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PREFACE.

THE present work is a result of the Author s experience

in teaching Geometry to Junior Classes in the University

for a series of years. It is not an edition of &quot; Euclid s

Elements,&quot; and has in fact little relation to that cele

brated ancient work except in the subject matter.

The work differs also from the majority of modern

treatises on Geometry in several respects.

The point, the line, and the curve lying in a common

plane are taken as the geometric elements of Plane

Geometry, and any one of these or any combination of

them is defined as a geometric plane figure. Thus a

triangle is not the three-cornered portion of the plane

inclosed within its sides, but the combination of the

three points and three lines forming what are usually

termed its vertices and its sides and sides produced.

This mode of considering geometric figures leads
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VI PREFACE.

naturally to the idea of a figure as a locus, and con

sequently prepares the way for the study of Cartesian

Geometry. It requires, however, that a careful distinction

be drawn between figures which are capable of super

position and those which are equal merely in area.

The properties of congruence and equality are accord

ingly carefully distinguished.

The principle of motion in the transformation of

geometric figures, as recommended by Dr. Sylvester,

and as a consequence the principle of continuity are

freely employed, and an attempt is made to generalize

all theorems which admit of generalization.

An endeavour is made to connect Geometry with

Algebraic forms and symbols, (i) by an elementary

study of the modes of representing geometric ideas in

the symbols of Algebra, and (2) by determining the

consequent geometric interpretation which is to be given

to each interpretable algebraic form. The use of such

forms and symbols not only shortens the statements

of geometric relations but also conduces to greater

generality.

In dealing with proportion the method of measures

is employed in preference to that of multiples as being
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equally accurate, easier of comprehension, and more

in line with elementary mathematical study. In dealing

with ratio I have ventured, when comparing two finite

lines, to introduce Hamilton s word tensor as seeming to

me to express most clearly what is meant.

After treating of proportion I have not hesitated to

employ those special ratios known as trigonometric func

tions in deducing geometric relations.

In the earlier parts of the work Constructive Geometry

is separated from Descriptive Geometry, and short

descriptions are given of the more important geometric

drawing-instruments, having special reference to the

geometric principles of their actions.

Parts IV. and V. contain a synthetic treatment of the

theories of the mean centre, of inverse figures, of pole

and polar, of harmonic division, etc., as applied to the

line and circle ;
-and it is believed that a student who

becomes acquainted with these geometric extensions in

this their simpler form will be greatly assisted in the

wider discussion of them in analytical conies. Through

out the whole work modern terminology and modern

processes have been used with the greatest freedom,

regard being had in all cases to perspicuity.
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As is evident from what has been said, the whole

intention in preparing the work has been to furnish the

student with that kind of geometric knowledge which

may enable him to take up most successfully the modern

works on Analytical Geometry.

N. F. D

QUEEN S COLLEGE,

KINGSTON, CANADA.
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PART I.

GENERAL CONSIDERATIONS.

i. A statement which explains the sense in which some

word or phrase is employed is a definition.

A definition may select some one meaning out of several

attached to a common word, or it may introduce some

technical term to be used in a particular sense.

Some terms, such as space, straight, direction, etc., which S l

express elementary ideas cannot be defined.

2. Def. A Theorem is the formal statement of some

mathematical relation.

A theorem may be stated for the purpose of being sub

sequently proved, or it may be deduced from some previous

course of reasoning.

In the former case it is called a Proposition, that is, some

thing proposed, and consists of (a) the statement or enuncia

tion of the theorem, and (ft) the argument or proof. The

purpose of the argument is to show that the truth of the

theorem depends upon that of some preceding theorem

whose truth has already been established or admitted.

Ex. &quot; The sum of two odd numbers is an even number &quot;

is a theorem.

3. A theorem so elementary as to be generally accepted as

true without any formal proof, is an axiom.
&amp;lt; A
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MnthematiCr-l axioms are general or particular, that is,

they apply to the whole science of mathematics, or have

special applications to some department.

The principal general axioms are :

i. The whole is equal to the sum of all its parts, and

therefore greater than any one of its parts,

ii. Things equal to the same thing are equal to one

another.

iii. If equals be added to equals the sums are equal,

iv. If equals be taken from equals the remainders are

equal.

v. If equals be added to or taken from unequals the

results are unequal,

vi. If unequals be taken from equals the remainders are

unequal,

vii. Equal multiples of equals are equal ;
so also equal

submultiples of equals are equal.

The axioms which belong particularly to geometry will

occur in the sequel.

4. The statement of any theorem may be put into the

hypothetical form, of which the type is

If A is B then C is D.

The first part
&quot;

if A is B &quot;

is called the hypothesis, and the

second part
&quot; then C is D &quot;

is the conclusion.

Ex. The theorem &quot; The product of two odd numbers is

an odd number &quot; can be arranged thus :

Hyp. If two numbers are each an odd number.

Concl. Then their product is an odd number.

5. The statement &quot;

If A is B then C is D &quot;

may be im

mediately put into the form

If C is not D then A is not B,

which is called the contrapositive of the former.

The truth of a theorem establishes the truth of its contra-
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positive, and vice versa, and hence if either is proved the

other is proved also.

6. Two theorems are converse to one another when the

hypothesis and conclusion of the one are respectively the

conclusion and hypothesis of the other.

Ex. If an animal is a horse it has four legs.

Converse. If an animal has four legs it is a horse.

As is readily seen from the foregoing example, the truth of

a theorem does not necessarily establish the truth of its con

verse, and hence a theorem and its converse have in general

to be proved separately. But on account of the peculiar

relation existing between the two, a relation exists also

between the modes of proof for the two. These are known
as the direct and indirect modes of proof. And if any
theorem which admits of a converse can be proved directly

its converse can usually be proved indirectly. Examples
will occur hereafter.

7. Many geometric theorems are so connected with their

converses that the truth of the theorems establishes that of

the converses, and irice versa.

The necessary connection is expressed in the R^^le of

Identity, its statement being :

If there is but one X and one F, and if it is proved
that X is Y, then itfollows that Y is X.

Where X and Y stand for phrases such as may form the

hypotheses or conclusions of theorems, and the
&quot;

is
&quot; between

them is to be variously interpreted as &quot;

equal to,&quot;

&quot;

corre

sponds to,&quot;
etc.

Ex. Of two sides of a triangle only one can be the greater,

and of the two angles opposite these sides only one can be

the greater. Then, if it is proved that the greater side is

opposite the greater angle it follows that the greater angle is

opposite the greater side.
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In this example there is but one X (the greater side) and

one Y (the greater angle), and as X is (corresponds to or is

opposite) Y, therefore Y is (corresponds to or is opposite) X.

8. A Corollary is a theorem deduced from some other

theorem, usually by some qualification or restriction, and

occasionally by some amplification of the hypothesis. Or a

corollary may be derived directly from an axiom or from a

definition.

As a matter of course no sharp distinction can be drawn

between theorems and corollaries.

Ex. From the theorem,
&quot; The product of two odd numbers

is an odd number,&quot; by making the two numbers equal we

obtain as a corollary,
&quot; The square of an odd number is an

odd number.&quot;

EXERCISES.

State the contrapositives and the converses of the follow

ing theorems :

1. The sum of two odd numbers is an even number.

2. A diameter is the longest chord in a circle.

3. Parallel lines never meet.

4. Every point equidistant from the end-points of a line-

segment is on the right bisector of that segment.

SECTION I.

THE LINE AND POINT.

9. Space may be defined to be that which admits of

length&quot;or~~3istance in every direction
;

so that length and

direction are fundamental ideas in studying the geometric

properties of space.
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Every material object exists in, and is surrounded by

space. The limit which separates a material object from

the space which surrounds it, or which separates the space

occupied by the object from the space not occupied by it, is

a surface.

The surface of a black-board is the limit which separates

the black-board from the space lying without it. This surface

can have no thickness, as in such a case it would include a

part of the board or of the space without or of both, and

would not be the dividing limit.

10. A flat surface, as that of a black-board, is a plane

surface, or a Plane.

Pictures of geometric relations drawn on a plane surface

as that of a black-board are usually called Plane Geometric

Figures, because these figures lie in or on a plane.

Some such figures are known to every person under such

names as
&quot;

triangle,&quot;
&quot;

square,&quot;

&quot;

circle,&quot; etc.

1 1. That part of mathematics which treats of the properties

and relations of plane geometric figures is Plane Geometry.
Such is the subject of this work.

The plane upon which the figures are supposed to lie will

be referred to as the plane, and unless otherwise stated all

figures will be supposed to lie in or on the same plane.

12. The Line. When the crayon is drawn along the

black-board it leaves a visible mark. This mark has breadth

and occupies some of the surface upon which it is drawn,
and by way of distinction is called a physical line. By
continually diminishing the breadth of the physical line we
make it approximate to the geometric line. Hence we may
consider the geometric line as being the limit towards which

a physical line approaches as its breadth is continually

diminished. We may consequently consider a geometric
line as length abstracted from every other consideration.
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This theoretic relation of a geometric line to a physical

one is of some importance, as whatever is true for the

physical line, independently of its breadth, is true for the

geometric line. And hence arguments in regard to geometric
lines may be replaced by arguments in regard to physical

lines, if from such arguments we exclude everything that

would involve the idea of breadth.

The diagrams employed to direct and assist us in geo
metric investigations are formed of physical lines, but they

may equally well be supposed to be formed of threads, wires

or light rods, if we do not involve in our arguments any idea

of the breadth or thickness of the lines, threads, wires or

rods employed.
In the practical applications of Geometry the diagrams

frequently become material or represent material objects.

Thus in Mechanics we consider such things as levers, wedges,

wheels, cords, etc., and our diagrams become representations

of these things.

A pulley or wheel becomes a circle, its arms become radii

of the circle, and its centre the centre of the circle ;
stretched

cords become straight lines, etc.

13. The Point. A point marks position, but has no size.

The intersection of one line by another gives a point, called

the point of intersection.

If the lines are physical, the point is physical and has some

size, but when the lines are geometric the point is also

geometric.

14. Straight Line. For want of a better definition we

may say that a straight line is one of which every part has

the same direction. For every part of a line must have some

direction, and when this direction is common to all the parts

of the line, the line is straight.

The word &quot;direction&quot; is not in itself definable, and when

applied to a line in the absolute it is not intelligible. But
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every person knows what is meant by such expressions as

&quot;the same direction,&quot; &quot;opposite direction/ etc., for these

express relations between directions, and such relations are

as readily comprehended as relations between lengths or

other magnitudes.
The most prominent property, and in fact the distinctive

property of a straight line, is the absolute sameness which

characterizes all its parts, so that two portions of the same

straight line can differ from one another in no respect except
in length.

Def. A plane figure made up of straight lines only is

called a rectilinear figure.

15. A Curve is a line of which no part is straight; or a

curve is a line of which no two adjacent parts have the same
direction.

The most common example of a curve is a circle or portion
of a circle.

Henceforward, the word
&quot;line,&quot;

unless otherwise qualified,

will mean a straight line.

1 6. The &quot;rule&quot; or &quot;straight-edge&quot; is a strip of wood,

metal, or other solid with one edge made straight. Its

common use is to guide the pen or pencil in drawing lines

in Practical Geometry.

17. A Plane is a surface such that the line joining any two

arbitrary points in it coincides wholly with the surface.

The planarity of a surface may be tested by applying the

rule to it. If the rule touches the surface at some points and

not at others the surface is not a plane. But if the rule

touches the surface throughout its whole length, and in every

position and direction in which it can be applied, the surface

is a plane.

The most accurately plane artificial surface known is

probably that of a well-formed plane mirror. Examina-
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tion of the images of objects as seen in such mirrors is

capable of detecting variations from the plane, so minute as

to escape all other tests.

1 8. A surface which is not plane, and which is not com

posed of planes, is a curved surface. Such is the surface of

a sphere, or cylinder.

19. The point, the line, the curve, the plane and the

curved surface are the elements which go to make up geo
metric figures.

Where a single plane is the only surface concerned, the

point and line lie in it and form a plane figure. But where

more than one plane is concerned, or where a curved surface

is concerned, the figure occupies space, as a cube or a sphere,

and is called a spatial figure or a solid.

The study of spatial figures constitutes Solid Geometry, or

the Geometry of Space, as distinguished from Plane Geometry.

20. Given Point and Line. A point or line is said to be

given when we are made to know enough about it to enable

us to distinguish it from every other point or line ; and the

data which give a point or line are commonly said to

determine it.

A similar nomenclature applies to other geometric ele

ments.

The statement that a point or line lies in a plane does not

give it, but a point or line placed in the plane for future

reference is considered as being given. Such a point is

usually called an origin, and such a line a datum line, an

initial line, a prime vector, etc.

21. Def. i. A line considered merely as a geometric

element, and without any limitations, is an indefinite line.

2. A limited portion of a line, especially when any refer

ence is had to its length, is afinite line, or a line-segment, or

simply a segment.
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That absolute sameness (14) which characterizes every

part of a line leads directly to the following conclusions :

(1) No distinction can be made between any two segments
of the same line equal in length, except that of position

in the line.

(2) A line cannot return into, or cross itself.

(3) A line is not necessarily limited in length, and hence,
in imagination, we may follow a line as far as we

please without coming to any necessary termination.

This property is conveniently expressed by saying
that a line extends to infinity.

3. The hypothetical end-points of any indefinite line are

said to be points at infinity. All other points are finite

points.

22. Notation. A point is denoted by a single letter where -

ever practicable, as
&quot;

the point A.&quot;

An indefinite line is also denoted by a single letter as &quot;the

line
L,&quot;

but in this case the letter L

has no reference to any point. A B

A segment is denoted by naming its end points., as the
&quot;

segment AB,&quot; where A and B are the end points. This is

a biliteral, or two-letter notation.

A segment is also denoted by a single letter, when the

limits of its length are supposed to be known, as the &quot;

seg

ment a&quot; This is a unilateral) or one-letter notation.

The term &quot;segment&quot; involves the notion of some finite

length. When length is not under consideration, the term
&quot;

line
&quot;

is preferred.

Thus the &quot;

line AB &quot;

is the indefinite line having A and B
as two points upon it. But the &quot;segment AB&quot; is that portion
of the line which lies between A and B.

23. In dealing with a line-segment, we frequently have to

consider other portions of the indefinite line of which the

segment is a part.



10 SYNTHETIC GEOMETRY.

As an example, let it be required to divide the segment AB
into two parts whereof one shall

A c E

be twice as long as the other.

To do this we put C in such a position that it maybe twice as

far from one of the end-points of the segment, A say, as it is

from the other, B. But on the indefinite line through A and

B we may place C so as to be twice as far from A as from B.

So that we have two points, C and C
,
both satisfying the

condition of being twice as far from A as from B.

Evidently, the point C does not divide the segment AB in

the sense commonly attached to the word divide. But on

account of the similar relations held by C and C to the end-

points of the segment, it is convenient and advantageous to

consider both points as dividing the segment AB.

When thus considered, C is said to divide the segment

internally and C to divide it externally in the same manner.

24. Axiom. Through a given point only one line can

pass in a given direction.

Let A be the given point, and let the segment AP mark

,

&amp;gt;

the given direction. Then, of all the lines

that can pass through the point A, only one

can have the direction AP, and this one must lie along and

coincide with AP so as to form with it virtually but one line.

Cor. i. A finite point and a direction determine one

line.

Cor. 2. Two given finite points determine one line. For, if

A and P be the points, the direction AP is given, and hence

the line through A and having the direction AP is given.

Cor. 3. Two lines by their intersection determine one finite

point. For, if they determined two, they would each pass

through the same two points, which, from Cor. 2, is impossible.

Cor. 4. Another statement of Cor. 2 is Two lines which

have two points in common coincide and form virtually but

one line.
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25. Axiom. A straight line is the shortest distance be

tween two given points.

Although it is possible to give a reasonable proof of this

axiom, no amount of proof could make its truth more

apparent
The following will illustrate the axiom. Assume any two

points on a thread taken as a physical line. By separating
these as far as possible, the thread takes the form which we
call straight, or tends to take that form. Therefore a straight

finite line has its end-points further apart than a curved line

of equal length. Or, a less length of line will reach from one

given point to another when the line is straight than when it

is curved.

Dcf. The distance between two points is the length of the

segment which connects them or has them as end-points.

26. Superposition. Comparison of Figures. We assume

that space is homogeneous, or that all its parts are alike, so

that the properties of a geometric figure are independent of its

position in space. And hence we assume that a figure may
be supposed to be moved from place to place, and to be turned

around or over in any way without undergoing any change
whatever in its form or properties, or in the relations existing

between its several parts.

The imaginary placing of one figure upon another so

as to compare the two is called superposition. By superposi
tion we are enabled to compare figures as to their equality or

inequality. If one figure can be superimposed upon another

so as to coincide with the latter in every part, the two figures

are necessarily and identically equal, and become virtually

one figure by the superposition.

27. Two line-segments can be compared with respect to

length only. Hence a line is called a magnitude of one

dimension.

Two segments are equal when the end-points of one can be
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made to coincide with the end-points of the other by super

position.

28. Def. The sum of two segments is that segment which

is equal to the two when placed in line with one end-point in

each coincident.

Let AB and DE be two segments, and on the line of which

D_E AB is a segment let BC be equal to

DE. Then AC is the sum of AB
A B c and DE.
This is expressed symbolically by writing

where = denotes equality in length, and + denotes the

placing of the segments AB and DE in line so as to have one

common point as an end-point for each. The interpretation

of the whole is, that AC is equal in length to AB and DE
together.

29. Def. The difference between two segments is the

segment which remains when, from the longer of the segments,

a part is taken away equal in length to the shorter.

Thus, if AC and DE be two segments of which AC is the

longer, and if BC is equal to DE, then AB is the difference

between AC and DE.
This is expressed symbolically by writing

AB=AC-DE,
which is interpreted as meaning that the segment AB is

shorter than AC by the segment DE.
Now this is equivalent to saying that AC is longer than

AB by the segment DE, or that AC is equal to the sum of

AB and DE.
Hence when we have AB =AC- DE

we can write AC = AB-f DE.
We thus see that in using these algebraic symbols, =, -f,

and -, a term, as DE, may be transferred from one side of
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the equation to another by changing its sign from + to - or

vice versa.

Owing to the readiness with which these symbolic expres
sions can be manipulated, they seem to represent simple alge

braic relations, hence beginners are apt to think that the work

ing rules of algebra must apply to them as a matter of

necessity. It must be remembered, however, that the formal

rules of algebra are founded upon the properties of numbers,
and that we should not assume, without examination, that

these rules apply without modification to that which is not

number.

This subject will be discussed in Part II.

30. Def. That point, in a line-segment, which is equi
distant from the end-points is the middle point of the segment.

It is also called the internal point of bisection of the seg

ment, or, when spoken of alone, simply the point of bisection.

EXERCISES.

1. If two segments be in line and have one common end-

point, by what name will you call the distance between

their other end-points ?

2. Obtain any relation between &quot; the sum and the differ

ence &quot; of two segments and &quot;the relative directions &quot;of

the two segments, they being in line.

3. A given line-segment has but one middle point.

4. In Art. 23, if C becomes the middle point of AB, what
becomes of C ?

5. In Art 30 the internal point of bisection is spoken of.

What meaning can you give to the &quot;

external point of

bisection
&quot;

?
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SECTION II.

RELATIONS OF TWO LINES. ANGLES.

31. When two lines have not the same direction they are

said to make an angle with one another, and an angle is a

difference in direction.

Illustration Let A and B

represent two stars, and E the

position of an observer s eye.

Since the lines EA and EB, which join the eye and the

stars, have not the same direction they make an angle with

one another at E.

1. If the stars appear to recede from one another, the angle
at E becomes greater. Thus, if B moves into the position of

C, the angle between EA and EC is greater than the angle
between EA and EB.

Similarly, if the stars appear to approach one another, the

angle at E becomes smaller
;
and if the stars become coinci

dent, or situated in the same line through E, the angle at E
vanishes.

Hence an angle is capable of continuous increase or

diminution, and is therefore a magnitude. And, being

magnitudes, angles are capable of being compared with one

another as to greatness, and hence, of being measured.

2. If B is moved to B
, any point on EB, and A to A

, any

point on EA, the angle at E is not changed. Hence increas

ing or diminishing one or both of the segments which form

an angle does not affect the magnitude of the angle.

Hence, also, there is no community in kind between an

angle and a line-segment or a line.

Hence, also, an angle cannot be measured by means of

line-segments or lines.



RELATIONS OF TWO LINES. ANGLES. 15

32. Def. A line which changes its direction in a plane
while passing through a fixed point in the plane is said to

rotate about the point.

The point about which the rotation takes place is the pole,

and any segment of the rotating line, having the pole as an

end-point, is a radius vector.

Let an inextensible thread fixed at O
be kept stretched by a pencil at P.

Then, when P moves, keeping the

thread straight, OP becomes a radius

vector rotating about the pole O.

When the vector rotates from direction OP to direction

OP it describes the angle between OP and OP . Hence we
have the following :

Def. i. The angle between two lines is the rotation neces

sary to bring one of the lines into the direction of the other.

The word &quot;

rotation,&quot; as employed in this definition, means
the amount of turning effected, and not the process of turning.

Def. 2. For convenience the lines OP and OP
, which, by

their difference in direction form the angle, are called the

arms of the angle, and the point O where the arms meet is

the &quot;vertex.

Cor. From 31, 2, an angle does not in any way depend

upon the lengths of its arms, but only upon their relative

directions.

33. Notation of Angles. i. The symbol z_ is used for the

word &quot;

angle.&quot;

2. When two segments meet at a vertex the angle between

them may be denoted by a single letter

placed at the vertex, as the Z.O
,
or by

a letter with or without an arch of dots,

as z_/3 ;
or by three letters of which the

extreme ones denote points upon the arms of the angle and

the middle one denotes the vertex, as lAOB.
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3. The angle between two lines, when the vertex is not

pictured, or not referred to, is expressed by z_(L. M), or LM,
where L and M denote the lines in the one-letter notation

(22); or ^(AB, CD), where AB and CD denote the lines in

the two-letter notation.

Def. Two angles are equal when the arms of the one

may be made to coincide in direction respec

tively with the arms of the other ; or when

the angles are described by the same rotation.

Thus, if, wThen O7

is placed upon O, and

O A is made to lie along OA, O B can also

B
- be made to lie along OB, the z.A O B is equal

to LAOB. This equality is symbolized thus :

-A Where the sign = is to be interpreted as

indicating the possibility of coincidence by superposition.

35. Sum and Difference of Angles. The sum of two

angles is the angle described by a radius vector which

describes the two angles, or their equals, in succession.

, P Thus if a radius vector starts from co

incidence with OA and rotates into

direction OP it describes the /_AOP.

If it next rotates into direction OP it

o &quot;A describes the Z.POP . But in its whole

rotation it has described the /_AOP . Therefore,

Similarly, z_AOP = /.AOP -z_POP .

Def. When two angles, as AOP and POP
,
have one arm

in common lying between the remaining arms, the angles are

adjacent angles.

36. Def. A radius vector which starts from any given

direction and makes a complete rotation so as to return to its

original direction describes a circumangle, at perigon,
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One-half of a circumangle is a straight angle, and one-

fourth of a circumangle is a right angle.

37. Theorem. If any number of lines meet in a point,

the sum of all the adjacent angles formed is a circumangle.

OA, OB, OC, ..., OF are lines meeting
in O. Then

= a circumangle. D

Proof. A radius vector which starts

from coincidence with OA and rotates into

the successive directions, OB, OC, ...,

OF, OA describes in succession the angles AOB, BOC, ...,

EOF, FOA.
But in its complete rotation it describes a circumangle (36).

Z.AOB + /.BOC + ... + ^FOA = a circumangle. q.e.d.

Cor. The result may be thus stated :

The sum of all the adjacent angles about a point in

the plane is a circumangle.

38. Theorem. The sum of all the adjacent angles on one

side of a line, and about a point in the

line is a straight angle.

O is a point in the line AB
;
then

Z_AOC + Z_COB = a straight angle.

Proof. Let A and B be any two points

in the line, and let the figure formed by
AB and OC be revolved about AB without displacing the

points A and B, so that OC may come into a position OC .

Then (24, Cor. 2) O is not displaced by the revolution,

7, and z_BOC = /_BOC
;

&amp;lt;LAOC + /-BOC
,

and since the sum of the four angles is a circumangle (37),

therefore the sum of each pair is a straight angle (36). q.e.d.

Cor. i. The angle between the opposite directions of a line

is a straight angle.
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Cor. 2. If a radius vector be rotated until its direction is

reversed it describes a straight angle. And conversely, if a

radius vector describes a straight angle its original direction

is reversed.

Thus, if OA rotates through a straight angle it comes into

the direction OB. And conversely, if it rotates from direction

OA to direction OB it describes a straight angle.

MX 39. When two lines L and M cut one

B
,/ another four angles are formed about the

L point of intersection, any one of which

may be taken to be the angle between

the lines.

These four angles consist of two pairs of opposite or

vertical angles, viz., A, A ,
and B, B

,
A being opposite A ,

and B being opposite B .

40. Theorem. The opposite angles of a pair formed by
two intersecting lines are equal to one another.

Proof. ^A + ^B= a straight angle (38)

and Lk +LB = a straight angle. (38)

and LB = LE . q.e.d.

Def. i. Two angles which together make up a straight

angle are supplementary to one another, and one is called the

supplement of the other. Thus, A is the supplement of B
,

and B of A .

Cor. If z_A = z_B, then z_A = z_B = I.B
,
and all four angles

are equal, and each is a right angle (36).

Therefore, if two adjacent angles formed by two intersect

ing lines are equal to each other, all four of the angles so

formed are equal to one another, and each is a right angle.

2)gf. 2. When two intersecting lines form a right angle at

their point of intersection, they are said to be perpendicular

to one another, and each is perpendicular to the other.



RELATIONS OF TWO LINES. ANGLES. 1 9

Perpendicularity is denoted by the symbol ,
to be read

&quot;perpendicular to&quot; or &quot;is perpendicular to.

A right angle is denoted by the symbol ~~|.

The symbol _]_ also denotes two right angles or a straight

angle.

Def. 3. When two angles together make up a right angle

they are complementary to one another, and each is the

complement of the other.

The right angle is the simplest of all angles, for when two

lines form an angle they form four angles equal in opposite

pairs. But if any one of these is a right angle, all four are

right angles.

Perpendicularity is the most important directional relation

in the applications of Geometry.

Def. 4. An acute angle is less than a right angle, and an

obtiise angle is greater than a right angle, and less than two

right angles.

41. From (36) we have

i circumangle= 2 straight angles
= 4 right angles.

In estimating an angle numerically it may be expressed in

any one of the given units.

If a right angle be taken as the unit, a circumangle is

expressed by 4, i.e. four right angles, and a straight angle

by 2.

Angles less than a right angle may be expressed, approxi

mately at least, by fractions, or as fractional parts of the

right angle.

For practical purposes the right angle is divided into 90

equal parts called degrees ;
each degree is divided into 60

equal parts called minutes
;
and each minute into 60 equal

parts called seconds.

Thus an angle which is one-seventh of a circumangle

contains fifty-one degrees, twenty-five minutes, and forty-two
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seconds and six-sevenths of a second,

follows : 51 25 42f.

This is denoted as

Theorem. Through a given point in a line only one

perpendicular can be drawn to the line.

The line OC is J_ AB, and OD is any
other line through O.

Then OD is not JL AB.

Proof. The angles BOC and COA
are each right angles (40, Def. 2).

Therefore BOD is not a right angle, and OD is not _1_ AB.

But OD is any line other than OC.

Therefore OC is the only perpendicular. q.e.d.

Def. The perpendicular to a line-segment through its

middle point is the right bisector of the segment.
Since a segment has but one middle point (30, Ex. 3), and

since but one perpendicular can be drawn to the segment

through that point,

a line-segment has but one right bisector.

43. Def. The lines which pass through the vertex of an

angle and make equal angles with the arms, are the bisectors

of the angle. The one which lies within the angle is the

internal bisector, and the one lying without is the external

bisector.

Let AOC be a given angle ;
and

E let EOF be so drawn that Z.AOE

A EF is the internal bisector of the

angle AOC.

Also, let GOH be so drawn that

Z-COG = z_HOA.

HG is the external bisector of the angle AOC.

and _HOA=^GOB, (40)
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and the external bisector of AOC is the internal bisector of

its supplementary angle, COB, and vice versa.

The reason for calling GH a bisector of the angle AOC is

given in the definition, viz., GH makes equal angles with the

arms. Also, OA and OC are only parts of indefinite lines,

whose angle of intersection may be taken as the ZJ\OC or

as the A.COB.

44. Just as in 23 we found two points which are said

to divide the segment in the same manner, so we may find

two lines dividing a given angle in the same manner, one

dividing it internally, and the other externally.

Thus, if OE is so drawn that the ^AOE is double the

^_EOC, some line OG may also be drawn so that the Z.AOG
is double the Z.GOC.

This double relation in the division of a segment or an

angle is of the highest importance in Geometry.

45. Theorem. The bisectors of an angle are perpendicular
to one another.

EF and GH are bisectors of the Z.AOC ;

then EF is J_ GH.

Proof. /LEOC=^AOC, V OE is a bisector
;

and /LCOG =!^COB, V OG is a bisector ;

adding, &amp;lt;LEOG =UAOB.
But ^AOB is a straight angle, (38, Cor. i)

Z.EOG is a right angle. (36)

EXERCISES.

1. Three lines pass through a common point and divide the

plane into 6 equal angles. Express the value of each

angle in right angles, and in degrees.
2. OA and OB make an angle of 30, how many degrees are

there in the angle made by OA and the external bisector

of the angle AOB?
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3. What is the supplement of 13 27 42&quot;? What is its

complement ?

4. Two lines make an angle a with one another, and the

bisectors of the angle are drawn, and again the bisectors

of the angle between these bisectors. What are the

angles between these latter lines and the original ones ?

5. The lines L, M intersect at O, and through O, L and M
are drawn J_ respectively to L and M. The angle be

tween L and M is equal to that between L and M.

SECTION III.

THREE OR MORE POINTS AND LINES.
THE TRIANGLE.

46. Theorem. Three points determine at most three lines
;

and three lines determine at most three points.

Proof i. Since (24, Cor. 2) two points determine one

line, three points determine as many lines

as we can form groups from three points

taken two and two.

Let A, B, C be the points ;
the groups

are AB, BC, and CA.

Therefore three points determine at most three lines.

2. Since (24, Cor. 3) two lines determine one point, three

lines determine as many points as we can form groups from

three lines taken two and two.

But if L, M, N be the lines the groups are LM, MN, and

NL.

Therefore three lines determine by their intersections at

most three points.
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47. Theorem. Four points determine at most six lines
; and

four lines determine at most six points.

Proof. i. Let A, B, C, D be the four

points. The groups of two are AB, AC,

AD, BC, BD, and CD
;
or six in all.

Therefore six lines at most are deter

mined.

2. Let L, M, N, K be the lines. The

groups of two that can be made are KL,
KM, KN, LM, LN, and MN

;
or six in all.

Therefore six points of intersection at

most are determined.

Cor. In the first case the six lines determined pass by
threes through the four points. And in the second case the

six points determined lie by threes upon the four lines.

This reciprocality of property is very suggestive, and in the

higher Geometry is of special importance.

Ex. Show that 5 points determine at most 10 lines, and 5

lines determine at most 10 points. And that in the first case

the lines pass by fours through each point ;
and in the latter,

the points lie by fours on each line.

48. Def. A triangle is the figure formed by three lines

and the determined points, or by three points and the deter

mined lines.

The points are the vertices of the triangle, and the line-

segments which have the points as end-points are the sides.

The remaining portions of the determined lines are usually

spoken of as the &quot;sides produced/ But in many cases

generality requires us to extend the term \

&quot;

side
&quot;

to the whole line. \

Thus, the points A, B, C are the

vertices of the triangle ABC.
The segments AB, BC, CA are the &quot;/&quot;A b c\~

sides. The portions AE, BF, CD, etc.,
* *

extending outwards as far as required, are the sides produced.
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The triangle is distinctive in being the rectilinear figure for

which a given number of lines determines the same number
of points, or vice versa.

Hence when the three points, forming the vertices, are

given, or when the three lines or line-segments forming the

sides are given, the triangle is com

pletely given.

This is not the case with a rectilinear

figure having any number of vertices

other than three.

If the vertices be four in number,
with the restriction that each vertex is

determined by the intersection of two

sides, any one of the figures in the

margin will satisfy the conditions.

Hence the giving of the four vertices of such a figure is

not sufficient to completely determine the figure.

