roots of this equation being equal
to the second member taken with a contrary sign, if we re-
present these roots by « and o', we shall have

oo =—l-

Hence the co-ordinate axes are at right angles (Art. 64), and
coincide with the axes of the curve.

300. We may readily ascertain whether any of the curves,
represented by the general equation we have been discussing,
have asymptotes.

For this purpose, extracting the root of the radical part of
the value of y, we have

__Bz+D vF—4AC BD — 2AE
TR A *t %@ o
i, PR
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Now, it is obvious that as x increases, all the terms, in
which x enters as a part of the denominator, will diminish,
and that when x is infinite, the value of y will reduce to

Bx—D , VB —4AC BD — 2AE
Bt T (= + p—gac)
This equation represents two straight lines, to which the
curve continually approaches as x increases. They are
therefore the asymptotes.
As this equation can only give two real lines when B*—
4AC > o, we conclude that the asymptotes are found only
in the third class of curves.

801. Let us take the equation
Yy —2v0y—3"— 2+ Te—1=o0;

since B* — 4AC > o, the curve belongs to the third class,
corresponding to the hyperbola. 3
To determine its asymptotes, find the valueof y. We obtain

y=xz+ 1%+ v4Ff—5z + 2,
K K
=x+1i(2a:~—%+;+?+ &e.)

Hence the equation of the asymptotes is
y=x+11+=2—}.

Constructing this equation, we can determine the position
of the asymptotes. The asymptotes being known, if we de-
termine the point in which the curve cuts the axis of z or y,
we may construct any number of points of the curve by the
method pursued in Art. 256.
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EXAMPLES.

1. Find the asymptotes of the curve represented by the
equation
ry—2 +x—1=0.
2. Find the asymptotes of the curve represented by the
equation
y—2y—2+2=o.
3. Find the asymptotes of the curve represented by the
equation
Yy —2'—2 4+ 6x—3 =o0.
4. Find the asymptotes of the curve represented by the

equation

Y —2y—a'—2c—2=o0.

Identity of Curves of the Second Degree with the Conic

Sections.

302. The curves which have been discovered in the dis-
cussion of the general equation of the second degree, have
presented a striking analogy to the Conic Sections. We will

resume this equation, and see how far this analogy extends.

303. We will suppose the equation to contain the second
power of at least one of the variables, and that the system
of axes is rectangular. We have found for the general value

of y (Art. 279),

» 1
Y=o

(Bx+D) £
18

Iy \/(B*—-4AC)a:*+2(BD—2AE)x+D’——4AF.
24
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The expression
1
y=—gz Bz +D),
is the equation of the diameter of the curve, and the radical

expresses the ordinate of the curve counted from this diam-
eter. Let us construct these re-

X
| yn sults. The diameter cuts the
{’\/T % . axis of y at a distance from the
oI AG x
I L D
R origin equal to =S and makes
; > an angle with the axis of z, the

o trigonometrical tangent of which

is -~ % Laying off a length

- 2p A== Q_DA »and through D draw

:ng LDX', making the angle LOX equal to that whose tan-

gent is — :%, LDX' will be the diameter of the curve.

Let us now consider any point M whose abscissa AP = «,
and ordinate PM = 3. Produce PM until it meets the di-

ameter OX', the distance PP’ will represent — 2—% (Bx + D)

and PM the radical part of the value of y. But as the equa-
tion of a curve is simplified by referring it to its diameter,
let us refer the curve to new co-ordinates, of which DP' = &
and P'M = 4/, and call the angle LOX, o, we have

1
&= —z'cosa, y=—2—A—(Bac+D)+y’.

Substituting these expressions in the general value of y
we get
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!

y =
1 /(Bz— 4AC) cos’ax™—2 (BD—2AE) cos aw’+ D’—4AF,
2x\

or, squaring both members,
2y = (B* — 4AC) cos’e.x? — 2 (BD — 2AE)

cosa.x’ + D*—4AF, )
or

4A%*% =
(BD —2AE) x'
2 2 S5
(B*— 4AC) cos’ % x < (B*—4AC) cos a

% + D*—4AF.

BD — 2AE) : o
Adding (B(’ 130 co)sz to the quantity within the paren-

thesea, and subtracting without the parentheses its equivalent

(BD — 2AE)?

(B —4AC) cos’« (B —4ACF cos™s’ the equation becomes

BD —2AE ?°

.12 2 2 i
4A%"? = (B* — 4AC) cos % % % — = 1A0) son a%
(BD — 2AE)?

Let us introduce for ' a new variable x”, such that

, BD — 2AE i
o g

(B°— 4AC)cosa

which is the same thing as transferring the origin of co-ordi-

: ' ; BD — 2AE
nates from the point D to D', so that DD’ = (B —A4A7C)_c3§; g
The equation in y' and 2" becomes

(BD—2AE)?
B—4AC

And siuce under this form it contains only the square:

4A%*= (B*—4AC)cos’a.x""— +D*—aAF. (9)
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powers of the variables, and a constant term, we see that it
can only represent an ellipse or hyperbola, referred to their
centre and axes, or conjugate diameters. It will represent
an ellipse if B* —4AC is negative, and the hyperbola if it is
positive.

804. Thjs reduction supposes that the last transforma-

tion is possible. But this will always be the case, unless
B—’%—]%g%lgs—a’ which represents DD’, become infinite,
which can only be the case when (B* — 4AC) cos o = o.
But cos o cannot be zero, for then we should have o = 90°,
which would make A = o, and the diameter DX’ parallel to
the primitive axis of y, a case which we excluded at first;
hence, in order that DD’ = infinity, we must have B* — 4AC
=0, and this reduces the transformed equation to
4A%"? = —2(BD — 2AE) cos a. 2’ + D*— 4AF, (4)

which 1s the equation of a parabola referred to its diameter
DX’. Thus, in every possible case, the equation of the
second degree between two indeterminates can only repre-
sent one or the other of the conic sections.

305. All the particular cases which the conic sections pre
'sent may be deduced from these transformations. For ex-
ample, if in equation (4) we suppose BD —2AE = o, the
term in ' disappears, and the parabola is changed info two
straight lines parallel to the axis of . If D*—4AF =o
also, the equation will represent but one straight line, which
coincides with this axis. If in equation (3), we make diffe-
rent suppositions upon the quantities A, B, C, D, and E, we
may’deduce all the known varieties of the sections which
this equation represents, which proves the perfect identity
‘of every curve of the second order with the conic sections.
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Tangent and Polar Lines to Conic Sections.

306. We might find the general equation of a tangent line
to curves of the second order by following the same process
we pursued in discussing these curves in detail. But as the
necessary elimination would be rather long, we shall here make
use of polar co-ordinates to effect the desired solution, thus:
Refer the curve to polar co-ordinates, the pole being on the
curve, and then find the equation of condition that both values
of the radius vector become zero, when it will, of course, be
tangent to the curve. This equation of condition will enable
us to determine the value of the tangent of the angle made by
the tangent line with the axis of 2.

307. Take the general equation, Ay® 4 Bzy + C2* 4+ Dy +
Ez 4+ F=o0...... (1), and transform it by means of the
formulas, ¢ = 2!’ 4 r cos v, y =y’ + rsinv; where z'/, y"/,
are the co-ordinates of the pole. Arranging the transformed
equation with reference to r, it will be of the form, M+* + Nr
+P=09....(2). In order that the pole may be on the curve,
we must have, P = o, and then (2) becomes, Mr* 4+ Nr = o,
Now in order that the values of r derived from this last equa-
tion may each be equal to zero, we must have, N=o0. Form-
ing the value of N by actual substitution, and placing it equal
to zero, we have, 2Ay’’ sin v + B (2/ sin v + y" cos v) +
2Cz'” cos v + D sin v 4+ E cos v = o, which gives, tang v =

By’ 2Cz!! +E
iny"-f- ¥ Bi” D for the tangent of the angle made by the

tangent line with the axis of z. Therefore the equation of

_By” + 2Cz"” + E
2Ay"" 4+ Bz 4- D

thistangent is, y —y"’ = (z — 2'"); or, by

reducing, 3

18* 2B
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(QAy” + Bz + D)y + (202" + By” + E)z + Dy +
Ezti2 =l . ... 3)

308. Having found the general equation of the tangent line
to Conic Sections, we are now prepared to demonstrate a re-
markable and beautiful property of these curves, namely;
That if from any point in the plane of a conic section we
draw any number of secants, and at the points of intersection
of the curve with these secants, pairs of tangents be drawn to
the curve, then the points of intersection of these pairs of
tangents will all be found wupon a straight line; and, con-
versely, If we take any right line in the plane of a conie scc-
tion, and from every point of this line draw pairs of tangents
to the curve, and connect the points of contact of each pair
by a right line, all these last lines will meet in a common
point. Let there be a point P without the curve, whose co-
ordinates are z/, ’, and let it be proposed to draw from this
point a tangent to the eurve. The question is then reduced
to finding the point of contact, and as this point is upon the
curve, we must have the equation,

Ay'? + B2’y 4 C2'? 4+ Dy’ + E2/ + F=o..... 4)

Because the point P is upon the tangent line, we must have
the equation,

(2Ay" + B2'’ + D)y’ + (2Cz" + By + E) 2’ + Dy"" +

Bz +2F =p..... 6))

The combination of (4) and (5) would give the desired
values of &/’ and y’/. Instead of doing this, however, we
may obtain these points by constructing the geometric loci of
(4) and (5) under the supposition that 2/ and g’/ are variables.
Under this bypothesis, (4) represents the given eurve, and (5)
represents a right line two of whose points are the required
points of contact, and therefore it must be the equation of
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the secant connecting those points. Now if this last line be
required to pass through a point 0 whose co-ordinates are a
and &, these co-ordinates must satisfy (5) when substituted for
z'’ and y'/, and it then becomes,

(245 + Ba+ D) y" + (2Ca + Bb + E) 2’ + Db + Ea +

Naw in this last equation the co-ordinates z’, y’, belong to
a point P, such that if from it two tangents be drawn and
their points of contact connected by a line, this line passes
through the point 0 whose co-ordinates are a and &. Let us
now suppose the point P to change its position; it is evident
that of all the positions it can take, there is an infinite num-
ber such, that drawing from them pairs of tangents to the
curve, and connecting the points of contact of each pair by a
right line, all these last lines will pass through the point 0;
and all such positions of the point P, and none others, will be
given by those values of 2/ and y’, which satisfy (6). Then,
if in (6) 2’ and y’ be regarded as variables, (6) will i-epresent
the geometric locus of these positions of the point P. Under
this supposition, however, (6) represents a straight line, and
hence the truth of the first branch of the theorem.

309. Again, if any line L, be given in the plane of a conic
section, this line may be represented by (G), and then the
values of @ and & which satisfy (6) without 2’ and y” ceasing
to be indeterminate, will fix a point 0 having with the line L
the relation enunciated in the second branch of the proposi-
tion. The point 0 is called the pole of the line L, which last
line is called, relatively to the point 0, the polar line. This

nomenclature must not, however, be confounded with polar
co-ordinates.

310. The properties of Poles and Polar Lines are extremely
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valuable ir. many graphic constructions relating to Conic Sec-
tions, but the limits of this treatise do not permit a full inves-
tigation of them. We shall therefore confine ourselves tc
showing how the Pole may be found when we know the Polar
Line, and reciprocally; and then how they may be applied to
drawing tangents to Conic Sections.

311. First, knowing the pole O, to find the polar line
(Fig. a). From the pole O draw any two secants as, OB, OA ;

then draw CD and AB, forming the incribed quadrilateral
ABDC. The intersection of the sides AB and CD gives one
point P on the polar line, and the point H, where its diagonals
BC and AD meet, is another point, so that PH is the polar
line for the pole O. Had H been the given pole, situated
within the curve, then by drawing through it any two secants,
as AD and BC, and connecting the points A, B, D, C, where
they intersect the curve, so as to form the inscribed quadri-
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lateral ABDC, the intersection of its sides prolonged, would
have fixed the points P and O, and PO would have been the
polar line for the pole H.*

812. Let it now be required to draw a tangent to the Conic
Section’ ATT’, from the point P without the curve. From P
draw any two lines PA, PC, cutting the curve at A, B, D, C.
Then draw BD and AC, and prolong them till they meet at
O. There will thus be formed the quadrilateral ABDC, in-
scribed within the curve. Draw its diagonals AD and BC,
meeting at H. Join O and H by the right line OH, which
will cut the curve at the two points T and T’. These will be
the points of contact, and by joining them with P we shall
obtain the required tangents PT, PT”.

313. In the second casg, suppose the given point P (Fig. d)

to lie upon the curve. Assume any three other points as, A,
B, D, upon the curvé. Draw DP, and AB, intersecting at

* Bee note at end of this subject.
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M also draw BP intersecting AD prolonged, at R; and then
draw RM. Now change one of the three assumed points, as
B, to any other position, as C, and go through the same cou-
struction ; that is, draw AC meeting DP at S; then draw
CP meeting AD prolonged, at N; and then draw NS, and
prolong it until it meets RM at T, which will be a point of the
tangent, and drawing TP, it will be the tangent line required.
A line from T to A would also be tangent to the curve at A..

314. The student will find it a valuable exercise to examine
and discuss poles and polar lines for each of the varieties of
Conic Sections separately. And we may here mention that in
the case of the Parabola, he will find the directriz to be the
polar line of the focus, and reciprocally, the jfocus to be the
pole of the directriz. Hence, {f any chord be drawn through
the focus of a parabola and two ta;zgents be drawn at its ex-
tremities, these tangents will intersect on the directriz. It
will also be found that these tangents are perpendicular to each
other.

815. Note. — The construction of Art. 311 presents one of those instances
in which a resort to the ordinary analytic methods, as a means of proof, would
be attended with much disadvantage, on account of the elimination required.
The most convenient and direct demonstration reposes upon the theory of
Hurmonie pencils, with which we cannot suppose the pupil familiar, as it has
not yet found its way into our geometries. We may mention, however, for
the benefit of the student acquainted with the principles of Linear Perspective,
that a very simple and elegant proof may be established by its means: de-
pending on the fact that pairs of secants uniting the corresponding extremities
of parallel chords of a conic section, meet on the diameter bisecting these

chords. The constructions of Arts. 312, 313, are immediate consequences of
that of Art. 811,
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Intersection of Curves.

816. Before closing this @iscussion, we will show how the
principles developed in Art. 92 may be applied to determine
the points of intersection of two curves.

If the curves intersect, the co-ordinates of the points of
intersection must satisfy the equations of both curves. These
equations must therefore have common roots, and the deter-
mination of these roots will make known the co-ordinates of
the points of intersection.

317. Take the equations

a

y=73% Y+ ay =2t + ba.
Determining the values of x and y by elimination, we find
‘m:o,yzo; r=—0b, y=—a.

Hence the straight line meets the curve in two points,
which may be constructed from the values which have been
found for the co-ordinates. '

818. Let us take the equation

¥—2y + 2 — % — 2 =0,
¥ —2y + 2% —2xr =o.

Subtracting the first equation from the second, we have
for the first equation

2y =o,
which gives y = o.

Substituting this value in either of the given equations,

we find

Th=Fossan QN

The curves therefore intersect in two points.
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319. Let us take for another example,
Yy — 2y + a2 —2y—1 =o,
y’-—-Qxy—{—x’:{-x::u.
Determining the first equation in x by means of the greatest
common divisor, we find
92" 4+ 10x + 1 = o,
which gives for the values of x,
=—1,and z=—1.

Substituting these values in the last divisor placed equal to
zero, we have
y=o0,y=—4.
The given curves have therefore two points of intersec-
tion, which may be constructed by methods previously ex-
plained.

820. As two equations, one of the m®™, and the other of
the n degree, may have a final equation of the mn® degree;
it follows that the curves represented by these equations may
intersect each other in mn points. As the roots of a final
equation, the degree of which exceeds the 2d, are not readily
constructed, a method is often used, which consists in draw
ing a line which shall be the locus of all the points of inter
section, and thus their situation will be determined.