49. Def.i. The angles ABC, BCA, CAB are the in

ternal angles of the triangle, or simply the angles of the

triangle.

2. The angle DCB, and others of like kind, are external

angles of the triangle.

3. In relation to the external angle DCB, the angle BCA
is the adjacent internal angle, while the angles CAB and

ABC are opposite internal angles.

4. Any side of a triangle may be taken as its base, and then

the angles at the extremities of the base are its basal angles,

and the angle opposite the base is the vertical angle. The
vertex of the vertical angle is the vertex of the triangle

when spoken of in relation to the base.

50. Notation. The symbol A is commonly used for the

word triangle. In certain cases, which are always readily

apprehended, it denotes the area of the triangle.
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The angles of the triangle are denoted usually by the

capital letters A, B, C, and the sides opposite by the cor

responding small letters a, &amp;lt;,

c.

51. Def. When two figures compared by superposition

coincide in all their parts and become virtually but one figure

they are said to be congruent.

Congruent figures are distinguishable from one another

only by their position in space and are said to be identically

equal.

Congruence is denoted by the algebraic symbol of identity,

=
;
and this symbol placed between two figures capable of

congruence denotes that the figures are congruent.

Closed figures, like triangles, admit of comparison in two

ways. The first is as to their capability of perfect coinci

dence
;
when this is satisfied the figures are congruent. The

second is as to the magnitude or extent of the portions of the

plane enclosed by the figures. Equality in this respect is

expressed by saying that the figures are equal.

When only one kind of comparison is possible, as is the

case with line-segments and angles, the word equal is used.

CONGRUENCE AMONGST TRIANGLES.

52. Theorem. Two triangles are congruent when two

sides and the included angle in the one are respectively equal

to two sides and the included angle in the other.

If AB=A B l the triangles

BC= B C
fare congru-

and ^B =^B J ent.

Proof. Place AABC on A c A c

AA B C so that B coincides with B
,
and BA lies along B A .

^B =^B
,
BC lies along B C

, (34)

and V AB =A B and BC = B C ;

A coincides with A and C with C
, (27)
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and /. AC lies along A C ; (24, Cor. 2)

and the As coinciding in all their parts are congruent. (51)

q.e.d.

Cor. Since two congruent triangles can be made to coin

cide in all their parts, therefore

When two triangles have two sides and the included angle
in the one respectively equal to two sides and the included

angle in the other, all the parts in the one are respectively

equal to the corresponding parts in the other.

53. Theorem. Every point upon the right bisector of a

segment is equidistant from the end-points of the segment.

AB is a line-segment, and P is any point

on its right bisector PC. Then PA= PB.

Proof In. the AS APC and BPC,
AC = CB, (42, Def.)

z_ACP = ^.BCP, (42, Def.)

and PC is common to both As ;

AAPC = ABPC, (52)

and/. PA=PB. (52, Cor.) q.e.d.

Def. i. A triangle which has two sides equal to one an

other is an isosceles triangle.

Thus the triangle APB is isosceles.

The side AB, which is not one of the equal sides, is called

the base.

Cor. i. Since the AAPC=ABPC,
LA= LE.

Hence the basal angles of an isosceles triangle are equal to

one another.

Cor. 2. From (52, Cor.),

Therefore the right bisector of the base of an isosceles tri

angle is the internal bisector of the vertical angle. And since

these two bisectors are one and the same line the converse is

true.
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Def. 2. A triangle in which all the sides are equal to one

another is an equilateral triangle.

Cor. 3. Since an equilateral triangle is isosceles with re

spect to each side as base, all the angles of an equilateral

triangle are equal to one another
; or, an equilateral triangle

is equiangular.

54. Theorem. Every point equidistant from the .end-

points of a line-segment is on the right bisector of that

segment. (Converse of 53.)

PA= PB. Then P is on the right bisector

of AB.

Proof. If P is not on the right bisector of

AB, let the right bisector cut AP in Q.
Then OA=QB, (53)

but PA=PB, (hyp.)

QP = PB-QB, A fc B

or PB= QP + QB,
which is not true. (25, Ax.)

Therefore the right bisector of AB does not cut AP
;
and

similarly it does not cut BP
; therefore it passes through P,

or P is on the right bisector. q.e.d.

This form of proof should be compared with that of Art.

53, they being the kinds indicated in 6.

This latter or indirect form is known as proof by reductio

ad absurdum (leading to an absurdity). In it we prove the

conclusion of the theorem to be true by showing that the

acceptance of any other conclusion leads us to some relation

which is absurd or untrue.

55. Def. The line-segment from a vertex of a triangle to

the middle of the opposite side is a median of the triangle.

Cor. i. Every triangle has three medians.

Cor. 2. The median to the base of an isosceles triangle is
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the right bisector of the base, arid the internal bisector of the

vertical angle. (53, Cor. 2.)

Cor. 3. The three medians of an equilateral triangle are

the three right bisectors of the sides, and the three internal

bisectors of the angles.

56. Theorem. If two angles of a triangle are equal to one

another, the triangle is isosceles, and the equal sides are

opposite the equal angles. (Converse of 53,
Cor. i.)

then PA= PB.

Proof. If P is on the right bisector of

PA= PB. (53)

not on the right bisector, let AP
A fc B cut the right bisector in O.

Then QA=QB, and ^QAB =^QBA. (53 and Cor. i)

But ^PBA=^QAB; (hyp-)

which is not true unless P and O coincide.

Therefore if P is not on the right bisector of AB, the

Z.PAB cannot be equal to the Z.PBA.

But they are equal by hypothesis ;

P is on the right bisector,

and PA= PB. q.e.d.

Cor. If all the angles of a triangle are equal to one another,

all the sides are equal to one another.

Or, an equiangular triangle is equilateral.

57. From 53 and $6 it follows that equality amongst the

sides of a triangle is accompanied by equality amongst the

angles opposite these sides, and conversely.

Also, that if no two sides of a triangle are equal to one

another, then no two angles are equal to one another, and

conversely.
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Def.K triangle which has no two sides equal to one

another is a scalene triangle.

Hence a scalene triangle has no two angles equal to one

another.

58. Theorem. If two triangles have the three sides in the

one respectively equal to the three sides in the other the

triangles are congruent. B B

If A B =
AB]the AS ABC

B C = BC hand A B C are

CA = CA J congruent.
A &amp;lt;

Proof. Turn the AA B C
over and place A on A, and

A C along AC, and let B fall at some point D.

A C = AC, C falls atC, (27)
and AA.DC is the AA B C in its reversed position.

Since AB =AD and CB = CD,
A and C are on the right bisector of BD, and AC is the right

bisector of BD. (54)
^BAC = Z.DAC; (53, Cor. 2)

and the As BAC and DAC are congruent. (52)

AABC =AA B C . q.e.d.

59. Theorem. If two triangles have two angles and the

included side in the one equal respectively to two angles and

the included side in the other, the triangles are congruent.

If zA
-^A^j

L.C = L.C rtbe AS ABC and A B C are congruent.

and A C =ACj
B

A C A C

Proof. Place A on A, and A C along AC.
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Because A C = AC, C coincides with C ; (27)
and V z_A = z_A, A B lies along AB ;

and V LC = LC, CB lies along CB ;

B coincides with B, (24, Cor. 3)

and the triangles are congruent. q.e.d.

60. Theorem. An external angle of a triangle is greater

\B than an internal opposite angle.

The external angle BCD is greater

than the internal opposite angle ABC or

\c D BAG.

Proof. Let BF be a median produced
until FG = BF.

Then the As ABF and CGF have

BF = FG,

and

(construction)

(55)

(40)

(52)

(52, Cor.)and

But Z.ACE is greater than

I.ACE is&amp;gt;z.BAC.

Similarly, Z.BCD is&amp;gt;z_ABC,

and ^BCD=^ACE. (40)
Therefore the z_s BCD and ACE are each greater than each

of the LS ABC and BAC. q.e.d.

61. Theorem. -Qn\y one perpendicular can be drawn to a

B line from a point not on the line.

Proof. Let B be the point and AD the line
;

and let BC be J_ to AD, and BA be any line

other than BC.

Then ^BCD is&amp;gt;^BAC, (60)

.LBAC is not a ~~|*

and BA is net _L to AD.
But BA is any line other than BC

;

BC is the only perpendicular from B to AD. g.e.d,

A c
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Cor. Combining this result with that of 42 we have

Through a given point only one perpendicular can be drawn

to a given line.

62. Theorem. Of any two unequal sides of a triangle

and the opposite angles

1. The greater angle is opposite the longer side.

2. The longer side is opposite the greater angle.

1. BAis&amp;gt;BC;

then L.C is &amp;gt; LA..

Proof. Let BD = BC.

Then the A^DC is isosceles,

and ^BDC = z_BCD. (53, Cor. i)

But z.BDCis&amp;gt;^A, (60)

and ^BCAis&amp;gt;^BCD;

Z.BCA is&amp;gt;^BAC;

or, LC is&amp;gt;z_A. q.e.d.

2. z_C is &amp;gt; LA ;
then AB is &amp;gt; BC.

Proof. From the Rule of Identity (7), since there is but

one longer side and one greater angle, and since it is shown

(i) that the greater angle is opposite the longer side, therefore

the longer side is opposite the greater angle. q.e.d.

Cor. i. In any scalene triangle the sides being unequal to

one another, the greatest angle is opposite the longest side,

and the longest side is opposite the greatest angle.

Also, the shortest side is opposite the smallest angle, and

conversely.

Hence if A, B, C denote the angles, and a, b, c the sides

respectively opposite, the order of magnitude of A, B, C is

the same as that of a, b, c.

63. Theorem. Of all the segments between a given point

and a line not passing through the point

1. The perpendicular to the line is the shortest.

2. Of any two segments the one which meets the line
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further from the perpendicular is the longer ;
and con

versely, the longer meets the line further from the

perpendicular than the shorter does.

3. Two, and only two segments can be equal, and they lie

upon opposite sides of the perpendicular.
P P is any point and BC a line not pass

ing through it, and PA is J_ to BC.

v i. PA which is J_ to BC is shorter

\ than any segment PB which is not J_

B to BC.

Proof. ^PAC =^PAB=~1. (hyp.)

But ^.PAC is &amp;gt; Z.PBC ; (60)

and /. PB is&amp;gt;PA. (62, 2) q.e.d.

2. AC is &amp;gt; AB, then also PC is &amp;gt; PB.

Proof. S\ncz AC is &amp;gt; AB, let D be the point in AC
so that AD = AB.

Then A is the middle point of BD, and PA is the right

bisector of BD. (42, Def.)

PD = PB (53)
and ^PDB=^PBD. (53, Cor i)

But ^PDB is&amp;gt;/LPCB;

^PBD is&amp;gt;z_PCB,

and PCis&amp;gt;PB. (62, 2)

The converse follows from the Rule of Identity. q.e.d.

3. Proof. In. 2 it is proved that PD = PB. Therefore two

equal segments can be drawn from any point P to the line

BC ;
and these lie upon opposite sides of PA.

No other segment can be drawn equal to PD or PB. For

it must lie upon the same side of the perpendicular, PA, as

one of them. If it lies further from the perpendicular than

this one it is longer, (2), and if it lies nearer the perpendicular

it is shorter. Therefore it must coincide with one of them

and is not a third line. q.e.d
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Def. The length of the perpendicular segment between

any point and a line is the distance of the point from the

line.

64. Theorem. If two triangles have two angles in the one

respectively equal to two angles in the other, and a side

opposite an equal angle in each equal, the triangles are

congruent.

If z_A = ^Althen the AS
LC = LC \A B C and ABC

and A B = ABJ are congruent.

Proof. Place A on A, and

A B along AB.

A B =AB, B coincides with B.

Also, v z_A = z.A, A C lies along AC.

Now if C does not coincide with C, let it fall at some other

point, D, on AC.

Then, V AB =A B
,
AD =A C, and ^A=^A

,

and ^.ADB = AC. (52, Cor.)

But z.C = ^C, (hyp.)

which is not true unless D coincides with C.

Therefore C must fall at C, and the AS ABC and A B C
are congruent.

The case in which D may be supposed to be a point on

AC produced is not necessary. For we may then super

impose the AABC on the AA B C.

65. Theorem. If two triangles have two sides in the one

respectively equal to two sides in the other, and an angle

opposite an equal side in each equal, then

1. If the equal angles be opposite the longer of the two

sides in each, the triangles are congruent.

2. If the equal angles be opposite the shorter of the two

C
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sides in each, the triangles are not necessarily con

gruent.

A B = AB,
B C -BC,
LA -zA.

i. If BCis&amp;gt;AB,

AA B C =

Proof Since BC is &amp;gt; AB, therefore B C is &amp;gt; A B .

Place A on A and A C along AC.

/-A = Z-A, and A B =AB,
B coincides with B. (34, 27)

Let BP be JL AC ;

then B C cannot lie between BA and BP (63, 2), but must

lie on the same side as BC ; and being equal to BC, the lines

B C and BC coincide (63, 3), and hence

AA B C =

2. If BC is &amp;lt; AB, the AS
A B C and ABC may or may
not be congruent.

Proof. Since AB is &amp;gt; BC,
PA is &amp;gt;

PC. (63, 2)

Let PD = PC,
then BD = BC.

Now, let AA B C be superimposed on AABC so that A
coincides with A, B with B, and A C lies along AC. Then,

since we are not given the length of A C
,
B C may coincide

with BC, and the AS A B C and ABC.be congruent;

or B C may coincide with BD, and the triangles A B C and

ABC be not congruent. q.e.d.

Hence when two triangles have two sides in the one

respectively equal to two sides in the other, and an angle

opposite one of the equal sides in each equal, the triangles

are not necessarily congruent unless some other relation

exists between them.
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The first part of the theorem gives one of the suffici

ent relations. Others are given in the following cor

ollaries.

Cor. i. If LC is a~~l, BC and BD (2nd Fig.) coincide along

BP, and the As ABD and ABC become one and the same.

Hence C must fall at C, and the AS A B C and ABC are

congruent.

Cor. 2. The Z.BDA is supplementary to BDC and therefore

to BCA. And V Z.BDA is &amp;gt; .BPA, . . Z.BDA is greater
than a right angle, and the /.BCA is less than a right

angle.

Hence if, in addition to the equalities of the theorem, the

angles C and C are both equal to, or both greater or both

less than a right angle, the triangles are congruent.

Def. Angles which are both greater than, or both equal to,

or both less than a right angle are said to be of the same

affection.

66. A triangle consists of six parts, three sides and three

angles. When two triangles are congruent all the parts in

the one are respectively equal to the corresponding parts in

the other. But in order to establish the congruence of two

triangles it is not necessary to establish independently the

respective equality of all the parts ; for, as has now been

shown, if certain of the corresponding parts be equal the

equality of the remaining parts and hence the congruence of

the triangles follow as a consequence. Thus it is sufficient

that two sides and the included angle in one triangle shall be

respectively equal to two sides and the included angle in

another. For, if we are given these parts, we are given con

sequentially all the parts of a triangle, since every triangle

having two sides and the included angle equal respectively to

those given is congruent with the given triangle.

Hence a triangle is given when two of its sides and the

angle between them are given.
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A triangle is given or determined by its elements being

given according to the following table :

1. Three sides, (58)
2. Two sides and the included angle, (52)

3. Two angles and the included side, (59)

4. Two angles and an opposite side, (64)

5. Two sides and the angle opposite the longer side, (65)

When the three parts given are two sides and the angle

opposite the shorter side, two triangles satisfy the conditions,

whereof one has the angle opposite the longer side supple

mentary to the corresponding angle in the other.

This is known as the ambiguous case in the solution of

triangles.

A study of the preceding table shows that a triangle is

completely given when any three of its six parts are given,

with two exceptions :

(1) The three angles ;

(2) Two sides and the angle opposite the shorter of the

two sides.

67. Theorem. If two triangles have two sides in the one

respectively equal to two sides in the other, but the included

angles and the third sides unequal, then

1. The one having the greater included angle has the

greater third side.

2. Conversely, the one having the greater third side has the

greater included angle.

A B =AB and B C = BC, and

i. ^ABC is &amp;gt; ^A B C,
then AC is &amp;gt; A C.

Proof. Let A be placed upon
A and A B along AB.

Since A B = AB, B falls on B.

Let C fall at some point D.

Then ABD is A B C in its new position.
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Let BE bisect the ^DBC and meet AC in E.

Join DE.

Then, in the AS DDE and CBE,
DB = BC, (hyp.)

/_DBE = z_CBE, (constr.)

and BE is common.

ADBE =ACBE,
and DE = CE.

But AC =AE + EC =AE + ED,
which is greater than AD.

AC is &amp;gt; A C . q.e.d.

2. AC is &amp;gt;
A C

,
then ^ABC is greater than ^A B C .

Proof. The proof of this follows from the Rule of Identity.

68. Theorem. i. Every point upon a bisector of an angle

is equidistant from the arms of the angle.

2. Conversely, every point equidistant from the arms of

an angle is on one of the bisectors of the angle.

i. OP and OQ are bisectors of the angle AOB, and PA,
PB are perpendiculars from P upon ,

the arms. Then

PA= PB.

Proof.-The AS POA and POB A

are congruent, since they have two

angles and an opposite side equal in

each (64); /. PA= PB.

If Q be a point on the bisector OO it is shown in a similar

manner that the perpendiculars from Q upon the arms of the

angle AOB are equal. q.e.d.

2. If PA is _L to OA and PB is JL to OB, and PA= PB,
then PO is a bisector of the angle AOB.

Proof. The As POA and POB are congruent, since they

have two sides and an angle opposite the longer equal in

each (65, i) ;
. .

and PO bisects the ^AOB.
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Similarly, if the perpendiculars from Q upon OA ana OB
are equal, QO bisects the ^BOA ,

or is the external bisector

of the zAOB. q.e.d.

LOCUS.

69. A locus is the figure traced by a variable point, which

takes all possible positions subject to some constraining

condition.

If the point is confined to the plane the locus is one or

more lines, or some form of curve.

Illustration. In the practical process of drawing a line or

curve by a pencil, the point of the pencil becomes a variable

(physical) point, and the line or curve traced is its locus.

In geometric applications the point, known as the generat

ing point, moves according to some law.

The expression of this law in the Symbols of Algebra is

known as the equation to the locus.

Cor. i. The locus of a point in the plane, equidistant from

the end-points of a given line-segment, is the right bisector

of that segment.

This appears from 54.

Cor. 2. The locus of a point in the plane, equidistant from

two given lines, is the two bisectors of the angle formed by
the lines.

This appears from 68, converse.

EXERCISES.

1. How many lines at most are determined by 5 points?

by 6 points ? by 12 points ?

2. How many points at most are determined by 6 lines ? by
12 lines ?

3. How many points are determined by 6 lines, three of which

pass through a common point ?
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4. How many angles altogether are about a triangle ? How

many at most of these angles are different in magni
tude ? What is the least number of angles of different

magnitudes about a triangle ?

5. In Fig. of 53, if Q be any point on PC, APAQ=APBQ.
6. In Fig. of 53, if the APCB be revolved about PC as an

axis, it will become coincident with APCA.
7. The medians to the sides of an isosceles triangle are

equal to one another.

8. Prove 58 from the axiom &quot; a straight line is the shortest

distance between two given points.&quot;

9. Show from 60 that a triangle cannot have two of its

angles right angles.

10. If a triangle has a right angle, the side opposite that angle

is greater than either of the other sides.

11. What is the locus of a point equidistant from two sides

of a triangle?

12. Find the locus of a point which is twice as far from one

of two given lines as from the other.

13. Find the locus of a point equidistant from a given line

and a given point.

SECTION IV.

PARALLELS, ETC

70. Def. Two lines, in the same plane, which do not

intersect at any finite point are parallel.

Next to perpendicularity, parallelism is the most important
directional relation. It is denoted by the symbol ||, which is

to be read &quot;

parallel to
&quot; or &quot;

is parallel to
&quot;

as occasion may
require.

The idea of parallelism is identical with that of sameness
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of direction. Two line-segments may differ in length or in

direction or in both.

If, irrespective of direction, they have the same length,

they are equal ; if, irrespective of length, they have the same

direction, they are parallel ;
and if both length and direction

are the same they are equal and parallel. Now when two

segments are equal one may be made to coincide with the

other by superposition without change of length, whether

change of direction is required or not. So when they

are parallel one may be made to coincide with the other

without change of direction, whether change of length is

required or not.

Axiom. Through a given point only one line can be

drawn parallel to a given line.

This axiom may be derived directly from 24.

71. Theorem. Two lines which are perpendicular to the

same line are parallel.

L and M are both J_ to N,

then L is
||
to M.

Proof. If L and M meet at any point, two

perpendiculars are drawn from that point to

the line N.

But this is impossible (61).

Therefore L and M do not meet, or they are parallel.

Cor. All lines perpendicular to the same line are parallel

to one another.

72. Theorem. Two lines which are parallel are perpen
dicular to the same line, or they have a common perpendicular.

(Converse of 71.)
L is

||
to M, and L is _L to N

;

then M is X to N.

Proof. If M is not _L to N, through any point P in M, let

K be _L to N.
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Then K is
||
to L. (71)

But M is
||
to L. (hyp.)

Therefore K and M are both
||
to L,

which is impossible unless K and M coincide.
(7&amp;gt; Ax.)

Therefore L and M are both J_ to N,
or N is a common perpendicular.

73. Def. A line which crosses two or more lines of

any system of lines is a transversal. E/
Thus EF is a transversal to the lines A a/6 B

AB and CD. V*

In general, the angles formed by c e^ ^

a transversal to any two lines are
~~

9/h

distinguished as follows /F

a and e, c and^, b andyj d and h are pairs of corresponding

angles.

c and f, e and d are pairs of alternate angles.

c and
&amp;lt;?, dfandyare pairs of interadjacent angles.

74. When a transversal crosses parallel lines

1. The alternate angles are equal in pairs.

2. The corresponding angles are equal in pairs.

3. The sum of a pair of interadjacent angles is a straight

angle. G/

AB is
||
to CD and EF is a transversal. *

r.

Proof. Through O, the middle point
of EF, draw PQ a common _|_ to AB ^H

and CD. (72)
Then AOPE =AOQF; (64)

z_AEF =^EFD. q.e.d.

Similarly the remaining alternate angles are equal.

2. z.AEG= ^CFE, etc.

Proof. LAEG= supplement of ^AEF, (40, Def. i)

and Z.CFE = supplement of .LEFD.
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But ^AEF=Z_EFD
; (74, i)

^AEG=^CFE. q.e.d.

Similarly the other corresponding angles are equal in pairs.

3. Z-AEF + z_CFE=J_.

Proof. ^AEF = /lEFD, (74, i)

and 2_CFE + z.EFD=J_; (38)
^AEF + ^_CFE=_L. q.e.d.

Cor. It is seen from the theorem that the equality of a pair

of alternate angles determines the equality in pairs of corre

sponding angles, and also determines that the sum of a pair

of interadjacent angles shall be a straight angle. So that the

truth of any one of the statements i, 2, 3 determines the truth

of the other two, and hence if any one of the statements be

proved the others are indirectly proved also.

75. Theorem. If a transversal to two lines makes a pair

of alternate angles equal, the two lines are parallel. (Con
verse of 74 in part.)

If zAEF=Z_EFD, AB and CD are parallel.

Proof. Draw PQ as in 74, J_ to AB,

(59)

*?
~~7 Q and/. AB is

||
to CD.

tol*)q.e.&amp;lt;t.

/H
Cor. It follows from 74 Cor. that if a pair of corresponding

angles are equal to one another, or if the sum of a pair of

interadjacent angles is a straight angle, the two lines are

parallel.

76. Theorem. The sum of the internal angles of a tri-

\B angle is a straight angle.

ABC is a A ;

the

A CD Proof. Let CE be
||
to AB, and

D be any point on AC produced.
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Then BC is a transversal to the parallels AB and CE ;

ziABC=^BCE. (74,

Also, AC is a transversal to the same parallels ;

(74, 2)

= supplement
J_. q.e.d.

Cor. An external angle of any triangle is equal to the sum

of the opposite internal angles. (49, 3)

For

77. From the property that the sum of the three angles of

any triangle is a straight angle, and therefore constant, we

deduce the following

1. When two angles of a triangle are given the third is

given also ;
so that the giving of the third furnishes

no new information.

2. As two parts of a triangle are not sufficient to deter

mine it, a triangle is not determined by its three angles,

and hence one side, at least, must be given (66, i).

3. The magnitude of any particular angle of a triangle does

not depend upon the size of the triangle, but upon
the form only, i.e., upon the relations amongst the

sides.

4. Two triangles may have their angles respectively equal
and not be congruent. But such triangles have the

same form and are said to be similar.

5. A triangle can have but one obtuse angle ; it is then

called an obtuse-angled triangle.

A triangle can have but one right angle, when it is called

a right-angled triangle.

All other triangles are called acute-angled triangles, and

have three acute angles.

6. The acute angles in a right-angled triangle are comple

mentary to one another.
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78. Theorem. If a line cuts a given line it cuts every

parallel to the given line.

-X- Let L cut M, and let N be any parallel

k ,

\L to M. Then L cuts N.

\ Proof. -If L does not cut N it is
||
to N.

But M is
||

to N. Therefore through the same point P two

lines L and M pass which are both
||
to N.

But this is impossible ; (70, Ax.)

L cuts N.

And N is any line
||
to M.

L cuts every line
||
to M. q.e.d.

79. Theorem. If a transversal to two lines makes the

sum of a pair of interadjacent angles less than a straight

G / angle, the two lines meet upon that side

of the transversal upon which these inter-

adjacent angles lie.

GH is a transversal to AB and CD,
c /

&quot;5 and

/H Then AB and CD meet towards B and D.

Proof. Let LK pass through E making /.KEF = Z_EFC.

Then LKis||toCD.
But AB cuts LK in E,

it cuts CD. (78)

Again, v EB lies between the parallels, and AE does not,

the point where AB meets CD must be on the side BD of

the transversal. q.e.d.

Cor. Two lines, which are respectively perpendicular to

two intersecting lines, intersect at some finite point.

Bj

80. Def. i. A closed figure having four

lines as sides is in general called a quadrangle

or quadrilateral.

Thus ABCD is a quadrangle.

2. The line-segments AC and BD which join opposite

vertices are the diagonals of the quadrangle.
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3. The quadrangle formed when two parallel lines intersect

two other parallel lines is a parallelogram, and is usually

denoted by the symbol

8i. Theorem. In any parallelogram

1. The opposite sides are equal to one another.

2. The opposite internal angles are equal to one another.

3. The diagonals bisect one another. A B

AB is
||

to CD, and AC is
||
to BD, and

AD and BC are diagonals. .

i. Then AB =CD and AC= BD. c
~~

Proof. v AD is a transversal to the parallels AB and CD,
^CDA=z_DAB. (74, i)

and v AD is a transversal to the parallels AC and BD,
z.CAD=^ADB. (74, i)

Hence, ACAD=ABDA. (59)
AB = CD and AC = BD. q.e.d.

Proof. It is shown in i that /.CAD =&amp;lt;LADB and /.BAD

/. by adding equals to equals,

Similarly, ^ACD=/_ABD. q.e.d.

3. AO = ODandBO = OC.

Proof.-The AAOC =ADOB ; (59)
AO = OD and BO = OC. q.e.d.

82. Def. i. A parallelogram which has two adjacent sides

equal is a rhombus.

Cor. i. Since AB = BC (hyp.)
= DC(8i, i)=AD.

Therefore a rhombus has all its sides

equal to one another.

Cor. 2. Since AC is the right bisector of BD,
and BD the right bisector of AC,
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Therefore the diagonals of a rhombus bisect one another

at right angles.

Def. 2. A parallelogram which has one right angle is a

rectangle, and is denoted by the symbol a.

Cor. 3. Since the opposite angle is a
], (81, 2)

and the adjacent angle is a ~~|, (74, 3)

Therefore a rectangle has all its angles right angles.

Cor. 4. The diagonals of a rectangle are equal to one

another.

Def. 3. A rectangle with two adjacent sides equal is a

square, denoted by the symbol Q.

Cor. 5. Since the square is a particular form of the rhombus
and a particular form of the rectangle,

Therefore all the sides of a square are equal to one another;

all the angles of a square are right angles ;
and the diagonals

of a square are equal, and bisect each other at right angles.

84. Theorem. If three parallel lines intercept equal seg
ments upon any one transversal they do so upon every
transversal.

AE is a transversal to the three parallels

AB, CD, and EF, so that AC = CE, and

BF is any other transversal. Then BI)
= DF.

r fa-^r- Proof. Let GDH passing through D
1

be
||
to AE.

Then AGDC and CDHE are =7s. (80, 3)

Also, Z.GBD =^DFH, v AG is
||
to EF, (74, i)

and LEDG =LYDH
; (40)

ABDG = AFDH, (64)
and BD = DF. q.e.d.

Z^/i The figure ABFE is a trapezoid.

Therefore a trapezoid is a quadrangle having only two
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sides parallel. The parallel sides are the major and minor

bases of the figure.

Cor. i. Since 2CD=AG+ EH,
=AB+BG+EF-HF

and BG=HF;

D

Or, the line-segment joining the middle points of the non-

parallel sides of a trapezoid is equal to one-half the sum of

the parallel sides.

Cor. 2. When the transversals meet upon . /

one of the extreme parallels, the figure

AEF becomes a A and CD becomes a

line passing through the middle points of

the sides AE and AF
,
and parallel to the E/ \F

base EF .
/&quot;

Therefore, I, the line through the middle point of one side

of a triangle, parallel to a second side, bisects the third side.

And, 2, the line through the middle points of two sides of

a triangle is parallel to the third side.

85. Theorem. The three medians of a triangle pass

through a common point.

CF and AD are medians intersecting in O.

Then BO is the median to AC.

Proof. Let BO cut AC in E, and let

AG
||
to FC meet BO in G. Join CG.

Then, BAG is aA and FO passes through
the middle of AB and is

||
to AG,

. . O is the middle of BG. (84, Cor 2)

Again, DO passes through the middle

points of two sides of the ACBG,
CG is

||
to AO or OD

;

AOCG is a l^H,
and AE = EC;

BO is the median to AC.

(84, Cor. 2)

(81, 3)

q.e.d.
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Def. When three or more lines meet in a point they are

said to be concurrent.

Therefore the three medians of a triangle are concurrent.

Def. 2. The point of concurrence, O, of the medians of a

triangle is the centroid Q{ the triangle.

Cor. Since O is the middle point of BG, and E is the middle

point of OG, (81, 3)

=JEB.
Therefore the centroid of a triangle divides each median

at two-thirds of its length from its vertex.

86. Theorem. The three right bisectors of the sides of a

triangle are concurrent.

Proof. Let L and N be the right

bisectors of BC and AB respectively.

Then L and N meet in some point O.

(79, Cor.)

Since L is the right bisector of BC, and N of AB, O is

equidistant from B and C, and is also equidistant from A
and B. (53)

Therefore O is equidistant from A and C, and is on the

right bisector of AC. (54)

Therefore the three right bisectors meet at O. q.e.d.

Cor. Since two lines L and N can meet in only one point

(24, Cor. 3), O is the only point in the plane equidistant

from A, B, and C.

Therefore only one finite point exists in the plane equi

distant from three given points in the plane.

Def. The point O, for reasons given hereafter, is called

the circumcentre of the triangle ABC.

87. Def. The line through a vertex of a triangle per

pendicular to the opposite side is the perpendicular to that

side, and the part of that line intercepted within the triangle

is the altitude to that side.
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Where no reference to length is made the word altitude is

often employed to denote the indefinite line forming the

perpendicular,

Hence a triangle has three altitudes, one to each side.

88. Theorem. The three altitudes of a triangle are con

current.
F B D

Proof. Let ABC be a triangle.

Complete the i 7s, ACBF,
ABDC, and ABCE.
Then V FB is

||
to AC,

and BD is
||
to AC,

FED is one line, (70, Ax.)

and FB = BD. (81, i)

Similarly, DCE is one line and DC = CE,
and EAF is one line and EA = AF.
Now, v AC is

||
to FU, the altitude to AC is to FD and

passes through B the middle point of FD. (72)
Therefore the altitude to AC is the right bisector of FD,

and similarly the altitudes to AB and BC are the right bisec

tors of DE and EF respectively.

But the right bisectors of the sides of the ADEF are

concurrent (86), therefore the altitudes of the /\ABC are

concurrent. q.e.d.

Def. The point of concurrence of the altitudes of a tri

angle is the orthocentre of the triangle.

Cor. i. If a triangle is acute-angled (77, 5), the circum-

centre and orthocentre both lie within the triangle.

2. If a triangle is obtuse-angled, the circumcentre and

orthocentre both lie without the triangle.