821. To explain this method. Let
y=r y=o@*

* A quantity is said to be a function of another quantity, when it depends
upon it for its value, The expressions f(x), ¢ (), &c., are used to denote:
any functions of x, and are read, f function of z, ¢ function of x, &c.
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be the equations of two curves. If they intersect, the co-
ordinates z' and y' of their intersection must satisfy these

equations, and we have:-

y=f@) y=e&) @)
adding these cquations together, and then multiplying them
by each other, we have

W =@ +o@), @
=) xe@) Q)

Now, either of the equations (2) or (3) gives a true relation
between the co-ordinates x’, 3, of the points of intersection;
and by supposing =" and y to vary, this equation will express
the relations between the co-ordinates of a line, one of whose
points will be the required line of intersection.

It may be remarked, that in combining the given equations
we should endeavour to lead to equations which are most
. readily constructed; the straight line and circle being pre-
ferred to any other.

EXAMPLE.

From a given point without an ellipse, draw a tangent tc
the curve.

We have for the equation of the ellipse.
A% + Bt = AB?, (1)
and for that of the tangent,

Ay’ + Bax” = A®BA

19 2¢
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Let @, y', be the co-ordinates of the given point Q, they
must satisfy the equation of the tangent, and we have

AWy 4 Bz = A*BL (2)

From the equations (1) and (2) we can readily find the
values of «” and ", and thus determine P.

Now, equation (2) is not the equation of any straight line,
but only gives the relation between CM and MP. But if we
suppose «” and y" to vary, this equation will express the
relation between a series of points, one of which will be P:
and therefore if the line it represents be constructed, it will
pass through P, and its intersection with the given ellipse
will make known the point P. Constructing the line whose
equation is

AWy" + B's" = AB?,

we find it to be BPP', and that it intersects the ellipse in two
points. Two tangents can therefore be drawn to the curve,

QP, and QP'.
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CHAPTER VL

CURVES OF THE HIGHER ORDERS.

322. Havixe completed the discussion of lines of the second
order, we might naturally be expected to proceed to an inves-
tization of those of the higher orders; but the bare mention
of the number of those in the next, or third order (for they
amount to eighty), is quite sufficient to show that their complete
discussion would far exceed the limits of an elementary trea-
tise like the present. Nor is such an investigation necessary ;
we have examined the Conic Sections at great length, because,
from their connexion with the system of the world, every pro-
perty of these curves may be useful; but it is not so with
curves of the higher orders; generally speaking, they possess
but few important properties, and may be considered more as
ohjects of mathematical curiosity than of practical utility.
The third order is chiefly remarkable from its examination
having been undertaken by Newton. Of the eighty species
now known, seventy-two were discussed by him, and eight
others have since been discovered. The varieties of the next,
or fourth order, are thought to number several thousands. A
systematic examination of curves being thus impossible, all
we can do is to give a selection, confining our attention princi-
pally to such as®may merit special notice, either on account
of their history, or for the possession of some remarkable me-
chanical property. Others we shall notice in order that the
student may not be entirely unfamiliar with them when he
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may meet with some allusion to them in the higher branches
of analysis. And as this matter of tracing the geometrical
form and figure of a curve from its equation, is one of surpass-
ing importance in the practical application of mathematics, we
shall commence by selecting an example well calculated to
exhibit a further illustration of those principles by which we
have already discussed the Conic Sections, as well as to show
clearly the general method of procedure in such cases.
323. We begin then with

The Lemniscate Curve,

represented by the equation,
yt — 96a%* 4 100a%* — ot =0...... (A).

Here let us observe that, in the discussion of any curve, the
sole difficulty consists in resolving the equation by which it is
defined. If this obstacle can be overcome, we may readily
trace its course. For, suppose that the equation of the curve
has been solved, and that X, X/, X”/, ete., represent the roots
of g, these roots being functions of z; the question is at once
reduced to an examination of the particular curves, which are
represented by the separate equations,

y=2X, y =X/, y = X", ete.

This examination will be effected by giving to z every pos-
sible value, as well negative as positive, which the functions
X, X/, X’ ete., admit of, without becoming imaginary; and
the resulting curves will be the different dranches of the curve
denoted by the given equation. The extent and direction of
these branches will depend upon the different solutions which
correspond to their particular equations. If any of the equa-
tions y = X, y = X/, ete., exist for infinite values of z, it fol-
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lows that the corresponding branches extend indefinitely in the
direction of these values. -

324. The present example offers no difficulty in the solution
of its equation, which, being effected by the method for qua-
dratic equations, gives us,

Y= \/48a2 =+ /2304a* —100a%2® + 2*...... (B),

or putting, 2304a* — 1004%* + z* = N, the four values of y
become,

iy \/ 48022 — yN...... ),

{t is now required to ascertain each of the curves which
tocse equations represent. We see, in the first place, that the
values (3) and (4) differ from (1) and (2) only in the sign, and
consequently must represent branches similar to those repre-
sented by (1) and (2), but differently situated with reference to
the axis of z. Further, as the quantity of N contains only
even powers of z, its value will not be changed by substituting
a negative for a positive value of z. The parts of the curve
which lie on the right of the axis of g, are, then, similar to
those situated on the Zeft of this axis. Hence the curve is
divided by the co-ordinate axis into four equal and symmetri-
cal parts. Let us now proceed to a more minute examination
of the values (1) and (2), beginning with (1). This value of
y can only be real so long as N is positive, and we know from

18
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algebra that in an expression of this kind a change of sign
can only occur by its passing through zero, and therefore we
can find the limits to the real values of y by writing N = 2*—
1004%* + 2304a’ = o, which equation gives by its solution,
« = == 64, and z = == 8a, and hence (1) may be written,

9y = \/480&2 + v(z—0a) (= + 6a) (z—8a) (z + 8a)...... (5).

In this equation, z = o gives y = v 96a® for the point C
(Fig. 1), in which the curve cuts the axis of 4. Between the

Q

N

SEes=
<
Q YT

limits = 0 and 2z = 6a, N is positive and ¥ is real, and as »
increases from o to 6a, y diminishes from v 96a? to 4847
which last value corresponds to the point D, at which a line
parallel to the axis of y is tangent to the curve. For values
of z greater than Ga and less than 8a, the factor (z — 8a)
alone becomes negative, and consequently renders y imaginary,
so that no portion of the curve is found between the parallels,
FD and' GE, to the axis of y at distances AF and AG, from
the origin equal respectively to 6o and 8a. For z = 8a, we
get y = 4842 giving the point E, at which EG parallel to
the axis of y is tangent to the curve. All values of z greater
than 8z render N, and consequently y, positive ; hence, from
E the curve extends indefinitely in the direction EH. Similar
branches will be found on the left of the axis of y, by attri-
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buting negative values to z, so that equation (1) represents the
portions of the curve exhibited in Fig. 1. If in the general
equation (A), we make y = v96d’, we obtain, 2° =y, and
z==10a. The first gives z = == 0, which shows that at the
point C, the parallel I’CI to the axis of z, is tangent to the
curve, while the other two values of z, viz. == 10a, give the
points I and I at which the parallel cuts the two indefinite
branches. Now let us examine (2). By a transformation
similar to that used in the discussion of (1), this second value
of y may be written,

y= \/48a2—— v (z— 6a) (z + 6a) (¢—8a)(z + 8a)...... (6).

In this equation z = o gives y = o, which shows that the
curve passes through the origin. As z increases from zero up
to Ba, y increases from zero to v 48a% which last value gives
the point D (Fig. 2), at which

this branch joins that of CD |: EFzy.Z l i i
(Fig. 1), and both have a com- E : iﬂ' 1); EEE
mon tangent, DF, parallel tothe !/} 1 Y
axis of y. For all values of z l‘ E i _ ; E !

R ' I A ) L

greater than 6a, but less than 8a,
the factor (z —8a) alone becomes negative, rendering N nega-
tive, and consequently y imaginary, so that no part of the
curve represented by equation (6) is found between the two
lines DF and EG drawn parallel to the axis of 7, and at dis-
tances AF and AG from the origin equal respectively to Ga
and 8a. For z = 8a, (6) gives y = v/484? for the point E,
in which the branch EK joins the branch EH (Fig. 1), and
both have the common tangent EH parallel to the axis of y.

From the form of equation (2), it is apparent that a negutive
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value for N is not the only circumstance which will render y
imaginary. For y is plainly imaginary whenever z has such
a value as to render v N >484% We then obtain the limits
by writing, vN = v2'— 100a%? + 2804a* = 4847 which

equation when resolved gives, 2* = o0 and z = 3= 10a. The

first of these values of z corresponds to the origin. The other
two, == 10a, give the points K and K’ at which the branches
EK and E’K’ are cut by the axis of 2. Thus, for all values
of z between the limits z = 8a, and z = 10a, equation (6)
gives real values for y, and for all values of x greater than
10a y is imaginary, so that the branches represented by (6)
are limited at K and K’ by parallels to the axis of y. More-
over, as z increases from 8a to 10a, y diminishes from v48a?
to zero, so that between the points B and K the branch EK
has the form represented in the diagram. Again, if in the
general equation (A) we make # = 10a, we obtain, y*= o,
y = v96a%. The first gives y = == 0, and shows that at K
and K’ the parallels to the axis of y are tangent to the curve;
the other value, v 9642 corresponds to the points I and I
(Fig. 1). By giving negative values to z, we find similar
branches to exist on the Zeft of the axis of #, so that the por-
tions of the curve defined
by (2) are such as are re-
presented in Fig. 2. As
we have already remarked,

equations (3) and (4) repre-

Fig 3. sent equal branches situated

below the axis of z. In
Fig. 8 arc shown the branches represented by (1) and (2), and
Fig. 4 exhibits the entire curve.
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Let us now examine if this curve has asymptotes. By ex-
tracting the square root of the quantity N, equation (B) may
be written,

98at 4900a°
y==%= \/48(12 == (z'z—-50a’—— - it R T etc.)

z

or taking the upper sign only,

98a* 4900a°
y=d:\/x2—2a"’— e PR ete.

Extracting the square root again, we have,

y=i(x—-a—2—??£ ...... etc.) ...... (M. -

z 3z®

'B S'\
2D
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Now as z increases, those terms in this equation which contain
z in the denominator will diminish, and when z = oo, they
may be all neglected after the first; equation (7) then reduces
to y = ==z, which is the equation of two rectilinear asymp-
totes to the curve, passing through the origin and making
angles of 45° and 135° with the axis of 2. By combining
the equation of the asymptote with that of the curve, we find
that the origin is the only point in which they intersect. The
asymptotes are represented in Fig. 4 by the lines RAR/, SAS'.
The polar equation of this curve is readily found to be,

rt — 4a%?) cos 20 — 2a%* = o.

Its discussion is left as an exereise for the student.

ar |E 325 The Cissoid of Diocles (Fig.
5).—Let ADBD’ be a circle of which
AB is the diameter and EBF an in-
definite tangent at the point B; draw
" \r from A any line Al cutting the cir-
o cumference at o and the tangent at
I, then take on this line the distance
Am = oI; it is required to find the
B locus of the points m, m/, etc. Take

A as the origin of a system of rec-
tangular co-ordinates, AB being the
axis of z. Then put AB = 2q,
An =z, and mn =y. Now, since
Am = oI, An will be equal to pB,
and the similar triangles Anm and

F Apo give, An:nm:: Ap: po, that is,
3

T x
z:y::i(2a—2): V(@a—z)w, . Y=g, and y==£
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2 L
\/Qa s For the sake of convenience, let us tabulate the

corresponding values of z and y, thus:

| 1 Foe Faal g atilte

| { |
Val.z‘ 0 l a i<2a| 2a ‘>2a' —
Val. y I 4o | *=a | real l +oo | imag. | imag.

From (1) we see that the curve passes through the origin ;
from (2) that it bisects the semicircular ares ADB and AD'B
at the points D and D’; from (3) that for all values of z less
than 2a there are two real and equal values for y with contrary
signs; from (4) that there is an infinite ordinate at B, or that
EBF is an asymptote to the curve. From (5) we perceive
that no point of the curve lies to the right of this asymptote,
and from (6) that no part of it is found to the left of A, and
as the curve is symmetrical with respect to the axis of z, its
form is such as represented in the diagram. This curve was

.invented by Diocles, a mathematician of the third century,
and called by him the Cissoid, from a Greek word signifying
“ivy,” because he fancied that the curve climbs up its asymp-
tote as ivy does up a tree. He employed it in solving the
celebrated problem of inserting two mean proportionals be-
tween given extremes.

826. The Conchoid of Nicomedes (Fig. T).— Let BX be an
indefinite right line, A a given point, from which draw ABC
perpendicular to BX, and also draw any number of straight
lines Aom, Ao’m'’, etc.; upon each of these lines take om
and om/, o'm/’ and o'm'’’, each equal to BC, then the locus
of these points m, m/, m", m'”, etc., is the eonchoid. The
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branch HCG is called the superior conchoid, and the other
portion, FADAE, the ¢nferior conchoid: both conchoids form
but one curve, that is, are both defined by the same equation.

D

BC is called the modulus, and BX the base or rule. Let us
now find the equation of the curve from its mode of genera-
tion. The curve may be regarded as the locus of the points
of intersection of the lines mm/, Am’/, etc., with the circles
which have their centres at o, o/, etc., and their radii each
equal to BC. The equation of one of these circles would be,
(z—aY+y*=0..... (1), and that of one of the lines
Amis,y+a=dzx..... (2). Now the centre of this circle
must be at the point in which Am cuts the axis of z, which

gives, z/ = g. Hence (1) becomes,

(2= 5V +p2=0..... ).
a

Now to get the desired loeus, we must eliminate d between (2)
and (8), in terms of general co-ordinates, and we thus obtain,

pm @ (2,

or,
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L)%

for the equation of the curve, which we now proceed to dis-

a
=" o

cuss, observing that we may distinguish the cases according as
we have, b >a,b=a, or b < a.
327. Case L. 6> a.

|1 21 ST e irhee | 8
Yal. y. b 1< >b |—a|l—0b <——ai>—a,<—b
Val. xI! w | o |real |imag.| o 0 real 1 real

From (1) XX’ is an asymptote; from (2) the curve passes
through C; from (3) and (4) the curve extends from the base
upwards to C, and no higher; hence the branch HCG. Again,
from (5) and (6) the curve passes through A and D if BD = &;
from (7) there is an indefinite branch AE, to which the base
is an asymptote; and from (8) the curve exists between A and
D, and since the curve is symmetrical with reference to the
axis of g, its form is as represented in the diagram.

328. CasE IL. b=a. The loop Am’DA disappears by the
coincidence of the points A and D; otherwise the curve is of
the same form as in the first case.

Case IIL. <a. In this case the superior conchoid is not
altered, but the inferior conchoid becomes a curve similar to
it, the point D falling between A and B. The point A be-
comes what is known as a conjugate or ésolated point, that is,
a point whose co-ordinates satisfy the equation of the curve,
and which is therefore a point of the curve, but is entirely
tsolated or disconnected from the branches of the curve. 'I'he

generation of the conchoid affords a good example of the
20
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nature of an asymptote, for the distances om, o’m’’, etc., must
always remain each equal to BC, and this plainly causes the
curve to approach the base without ever admitting of an actual
intersection with it.

329. This curve was invented by Nicomedes, a Greek geo-
meter, who flourished about 200 years B.c. He called it the
conchoid, from a Greek word signifying “a shell”’: it was
employed by him in solving the problems of the duplication
of the cube, and the trisection of an angle. To show how
the curve may be applied to the latter problem, let BAC be
the angle to be trisected (Fig.
8): then if CDE be drawn so
that the exterior segment DE

T R by eithis radics. DAL
it is immediately seen that the arc DG is one-third of the arc
BC. Now it is utterly impossible so to draw CDE by the aid
of the common geometry alone, that is, by employing simply

the straight line and circle, but it may easily be done by re-
sorting to the conchoid. ILet C be the pole of the inferior
conchoid, BE the asymptote or base, and AC the modulus,
then the intersection of the curve with the circle plainly gives
the desired point D. The superior conchoid may be employed
for the same purpose. The polar equation of the conchoid is
easily found, and is, r = a sec 8 + &.

330. In the discussion of the two preceding curves, we have
had occasion to allude to the famous problem of the duplica-
tion of the cube, the origin of which is well known. As it
deserves some notice, on account of the celebrity to which it
attained among the ancient geometricians, we shall here intro-
duce a very simple solution of it, by means of Conic Sections.
Let a denote the cdge of the given cube, and o that of the

e ne
o N
e 3 o
oA ) i We wrb ACE CEA
D L] d o
o -
ACE wy Lewm Rhe= SCEAL oL

e,
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required cube; then the solution of the problem requires the
cetermination of z so as to satisfy the condition, 28 =2a*. .. .(1).