3. If a triangle is right-angled, the circumcentre is at the

middle point of the side opposite the right angle, and the

orthocentre is the right-angled vertex.

Def. The side of a right-angled triangle opposite the right

angle is called the hypothenuse.
D
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89. The definition of 80 admits of three different figures,

viz. :

i. The normal quadrangle (i) in which each of the in

ternal angles is less than a straight angle. When not

(i) (2) (3)

A \ !^&amp;gt;^ A B

C

otherwise qualified the term quadrangle will mean this

figure.

2. The quadrangle (2) in which one of the internal angles,

as at D, is greater than a straight angle. Such an angle in a

closed figure is called a re-entrant angle. We will call this

an inverted quadrangle.

3. The quadrangle (3) in which two of the sides cross one

another. This will be called a crossed quadrangle.
In each figure AC and BD are the diagonals, so that both

diagonals are within in the normal quadrangle, one is within

and one without in the inverted quadrangle, and both are

without in the crossed quadrangle.

The general properties of the quadrangle are common to

all three forms, these forms being only variations of a more

general figure to be .described hereafter.

90. Theorem. The sum of the internal angles of a quad

rangle is four right angles, or a circumangle.

Proof. The angles of the two AS ABD and CBD make

up the internal angles of the quadrangle.
But these are J_ + _|_ ; (76)

therefore the internal angles of the quadrangle are together

equal to four right angles. q.e.d.

Cor. This theorem applies to the inverted quadrangle as is

readily seen.
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91. Theorem. If two lines be respectively perpendicular

to two other lines, the angle between the first two is equal

or supplementary to the angle between the last two.

BC is J_ to AB
and CD is J_ to AD.
Then /.(BC . CD) is equal or supplemen

tary to L(AB . AD).

Proof. ABCD is a quadrangle, and the

z_s at B and D are right angles : (hyp.)

/.BAD + /_BCD = J_, (90)

or /.BCD is supplementary to

But ^BCD is supplementary to

and the /.(BC . CD) is either the angle BCD or DCE. (39)

/.(BC . CD) is = or supplementary to z_BAD. q.e.d.

EXERCISES.

1. ABC is a A, and A
,
B

,
C are the vertices of equilateral

AS described outwards upon the sides BC, CA, and

AB respectively. Then AA =BB = CC . (Use 52.)

2. Is Ex. i true when the equilateral As are described
&quot;

inwardly
&quot;

or upon the other sides of their bases ?

3. Two lines which are parallel to the same line are parallel

to one another.

4. L and M are two lines respectively parallel to L and M.

Thez_(L . M )
= z_(L.M).

5. On a given line only two points can be equidistant from

a given point. How are they situated with respect to

the perpendicular from the given point ?

6. Any side of a A is greater than the difference between

the other two sides.

7. The sum of the segments from any point within a A to

the three vertices is less than the perimeter of the A-
8. ABC is a A and P is a point within on the bisector of

/.A. Then the difference between PB and PC is less

than that between AB and AC, unless theA is isosceles.
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9. Is Ex. 8 true when the point P is without the
A&amp;gt;

but on

the same bisector ?

10. Examine Ex. 8 when P is on the external bisector of A,

and modify the wording of the exercise accordingly.

11. CE and CF are bisectors of the angle between AB and

CD, and EF is parallel to AB. Show that EF is

bisected by CD.

12. If the middle points of the sides of a A be joined two

and two, the A is divided into four congruent As.

13. From any point in a side of an equilateral A lines are

drawn parallel to the other sides. The perimeter of

the / 7 so formed is equal to twice a side of the A-

14. Examine Ex. 13 when the point is on a side pro

duced.

15. The internal bisector of one angle of a A and the ex

ternal bisector of another angle meet at an angle which

is equal to one-half the third angle of the A.
1 6. O is the orthocentre of the AABC. Express the angles

AOB, BOC, and COA in terms of the angles A, B,

and C.

17. P is the circumcentre of the AABC. Express the angles

APB, BPC, and CPA in terms of the angles A, B,

and C.

1 8. The joins of the middle points of the opposite sides of

any quadrangle bisect one another.

19. The median to the hypothenuse of a right-angled triangle

is equal to one-half the hypothenuse.

20. If one diagonal of a / 7 be equal to a side of the figure,

the other diagonal is greater than any side.

21. If any point other than the point of intersection of the

diagonals be taken in a quadrangle, the sum of the

line-segments joining it with the vertices is greater

than the sum of the diagonals.

22. If two right-angled AS have the hypothenuse and an

acute angle in the one respectively equal to the like

parts in the other, the As are congruent.
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23. The bisectors of two adjacent angles of a / 7 are J_ to

one another.

24. ABC is a A- The angle between the external bisector

of B and the side AC is J(OA).
25. The external bisectors of B and C meet in D. Then

26. A line L which coincides with the side AB of the

rotates about B until it coincides with BC, without at

any time crossing the triangle. Through what angle
does it rotate ?

27. The angle required in Ex. 26 is an external angle of the

triangle. Show in this way that the sum of the three

external angles of a triangle is a circumangle, and that

the sum of the three internal angles is a straight angle.

28. What property of space is assumed in the proof of Ex. 27?

29. Prove 76 by assuming that AC rotates to AB by crossing

the triangle in its rotation, and that AB rotates to CB,
and finally CB rotates to CA in like manner.

SECTION V.

THE CIRCLE.

92. Def. i. A Circle is the locus of a point which, movinj
in the plane, keeps at a constant

distance from a fixed point in the

plane.

The compasses, whatever be their

form, furnish us with two points, A
and B, which, from the rigidity of ^

the instrument, are supposed to

preserve an unvarying distance B A

from one another. Then, if one of the points A is fixed,

while the other B moves over the paper or other plane
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surface, the moving point describes a physical circle. The

limit of this physical circle, when the curved line has its

thickness diminished endlessly, is the geometric circle.

Def. 2. The fixed point is the centre of the circle, and the

distance between the fixed and moveable points is the radius

of the circle.

The curve itself, and especially where its length is under

consideration, is commonly called the circumference of the

circle.

The symbol employed for the circle is 0.

93 From the definitions of 92 we deduce the following

corollaries :

1. All the radii of a are equal to one another.

2. The is a closed figure ;
so that to pass from a point

within the figure to a point without it, or vice versa, it is

necessary to cross the curve.

3. A point is within the 0, on the 0, or without the 0,

according as its distance from the centre is less, equal to, or

greater than the radius.

4. Two 0s which have equal radii are congruent ; for, if

the centres coincide, the figures coincide throughout and form

virtually but one figure.

Def. Circles which have their centres coincident are

called concentric circles.

94. Theorem. Aline can cut a circle in two points, and in

two points only.

Proof. Since the is a closed curve (93, 2), a line which

cuts it must lie partly within the and partly without. And

the generating point (69) of the line must cross the in

passing from without to within, and again in passing from

within to without.

. . a line cuts a at least twice if it cuts the at all.
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Again, since all radii of the same are equal, if a line

could cut a three times, three equal segments could be

drawn from a given point, the centre of the 0, to a given line.

And this is impossible (63, 3).

Therefore a line can cut a only twice. q.e.d.

Cor. i. Three points on the same circle cannot be in line
;

or, a circle cannot pass through three points which are in line.

95. Def. i. A line which cuts a is a secant or secant-line.

Def. 2. The segment of a secant

included within the is a chord.

Thus the line L, or AB, is a

secant, and the segment AB is a

chord. (21)

The term chord whenever involv

ing the idea of length means the segment having its end-

points on the circle. But sometimes, when length is not

involved, it is used to denote the whole secant of which it

properly forms a part.

Def. 3. A secant which passes through the centre is a

centre-line, and its chord is a diameter.

Where length is not implied, the term diameter is some

times used to denote the centre-line of which it properly

forms a part.

Thus M is a centre-line and CD is a diameter.

96. Theorem. Through any three points not in line

1. One circle can be made to pass.

2. Only one circle can be made to pass.

Proof. Let A, B, C be three points

not in line.

JoinAB and BC, and let L and M be the A

right bisectors ofAB and BC respectively.

I. Then, because AB and BC intersect at B,

L and M intersect at some point O, (79, Cor.)
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and O is equidistant from A, B, and C. (86)
/. the with centre at O, and radius equal to OA, passes

through B and C. q.e.d.

2. Any through A, B, and C must have its centre equally
distant from these three points.

But O is the only point in the plane equidistant from A, B,

and C. (86, Cor.)
And we cannot have two separate 0s having the same

centre and the same radius.
(93&amp;gt; 4)

.*. only one circle can pass through A, B, and C. q.e.d.

Cor. i. Circles which coincide in three points coincide

altogether and form one circle.

Cor. 2. A point from which more than two equal segments
can be drawn to a circle is the centre of that circle.

Cor. 3. Since L is a centre-line and is also the right

bisector of AB,
. . the right bisector of a chord is a centre line.

Cor. 4. The AAOB is isosceles, since OA=OB. Then, if

D be the middle of AB, OD is a median to the base AB and

is the right bisector of AB.
(55&amp;gt;

Cor. 2)

/. a centre-line which bisects a chord is perpendicular to

the chord.

Cor. 5. From Cor. 4 by the Rule of Identity,

A centre line which is perpendicular to a chord bisects the

chord.

. . the right bisector of a chord, the centre-line bisecting

the chord, and the centre-line perpendicular to the chord are

one and the same.

97. From 92, Def., a circle is given when the position of

its centre and the length of its radius are given. And, from

96, a circle is given when any three points on it are given.

It will be seen hereafter that a circle is determined by three

points even when two of them become coincident, and in

higher geometry it is shown that three points determine a
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circle, under certain circumstances, when all three of the

points become coincident.

Def. Any number of points so situated that a circle can

pass through them are said to be concyclic, and a rectilinear

figure (14, Def.) having its vertices concyclic is said to be

inscribed in the circle which passes through its vertices, and

the circle is said to circumscribe the figure.

Hence the circle which passes through three given points
is the circumcircle of the triangle having these points as ver

tices, and the centre of that circle is the circnmcentre of the

triangle, and its radius is the circumradius of the triangle.

(86, Def.)

A like nomenclature applies to any rectilinear figure having
its vertices concyclic.

98. Theorem. If two chords bisect one another they are

both diameters.

If AP = PD and CP= PB, then P is the

centre.

Proof. Since P is the middle point of

both AD and CB (hyp.), therefore the right

bisectors of AD and CB both pass through P.

But these right bisectors also pass through the centre;

(96, Cor. 3) .-. P is the centre. (24, Cor. 3) q.e.d.

99. Theorem. Equal chords are equally distant from the

centre
; and, conversely, chords equally dis

tant from the centre are equal.

If AB = CD and OE and OF are the per

pendiculars from the centre upon these

chords, then OE = OF
;
and conversely, if

OE = OF, then AB-CD.

Proof. Since OE and OF are centre lines J_ to AB and CD,
AB and CD are bisected in E and F. (96, Cor. 5)

/. in the AS QBE and ODF
OB = OD, EB = FD,
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and they are right-angled opposite equal sides,

AOBE^AODF,
and OE= OF.

Conversely, by the Rule of Identity, if OE = OF, then

AB = CD. q.e.d.

100. Theorem. Two secants which make equal chords

.B , p make equal angles with the centre-line

through their point of intersection.

AB = CD, and PO is a centre-line

through the point of intersection of

AB and CD. Then

Proof. Let OE and OF be _L to

AB and CD from the centre O.

Then OE = OF, (99)
AOFE =AOPF, (65)

and ^APO=^CPO. q.e.d.

Cor. i. v E and F are the middle

points of AB and CD, (96, Cor. 5)

/. PE= PF, PA= PC, and PB = PD.

Hence, secants which make equal chords make two pairs of

equal line-segments between their point of intersection and

the circle.

Cor. 2. From any point two equal line-segments can be

drawn to a circle, and these make equal angles with the

centre-line through the point.

101. As all circles have the same form, two circles which

have equal radii are equal and congruent (93, 4), (51).

Hence equal and congruent are equivalent terms when

applied to the circle.

Def. i. Any part of a circle is an arc.

The word equal when applied to arcs means congruence
or capability of superposition. Equal arcs come from the

same circle or from equal circles.
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Def. 2. A line which divides a figure into two parts such

that when one part is revolved about the line it may be made
to fall on and coincide with the other part is an axis of

symmetry of the figure.

102. Theorem. A centre-line is an axis of symmetry of

the circle. A^- -^B
s Ti

Proof. Let AB and CD be equal
chords meeting at P, and let PHOG
be a centre line.

Let the part of the figure which lies

upon the F side of PG be revolved

about PG until it comes to the plane
on the E side of PG.

Then / &amp;lt;LGPA= ^GPC, (100)
. . PC coincides with PA.

And v PB = PD
and PA= PC, (100, Cor. i)

. . D coincides with B,

and C coincides with A.

And the arc HCG, coinciding in three points with the arc

HAG, is equal to it, and the two arcs become virtually but

one arc. (96, Cor. i)

Therefore PG is an axis of symmetry of the 0, and divides

it into two equal arcs. q.e.d.

Def. Each of the arcs into which a centre-line divides the

circle is a semicircle.

Any chord, not a centre-line, divides the circle into unequal

arcs, the greater of which is called the major arc, and the

other the minor arc.

Cor. i. By the superposition of the theorem we see that

arc AB = arc CD, arc HB= arc HD, arc GA= arc GC,
arc BDCA = arc DBAC. (ist Fig.)

But the arcs BDCA and AB are the major and minor arcs
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to the chord AB, and the arcs DBAC and CD are major and

minor arcs to the chord CD.

Therefore equal chords determine equal arcs, major being

equal to major and minor to minor.

Cor. 2. Equal arcs subtend equal angles at the centre.

103. Theorem. Parallel secants intercept equal arcs on a

AB is
||
to CD,

arc AC= arc DB.

Proof. Let EF be the centre-line _|_ to AB.

Then EF is _L to CD also. (72)
When EBDF is revolved about EF,

B comes to coincidence with A, and D with C, and the arc

BD with the arc AC,
arc AC = arc DB. q.e.d.

Cor. Since the chord AC = chord BD,
Therefore parallel chords have the chords joining their

end-points equal.

EXERCISES.

1. Any plane closed figure is cut an even number of times by
an indefinite line.

2. In the figure of Art. 96, if A, B, and C shift their relative

positions so as to tend to come into line, what becomes

of the point O ?

3. In the same figure, if ABC is a right angle where is the

point O ?

4. Given a circle or a part of a circle, show how to find its

centre.

:. Three equal segments cannot be drawn to a circle from

a point without it.

6. The vertices of a rectangle are concyclic.

7. If equal chords intersect, the segments of one between the
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point of intersection and the circle are respectively

equal to the corresponding segments of the other.

8. Two equal chords which have one end-point in common
lie upon opposite sides of the centre.

9. If AB and CD be parallel chords, AD and BC, as also

AC and BD, meet upon the right bisector of AB or CD.

10. Two secants which make equal angles with a centre-line

make equal chords in the circle if they cut the circle.

(Converse of 100)
11. What is the axis of symmetry of (a) a square, (b) a

rectangle, (c) an isosceles triangle, (d) an equilateral

triangle ? Give all the axes where there are more than

one.

12. When a rectilinear figure has more than one axis of

symmetry, what relation in direction do they hold to

one another ?

13. The vertices of an equilateral triangle trisect its circum-

circle.

14. A centre-line perpendicular to a chord bisects the arcs

determined by the chord.

15. Show how to divide a circle (a) into 6 equal parts, (&) into

8 equal parts.

16. If equal chords be in a circle, one pair of the connecters

of their end-points are parallel chords.

(Converse of 103, Cor.)

THE PRINCIPLE OF CONTINUITY.

104. The principle of continuity is one of the most prolific

in the whole range of Mathematics.

Illustrations of its meaning and application in Geometry
will occur frequently in the sequel, but the following are

given by way of introduction.

i. A magnitude is continuous throughout its extent.

Thus a line extends from any one point to another without
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breaks or interruptions ; or, a generating point in passing
from one position to another must pass through every inter

mediate position.

2. In Art. 53 we have the theorem Every point on the

right bisector of a segment is equidistant from the end-points

of the segment.
In this theorem the limiting condition in the hypothesis is

that the point must be on the right bisector of the segment.

Now, if P be any point on the right bisector, and we move
P along the right bisector, the limiting condition is not at

any time violated during this motion, so that P remains con

tinuously equidistant from the end-points of the segment

during its motion.

We say then that the property expressed in the theorem is

continuous while P moves along the right bisector.

3. In Art. 97 we have the theorem The sum of the in

ternal angles of a quadrangle is four right angles.

The limiting condition is that the figure shall be a quad

rangle, and that it shall have in

ternal angles.

D v 2 &quot;^ Now, let ABCD be a quadrangle.

Then the condition is not violated

if D moves to D
x
or D

2
. But in

the latter case the normal quad

rangle ABCD becomes the inverted quadrangle ABCD 2 ,

and the theorem remains true. Or, the theorem is continu

ously true while the vertex D moves anywhere in the plane,

so long as the figure remains a quadrangle and retains four

internal angles.

Future considerations in which a wider meaning is given

to the word &quot;

angle
&quot;

will show that the theorem is still true

even when D, in its motion, crosses one of the sides AB or

BC, and thus produces the crossed quadrangle.
The Principle of Continuity avoids the necessity of proving

theorems for different cases brought about by variations in

the disposition of the parts of a diagram, and it thus gener-
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alizes theorems or relieves them from dependence upon the

particularities of a diagram. Thus the two figures of Art.

100 differ in that in the first figure the secants intersect

without the circle, and in the second figure they intersect

within, while the theorem applies with equal generality to both.

The Principle of Continuity may be stated as follows :

When a figure, which involves or illustrates some geometric

property, can undergo change, however small, in any of its

parts or in their relations without violating the conditions

upon which the property depends, then the property is con-

timwus while the figure undergoes any amount of change of

the same kind within the range of possibility.

105. Let AB be a chord dividing the Q into unequal arcs,

and let P and Q be any points upon
the major and minor arcs respectively.

(102, Def.)
Let O be the centre.

1. The radii OA and OB form two

angles at the centre, a major angle
denoted by a and a minor angle de

noted by /3. These together make up
a circumangle.

2. The chords PA, PB, and QA, QB form two angles at

the circle, of which APB is the minor angle and AQB is the

major angle.

3. The minor angle at the circle, APB, and the minor angle
at the centre, /3, stand upon the minor arc, AQB, as a base.

Similarly the major angles stand upon the major arc as base.

4. Moreover the ^APB is said to be in the arc APB, so

that the minor angle at the circle is in the major arc, and the

major angle at the circle is in the minor arc.

5. When B moves towards B all the minor elements

increase and all the major elements decrease, and when B
comes to B the minor elements become respectively equal to

the major, and there is neither major nor minor.
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When B, moving in the same direction, passes B
,
the

elements change name, those which were formerly the minor

becoming the major and vice versa.

106. Theorem. An angle at the circle is one-half the

corresponding angle at the centre, major corresponding to

major and minor to minor.

p Z.AOB minor is 2^APB.

Proof. Since AAPO is isosceles,

and ^OAP +^OPA= 2^O PA.
But ^AOC

(76, Cor.)

c

Similarly

. . adding, Z.AOB minor= 2/.APB. q.e.d.

The theorem is thus proved for the minor angles. But

since the limiting conditions require only an angle at the

circle and an angle at the centre, the theorem remains true

while B moves along the circle. And when B passes B
the angle APB becomes the major angle at the circle, and

the angle AOB minor becomes the major angle at the

centre.

the theorem is true for the major angles.

Cor. i. The angle in a given arc is constant. (105, 4)

Cor. 2. Since z_APB = ^z_AOB minor,

and ^AOB =UAOB major,

and / /.AOB minor + ^AOB major= 4 right angles (37)

LAPB +LAQB=a straight angle.

And APBQ is a concyclic quadrangle.

Hence a concyclic quadrangle has its opposite internal

angles supplementary. (40, Def. i)

Cor. 3. D being on AQ produced,

is supplementary to Z.AOB.
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But Z.APB is supplementary to

Hence, if one side of a concyclic quadrangle

be produced, the external angle is equal to

the opposite internal angle.

Cor. 4. Let B come to B . (Fig. of 106)
Then ^AOB is a straight angle,

/.APB is a right angle.

But the arc APB is a semicircle, (102, Def.)

Therefore the angle in a semicircle is a right angle.

107. Theorem. A quadrangle which has its opposite

angles supplementary has its vertices concyclic.

(Converse of 106

ABCD is a quadrangle whereof the zADC
is supplementary to lABC

;
then a circle

can pass through A, B, C, and D.

Proof. If possible let the through A,

B, and C cut AD in some point P.

Join P and C.

Then ^APC is supplementary to ^ABC, (io6
c

and 2LADC is supplementary

which is not true. (60)

/. the cannot cut AD in any point other than D,
Hence A, B, C, and D are concyclic. q.e.d.

Cor. i. The hypothenuse of a right-angled triangle is the

diameter of its circumcircle. (88, 3, Def.
; 97, Def.)

Cor. 2. When P moves along the the AAPC (last figure)

has its base AC constant and its vertical angle APC constant.

Therefore the locus of the vertex of a triangle which has a

constant base and a constant vertical angle is an arc of a

circle passing through the end-points of the base.

This property is employed in the trammel which is used to

describe an arc of a given circle.

E



66 SYNTHETIC GEOMETRY.

It consists of two rules (16) L and M joined at a

L ^\ determined angle. When it is made
to slide over two pins A and B, a

pencil at P traces an arc passing

through A and B.

108. Theorem. The angle between two intersecting se

cants is the sum of those angles in the circle which stand

on the arcs intercepted between the

secants, when the secants intersect

within the circle, and is the difference

of these angles when the secants

intersect without the circle.

Proof.-i. _
, (60)

q.e.d.

EXERCISES.

1. If a six-sided rectilinear figure has its vertices concyclic,

the three alternate internal angles are together equal
to a circumangle.

2. In Fig. 105, when B comes to O, BQ vanishes
;
what is

the direction of BQ just as it vanishes ?

3. Two chords at right angles determine four arcs of which a

pair of opposite ones are together equal to a semi

circle.

4. A, B, C, D are the vertices of a square, and A, E, F of an

equilateral triangle inscribed in the same circle.

What is the angle between the lines BE and DF?
between BF and ED ?
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SPECIAL SECANTS TANGENT.

109. Let P be a fixed point on the S and O a variable

one.

The position of the secant L, cut

ting the circle in P and O, depends

upon the position of O.

As Q moves along the the secant

rotates about P as pole. While Q
makes one complete revolution along T P\ T

the the secant L passes through two

special positions. The first of these is when O is farthest

distant from P, as at Q ,
and the secant L becomes a centre

line. The second is when O comes into coincidence with P,

and the secant takes the position TT and becomes a tangent.

Def. i. A tangent to a circle is a secant in its limiting

position when its points of intersection with the circle become

coincident.

That the tangent cannot cut or cross the is evident.

For if it cuts the at P it must cut it again at some other

point. And since P represents two points we would have the

absurdity of a line cutting a circle in three points. (94)

Def. 2. The point where P and O meet is called the point

of contact. Being formed by the union of two points it repre

sents both, and is therefore a double point.

From Defs. i and 2 we conclude

1. A point of contact is a double point.

2. As a line can cut a only twice it can touch a only once.

3. A line which touches a cannot cut it.

4. A is determined by two points if one of them is a

given point of contact on a given line
; or, only one

circle can pass through a given point and touch a

given line at a given point. (Compare 97.)
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no . Theorem. A centre-line and a tangent to the same

point on a circle are perpendicular to one another.

L is a centre-line and T a tan

gent, both to the point P. Then L
is _L to T.

Proof. v T has only the one point

P in common with the 0, every point

of T except P lies without the 0. . .

f&amp;lt;

if O is the centre on the line L
,
OP

\

\ is the shortest segment from O to T.

OP, or L
,
is _L to T. (63, i) q.c.d.

Cor. i. Tangents at the end-points of a diameter are

parallel.

Cor. 2. The perpendicular to a tangent at the point of con

tact is a centre-line. (Converse of the theorem.)

Cor. 3. The perpendicular to a diameter at its end-point is

a tangent.

iii. Theorem. The angles between a tangent and a

chord from the point of contact are

respectively equal to the angles in the

opposite arcs into which the chord

divides the circle.

TP is a tangent and PQ a chord to

the same point P, and A is any point on

the 0. Then

/_QPT=LOAP.

Proof. Let PD be a diameter.

Then ^QAP=^QDP,
and ^DQP is a

|.

Also ^DPQ is comp. of LQPT,
and ^-DPQ is comp. of ^QDP,

Similarly, the L

(106, Cor. i)

(106, Cor. 4)

(40, Def. 3)

(77, 6)

q.e.d.
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1 1 2. Theorem. Two circles can intersect in only two

points.

Proof. If they can intersect in three points, two circles

can be made to pass through the same three points. But

this is not true. (96)
.*. two circles can intersect in only two points.

Cor. Two circles can touch in only one point. For a

point of contact is equivalent to two points of intersection.

113. Theorem. The common centre-line of two intersect

ing circles is the right bisector

of their common chord.

O and O are the centres of S

and S
,
and AB is their common

chord. Then OO is the right

bisector of AB.

Proof. Since AO = BO,
.and AO = BO

,

.*. O is on the right bisector of AB. (54)

Similarly O is on the right bisector of AB,
/. OO is the right bisector of AB.

Cor. i. By the principle of continuity, OO always bisects

AB. Let the circles separate until A and B coincide. Then
the circles touch and OO passes through the point of contact.

Def. Two circles which touch one another have external

contact when each circle lies without the other, and internal

contact when one circle lies within the other.

Cor. 2. Since OO (Cor. i) passes through the point of

contact when the circles touch one another

(a} When the distance between the centres of two circles

is the sum of their radii, the circles have external

contact.

(b) When the distance between the centres is the difference

of the radii, the circles have internal contact.
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(c) When the distance between the centres is greater than

the sum of the radii, the circles exclude each other

without contact.

(d) When the distance between the centres is less than

the difference of the radii, the greater circle includes

the smaller without contact.

(e) When the distance between the centres is less than the

sum of the radii and greater than their difference, the

circles intersect.

114. Theorem. From any point without a circle two

tangents can be drawn to the

circle.

Proof. Let S be the and P
the point. Upon the segment
PO as diameter let the QS be

described, cutting 0S in A and

B. Then PA and PB are both

tangents to S.

(106, Cor. 4)

( 1 10, Cor. 3)

For /LOAP is in a semicircle and is a ~~],

. . AP is tangent to S.

Similarly BP is tangent to S.

Cor. i. Since PO is the right bisector of AB, (113)
PA= PB. (53)

Hence calling the segment PA the tangent from P to the

circle, when length is under consideration, we have The two

tangents from any point to a circle are equal to one another.

Def. The line AB, which passes through the points of

contact of tangents from P, is called the chord of contactfor
the point P.

115. Def. i. The angle at which two circles intersect is

the angle between their tangents at the point of intersection.

Def. 2. When two circles intersect at right angles they are

said to cut each other orthogonally.
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The same term is conveniently applied to the intersection

of any two figures at right angles.

Cor. i. If, in the Fig. to 1 14, PA be made the radius of a

circle and P its centre, the circle will cut the circle S ortho

gonally. For the tangents at A are respectively perpendicular

to the radii.

Hence a circle S is cut orthogonally by any circle having

its centre at a point without S and its radius the tangent

from the point to the circle S .

116. The following examples furnish theorems of some

importance.

Ex. i. Three tangents touch the circle

S at the points A, B, and C, and inter

sect to form the AA B C. O being the

centre of the circle,

Proof. AC = BC,
and BA = CA , (114, Cor. i)

AAOC ^ABOC ,
and ABOA =
and

q.e.d.

Similarly ^AOB = 2_A OB
,
and ^BOC = 2_B OC.

If the tangents at A and C are fixed, and the tangent at B
is variable, we have the following theorem :

The segment of a variable tangent intercepted by two fixed

tangents, all to the same circle, subtends a fixed angle at the

centre.

Ex. 2. If four circles touch two and two externally, the

points of contact are concyclic.

Let A, B, C, D be the centres of the circles, and P, O, R,

S be the points of contact.

Then AB passes through P, BC through Q, etc. (113, Cor. i )
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Now, ABCD being a quadrangle,

(90)
But the sum of all the internal angles of the four AS APS,

BQP, CRQ, and DSR is
8~&amp;gt;,

and

, etc.,

Now

and P, Q, R, S are concyclic (107). q.e.d.

Ex. 3. If the common chord of two intersecting circles

subtends equal angles at the two circles, the circles are equal.

AB is the common chord, C, C points upon the circles, and

Let O, O be the centres. Then ^AOB =^AO B. (106)
And the triangles OAB and O AB being isosceles are con

gruent, . . OA = O A, and the circles are equal. (93, 4)

Ex. 4. If O be the orthocentre of a AABC, the circum-

circles to the AS ABC, AOB, BOC, COA
are all equal.

V AX and CZ are _L respectively to

BC and AB,
_CBA= sup. of^XOZ

= sup. of z_COA.

But D being any point on the arc

AS2C, ^CDA is the sup. of ^COA.

and the 0s S and S 2 are equal by Ex. 3.

In like manner it may be proved that the 0S is equal to the

0s S3 and S^

Ex. 5. If any point O be joined to the vertices of a AABC,
the circles having OA, OB, and OC as diameters intersect

upon the triangle.

Proof. Draw OX J_ to EC and OY J_ to AC.
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V .iOXB=~~l&amp;gt; the on OB as diameter passes through X.

(107, Cor. i)

Similarly the on OC as diameter passes through X.

Therefore the 0s on OB and OC intersect in X
;
and in like

manner it is seen that the 0s on OC and OA intersect in Y,

and those on OA and OB intersect in Z, the foot of the _L

from O to AB.

Ex. 6. The feet of the medians and the feet of the altitudes

in any triangle are six concyclic points, and the circle bisects

that part of each altitude lying

between the orthocentre and the

vertex.

D, E, F are the feet of the

medians, i.e., the middle points

of the sides of the AABC. Let

the circle through D, E, F cut A E
&quot;

&amp;lt;f&quot;&quot;

H c

the sides in G, H, K.

Now FD is
||
to AC and ED is

||
to AB, (84, Cor. 2)

But ^FDE = i.FHE, (106, Cor. i)

.-. AAFH is isosceles, and AF = FH = FB
;

AHB=~], (!o6 ,
Cor. 4)

and H is the foot of the altitude from B.

Similarly, K and G are feet of the altitudes from C and A.

Again, ^_KPH =z_KFH = 2/.KAH. And A, K, O, H are

concyclic (107), and AO is a diameter of the circumcircle,

therefore P is the middle point of AO.

Similarly, Q is the middle point of BO, and R of CO.

Def. The circle S passing through the nine points D, E,

F, G, H, K, and P, O, R, is called the nine-points circle of

the AABC.
Cor. Since the nine-points circle of ABC is the circum

circle of ADEF, whereof the sides are respectively equal to

half the sides of the AABC, therefore the radius of the nine-

points circle of any triangle is one-half that of its circumcircle.
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EXERCISES.

1. In 105 when P passes B where is the

2. A, B, C, D are four points on a circle whereof CD is a

diameter and E is a point on this diameter. If

^AEB = 2^ACB, E is the centre.

3. The sum of the alternate angles of any octagon in a circle

is six right angles.

4. The sum of the alternate angles of any concyclic polygon
of 2n sides is 2(71 1) right angles.

5. If the angle of a trammel is 60 what arc of a circle will

it describe ? what if its angle is n ?

6. Trisect a right angle and thence show how to draw a

regular 1 2-sided polygon in a circle.

7. If r, r be the radii of two circles, and d the distance

between them, the circles touch when d=rr.
8. Give the conditions under which two circles have 4, 3, 2,

or i common tangent.

9. Prove Ex. 2, 116, by drawing common tangents to the

circles at P, Q, R, and S.

10. A variable chord passes through a fixed point on a circle,

to find the locus of the middle point of the chord.

11. A variable secant passes through a fixed point, to find

the locus of the middle point of the chord determined

by a fixed circle.

12. In Ex. n, what is the locus of the middle point of the

secant between the fixed point and the circle ?

13. In a quadrangle circumscribed to a circle the sums of the

opposite sides are equal in pairs ;
and if the vertices

be joined to the centre the sums of the opposite angles

at the centre are equal in pairs.

14. If a hexagon circumscribe a circle the sum of three

alternate sides is equal to that of the remaining

three.