Now as.we may regard (1) as the final y Fig9.

equation resulting from the elimination
of y between two other equations y =
f(z), and y=TF (z), and if we can

determine what these equations are, /
and then construct the curves defined

by them, the abscissa z of their point of intersection will be
the edge of the required cube. To effect this, multiply (1) by

2, and el eet ot —s2aby ). 0 (2). Next, assume y*=
2aponi 12 (3). Combining (2) and (3) we obtain z* = a’y’,
(30 75 =t e A (4). The required equations are then (3)

and (4); (3) representing the parabola AVP (Fig. 9), and (4)
representing the parabola ASP, the parameter of the first
being double that of the second. The abscissa AX of their
point of meeting is the edge of the required cube.

The Lemniscata of Bernoudlli. (Fig. 10.)

331. This curve was invented by James Bernouilli. It is
the locus of the intersections of tangents to the equilateral

hyperbola with perpendiculars E o

to them from the centre. Its Fig. 10.

polar equation is, #'= a? cos .

\4
e (1) When 4 =, (1) -z
gives 7= a, which designates
® B’

the point A; as 4 increases r

diminishes, and when 8 = 45°, » = o, showing that the curve
passes through the pole. If 4> 45° but < 185°, 24> 90° and
< 270°, so that cos 24 is negative and r imaginary. Drawing
then the two lines SPR and S’PR’, making respectively angles
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of 45° and 135° with PA, the curve will not exist in the
angles SPS’ and RPR/, but will lie in both the angles SPR’
and S’PR. From 6= 135° to § = 180°, » increases; for
8 = 180°, r = a, giving the point A’. From 4= 180° to
6 = 225° r diminishes, and for 4= 225° r=o0. From
0= 225° to 6= 315° r is imaginary. From 4 = 315° to
6 = 360°, r increases till § = 360°, when » = a, giving the
point A. The shape of the curve is that of the figure 8, as
shown in the diagram. By the aid of the transcendental
analysis, this curve is found to be quadrable, the entire area
which it encloses being equivalent to the square on the semi-

axis PA.
Parabolas of the Higher Orders.

332. This name designates a class of curves represented by
the equation y™= @™ "2"...... (1), or by~ S o= a5 s 2),
the essential condition being that the sum

of the exponents be the same in each

Fig. 11

member. When m=2, and n=1,

e equation (1) becomes, y* = az, the com-

mon or conical parabola. When m = 2,
and n =3, (1) gives us y* = a~'2’, which represents the sem-
cubical parabola, so named because its equation may be written,
z3 = aly. The form of this curve is shown in Fig. 11. It
is remarkable as being the first curve
which was rectified, thatis, the length
of any portion of it was shown to

oo

is, r = a tang %, sec &. When m =1, and = =3, (1) gives

Fig 12. be equal to a number of the common

rectilinear unit. Its polar equation

a%y = a% which represents the cubical parabola. Its form is
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exhibited in Fig. 12. Its polar equation is easily found to be,
r* = a’, tang é, sec *. :

833. Transcendental Curves.— This appellation designates
a class of curves whose equations are not purely algebraie,
and are so called because it transcends the power of analysis
to express the degree of the equation. As many of these
curves are found to possess remarkable mechanical properties,
we shall proceed to the consideration of some of the most
noted of them, beginning with

The Logarithmic Curve. (Fig. 13.)

834. This curve derives its name from one of its co-ordinates
being the logarithm of the other. If the axis of z be taken
as the aris of numbers, that of
y will be the azis of logarithms ;

and laying off any numbers, 1,
2, 3, 4, etc.,, on AX, the loga-
rithms of these numbers, as
found in the Tables of Loga-

.

rithms, estimated on parallels

to the axis of y, will be the cor-
responding ordinates of the
curve.

From what has been said, the

equation of the curve is, y =
log z; or, calling a the base of

the system of logarithms, we

have, z = a*.
If the base of the system be changed, the values of y will
vary for the same value of z; hence, every system of loga-

rithms will produce a different logarithmic curve. The equa-
20* 28
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tion z = a?, enables us at once to construct points of the
curve; for, making successively, y=o0, y =1, y = 3, ete,
we find,z=1, 2= /a, 2= ¥ ete. Asy=o,givesz=1,
whatever be the system of logarithmsg, it follows that every
logarithmic curve cuts the axis of numbers at an unit’s dis-
tance from the origin.

385. If a> 1, all values of z greater than unity will give
real and positive values for y ; the curve, therefore, extends
indefinitely above the axis of numbers. For values of  less
than unity, y becomes negative, and increases as z diminishes ;
and when 2 =0, y = — 0. The curve, then, extends indefi-
nitely below the axis of numbers, and as it approaches con-
tinually the axis of logarithms, this axis is an asymptote to
the curve. If z be negative, y becomes imaginary ; the curve
is, therefore, limited by the axis of logarithms.

386. If a <1, the situation of the curve is reversed, and is
such as is represented by the dotted line in the figure.

337. Taking the axis of y for the axis of numbers, that of
z would be the axis of logarithms, and the curve would enjoy,
relatively to this system, the same properties which have been
demonstrated above. :

338. This curve was invented by James Gregory. Huyghens
discovered that if PT be a tangent meeting AY at T, YT is
constant and equal to the modulus of the system. Also that
the whole area PYVaP extending indefinitely towards V), is
finite, and equal to twice the triangle PYT; and that the solid
described by the revolution of the same area about AY, is 1}
times the cone generated by revolving the triangle PYT
about AY.
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The Cycloid. (Fig. 14.)

339, If a circle QMG be rolled along the line AB, any
point M of its circumference will describe a curve AMKI,
which is called a Cyeloid. This is the curve which a nail in
the rim of a carriage-wheel describes in the air during the
motion of the carriage on a level road. The curve derives its
name from two Greek words signifying ¢ circle-formed.” The
line AL over which the generating circle passes in a single
revolution is called the dase of the cycloid, and if I be the
middle point of AL, the point K is called the vertex, and the
line KI the altitude or azis of the curve. To find its equation,

Y Fig. 14.
G K
0 S
£ e s 7
DN A 2
A Q I ’ L

let K be the origin of co-ordinates; put Kn =z, aM =y,
and SI, the radius of the generating circle, =a. Then we have,

Ma=Mm+mn...... ).
And

Mm=QIl=AI—AQ...... (2).
Now from the mode of generation, we have, AQ = are MQ =
arc mI; and AI = semi-circumference ImK. Hence (2)

becomes, Mm = ImK — arc mI = arc Km, and, consequently,
(1) becomes,

y = arc Km + mn = arc Km + «+Kn x nl = arc Km +



236 ANALYTICAL GEOMETRY. [Cuar. VI

Now we have arc Km = a circular arc whose radius is @ and

. # . . T
ver sin z = a (an arc whose radius is unity and ver sin E) 5 or,

-1
introducing the notation, ver sin 5 to signify ¢ the arc whose

versed sine is g,” (3) may be written,
Y = a ver sin o + V2zr—a'...... (4)
a
for the equation of the cycloid.

The equation of the curve is frequently to be met with
referred to A as an origin, with AB as the axis of z, and AY
the axis of y. Its equation then is,

-1
Z = g ver sin %— J2AgEy, . ..., (5).

The cycloid is not, of course, terminated at the point L, but
as the generating circle moves on, similar cycloids are deseribed
along AB produced. The points A and L, when the consecu-
tive curves of the series join each other, are termed cusps or
points of cusp — the designation not being restricted to the
cycloid alone, but used as one applied generally to a similar
union between the branches of any curve. We have already
had examples of such points in the cissoid and semi-cubicai
parabola.

840. The cycloid, if not first imagined by Galileo, was first
examined by him; and it is remarkable for having engaged
the attention of the most eminent mathematicians of the seven-
teenth century.

341. With the exception of the Conic Sections, no known
curve possesses s0 many beautiful and useful properties as the -
cycloid. Some of these are, that the area AMKmIA, is
equivalent to that of the generating circle; that the entire
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area AKLA, is equivalent to three times that of the generating
circle ; that the tangent MG is parallel to the chord mK ; that
the length of the arc MK is double that of the chord Km,
and consequently the entire perimeter AMKCL is four times
the diameter of the generating circle; that if the curve be
inverted, and two bodies start along the curve from any two
of its points, as A and M, at the same time, they will reach
the vertex K at the same moment; and if a body falls from
one point to another point not in the same vertical line, its
path of quickest descent is not the straight line joining the

two points, but the arc of an ¢nverted cycloid connecting them.

On account of these Iast two properties, the cycloid is called the
tautochronal and brachystochronal curve, or curve of equal
and swiftest descent.

342. Instead of the generating point being on the circum-
ference of the circle, it may be anywhere in the plane of that
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circle, either within or without the circumference. In the
former case, the curve is called the Prolate Cycloid, or Trochoid
(Fig. 15); in the latter case, the Curtate, or shortened,
Cycloid (Fig. 16).

343. To find the equations of these curves, let K (Figs. 15
and 16) be the origin of co-ordinates. Put KM = 2, MP =y,
KO = a, AO = ma, < AOR = ¢.

Then from the figure, MP = FC + QM = arc AR + QM.

-1
.y = map+ a sin ¢, or, y=ma ver sin %+ v2az — 2,
which equation will represent the common cycloid if m =1
the prolate cycloid when m > 1; and the curtate cycloid when
m < 1.

344. The class of cycloids may be much extended by sup-
posing the base on which the generating circle rolls, to be no
longer a straight line, but itself a curve: thus, let the base be
a circle, and let another cirele roll on the circumference of the
former ; then a point either within or without the circumference
of the rolling circle will describe a curve called the Epitrochoid ;
but if the describing point is on the circumference, it is called
the Kpicycloid.

845. If the revolving circle roll on the inner or concave
side of the base, the curve described by a point within or with-
out the revolving circle is called the Hypotrochoid ; and when
the generating point is on the circumference of the rolling
circle, the curve is called the Jypocyeloid.

346. To obtain the equations of these curves, we shall find
that of the Epitrochoid, and then deduce the rest from it.’
(Fig. 17.)

Let C be the centre of the base EDo, and B the centre of
the revolving circle DF in one of its positions: CAM the
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straight line passing through the centres of both circles at the
commencement of the motion; that is, when the generating

X4
A V M

point P is nearest to C, or at A. Let CA be the axis

of z; CM =2, MP=y, CD =a, DB =5, BP = m}, and
> ACB = 4.

Draw BN parallel to MP, and PQ parallel to EM. Then,
since every point in DF has coincided with the base AD, we

have DI = ag, and angle DBF = @ ; also angle

FBQ= >FBD—> QBD = —_(o p)="
Now CM = CN 4+ NM = CB cos BCN + PBsin PBQ =
5
ip—-g),
And,

MP = BN —BQ = (a + &) sin ¢ — mb cos (a_—bi-_bq’_%);

or,

’2‘.

(a+b)cos¢p+mbsin<a-§

b
z=(a -+ b) cos p— mb cos a——;-—(p,

b
and, ¥ = (a + b) sin ¢ — mb sin a—;— ?

Such are the equations which represent the Epitrochoid..
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Those for the Epicycloid are found by putting b for mb
in (1).

b
.-.x=(a+b)cos<p—-—bcosa_g @

S SRR 2)
and y = (a + b) sin ¢ — b sin E

Those for the Hypotrochoid may be obtained by writing — b
for 4 in (1), and those for the Hypocyeloid are found by putting
— b for both & and mb in (1).

847. The- elimination of the trigonometrical quantities is
possible, and gives finite algebraic equations whenever a and &

are in the ratio of two integral numbers. For then cos ¢,

at+b . .
cos —%—— o, 8in g, etc., can be expressed by trigonometrical formu-

las in terms of cos < and sin }, when J is a common submultiple

b
of ¢ and ﬂ_‘_;)‘__ ¢; and then cos < and sin < may be expressed

in terms of # and y. Also since the resulting equation in »
and ¥ is finite, the curve does not make an infinite series of
convolutions, but the revolving circle, after a certain number
of revolutions, is found having the generating point exactly
in the same position as at first, and thence describing the same
curve line over again.
For example, let a =10, the equations to the Epieycloid
become,
@ =a(2cos p-—cos 2 ¢), ¥y = a(2sin g—sin 2 ¢);
> = a (2 cos ¢ — 2 cos’p + 1)
y = 2a sin ¢ (1 — cos @) }
From the first of equations (38) we find the value of cos ¢;
and from the second, that of sin ¢, and then adding together
the values of cos’ and sin’p, and reducing, we oet.
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2
(#* + y*— 3a’) = 4a* (3 - -g) ;
or,
@+yp—a)y—4a{(z—a)+y*}=o.

This curve, from its heart-like shape, is called the Cardioide.
If the origin be transferred to A, the polar equation of this
curve becomes,

r = 2a (1 — cos 0).
848. If b = -g, the equations of the Aypocycloid become,

= a cos ¢, and ¥ = o 7. e., the curve reduces to the diameter
of the circle ACE. Under the same supposition, the Aypotro-
choid reduces to an FEllipse whose axes are a(m + 1) and
a(l—m). :

Spirals.

849. Spirals comprise a class of transcendental curves
which are remarkable for their form and properties. They
were invented by the ancient geometricians, and were much
used in architectural ornaments. The principal varieties are,
the Spiral of Archimedes, the Hyperbolic, Parabolic, and
Logarithmic Spirals, and the Lituus.

Spiral of Archimedes. (Fig. 18.)

850. If a line Ao revolve uniformly around a centre A,
at the same time that one of its points commencing at A, with
a regular angular and outward motion, describes a curve AMo,
and is found at o, when Ao has completed one entire revolu-
tion, and at X at the end of the second revolution, and so on,
the curve AMoM’X, will be the Spiral of Archimedes.

From the nature of this generation, it follows that the ratio
of the distance of each of its points from the point A, to the

21 2F
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length of the line Ao, will be equal to that of the arc passed
over by the point o from the commencement of the revolution,

Fig. 18.

fo the entire circumference; or, for any point M’, we shall

have,
AM/ 43 0Go 4+ oGN

AN W B GO
and making oGN =0, AM =r, AN =1, the circumference
cGo will be denoted by 2=, and the equation of the spiral be-

0 : bl )
comes, 7 = 5-. The variables in this equation are those of

polar co-ordinates. The point A is the pole or eye of the
spiral, AM the radius vector, and the angle subtending oGN
the variable angle. ‘

851. The curve which has just been considered is a par-
ticular case of the class of spirals represented by the general
equation, 7 = 6", where @ and n represent any quantities

whatsoever.
The Hyperbolic Spiral. (Fig. 19.)

852. If in the general equation, r = a¢", we have n = —1,

the resulting equation r=%l, will be that of the Hyperbolic
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Spiral, called also, the reciprocal spiral. This curve has an
asymptote.

In fact, if we make successively, § =1, = 1, = 1, etc., we
ghall have r = a, = 2a, = 3a, etc., which shows that as the

b of D 7’
LS

M /"——*KI

=

o
A /m\
o G\

o

G e’

Fig. 19

spiral departs from the point A, it approaches continually the
line DE drawn parallel to AO, and at a distance AB = a. For,
drawing PM perpendicular to AB, we have,

PM=rsinMAP=rsin6=am—2f,

when 7 is replaced by its value %z. This value of PM ap-

proaches more and more to a as 4 diminishes, and when 4 is

in 8
very small, s1_r; =1, and PM=a; DE is therefore an

asymptote to the curve. If 4 be reckoned from AB/, we
shall have a similar spiral to which DE’ will be an asymptote.
This curve takes its name from the similarity of its equation
to that of the hyperbola referred to its asymptotes; 7 = q,
being that of the spiral, and 2y = M?, that of the hyperbola.

The Parabolic Spiral. (Fig. 20.)