15. If two circles are concentric, any chord of the outer

which is tangent to the inner is bisected by the point



THE CIRCLE. 75

of contact ;
and the parts intercepted on any secant

between the two circles are equal to one another.

1 6. If two circles touch one another, any line through the

point of contact determines arcs which subtend equal

angles in the two circles.

17. If any two lines be drawn through the point of contact of

two touching circles, the lines determine arcs whose

chords are parallel.

1 8. If two diameters of two touching circles are parallel, the

transverse connectors of their end-points pass through
the point of contact.

19. The shortest chord that can be drawn through a given

point within a circle is perpendicular to the centre-line

through that point.

20. Three circles touch each other externally at A, B, and C.

The chords AB and AC of two of the circles meet the

third circle in D and E. Prove that DE is a diameter

of the third circle and parallel to the common centre

line of the other two.

21. A line which makes equal angles with one pair of oppo
site sides of a concyclic quadrangle makes equal angles

with the other pair, and also with the diagonals.

22. Two circles touch one another in A and have a common

tangent BC. Then .BAC is a right angle.

23. OA and OB are perpendicular to one another, and AB is

variable in position but of constant length. Find the

locus of the middle point of AB.

24. Two equal circles touch one another and each touches

one of a pair of perpendicular lines. What is the locus

of the point of contact of the circles ?

25. Two lines through the common points of two intersecting

circles determine on the circles arcs whose chords are

parallel.

26. Two circles intersect in A and B, and through B a secant

cuts the circles in C and D. Show that Z.CAD is

constant, the direction of the secant being variable.
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27. At any point in the circumcircle of a square one of the

sides subtends an angle three times as great as that

subtended by the opposite side.

28. The three medians of any triangle taken in both length
and direction can form a triangle.

SECTION VI.

CONSTRUCTIVE GEOMETRY,
INVOLVING THE PRINCIPLES OF THE FIRST FIVE

SECTIONS, ETC.

117. Constructive Geometry applies to the determination

of geometric elements which shall have specified relations to

given elements.

Constructive Geometry is Practical when the determined

elements are physical, and it is Theoretic when the elements

are supposed to be taken at their limits, and to be geometric
in character. (12)

Practical Constructive Geometry, or simply &quot;Practical

Geometry,&quot; is largely used by mechanics, draughtsmen, sur

veyors, engineers, etc., and to assist them in their work

numerous aids known as &quot; Mathematical Instruments &quot; have

been devised.

A number of these will be referred to in the sequel.

In &quot;Practical Geometry
&quot;

the &quot; Rule &quot;

(16) furnishes the

means of constructing a line, and the &quot;

Compasses
&quot;

(92) of

constructing a circle.

In Theoretic Constructive Geometry we assume the ability

to construct these two elements, and by means of these we
are to determine the required elements.

1 1 8. To test the &quot;

Rule.&quot;

Place the rule on a plane, as at R, and draw a line AB
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along its edge. Turn the rule into the position R . If the

edge now coincides with the line ,
,

.

the rule is true.

This test depends upon the pro

perty that two finite points A and B determine one line.

(24, Cor. 2)

Def. A construction proposed is in general called a

proposition (2) and in particular a problem.
A complete problem consists of (i) the statement of what

is to be done, (2) the construction, and (3) the proof that the

construction furnishes the elements sought.

119. Problem. To construct the right bisector of a given

line segment.

Let AB be the given segment. p)

Construction. With A and B as centres

and with a radius AD greater than half of A&quot;

AB describe circles.

Since AB is &amp;lt; the sum of the radii and

&amp;gt; their difference, the circles will meet in

two points P and Q. (ii3&amp;gt;
Cor. 2, e)

The line PQ is the right bisector required.

Proof. P and Q are each equidistant from A and B and

. . they are on the right bisector of AB
; (54)

/. PQ is the right bisector of AB.

Cor. i. The same construction determines C, the middle

point of AB.

Cor. 2. If C be a given point on a line, and we take A and

B on the line so that CA=CB, then the right bisector of the

segment AB passes through C and is _L to the given line.

. . the construction gives the perpendicular to a given line

at a given point in the line.

120. Problem. To draw a perpendicular to a given line

from a point not on the line.
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Let L be the given line and P be the point.

Constr. Draw any line through
P meeting L at some point A.

Bisect AP in C (119, Cor. i), and

with C as centre and CP as radius
&quot;

describe a circle.

If PA is not _L to L, the will

cut L in two points A and D.

Then PD is the J_ required.

Proof. PDA is the angle in a semicircle,

^PDA is a ~|. (106, Cor. 4)

Cor. Let D be a given point in L. With any centre C
and CD as radius describe a circle cutting L again in some

point A. Draw the radius ACP, and join D and P. Then

DP is _L to L.

. . the construction draws a J_ to L at a given point in L.

(Compare 119, Cor. 2)

Cor. 2. Let L be a given line and C a given point.

To draw through C a line parallel to L.

With C as the centre of a circle, construct a figure as

given. Bisect PD in E (119, Cor. i). Then CE is
||
to L.

For C and E are the middle points of two sides of a triangle

of which L is the base. (84, Cor. 2)

121. 77/6 Square. The square consists of two rules with

their edges fixed permanently at

right angles, or of a triangular

plate of wood or metal having
two of its edges at right angles.

To test a square.

Draw a line AB and place the

square as at S, so that one edge
coincides with the line, and along

the other edge draw the line

CD.

Next place the square in the position S . If the edges can



CONSTRUCTIVE GEOMETRY. 79

now be made to coincide with the two lines the square

is true.

This test depends upon the fact that a right angle is one-

half a straight angle.

The square is employed practically for drawing a line _L to

another line.

Cor. i. The square is employed to

draw a series of parallel lines, as in

the figure.

Cor. 2. To draw the bisectors of an angle by means of the

square.

Let AOB be the given angle. Take OA = OB, and at A
and B draw perpendiculars to OA and OB.

Since AOB is not a straight angle, these perpendiculars
meet at some point C. (79, Cor.)

Then OC is the internal bisector of _AOB. For the tri

angles AOC and BOC are evidently congruent.

The line drawn through O J_ to OC is the external bisector.

122. Problem. Through a given point in a line to draw a

line which shall make a given angle B

with that line.

Let P be the given point in the

line L, and let X be the given

angle.

Constr. From any point B in /p A L

the arm OB draw a _|_ to the arm OA. (120)
Make PA = OA, and at A draw the J_ A B making

A B = AB. PB is the line required.

Proof. The triangles OBA and PB A are evidently con

gruent, and .-. IBOA=X=_B PA .

Cor. Since PA might have been taken to the left of P, the

problem admits of two solutions. When the angle X is a

right angle the two solutions become one.
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123. The Protractor. This instrument has different forms

depending upon the accuracy re

quired of it. It usually consists of

a semicircle of metal or ivory divided

into degrees, etc. (41). The point C
is the centre. By placing the straight

edge of the instrument in coincidence with a given line AB
so that the centre falls at a given point C, we can set off any

angle given in degrees, etc., along the arc as at D. Then
the line CD passes through C and makes a given angle

with AB.

124. Problem. Given the sides of a triangle to construct it.

Constr. Place the three sides of

the triangle in line, as AB, BC,
CD.

With centre C and radius CD
c D describe a circle, and with centre

B and radius BA describe a circle.

Let E be one point of intersection of these circles.

Then /\KEC is the triangle required.

Proof. BE = BA and CE = CD.

Since the circles intersect in another point E
,
a second

triangle is formed. But the two triangles being congruent

are virtually the same triangle.

Cor. i. When AB=BC=CA the triangle is equilateral.

(53, Def. 2)

In this case the circle AE passes through C and the circle

DE through B, so that B and C become the centres and BC
a common radius.

Cor. 2. When BC is equal to the sum or difference of AB
and CD the circles touch (113, Def.) and the triangle takes

the limiting form and becomes a line.

When BC is greater than the sum or less than the differ-
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ence of AB and CD the circles do not meet (113, Def.) and
no triangle is possible.

Therefore that three line-segments may form a triangle,

each one must be less than the sum and greater than the

difference of the other two.

125. The solution of a problem is sometimes best effected

by supposing the construction made, and then by reasoning
backwards from the completed figure to some relation

amongst the given parts by means of which we can make
the construction.

This is analogous to the process employed for the solution

of equations in Algebra, and a more detailed reference will

be made to it at a future stage.

The next three problems furnish examples

126. Problem. To construct a triangle when two sides

and the median to the third side are given.
Let a and b be two sides and n

the median to the third side.

Suppose ACB is the required

triangle having CD as the given
median.

By completing the / 7ACBC
and joining DC

,
we have DC

equal to CD and in the same line, and BC =AC (81) ;
and

the triangle CC B has CC =
2;/, CB = ^, and BC =AC =

,

and is constructed by 124.

Thence the triangle ACB is readily constructed.

Cor. Since CC is twice the given median, and since the

possibility of the triangle ACB depends upon that of CC B,
therefore a median of a triangle is less than one-half the

sum, and greater than one-half the difference of the conter

minous sides. (124, Cor. 2)
F



82 SYNTHETIC GEOMETRY.

127. Problem. To trisect a given line-segment, i.e., to

divide it into three equal parts.

Constr. Let AB be the segment.

Through A draw any line CD and make
AC=AD. Bisect DB in E, and join CE,
cutting AB in F.

Then AF is *

Proof. CBD is a A and CE and BA are two medians.

AF=IAB. (85, cor.)

Bisecting FB gives the other point of division.

128. Problem. To construct a A when the three medians

B ,
are given.

Let /, m, n be the given

medians, and suppose ABC
to be the required triangle.

Then
BE= ;;z, and CF= ;;,

AEG
AD =

&amp;lt;,

AO = f/, OB=f?;z, and O~F = ^i,

/.in the AAOB we have two sides and the median to the

third side given. Thence AAOB is constructed by 126

and 127.

Then producing FO until OC = 2FO, C is the third vertex

of the triangle required.

Ex. To describe a square whose sides shall pass through
four given points.

Let P, Q, R, S be the given points, and

suppose ABCD to be the square required.
&quot;P

Join P and O upon opposite sides of the

square, and draw QG ||
to BC. Draw SX

_L to PO to meet BC in E, and draw EF
||
to CD7 Then AQPG =AFSE,

and ~SE = PQ.
R Hence the construction :

Join any two points PO, and through a third point S draw

\
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SX J_ to PO. On SX take SE-PO and join E with the

fourth point R. ER is a side of the square in position and

direction, and the points first joined, P and O, are on oppo
site sides of the required square.

Thence the square is readily constructed.

Since SE may be measured in two directions along the

line SX, two squares can have their sides passing through
the same four points P, O, R, S, and having P and Q on

opposite sides.

Also, since P may be first connected with R or S, two

squares can be constructed fulfilling the conditions and

having P and Q on adjacent sides.

Therefore, four squares can be constructed to have their

sides passing through the same four given points.

CIRCLES FULFILLING GIVEN CONDITIONS.

The problems occurring here are necessarily of an elemen

tary character. The more complex problems require relations

not yet developed.

129. Problem. To describe a circle to touch a given line

at a given point.

P is a given point in the line L.

Constr. Through P draw M J_ to L.

A circle having any point C, on M, as

centre and CP as radius touches L at P.

Proof. L is _L to the diameter at its

end-point, therefore L is tangent to the circle. (110, Cor. 3)

Def. As C is any point on M, any number of circles may
be drawn to touch L at the point P, and all their centres lie

on M.

Such a problem is indefinite because the conditions are

not sufficient to determine a particular circle. If the circle
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varies its radius while fulfilling the conditions of the problem,
the centre moves along M ; and M is called the centre-locus

of the variable circle.

Hence the centre-locus of a circle which touches a fixed

line at a fixed point is the perpendicular to the line at that

point.

Cor. If the circle is to pass through a second given point

Q the problem is definite and the circle is a particular one,

since it then passes through three fixed points, viz., the double

point P and the point Q. (iO9&amp;gt; 4)

In this case z_CQP=^CPQ.
But I.CPQ is given, since P, O, and the line L are given,

/. ^CQP is given and C is a fixed point.

Problem. To describe a circle to touch two given

non-parallel lines.

Let L and M be the lines inter

secting at O.

Draw N, N, the bisectors of the

angle between L and M . ( 1 2 1
,
Cor. 2)

From C, any point on either bi

sector, draw CA J_ to L.

The circle with centre C and radius CA touches L, and if

CB be drawn JL to M, CB = CA. (68)
Therefore the circle also touches M.

As C is any point on the bisectors the problem is indefinite,

and the centre-locus of a circle which touches two intersecting

lines is the two bisectors of the angle between the lines .

131. Problem. To describe a circle to touch three given

lines which form a triangle.

L, M, N are the lines forming the triangle.

Constr. Draw I
1?
E

1?
the internal and external bisectors

of the angle A ;
and I 2,

E 2,
those of the angle B.

is
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. . 1
1
and I 2 meet at s6me point O (79) and are not J_ to one

another and therefore E x
and E 2 meet at some point O 3 .

(79, Cor.)

Also l
l and E 2 meet at some point O 1?

and similarly I 2 and

E
t meet at O.,.

The four points O, O lt O 2 ,
O3 are the centres of four circles

each of which touches the three lines L, M, and N.

Proof. Circles which touch M and N have 1
1 and E

t
as

their centre-locus (130), and circles which touch N and L
have I 2 and E 2 as their centre-locus.

. . Circles which touch L, M, and N must have their

centres at the intersections of these loci.

But these intersections are O, O 15
O2 ,

and O 3 ,

. . O, O 1?
O 2 ,

and O 3 are the centres of the circles required.

The radii are the perpendiculars from the centres upon any
one of the lines L, M, or N.

Cor. i. Let I 3 and E 3 be the bisectors of the ^C. Then,
since O is equidistant from L and M, I 3 passes through O. (68)

. . the three internal bisectors of the angles of a triangle

are concurrent.

Cor. 2. Since O 3 is equidistant from L and M, I3 passes

through O 3 . (68)
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. . the external bisectors of two angles of a triangle and the

internal bisector of the third angle are concurrent.

Def. i. When three or more points are in line they are

said to be collinear.

Cor. 3. The line through any two centres passes through a

vertex of the AABC.
. . any two centres are collinear with a vertex of the A-
The lines of collinearity are the six bisectors of the three

angles A, B, and C.

Def. 2 With respect to the AABC, the circle touching
the sides and having its centre at O is called the inscribed

circle or simply the in-cirde of the triangle.

The circles touching the lines and having centres at O
t ,

O 2 ,
and O3 are the escribed or ex-circles of the triangle.

REGULAR POLYGONS.

132. Def. i. A closed rectilinear figure without re-entrant

angles (89, 2) is in general called a polygon.

They are named according to the number of their sides as

follows :

3, triangle or trigon ;

4, quadrangle, or tetragon, or quadrilateral ;

5, pentagon ; 6, hexagon ; 7, heptagon ;

8, octagon ; 10, decagon ; 12, dodecagon ;
etc.

The most important polygons higher than the quadrangle
are regular polygons.

Def. 2. A regular polygon has its vertices concyclic, and

all its sides equal to one another.

The centre of the circumcircle is the centre of the polygon.

133. Theorem. If ;/ denotes the number of sides of a
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regular polygon, the magnitude of an internal angle is

(2-4
j right angles.

Proof. Let AB, BC be two consecu

tive sides of the polygon and O its centre.

Then the triangles AOB, BOC are

isosceles and congruent.

But

and (132, Def. 2)

= 2- 4
right angles,

&quot;Hfrf;
Cor. The internal angles of the regular polygons expressed

in right angles and in degrees are found, by putting proper

values for w, to be as follows :

Equilateral triangle, f 60 Octagon, . f 135

Square, I 90 Decagon, . f 144

Pentagon, . . . . f 108 Dodecagon, f 150

Hexagon, . . . . | 120

134. Problem. On a given line-segment as side to con

struct a regular hexagon. A,

Let AB be the given segment.

Constr. On AB construct the equi- J
lateral triangle AOB (124, Cor. i), and

with O as centre describe a circle through

A, cutting AO and BO produced in D
and E. Draw FC, the internal bisector of z_AOE. Then

ABCDEF is the hexagon.

Proof. Z.AOB = ^EOD = f~l
and
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And the chords AB, BC, CD, etc., being sides of congruent

equilateral triangles are all equal.

Therefore ABCDEF is a regular hexagon.

Cor. Since AOB is an equilateral triangle, AB=AO ;

. . the side of a regular hexagon is equal to the radius of

its circumcircle.

135. Problem. To determine which species of regular

polygons, each taken alone, can fill the plane.

That a regular polygon of any species may be capable of

filling the plane, the number of right angles in its internal

angle must be a divisor of 4. But as no internal angle can

be so great as two right angles, the only divisors, in 133,

Cor., are f, I, and ,
which give the quotients 6, 4, and 3.

Therefore the plane can be filled by 6 equilateral triangles,

or 4 squares, or 3 hexagons.

It is worthy of note that, of the three regular polygons

which can fill the plane, the hexagon includes the greatest

area for a given perimeter. As a consequence, the hexagon
is frequently found in

Nature, as in the cells of

bees, in certain tissues of

plants, etc.

Ex. i. Let D, E, F be

points of contact of the in-

circle, and P, P , P&quot;, R, R ,

R&quot;, etc., of the ex-circles.

ThenAP =AP ,CP =
CP&quot;,

andBP= BP&quot;,(ii4,Cor.i)

.-. AP +AP
=AB+BC+AC

and, denoting the perimeter of the triangle by 2s, we have
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Similarly, AR = s-6= AR&quot;,
RR =s-a= KR&quot;, etc.

Again, CD = CE = -AE = - AY = b-(c- BF)

Similarly, AE =AF = s - a=
BR&quot;, etc.

These relations are frequently useful.

If we put A/ to denote the distance of the vertex A from

the adjacent points of contact of the in-circle, and A, Ac to

denote its distances from the points of contact of the ex-circles

upon the sides b and c respectively, we have

Az = B^r = C$= s a,

EXERCISES.

1. In testing the straightness of a &quot;rule&quot; three rules are

virtually tested. How ?

2. To construct a rectangle, and also a square.

3. To place a given line-segment between two given lines

so as to be parallel to a given line.

4. On a given line to find a point such that the lines joining
it to two given points may make equal angles with the

given line.

5. To find a point equidistant from three given points.

6. To find a line equidistant from three given points. How
many lines ?

7. A is a point on line L and B is not on L. To find a point
P such that PAPB may be equal to a given segment.

8. On a given line to find a point equidistant from two

given points.

9. Through a given point to draw a line which shall form an

isosceles triangle with two given lines. How many
solutions ?
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10. Through two given points on two parallel lines to draw

two lines so as to form a rhombus.

11. To construct a square having one of its vertices at a

given point, and two other vertices lying on two given

parallel lines.

12. Through a given point to draw a line so that the intercept

between two given parallels may be of a given length.

13. To construct a triangle when the basal angles and the

altitude are given.

14. To construct a right-angled triangle when the hypothen-
use and the sum of the sides are given.

15. To divide a line-segment into any number of equal parts.

1 6. To construct a triangle when the middle points of its

sides are given.

17. To construct a parallelogram when the diagonals and

one side are given.

1 8. Through a given point to draw a secant so that the chord

intercepted by a given circle may have a given length.

19. Draw a line to touch a given circle and be parallel to a

given line. To be perpendicular to a given line.

20. Describe a circle of given radius to touch two given lines.

21. Describe a circle of given radius to touch a given circle

and a given line.

22. Describe a circle of given radius to pass through a given

point and touch a given circle.

23. Describe a circle ofgiven radius to touch two given circles.

24. To inscribe a regular octagon in a circle.

25. To inscribe a regular dodecagon in a circle.

26. A, B, C, D, ..., are consecutive vertices of a regular

octagon, and A, B
,
C

,
D

, ..., of a regular dodecagon
in the same circle. Find the angles between AC and

B C; between BE and B E. (Use 108.)

27. Show that the plane can be rilled by

(a) Equilateral triangles and regular dodecagons.

(b) Equilateral triangles and squares.

(c) Squares and regular octagons.



PART II.

PRELIMINARY.

136. Def. i. The area of a plane closed figure is the por

tion of the plane contained within the figure, this portion

being considered with respect to its extent only, and without

respect to form.

A closed figure of any form may contain an area of any

given extent, and closed figures of different forms may con

tain areas of the same extent, or equal areas.

Def. 2. Closed figures are equal to one another when they
include equal areas. This is the definition of the term
&quot;

equal
&quot; when comparing closed figures.

Congruent figures are necessarily equal, but equal figures

are not necessarily congruent. Thus, aA and a en may have

equal areas and therefore be equal, although necessarily

having different forms.

137. Areas are compared by superposition. If one area

can be superimposed upon another so as exactly to cover it,

the areas are equal and the figures containing the areas are

equal. If such superposition can be shown to be impossible
the figures are not equal.

In comparing areas we may suppose one of them to

be divided into any requisite number of parts, and these

parts to be afterwards disposed in any convenient order,

since the whole area is equal to the sum of all its parts.
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Illustration. ABCD is a square.
Then the AABC =AADC, and they are therefore equal.

Now, if AD and DE be equal and in

line, the AS ADC and EDC are con

gruent and equal.

Therefore the AABC may be taken

A 5 E from its present position and be put into

the position of CDE. And the square ABCD is thus trans

formed into the AACE without any change of area
;

DABCD=AACE.
It is evident that a plane closed figure may be considered

from two points of view.

1. With respect to the character and disposition of the

lines which form it. When thus considered, figures group
themselves into triangles, squares, circles, etc., where the

members of each group, if not of the same form, have at

least some community of form and character.

2. With respect to the areas enclosed.

When compared from the first point of view, the capability

of superposition is expressed by saying that the figures are

congruent. When compared from the second point of view,

it is expressed by saying that the figures are equal.

Therefore congruence is a kind of higher or double

equality, that is, an equality in both form and extent of area.

This is properly indicated by the triple lines (
=

) for con

gruence, and the double lines (
=

) for equality.

138. Def. The altitude of a figure is the line-segment

which measures the distance of the farthest point of a figure

from a side taken as base.

The terms base and altitude are thus correlative. A tri

angle may have three different bases and as many corre

sponding altitudes. (87)

In the rectangle (82, Def. 2) two adjacent sides being

perpendicular to one another, either one may be taken as the
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base and the adjacent one as the altitude. The rectangle

having two given segments as its base and altitude is called

the rectangle on these segments.

Notation. The symbol en stands for the word rectangle

and / 7 for parallelogram.

Rectangles and parallelograms are commonly indicated by

naming a pair of their opposite vertices.

SECTION I.

COMPARISON OF AREAS RECTANGLES,
PARALLELOGRAMS, TRIANGLES.

139. Theorem. i. Rectangles with equal bases and equal
altitudes are equal.

2. Equal rectangles with equal bases have equal altitudes.

3. Equal rectangles with equal altitudes have equal bases.

1. In the as BD and FH, if

AD = EH,
and AB = EF,
then iiuBD^aFH.

Proof. Place E at A and EH along
AD. Then, as ^FEH =.BAD

=&quot;~],
EF will lie along AB.

And because EH -AD and EF-AB, therefore H falls at

D and F at B, and the two CDS are congruent and therefore

equal. q.e.d.

2. IfdiBD-nFH and AD-EH, then AB = EF.

Proof It EF is not equal to AB, let AB be &amp;gt; EF.

Make AP =EF and complete the aPD.
Then cnPD =aFH

, by the first part,

but cnBD=aFH, (hyp.)
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aPD=c=]BD, which is not true,

. . AB and EF cannot be unequal, or

AB = EF. q.e.d.

3. IfnBD=i=iFH and AB = EF, then AD = EH.

Proof. Let AB and EF be taken as bases and AD and

EH as altitudes (138), and the theorem follows from the

second part. q.e.d.

Cor. In any rectangle we have the three parts, base, alti

tude, and area. If any two of these are given the third is

given also.

140. Theorem. A parallelogram is equal to the rectangle

E B F c on its base and altitude.

/ AC is a / 7 whereof AD is the base

and DF is the altitude.

Then H7AC=a on AD and DF.

Complete the aADFE by drawing AE _L to CB

produced.
Then AAEB =ADFC, v AE= DF, AB = DC,

.-. ADFC may be transferred to the position AEB, and

ZZZ7ABCD becomes the cuAEFD,
/ZZ7AC = imon AD andDF. q.e.d.

Cor. i. Parallelograms with equal bases and equal altitudes

are equal. For they are equal to the same rectangle.

Cor. 2. Equal parallelograms with equal bases have equal

altitudes, and equal parallelograms with equal altitudes have

equal bases.

Cor. 3. If equal parallelograms be upon the same side of

the same base, their sides opposite the common base are

in line.

141. Theorem.^ triangle is equal to one-half the rect-.

angle on its base and altitude.
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ABC is a triangle of which AC is the base and BE the

altitude. i B p

Then AABC=|n on AC and BE.

Proof. Complete the ZZZ7ABDC, of

which AB and AC are adjacent sides.

Then AABC =ADCB,
AABC=|^=7AD =|a on AC and BE. (140) q.e.d.

Cor. i. A triangle is equal to one-half the parallelogram

having the same base and altitude.

Cor. 2. Triangles with equal bases and equal altitudes are

equal. For they are equal to one-half of the same rectangle.

Cor. 3. A median of a triangle bisects the area. For the

median bisects the base.

Cor. 4. Equal triangles with equal bases have equal alti

tudes, and equal triangles with equal altitudes have equal bases.

Cor. 5. If equal triangles be upon the same side of the

same base, the line through their vertices is parallel to their

common base.

142. Theorem. If two triangles are upon opposite sides

of the same base

1. When the triangles are equal, the base bisects the seg

ment joining their vertices ;

2. When the base bisects the segment joining their vertices,

the triangles are equal. (Converse of i.) B

ABC and ADC are two triangles upon
opposite sides of the common base AC.

I \ \H F_

i. If
A

then BH = HD.

Proof Let BE and DF be altitudes,
D

Then v AABC =AADC, /. BE = DF,
AEBH =AFDH, andBH = HD. q.e.d.

2. IfBH = HD, then AABC =AADC.



96 SYNTHETIC GEOMETRY.

Proof. Since BH = HD, .v AABH=AADH,
and ACBH=ACDH. (141, Cor. 3)

/.adding, AABC=AADC. q.e.d.

143. Def. By the sum or difference of two closed figures is

meant the sum or difference of the areas of the figures.

If a rectangle be equal to the sum of two other rectangles

its area may be so superimposed upon the others as to cover

both.

144. Theorem. If two rectangles have equal altitudes,

their sum is equal to the rectangle on their common altitude

and the sum of their bases.

Proof. Let the ens X and Y, having

equal altitudes, be so placed as to have

A c E their altitudes in common at CD, and so

that one en may not overlap the other.

Then ^BDC = /.CDF=~],
BDF is a line. (38, Cor. 2)

Similarly ACE is a line.

But BD is
||
to AC, and BA is

||
to DC

||
to FE

;
therefore

AF is the en on the altitude AB and the sum of the bases

AC and CE
;
and the cnAF =cnAD +nCF. q.e.d.

Cor. i. If two triangles have equal altitudes, their sum is

equal to the triangle having the same altitude and having a

base equal to the sum of the bases of the two triangles.

Cor. 2. If two triangles have equal altitudes, their sum is

equal to one-half the rectangle on their common altitude

and the sum of their bases.

Cor. 3. If any number of triangles have equal altitudes,

their sum is equal to one-half the rectangle on their common
altitude and the sum of their bases.

In any of the above, &quot;base&quot; and &quot;altitude&quot; are inter

changeable.
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145. Theorem. Two lines parallel to the sides of a

parallelogram and intersecting upon a diagonal divide the

parallelogram into four parallelograms such that the two

through which the diagonal does not pass are equal to one

another.

In the/Z=7ABCD,EFis ||
toADand

GH is
||
to BA, and these intersect at

O on the diagonal AC.

Then

AABC=AADC, and AAEO=AAHO,
and AOGC =AOFC ; (141, Cor. i)

but =7BO=AABC-AAEO-AOGC,
and =^OD=AADC-AAHO-AOFC.

Z^BO = /=7OD. q.e.d.

Cor. i. / 7BF=/ 7GD.

Cor. 2. If z=Z7BO = H7OD, O is on the diagonal AC.

(Converse of the theorem.)

For if O is not on the diagonal, let the diagonal cut EF in

O . Then =JBO = Z=7O D. (145)
But =7BO is &amp;lt; /Z^BO, and CUJQ D is &amp;gt;

/ 7OD
;

. . / 7RO is &amp;gt;
/ 7OD, which is contrary to the hypothesis;

. . the diagonal cuts EF in O.

Ex. Let ABCD be a trapezoid.
B

(84, Uef.) In line with AD make
jDE = BC, and in line. with BC make L,

Then BF=AE and BFEA is a

But the trapezoid CE can be superimposed on the trape
zoid DB, since the sides are respectively equal, and

&amp;lt;LF
= A, and Z_E = B, etc.

trapezoid BD=ziZ7 BE,
or, a trapezoid is equal to one-half the rectangle on its alti

tude and the sum of its bases.



98 SYNTHETIC GEOMETRY.

EXERCISES.

1. To construct a triangle equal to a given quadrangle.
2. To construct a triangle equal to a given polygon.

3. To bisect a triangle by a line drawn through a given

point in one of the sides.

4. To construct a rhombus equal to a given parallelogram,

and with one of the sides of the parallelogram as

its side.

5. The three connectors of the middle points of the sides

of a triangle divide the triangle into four equal

triangles.

6 Any line concurrent with the diagonals of a parallelogram
bisects the parallelogram.

7. The triangle having one of the non-parallel sides of a

trapezoid as base and the middle point of the opposite

side as vertex is one-half the trapezoid.

8. The connector of the middle points of the diagonals of a

quadrangle is concurrent with the connectors of the

middle points of opposite sides.

9. ABCD is a parallelogram and O is a point within. Then

What does this become when O is without ?

TO, ABCD is a parallelogram and O is a point within. Then

What does this become when O is without? (This

theorem is important in the theory of Statics.)

1 1. Bisect a trapezoid by a line through the middle point of

one of the parallel sides. By a line through the

middle point of one of the non-parallel sides.

12. The triangle having the three medians of another tri

angle as its sides has three-fourths the area of

the other.
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POLYGON AND CIRCLE.

146. Def. The sum of all the sides of a polygon is called

its perimeter, and when the polygon is regular every side is

at the same distance from the centre. This distance is the

apothem of the polygon.
Thus if ABC D...LA be a regu

lar polygon and O the centre

(132, Def. 2), the triangles OAB,
OBC, ... are all congruent, and U

OP = OQ = etc.

AB + BC + CD + ... + LA is the perimeter and OP, per

pendicular upon AB, is the apothem.

147. Theorem. A regular polygon is equal to one-half the

rectangle on its apothem and perimeter.

Proof. The triangles AOB, BOC, ... LOA have equal

altitudes, the apothem OP, /. their sum is one-half the en on

OP and the sum of their bases AB + BC + ...LA. (144, Cor. 3)

But the sum of the triangles is the polygon, and the sum of

their bases is the perimeter.

. . a regular polygon = Jen on its apothem and perimeter.

148. Of a limit. A limit or limiting value of a variable

is the value to which the variable by its variation can be

made to approach indefinitely near,

but which it can never be made to

pass.

Let ABCD be a square in its cir-

cumcircle. If we bisect the arcs AB, E

BC, CD, and DA in E, F, G, and H,

we have the vertices of a regular

octagon AEBFCGDHA. Now, the

area of the octagon approaches nearer

to that of the circle than the area of the square does
;
and the



IOO SYNTHETIC GEOMETRY.

perimeter of the octagon approaches nearer to the length of

the circle than the perimeter of the square does
;
and the

apothem of the octagon approaches nearer to the radius of

the circle than the apothem of the square does.

Again, bisecting the arcs AE, EB, BE, etc., in I, J, K, etc.,

we obtain the regular polygon of 16 sides. And all the fore

going parts of the polygon of 16 sides approach nearer to

the corresponding parts of the circle than those of the

octagon do.

It is evident that by continually bisecting the arcs, we may
obtain a series of regular polygons, of which the last one may
be made to approach the circle as near as we please, but that

however far this process is carried the final polygon can never

become greater than the circle, nor can the final apothem
become greater than the radius.

Hence the circle is the limit of the perimeter of the regular

polygon when the number of its sides is endlessly increased,

and the area of the circle is the limit of the area of the poly

gon, and the radius of the circle is the limit of the apothem
of the polygon under the same circumstances.

149. Theorem. A circle is equal to one-half the rectangle

on its radius and a line-segment equal in length to the circle.

Proof. The is the limit of a regular polygon when the

number of its sides is endlessly increased, and the radius of

the is the limit of the apothem of the polygon.

But, whatever be the number of its sides, a regular polygon
is equal to one-half the en on its apothem and perimeter. (147)

. . a is equal to one-half the en on its radius and a line-

segment equal to its circumference.

EXERCISES.

i. Show that a regular polygon may be described about a

circle, and that the limit of its perimeter when the

number of its sides is increased indefinitely is the

circumference of the circle.
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2. The difference between the areas of two regular polygons,

one inscribed in a circle and the other circumscribed

about it, vanishes at the limit when the number of

sides of the polygons increases indefinitely.

3. What is the limit of the internal angle of a regular polygon
as the number of its sides is endlessly increased ?

SECTION II.

MEASUREMENT OF LENGTHS AND AREAS.

150. Def. i. That part of Geometry which deals with

the measures and measuring of magnitudes is Metrical

Geometry.

2. To measure a magnitude is to determine how many unit

magnitudes of the same kind must be taken together to form

the given magnitude. And the number thus determined is

called the measure of the given magnitude with reference to

the unit employed. This number may be a whole or a frac

tional number, or a numerical quantity which is not arith

metically expressible. The word &quot;number&quot; will mean any
of these.

3. In measuring length, such as that of a line-segment, the

unit is a segment of arbitrary length called the unit-length.

In practical work we have several such units as an inch, a

foot, a mile, a metre, etc., but in the Science of Geometry the

unit-length is quite arbitrary, and results obtained through it

are so expressed as to be independent of the length of the

particular unit employed.

4. In measuring areas the unit magnitude is the area of the

square having the unit-length as its side. This area is the

unit-area. Hence the unit-length and unit-area are not both
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arbitrary, for if either is fixed the other is fixed also, and

determinable.

This relation between the unit-length and the unit-area is

conventional, for we might assume the unit-area to be the

area of any figure which is wholly determined by a single

segment taken as the unit-length : as, for example, an equi

lateral triangle with the unit-length as side, a circle with the

unit-length as diarneier, etc. The square is chosen because

it c friers decided advantages over every other figure.

For the sake- of conciseness we shall symbolize the term

unit-length by u.L and unit-area by ii.a.

5. When two magnitudes are such that they are both

capable of being expressed arithmetically in terms of some
common unit they are commensurable^ and when this is not

the case they are incommensurable.

Illus Let ABCD be a square, and let

EF and HG be drawn X to BD, and EH
and FG _L to AC. Then EFGH is a

square (82, Cor. 5), and the triangles

AEB, APB, BFC, BPC, etc., are all equal
H D G to one another.

If AB be taken as ./., the area of the square AC is the

u.a.\ and if EF be taken as uj., the area of the square

EG is the n.a.

In the first case the measure of the square AC is I, and

that of EG is 2
;
and in the latter case the measure of the

square EG is i, and that of AC is ^. So that in both cases

the measure of the square EG is double that of the square AC.

/. the squares EG and AC are commensurable.

Now, if AB be taken as //./., EF is not expressible arith

metically, as will be shown hereafter.

.*. AB and EF are incommensurable.

151. Let AB be a segment trisected at E and F (127),

and let AC be the square on AB. ThenAD = AB. And
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if AD be trisected in the points K and M, and through

E and F ||s
be drawn to AD, and through

K and M ||s be drawn to AB, the figures

i, 2, 3, 4, 5, 6, 7, 8, 9 are all squares equal to

one another.

Now, if AB be taken as #./., AC is the u.a.
;

and if AE be taken as ./., any one of the

small squares, as AP, is the u.a. And the segment AB con

tains AE 3 times, while the square AC contains the square

AP in three rows with three in each row, or 3
2 times.

.*. if any assumed u.t. be divided into 3 equal parts for a

new ./., the corresponding u.a. is divided into 3
2
equal parts

for a new u.a. And the least consideration will show that this

is true for any whole number as well as 3.

. . i. If an assumed u.l. be divided into n equal parts for a

new u.L, the corresponding u.a. is divided into n2
equal parts

for a new u.a.\ n denoting any whole number.

Again, if any segment be measured by the u.l. AB, and

also by the u.l. AE, the measure of the segment in the latter

case is three times that in the former case. And if any area

be measured by the u.a. AC, and also by the u.a. AP, the

measure of the area in the latter case is 3
2 times its measure

in the former case. And as the same relations are evidently

true for any whole number as well as 3,

. . 2. If any segment be measured by an assumed u.l. and

also by th of the assumed u.l. as a new u.l., the measure of
11

the segment in the latter case is n times its measure in the

former. And if any area be measured by the corresponding

u.a.s the measure of the area in the latter case is n2 times its

measure in the former case
;
n being any whole number.

This may be stated otherwise as follows :

By reducing an assumed u.l. to th of its original length,

we increase the measure of any given segment n times, and

we increase the measure of any given area ;z
2 times

;
n being

a whole number.
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In all cases where a u.l. and a u.a. are considered together,

they are supposed to be connected by the relation of 1 50,

3 and 4.

152. Theorem. The number of unit-areas in a rectangle
is the product of the numbers of unit-lengths in two adjacent
sides.

The proof is divided into three cases.

1. Let the measures of the adjacent sides with respect to

B c the unit adopted be whole numbers.

Let AB contain the assumed u. l. a

times, and let AD contain it b times.

Then, by dividing AB into a equal
A

&quot;

b parts and drawing, through each point
of division, lines

||
to AD, and by dividing AD into b equal

parts and drawing, through each point of division, lines
||
to

AB, we divide the whole rectangle into equal squares, of

which there are a rows with b squares in each row.

the whole number of squares is ab.

But each square has the n.L as its side and is therefore the u.a.

u.a.s in AC = w./.s in AB x u.l.s in AD.

We express this relation more concisely by writing symbolic

ally aAC=AB.AD,
where cnAC means &quot;the number of u.a.s in oAC,&quot; and AB and

AD mean respectively &quot;the numbers of u.l.s in these sides.&quot;

And in language we say, the area of a rectangle is the pro
duct of its adjacent sides

;
the proper interpretation of which

is easily given.

2. Let the measures of the adjacent sides with respect to

the unit adopted be fractional.

Then, v AB and AD are commensurable, some unit will

be an aliquot part of each (150, 5). Let the new unit be

-th of the adopted unit, and let AB contain p of the new

units, and AD contain q of them.

The measure of tmAC in terms of the new KM. is pq
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(i 52, i), and the measure of the aAC in terms of the adopted

unit is
^f (151, 2)

But the measure of AB in terms of the adopted //./. is

^, and of AD it is g
. (151, 2)

pq p q
and 1

= - ?
-?

tr n n

or nAC-AB.AD.
Illus. Suppose the measures of AB and AD to some

unit-length to be 3.472 and 4.631. By taking a //./. 1000

times smaller these measures become the whole numbers

3472 and 4631, and the number of corresponding n.a.s in the

rectangle is 3472 x 4631 or 16078832 ;

and dividing by icoo2
,
the measure of the area with respect to

the original u.L is 16.078832 = 3.472x4.631.

3. Let the adjacent sides be incommensurable. There is

now no u.L that will measure both AB _B c

and AD.
IfnAC is not equal to AB. AD, let it

be equal to AB . AE, where AE has a A EHD
measure different from AD

;
and suppose, first, that AE is &amp;lt;

AD, so that E lies between A and D.

With any u.L which will measure AB, and which is less

than ED, divide AD into parts. One point of division at

least must fall between E and D
;

let it fall at H. Complete
the rectangle BH.
Then AB and AH are commensurable, and

but aBD-AB.AE; (hyp.)
and cuBH is &amp;lt; oBD

;

AB.AH is &amp;lt; AB. AE.
and AB being a common factor

AH is &amp;lt; AE
;
which is not true.

. . If aAC =AB . AE, AE cannot be &amp;lt; AD, and similarly
it may be shown that AE cannot be &amp;gt; AD ;

. . AE = AD, or

AB.AD. q.e.d.
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153. The results of the last article in conjunction with

Section I. of this Part give us the following theorems.

1. The area of a parallelogram is the product of its base

and altitude. (140)

2. The area of a triangle is one-half the product of its base

and altitude.

3. The area of a trapezoid is one-half the product of its

altitude and the sum of its parallel sides.
045&amp;gt; Ex.)

4. The area of any regular polygon is one-half the product

of its apothem and perimeter. 047)

5. The area of a circle is one-half the product of its radius

and a line-segment equal to its circumference. (H9)

Ex. i. Let O, O be the centres of the in-circle and of the

ex-circle to the side EC (131);
and let OD, O P&quot; be perpen
diculars on BC, OE, O P per

pendiculars on AC, and OF, O P
on AB. Then

and

. OF + IBC.OD+ICA.OE (153, 2)

= Ar x perimeter= rs,

where s is the half perimeter ;

A=
-

Ex. 2. AABC =AAO B +AAO C -ABO C
= P . AB + JrO P . AC -

P&quot;. BC

where r is the radius of the ex-circle to side a
;

= r (s-a\

Similarly, &=
r&quot;(s-&)
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EXERCISES.

,. -
r r

3. What relation holds between the radius of the in-circle

and that ofan ex-circle when the triangle is equiangular?

Note. When the diameter of a circle is taken as the //./.

the measure of the circumference is the inexpressible numeri

cal quantity symbolized by the letter TT
}
and which, expressed

approximately, is 3.1415926....

4. What is the area of a square when its diagonal is taken

as the u.l. ?

5. What is the measure of the diagonal of a square when

the side is taken as the ./.? (150? 5)

6. Find the measure of the area of a circle when the di

ameter is the u.L When the circumference is the //./.

7. If one line-segment be twice as long as another, the

square on the first has four times the area of the

square on the second.
05i&amp;gt; 2)

8. If one line-segment be twice as long as another, the

equilateral triangle on the first is four times that on

the second. (141)

9. The equilateral triangle on the altitude of another equilat

eral triangle has an area three-fourths that of the other.

10. The three medians of any triangle divide its area into

six equal triangles,

i r. From the centroid of a triangle draw three lines to the

sides so as to divide the triangle into three equal

quadrangles.

12. In the triangle ABC X is taken in BC, Y in CA, and Z

in AB, so that BX = BC, CY= CA, and AZ = -AB.

Express the area of the triangle XYZ in terms of that

of ABC.

13. Generalize 12 by making BX = -BC, etc.

/,

s
14. Show that a=

s(i-
r

^
=

-(r&quot;+ r
&quot;}.
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SECTION III.

GEOMETRIC INTERPRETATION OF
ALGEBRAIC FORMS.

1 54. We have a language of symbols by which to express
and develop mathematical relations, namely, Algebra. The

symbols of Algebra are quantitative and operative, and it is

very desirable, while giving a geometric meaning to the

symbol of quantity, to so modify the meanings of the sym
bols of operation as to apply algebraic forms in Geometry.
This application shortens and generalizes the statements of

geometric relations without interfering with their accuracy.

Elementary Algebra being generalized Arithmetic, its

quantitative symbols denote numbers and its operative sym
bols are so defined as to be consistent with the common

properties of numbers.

Thus, because 2 + 3 = 3 + 2 and 2.3= 3.2, we say that

a + b= b+ a and ab=ba.

This is called the commutative law. The first example is

of the existence of the law in addition, and the second of its

existence in multiplication.

The commutative law in addition may be thus expressed :

A sum is independent of the order of its addends
;
and in

multiplication A product is independent of the order of its

factors.

Again, because 2(3 + 4)
= 2 . 3 + 2 . 4, we say that

This is called the distributive law and may be stated

thus : The product of multiplying a factor by the sum of

several terms is equal to the sum of the products arising from

multiplying the factor by each of the terms.

These two are the only laws which need be here mentioned.

And any science which is to employ the forms of Algebra
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must have that, whatever it may be, which is denoted by the

algebraic symbol of quantity, subject to these laws.

155. As already explained in 22 we denote a single line-

segment, in the one-letter notation, by a single letter, as a,

which is equivalent to the algebraic symbol of quantity ;
and

hence,

A single algebraic symbol of quantity is to be interpreted

geometrically as a line-segment.

It must of course be understood, in all cases, that in em

ploying the two-letter notation for a segment (22), as &quot;

AB,&quot;

the two letters standing for a single line-segment are equiva

lent to but a single algebraic symbol of quantity.

The expression a + b denotes a segment equal in length to

those denoted by a and b together.

Similarly ia= a + a, and na means a segment as long as n

of the segments a placed together in line, // being any

numerical quantity whatever. (28)

a - b, when a is longer than b, is the segment which is left

when a segment equal to b is taken from a.

Now it is manifest that, if a and b denote two segments,

a + b=b+ a, arid hence that the commutative law for addition

applies to these symbols when they denote magnitudes having

length only, as well as when they denote numbers.

156. Line in Opposite Senses. A quantitative symbol, a, is

in Algebra always affected with one of two signs, + or
,

which, while leaving the absolute value of the symbol un

changed, impart to it certain properties exactly opposite in

character.

This oppositeness of character finds its complete interpreta

tion in Geometry in the opposite directions of every segment.
Thus the segment in the margin may be con- a

sidered as extendingy&amp;gt;w;z A to B orfrom B to A. A B

With the two-letter notation the direction can be denoted

by the order of the letters, and this is one of the advantages



I TO SYNTHETIC GEOMETRY.

of this notation ;
but with the one-letter notation, if we denote

the segment AB by + a, we must denote the segment BA
by -a.

But as there is no absolute reason why one direction rather

than the other should be considered positive, we express the

matter by saying that AB and BA, or +a and -a, denote

the same segment taken in opposite senses.

Hence the algebraic distinction of positive and negative as

applied to a single symbol of quantity is to be interpreted

geometrically by the oppositeness of direction of the segment
denoted by the symbol.

Usually the applications of this principle in Geometry are

confined to those cases in which the segments compared as

to sign are parts of one and the same line or are parallel.

Ex. i. Let ABC be anyA and let BD be the altitude from

the vertex B.

Now, suppose that the sides AB and BC
undergo a gradual change, so that B may
move along the line BB until it comes

into the position denoted by B .

A D c Then the segment AD gradually di

minishes as D approaches A ; disappears when D coincides

with A, in which case B comes to be vertically over A
and the A becomes right-angled at A

; reappears as D
passes to the left of A, until finally we may suppose that

one stage of the change is represented by the AAB C with

its altitude B D .

Then, if we call AD positive, we must call AD negative, or

we must consider AD and AD as having opposite senses.

Again, from the principle of continuity (104) the foot of

the altitude cannot pass from D on the right of A to D on

the left of A without passing through every intermediate

point, and therefore passing through A. And thus the seg

ment AD must vanish before it changes sign.

This is conveniently expressed by saying that a line-
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D

segment changes sign when it passes through zero; passing

through zero being interpreted as vanishing and reappearing
on the other side of the zero-point.

Ex. 2. ABCD is a normal quadrangle. Consider the side

AD and suppose D to move along the line

DA until it comes into the position D .

The segments AD and AD are opposite

in sense, and ABCD is a crossed quad

rangle.

. . the crossed quadrangle is derived from

the normal one by changing the sense of one of the sides.

Similarly, if one of the sides of a crossed quadrangle be

changed in sense the figure ceases to be a crossed quadrangle.

Ex. 3. This is an example where segments which are par
allel but which are not in line have

opposite senses.

ABC is a A and P is anY point

within from which perpendiculars

PD, PE, PF are drawn to the sides.

Suppose that P moves to P .

Then PF becomes P F
,
and PF

and P F being in the same direc

tion have the same sense. Similarly PE becomes P E
,

and these segments have the same sense. But PD becomes

P D which is read in a direction opposite to that of PD.

Hence PD and P D are opposite in sense.

But PD and P D are perpendiculars to the same line from

points upon opposite sides of it, and it is readily seen that in

passing from P to P the _L_PD becomes zero and then changes

sense as P crosses the side BC.

Hence if by any continuous change in a figure a point

passes from one side of a line to the other side, the perpen

dicular from that point to the line changes sense.

Cor. If ABC be equilateral it is easily shown that

PD + PE-|-PF= a constant.
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And if we regard the sense of the segments this statement is

true for all positions of P in the plane.

157. Product, The algebraic form of a product of two

symbols of quantity is interpreted geometrically by the rect

angle having for adjacent sides the segments denoted by the

quantitative symbols.
This is manifest from Art. 152, for in the form ab the

single letters may stand for the measures of the sides, and the

product ab will then be the measure of the area of the rect

angle.

If we consider ab as denoting a en having a as altitude and

b as base, then ba will denote the n having b as altitude and

a as base. But in any CD it is immaterial which side is taken

as base (138) ;
therefore ab=ba, and the form satisfies the

commutative law for multiplication.

Again, let AC be the segment b + c, and AB be the segmentAD c fl, so placed as to form the uia(b+ c) or
6 c

I

AF. Taking AD =
,
let DE be drawn

ab ac
\

II to AB. Then AE and DF are rect-

F angles and

cnAE is nrt, and cnDF is

and the distributive law is satisfied.

158. We have then the two following interpretations to

which the laws of operation of numbers apply whenever such

operations are interpretable.

i. A single symbol of quantity denotes a line-segment.

As the sum or difference of two line-segments is a segment,

the sum of any number of segments taken in either sense is a

segment.

Therefore any number of single symbols of quantity con

nected by + and -
signs denotes a segment, as a + b,

a - b + c, a - b + (
- c\ etc.
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For this reason such expressions or forms are often called

linear, even in Algebra.

Other forms of linear expressions will appear hereafter.

2. The productform of two symbols ofquantity denotes the

rectangle whose adjacent sides are the segments denoted by the

single symbols.

A rectangle encloses a portion of the plane and admits of

measures in two directions perpendicular to one another,

hence the area of a rectangle is said to be of two dimensions.

And as all areas can be expressed as rectangles, areas in

general are of two dimensions.

Hence algebraic terms which denote rectangles, such as ab^

(a-\-b}c, (a + &)(c + d\ etc., are often called rectangular terms,

and are said to be of two dimensions.

Ex. Take the algebraic identity

The geometric interpretation gives

If there be any three segments (a, b, c} the en on the first

and the sum of the other two (b, c) is equal to the sum of the

ens on the first and each of the other two.

The truth of this geometric theorem is evident from an

inspection of a proper figure.

This is substantially Euclid, Book II., Prop. i.

159. Square. When the segment b is equal to the seg

ment a the rectangle becomes the square on a. When this

equality of symbols takes place in Algebra we write a2 for aa,

and we call the result the
&quot;

square
&quot; of a, the term &quot;

square
&quot;

being derived from Geometry.
Hence the algebraic form of a square is interpreted geo

metrically by the square which has for its side the segment
denoted by the root symbol.

Ex. In the preceding example let b become equal to
&amp;lt;?,

and

a(a + c} a 1+ ac,

H
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which interpreted geometrically gives

If a segment (a + c) be divided into two parts (#, c\ the

rectangle on the segment and one of its parts (a) is equal to

the sum of the square on that part (
2
) and the rectangle on

the two parts (ac).

This is Euclid, Book II., Prop. 3. The truth of the geo
metric theorem is manifest from a proper figure.

1 60. Homogeneity. Let a, b, c, d denote segments. In

the linear expressions a + b, a-b, etc., and in the rectangular

expressions ab + cd, etc., the interpretations of the symbols +
and - are given in 28, 29, and 143, and are readily in

telligible.

But in an expression such as ab+ c we have no interpreta

tion for the symbol + if the quantitative symbols denote

line-segments. For ab denotes the area of a rectangle and c

denotes a segment, and the adding of these is not intelligible

in any sense in which we use the word &quot;

add.&quot;

Hence an expression such as ab-\-c is not interpretable

geometrically This is expressed by saying that An alge

braic form has no geometric interpretation unless the form is

homogeneous^ i.e., unless each of its terms denotes a geo

metric element of the same kind.

It will be observed that the terms
&quot;square,&quot; &quot;dimensions,&quot;

&quot;

homogeneous,&quot; and some others have been introduced into

Algebra from Geometry.

161. Rectangles in Opposite Senses. The algebraic term

ab changes sign if one of its factors changes sign. And to be

consistent we must hold that a rectangle changes sense

whenever one of its adjacent sides changes sense.

Thus the rectangles AB . CD and AB . DC are the same in

extent of area, but have opposite senses. And
AB.CD + AB.DC = o,

for the sum = AB(CD + DC),
and CD + DC = o. (156)
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As the sense of a rectangle depends upon that of a line-

segment there is no difficulty in determining when rectangles

are to be taken in different senses.

The following will illustrate this part of the subject :

Let OA = OA and OC-OC
,
and let BOB,

the figures be rectangles.

ens OA. OC and OA . OC have the A

common altitude OC and bases equal
in length but opposite in sense. There

fore OA. OC and OA . OC are opposite in sense, and if we
call enOA . OC positive we must call enOA . OC negative.

Again, ens OC . OA and OC . OA have the common base

OA and altitudes equal in length but opposite in sense.

Therefore ens OC . OA and OC . OA are opposite in sense,

and therefore ens OA.OC and OA .OC are of the same sense.

Similarly ens OC . OA and OC . OA are of the same sense.

These four ens are equivalent to the algebraic forms :

+ a . + b + ab, a . + b ab*

+a.b=ab, a.b=+ab.

Ex. i. ABCD is a normal quadrangle whose opposite sides

meet in O, and OE, OF are altitudes

of the AS DOC and AOB respectively.

The Od. ABCD
=ADOC-AAOB,
=|enDC.OE-|enAB.OF. (141)

Now, let A move along AB to A
(104). Then O comes to O

,
F to F

,
D E ~~E~ c

E to E
,
and O E

,
O F become the altitudes of the AS

DO C and A O B respectively.

But O E and OE have the same sense, therefore DC . OE
and DC . OE have the same sense.

Also, A B is opposite in sense to AB, and O F is opposite
in sense to OF. (156, Ex.

3)
AB . OF and A B . O F have the same sense

;

Od. A BCD =ADO C-AA O B;
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or, the area of a crossed quadrangle must be taken to be the

difference between the two triangles which constitute it.

162. Theorem. A quadrangle is equal to one-half the

parallelogram on its diagonals taken in both magnitude and
relative direction.

ABCD is a quadrangle of which AC
and BD are diagonals. Through B and
D let PQ and RS be drawn

[|
to AC, and

through A and C let PS and OR be

drawn
||

to BD. Then PORS is the

/ 7 on the diagonals AC and BD in

both magnitude and direction.

Qd. ABCD =iZ7PORS.

Proof. Qd. ABCD
=AABC + AADC(istFig.)
=AABC-AADC(2ndFig.)

(i6i,Ex.)

AADC=4/=7SRCA, (141, Cor. i)

Qd. ABCD =i=7PORS in both figures.

This theorem illustrates the generality of geometric results

when the principle of continuity is observed, and segments
and rectangles are considered with regard to sense. Thus

the principle of continuity shows that the crossed quadrangle
is derived from the normal one (156, Ex. 2) by changing the

sense of one of the sides.

This requires us to give a certain interpretation to the area

of a crossed quadrangle (161. Ex. i), and thence the present

example shows us that all quadrangles admit of a common

expression for their areas.

163. A rectangle is constructed upon two segments which

are independent of one another in both length and sense.

But a square is constructed upon a single segment, by using
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it for each side. In other words, a rectangle depends upon
two segments while a square depends upon only one.

Hence a square can have only one sign, and this is the

one which we agree to call positive.

Hence a square is always positive.

164. The algebraic equation ab= cd tells us geometrically

that the rectangle on the segments a and b is equal to the

rectangle on the segments c and d.

But the same relation is expressed algebraically by the form

cd

therefore, since a is a segment, the form is linear and

denotes that segment which with a determines a rectangle

equal to cd.

Hence an expression such as
a
~ + ~ + ~ is linear.cab

165. The expression a?-=bc tells us geometrically that the

square whose side is a is equal to the rectangle on the seg

ments b and c.

But this may be changed to the form

a = \!bc.

Therefore since a is a segment, the side of the square, the form

*fbc is linear.

Hence the algebraicform of the square root of the product

of two symbols of quantity is interpreted geometrically by the

side of the square which is equal to the rectangle on the

segments denoted by the quantitative symbols.

166. The following theorems are but geometric interpreta

tions of well-known algebraic identities. They may, however,
be all proved most readily by superposition of areas, and

thus the algebraic identity may be derived from the geo
metric theorem.



n8 SYNTHETIC GEOMETRY.

i. The square on the sum of two segments is equal to

the sum of the squares on the segments and twice the

a b rectangle on the segments.

(a + &Y= 2+ 2+ 2ab.

2. The rectangle on the sum and differ

ence of two segments is equal to the

difference of the squares on these segments.

3. The sum of the squares on the sum and on the differ

ence of two segments is equal to twice the sum of the squares

on the segments.

4. The difference of the squares on the sum and on the

difference of two segments is equal to four times the rectangle

on the segments.

EXERCISES.

i. To prove 4 of Art. 166.

Let AH = rt and HB = be the segments, so that

A a H b B AB is their sum. Through H
draw HG

||
to BC, a side of the

square on AB. Make HG= rt,

and complete the square FGLE,
as in the figure, so that FG is

a-b.

Then AC is (a + by
2 and EG is

(a
-

by* ;
and their difference is

the four rectangles AF, HK, CL, and DE
;
but these

each have a and b as adjacent sides.

2. State and prove geometrically (a b}
z= ai

-\-b
&amp;lt;i 2ab.

3. State and prove geometrically

(a + b}(a + &amp;lt;r)

= rf
2 + a(b+ c] + be.

4. State and prove geometrically by superposition of areas
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(a + by--\-(a-&y
2 + 2(a + b)(a-b} = (2a)

2
,
where a and b

denote segments.

5. If a given segment be divided into any three parts the

square on the segment is equal to the sum of the

squares on the parts together with twice the sum of

the rectangles on the parts taken two and two.

6. Prove, by comparison of areas from the Fig. of Ex. I, that

(rt + )2
=2^ + ) + 2/;(rt--)-)-(rt-)

2
,
and state the

theorem in words.

SECTION IV.

AREAL RELATIONS.

167. Def. i. The segment which joins two given points

is called the join of the points ;
and where no reference is

made to length the join of two points may be taken to mean
the line determined by the points.

2. The foot of the perpendicular from a given point to a

given line is the orthogonal projection, or simply the projec

tion, of the point upon the line.

3. Length being considered, the join of the projection of

two points is the projection of the

join of the points.

Thus if L be a given line and P,

O, two given points, and PP
, OQ

perpendiculars upon L
; PO is the

join of P and Q, P and Q are the
&quot;

P&quot; Q L

projections of P and O upon L, and the segment P O is the

projection of PO upon L.

168. Theorem. The sum of the projections of the sides of
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any closed rectilinear

c
figure, taken in cyclic order with

respect to any line, is zero.

ABCD is a closed rectilinear

figure and L is any line. Then

Pr.AB + Pr.BC + Pr.CD + Pr.DA=o

A B c D L Proof. Draw the perpendiculars

AA
,
BB

, CC, DD ,
and the sum of the projections becomes

A B + B C + C D + D A .

But D A is equal in length to the sum of the three others and

is opposite in sense. . . the sum is zero.

It is readily seen that since we return in every case to the

point from which we start the theorem is true whatever be

the number or disposition of the sides.

This theorem is of great importance in many investigations.

Cor. Any side of a closed rectilinear figure is equal to the

sum of the projections of the remaining sides, taken in cyclic

order, upon the line of that side.

Def. In a right-angled triangle the side opposite the right

angle is called the hypothenuse, as distinguished from the

remaining two sides.

169. Theorem. In any right-angled triangle the square
on one of the sides is equal to the rectangle

on the hypothenuse and the projection of

that side on the hypothenuse.
ABC is right-angled at B, and BD is _L

AC. Then AB 2=AC . AD.

Proof. Let AF be the fj on AC, and let

EH be
||
to AB, and AGHB be a n, since

L.E is a ~~|.

H, (82, Cor. 5)Then

Also,

and

AE = AC,

AG = AB, and AH is the

(hyp.)

(64)
AB.
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Now nAH=.=7ABLE=c]ADKE, (140)

i.e.,
AB 2 =AC.AD. q.e.d.

As this theorem is very important we give an alternative

proof of it.

Proof. AF is the Q on AC and AH H

is the n on AB, and BD is JL AC.

~I, (82, Cor. 5)
GW \B

(82, Cor 5)

(52&quot;)

(I4O

AB 2=AC.AD.

Cor. i. Since AB 2=AC . AD we have from symmetry
BC 2=AC.DC,

adding, AB2 + BC 2- AC(AD + D C),

Also, AG= AB,
and AC = AE,
.-. AGAC=ABAE.
But

and

or

. . The square on the hypothenuse of a right-angled triangle
is equal to the sum of the squares on the remaining sides.

This theorem, which is one of the most important in the

whole of Geometry, is said to have been discovered by

Pythagoras about 540 B.C.

Cor. 2. Denote the sides by a and c and the hypothenuse

by d, and let a^ and c denote the projections of the sides a

and c upon the hypothenuse.
Then a*= aj), c*=c&

and

Cor. 3. Denote the altitude to the hypothenuse by p.
Then 6= c

l+ a
1)
and ADB and CDB are right-angled at D,

2= ^2+ ^2+2^ .

(, 66 ? ,)

add 2;
2 to each side and
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or S2+ a2+ 2p
2 = c- + a2+ 2c

l
a

l
. (Cor. i)

/J= ^i,
or BD 2 = AD.DC,
i.e., the square on the altitude to the hypothenuse is equal to

the rectangle on the projections of the sides on the hypo
thenuse.

Def. The side of the square equal in area to a given

rectangle is called the mean proportional or the geometric
mean between the sides of the rectangle.

Thus the altitude to the hypothenuse of a right-angled A
is a geometric mean between the segments into which the

altitude divides the hypothenuse. 069, Cor. 3)

And any side of the A is a geometric mean between the

hypothenuse and its projection on the hypothenuse. (169)

170. Theorem. If the square on one side of a triangle is

equal to the sum of the squares on the remaining sides, the

triangle is right-angled at that vertex which is opposite the

side having the greatest square. (Converse of 169, Cor.)

the A.B is a ~-

Proof. Let ADC be a J0 on AC.

^c- . ABis&amp;lt;AC.

\ a chord AD can be found equal to AB.

Then the AADC is right-angled at I).

(106, Cor. 4)

(169, Cor. i)

2
,
andAD = AB. (hyp.)

DC-BC,
and

171. Theorem 169 with its corollaries and theorem 170

are extensively employed in the practical applications of

Geometry. If we take the three numbers 3, 4, and 5, we
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have 5
2=32

-i-4
2

- Therefore if a triangle has its sides 3, 4,

and 5 feet, metres, miles, or any other //./., it is right-angled

opposite the side 5.

For the segments into which the altitude divides the

hypothenuse we have S (l
i
= 3

2 and 5^ = 4*, whence
&amp;lt;?!

= and

&amp;lt;T!

= J
;f- For the altitude itself, /2=

. Y 5
whence p = -1-- -

Problem. To find sets of whole numbers which represent

the sides of right-angled triangles.

This problem is solved by any three numbers .r, j, and z,

which satisfy the condition x*=yz+ z2
.

Let m and n denote any two numbers. Then, since

(;;z
2+ ;z

2
)
2=

(
;/z

2 n2
)
2+ (2;;/;/)

2

, (
1 66, 4)

the problem will be satisfied by the numbers denoted by
;;z

2
-t-;z

2
,
m2 nz

,
and 2mn.

The accompanying table, which may be extended at

pleasure, gives a number of sets of such numbers :
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172. Let a, b, c be the sides of any triangle, and let b be

taken as base. Denote the projections

of a and c on b by a
l
and c-^ and the

altitude to b by p. Then

(2) ct^c-f+jp, (169, Cor. i )

(3)
8=-

_..6._---

1. By subtracting (2) from (3)

.*. The difference between the squares upon two sides of a

triangle is equal to the difference of the squares on the projec
tions of these sides on the third side, taken in the same order.

Since all the terms are squares and cannot change sign

(163), the theorem is true without any variation for all AS-

2. By adding (i) and (2) and subtracting (3),

Now, since we have assumed that b c^a-^ where c\ and a^

are both positive, D falls between A and C, and the angle A
is acute.

. . In any triangle the square on a side opposite an acute

angle is less than the sum of the squares upon the other two

sides by twice the rectangle on one of these sides and the pro

jection of the other side upon it.

3. Let the angle A become obtuse. Then D, the foot of

B
the altitude to b, passes beyond A,

and c\ changes sign.

/. cu^q changes sign, (161)
and di=b*+ c2+ 2bc

l
.