353. This spiral is generated by wrapping the axis AX of
a parabola around the circumference of a circle. The ordinates
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PM, P’M’, will then coincide with the prolongations of the
radn ON, ON’; and the abscissas AP, AP/, of the parabola,

X

Fig. 20.

will coincide with the ares AN, AN/,
ete. AQQ’ Q' etc., is the spiral.
The equation of the parabola being
y*=2pz ; we have, QN=r — b=y,
b being the radius of the circle ; and
AN = 6= 2. The equation of the
spiral then becomes, (r — ) =
2p8 = ab, by making 2p = a. If the
origih of the curve be at the
centre of the circle, b =0, its

equation becomes, 7* = aé.

The Logarithmic Spiral. (Fig. 21.)

854. The equation of this curve is, 8 = log 7, or r = df,

when a is the base of the system of logarithms used. Making

. Fig. 21.

6 = o, we get, r = 1. The curve
therefore passes through the point
0. As 7 increases, 8 increases
also ; there is therefore an infinite
number of revolutions about the
circle OGN. When » <1, 8 be-
comes negative, and its values

give the part of the curve within

the circle OGN. As » diminishes, 4 increases, and when

y = 0, 6 = —cc. The spiral therefore continually approaches
the pole, but never reaches it.
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The Lituus. (Fig. 22.)

855. The Lituus, or trumpet, is a spiral represented by the
equation, 7 = o’. Its form
N e ’ 3 szz.
is exhibited in the diagram. @

The fixed axis is an asymp-

tote, and the curve makes an infinite series of convolutions
around the pole without attaining it.

Remark.

856. In the discussion of curves there is one point deserving
consideration, namely : it will often happen that the algebraical
equation of a curve is much more complicated than its polar
equation ; the conchoid is an example. In these cases it is
advisable to transform the equation from algebraic to polar
co-ordinates, and then trace the curve by means of the polar
equation.

We subjoin several examples as an exercise for the student.

1. (#* + y)3 = 2azy ; which gives, r = a sin 24.
2. (8 + ') = 2a’zy.

.2ty =a(z—y)

4. (@ +y)=a(@—y)

357. In many indeterminate problems we shall find that
polar co-ordinates may be very usefully
employed. For example: Let the corner
of the page of a book be turned over into
the position BCP (Fig. 23), and in such
manner that the area of the triangle BCP AN
be constant ; to find the locus of P. Let =

A
AP=r, >PAC =4, and area ABC = o’ e
Then
Zli*

Bl Fig2s
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AE = g, AE=AC cos 4 AE=ABsin ¢, .. 2—:= (—g sin 6 cos 4;
or,
7> = o* sin 29,
for the required equation. 3
358. In some cases it may be advisable to exchange polar
co-ordinates for algebraic ones, the formulas for which are
(when the new system is rectangular),

sin6=—‘y cosé:iv and » = /2 + 4°
7’ 7 y-

359. We have now given a sufficiently extensive discussion
of the curves of the higher orders, and shall next proceed to
give a few examples to be investigated by the student himself,
in order that he may become entirely familiar with the appli-
cation of the principles already laid down. And here we may
observe, that while the methods here given will ordinarily
prove sufficient for determining the general outline and form
of most curves, yet there are many which yield a complete
solution only when subjected to the exhausting processes of
the higher ealeulus ; and indeed its aid is almost indispensable
for arriving at, and thoroughly discussing, many of the most
valuable and beautiful propérties of some of the curves we
have already considered. The methods of Analytical Geome-
.y are not, however, on this account, less deserving the study
and time of the pupil, since the expedients of the higher
analysis are based upon them; presupposing, and indeed
requiring, a familiar acquaintance with their details.

EXAMPLES.
1. 2% = 4a* (2az — 2*).
2. (a—a)y’ =z (b—2).
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10.
e

13.

14.
15.
16.

© 0 X S o

V1] ANALYTICAL GEOMETRY.
SN =0
(2 —1)y*= 2z —2*.
LY =2 —t 1=,
2y —ayt=1.
ceyt oyt =1,
ey — il
UR—ta =i
l+2)yr=1
(1—2)y=1.
.y=x:‘:x\/’;:..
y = ’:tlz.
2
Sz—1
% 20
r=cos d + 2sin 4,
2
T=1+tax—1g—d'
i 1
T =sn2e
r = tang 4
r=14 2 cos 4.
1
T= cos' s
1+sind
T=1—%sine
1

. 7' = a* sec® 8 (1 —sin® 4\

217
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CHAPTER VIIL

OF SURFACES OF THE SECOND ORDER.

860. Surraces, like lines, are divided into orders, according
to the degree of their equations. The plane, whose equation
is of the first degree, is a surface of the first order.

361. We will here consider surfaces of the second order,
the most general form of their equation being

Az + A'y 4 A'2* + Byz + B'ez + B'xy + Cz +
Cy+C'x+F=o. Q)

Since two of the variables, z, y, z, may be assumed at
pleasure, if we find the value of one of them, as z, in terms
of the other two, we could, by giving different values to x
and y, deduce the corresponding values of z, and thus deter-
mine the position of the different points of the surface. But
as this method of discussion does not present a good idea of
the form of the surfaces, we shall make use of another method,
which consists in intersecting the surface by a series of
planes, having given positions with respect to the co-ordinate
axes. Combining then the equations of these planes with
that of the surface, we determine the curves of intersections
whose position and form will make known the character of
the given surface.

862. To exemplify th.s method, take the equation

a4+ 2 =R,
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and let this surface be intersected by a plane, parallel to the
plane of xy; its equation will be of the form (Art. 73),

=]

and substituting this value of z, in the proposed equation,
we have

1‘2+y2=R2—‘ai’

for the equation of the projection of the intersection of the
plane and surface on the plane of xy. It represents a circle
(Art. 133), whose centre is at the origin, and whose radius
is VR*—d® This radius will be real, zero, or imaginary,
according as « is less than, equal to, or greater than R. In
the first case the intersection will be the circumference of a
circle, in the second the circle is reduced to a point, and in
the third the plane does not meet the surface.

363. The proposed equation being symmetrical with respect
to the variables , y, z, we shall obtain similar results by
intersecting the surface by planes parallel to the other co-

ordinate planes. It is evident, then, that the surface is that
of a sphere.

332. The co-ordinate planes intersect this surface in three
equal circles, whose equations are,

1'2+y2=R2, £+ 2=R yz_,_zz:Rz’

864. We may readily see that the expression V2% + o + 28
represents a spherical surface, since 1t is the distance of any
point in space from the origin of co-ordinates (Art. 75), and
as this distance is constant, the points to which it corresponds

are evidently on the surface of a sphere, having 1ts centre at
the origin of co-ordinates.

2a
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365. The discussion has been rendered much more simple,
by taking the cutting planes, parallel to the co-ordinate
planes, since the projections of the intersections do not differ
from the intersections themselves. Had these planes been
subjected to the single condition of passing through the origin
of co-ordinates, the form of their equations would have been

Ax + By + Cz=o0;

and combining this with the proposed equation, we should

have,
(A* + C) & + 2ABxy + (B? + C?) y*= R*C?,

which is the equation of the projection of the intersection on
the plane of xy. This projection is an e.llipse, but we can
readily ascertain that the intersection itself is the circum-
ference of a circle, by referring it to co-ordinates taken in
the cutting plane. ‘

366. We may in the same manner determine the character
of any surface, by intersecting it by a series of planes, and
it is evident that these intersections will, in general, be of
the same order as the surface, since their equations will be
of the second degree.

367. Before proceeding to the discussion of the general
equation
A2+ A'y 4+ A" a® + Byz + Baz + B'ay + Cz +
Cy+Cz+F=o,
let us simplify its form, by changing the origin, so that we

have, between the two systems of co-ordinates, the relations
(Art. 114),

X=X+ y=9¢y +pH t=7+y.
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As a, 8, 7, are indeterminate, we may give such values to
them as to cause the terms of the transformed equation
affected with the first power of thic variables to disappear.
This requires that we have

Y 24y + B3 + Ba +C =,
QA8 +B'a+ By +C =o,
24"+ By + B'8+C' =0; (2

and, representing all the known terms in the transformed

equation by L, it becomes
Azrz + A’y,2 + Allx'ﬁ +B:’-’yl + B!lel + B".I"y' + L=0. (3)

As all the terms in this equation are of an even degree,
its form will not be changed, if we substitute —a', — ¥/,
— 72, for + ', + ¢, +2. If, then, a line be drawn through
the origin of co-ordinates, the points in which it meets the
surface will have equal co-ordinates with contrary signs.
This line is therefore bisected at the origin, which will be
the centre of the surface, if we attribute the same significa-
tion to this point in reference to surfaces that we have for
curves.

368. The equations (2) which determine the position of
the centre being linear, they will always give real values for
a, B, 73 but the coefficients A, B, C, &c., may have such
relations as to make these values infinite. In this case the
centre of the surface will be at an infinite distance from the
origin, which will take place when

AB'? + AB? + A"B*— BBB" —4AA'A" =0, (D.)

which is the denominator of the values of «, 8, 7, drawn
from equation (2) placed equal to zero.
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369. If this condition be satisfied, and we have at the

same time
G033 Ch =10, wCl =0,

the values of a, 8, 7, will no longer be infinite, but will he-
o 5 5 3 ”
come —> which shows that there will be an infinite number

of centres. In this case the surface is a right cylinder, with
an elliptic or hyperbolic base, whose axis is the locus of all
the centres.

370. If condition (D) be not satisfied, but we have simply
Gi=ctoR s Cli==105010 L -=X0;

the values of a, 3, 7, become zero, and the centre of the sur-
face coincides with the origin. This is evident from the fact
that equations (2) represent three planes, whose intersection
determines the centre; and these planes pass through the
origin when C, C', C", are zero.

371. We may still further simplify the equation (2) by
referring the surface to another system of rectangular co-
ordinates, the origin remaining the same, so that its equation
shall not contain the product of the variables. The formulas
for transformation are

x' =" cos X + ¢ cos X' + 2" cos X",
y=a"cosY +y'cosY + z'cos Y,
2 =g"cos Z + y" cos Z' + 2" cos Z",
with which we must add (Arts. 116 and 117),
cos’X 4 cos®Y + cos’Z =o,
cos’X’ + cos®Y' + cos’Z’ = o,
cos’X"” 4 cos*Y" + cos’Z" = o, (A)
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cos X cos X' +cosYcosY' + cosZcosZ =o,
cos X cos X" 4+ cos Y cos Y’ + cos Z cos Z"' = o,

cos X'cos X + cos Y'cos Y” + cos Z'cos Z"" = o. (B)

Equations (B) are necessary to make the new axes rectan.
gular. These substitutions give for the surface an equation
of the form

nl’zllg + DI!ynz + I\Inmuﬂ + Nz“y” + leuxll + Nuxuyn + P = 0.

In order that the terms in 2"y", 22", zy", disappear, we

must have
INE=r0 ik NiZ=t0,» N = g.

Without going through the entire operation, we can
readily form the values of N, N, N, and putting them
equal to zero, we have the following equations:

2A cosZcosZ' + B (cosZcos Y + cos Y cos Z)
+2A' cosYeosY' 4+ B' (cos Zcos X' 4 cos X cos Z') » =0
+2A" cos X cos X' + B” (cos Y cos X' 4 cos X cos Y')

2A cos Zcos Z"+ B (cos Z cos Y+ cos Y cos Z")
+2A’cos Y cos Y’+ B’ (cos Z cos X"+ cos X cos Z") » =0.(C)
+2A"cos X cos X"+ B"(cos Y cos X"+ cos X cos Y")

2A cos Z' cos Z" + B (cos Z' cos Y+ cos Y' cos Z")
+2A’cos Y'cos Y’ + B’ (cos Z' cos X"+ cos X' cos Z") » = o
+2A"cos X' cos X" + B"(cos Y’ cos X"+ cos X' cos Y")

The nine equations (A) (B) (C) are sufficient to determine
the nine angles which the new axes must make with the old,
in order that the transformed equation may be independert

of the terms which contain the product of the variables
22
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Introducing these conditions,” the equation of the surface
becomes

Mz + My + Mz + L = o, (1)

which is the simplest form for the equations of Surfaces of
the Second Order which have a centre.

372. We may express under a very simple formula, sar-
faces with, and those without a centre. For, if in the general
equation, we change the direction of the axes without moving
the origin, the axes also remaining rectangular, we may dis-
pose of the indeterminates in such a manner as to cause the
product of the variables to disappear. By this operation the
proposed equation will take the form

M:* + My? + M’ + K + Ky + K2/ + F =o.

If now we change the origin of co-ordinates without
altering the direction of the axes, which may be done by
making

=7y S ey A=y S S oS = Ve e e
we may dispose of the quantities a, @', a”, in such a manner
as to cause all the known terms in the transformed equation
to disappear. This condition will be fulfilled if the new
origin be taken on the surface, and we have

Ma* + Ma® + M'a”*+ Ka+ Kd + K'a" + F=0. (5
Suppressing the accents, and making, for more simplicity,
2Mae + K=H, 2Md + K =H, 2M'a"+ K'=H",

every surface of the second order will be comprehended in
the equation

M 4+ My + M2+ He+ Hy + Hz = 0. (6)
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373. In order that eqnatio‘r'l (6) may represent surfaces
which have a centre, it is necessary that the values of «, @',
a”, reduce this equation to the form of equation (4), which
requires that the terms containing the first power of the
variables disappear. This condition will always be satisfied,
if the equations

OMa +K=0, 2Ma + K =0, 2Mad" +-K' =0
give finite values for a, @, a’. These valués are

R K’ K”

; S Y i e " e

oM’ ) oM’
and will always be finite, so long as M, M, M", are not zero
But if one of them, as M, be zero, the value of a becomes
infinite, and the surface has no centre, or this centre is at an
infinite distance from the origin.

Of Surfaces which have a Centre.

374. We have seen (Art. 340), that all surfaces of the
second order which have a centre are comprehended in the
equation

Mz? + My”?+ M'zc” + L =o.

Suppressing the accents of the variables, we have
M2+ My 4+ Msz*+L=o.

Let us now discuss this equation, and examine more par
ticularly the different kinds of surfaces which it represents.

Resolving this equation with respect to either of the vari-
ables, we shall obtain for it two equal values with contrary.
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signs. These surfaces are therefore divided by the co-ordi-
nate planes into two equal and symmetrical parts. The
curves in which these planes intersect the surfaces are called
Principal Sections, and the axes to which they are referred,
Principal Axes.

If now the surface be mtersected by a series of planes
parallel to the co-ordinate planes, the intersections will be
curves of the second order referf'ed to their centre and axes,
and the form and extent of these intersections will determine
the character of the surface itself. But these intersections
will evidently depend upon the signs of the co-efficients M,
M, M”, and supposing M positive, which we may always do,
we may distinguish the following cases:

1st case, M' and M” positive,
2nd « M positive, M” negative,
3d <« M negative, M"” positive,
4th ¢« M and M" negative.

The three last cases always give two co-efficients of the
same sign; they are therefore included in each-other, and
will lead to the same results by changing the variables in the
different terms. It will be only necessary therefore to con-
sider the first and last cases.

Case I.—M, M, M", being positwe.
375. Let us resume the equation
M2+ My + M2* + L =o.

Let this surface be intersected by planes parallel to the
co-ordinate planes, their equations will be

x=a y=0, 2=17
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Combining these with the equation of the surface, we
have
Mz + My + M'e® + L = o,
Mz 4+ M2+ M@ + L =o,
My + M2+ My* + L=o,

for the equations of the curves of intersection. Comparing
them with the form of the equation of the ellipse, we' see
that they represent ellipses whose centres are on the axes of
r, ¥, and z. »

876. To determine the principal sections, make
a=o0, B=0, y=o0
and their equations are

Mz + My + L =o,
Mz + M'z? + L = o,
My*+ M'2? + L = o,

which also represent ellipses.

3T7 If L = o, all the sections as well as the surface re-
duce to a point.

If L be positive, the sections become imaginary, since
their equation cannot be satisfied for any real values of the
variables. The surface is therefore imaginary.

Finally, ¢f L be negative, and equal to — L', the sections
will be real so long as

—L + M, — L'+ MB*—L' + My,
are negative ; when these values are zero, the sections and
surface reduce to a point, and become imaginary for all
values beyond this limit.
This surface is called an Ellipsoid.
22 * 2u



258 ANALYTICAL GEOMETRY. [Crar. VIL

378. If we make y = o
and z = o in the equa-
tion of the ellipsoid, the

value of « will represent

the abscissa of the points
in which the axis of x
meets the surface. We
find

The double sign shows that there are two points of inter-
sections, symmetrically situated and at equal distances from
the origin.