/. The square on the side opposite
.

the obtuse angle in an obtuse-

ajigled triangle is greater than the sum of the squares on the

other two sides by twice the rectangle on one of these sides and
the projection of the other side upon it.
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The results of 2 and 3 are fundamental in the theory of

triangles.

These results are but one
; for, assuming as we have done

that the tm^ is to be subtracted from &2+ c2 when A is an

acute angle, the change in sign follows necessarily when A
becomes obtuse, since in that case the en changes sign because

one of its sides changes sign (161); and in conformity to

algebraic forms -
(
- 2^)

Cor. If the sides a, b, c of a triangle be given in numbers,

we have from 2 c^ ,

2b

which gives the projection of c on b.

If q is + the LA is acute
;

if q is o the LA is ~~| ;

and if q is - the LA is obtuse.

Ex. The sides of a triangle being 12, 13, and 4, to find the

character of the angle opposite side 13.

Let 13 =^ and denote the other sides as you please, e.g.,

^=i2and&amp;lt;r=4. Then

and the angle opposite side 13 is obtuse.

173. Theorem. The sum of the squares on any two sides

of a triangle is equal to twice the sum of the squares on one-

half the third side and on the median to

that side.

BE is the median to AC. Then
AB 2 + BC 2=2(AE 2+ EB 2

).

Proof. Let D be the foot of the altitude
A

on AC. Consider the AABE obtuse-angled at E, and

AB 2 =AE2 + EB 2+ 2AE.ED. (172, 3)

Next, consider the ACBE acute-angled at E, and
BC 2-EC2 -fEB 2 -2EC.ED. (172, ^
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Now, adding and remembering that AE = EC,

q.e.d.

Cor. i. Denoting the median by m and the side upon which

it falls by b, we have for the length of the median

4

Cor. 2. All the sides of an equilateral triangle are equal
and the median is the altitude to the base and the right

bisector of the base. (53, Cors. 2, 3)

/. in an equilateral triangle,

jn%=pi= ^a\ orp \(i^^ a being the side.

173. Theorem. The sum of the squares on the sides of a

c quadrangle is equal to the sum of the

squares on the diagonals, and four times

the square on the join of the middle points

of the diagonals.

E, F are middle points of AC and BD.
Then

D Proof. Join AF and CF.

Then AF is a median to AABD, and CF to

and

/. adding,

But EF is a median to AA.FC.

(172

q.e.d.

Since squares only are involved this relation is true with

out any modification for all quadrangles.

Cor. i. When the quadrangle becomes a H7 the diagonals

bisect one another (81, 3) and EF becomes zero.

/. the sum of the squares on the sides of a parallelogram

is equal to the sum of the squares on its diagonals.
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174. Let ABC be an isosceles triangle and P be any point

in the base AC, and let D be the middle point of

the base, and therefore the foot of the altitude.

In the ABAP, acute-angled at A,
BP 2=BA2+ AP 2 -2AP. AD, (172, 2)

BA2 - BP 2=AP(2AD - AP)
= AP. PC. Q A p b c

If P moves to 0, AP becomes AQ and changes sign, BP
becomes BQ which is &amp;gt; BA, and thus both sides of the

equality change sign together as they pass through zero by
P passing A.

Now, of the two segments from B we always know which

is the greater by 63, and if we write PA for AP the cuPA . PC
is positive when P is on the Q side of A. Hence, considering

the rectangle as being always positive, we may state the

theorem

The difference between the squares on a side of an isosceles

triangle and on the join of the vertex to any point in the base

is equal to the rectangle on the segments into which that point
divides the base.

175. i. From 174 we have BA2 - BP 2=AP . PC. Now
BA is fixed, therefore the cuAP.PC increases as BP de

creases. But BP is least when P is at D (63, i), therefore

the cnAP . PC is greatest when P is at D.

Def. i. A variable magnitude, which by continuous

change may increase until a greatest value is reached and

then decrease, is said to be capable of a maximum, and the

greatest value reached is its maximum.
Thus as P moves from A to C the nAP . PC increases

from zero, when P is at A, to its maximum value, when P is

at D, and then decreases again to zero, when P comes to C.

And as AC may be considered to be any segment divided

at P,

.*. The maximum rectangle on the parts ofa given segment
is formed by bisecting the segment;



128 SYNTHETIC GEOMETRY.

Or, of all rectangles with a given perimeter the square has

the greatest area.

=AP 2 + PC 2+ 2(AB2-BP 2
). (174)

But AC and AB are constant,

/. . AP 2+ PC 2 decreases as BP 2 decreases.

But BP is least when P is at D,
AP 2 + PC 2

is least when P is at D.

Def. 2. A variable magnitude which by continuous change
decreases until it reaches a least value and then increases is

said to be capable of a minimum, and the least value attained

is called its minimum.

. . The siim of the squares on the two parts ofa given seg

ment is a minimum when the segment is bisected.

1 7 5^. The following examples give theorems of importance.
Ex. i. Let ABC be any triangle and BD the

altitude to side b. Then
c/

and by writing s for \(a + b+ c}, and accordingly s a for

\(b-\-c a), etc., we obtain

AWJ(j-XJ-*X*-4~
This important relation gives the area of the A m terms of

its three sides.

Ex. 2. Let ABC be an equilateral A. Then the area may
be found from Ex. i by making a = b= c, when the reduced

2

expression becomes, A \^3-
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Ex. 3. To find the area of a regular octagon in terms of its

circumradius. A D

Let A, B, C be three vertices of the octagon
and O the centre. Complete the square OD,
and draw BE J_ to OA.

Since /_EOB =
~~

and OB = r

and AOAB-iQA . EB =\r . |rv/2=
But AOAB is one-eighth of the octagon,

EXERCISES.

1. ABC is right-angled at B, and E and V are middle points

ofBAand BC respectively. Then 5AC 2=4(CE 2+AF2
).

2. ABC is right-angled at B and O is the middle of AC,
and D is the foot of the altitude from B. Then
2AC.OD =AB 2 -BC2

.

3. ABC is right-angled at B and, on AC, AD is taken equal
to AB, and on CA, CE is taken equal to CB. Then
ED 2=2AE.DC.

4. The square on the sum of the sides of a right-angled tri

angle exceeds the square on the hypothenuse by twice

the area of the triangle.

5. To find the side of a square which is equal to the sum of

two given squares.

6. To find the side of a square which is equal to the differ

ence of two given squares.

7. The equilateral triangle described upon the hypothenuse
of a right-angled triangle is equal to the sum of the

equilateral triangles described on the sides.

8. ABC is a triangle having AB = CB, and AD is J_ upon
BC. Then AC 2=2CB.CD.

9. Four times the sum of the squares on the three medians

of a triangle is equal to three times the sum of the

squares on the sides.
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10. ABCD is a rectangle and P is any point. Then
PA2+PC2= PB 2+ PD 2

.

11. O is the centre of a circle, and AOB is a centre-line.

OA^OB and C is any point on the circle. Then
AC 2+ BC 2= a constant

Define a circle as the locus of the point C.

12. AD is a perpendicular upon the line OB, and BE is a

perpendicular upon the line OA. Then OA . OE
= OB.OD.

13. Two equal circles pass each through the centre of the

other. If A, B be the centres and E, F be the points

of intersection, EF 2= 3AB 2
.

If EA produced meets one circle in P and AB pro
duced meets the other in O, PQ2= 7AB 2

.

14. ABC is a triangle having the angle A two-thirds of a

right angle. Then AB2+AC 2= BC 2+AC. AB.

15. In the triangle ABC, D is the foot of the altitude to AC
and E is the middle point of the same side. Then
2ED.AC =AB 2 -BC 2

.

16. AD is a line to the base of the triangle ABC, and O is

the middle point of AD. If AB 2+ BD 2=AC 2 + CD 2
,

then OB = OC.

17. ABC is right-angled at B and BD is the altitude to AC.

Then AB.CD = BD.BC and AD . CB = BA. BD.

1 8. ABC is a triangle and OX, OY, OZ perpendiculars from

any point O on BC, CA, and AB respectively. Then

A similar relation holds for any polygon.

19. AA 1?
BB

t
are the diagonals of a rectangle and P any point.

Then PA2 + PB 2+ PA1
2+ PB1

2=AA
]

2+4PO 2
, where O

is the intersection of the diagonals.

20. ABC is a triangle, AD, BE, CF its medians, and P any

point. Then

or SPA2= 2PD 2+ |2^
2
,
where m is a median.

21. If O be the centroid in 20,
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or

22. ABCD is a square and AA
,
BB

,
CC

,
DD perpendicu

lars upon any line L. Then

(AA 2 + CC 2)~2BB . DD = area of the square.

23. The sum of the squares on the diagonals of any quad

rangle is equal to twice the sum of the squares on the

joins of the middle points of opposite sides.

24. ABCD is a trapezoid having AD parallel to BC. Then

25. If A, B, C be equidistant points in line, and D a fourth

point in same line, the difference between the squares
on AB and DB is equal to the rectangle on AD and

CD.

26. If A, B, C, D be any four points in line,

27. Any rectangle is equal to one-half the rectangle on the

diagonals of the squares described on adjacent sides.

28. In the triangle ABC, D is any point in BC, E is the

middle point of AC and F of BC. Then
AB 2+AC 2=AD 2 + 4EF2+ 2BD . DC.

29. The sides of a rectangle are a and b. Ifp be the length
of the perpendicular from a vertex upon a diagonal and

q be the distance between the feet of the two parallel

perpendiculars so drawn,

and q*a* + P=P -a2
(b &amp;gt; a\

what line-segment is denoted by

30. ABCD is a square. P is a point in AB produced, and Q
is a point in AD. If the rectangle BP . QD is con

stant, the triangle PQC is constant.

31. If the lengths of the sides of a triangle be expressed by
.r

2+ i, .r
2 -

i, and 2r, the triangle is right-angled.

32. If a and c be the sides of a right-angled triangle and p be

the altitude to the hypothenuse,
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33. The triangle whose sides are 20, 15, and 12 has an

obtuse angle.

34. The area of an isosceles triangle is 8^/1^ and the side is

twice as long as the base. Find the length of the side

of the triangle.

35. What is the length of the side of an equilateral triangle

which is equal to the triangle whose sides are 13, 14,

and 15?

36. If AB is divided in C so that AC 2= 2BC 2
,
then

AB 2+ BC2= 2AB.AC.
37. Applying the principle of continuity state the resulting

theorem when B comes to D in (i) the Fig. of 172,

(2) the Fig. of 173.

38. Applying the principle of continuity state the resulting

theorem when B comes to E in the Fig. of 173.

39. The bisector of the right angle of a right-angled triangle

cuts the hypothenuse at a distance a from the middle

point, and the hypothenuse is ib. Find the lengths of

the sides of the triangle.

40. Construct an equilateral triangle having one vertex at a

given point and the remaining vertices upon two given

parallel lines.

41. A square of cardboard whose side is s stands upright

with one edge resting upon a table. If a lower corner

be raised vertically through a distance a, through
what distance will the corner directly above it be

raised ?

42. What would be the expression for the area of a rectangle

if the area of the equilateral triangle having its side

the u.L were taken as the it.a.?

43. The opposite walls of a house are 12 and 16 feet high and

20 feet apart. The roof is right-angled at the ridge

and has the same inclination on each side. Find the

lengths of the rafters.

44 Two circles intersect in P and Q. The longest chord

through P is perpendicular to PQ.



AREAL RELATIONS. 133

45. The largest triangle with a given perimeter is an equi

lateral triangle.

46. The largest triangle having its base and the sum of the

other two sides given is isosceles.

47. The largest polygon of given species and given perimeter

is regular.

48. The largest isosceles triangle with variable base has its

sides perpendicular to one another.

49. The largest rectangle inscribed in an acute-angled tri

angle and having one side lying on a side of the

triangle has its altitude one-half that of the triangle.

50. L, M are two lines meeting in O, and P is any point.

APB is a variable line cutting L in A and M in B.

The triangle AOB is least when P bisects AB.

EQUALITIES OF RECTANGLES ON SEGMENTS
RELATED TO THE CIRCLE.

176. Theorem. If two secants to the same circle inter

sect, the rectangle on the segments between the point of

intersection and the circle with respect to one of the secants

is equal to the corresponding rectangle with respect to the

other secant.

i. Let the point of intersection

within the circle. Then
AP.PB = CP.PD.

Proof. AOB is an isosceles triangle,

and P is a point on the base AB.

OA2 -OP 2= AP.PB. (174)

Similarly, COD is an isosceles tri

angle, and P a point in the base CD,
OC 2-OP 2= CP.PD.

But OC = OA,
AP.PB = CP.PD. q.e.d.
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Cor. i. (a) Let CD become a diameter and be _L to AB.

Then AP . PB becomes AP2
, (96, Cor. 5)

,B /. AP 2 = CP.PD,
and denoting AP by c, CP by T/, and the

o ! radius of the circle by r, this becomes

which is a relation between a chord of a 0,
the radius of the 0, and the distance CP,

commonly called the versed sine, of the arc AB.

(b) When the point of intersection P passes without the

we have still, by the principle of con

tinuity, AP . PB = CP . PD. But the ns

being now both negative we make them

both positive by writing

PA.PB = PC.PD.

Cor. 2. When the secant PAB be

comes the tangent PT (109), A and

B coincide at T, and PA.PB becomes

PT2
,
/. PT2= PC.PD,

i .e., if a tangent and a secant be drawn

from the same point to a circle, the square on the tangent is

equal to the rectangle on the segments of the secant between

the point and the circle.

Cor. 3. Conversely, if T is on the circle and PT2=PC . PD,
PT is a tangent and T is the point of contact.

For, if the line PT is not a tangent it must cut the circle in

some second point T (94). Then
PT.PT = PC.PD = PT2

.

Therefore PT= PT
,
which is not true unless T and T coin

cide. Hence PT is a tangent and T is the point of contact.

Cor. 4. Let one of the secants become a centre-line as

PEF. Denote PT by /, PE by h, and the radius of the circle

byr. Then PT2= PE.PF
becomes t*=h(2r+h).
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EXERCISES.

1. The shortest segment from a point to a circle is a portion

of the centre-line through the point.

2. The longest segment from a point to a circle is a portion

of the centre-line through the point.

3. If two chords of a circle are perpendicular to one another

the sum of the squares on the segments between the

point of intersection and the circle is equal to the

square on the diameter.

4. The span of a circular arch is 120 feet and it rises 15

feet in the middle. With what radius is it con

structed?

5. A conical glass is b inches deep and a inches across the

mouth. A sphere of radius r is dropped into it. How
far is the centre of the sphere from the bottom of the

glass ?

6. The earth s diameter being assumed at 7,960 miles, how

far over its surface can a person see from the top of a

mountain 3 miles high ?

7. How much does the surface of still water fall away from

the level in one mile ?

8. Two circles whose radii are 10 and 6 have their centres

12 feet apart. Find the length of their common chord,

and also that of their common tangent.

9. Two parallel chords of a circle are c and q and their

distance apart is
&amp;lt;/,

to find the radius of the

circle.

10. If v is the versed sine of an arc, k the chord of half the

arc, and r the radius, k*= 2vr.

177. Theorem. If upon each of two intersecting lines a

pair of points be taken such that the rectangle en the seg

ments between the points of intersection and the assumed

points in one of the lines is equal to the corresponding rect-
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angle for the other line, the four assumed points are concyclic.
A B

(Converse of 176.)

L and M intersect in O, and

OA.OB = OC.OD.
Then A, B, C, and D are concyclic.

Proof. Since the ens are equal, if A and B lie upon the

same side of O, C and D must lie upon the same side of O ;

and if A and B lie upon opposite sides of O, C and D must

lie upon opposite sides of O.

Let a pass through A, B, C, and let it cut M in a second

point E. Then OA.OB = OC.OE. (176)
But OA.OB = OC.OD. (hyp.)

OD = OE,
and as D and E are upon the same side of O they must co

incide
;

. . A, B, C, D are concyclic. q.e.d.

178. Let two circles excluding each other without contact

have their centres at A and B, and let C be the point, on

their common centre-line, which divides AB so that the

difference between the squares on the segments AC and CB
is equal to the difference between the squares on the con

terminous radii. Through C
draw the line PCD J_ to AB,
and from any point P on this

line draw tangents PT and PT
to the circles.

Join AT and BT .

Then, by construction,

AC 2 -BC 2=AT2 -BT 2
.

But, since PC is an altitude in

AC 2 -BC 2 =AP 2 -BP 2
, (172, i)

(169, Cor. i)

PT-FF,
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Therefore PCD is the locus of a point from which equal

tangents are drawn to the two circles.

Def. This locus is called the radical axis of the circles,

and is a line of great importance in studying the relations of

two or more circles.

Cor. i. The radical axis of two circles bisects their com
mon tangents.

Cor. 2. When two circles intersect, their radical axis is

their common chord.

Cor. 3. When two circles touch externally, the common

tangent at the point of contact bisects the other common

tangents.

179. The following examples give theorems of some im

portance.

Ex. i. P is any point without a circle and TT is the chord

of contact (114, Def.) for the point P.

TT cuts the centre-line PO in O.

Then, PTO being a ~~| (no
7

)

OQ.OP^OT2
. (169

. . the radius is a geometric mean be

tween the join of any point with the

centre and the perpendicular from the

centre upon the chord of contact of the point.

Def. P and Q are called inverse points with respect to

the circle.

Ex. 2. Let PO be a common direct tangent to the circles

having O and O as centres.

Let OP and O Q be radii

to the points of contact, and

let QR be
||
to OO . Denote

the radii by r and r1

. Then
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Similarly it may be shown that

AD . BC = square on the transverse common tangent.

EXERCISES.

1. The greater of two chords in a circle is nearer the centre

than the other.

2. Of two chords unequally distant from the centre the one

nearer the centre is the greater.

3. AB is the diameter of a circle, and P, O any two points on

the curve. AP and BO intersect in C, and AQ and BP
in C . Then

4. Two chords of a circle, AB and CD, intersect in O and

are perpendicular to one another. If R denotes the

radius of the circle and E its centre,

8R2 =AB 2 + CD 2 + 4OE2
.

5. Circles are described on the four sides of a quadrangle as

diameters. The common chord of any two adjacent

circles is parallel to the common chord of the other

two.

6. A circle S and a line L, without one another, are touched

by a variable circle Z. The chord of contact of Z passes

through that point of S which is farthest distant

from L.

7. ABC is an equilateral triangle and P is any point on its

circumcircle. Then PA + PB + PC=o, if we consider

the line crossing the triangle as being negative.

8. CD is a chord parallel to the diameter AB, and P is any

point in that diameter. Then

PC 2 + PD 2=PA2+ PB2
.
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SECTION V.

CONSTRUCTIVE GEOMETRY.

1 80. Problem. AB being a given segment, to construct

the segment AB^/2. A_B

Constr. Draw BC J_ to AB and equal to it.

Then AC is the segment ABx/2.

Proof. Since ABC is nght-angled at B,

AC 2=AB2+ BC 2= 2AB 2
, (169, Cor.

AC =ABv/2.

Cor. The square on the diagonal of a given square is equal
to twice the given square.

181. Problem. To construct

Constr. Take BC in line with AB and equal
to it, and on AC construct an equilateral tri

angle ADC. (124, Cor. i)

BD is the segment AB^/3-

Proof. ABD is a ~\ and A
&quot;

Also AD 2=AB 2+ BD 2=4AB 2
. (169, Cor. i)

Cor. Since BD is the altitude of an equilateral triangle

and AB is one-half the side,

.*. the square on the altitude of an equilateral triangle is

equal to three times the square on the half side.

182. Problem. To construct ABv/5- A

Constr. Draw BC J_ to AB and equal to twice

AB. Then AC is the segment AB^/5.

Proof. Since LE is a right angle,

But

AC 2=sAB2
,

and
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183. The three foregoing problems furnish elements of

construction which are often convenient. A few examples

are given.

Ex. i. AB being a given segment, to find a point C in its

i

line such that AC2=AB . CB.

.

c B
Analysis AC 2 =AB = AB(AB- AC),

Considering this an algebraic form and solving as a quad
ratic in AC, we have AC = i(ABx/5 - AB),

and this is to be constructed.

Constr. Construct AD=ABV5 (by 182) as in the figure,

and let E be the

middle point of BD.

Take DF= DE.

Then

A , E
AF =ABv/5-AB;

EV&quot; .-. bisecting AF in G,

AG =AC

and we have

and the point C is

found.

Again, since v/
5 has

two signs + or -,

take its negative sign

AC =-i(ABv/5 + AB).

Therefore, for the point C, on AD produced take

UF = DE, and bisect AF in G . Then

and since AC is negative we set off AG from A to C
,
and

C is a second point.

The points C and C satisfy the conditions,

AC 2=AB . CB and AC 2=AB . C B.

A construction effected in this way requires no proof other

than the equation which it represents.
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It is readily proved however. For

AD 2=5AB2

,
and also AD 2=(AF + FD)

2= (2AC + AB)
2
,

whence AC 2=AB(AB- AC) =AB . CB.

It will be noticed that the constructions for finding the two

points differ only by some of the segments being taken in

different senses. Thus, for C, DE is taken from DA, and for

C
,
added to DA

;
and for C, AC is taken in a positive sense

equal to AG, and for C
,
AC is taken in a negative sense

equal to AG .

In connection with the present example we remark :

1. Where the analysis of a problem involves the solution of

a quadratic equation, the problem has two solutions corre

sponding to the roots of the equation.

2. Both of the solutions may be applicable to the wording
of the problem or only one may be.

3. The cause of the inapplicability of one of the solutions

is commonly due to the fact that a mathematical symbol is

more general in its significance than the words of a spoken

language.

4. Both solutions may usually be made applicable by some

change in the wording of the problem so as to generalize it.

The preceding problem may be stated as follows, but

whether both solutions apply to it, or only one, will depend

upon our definition of the word &quot;

part.&quot;
See Art. 23.

To divide a given segment so that the square upon one of
the parts is equal to the rectangle on tJie whole segment and
the other part.

Def. A segment thus divided is said to be divided into

extreme and mean ratio, or in median section.

Ex. 2. To describe a square when the sum of its side and

diagonal is given.

Analysis. If AB is the side of a square, AB./2 is its

diagonal,
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.*. AB(i +^2) is a given segment =S, say. Then
AB = S(V2-i).

Constr. Let EF be the given segment S.

Draw FG J_ and = to EF, and with

centre G and radius GF describe a Q cut

ting EG in H and H .

EH is the side of the square; whence the

square is easily constructed.

If we enquire what EH means, we find it to be the side of

the square in which the difference between the side and

diagonal is the given segment S. The double solution here

is very suggestive, but we leave its discussion to the reader.

184. Problem. To find a segment such that the rectangle

on it and a given segment shall be equal to a given rectangle.

Constr. Let S be the given segment,
and AC the given rectangle.

On DA produced make AP = S, and

draw PBQ to cut DC produced in Q.

,
_, CQ is the segment required.

Proof. Complete the as PEOD, PGBA, and BCOF.
Then aAC =nGF = GB. BF = PA. CQ,

Def. The segments AP and CQ are reciprocals of one

another with respect to the cuAC as unit.

F

\
\

185. Problem. To find the side of a square which is

equal to a given rectangle.

Constr. Let AC be the rectangle.

Make BE=BC and in line with BA.

On AE describe a semicircle, and pro

duce CB to meet it in F.

BF is the side of the required square.

Proof. Since AE is a diameter and FB a half chord J_ to it,

JE
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BF2=AB.BE, (176, Cor. i)

BF2=AB.BC.

Cor. This is identical with the problem, &quot;To find a geo

metric mean between two given segments,&quot; and it furnishes

the means of constructing the segment a, when a= \Tbc, b and

Ex. i. To construct an equilateral triangle equal to a given

rectangle.

Let AC be the given rectangle, and suppose

PQR to be the required triangle. Then

AB.BC=^PR.OT
= PT.QT.

But QT = PTx/3 , (181, Cor.)

PT.QT=PTV3
whence PT*=AB^3. JBC.
And PT is the side of a square equal to the rectangle whose

sides are AB^S and ^BC, and is found by means of 181,

127, and 185.

Thence the triangle is readily constructed.

Ex. 2. To bisect the area of a triangle by a line parallel to

its base. E

Let ABC be the triangle, and assume

PQ as the required line, and complete
the parallelograms AEBC, KFBC, and

let BD be the altitude to AC. Because

PQ is
||
to AC, BD is _L to PQ. Now A K D

(145)

,
or PO.BD=AC.BG. (153, i)

But 2Z7FQZ7EC,or2PQ.BGAC.BDj
. . dividing one equation by the other, and reducing to one

line, BD2= 2BG 2
;

and therefore BG is one-half the diagonal of the square
of which BD is the side, and the position of PQ is de

termined.
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1 86. Problem. To find the circle which shall pass through
two given points and touch a given line.

Let A, B be the given points and L
the given line.

Constr. Let the line AB cut L in O.

Take OP = OP
,
a geometric mean be

tween OA and OB (185). The circles

through the two sets of three points A, B, P and A, B, P are

the two solutions.

The proof is left to the reader. (See 176, Cor. 2.)

187. Problem. To find a to pass through two given

points and touch a given 0.
Let A, B be the points and S

the given 0.

Constr. Through A and B
draw any so as to cut S in

p two points C and D. Let the

line CD meet the line AB in O.

From O draw tangents OP and

OQ to the 0S (114). P and

Q are the points of contact for

the 0s which pass through A and B and touch S. There
fore the 0s through the two sets of three points A, B, P and

A, B, Q are the 0s required.

Proof.- OB.OA= OC.OD = OO 2= OP2
;

therefore the 0s through A, B, P and A, B, O have OP and

OQ as tangents (176, Cor. 3). But these are also tangents

to 0S ;
therefore P and Q are the points of contact of the

required 0s.

EXERCISES.

1. Describe a square that shnll have twice the area of a

given square.

2. Describe an equilateral triangle equal to a given square.
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3. Describe an equilateral triangle having five times the area

of a given equilateral triangle.

4. Construct ABv/7, where AB is a given segment.

5. Construct \ 2 + ^2 and \/rt2 -^2
,
where a and b denote

given line segments.

6. Divide the segment AB in C so that AC 2= 2CB2
. Show

that AC is the diagonal of the square on CB. Does

this hold for external division also ?

7. ABCD is a rectangle and DE, a part of DA, is equal
to DC. EF, perpendicular to AD, meets the circle

having A as centre and AD as radius in F. Then DF
is the diagonal of a square equal to the rectangle.

8. In the Fig. of 183, CE 2= 3AB . CB,

9. Show that the construction of 183 solves the problem,
&quot;To divide a segment so that the rectangle on the parts

is equal to the difference of the squares on the
parts.&quot;

10. Show that the construction of 183 solves the problem,
&quot; To divide a given segment so that the rectangle on

the whole and one of the parts is equal to the rectangle
on the other part and the segment which is the sum of

the whole and the first
part.&quot;

11. Construct an equilateral triangle when the sum of its side

and altitude are given. What does the double solution

mean? (See 183, Ex. 2.)

12. Describe a square in a given acute-angled triangle, so

that one side of the square may coincide with a side of

the triangle.

13. Within a given square to inscribe a square having three-

fourths the area of the first.

14. Within an equilateral triangle to inscribe a second equi
lateral triangle whose area shall be one -half that of

the first.

1 5. Produce a segment AB to C so that the rectangle on the

sum and difference of AC and AB shall be equal to a

given square.
K
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1 6. Draw a tangent to a given circle so that the triangle

formed by it and two fixed tangents may be (i) a

maximum, (2) a minimum.

17. Draw a circle to touch two sides of a given square, and

pass through one vertex. Generalize this problem and

show that there are two solutions.

1 8. Given any two lines at right angles and a point, to find a

circle to touch the lines and pass through the point.

19. Describe a circle to pass through a given point and to

touch a given line at a given point in the line.

20. Draw the oblique lines required to change a given square
into an octagon.

If the side of a square is 24, the side of the result

ing octagon is approximately 10
; how near is the

approximation ?

21. The area of a regular dodecagon is three times that of

the square on its circumradius.

22. By squeezing in opposite vertices of a square it is trans

formed into a rhombus of one-half the area of the square.

What are the lengths of the diagonals of the rhombus?

23. P, O, R, S are the middle points of the sides AB, BC,

CD, and DA of a square. Compare the area of the

square with that of the square formed by the joins AQ,
BR, CS, and DP.

24. ABCDEFGH is a regular octagon, and AD and GE are

produced to meet in K. Compare the area of the tri

angle DKE with that of the octagon.

25. The rectangle on the chord of an arc and the chord of

its supplement is equal to the rectangle on the radius

and the chord of twice the supplement.

26. At one vertex of a triangle a tangent is drawn to its cir-

cumcircle. Then the square on the altitude from that

vertex is equal to the rectangle on the perpendiculars

from the other vertices to the tangent.

27. SOT is a centre-line and AT a tangent to a circle at the

point A. Determine the angle AOT so that AS = AT.



PART III.

PRELIMINARY.

1 88. By superposition we ascertain the equality or in

equality of two given line-segments. But in order to express

the relation between the lengths of two unequal segments we
endeavour to find two numerical quantities which hold to one

another the same relations in magnitude that the given seg

ments do.

Let AB and CD be two given segments. If they are com
mensurable (150, 5) some it. I. can be found with respect to

which the measures of AB and CD (150, 2) are both whole

numbers. Let m denote the measure of AB and n the

measure of CD with respect to this unit-length.

The numbers m and n hold to one another the same rela

tions as to magnitude that the segments AB and CD do.

The fraction is called in Arithmetic or Algebra the ratio
11

of m to n, and in Geometry it is called the ratio ofAB to CD.
Now n has to m the same ratio as unity has to the fraction

. But if CD be taken as u.I. its measure becomes unity,

while that of AB becomes

Therefore the ratio of AB to CD is the measure of AB with

respect to CD as unit-length.

When AB and CD are commensurable this ratio is expres
sible arithmetically either as a whole number or as a fraction

;

147
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but when the segments are incommensurable the ratio can

only be symbolized, and cannot be expressed arithmetically

except approximately.

189. If we suppose CD to be capable of being stretched

until it becomes equal in length to AB, the numerical factor

which expresses or denotes the amount of stretching neces

sary may conveniently be called the tensor of AB with

respect to CD. (Hamilton.)

As far as two segments are concerned, the tensor, as a

numerical quantity, is identical with the ratio of the segments,
but it introduces a different idea. Hence in the case of com
mensurable segments the tensor is arithmetically expressible,

but in the case of incommensurable ones the tensor may be

symbolically denoted, but cannot be numerically expressed

except approximately.
Thus if AB is the diagonal of a square of which CD is the

side, AB = CD,/2 (180) ;
and the tensor of AB on CD,

i.e., the measure of AB with CD as unit-length, is that

numerical quantity which is symbolized by ^2, and which

can be expressed to any required degree of approximation by
that arithmetical process known as &quot;extracting the square

root of 2.&quot;

190. That the tensor symbolized by ^2 cannot be ex

pressed arithmetically is readily shown as follows :

If *J2. can be expressed numerically it can be expressed as

a fraction, ,
which is in its lowest terms, and where accord

ingly m and ;/ are not both even.

If possible then let ^2 = .

Then 2 2= w2
. Therefore ;;r and m are both even and n

is odd.
772

But if m is even, is even, and n2 and n are both even.

But n cannot be both odd and even.

Therefore
&amp;gt;/2

cannot be arithmetically expressed.
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Illustration ofan incommensurable tensor.

Let BD be equal to AB, and let AC be equal to the

diagonal of a square of which AB is the side.

A B E G F D

Then some tensor will bring AB to AC.

Let BD be divided into 10 equal parts whereof E and F

are those numbered 4 and 5.

Then the tensor i . 4 stretches AB to AE, and tensor i . 5

stretches AB to AF. But the first of these is too small and

the second too great, and C lies between E and F.

Now, let EF be divided into 10 equal parts whereof E
,
F

are those numbered i and 2.

Then, tensor i . 41 brings AB to AE
,
and tensor i . 42

brings AB to AF ;
the first being too small and the second

too great.

Similarly by dividing E F into 10 equal parts we obtain

two points , f, numbered 4 and 5, which lie upon opposite

sides of C and adjacent to it.

Thus, however far this process be carried, C will always lie

between two adjacent ones of the points last obtained.

But as every new division gives interspaces one-tenth of

the length of the former ones, we may obtain a point of

division lying as near C as we please.

Now if AB be increased in length from AB to AD it must

at some period of its increase be equal to AC.

Therefore the tensor which brings AB to AC is a real

tensor which is inexpressible, except approximately, by the

symbols of Arithmetic.