Making in the same manner y = o, and z = o, and after-

wards # = 0 and z = o, we obtain

e L 8 t \/-——L

The double of these values are the axes of the surface,

and we see that they can only be real when L is negative.
879. The equation of the ellipsoid takes a very simple

form when we introduce the axes. Representing the semi-

axes by A, B, C, we have

L i iy

g XIS b gl A XS 2y g et
Ats=— e B w’ © i

and substituting the values of M, M', M", drawn from these
equations in that of the surface, it becomes

A2B2Z2 + A2CQy2 + BZCﬂwﬂ = AZBZCZ.
380. If we make the cutting planes pass through the axis
of z, and perpendicular to the plane of xy, their equation
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will be
Yy = az,

1z or, adopting as co-ordinates
the angle NAC = ¢, and the
radius AN =r, we shall have

Z=rcosg, Yy =rsing;

and substituting these values

in the equation of the sur-

Y/D face, we shall have for the
equation of the intersection
referred to the co-ordinates ¢, z, and r,

M2 + #* (M'sin®p + M" cos’p) + L = 0.

This equation will represent different ellipses according to
the value of ¢. If M’ = M", the axes AC and AD become
equal, the angle ¢ disappears, and we have simply

Mz*+ M7+ L=o.

Every plane passing through the axis of z, will intersect
the surface in curves which will be equal to each other, and
to the principal sections in the planes of xz and yz. The
third principal section becomes the circumference of a circle,
and all the sections made by parallel lines will also be circles,
but with unequal radii. The surface may therefore be gene-
rated by the revolution of the ellipse BC or BD around the
axis of z.

This surface is called an Ellipsoid of Revolution.

381. The supposition of M = M', or M = M", would have
given an ellipsoid of revolution around the axes of x and .

382. If M = M’ = M" the three axes A, B, C, are equal,
and the equation of the surface becomes
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L
24y +at+ M=

which is the equation of a Sphere.

883. Generally, as the quantities M, M', M", diminish, L
remaining constant, the axes which correspond to them aug-
ment, and the ellipsoid is elongated in the direction of the
axis which increases. If one of them, as M", bécomes zero,
the corresponding axis becomes infinite, and the ellipsoid is
changed into a cylinder, whose axis is the axis of z, and
whose equation is

M2+ M'y?+ L=o.
The base of this cylinder is the ellipse BD. (See figure,
Art. 378.)

384. If M" = 0, and M = M/, the ellipse BD becomes a
circle, and the cylinder becomes a right cylinder with a cir-
cular base. This is the cylinder known in Geometry.

385. Finally, if M” = o, and M’ = o, the equation reduces

to

M:* 4 L =o,

— L
= +8/5r

This equation represents two planes, parallel to that of zy
and at equal distances above and below it.

which gives

Case IL.—M positive, M' and M" negative.

886. In this case the equation of the surface becomes

Mz — My — M2 + L =o,
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and the equations of the intersections parallel to the co-or-
dinate planes are

Mz — My — Mo+ L=o,
M2 —ME—MB+ I, =o,
My + Ma2?—My +L=o

The two first represent hyperbolas ; the last 1s an etlipse.
The sections parallel to the planes of xz and yz are always
real. The section parallel to xzy will be always real when
L is positive. If L be negative and equal to — L/, it will
be imaginary for all values of y, which make the quantity
(L' — My) positive: when we have L' — My = o, it reduces
to a point. Thus, in these two cases, the surface extends
indefinitely in every direction, but its form is not the same.

387. Making o =0, 8 =0, y = 0, we have for the equa
tions of the principal sections,

M2 — My + L =o,
Mz — M2 + L = o,
My + M'2*— L =o.

When L is positive, the
two first, which are hyper-
bolas, have the axis of z for
a conjugate axis, and are
situated as in the figure.
Every plane parallel to the

plane of 2y produces sections
which are ellipses.
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388. Making two of the co-ordinates successively equal to
zero, we may find the expressions for the semi-axes, as in Art.
348; and representing them respectively by A, B, C v— 1.
and introducing them in the equation of the surface, it
becomes

A’B* — ACPy — BCW + A’B'CP = 0. (D

889. When L is negative, the principal
sections, which are hyperbolas, have BB' for
the transverse axis; the surface is imagi-
nary from B to B', and the secant planes

between these limits do not mect the sur-
face. In this case, the semi-axes will be
found to be A v—1, B v—1, and C, AN
and the equation of the surface becomes '

ATBE — Ay — BIC — APBC = 0. (2)

The surfaces represented by equations (1) and (2) are
called Hyperboloids. In the first, two of the axes are real,
the third being imaginary; and in the second, two are
imaginary, the third being real.

3890. If M' = M", we have A = B, these two surfaces

become Hyperboloids of Revolution about the axis of z.

391, If M"” = o, the corresponding axis becomes infinite
and the surface becomes a cylinder perpendicular to the
plane of zy, whose base is a hyperbola. The situation of
the cylinder depends upon the sign ot' L. Its equation is

Mz — M + L = o.
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If L diminish, positively or negatively, the interval BB
diminishes, and when L = o, we have BB'=o0. The prin-
cipal sections in the planes of zx and yz become straight
lines, and the surfaces reduce to a right cone with an ellip-
tical base, having its vertex at the origin of co-ordinates.

[n this case, we have the equation
Mz — My — M'2® = o.

Sections made by planes parallel to the planes of zz and
yz, are still hyperbolas, which have their centre on the axis
of y or .

392. If M" = o, the cone reduces to two planes perpen-
dicular to the planes of yz, and passing through the origin.

393. The cone which we have just considered, is to the
hyperboloids what asymptotes are to hyperbolas, and the
same property may be demonstrated to belong to them,
which has been discovered in Art. 242. If we represent
by z and 2, the respective co-ordinates of the cone and
hyperboloid, we shall have

AL My 4+ M'x? S My + M —L 1
M M .
which gives

\

"t L
g T M@E+2)

2z

The sign of this difference will depend upon that of L,
hence, the cone will be interior to the hyperboloid, when L
is positive, and exterior to it, when L is negative. The dif-
ference z— 2" will constantly diminish, as z and z' increase,
hence the cone will continually approach the hyperboloid,
without ever coinciding with it.
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Of Surfaces of the Second Order which have no Centre.
894, Let us resume the equation
M2+ My + M2+ Hz + Hy + H'zx=0. (2)

We have seen (Art. 372), that this equation represents
surfaces which have no centre when M, M', or M" is zero.
As these three quantities cannot be zero at the same, since
the equation would then reduce to that of a plane (Art. 100)
we may distinguish two cases;

Ist case, M" equal to zero.
2d case, M" and M’ equal to zero.

Case L—M" equal to zero.

395. The above equation under this supposition reduces tc
Mzt + M'y* + Hz + H'y + H'z = o.

If we refer this equation to a new system of co-ordinates

taken parallel to the old, we may give such values to the

independent constants as to cause the co-efficients H' and H
to disappear, (Art. 341). The equation will then become

Mz + My + Haz=o.
396. The sections parallel to the co-ordinate planes are
Mz + H'z + M=o,
My + Bz + My* =o,
Mz + M'y* + H'a = o.
The two first represent parabolas, and are always real

The third equation will represent an ellipse or hyperbola.
according to the sign of M and M.
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897. The principal sections are
M2+ Myr=0, M2+ Hz=0, My»+ Hzr=0.

The first of these equations will represent a point, or two
straight lines, according to the sign of M'. The two others
represent parabolas.

398. Let us suppose M and M’ positive, the sections
parallel to the plane of yz, and whose equation is
Mz? + My* + H'a =0,

will only be real when H" and o have contrary signs. The
surface, therefore, will extend indefinitely on the positive
side of the plane of yz, when H'is negative, and on the
negative side when H"'is positive.

899. If M’ be negative, the equations of the principal
sections are

Mz2—DMy"=0, M2+ Hax=0, My>—H'z=o0.

The two last represent parabolas, having their branches
extending in opposite directions, and their vertex at the
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origin A. The sections parallel to the plane of yz, will be
the hyperbolas B, B, B", C, C, C".

The surfaces which we have just discussed are called
Paraboloids.

Case II.—M' and M" equal to zero.

*

400. Equation (2) under this supposition reduces to
Mz + Hz + H'y + H'z = o.

Moving the origin of co-ordinates so as to cause tne term
Hz to disappear, this equation becomes

M+ Hy 4+ H' =o.
The principal sections of this surface are
M2+ Hy = 0, +2+ H'z=o, Hy + H'z =o.
and the sections parallel to the co-ordinate planes

M2+ Hy + H'a=o,
Mz* + H'z + HB = o,
Hy + H'z + My’ =o.

The two first equations of the parallel sections represent
parabolas which are equal and parallel to the corresponding
principal sections. The sections parallel to the plane of xy
are two straight lines parallel to each other, and to intersec-
tion of the surface by this plane. The surface is, therefore
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that of a cylinder with a parabolic base, whose elements are
parallel to the plane of xzy. The prqjections of these ele-
ments on the plane of xy, make an ané}'le with the axis of «

the trigonometrical tangent of wb% is — =

H

Of Tangent Planes to Surfaces of the Second Order.

401. A tangent plane to a curved surface at any point is
the locus of all lines drawn tangent to the surface at this
point.

402. Let us seek the equation of a tangent plane to sur
faces of the second order. Resuming the equation

AZ + A’y + A" + Byz + Bxz + B'xy + Cz +
Cy+ C'x+ F =y

and transforming it, so as to cause the terms containing the
rectangle of the variables to disappear, we have

A2 + Ay + A2+ Cz2+ Cy + C'z2 + F =0. (1)

Let z”, y", 2", be the co-ordinates of the point of tan- -
gency, they must satisfy the equation of the surface, and we
have

Az + Ay" + A"2" + C2" + Cy" + C'x" + F =o.

The equations of any straight line drawn through this
point are (Art. 84),

r—a'=a(z—2"), y—y' =bz—2"
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For the points in which this line meets the surface, these
equations subsist at the same time with that of the surface.
Combining them, we have

AG+2) @—e)+ Al +y) G —y) + A" @ + 2)
(x—x")+CEr—2)+C@y—y")+C' (z—2z")=o.
Putting for y —y” and x — ", their values drawn from

the equations of the straight line, we have

IAG+2")+ Ab(y+y)+A%@x+2)+C+Cb+ C"a}

(z—2z")=o.

This equation is satisfied when z —2"” = o, which gives
z=12", x =x", and y=y". Suppressing (z — 2"), we
have

A+2" LAY (y+y )+ A"a(x+2")+C+Cb+C'a=o.

This equation determines the co-ordinates of the secona
point in which the line meets the surface. But if this line
becomes a tangent, the co-ordinates of the second point will
be the same as those of the point of tangency, we shall have
therefore

x=2a", y=y", z=2"
which gives

2A%" + 2A%y" + 2A"az" + C + C'b + C'a = o,

for the condition that a straight line be tangent to a surface
of the second order. Since this equation does not determine
the two quantities a and b, it follows that an infinite number
of lines may be drawn tangent to this surface at any point.
If @ and b be eliminated by means of their values taken from
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the equations of the straight.line, the resulting equation will
be that of the locus of these tangents. The elimination gives

QA"+ C) (z—2) + RAY' +C) (y—y")
+ RQA"z" + C") (z — ") =05

and since this equation is of the first degree with respect to
r, y, and z, the locus of these tangents is a plane which is
itself tangent to the surface.

403. Developing this last equation, and making use of
equation (1), the equation of the tangent plane may be put

under the form

RAz"+C)z+ CAY' +Cy + (RA"2" + C') z
+ Cz" 4+ Cy" + C'z" 4 2F =o0.

404. For surfaces which have a centre, C, C', C", are zero,
and the equation of their tangent plane becomes

Azz" + Ayy" + A"za” + F = o.

GENERAL EXAMPLES.

405. We now proceed to give some general examples upon
Analytical Geometry, the solution of which will prove a
valuable exercise for the student in familiarizing him with the
principles of the science, and in rendering him expert in their
application. The co-ordinate axes are supposed rectangular,
unless the contrary is indicated.

1. Find the equation of a line passing through a given
point and making a given angle with the axis of z.

Find the equations of the lines which shall pass through

23 *
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the given points 2/, g, 2/, and be parallel to the lines whose
equations are given.
) {$,="’ y'=12=—1;
z+y=38 2—38y=1L
3. w’=17yl=_%az’=_1%';
e—1=3z,4y 4 2z=2.
Find the line of intersection of these planes:
4, {x—l—}-%?/:z)
8lz — Tly = b5}z + 2.
Determine the points of intersection of these lines and
planes :

z4y=23

5. {Z —z=25 5
2 — Ly +1=4z
br—4z =1,
6. {33/ =2—8z;
22 + 4y = 3l = — 9z,
152 — 20z = 3,

e {3y= 116z + 6
32+ ba=1y +T.

8. Find the equation of the line passing through the point
@' =1, y' =—2, 2/ = %, and parallel to the plane 1}y —9 =
S5z + 3.

9, Also of the line through the point #/ = —38, 3/ = —1,
2/ = — 2%, and parallel to the plane 4z + 3 —z = 8.

10. Find the equation of the plane passing through the
three points, z,=4%, yu=—1, 2=2; =38, =1}
B=—%; m=—11y=4,2=>=.

11. Do the lines 8z—2z=1, 2y —12=4, and 1z + 3=06z,
1e + 5 = 4y, lie in the same plane ?
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12. Do these, t—2z=1, y+ Tz=38; and 1 1z — 32 = 2,
Sy—1=22

Find the equations of the planes containing these lines :

224 T= 32,} 13 {3x= 22— 3,

8y=2+3; " ldy+1 =3
10z = 22 —1, 6z 4 18 = 82,
73/+11=<.>z=,-} ‘ {8;/:33—14.

15. Find the equations of a line perpendicular to the plane,
—z+i=1p

16. Find that of a plane perpendicular to the line z + 3 =
27, 82— 4 = 24y.

17. A plane ?nay be generated by a right line moving alorg
another right line as a directrix, and continuing parallel to
itself in all its positions; find the equation of the plane from
this mode of generation.

18. Find the equation of a line passing through a given
point in a plane, and making a given angle with a given line;
find also the distance from the given point to the point of in-
tersection of the two lines. Discuss the result, cxamining the
cases in which the given angle is, 0°, 45°, and 90°.

19. Find the angle included between a line and plane given
by their equations. — This problem may be readily solved by
means of the following considerations: the angle made by the
line and plane, is that included between the line and its projec-
tion on the plane. If then, a perpendicular to the plane be
drawn from any point on the line, this perpendicular, with a
portion of the given line and its projection on the plane, will
form a right angled triangle, of which the angle at the base is
the one sought. The angle included between the given line
and the perpendicular is the complement of the angle at the
base, and may be readily determined, and by means of it the
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required angle is instantly found. Denoting the required
angle by V’, we thus find,
Aa +Bb+C
Vitd+ B vVALB+C
v 20. Find the angle between two planes given by their equa-

sin V/ =

tions. — If from a point within the angle made by the planes,
we draw two lines, one perpendicular to each plane, the angle
made by one of these lines with the prolongation of the other,
will be equal to the angle included between the planes, and
may be easily found. Calling the required angle W, we thus
obtain,

\A’ 4+ BB/ + CU/
cos W= =+ R g

\/Az+Bﬂ+02\/A/z+B/z+C/2°

From these last two problems we can easily find the conditions

for parallelism and perpendicularity between a line and plane,
or between two planes.

21. Find the equation of a plane passing through the point
P=—1% 4 =38, 8! =—2, and perpendicular to the plane
3z =10 =4y + 2.

22, Show that the three lines drawn from the three angles
of a triangle perpendicular to the opposite sides, all meet at a
common point. |

23. Show that the three lines drawn from the three angles
of a triangle to the middle points of the opposite sides, all
meet in a common point.

24. Show that the three perpendiculars erected upon the
sides of a triangle at their middle points, all meet in a common
point.

25. Having given a point in space, and a plane, find the
shortest distance from the point to the plane. If the co-ordi-
nates of the given point be designated by ', y’, #/, and the
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equation of the plane be, 2= Az + By + D, the required

distance is,

D+ Ax'+ By’ — ¢
AN TR, N

26. Find the equation of a line tangent to a circle and
parallel to a given line.

27. Find the equation of the tangent line to the circle by
means of the property that this tangent is perpendicular to
the radius through the point of contact.

28. Find the equation of a tangent line to the circle,
(V=0 + e~ oy = R

Ans. (y—28)(y" —b)+ (z—a)(z"" —a)= R.

(Henceforth, in designating points in a plane, we shall
simply give the values of the co-ordinates in the order, z, y ;
thus, the point (2, 5), would signify the point whose co-ordi-
nates are ¢ = 2, y = 5. For points tn space the co-ordinates
will be given in the order, z, y, 2.)

29. Find the equation of the tangent line to the ellipse,
9y* 4+ Ty? = 144, at the point (3, 3); also that of the normal
at the same point ; likewise the lengths of the subtangent and
subnormal on both axes. -

30. Find the equation of the tangent line to the ellipse
parallel to a given line; also that of the normal subjected to
a similar condition.

31. Find the equation of the ellipse, which, with a trans
verse axis equal to 18, shall pass through the point (6, 7).

32. Find that of the ellipse which passing through the
point (5%, 8), shall have its conjugate axis equal to 10.

33. Determine the area of the ellipse, 16y* + 132 = 182,

2K
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34. Are the lines y = 2z — 3, y = 3z — 6, supplemental
chords of the ellipse 9y* + Ta? = 144 ?

35. The equation of one supplementary chord in the ellipse.
9y + 42” = 36, is 2y = z + 3; find that of the other.

86. Are the lines 8y = 5z, 21y = 4z, conjugate diameters
of the ellipse 8y* 4 52* = 307

37. In the ellipse 10y* 4 62° = 42, find the equation of that
diameter which is the conjugate of the one whose equation is,
6y = Ta. .

38. In the ellipse, it is often desirable to know that pair of
conjugate diameters whose lengths are equal. For this pur-
pose take the value of A’ and the second value of B’ (Art.

; 185) and place them equal to each other. We shall thus
obtain, A’B? + A’B? tang’ « = A* tang’ « 4 B*, which gives

B
tang o = == 4, henge, the required diameters are parallel to

the chords joining the extremities of the axis.

89. Show that the angles included by these equal conjugate
diameters, are the greatest and smallest which can be con-
tained by any pair of conjugate diameters of an ellipse, and
conscquently constitute the limits alluded to in Art. 188.

40. Show that in the ellipse the curve is cut by both the
diameters conjugate with each other.

41. Show that in the hyperbola, the curve can be cut by
only one of two conjugate diameters.

42. The lines 2y = z + 12, 8y + = =12, are supplemental
chords of an ellipse whose transverse axis is 24; what is the
equation of the curve ? Ans. 16y* 4+ 2* = 144,

48. Find the equation of the tangent line to the parabola
y* = 4z, at the point (4, 4); also that of the normal: and
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that of a line through the focus and point of tangency; and
find the angle included between this last line and the
tangent.

44. Find the equation of a line which shall be tangeut to
the parabola 3> = 8z, and parallel to the line y + 1 = Sz,

45. Find the equation of the parabola, which with a para-
meter equal to 12, shall pass through the point (2, 8).

46. What is the area of the segment cut off from the para-
bola 8y* = 82z, by the line y = 2z —4? Ans. 1837,

47. What is the area of the segment cut off from the para-
bola 8y* = 231z — 724, by the line 8y = 11z —4?

Ans. T191.

48. In the hyperbola 9y* — 42* = — 36, find the equation
of the diameter which is the conjugate of the one, y = 2.

49. In the same hyperbola, are the lines 2y =z, y = 3s,
conjugate diameters ? 5

50. Are these, 5y = 2z, and 9y = 102 2

51. Are the lines 2y = bz, 4y = =, conjugate diameters of
the circle 2* + y* = 14?

52. Are the lines y = 8z, y = 4z, conjugate diameters of
the ellipse 10y* 4+ 82* = 40?

53. Find the equation of the ellipse for which they are
conjugate diameters: also the equation of the curve referred
to them.

54. Find the equation of the hyperbola which, with its
transverse axis equal to 16, has the lines 8y = 2z, 8y + 22=0,
for its asymptotes.

55. Find the equation of a hyperbola passing through the
point (1, 2), and having one of its asymptotes parallel to the
line, 3y = 2z + 3. Ans. 427 —9y* = — 82,

56. From the equation, b sin «! — p cos o= 0, (Art. 213),
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¢

we obtain, sin® oc! = ; and the parameter 2p' =

e ol 3 5
2a+ p sin? o™
then becomes, 2p' = 2 (p + 2a) = 4FM (see figure to Art.
212). Hence, In the parabola, the parameter of any diameter
is four times the distance of its vertex from the focus.

57. In the parabola y* = 82, what is the parameter of the
diameter, y = 167 Ans. 136.

58. Show how you may, from Arts, 215, 216, derive a
simple graphic construction for drawing a line tangent to a
] "rabola and parallel to a given line.

59. Demonstrate generally, that ¢» ang conic section the
chords bisected by a diameter are parallel to the tangent at the
extrematy of that diameter.

60. Find the equation of a tangent plane to the sphere
(x —a)* 4+ (y — b + (2 — ¢)* = R* at the point (z,, ¥, 2,,) by
means of the property that this tangent plane is perpendicular
to the radius through the point of contact.

Ans. (z—a)(z,—a) + (y—b) (1,—b) + (z—c)(zl—c) =HREA

61. Given the base of a triangle and the sum of the tangents
of the angles at the base, to find the locus of the vertex.

Ans. A parabola.

62. Given the base of a triangle and the difference of the
angles at the base, to find the locus of the vertex.

Ans. An equilateral hyperbola.

63. Required the locus of a point P, from which, drawing
perpendiculars to two given lines, the enclosed quadrilateral

shall be equivalent to a given square.
Ans. A hyperbola.

54. Find the locus of the intersections of tangent lines to
the parabola with perpendiculars to them from the vertex.
Ans. A cissoid.
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65. A common carpenter’s square CBP (Fig. 24), moves
so that the ends C and B of one f its
sides, remain constantly upon the two 4 Lig. 24.
sides, AX and AY, of the right angle
YAX. Required the curve traced by
the other extremity P.

Ans. An ellipse.

66. Find the locus of the vertex of a pa.ra,bola’ which, with
a given focus, is tangent to a given line. Ans. A circle.

67. Chords are drawn from the vertex of a conic section to
points of the curve. Required the locus of their middle
points.

68. Given the base and altitude of a triangle, to find the
locus of the intersections of per-
pendiculars from the angles upon
the opposite sides.

Ans. A parabola.
69. Find the equation of the

surface generated by the line
BC (Fig. 25) moving parallel to

the plane of yz, and constantly piercing the planes of zz, and
zy in the given lines ZX, yD, the last line being parallel to AX.

70. Upon the plane AC (Fig.
26) inclined at an angle of 10°
to the plane AB of the horizon,
is erected a pole, HD, perpen-
dicular to the plane AB: over
the top of this pole is stretched
a rope, CHE, whose entire length is 150 feet, its extremities,

E and C, meeting the plane AC at distances DE, and DC,
24

Lirg. 26.

A
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from the foot of the pole, equal each to 12 feet. Required
the height of the pole DI Ans, 74-316 feet, nearly.

T1. Find the equation of the parabola from the property
exhibited in Art. 211.

72. Show how to describe a par:;bola, when you have given
its vertex and axis, and the co-ordinates of one of its points.

73. Show that in the hyperbola, the tangent line to the
curve bisects the angle included between the two lines from the
Joct to the point of tangency.

74. Show how you may, from the preceding property, draw
a tangent line to the hyperbola from a point either without or
upon the curve, by a method analogous to that given for the
ellipse in Art. 175.

75. Take two lines not in the same plane, and pass a plane
through each. Required the locus of the line of intersection
of these planes when they are subjected to the condition of
continuing perpendicular to each other.

Ans. A hyperbolic paraboloid.

76. In the ellipse 8y* 4 62? = 48, find the equation of the
diameter conjugate with the one whose equation is 3y = Tz,
and also the equation of the curve referred to these diameters.

77. What is the equation of the hyperbola of which the
lines 5y = 2z, y = 4}, are conjugate diameters ?

Construct the following curves, and also the asymptotes and
centres of such as have them.

78. 8y’ —day + ' —y + Sr =10,

719. 3y —2zy — 2"+ y — 6 = 2 —20.

80. y* —bzy + 92 — 6y + br + 9= 0,

8L By 4+ 2’ —y + fx =} — 3~

82. yy—2*—y 4 bz =86.



Cuar. VIL] ANALYTICAL GEOMETRY, 279

83, y'—izy + 2‘9’—43/ +3iz+4+6=0.

B4, 4yt + 2y — 62* + 2y — 2 = 12,

85, ¥+ 22y 4+ 2°—6y—06r+ 9= 0,

86. 2y* + 16y + 322 + 8y — 182 4 24 = 0,

87, y* — zy — 302 — 4y + 562 — 21 = 0,

88. y* + 1jzy + §2* — 4y — T}z = 5}.

89, ¥ —2ry + 35 — 2y — 102 + 19 = 0,

90. 2y —x 4 1 = Bzy — 5,

I 4y +day + 2 —4y —8z + 16 = 0,

92. 9y + 122y — 22* + 6y — 40z = 54,

93. 129" + zy — 2 — 86y + 20z = 120,

Ny +3zy+ 2+ y+ =0,

95. ' —3yz + 2" —y = 12,

9. ' — 2" —2y + 5z = 8,

N Y+ 2y +22—8y—8z+2=0,

9. ' —2zy 4+ 2"+ 4y —4z 4+ 3= 0, »

9. ¥+ 22y + 22 —10 = 0.

100. 5y —6ry + 228 + y — z = 1.
101. 2 —Tzy + 102 — 2y + 13z = 3.

(We shall now give some very useful graphic constructions
relating to conic sections, leaving the demonstrations as
exercises for the student.)

102. Having given a pair
of conjugate diameters, HC
and BC (Fig. 27), of an ellipse,
the curve may be traced by

points, thus: on AC, AB, de-
scribe the parallelogram AD.,
Divide DC into any number of equal parts, and AC into the
same number of parts, also equal. Draw the lines B1, B2,
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ete., from B to the points of division on DC; and the lines
E1, E2, etc., from E to the points of division on AC. The
points of intersection of the corresponding lines will be points
of the curve.

103. The following is a good method for describing the
ellipse by points, when we have given a pair of conjugate
diameters. Let AC (Fig. 28) be a diameter, and AB equai

b2

Frg. 28

]j."{[ gk o
and parallel to its conjugate. Through B draw BE parallel
to AC: take BE any multiple of AC: produce BA and take
AD the same multiple of AB: divide BE into any number of
equal parts, and AD into the same number of equal parts: .
through A draw lines to the points of division in BE, and
from C, lines to those in AD. The intersections of the corre-
sponding lines will be points of the ellipse. If BE be taken
to the right of B, instead of to the left, the points found will
belong to a hyperbola.

104. Having given, in length and position, a pair of con-
jugate diameters of an ellipse, to construct the axes. Let
© AA’, and BB’ (Fig. 29), be the given conjugate diameters.
Through A draw IAE’ perpendicular to OB, and on this line
lay off on each side of A, the distances AE, AF/, each equal



Crap. VII] ANALYTICAL GEOMETRY. 281

to the semi-conjugate diameter OB. Through the points E,
and E’, thus determined, draw from the centre O the lines
OE, OE’. Then the lines D’OD, HOH, bisecting the angle
EOE’ and its supplement,

will give the directions 1% Fig.29.
of the axes; the trans-

verse axis being always
situated in the acute angle
formed by the conjugate
diameters. The length

DD’ of the transverse axis is given by the sum of the lines
OE, OE’; that of the conjugate axis HH’, is equal to their
difference, OE’ — OE. This construction is readily demon-
strated by showing that the loci of the points E, E/, are two
circumferences of circles concentric with the ellipse, and
having for radii (A—B), and (A + B), respectively; and
then showing that the lines OE, OE’ are diameters of the
curve making equal angles with its axis.

105. Let AA’ and BB’ (Fig. 30) be the axes of an elhpse
Take a ruler Pm, equal in length to the seml-transverse axis;
from the extremity P, lay off

PH = the semi-conjugate axis; vig P

now move this ruler so that the I

extremity m shall remain on the 2~ - A
L , p 9| jar

conjugate axis BB/, while the n 77g.30.

point of division H continues upon
the transverse axis AA’: then the
point P will describe the ellipse. This principle has been
" applied to the construction of a very simple instrument for
describing ellipses, known as the elliptic compasses, or
trammels.

24* 2L
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106. Find the cquation of the right line referred to oblique
axes in its own plane, when its position is fixed by the lengtn
and direction of the perpendicular to it from the origin.

Ans. p =z cos o« + y cos B, when o« and 3 are the angles
made by the perpendicular, with the axes of 2z and y
respectively. If the axes are rectangular the equation is,
p =2 cos « + ¥ sin .

107. Find and discuss the polar equation of the right line.

108. Find the locus of the centre of a circle inseribed in a
sector of a given circle, one of the bounding radii of the sector
being fixed.

109. Show that, of all systems of conjugate diameters in
an ellipse, the axes are those whose sum is the least, while the
equal conjugate diameters are those whose sum is the greatest.

110. Find the locus of a point so situated upon the focal
radius vector of a parabola, that its distance from the focus
shall be equal to the perpendicular from the focus to the
tangent. Ans. r = a sec 36, counting 4 from the vertex.

111. Show that, the equation of the tangent line to the
ellipse referred to its centre and axes, may be put under the
form

Yy =mzx + VA + B
while that for the hyperbola may be written,

y=mz + VAW —B':
and that of the parabola is,

y=mz+ 2—?;—%

These equations are known as the magical equations of the
tangent. :

112. In the focal distance FP of any point P of a parabola,
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Fp is taken equal to the distance of P from the axis; find
the locus of p. .
Ans. r = ¢ tang 14, estimating 0 towards the vertex.

113. Prove that the right lines drawn from any point in an
equilateral hyperbola to the extremities of a diameter, make
equal angles with the asymptotes.

114. Show that the equation of the plane may be put under
the, form,

p =z cos (p, 2) + y cos (p, y) + 2 cos (p, 2),
when p is the length of the perpendicular to the plane from
" the origin, and the notation

cos (p, z), cos (p, y), cos (p, 2),
is used to signify the cosines of the angles made by this per-
pendicular with the axes of z, y, 2, respectively. Or, it may
written, 1

p==zsin (P, z) + y sin (P, y) + 2 sin (B2);

where

sin (P, z), sin (P, ), sin (P, 2),
signify the sines of the angles made by the plane with the
axes z, y, 2. Using an analogous notation to express the
angles made by the plane with the co-ordinate planes, its
equation may be written,

p =z cos (P, yz) + y cos (P, zz) + z cos (P, zy).

Construction of Surfaces of the Second Order from their
Equations.

406. This consists in constructing, from the equation of the
surface, its principal sections, and its projections, and in de-
termining the kind of the surface. Let the general equation
of these surfaces be solved with reference to 2, and we shall
obtain,
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By + Bz + C 1 '

L Sehnman e st ﬁ:m\/mif).. oo (M.
Writing 2 equal to the rational part of its value, we have,
By + B'z+ C

g e ety T s ph e o),

which represents a plane, above and below which must be laid

; e TYCEr e
off ordinates equal to 5 +/o (2, y), in order to obtain points

of the surface. This plane, (N), is called a diametral plane,
since it bisects a system of parallel chords of the surface, and
passes through its centre. Similar results would ensue from
solving the general equation with reference to each of the other
variables z, and y ¢ and thus we should obtain three of these
diametral i)lanes, which, intersecting at the centre of the sur-
face, would enable us to determine and construct that point.
Taking the radical part of the value of 2, and placing it = 0,
we have, ¢ (2, y) = 0, which manifestly represents the projec-
tion of the surface upon the plane of zy. Similarly, we may
obtain its projection on @z and yz. These projections being
always conic sections, may be readily constructed.