The preceding illustrates the difference between magnitude

and number. The segment AB in changing to AD passes

through every intermediate length. But the commensurable

or numerically expressible quantities lying between i and 2

must proceed by some unit however small, and are therefore

not continuous.
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Hence a magnitude is a variable which, in passingfrom
one value to another, passes through every intermediate value.

191. The tensor of the segment AB with respect to AC, or

the tensor of AB on AC is the numerical factor which brings

AC to AB.

But according to the operative principles of Algebra,

AB
. .

j-~
is the tensor which brings AC to AB.

Hence the algebraic form of a fraction, when the parts
denote segments, is interpreted geometrically by the tensor

which brings the denominator to the numeratorj or as the

ratio of the numerator to the denominator.

SECTION I.

PROPORTION AMONGST LINE-SEGMENTS.

192. Def. Four line-segments taken in order form a

proportion, or are in proportion, when the tensor of the first

on the second is the same as the tensor of the third on the

fourth.

This definition gives the relation

where a, b, c, and d denote the segments taken in order.

The fractions expressing the proportion are subject to all

the transformations of algebraic fractions (158), and the re

sult is geometrically true whenever it admits of a geometric

interpretation.

The statement of the proportion is also written

a \b=c\d, ........................... (B)
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where the sign : indicates the division of the quantity de

noted by the preceding symbol by the quantity denoted by
the following symbol.

In either form the proportion is read
&quot; a is to b as c is to d.

n

193. In the form (B) a and d are called the extremes, and

b and c the means
;
and in both forms a and c are called

antecedents and b and d consequents.

In the form (A) a and d, as also b and c, stand opposite

each other when written in a cross, as

and we shall accordingly call them the opposites of the

proportion.

194. i. From form (A) we obtain by cross-multiplication

ad= be,

which states geometrically that

When four segments are in proportion the rectangle

upon one pair of opposites is equal to that upon the other

pair of opposites.

Conversely, let ab and a b be equal rectangles having for

adjacent sides a, b, and a
,
b respectively. Then
ab= a b

,

and this equality can be expressed under any one of the fol

lowing forms, or may be derived from any one of them, viz. :

aj_ a = a
b_ = V_

b = a!_

a ~b V~1 ~d~~a V ~a

in all of which the opposites remain the same. Therefore

2. Two equal rectangles have their sides in proportion,

a pair of opposites of the proportion coming from the same

rectangle.

3. A given proportion amongst four segments may be

written in any order of sequence, provided the opposites
remain the same.
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195. The following transformations are important.

Let ?=*;, then
b d ab cd fir \

1. ~!T
=

~~d~ ) (a&amp;gt;bior
-

sign)

2 . =^=^
=
|Z. (&amp;lt;*

&amp;gt;; for -
sign)

Let &amp;gt;=4=^= etc., then
b d f

a_ c _e
3 -

~b~d~f

To prove i. V -= -, . . -i=i,

To prove 2. / 7= -,,
.

- =
-j (JQ^* 3)

^ fa
^^r /;^

or =^=_
b d bd

L f S , /^L L , J , JT
^

SIMILAR TRIANGLES.

196. Zte/! i. Two triangles are similar when the angles of

the one are respectively equal to the angles of the other.

(77, 4)

2. The sides opposite equal angles in the two triangles are

corresponding or homologous sides.

The symbol ^ will be employed to denote similarity, and

will be read &quot;is similar to.&quot;
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In the triangles ABC and A B C, if LA= LA? and z_B = .l.B
,

then also LC=LC and the tri-
B

angles are similar. /A.

The sides AB and A B are // \ J\
homologous, so also are the other / / \ // V
pairs of sides opposite equal / /_\ kT~D c

angles.
A D

Let BD through B and B D through B make the

Then AABD ^AA B D since their angles are respectively

equal. In like manner ADBC AD B C, and BD and B D
divide the triangles similarly.

3. Lines which divide similar triangles similarly are

homologous lines of the triangles, and the intersections of

homologous lines are homologous points.

Cor. Evidently the perpendiculars upon homologous sides

of similar triangles are homologous lines. So also are the

medians to homologous sides ; so also the bisectors of equal

angles in similar triangles ; etc.

197. Theorem. The homologous sides of similar triangles

are proportional.

having z_A = z_A

and LB=LE .

Then A|_|C_CA.
B

Proof. Place A on A, and let C fall at D. Then, since

-A =
/_A, A B will lie along AC and B will fall at some point

E. Now, AA B C =AAED, and therefore .AED = /_B,

and B, D, E, C are concyclic. (j7)
Hence AD.AB =AE.AC, (176, 2)
or A C .AB =A B .AC.

AB AC
,

(194 , 2)
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Similarly, by placing B at B, we prove that

AB_BC
A B B C

AB _ BC _ CA
A B B C C A

* q.e.d.

Cor. i. Denoting the sides of ABC by a, b, c, and those of

A B C by a
,
b

,
c

, %
=
p
=

z-B
i.e., the perimeters of similar triangles are proportional to

any pair of homologous sides.

198. Theorem. Two triangles which have their sides pro-

B
r

portional are similar, and have

B /\ their equal angles opposite hom

ologous sides. (Converse of 197.)

A
&amp;lt; } C AB _ BC _ CA

A B B C C A
Then &amp;lt;LA

= /_A
,

LB = LB
,

andAC
Proof. On A C let the AA DC be constructed so as to

have the

and

Then AA DC ^AABC, (196, Def. i)

AB AC BC ,*,
and -AT7s

=
^7^&amp;gt;

=
;F^7; 097 )

AB AC BC
but A B^;VC

=
B C ;

A D-A B
and DC= B C,
and AA DC =AA B C . (58)

and LC =LC. q.e.d.
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199. Theorem. If two triangles have two sides in each

proportional and the included A ,

angles equal, the triangles are

similar.

A B A C&quot;

then AABC
B C

Proof. Place A on A, and let A C lie along AB, and

A B lie along AC, so that C falls at D and B at E.

The triangles AED and A B C are congruent and therefore

similar, and
A~F

=
AT&amp;gt;

Hence AB . AD -AE . AC
; ( 1 94)

and .*. B, D, E, C are concyclic. ( I77)
Z_AED = Z_B, and z_ADE= z_C, (106, Cor. 3)

and AABC ^AAED ^AA B C . q.e.d.

200. Theorem. If two triangles have two sides in each

proportional, and an angle opposite a homologous side in

each equal :

1. If the angle is opposite the longer of the two sides the

triangles are similar.

2. If the angle is opposite the shorter of the two sides the

triangles may or may not be

similar.

a

i. If BOAB,
AABC AA B C.

Proof. Place A at A and let B fall at D, and A C along

AC. Draw DE
||
to BC. Then

AABC AADE, and -?=5|.
But AB=**C

;
.-. DE = B C .
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And since B C &amp;gt; A B
,
the AA B C =AADE and they are

therefore similar. (65, i)

But AABCAADE,

2. If BC&amp;lt;AB, B C &amp;lt;A B
,
and the triangles may or may

not be similar.

Proof. Since AD =A B
,
and DE = B C, and B C &amp;lt;A B

,

.*. the triangles A B C and ADE may or may not be

congruent (65, 2), and therefore may or may not be

similar.

But AABC^AADE,
. . the triangles ABC and A B C may or may not be

similar.

Cor. Evidently, if in addition to the conditions of the

theorem, the angles C and C are both less, equal to, or

greater than a right angle the triangles are similar.

Also, if the triangles are right-angled they are similar.

201. The conditions of similarity of triangles may be

classified as follows :

1. Three angles respectively equal. (Def. of similarity.)

2. Three sides proportional.

3. Two sides proportional and the included angles equal.

4. Two sides proportional and the angles opposite the

longer of the homologous sides in each equal.

If in 4 the equal angles are opposite the shorter sides in

each the triangles are not necessarily similar unless some

other condition is satisfied.

By comparing this article with 66 we notice that there is a

manifest relation between the conditions of congruence and

those of similarity.

Thus, if in 2, 3, and 4 of this article the words &quot;

propor

tional&quot; and &quot;homologous&quot; be changed to
&quot;equal,&quot;

the

statements become equivalent to i, 2, and 5 of Art. 66. The
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difference between congruence and similarity is the non

necessity of equality of areas in the latter case.

When two triangles, or other figures, are similar, they are

copies of one another, and the smaller may be brought, by a

uniform stretching of all its parts, into congruence with the

larger. Thus the primary idea of similarity is that every

line-segment of the smaller of two similar figures is stretched

to the same relative extent to form the corresponding seg

ments of the larger figure. This means that the tensors of

every pair of corresponding line-segments, one from each

figure, are equal, and hence that any two or more line-

segments from one figure are proportional to the correspond

ing segments from the second figure.

Def.Tvro line-segments are divided similarly when, being

divided into the same number of parts, any two parts from

one of the segments and the corresponding parts from the

other taken in the same order are in proportion.

202. Theorem. A line parallel to the base of a triangle

divides the sides similarly ;
and

Conversely, a line which divides two sides of a triangle

similarly is parallel to the third side.

DE is
||

to AC. Then BA and EC are

divided similarly in D and E.

Proof. Ths, triangles ABC and DBE are

evidently similar,
A

AB CB ,
.
AD CE , o v

DB
=
EB

and &quot; DB
=
EB ( 95

and AB and CB are divided similarly in D and E. q.e.d.

Conversely, if DE so divides BA and BC that

AD : DB=CE : EB, DE is
||
to AC.

&quot;&quot;/-Since
AD-CE ...

AB = CB
;
^ ^ t,ang ,es

ABC and DBE having the angle B common, and the sides
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about that angle proportional, are similar. (i99)

LA, and DE is
j|
to AC. q.e.d.

Cor. i. Since the triangles ABC and DBE are similar

BA:BD=AC:DE.

203. Theorem. Two transversals to a system of parallels

are divided similarly by the parallels.

AA is
||
to BB is

||
to CC

,
etc.

Then AD and A D are divided similarly.

/ A Proof. Consider three of the ||s, AA ,

V P/\B BB
,
and CC

,
and draw A Q ||

to AD.

/ Q/ \c
Then AP and are

AB =A PandBC = PQ. (81, i)

But A QC is a triangle and PB is
||
to QC .

Similarly, if DD be a fourth parallel, j^C
CD

AB_BC_CD =etc
A B B C C D

2)ef. A set of three or more lines meeting in a point is a

pencil and the lines are rays.

The point is the vertex or centre of the pencil.

Cor. i. Let the transversals meet in O, and let L denote

any other transversal through O.

Then AD, A D
,
and L are all divided similarly by

the parallels. But the parallels are transversals to the

pencil.

.-. parallel transversals divide the rays of a pencil

similarly.

Cor. 2. Applying Cor. I of 202,

OA= 0? =^= O
AA BB CC DIT
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204. Theorem. The rectangle on any two sides of a tri

angle is equal to twice the rectangle on

the circumradius (97, Def.) and the alti-

tude to the third side.

BD is _L to AC and BE is a diameter.

Then BA.BC = BE.BD.

Proof. LA= LE, ( 106, Cor. i
)

and ^ADB=Z.ECB=~1&amp;gt; (106, Cor. 4)

AABD AEBC, and ~=
|

BA.BC = BE.BD. q.e.d.

Cor. Denoting BD by p and the circumradius by R,

ac=2pR,

and multiplying by b, and remembering that pb 2 (i 53, 2),

, .
-P. abc

we obtain R= -
,

4A
which (with 175^, Ex. i) gives the means of calculating the

circumradius of a triangle when its three sides are given .

205. Theorem. In a concyclic quadrangle the rectangle

on the diagonals is equal to the sum of the rectangles on the

sides taken in opposite pairs.

AC . BD =AB . CD + BC . AD.
B

Proof. Draw AE making Z.AED
= /LABC. Then, since A.BCA= ^BDA,
the triangles EDA and BCA are similar.

BC.AD=AC.DE.
Again, since /lAEB is supp. to ^AED,

and ^CDA is supp. to /LABC, therefore triangles BEA and

CDA are similar, and AB . CD =AC . EB.

Adding these results, AB. CD + BC. AD = AC. BD.
This theorem is known as Ptolemy s Theorem.

206. Def. Two rectilinear figures are similar when they
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can be divided into the same number of triangles similar in

pairs and similarly placed.

Thus the pentagons X
and Y can be divided into

the same number of tri

angles.

If then A? AP ,

AQ AQ , AR AR ,

and the triangles are similarly placed, the pentagons are

similar.

The triangles are similarly placed if LEAD corresponds to

E A D
,
AED to A E D

,
^DAC to D A C

,
etc.

This requires that the angles A, B, C, etc., of one figure

shall be respectively equal to the angles A ,
B

,
C

, etc., of the

other figure.

Hence when two rectilinear figures are similar, their angles

taken in the same order are respectively equal, and the sides

about equal angles taken in the same order are pro

portional.

Line-segments, such as AD and A D
,
which hold similar

relations to the two figures are similar or homologous lines of

the figures.

207. Theorem. Two similar rectilinear figures have any

two line-segments from the one proportional to the homolo

gous segments from the other.

Proof. ty definition APA? ,
and they are similarly

placed, . . AE : A E =AC : A C.

For like reasons, AD : A D =AC : A C =AB : A B .

AE_AD _AC ^_AB
A E A D A C A B

and the same can be shown for any other sets of homologous

line-segments.

Cor. i. All regular polygons of the same species are similar

figures.
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Now, let a, b, c, ..., a
,
b

, , ..., be homologous sides of two

similar regular polygons, and let r and r* be their circumradii.

Then r and r are homologous,

t v t

_ perimeter of P

perimeter of P

But at the limit (148) the polygon becomes its circumcircle.

/. the circumferences of any two circles are proportional to

their radii.

Cor. 2. If c, c denote the circumferences of two circles and

r and r their radii. -== constant.
r r

Denote this constant by 2?r, then

c=2irr.

It is shown by processes beyond the scope of this work

that TT stands for an incommensurable numerical quantity,

the approximate value of which is 3.1415926...

Cor. 3. Since equal arcs subtend equal angles at the centre

(102, Cor. 2), if j denotes the length of any arc of a circle

whose radius is r, the tensor - varies directly as j varies,

and also varies directly as the angle at the centre varies.

Hence - is taken as the measure of the angle, subtended
r

by the arc, at the centre. Denote this angle by 0. Then

and when s= r, becomes the unit angle.

/. the unit angle is the angle subtended at the centre by an

arc equal in length to the radius.

This unit is called a radian, and the measure of an angle

in radians is called its radian measure. Radian measure will

be indicated by the mark A
.

Cor. 4. When s= =a semicircle, Q= T.
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But a semicircle subtends a straight angle at the centre.

TT is the radian measure of a straight angle and - of a ~~|.

Now a straight angle contains 180, (41)

Hence i
x

=57.29578...,
and i = o \oi7453 &quot;

&amp;gt;

and these multipliers serve to change the expression of a

given angle from radians to degrees or from degrees to

radians.

Cor. 5. Since the area of a circle is equal to one-half that

of the rectangle on its radius and a segment equal in length

to its circumference, (i49)
= |cr=|.27rr.r (Cor. 2)

. . the area of a is TT times that of the square on its radius.

208. Theorem. The bisectors of the vertical angle of a

triangle each divides the base into parts which are propor
tional to the conterminous

sides.
E BD and BD are bi

sectors of LB. Then
D

DC CD BC

Proof Through C draw
E EE HtoAB. Then

EBE =~~] (45), and z_E =^ABD = z_DBC.

BC =EC = CE . (88, 3)

But ABD and ABD are triangles having EE
||

to the

common base AB.
AB AD

,
AB AD , ~ N

EC
=
DC and

CE&quot;
/= CD7J (203, Cor.)

AD AD AB

Cor. D and D divide the base internally and externally in
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the same manner. Such division of a segment is called har

monic division.

/. the bisectors of any angle of a triangle divide the oppo

site side harmonically.

209. Theorem.^ line through the vertex of a triangle

dividing the base into parts which are proportional to

the conterminous sides is a bisector of the vertical angle.

(Converse of 208.)

Let the line through B cut AC internally in F. Then, AD

being the internal bisector ?=~ (208), and 5 = by
r&amp;gt;U JJU JtSU r L,

AF AD
hypothesis, /.

FC
=
T5C

But AD is &amp;lt; AF while DC is &amp;gt; FC.

.*. the relation is impossible unless F and D coincide, i.e.,

the line is the bisector AD.

Similarly it may be proved that if the line divides the base

externally it is the bisector AD .

210. Theorem. The tangent at any point on a circle and

the perpendicular from that point upon the diameter divide

the diameter harmonically.

AB is divided harmonically in

M and T.

Proof.-LCPT=LPUT=~~\, (no )

ACPMACTP,
, CM CP CM CB.

CP
=
CT &quot;CB^CT

CB + CM_CT + CB AM_AT , .

CB^CM~CT^CB MB~BT
. AB is divided harmonically in M and T. q.e.d.

211. The following examples give important results.
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Ex. i. L, M, and N are tangents which touch the circle at

A, B, and P.

AX and BY are J_s on

N, PC is J_ on AB, and

PO and PR are J_s upon
L and M.

Let N meet the chord

of contact of L and M in

T. Then the triangles

TAX, TPC, TBY are all

or. 2)

(A)

Again, let L and N intersect in V.

VP =VA,
Then

(114, Cor. i)

and

AX= PQ.and

Similarly BY= PR, /. PQ.PR= PC 2
(B)

Ex. 2. AD is a centre-line and DO a perpendicular to it,

and AO is any line from A to

the line DO.
Let AO cut the circle in P.

Then AADO^AAPB,
AD=AQ
AP AB

or AD.AB =AP.AO.
But the circle and the point D
being given, AB . AD is a given

constant.

AP . AO = a constant.

Conversely, if Q moves so that the cnAP.AQ remains

constant, the locus of Q is a line J_ to the centre-line

through A.
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Now, let the dotted lines represent rigid rods of wood or

metal jointed together so as to admit of free rotation about

the points A, C, P, U, V, and O, and such that UPVO is a

rhombus (82, Def. i), and AU=AV, and AC = CP, AC
being fixed.

PQ is the right bisector of UV, and A is equidistant from

U and V. Therefore A, P, Q are always in line.

Also, PUQ is an isosceles triangle and UA is a line to the

base, therefore UA2 -UP 2=AP . AQ (174). But, UA and

UP being constants, AP . AQ is constant.

And AC being fixed, and CP being equal to AC, P moves

on the circle through A having C as centre.

. . O describes a line _L to AC.

This combination is known as Peaucellier s cell^ and is

interesting as being the first successful attempt to describe a

line by circular motions only.

Ex. 3. To construct an isosceles triangle of which each

basal angle shall be double the vertical angle.

Let ABC be the triangle required, and let AD
bisect the LA.

Then ^.B=^BAD=^DAC, and L.C is common
to the triangles ABC and DAC. Therefore these

triangles are similar, and the ACAD is isosceles

and AD =AC.
Also, AABD is isosceles and AD = DB=AC.

BA: AC-AC: DC,
or BC:BD = BD:DC.

BC.DC-BD 2
.

And BC is divided into extreme and mean ratio at D (183,
Ex. i). Thence the construction is readily obtained.

Cor. i. The isosceles triangle ADB has each of its basal

angles equal to one-third its vertical angle.

Cor. 2. z_ABC= 36, /iBAC = 72, z_BDA=io8. Hence

(i) Ten triangles congruent with ABC, placed side by side

with their vertices at B, form a regular decagon. (132)
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(2) The bisectors AD and CE of the basal angles of the

AABC meet its circumcircle in two points which, with

the three vertices of the triangle, form the vertices of a

regular pentagon.

(3) The z_BDA= the internal angle of a regular pentagon.

The following Mathematical Instruments are im-

portant :

i. Proportional Compasses.
This is an instrument primarily for the purpose

of increasing or diminishing given line-segments

in a given ratio
; i.e., of multiplying given line-

segments by a given tensor.

IfAO = BO and QO= PO, the triangles AOB,
POQ are isosceles and similar, and

AB:PQ = OA:OP.
A B Hence, if the lines are one or both capable of

rotation about O, the distance AB may be made to vary at

pleasure, and PQ will remain in a constant ratio to AB.

The instrument usually consists of two brass bars with

slots, exactly alike, and having the point of motion O so

arranged as to be capable of being set at any part of the slot.

The points A, B, P, and Q are of steel.

2. The Sector.

This is another instrument which pri

marily serves the purpose of increasing or

diminishing given line-segments in given

ratios.

This instrument consists of two rules

equal in length and jointed at O so as to

be opened and shut like a pair of com

passes. Upon each rule various lines are

drawn corresponding in pairs, one on each rule.

Consider the pair OA and OB, called the &quot;line of lines.&quot;

Each of the lines of this pair is divided into 10 equal parts
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which are again subdivided. Let the divisions be numbered

from o to 10 along OA and OB, and suppose that the points

numbered 6 are the points P and Q. Then OAB and OPQ
are similar triangles, and therefore PQ : AB=OP : OA. But

OP= T%AO. /. PQ= 1
6
oAB.

And as by opening the instrument AB may be made equal to

any segment not beyond the compass of the instrument, we

can find PQ equal to T
fi

o of any such given segment.

The least consideration will show that the distance 5-5 is

|AB, 3-3 is f
3
oAB, etc. Also that 3-3 is f of 7-7, 5-5 is f of

7-7, etc. Hence the instrument serves to divide any given

segment into any number of equal parts, provided the num
ber is such as belongs to the instrument.

The various other lines of the sector serve other but very

similar purposes.

3. The Pantagraph or EidograpJi.

Like the two preceding in

struments the pantagraph pri-

marily increases or diminishes

segments in a given ratio, but

unlike the others it is so ar

ranged as to be continuous in

its operations, requiring only
one setting and no auxiliary

instruments.

It is made of a variety of

forms, but the one represented
in the figure is one of the most convenient.

AE, AB, and BF are three bars jointed at A and B. The
bars AE and BF are attached to the wheels A and B respec

tively, which are exactly of the same diameter, and around

which goes a very thin and flexible steel band C.

The result is that if AE and BF are so adjusted as to be

parallel, they remain parallel however they be situated with

respect to AB. E, F are two points adjustable on the bars
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AE and BF, and D is a point in line with EF, around which

the whole instrument can be rotated.

Now let EGKM be any figure traced by the point E ; then

F will trace a similar figure FHLN.
Evidently the triangles DAE and DBF remain always

similar however the instrument is transformed. Therefore

DF is in a constant ratio to DE, viz., the ratio DB : DA.

Now, when E comes to G, F comes to some point H in

line with GD, and such that DH : DG=DB : DA.
/. the triangles EDG and FDH are similar, and FH is

||

to EG, and has to it the constant ratio DB : DA. Similarly
HL is

||
to GK and has to it the same constant ratio, etc.

. . the figures are similar, and the ratio of homologous lines

in GM and HN is AD : DB.

The three points E, D, and F being all adjustable the ratio

can be changed at pleasure.

Altogether the Pantagraph is a highly important instrument,

and when so adjusted that E, D, and F are not in line its

results offer some interesting geometrical features.

4 3 2 t A 4. The Diagonal Scale.

This is a divided scale in

which, by means of similar tri

angles, the difficulty of reading
off minute divisions is very much
diminished.

Its simpler form is illustrated in
B

the figure.

A scale divided to fortieths of an inch is, on account of the

closeness of the divisions, very difficult to read.

In the scale represented OA is inch. The distance AB
is divided into 10 equal parts by the horizontal parallel lines

numbered I, 2, 3, etc. Then OBO is a triangle whereof the

horizontal lines are all parallel to the base. Hence it is

readily seen from the proportionality of the homologous sides

of the similar triangles formed that the intercept on the hori-
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between OO and OB, is i^O B, that is

j\y inch.

Similarly the intercept on the horizontal line 2 is 4% inch,

on 3, ^j inch, etc.

Hence from p to q is one inch and seven-fortieths.

In a similar manner diagonal scales can be made to divide

any assumed unit-length into any required number of minute

parts.

The chief advantages of such scales are that the minute

divisions are kept quite distinct and apparent, and that errors

are consequently avoided.

EXERCISES.

1. ABCD is a square and P is taken in BC so that PC is

one-third of BC. AC cuts the diagonal BD in O, and

AP cuts it in E. Then OE is one-tenth of DB.
2. If, in i, OE is one-eighth of DB, how does P divide BC ?

3. If BP is one th of BC, what part of DB is OE ?

4. Given three line-segments to find a fourth, so that the

four may be in proportion.

5. The rectangle on the distances of a point and its chord of

contact from the centre of a circle is equal to the

square on the radius of the circle.

6. OD and DQ are fixed lines at right angles and O is a

fixed point. A fixed circle with centre on OD and

passing through O cuts OO in P. Then OP . OO is a

constant however OQ be drawn.

7. To divide a given segment similarly to a given divided

segment.
8. To divide a given segment into a given number of equal

parts.

9. Two secants through A cut a circle in B, D, and C, E
respectively. Then the triangles ABE and ACD are

similar. So also are the triangles ABC and AED.
10. Two chords are drawn in a circle. To find a point on
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the circle from which perpendiculars to the chords are

proportional to the lengths of the chords.

11. ABC is a triangle and DE is parallel to AC, D being on

AB and E on CB. UC and AE intersect in O. Then
BO is a median.

12. If BO, in n, cuts DE in P and AC in Q, BO is divided

harmonically by P and Q.

13. A and B are centres of fixed circles and AX and BY are

parallel radii. Show that XY intersects AB in a

fixed point.

14. In the triangle ABC, BD bisects the LB and cuts AC in

U. Then BD 2=AB. EC -AD . DC. (Employ the

circumcircle.)

15. ABC is right-angled at B and BD is the altitude on AC.

(1) The AS ADB and BDC are each similar to ABC.

(2) Show by proportion that AB2=AD . AC,
and BD 2=AD.DC.

1 6. If R and r denote the radii of the circumcircle and in-

circle of a triangle, 2Rr(a + b+ c]
= abc.

17. In an equilateral triangle the square on the side is equal

to six times the rectangle on the radii of the circum

circle and incircle.

1 8. OA, OB, OC are three lines. Draw a line cutting them

so that the segment intercepted between OA and OC

may be bisected by OB.

19. What is the measure of an angle in radians when its

measure in degrees is 68 17 ?

20. How many radians are in the angle of an equilateral A?
21. The earth s diameter being 7,960 miles, what is the dis

tance in miles between two places having the same

longitude but differing 16 in latitude?

22. Construct a regular pentagon, a regular decagon, a

regular polygon of 1 5 sides, of 30 sides, of 60 sides.

23. ABCDE is a regular pentagon.

(i) Every diagonal is divided into extreme and mean

ratio by another diagonal.
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(2) The diagonals enclose a second regular pentagon.

24. Compare the side and the areas of the two pentagons of

23 (2).

25. If one side of a right-angled triangle is a mean propor
tional between the other side and the hypothenuse, the

altitude from the right angle divides the hypothenuse
into extreme and mean ratio.

26. A variable line from a fixed point A meets a fixed circle

in P, and X is taken on AP so that AP . AX = a con

stant. The locus of X is a circle.

27. If two circles touch externally their common tangent is a

mean proportional between their diameters.

28. Four points on a circle are connected by three pairs of

lines. If a, c^ denote the perpendiculars from any fifth

point on the circle to one pair of lines, /3, ft to another

pair, and 7, y1 to the third pair, then aa
l
= p^1

= yy l
.

(Employ 204.)

29. A line is drawn parallel to the base of a trapezoid and

bisecting the non-parallel sides. Compare the areas

of the two trapezoids formed.

30. Draw two lines parallel to the base of a triangle so as to

trisect the area.

31. ABC is right-angled at B, and AP is the perpendicular
from A to the tangent to the circumcircle at B. Then

SECTION II.

FUNCTIONS OF ANGLES. AREAL RELATIONS.

212. Def. When an element of a figure undergoes change
the figure is said to vary that element.

If a triangle changes into any similar triangle it varies its

magnitude while its form remains constant ; and if it changes
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into another form while retaining the same area, it varies its

form while its area remains constant, etc.

Similar statements apply to other figures as well as triangles.

When a triangle varies its magnitude only, the tensors or

ratios of the sides taken two and two remain constant. Hence
the tensors or ratios of the sides of a triangle taken two and

two determine the form of the triangle but not its magni
tude

; i.e.) they determine the angles but not the sides.

(77, 3 ; i97 ; 198 ; 201)
A triangle, which, while varying its size, retains its form, is

sometimes said to remain similar to itself, because the tri

angles due to any two stages in its variation are similar to

one another.

213. In the right-angled triangle the ratios or tensors of

the sides taken in pairs are important functions of the angles

and receive distinctive names.
p The AOPM is right-angled at M,

and the ^POM is denoted by 0.

ivp ^ ^
M Then, ~^ is the sine of 0, and is

contracted to sin in writing.

is the sine of the LOPM, but as /_OPM is the comple

ment of 0, this tensor is called the cosine of 6, and is written cos 9.

is the tangent of 0, contracted to tan 6.OM
r PM PM OP sine--

Cor. 2. v

or

214. LetOP = OP be drawn so that LP OM = POM = 6,

and let P M be _L on OM.
Then z.P OM is the supplement of 0, and the triangles

P OM and POM are congruent.
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OP OP
i.e., an angle and its supplement have the same sine.

2. Cos P OM= . But in changing from OM to OM ,

on the same line, OM vanishes and then reappears upon the

opposite side of O.

Therefore OM and OM have opposite senses (156), and

if we consider OM positive, OM is negative.

OM = - OM, and hence

an angle and its supplement have cosines which are equal in

numerical value but opposite in sign.

215, Theorem. The area of a parallelogram is the pro
duct of two adjacent sides multiplied by the sine of their

included angle. ( 1 5 2 )

AC is a i 7 and BP is J_ upon AD.
Then BP is the altitude, and the

area=AD.BP. (153, i)

But BP
=AB . AD sin ^BAP= ab sin e.

Cor. i. Since the area of a triangle is one-half that of the

parallelogram on the same base and altitude,

.*. the area of a triangle is one-half the product of any two

sides multiplied by the sine of the included angle. Or

216. Theorem. The area of any quadrangle is one-half

the product of the diagonals multiplied by the sine of the

angle between them.

ABCD is a quadrangle of which AC
and BD are diagonals.

Then ^BOC=^AOD = supp. of 6.

AAOB=iOA.OBsin0,
ABOC=4OB . CO sin 0, ACOD=|OC . DO sin 0,
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. OA sin 6, and adding,

Qd. = AC . BD sin 8. (compare 162)

217. BD being the altitude to AC in the AABC, we have

B from 172, 2,

\\
But

tr=P+ c
z - -2.be cos A.

D ^c When B comes to B the LA. becomes

obtuse, and cos A changes sign. (214, 2)

If we consider the cosine with respect to its magnitude

only, we must write + before the term ibc cos A, when A be

comes obtuse. But, if we leave the sign of the function to be

accounted for by the character of the angle, the form given

is universal.

Cor. r. ABCD is a parallelogram. Consider the AABD,
then BD 2=

&amp;lt;r

J + ^2 -2^cos0.
c Next, consider the AABC. Since

.LABC is the supplement of 0, and

AC 2 =rt2 + 2 + lab cos 8.

and writing these as one expression,

gives both the diagonals of any ZZZ7, one of whose angles is 8.

Cor. 2. DE = rtcos0 (CE being J_ to AD),
AE = $ + rt cos 8

;

and
AE

which gives the direction of the diagonal.

218. Def. The ratio of any area X to another area Y is

the measure of X when Y is taken as the unit-area, and is

accordingly expressed as -. (Compare 188.)

i. Let X and Y be two similar rectangles. Then Y^ ab
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and Y= #
,
where a and b are adjacent sides of the cnX and

a and. b those of the cnY.

X = a b

Y a b

But because the rectangles are similar, = ..
v 2 a b

i.e., the areas of similar rectangles are proportional to the

areas of the squares upon homologous sides.

2. Let X and Y be two similar triangles. Then
X=

|&amp;lt;zsinC, Y=4rt #sinC,

Y
=

rt^
=^

because the triangles are similar, (i97)

i.e., the areas of similar triangles are proportional to the

areas of the squares upon homologous sides.

3. Let X denote the area of the pentagon ABCDE, and Y
that of the similar pentagon
A B C D E . Then

:P = AD
2 R AC2

P A D 2 R
Q_DC2

0!

But

A C

D C 2

and

= R -

AD
AfD

&quot;

X
Y

D
(X)

Q = P + Q + R =X
Q P + Q + RT Y

AC_= DC
A C D C&quot;

DC2

(195, 3)

(207)

D C 2

And the same relation may be proved for any two similar

rectilinear figures whatever.