To enter into a full exposition of the process for determining
the species of the surface, would involve us in much unneces-
sary detail and repetition of principles previously discussed,
besides occupying more space than we could afford to it in the
present volume. By the aid of the principles already estab-
lished and the examples of their application exhibited in the
methods of discussing curves and surfaces, the student ought
to be able, with a moderate degree of ingenuity, to effect this
investigation for himself. He will experience but little difficulty
in eliminating the necessary analytical criteria for determining
the species of any surface of the second order, if he will only
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keep in mind the mode in which we accomplished the same
analysis in the case of the general equation of the second degree
between two variables. We subjoin a few examples for
practice.

115, 422 —4ay + 4y* 4 52— 822 — 247 + 96 = 0.

116, 2% + 29 + 22° + 22y — 2r — 4y — 42 = 0.

117. 22+ + 288 — 22y — 222 + 4yz + 2y — 3 = 0.

118. 2 —2y* + 2 4 2y — 42z 4 4y + 42— 9= 0.

119. 82* + 2y — 222 + 4yz2— 42— 82— 8 =0,

120. 2* + y* 4 222+ 22y + 222 + 2y2—2r— 2y + 22 =0,

121, #*—y*— 22 + 2zy —4dyz + 2y + 22 = 0.

122, 2* 4 8y* + 22 + 2xy + dyz—3r —4y — 3z = 0.

123, 22+ ' =22+ 2zy + 222+ 2yz— 42 — 2y 4 22 = 0.

124. 28 + y* + 92" — 22y — Bzy + 6yz + 2z — 42 = 0.

Find the equations of, and construct the planes tangent to
these surfaces, at the points given:

125. 4z*—8 (y* + ) + 100 = 0, at (1, 2, 3).

126. 52* 4+ 6y* + 22— 30 = 0, at (1, 2, 1).

127, 422 —6y — 82z =0, at (1, 3, 5).

128. 8y*— 62"+ 24z =0, at (%, 1, 2).

129. Find the equation of a cone having its vertex on the
axis of z at a distance 5 from the origin, its base being a
hyperbola in the plane zy, the axes of this hyperbola being
coincident with those of z and y, their numerical values being
8 and 6. Then intersect this cone by a plane through the
axis of y making an angle of 45° with zy and find the equa-
tion of the curve of intersectioun of the plane and cone, referred
to axes in its own plane, and construct it.

130. Discuss and determine the form of the surface defined by
the equation a’2* 4 y’2’ — 72" = 0 ; show how it may be gene-
rated, and then find its equation from its mode of generation.
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Ans. Tt is a conoid, having for a plane directer the plane
x2, and for directrices the axis of y and a circle 2+ y’=r?,
at a distance @ from the origin.

131. CP, CD, arc conjugate semi-diameters of an ellipse:
prove that the sum of the squares of the distances of P, D,
from a fixed diameter is invariable.

1382. Show that the ecquation y* —2zy sec « + 2’ =0,

represents two right lines passing through the origin and in-
3 : o
clined to the axis of z at angles of (45° == 3).

133. Determine the surface represented by the equation
2= zy.

134. Show that if at any point of a hyperbola a tangent
be drawn, the portion of this tangent included between the
asymptotes will be equal in length to that diameter which
is the conjugate of the one passing through the point of
contact.

185. Find the equation of the parabola in terms of the
focal radius vector and the perpendicular from the focus on
the tangent. Ans. d* = }pr, where d is the perpendicular.

186. Tind the equations of the sides of the regular hexagon
inseribed in the circle 2* + y* = 4.

187. Show that, if at the extremity of the ordinate passing
through either focus of the ellipse a tangent to the curve be
drawn, and at the point in which this tangent meets the trans-
verse axis produced, a perpendicular be drawn to this axis,
then the ratio of the distances of any point of the curve from
the focus and this line is constant and equal to the eccentricity.
These lines are called the déirectrices of the curve. The same
property belongs to the hyperbola also.

188. In the hyperbola, 16y’ — 92” = — 144, find the equa-
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tion of the diameter conjugate to the one, 2y = z, and find
the equation of the curve referred to these diameters.
189. Find the equations of the ellipse and hyperbola referred
to the focal radius vector and perpendicular on the tangent.
Ans. Ellipse, p* = Bty Hyperbola, p* = s
s B8 = oy IPhols, B = Gy
140. Find the equations of the same curves referred to the
central radius vector and perpendicular on the tangent.
A'B "A’B?

Ans. Ellipse, p*= y gy s ,, Hyperbola, p* =F_AFB



NOTES.

I.— Ar¢. 150, p. 107. In the discussion of the equation at the bottom of
this page, the positive abscissas must be reckoned to the lef, and the negative
abscissas to the right. This results from the nature of the transformation em-
ployed in this article for removing the origin from 0 to B. The formula used for
this purpose is z=— 0B — 2/, where z and 2/ having contrary signs must be
reckoned in contrary directions, and since the positive values of z were counted
to the right, those of 2/ must, in the transformed equation, be counted to the
left. This becomes more apparent by referring to Art. 110, where we found
the formula for passing from one set of co-ordinates to a parallel set, to be,
7 = a -}- 2/, where the positive values of both z and 2/ are counted in the
same direction, and so these quantities have like signs in the formula. But
had the positive values of %/ been reckoned in a contrary direction to that in
which we estimated those of z, then the formula would have been z—=a — 2/,
the change of direction in 2/ being indicated by its change of sign. When
the origin is removed from B to A (page 109), the direction of the positive
abscissas is again reversed by the formula employed, and in the resulting
‘equation they must be reckoned to the right.

I1. — Arts. 224-5, The same remark holds good here, the origin being at
B/, and the negative abscissas counted to the right, that is, from B’ towards
B. In Art. 226, where the origin is transferred from B’/ to A, the formula

¢sin v cos v cos ©
sin (v 4- u) sin (v — u)

‘should be, s = — 2/, by which, since z and z/ have

-eontrary signs, the direction of the positive abscissas is again reversed, and
‘must, in the resulting equation, be counted to the right.
(288)
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INI.—Crap. V. The general equation, Ay?4- Bzy 4 Cz*}- Dy 4 Ez 4 F=0,
of conic sections contains but five arbitrary constants, since we may divide all
its terms by the coefficient of any one term. Therefore a conic section may
be made to fulfil five distinct conditions (such as passing through five given
points, only two of which lie on the same right line) provided none of these
constants are determined by the analytical condition which determines the
class of the curve. If the curve be an ellipse, we must have, B2—4AC < 0,
which does not determine any of the constants A, B, C, and therefore the
ellipse can be made to pass through five given points. Also, its most general
equation must contain five arbitrary constants, which are, either directly or
indirectly, the co-ordinates of the centre, the lengths of the axes, and the
direction of one of them. When the ellipse becomes a circle we must have,
A =C, and B=0, by which fwo of the constants are determined, leaving only
three arbitary constants in the equation: so that the circle can be made to
pass through but three given points. If the curve be a parabola, we must
have B2 — 4AC = 0, which determines one constant, thus leaving four in the
equation; so that the parabola can be made to pass through but four given
points. Its most general equation must contain four independent constants,
which are, either directly or indirectly, the co-ordinates of the vertex, the
parameter, and the direction of the axis. The student can readily apply
these principles to the varieties of this class of curves.

If the curve be a hyperbola, we must have, B?— 4AC > 0, which deter-
mines none of the constants, and therefore this curve may be made to pass
through five given points. Its most general equation must contain five arbi-
trary constants, the same as for the ellipse. The eguilateral hyperbola can be
made to pass through but ¢hree given points. When the hyperbola degenerates
into two straight lines, the roots z/, z//, must be equal, which can only happen
when the quantity under the radical is a perfect square. This requires that
the coefficient of the middle term shall be equal to the double product of the
square roots of the coefficients of the extreme terms. The equation expressing
this condition determines one constant, thus leaving but four arbitrary con-
stants in the equation of the curve; so that two straight lines which intersect
can be made to pass through only four points.

The close of this discussion would seem to be the proper place for intro-
ducing some notice of .the origin of the Conic Sections. They were first dis-
covered in the school of Plato; .and his diseiples, excited, no doubt, by the
many beautiful properties of these curves, examined them with such assiduity,

25 2M
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that in a very short time several complete treatises on them were published,
Of these, the best still extant is that of Apollonius of Perga, who acquired
from his works the title of the Great Geometrician. His treatise on these
curves has come down to us only in a mutilated form, but is well worth atten-
tion, as showing how much could be done by the ancient analysis, and as
giving a very high opinion of the geometrical genius of the age. Apollonius
gave the names of ellipse and hyperbola to those curves—Hyperbola, because
the square on the ordinate is equal to a figure ¢ exceeding” (¢ fnepBxMor’’) the
rectangle on the abscissa and parameter.

Ellipse, because the square on the ordinate is ¢ defective” (¢‘eMewmor’’) with
respect to the same rectangle. It is not known who gave the name of para-
bola to that curve — probably Archimedes, because the square on the ordinate
is equal (‘¢mepocBochlor’’) to this rectangle.

Thus, the ancients viewed these curves geometrically, in the same manner
a8 we are accustomed to express them by the equation, y? — mz 4 na?.

IV. — Art. 829. In the polar equation of the conchoid here given, the
pole is supposed to be at the point A (Fig. 7), and the line BC is the fixed
axis from which the angle 6 is estimated.

V.— Art. 311.. We had designed leaving the proof of this construction as
an exercise for the student, but it may not, perhaps, be advisable to omit
establishing the truth of so important a method. Take O (Fig. a, page 212)
as the origin, and OB, AO as the axes of z and y. Put OD=d, OB=3},

x
AO =4, 0C=c. The equation of DC is, 7 -+ Y—1;oram 4 E=y;

of AD, =+ £ —1; of Bg, 242 —1. Then that of PH s,

2 Al B sy
;l-+—b—+?+;—2=0......(1).
The equation of the curve is,

Ay?4-Bzy 4 C*+ Dy 4 EzF=0...... (2.

To get the points B and D, make y = o in (2), which gives, Cz?-+ Ez-F=0,
whose roots are the values of & and d. Hence by the theory of equations,
1l 1 E i 1 1 D

3 +5=—¥F Similarly, 5y + S=—F Hence (1) becomes, Dy--
Ex -} 2F = 0, which is the polar line of the origin O. Similarly OH is the
polar line of P, and PO that of H, which renders the truth of our construec-

tions evident.
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11. Tang 2A =
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L
TRIGONOMETRICAL FORMULZ

N. B —Radius is counted as 1.

sin A.

Tang A=cosA
- cos A

Cot A=sinA‘

1
Sec A=Eo—s_A-'
. Cosec A = =
Sin (A + B) = sin A cos B + sin B cos A.
. Cos (A + B) = cos A cos B —sin A sin B.
. Sin (A — B) = sin A cos B — sin B cos A.
Cos (A — B) = cos A cos B + sin A sin B

tang A + tang B
— tang A tang B’

Tang (A + B) = i

tang A — tang B
1 + tang A tang B

2 tang A
I —tang®A’
(291)
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sin A + sin B tang } (A + B),

G AT e tang £ (A— B)

l—cosa

13. Sin%}A = ——5

1 +cos A

14 Cos*jA = — 3

1—cos A

gl TS L
15. Tang®iA = TR |

16. Sin 24 = 2 sin A cos A.

e Ur L g A,
17. Sin®A = BT
1
18. Cos’A =

1+ tang®A



APPENDIX.

II.
QUESTIONS ON ANALYTICAL GEOMETRY.

CHAPTER I.

WhHar is Algebra? May it be applied to the solution of geometrical pro
blems? What is necessary to such application? What is an unit of measure ?
In comparing lines, what kind of unit is used ? Surfaces? Solids? Would you
use the same linear unit for comparing all lines? What are some of the linear
units? What are some of the units for comparing plane surfaces? Solids?
How would you compare two lines? Suppose one contained the unit of 5 times
and the other 10 times, how would they compare? How would you compare
surfaces? If a surface were represented by the number 10, what would this
number express? If another were expressed by 20, how would the two com-
pare? If the solidity of a body be represented by 50, what would this number
denote ? How then may we conceive lines, surfaces, &c., to be added to each other?
May all the operations of arithmetic be thus performed upon them? How? If
the length of two lines be expressed numerically by a and b, how might the lines
be added? What would the sum of the two lines be equal to? What is meant
by the construction of a geometrical expression? How might you construct a
line that should be equal to the sum of two given lines? Their difference ? What
do the numbers which represent the lines denote? How may you pass from
the equation between the numerical values of the lines to that between their
absolute lengths?  Will the two sets of equations ever be of the same form?
When? Is it necessary in such cases to make the transformation? Why not?
When will not the two sets of equations be of the same form? May homoge-
neous cquations be at once constructed without transformation? Would the
equation z — ab, express a numerical or geometrical relation? Why nume
rical? In order that it should express a geometrical relation, what must the unit
of measure be denoted by? How may you construct an equation of the form
z=—abcd? z—+ab? z— Jm 2 .= +a—b? When a quad-
atic equation has to be constructed, what does an imaginary value for z denote ?

25% (293)
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Suppose the values of z are equal? Unequal? What interpretation is given to
negative solutions ? Is this a common interpretation? How was the negative
solution interpreted in the problem of the couriers in Algebra?

CHAPTER II.

How is Analytical Geometry divided? What is Determinate Geometry? In-
aeterminate Geometry ? Give an example of the problems embraced in Deter-
minate Geometry. What are the general steps to be followed to express analy-
tically the condition of geometrical problems? How many equations must there
be? How are the solutions obtained? Who first applied Algebra to Geometry ?
(Vieta.) Y

CHAPTER III.

What kind of questions are embraced in Indeterminate Geometry? Why
are such problems ealled indeterminate? What does the equation y — z ex-
press? Does it define fully a straight line? What does the equation * = 2az
— 2% denote? Why the circumference of a circle? May every line be thus
represented by an equation ? May every equation be interpreted geometrically ?
Who first made this more extended application of Algebra to Geometry ?
(Descartes.)

How do you define space ? Can the absolute positions of bodies be determined ?
May their relative positions? In what manner? How may the relative posi-
tions of points in a plane be fixed? What are the assumed lines called? What
is the origin ? What is an abseissa? An ordinate? What is meant by variables ?
Constants? When is the position of a point fixed? What are the equations of
a point? If the abscissa be constant while the ordinate varies, how will the
position of the point be effected ? If the ordinate be constant and the abscissa
vary? What are the equations of the origin? How are points in the four
angles of the co-ordinate axes represented? What are the equations of a point
in the 2d angle? 3d? 4th? In the first angle on the axis of 2? on the axis of
y? In the third angle on the axisof z? of y? What does the equation z—a
considered alone denote? y — b? How is it then that the two combined fix the
position of a point in a plane? What does the equation of a line express? Why
is the equation of a straight line in a plane referred to oblique axes? How do
you know it is the equation of a straight line? May this equation express a
straight line in every position it may take in ths plane of the axes? Suppose it
pass through the origin ? If it cut the axis of ordinates above the origin ? below ?
How is it situated if the co-efficient of z be negative? How is the point deter
mined in which it cuts the axis of xz? of y? What is the equation of a right
line referred to rectangular axes? What is the reason of the change? What
does the co-eflicient of the variable in the second member express? The abso-
lute term? 'What will be its equation if it be parallel to the axis of y? If it be :
parallel to the axis of z? If it pass through the origin? Which of the quan.
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tities in the equation of a straight line referred to rectangular axes fixes its posi-
tion? Must a and b be both known to determine the line? Ifa be known, and b
be indeterminate, what will the equation denote? If b be known, and a inde-
terminate ? If both a and b be indeterminate? How many separate conditions
may a straight line be made to fulfil? What is the equation of a straight line
passing through a given point? Why must @ or b disappear in the process
for obtaining this cquation? What is the equation of a straight line passing
through two given points? Why do @ and b both form this equation? If the
given points have the same abscissa, what will the equation of the line become ?
If they have the same ordinate? What is the condition for two parallel straight
lines? What is the expression for the tangent of the angle which two straight
lines make with each other in a plane? What is the condition of two perpen-
dicular straight lines in a plane? How do you ascertain the point of intersec-
tion of two straight lines in a plane? How is the distance between two points
in a plane expressed? If one of the points be the origin ?

Of Points and Line in Space.

How is a point in space determined? What are the planes usecd called ? What
are the co-ordinate axes? What are the co-ordinates of a point in space? How
are they measured? What is the origin? What are the equations of a point
in space ? What is meant by the projection of a point? How many projections
will a point have? What are the equations of the projection of a point on the
plane of zy? zz? yz? If the projections of a point on the planes zy and zz
were known, conld you determine the equations of the third projection? How?
Could you make the geometrical construction for the third projection? How?
If one of the equations of a point in space, as £ — g, be considered by itself]
what does it express? What does the equation y — b represent? z = ¢? If
two of these equations be considered together, what would they represent with
reference to the position of the point? Would they be sufficient to define it?
If the third equation be connected with the other two, would the three be suffi-
cient? Why? What are the equations of the origin? What are the equations
of a point on the axis of x? of y? of z? What signification have negative co-
ordinates ? What is the expression for the distance between two points in space ?
If one be the origin of co-ordinates? To what is the square of the diagonal of
a parallelopipedon equal ? To what is the sum of the squares of the cosines of
the angles which a straight line in space makes with the co-ordinate axes equal?
How are the equations of a straight line in space determined? What are they?
What do they represent? Knowing the equations of two projections of a line,
may you determine the equation of the third projection? What is meant by the
projection of a line? How many equations arc necessary to fix the position of
a straight line in space? Why only two? What quantities in these equations
fix its position? When the constants are arbitrary, what is the position of the
line? Do you know it is a straight line? Suppose one of the constants ceases

“to be arbitrary, what effect upon the position of the line? If two? If all are
known? What is the projection of a curve? How may its position be fixed
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analytically ? What are the equations of a line passing through two points in
space ? What is the expression for the cosine of the angle between two lines in
space, in terms of thc angles which they make with the co-ordinatc axes? In
terms of their constants ? What is the condition of perpendicularity of two
lines 1n space? Of parallelism? How do you determine the intersection of
two lines? How is the condition that the lines shall intersect expressed ?

Of the Plane.

How do you define a plane? How is the equation of & plane dctermined, if
it be regarded as the locus of perpendiculars? Why do you eliminate the con.
stants in the equations of the perpendiculars? Why will the resulting equation
be that.of a planc? What are the traces of a plane? How are the equations
of the traces determined ? If a line be perpendicular to a plane in space, how
will the projections of the line be situated? What is the most general equation
of the first degree between three variables? What does it represent? Why a
plane ? If the plane be perpendicular to zy, what will be its equation? To
zz? toyz? What is the equation of the plane zz? zy? yz? Of a plane pa-
rallel to zy? to 2z ? to yz? Of a plane passing through the origin? How do
you determine the equation of a plane passing through three given points? Is
this problem always determinate ? Why ? IHow do you determine the equations
of the intersections of two planes? If you eliminate one of the variables, what
does the resulting equation express ?

Transformation of Co-ordinates.

How are curves divided? What are Algebraic curves? Transcendental
curves? Give an example of each. How are Algebraic curves classified?
What order is the equation of a straight line? What is meant by the discussion
of a curve? How may this discussion be oftentimes simplified ? Do the trans.
formations of co-ordinates affect the character of the curve? In what do they
consist? How is the transformation effected 2 What are the equations of trans
formation from one system of rectangular axes to a parallel system? To an
oblique, the origin remaining the same? From oblique to oblique? In what
kind of functions is the relation between the old and new co-ordinates expressed ?
Is the relation linear if the transformation be made in space? How many
equations for transformation in space? ‘What does each set of equations ex-
press? If the new axes be rectangular, what condition in their equations does
it require ? What are polar co-ordinates? What is the pole? Radius vector?
What are the polar co-ordinates when the origin is not changed? When it is?
If the axis from which the variable angle is estimated is not parallel to z? What
do negative values of the radius vector indicate? Why ?

CHAPTER 1V.
Conic Sections.

What are the Conic Sections? How is a right line generated? How may
its equation be determined? What is its form ? How may the general equation
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of intersection of a cone and plane be determined? How many different forms
of curves result from the intersection? What changes are made on the general
equaticn ef intersocticn, to deduce the equations of these separaie curves? What
is the general character of the curves called Ellipses? Parabolas? ‘Hyper.
bolas? What is the direction of the cutting plane to produce ellipses? Para.
bola? Hyperbola? Circle? What distinguishes the equation of the ellipse
from that of the hyperbola? Parabola? If the cutting plane pass through the
vertex, what do the ellipse and circle become? Parabola? Hyperbola? How
are these results proved by the equations of these curves?

Of the Circle.

How is the circle cut from the cone? What is the form of its equation?
What property results from the form of its equation? How do you determine
the points in which the curve cuts the axis of z? of y? How do their distances
from the centre compare? How do you determine intermediate points? When
do real values for y result? When imaginary? What relation between the
ordinate of any point of the circumference, and the divided segments of the
diameter? What are supplementary chords? How are they related in the
circle? What is the equation of the circle referred to the extremity of a diameter ?
To axes without the circle? How is the equation of a tangent line determined ?
What is its form ? Of a normal line? Through what point do all the normal
lines of the circle pass? What are conjugate diameters? Has the circle conju.
gate diameters? How many? In what position? How do you determine the
polar equation of the circle ? How is this equation made to express all the points
of the curve? Suppose the pole is on the circumference? At the centre ?

o Of the Ellipse.

What direction has the cutting planc when the conic section is an ellipse?
What is the form of its equation? How do you discuss this equation? What
is the equation of the ellipse referred to its centre and axes? What do A and
B express in this equation ? What is the longest diameter in the ellipse called ?
Shortest? If its axes be equal, what does the equation become? What is a
diameter ? a parameter? What relation between the ordinates of the curves
and the corresponding segments of the diameter? If two circles be described
upon the axes, what relation will they bear to the ellipse? What relation will
exist between their ordinates? How may this property enable you to describe
the ellipse by points ? What relation do the supplementary chords in the ellipse
bear to each other? What are the foci of the ellipse? What properties do
these points possess? What is the eccentricity? What is its maximum value ?
Minimum ?  What does the ellipse reduce to in the first case ? In the second?
What are the various modes of describing the ellipse? What is the equation
of a tangent line to the ellipse? Normal? What relation exists between the
angles which the tangent line makes with the axis of z, and those which the
supplementary chords make? How may you draw a tangent line by this pro

2N
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perty? What is a subtangent? What is its value in the ellipse? Knowing
the subtangent, how may a tangent line be drawn? What is the normal ? What
relation between the tangent and normal? How does this relation enable you
to draw a tangent line? Has the ellipse conjugate diameters? How many ?
How many are perpendicular to each other? What is the rectangle upon the
axes equal to? Sum of the squares of the axes? How may you draw two
conjugate diameters, making a given angle with each other? How may-the
polar equation define the curve? Suppose the pole at the centre? At one of
the foci? Upon the curve? When the radius vector is negative, what does it
signify ? May you determine the equation of the ellipsc from one of its pro-
perties? Illustrate this. What is the area of the cllipse equal to? How do
the areas of two ellipses compare ?

Of the Parabola.

What is the direction of the cutting plane when the conic section is a parabola ?
Its equation? How do you discuss this equation? Its parameter? How do
the squares of the ordinates compare? How is the curve described? Its focus?
Direction? What relation between the two? What method of describing the
parabola results? What is the double ordinate through the focus equal to?
Equation of tangent line ? To what is the subtangent equal ? Subnormal? What
relation between tangent and normal? How may you draw a tangent line to
a parabola? Has this curve diameters? How situated ? What is the position
of a new system of axes, that the curves shall preserve the same form when
referred to them? What is the polar equation? How does it define the curve?
If the poie be at the focus? On the curve? May you deduce the equation of
the curve from one of its properties? Illustrate. What is the measure of any
portion of the parabola? What are quadrable curves ? Is this curve quadrable?

Of the Hyperbola.

What direction has the cutting plane when the conic section is an hyperbola ?
What is the form of its equation? How is it distinguished from the ellipse ?
How do you discuss this equation? What is the equation referred to the centre
and axes? Equilateral hyperbola? What relation between supplementary
chords? What is the conjugate hyperbola? What are the foci of this curve ?
What propertics do they possess ? How is the curve constructed? What is the
equation of its tangent line? What relation between the tangent lines and sup
plementary chords? How may you draw a tangent line to the curve? Has
the hyperbola conjugate diameters? To what is the difference of the squares
on the conjugate diamecters equal? How are the conjugate diameters of the
equilateral hyperbola related? What is the rectangle on the axes equal to?
What are the asymptotes of this curve? What is their equation? What lines
o they limit? How may you construct them ? What is the form of the equa-
aon of the hyperbola referred to them? What is the power of the hyperbola ?
When the hyperbola is equilateral, what does the equation referred to its asymp
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totes become? How is a tangent line to the hyperbola divided at the point of
tangency ? If any line be drawn, intersecting the hyperbola and limited by the
asymptotes, what property exists? How does this property enable you to con-
struct points of the curve? What is the polar equation of this curve? How
does it define the curve? If the pole be at the centre? At one of the foci?
Upon the curve? May the same polar equation represent each of the conie
sections? In what manner may you pass from one to the other? Mention the
distinctive characteristics in the forms of the conic sections. Mention their
common properties. Their analogies.

CHAPTER V.
Discussion of Equations

What is the most general form of an equation of the 2d degree with two
variables? Give an analysis of the mode of discussing it. Why may you
omit in the general discussion the case in which the squares of the variables
are wanting? How are the curves represented by this equation classified?
What suggests this mode of classification? What is the analytical character
of curves of the 1stclass? 2d class? 3d class? How do you discuss the
1st class? What results from the discussion? How is the limited nature of
the curves apparent? How apply the principles to a numerical example?
How determine to which class of carves a particular equation belongs? What
are the particular cases comprehended in the first class? In the case in which
A =C, and B =0, what does the equation represent if the co-ordinate axes
be oblique? (Ans. An ellipse referred to its equal conjugate diameters.) How
do you discuss the 2d class? What part of the equation represents the
diameter of these curves? What are the varieties of this class? What curves
do they resemble? How do you discuss the 3d class? What varieties? What
curves do they resemble? What is the centre of a curve? Its diameter?
What conditions must the equation of a curve fulfil when referred to its centre?
Have curves of the 2d order centres? Which of them? How many? Why
only one? . In which class are the conditions for a centre impossible? Why?
What conditions must the equation of a curve fulfil when referred to a diam-
eter? If both co-ordinate axes are diameters? Ifaxisofy? Ifz? Which
of the curves of the 2d order have diameters? How are they situated in the
2d class? Have any of these curves asymptotes? Which? Why only those
of the 3d class? How can you find the asymptotes from the equation of the
curve? Do these properties show much resemblance between these curves and
the conic sections? How far does the resemblance extend? How is the per-
fect identity proved? Then every equation of the 2d degree, with two variae
bles, must represent what? When an ellipse? Parabola? Hyperbola? How
many conic sections are there, including the varieties? Through how many
points may an ellipse be made to pass? A parabola? Hyperbola? Equilateral
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hyperbola? How many constants must the most general equation of the
ellipse contain? What are they? How many must be contained by that of
the parabola? What are they? How many by that of the hyperbola? How
many by that of the equilateral hyperbola? What are they? If the curve
‘be an ellipse, will the terms involving z* and y? have the same or different
signs? How is it with the parabola? How with the hyperbola? If, in the
general equation of the:2d degree with two variables, the term involving the
rectangle of the variables be wanting, what must you infer? (4ns. That the
curve is referred to co-ordinate axes parallel to a diameter and the tangent at
its extremity.) Why? The presence of the term Bzy in the equation is due
to what? (A4ns. To the directions of the co-ordinate axes.) What if the ab-
solute term be wanting? What if the terms containing the first powers of the
variables be absent? (Ans. That the origin is at the centre.) The presence
of the terms Dy, Ez, is then due to what? (Ans. To the removal of the origin
from the centre.) What is the most geperal equation of a tangent line to a
conic section? How do you find this equation? By its aid what remarkable
property of these curves is demonstrated? What is a polar line? A pole?
How would you construct the polar line of a given pole? How the pole of a
given polar line? How use them for drawing a tangent line to a conic section
from a given point without the curve? How to draw a tangent from a given
point upon the curve? What is the peculiar advantage of these methods?
(Ans. That we can draw the tangent without knowing the species of the sec-
tion.) In the parabola, what point is the pole of the directrix? Tangents
which intersect upon the directrix make what angle with each other?

CHAPTER VI
Curves of the Higher Orders.

What is the objection to attempting a systematic examination of curves?
What is the 8d order remarkable for? How many curves does this order com-
prise? How many of them were discussed by Sir I. Newton? What is the
number of varieties included in the 4th order? Isa complete investigation
of curves necessary? Why not? Give an outline of the general method to
be pursued in determining the form of any curve from its equation. How is
the cissoid generated? Itsequation? Its polar equation? By whominvented ?
For what purpose? ‘Whence its name? Has it an asymptote? Explain the
generation of the conchoid. Its equation. Its polar equation. How are the
two parts distinguished? Are they both defined by one equation? What is
the modulus? The base, or rule? How many cases may you distinguish in
its discussion? What are they? What remarkable point occurs in the 8d
case? Has the curve an asymptote? By whom was it invented? For what
purpose? Whence its name? How may it be applied to trisecting an angle?
How may you solve the celebrated problem of the duplication of the cube by
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conic sectlons? What is the polar equation of the Lemniscata of Bernowuilli?
This curve is the locus of what series of points? What is its form? What
remarkable property does it possess? What are Parabolas of the higher
orders? Their general equation? What varieties are noticed? The equa-
tion of the semi-cubical parabola? From what does it take its name? Its
polar equation? For what is it remarkable? Form of the curve? Equation
of the cubical parabola? Its polar equation? Form of the curve? What are
transcendental curves? Whence the name? What is the Logarithmic curve?
Its equation? What is the axis.of numbers? Of logarithms? By whom wus
this curve invented? What are some of its properties? How is the cycloid
generated? Whence its name? What is the base? Axis? Vertex? What
is its equation referred to the axis and tangent at the vertex? Referred to
the base and tangent at the cusp? By whom was this curve first examined ?
For what is it remarkable? Mention some of its properties. What peculiar
appellations does it derive in consequence of two of them? What is the tro-
choid? Its equation? What is the curtate cycloid? Its equation? How may
the class of cycloids be extended? What is the Epitrochoid? Epicycloid?
Hypotrochoid? Hypocycloid? How obtain their equations? What are they?
When may the necessary elimination be effected? Is the number of convolu-
tions limited? What is the cardioide? Its polar equation? When does the
hypocycloid become a right line? The same supposition reduces the hypo-
trochoid to what? What are spirals? By whom invented? For what pur-
pose? What are the chief varieties? How is the spiral of Archimedes
generated? What is its equation? What is the pole, or eye of a spiral?
What is the general equation of spirals? To what co-ordinates are these
curves referred? Equation of the hyperbolic spiral? Whence its name?
Has it an asymptote? How is the parabolic spiral generated? Its equation?
Equation of the Logarithmic spiral? Does it ever reach the pole? (This
curve is also known as the equiangular spiral, from the fact that the angle
formed by the radius vector and tangent is constant: the tangent of this
angle being equal to the modulus of the system of logarithms used.) What
are the formulas for transition from polar to rectangular co-ordinates? May

the polar equation of a curve sometimes be used to advantage? When?
Guve an example.

CHAPTER VIL
Surfaces of the Second Order.

How are surfaces divided? General equation of surfaces of the 2d order?
How may they be discussed? Which is the bestmode ? Illustrate this method.
How should the secant planes be drawn? What preliminary steps are neces-
eary before discussing these surfaces? How are these surfaces divided?
What is the form of the equation of surfaces which have a centre? No

26
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centre? May both classes be represented by a common equation? What
conditions will give one class and the other? How many cases of surfaces
which have a centre? What does the 1st case embrace? What are the prin-
cipal sections? How do you know they represent ellipsoids? What varieties?
What is the equation of a sphere? What conditions give a cylinder? Right
cylinder? Ellipsoid of revolution? What does the 2d case cmbrace? What
are hyperboloids? Hyperboloids of revolution? What relation to cones?
How many cases of surfaces of no centre? 1stcase? 2d case? How may
we draw a tangent plane to a surface? What is the mode in surfaces of the
2d order? General form of the equation? When drawn to surfaces which
have a centra?
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