.*. the areas of any two similar rectilinear figures are pro

portional to the areas of squares upon any two homologous
lines.
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4. Since two circles are always similar, and are the limits

of two similar regular polygons,

. . the areas of any two circles are proportional to the areas

of squares on any homologous chords of the circles, or on

line-segments equal to any two similar arcs.

5. When a figure varies its magnitude and retains its form,

any similar figure may be considered as one stage in its

variation.

Hence the above relations, i, 2, 3, 4, may be stated as

follows :

The area of any figure with constant form varies as the

square upon any one of its line-segments.

EXERCISES.

1. Two triangles having one angle in each equal have

their areas proportional to the rectangles on the sides

containing the equal angles.

2. Two equal triangles, which have an angle in each equal,

have the sides about this angle reciprocally propor

tional, i.e,, a : a = b : b.

3. The circle described on the hypothenuse of a right-angled

triangle is equal to the sum of the circles described on

the sides as diameters.

4. If semicircles be described outwards upon the sides of a

right-angled triangle and a semicircle be described in

wards on the hypothenuse, two crescents are formed

whose sum is the area of the triangle.

5. AB is bisected in C, D is any point in

AB, and the curves are semicircles. / Q

Prove that P + S = Q + R. A c D B

6. If a, b denote adjacent sides of a parallelogram and also

of a rectangle, the ratio of the area of the parallelogram

to that of the rectangle is the sine of the angle of the

parallelogram.
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7. The sides of a concyclic quadrangle are a, b, c, d. Then
the cosine of the angle between a and b is

8. In the quadrangle of 7, if s denotes one-half the perimeter,

area = v/ { (s
-

a)(s
-

6}(s
-

&amp;lt;r)(.y d)}.

9. In any parallelogram the ratio of the rectangle on the

sum and differences of adjacent sides to the rectangle

on the diagonals is the cosine of the angle between the

diagonals.

10. If a, b be the adjacent sides of a parallelogram and 6 the

angle between them, one diagonal is double the other

when cos 6= f - -f-

11. If one diagonal of a parallelogram is expressed by

-^-= I
,
the other diagonal is n times as long.

n 4- 1 )

12. Construct an isosceles triangle in which the altitude is a

mean proportional between the side and the base.

13. Three circles touch two lines and the middle circle

touches each of the others. Prove that the radius of

the middle circle is a mean proportional between the

radii of the others.

14. In an equilateral triangle describe three circles which

shall touch one another and each of which shall touch

a side of the triangle.

15. In an equilateral triangle a circle is described to touch

the incircle and two sides of the triangle. Show that

its radius is one-third that of the incircle.



PART IV.

SECTION I.

GEOMETRIC EXTENSIONS.

220. Let two lines L and M passing through the fixed

points A and B meet at P.

When P moves in the direction of the arrow, L and M
*^^^ M approach towards parallelism, and the

^^&quot;&quot;~-~
, _-. * angle APB diminishes. Since the

A ~^~&quot;-- lines are unlimited (21, 3) P may re

cede from A along L until the segment AP becomes greater

than any conceivable length, and the angle APB becomes

less than any conceivable angle.

And as this process may be supposed to go on endlessly, P

is said to &quot;go
to infinity

&quot;

or to &quot;be at
infinity,&quot;

and the

^APB is said to vanish.

But lines which make no angle with one another are parallel,

. . Parallel lines meet at infinity, and lines which meet at

infinity are parallel.

The symbol for
&quot;

infinity
&quot;

is o .

The phrases
&quot;

to go to infinity,&quot;

&quot;

to be at infinity,&quot; must

not be misunderstood. Infinity is not a place but a property.

Lines which meet at o are lines so situated that, having the

same direction they cannot meet at any finite point, and

therefore cannot meet at all, within our apprehension, since

every point that can be conceived of is finite.

178
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The convenience of the expressions will appear throughout
the sequel.

Cor. Any two lines in the same plane meet : at a finite

point if the lines are not parallel, at infinity if the lines are

parallel.

221
J

. L and M are lines intersecting in O, and P is any

point from which PB and PA are
||

respectively to L and M. A third

and variable line N turns about P
in the direction of the arrow.

(184)1. AX. BY = a constant

= U say.

When N comes to parallelism

with L, AX becomes infinite and

BY becomes zero.

. . co.o is indefinite since U may have any value we

please.

2. The motion continuing, let N come into the position N .

Then AX is opposite in sense to AX, and BY to BY. But
AX increased to oo

, changed sign and then decreased ab

solutely, until it reached its present value AX
, while BY

decreased to zero and then changed sign.

/. a magnitude changes sign when it passes through zero

or infinity.

3. It is readily seen that, as the rotation continues, BY in

creases negatively and AX decreases, as represented in one
of the stages of change at X&quot; and Y&quot;. After this Y&quot; goes off

to co as X&quot; comes to A. Both magnitudes then change sign

again, this time BY&quot; by passing through co and AX&quot; by pass

ing through zero.

Since both segments change sign together the product or

rectangle remains always positive and always equal to the

constant area U.
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222. A line in the plane admits of one kind of varia

tion, rotation. When it rotates about a fixed finite point it

describes angles about that point. But since all the lines of

a system of parallels meet at the same point at infinity, rota

tion about that point is equivalent to translation, without

rotation, in a direction orthogonal to that of the line.

Hence any line can be brought into coincidence with any
other line in its plane by rotation about the point of intersection.

223. If a line rotates about a finite point while the point

simultaneously moves along the line, the point traces a curve

to which the line is at all times a tangent. The line is then

said to envelope the curve, and the curve is called the en

velope of the line.

The algebraic equation which gives the relation between

the rate of rotation of the line about the point and the rate of

translation of the point along the line is the intrinsic equation
to the curve.

224. A line-segment in the plane admits of two kinds of

variation, viz., variation in length, and rotation.

If one end-point be fixed the other describes some locus

depending for its character upon the nature of the variations.

The algebraic equation which gives the relation between

the rate of rotation and the rate of increase in length of the

segment, or radius vector, is the polar equation of the locus.

When the segment is invariable in length the locus is a

circle.

225. A line which, by rotation, describes an angle may
rotate in the direction of the hands of a clock or in the con

trary direction.

If we call an angle described by one rotation positive we

must call that described by the other negative. Unless con

venience requires otherwise, the direction of rotation of the

hands of a clock is taken as negative.
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An angle is thus counted from zero to a circumangle either

positively or negatively.

The angle between AB and A B is the

rotation which brings AB to A B
,
and

is either +a or /3, and the sum of these A

two angles irrespective of sign is a cir

cumangle.
When an angle exceeds a circumangle the excess is taken

in Geometry as the angle.

Ex. OA and OB bisect the angles CAB and ABP extern

ally ;
to prove that ^P = 2/.O.

The rotation which brings CP
to AB is -2a, AB to BP is +2/3,

Also, the rotation which brings

AQ to AB is -a, and AB to BO
is +p /. Z. = /3-a.

.L(CP.BP) = 2^(AO.BO).
This property is employed in the working of the sextant.

226. Let AB and CD be two diameters at right angles.

The rectangular sections of the plane
taken in order of positive rotation and

starting from A are called respectively

the first, second, third, and fourth

quadrants, the first being AOC, the

second COB, etc.

The radius vector starting from co

incidence with OA may describe the

positive ^AOP, or the negative ^

Let these angles be equal in absolute value, so that the

AMOP =AMOP ,
PM being J_ on OA.

Then PM=-P M, since in passing from P to P
,
PM

passes through zero.
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and

/. the sine of an angle changes sign when the angle does,

but the cosine does not.

227. As the angle AOP increases, OP passes through the

several quadrants in succession.

When OP lies in the ist
.,

sin AOP and cos AOP are

both positive ; when OP lies in the 2nd Q., sin AOP is posi

tive and cos AOP is negative ; when OP lies in the 3rd (9.,

the sine and cosine are both negative ; and, lastly, when OP
lies in the 4th Q., sin AOP is negative and the cosine

positive.

Again, when P is at A, _AOP = o, and PM=o, while

OM=^OP. . . sin = and cos 0=1.

When P comes to C, PM = OP and OM =
o, and denoting

a right angle by o, (20?? Cor. 4)

sin 5= i, and cos = 0.

When P comes to B, PM = o and OM= -
I,

sin7r= o, and COSTT i.

Finally when P comes to D, PM= OP and OM=o.

s in 3&quot;&quot;= - i
,
and cos^= o.

These variations of the sine and cosine for the several

quadrants are collected in the following table :
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228. ABC is a triangle in its circumcircle whose diameter

we will denote by d,

Let CD be a diameter.

Then LD = LA, (106, Cor. i)

and

and from symmetry,
, a b c

sin A sin B sin C

Hence the sides of a triangle are proportional to the sines of

the opposite angles ;
and the diameter of the circumcircle is

the quotient arising from dividing any side by the sine of the

angle opposite that side.

PRINCIPLE OF ORTHOGONAL PROJECTION.

229. The orthogonal projection (167, 2) of PQ on L is

P Q ,
the segment intercepted between

the feet of the perpendiculars PP and

QQ -

Now P Q = PQ cos (PO . P Q ).

. . the projection of any segment on a

given line is the segment multiplied by the cosine of the

angle which it makes with the given line.

From left to right being considered as the + direction

along L, the segment PQ lies in the ist Q., as may readily be

seen by considering P, the point from which we read the

segment, as being the centre of a circle through Q.

Similarly OP lies in the 3rd (?., and hence the projection

of PQ on L is + while that of OP is -.

When PQ is _|_ to L, its projection on L is zero, and when

||
to L this projection is PQ itself.

Results obtained through orthogonal projection are univer

sally true for all angles, but the greatest care must be
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exercised with regard to the signs of angular functions

concerned.

Ex. AX and OY are fixed lines at right angles, and AO is

any line and P any point.

Required to find the _1_PO in terms of

Q AX, PX, and the _A.

V Take PO as the positive direction, and

\ project the closed figure POAXP on the
N line of PO. Then

o. (168)

Now, pr.PQ is P.Q, and pr.OA = o
;
AX lies in ist

6&amp;gt;.,
and

XP in the 3rd Q.

Moreover z_(AX. PO), i.e., the rotation which brings AX to

PO in direction is -.iN, and its cosine is +.

cos_(AX.PO)=+sinA.
Also, pr.XP is -XPcos/.XPQ= -XPcosA.

PO = XPcosA-AXsinA.

SIGNS OF THE SEGMENTS OF DIVIDED
LINES AND ANGLES.

230. AOB is a given angle and ^AOB = -i.BOA.

Let OP divide the ^AOB internally, and OO divide it ex

ternally into parts denoted respectively

by o, |8, and a
ft .

If a is the zAOP and ft the &amp;lt;LPOB,
a

and ft are both positive. But if we
A P B Q wr i te O for P, a = ^AOQ, and

j3
= z_QOB, and a and $ have contrary signs.

On the other hand, if a is _AOP and ft the _BOP, a and ft

have contrary signs, while replacing P by O gives a and ft

with like signs.

The choice between these usages must depend upon con

venience ;
and as it is more symmetrical with a two-letter



GEOMETRIC EXTENSIONS. 185

notation to write AOP, BOP, AGO, BOO, than AOP, POB,
etc., we adopt the convention that internal division of an

angle gives segments with opposite signs, while external

division gives segments with like signs.

In like manner the internal division of the segment AB
gives parts AP, BP having unlike signs, while external divi

sion gives parts AO, BQ having like signs.

Def, A set of points on a line is called a range, and the

line is called its axis.

By connecting the points of the range with any point not

on its axis we obtain a corresponding pencil. (203, Def.)

Cor. To any range corresponds a pencil for every vertex,

and to any vertex corresponds a range for every axis, the

axis being a transversal to the rays of the pencil.

If the vertex is on the axis the rays are coincident ;
and if

the axis passes through the vertex the points are coincident.

231. BY is any line dividing the angle B, and CR, AP are

perpendiculars upon BY.

Then AAPY
and AP is AB sin ABY,
and CRisBCsinCBY,

AY =AB sin ABY
CY CB sinCBY*

Therefore a line through the vertex of a tri

angle divides the base into segments which

are proportional to the products of each conterminous side

multiplied by the sine of the corresponding segment of the

vertical angle.

Cor. i. Let BY bisect z_B, then
AX=.
I \^ (I

AY = c
(b
- AY), and A\r =

a

Thence YC- .

a + c
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Which are the segments into which the bisector of the

divides the base AC.

Cor. 2. In the

BY- - AB- + AY- - 2AB . AY . cos A. (2 1f )

But cos A= -.
a ~

(217), and A\r=~
,

ibc a + c

whence b reduction

which is the square of the length of the bisector.

Cor. 3. When AY= CY, BY is a median, and

AB=sinYBC
CB sin ABY

. .a median to a triangle divides the angle through which it

passes into parts whose sines are reciprocally as the con

terminous sides.

232. In any range, when we consider both sign and mag
nitude, the sum AB + BC + CD + DE + EA =o,
however the points may be arranged.

For, since we start from A and return to A, the translation

in a -f direction must be equal to that in a - direction.

That this holds for any number of points is readily seen.

Also, in any pencil, when we consider both sign and mag
nitude, the sum ^AOB+ z_BOC + _COD-f-i_DOA= o.

For we start from the ray OA and end with the ray OA,
and hence the rotation in a -I- direction is equal to that in a

- direction.

RANGES AND PENCILS OF FOUR.

233. Let A, B, C, P be a range of four, then
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Proof. AP =AC + CP, and BP = BC + CP.

/. the expression becomes

BC(AC + CA) +(AB + BC + CA)CP,
and each of the brackets is zero (232). . . etc.

234. Let O . ABCP be a pencil of four. Then
sinAOB.sinCOP + sinBOC.sinAOP + sinCOA.sinBOP = (X

Proof. AAOB =40A . OB sin AOB,
also AAOB=IAB.A
where p is the common altitude to all

the triangles.

AB./= OA.OB.sinAOB.
Similarly, CP .p= OC . OP . sin COP.

AB . CP .p~=OA . OB . OC . OP sin AOB . sin COP.

Now, /2 and OA . OB . OC . OP appear in every homologous

product, /. (AB.CP + BC.AP + CA.BP)^2

= OA . OB . OC . OP(sin AOB . sin COP
+ sin BOC . sin AOP + sin COA . sin BOP).

But the bracket on the left is zero (233), and OA. OB.OC. OD
is not zero, therefore the bracket on the right is zero. q.c.d.

235. From P let perpendiculars PA ,
PB

,
PC be drawn to

OA, OB, and OC respectively. Then

sinAOP =^, sinBOP= -, etc.,

and putting these values for sin AOP, etc., in the relation of

234, we have, after multiplying through by OP,
C P . sin AOB +A P. sin BOC + B P . sin COA-o.

Or, let L, M, and N be any three concurrent lines, /, ;//, n
the perpendiculars from any point P upon L, M, and N
respectivelv, then

/\ y\ /\

/^ /sin MN + wsin NL+ftsin LM=o.
where MN denotes the angle between M and N, etc.
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236. Ex. i. Let four rays be disposed in the order OA,
P OB, OC, OP, and let OP be perpendicular
to OA.

Denote ^AOC by A, and ^AOB by B.

Then 234 becomes

sinB cos A + sin(A-B)sin2-sinAcosB=o,
or, sin(A-B)=sinAcosB-cosAsinB.

Similarly, by writing the rays in the same order and making
^BOP a ~~| and denoting /_AOB by A and ^BOC by B, we
obtain sin (A+ B)= sin A cos B + cos A sin B.

Also, by writing the rays in the order OA, OP, OB, OC,
and denoting ^_AOP by A and ^BOC by B, we obtain

(1) when z_AOB=~~|,
cos (A-B)= cos A cos B + sin A sin B ;

(2) when LAOC = ~~l

cos (A + B) = cos A cos B - sin A sin B ;

which are the addition theorems for the sine and cosine.

Ex. 2. ABC
p

is a triangle and P is any point. Let PX,

PY, PZ be perpendiculars upon BC,

CA, AB, and be denoted by P tt ,
P 6 ,

P t.

respectively.

Draw AO
||

to BC to meet PX in O.

Then (235)

PQsinA + PYsinB + PZsinC=o.
C= QX.

+PZsinC = o

~~x B^ c D

But if AD is_Lto BC,

(PX-/&amp;gt;sinC)sinA + PY
or 2(P ft sinA) = 0sinAsinC.

Similarly, S(P tt sin A)= rsin B sin A
= a sin C sin B,

2(P &amp;lt;t

sin A)= %{abc sin 2A sin2B sin
2C }.

Hence the function of the perpendicular

P rt sin A + P6 sin B + P, sin C

is constant for all positions of P. This constancy is

important element in the theory of trilinear co-ordinates.

an
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237. A, B, C being a range of three, and P any point not

on the axis, p
AB . CP 2+ BC . AP- + CA . BP-

--AB.BC.CA.

Proof. Let PO be JL to AC. Then

AQ-AC + CO, BQ= BC + CQ,
and the expression becomes

= BC . CA(BC + CA) = BC . CA . BA
EEE-AB.BC.CA.

EXERCISES.

1. A number of stretched threads have their lower ends fixed

to points lying in line on a table, and their other ends

brought together at a point above the table. What is

the character of the system of shadows on the table

when (a) a point of light is placed at the same height

above the table as the point of concurrence of the

threads ? (b] when placed at a greater or less height ?

2. If a line rotates uniformly about a point while the point

moves uniformly along the line, the point traces and

the line envelopes a circle.

3. If a radius vector rotates uniformly and at the same time

lengthens uniformly, obtain an idea of the curve traced

by the distal end-point.

4. Divide an angle into two parts whose sines shall be in a

given ratio. (Use 231, Cor. 3.)

5. From a given angle cut off a part whose sine shall be to

that of the whole angle in a given ratio.

6. Divide a given angle into two parts such that the product
of their sines may be a given quantity. Under what
condition is the solution impossible ?

7. Write the following in their simplest form :

sin(7r-0), sin(J + 0), sin {TT- (e -f) },

COs(27T4-0), COS 2T-0-, COS *- +*.
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8. Make a table of the variation of the tangent of an angle
in magnitude and sign.

9. OM and ON are two lines making the ^MON =
w, and

PM and PN are perpendiculars upon OM and ON
respectively. Then OP sin w= MN.

10. A transversal makes angles A ,
B

,
C with the sides BC,

CA, AB of a triangle. Then
sin A sin A + sin B sin B + sin C sin C =o.

1 1. OA, OB, OC, OP being four rays of any length whatever,

12. If r be the radius of the incircle of a triangle, and r be

that of the excircle to side
&amp;lt;?,

and if p\ be the altitude

to the side a, etc.,

p l
= r

(sinA+ sinB + sinC)

=-J5 (-sinA + sinB + sinC),
sin A

and L+1+l.-l + l +1 = I

, (Use 235.)
i

ra &amp;gt; 3 A P-i A r

13. The base AC of a triangle is trisected at M and N, then

SECTION II.

CENTRE OF MEAN POSITION.

238. A, B, C, D are any points in line, and perpendiculars

A^ B
AA

,
BB

, etc., are drawn to any fixed

i^c line L. Then there is, on the line,

evidently some point. O, for which

B , N c , D . and ON is less than AA and greater

than DD .

The point O is called the centre of mean position, or simply

the mean centre, of the system of points A, B, C, D.
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Again, if we take multiples of the perpendiculars, as a.AA
,

b . BB , etc., there is some point O, on the axis of the points,

for which

a. AA + .BB + &amp;lt;r.CC + rf. DD =
(rf + + 6-+

&amp;lt;OO
N -

Here again ON lies between AA and DD .

O is then called the mean centre of the system of points for

the system of multiples.

Def For a range of points with a system of multiples we

define the mean centre by the equation

where S(/7 . AO) is a contraction for

and the signs and magnitudes of the segments are both

considered.

The notion of the mean centre or centre of mean position

has been introduced into Geometry from Statics, since a

system of material points having their weights denoted by a,

/&amp;gt;, c, ..., and placed at A, B, C, ..., would &quot;balance&quot; about

the mean centre O, if free to rotate about O under the action

of gravity.

The mean centre has therefore a close relation to the

&quot;centre of gravity&quot;
or &quot;mass centre&quot; of Statics.

239. Theorem. If P is an independent point in the line of

any range, and O is the mean centre, _ . ,&quot;

o c ~7

, etc.,

. OP, etc.

2(rt . AP) = ?.(a . AO) + 2(rf) . OP.

But, if O is the mean centre,

2(tf. AO)=o, by definition,

Z(.AP)Z(&amp;lt;f).OP.

Ex. The mean centre of the basal vertices of a triansrle
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when the multiples are proportional to the opposite sides is

the foot of the bisector of the vertical angle.

240. Let A, B, C, ... be a system of points situated any
where in the plane, and let AL, BL, CL, ..., AM, BM, CM,
..., denote perpendiculars from A, B, C, ... upon two lines L
and M.

Then we define the mean centre of the system of points for

a system of multiples as the point of intersection of L and M
when 2(a . AL) =o,
and Z

* A
If N be any other line through this

centre, 2(rt.AN)=o.

For, let A be one of the points.

Then, since L, M, N is a pencil of three

and A any point, (235)
AL . sin MON +AM . sin NOL +AN . sin LOM = o,

also BL . sin MON + BM . sin NOL + BN . sin LOM =o,

and multiplying the first by ,
the second by ^, etc., and adding,

Z(rf.AL)sinMON + 2(rt.AM)sinNOL+ Z(rt.AN)si

But 2(0 . AL)= 2(rf . AM) = o, by definition,

241. Theorem. If O be the mean centre of a system of

points for a system of multiples, and L any line whatever,

Proof. Let M be
||
to L and pass through O. Then

AL=AM + ML, . . rf.AL = rt.AM + rt. ML,
BL=BM + ML, /. /&amp;gt;.BL=

adding, 2(n . AL) - 2(tf . AM) + 2(rt) . ML.

But, since M passes through O,

Z(. AM) = o, and ML= OL,

2(rf. AL)- Z(rt). OL.
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242. Theorem.- -The mean centre of the vertices of a

triangle with multiples proportional to v

VB
the opposite sides is the centre of the XL

incircle.

Proof. Take L along one of the sides,

as BC, and let/ be the J_ from A. Then \r

and 2(Vz). OL = (a + &+ c). OL,

(239) OL = ^ =A=;r; (153, Ex. i)

i.e.) the mean centre is at the distance r from each side, and

is the centre of the incircle.

Cor. i. If one of the multiples, as a, be taken negative,

-i.e., the mean centre is beyond L, and is at the distance r from

each side, or it is the centre of the excircle to the side a.

Cor. 2. If any line be drawn through the centre of the in

circle of a triangle, and a, /?, 7 be the perpendiculars from the

vertices upon it, aa + &p-\-cy=o,

and if the line passes through the centre of an excircle, that

on the side a for example, aa=

EXERCISES.

i. If a line so moves that the sum of fixed multiples of the

perpendiculars upon it from any number of points is

constant, the line envelopes a circle whose radius is

2. The mean centre of the vertices of a triangle, for equal

multiples, is the centroid.

3. The mean centre of the vertices of any regular polygon, for

equal multiples, is the centre of its circumcircle,

N
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243. Theorem. If O be the mean centre of a system of

points for a system of multiples, and P any independent point

in the plane,

20 . AP2
)
=20 . AO 2

) + 20) . O P 2
.

Proof. Let O be the mean centre, P the

independent point, and A any point of the
bA system. Let L pass through O and be per

pendicular to OP, and let AA be perpen
dicular to OP. Then

AP 2=AO 2+ OP2 -2OP.OA
,

Similarly b . BP 2=
. BO 2+ . OP 2 -2OP. b. OB

,

S(rt . AP2
)
=

Z(rt . AO 2

)+ Z(rt) . OP 2 - 2OP . 20 . OA
).

But S(rt.OA )
=

2(rt. AL) = o, (241)

2(rt.AP
2

)
=ZO.AO 2

) + 2(rt).OP
2
. q.e.d.

Cor. In any regular polygon of n sides -th the sum of the

squares on the joins of any point with the vertices is greater

than the square on the join of the point with the mean centre

of the polygon by the square on the circumradius.

For making the multiples all unity,

Ex. Let a, b, c be the sides of a triangle, and a, /9, 7 the

joins of the vertices with the centroid. Then (242, Ex. 2)

2(AP
2

)=2(AO
2

ist. Let P be at A,
2nd. P B,

3rd. P C,

whence

Ex. If ABCDEFGH be the vertices of a regular octagon
taken in order, AC 2+AD 2+AE 2+AF2 +AG2=

14?&quot;.
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244. Let O be the centre of the incircle of the AABC and

let P coincide with A, B, and C in succession.

ist. b?+ cP= -L(a . AO 2

) + ZO)
2nd. ac*

3rd.

Now, multiply the ist by a, the 2nd by b, the 3rd by c, and

add, and we obtain, after dividing by (a

Cor. i. For any triangle, with O as the centre of the incircle,

the relation 2(. AP2

)
= S(. AO 2

)+ S(^)OP
2

becomes
2(&amp;gt;.

AP 2

)
= ^+2.y. OP 2

,

and, if O be the centre of an excircle on side rt, for example,

where a denotes that a alone is negative.

Cor. 2. Let P be taken at the circumcentre, and let D be

the distance between the circumcentre and the centre of the

incircle. Then AP = BP = CP = R.

But afc=4/R, (204, Cor.)

and J=A (153, Ex. i)

D 2=R2 -2Rr.

Cor. 3. If D! be the distance between the circumcentre and

the centre of an excircle to the side a, we obtain in a similar

manner D
1

2 =

Similarly D 2
2=

245. Ex. To find the product OA. OB . OC, where O is

the centre of the incircle.

Let P coincide with A. Then (244)
br+ #*t= abc+ 2s . AO 2

,
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Similarly Bp2=^-^ and CO 2

*

AO 2
. BO2

. CQ =

and OA.OB.OC = 4Rr2
.

246. If S(rt . AP 2

) becomes constant, k, we have

and 2(rt . AO 2

) being independent of the position of P, and

therefore constant for variations of P, OP is also constant,

and P describes a circle whose radius is

/. If a point so moves that the sum of the squares of its

joins with any number of fixed points, each multiplied by a

given quantity, is constant, the point describes a circle

whose centre is the mean point of the system for the given

multiples.

EXERCISES.

1. If O
, 0&quot;,

O &quot; be the centres of the escribed circles,

AO . BO&quot;.CO
&quot;

2. AO . BO . CO
3. s.OL= (s-a)O L + (s-

where L is any line whatever.

4. If P be any point,

s . OP2=
(j
-

rt)0 P
2+ (s

-
)0&quot;P

2+ (j
-
*)0

&quot;P3 - iabc.

5. (s-a). O O 2+ (s
-

V) . O&quot;O
2+ (s

-
&amp;lt;)O

&quot;O

2= 2abc.

6. If I) is the distance between the circumcentre and the

centroid, D 2= i(9R2 -c?-P- ^
2
).
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SECTION III.

OF COLLINEARITY AND CONCURRENCE.

247. Def, i. Three or more points in line are collinear,

and three or more lines meeting in a point are concurrent

2. A tetragram or general quadrangle is the figure

formed by four lines no three of

which are concurrent, and no two

of which are parallel.

Thus L, M, N, K form a tetra-

gram. A, B, C, D, E, F are its six

vertices. AC, BD are its internal /A K D F&quot;

diagonals, and EF is its external diagonal.

248. The following are promiscuous examples of collinear-

ity and concurrence.

Ex. i. AC is a / 7, and P is any point. Through P, GH
is drawn

||
to BC, and EF

|| K N p
toAB. ./ Q/^-fc^jf
The diagonals EG, HF,

and DB of the three / 7s

AP, PC, and AC are concur- / ^^ \

rent. ^__
EG and HF meet in some D H c L

point O ; join BO and complete the Z7OKDL, and make

the extensions as in the figure.

We are to prove that D, B, O are collinear.

Proof. ZZZ7KG = H7GM, and ZZZ7FL = /ZZ7FN, (145)

and

Hence

and

/ 7FL=/ 7GF4-/ 7NB.

B is on the line DO,
D, B, O are collinear.

(i45i. Cor- 2 )
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Ex. 2. The middle points of the three diagonals of a tetra-

gram are collinear.

ABCDEF is the tet-

ragram, P, Q, R the

middle points of the

diagonals.

Complete the paral

lelogram AEDG, and

through B and C draw

lines H to AG and AE
respectively, and let

them meet in T.

Then, from Ex. i,

IH passes through F. Therefore EIHF is a triangle, and

the middle points of El, EH, and EF are collinear.

(84, Cor. 2)

But these are the middle points of AC, BD, and EF re

spectively. . . P, Q, R are collinear.

Ex* 3. Theorem. The circumcentre, the centroid, and the

B orthocentre of a triangle are col

linear.

Froof. Let YD and ZD be

the right bisectors ofAC and AB.

Join BY, CZ, and through E,
c the intersection of these joins,A Y

draw DE to meet the altitude BH in O.

Then D is the circumcentre and E is the centroid. Since

DY is
||

to BH, the triangles YDE and BOE are similar.

But BE = 2EY, (85, Cor.)

OE= 2DE,
and as D and E are fixed points, O is a fixed point.

.*. the remaining altitudes pass through O.

249. Theorem. Three concurrent lines perpendicular to

the sides of a triangle at X, Y, Z divide the sides so that
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and, conversely, if three lines perpendicular to the sides of a

triangle divide the sides in this manner, B

the lines are concurrent.

Proof. Let OX, OY, OZ be the lines.

Then BX2 -CX2= BO 2 - CO2

,(i72,i)

Similarly CY2 - AY2=CO2 - AO 2

,

AZa -BZ2=AO2-BO2
,

A Y c

BX2 + CY2+AZ2-CX2-AY 2 -BZ2= o. q.c.d.

Conversely, let X, Y, Z divide the sides of the triangle in

the manner stated, and let OX, OY, perpendiculars to BC
and CA, meet at O. Then OZ is _L to AB.

Proof. -If possible let OZ be J_ to AB, Then, by the

theorem, BX2+ CY2 + AZ 2 - CX2 - AY 2 - BZ 2=
o,

and by hyp. BX2+ CY2+ AZ2- CX2 - AY2 -BZ2=
o,

AZ 2 -AZ2= BZ 2 -BZ2
.

But these differences have opposite signs and cannot be equal

unless each is zero. .*. Z coincides with Z.

EXERCISES.

1. When three circles intersect two and two, the common
chords are concurrent.

Let S, S^ S2 be the circles, and A, B, C their centres.

Then (113) the chords are perpendicular to the sides

of the AABC at X, Y, and Z. And if r, r
lt r2 be the

radii of the circles,

BX2 - CX2 = r* - r*, etc., etc.,

and the criterion is satisfied.

. . the chords are concurrent.

2. The perpendiculars to the sides of a triangle at the points

of contact of the escribed circles are concurrent.

3. When three circles touch two and two the three common

tangents are concurrent.

4. If perpendiculars from the vertices of one triangle on the

sides of another be concurrent, then the perpendiculars
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from the vertices of the second triangle on the sides

of the first are concurrent.

5. When three perpendiculars to the sides of a triangle are

concurrent, the other three at the same distances from

the middle points of the sides are concurrent.

6. Two perpendiculars at points of contact of excircles are

concurrent with a perpendicular at a point of contact of

the incircle.

sides BC, CA, and AB of a triangle are collinear, they divide

the sides into parts which fulfil the relation

(a)
BX.CY.AZ,
CX.AY.BZ

and their joins with the opposite vertices divide the angles

into parts which fulfil the relation

,^
sin BAX . sin CBY . sin ACZ

*
sin CAX . sin ABY . sin BCZ

Proof of (a). On the axis of X, Y, Z draw the perpendicu-

B lars AP, BQ, CR.

On account of similar AS,

CX
=
CR AY

=
AP BZ

=
BQ

BX.CY.AZ
CX.AY.BZ

Proof of(fy- ^=^X=
B^mBAX j

sin
L
BAX = CA BX

sin CAX BA CX

sin_C_BY =AB CY sinACZ_EC AZ
sln~ABY~CB AY sin BCZ AC BZ

sin BAX . sin CBY . sin ACZ_BX . CY. AZ_
;

sin CAX. sin ABY. sin BCZ CX.AY.BZ q.e.d.

The preceding functions which are criteria of collinearity

Similarly,
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will be denoted by the symbols

It is readily seen that three points on the sides of a triangle

can be collinear only when an even number of sides or angles

(2 or o) are divided internally, and from 230 it is evident that

the sign of the product is + in these two cases.

Hence, in applying these criteria, the signs may be dis

regarded, as the final sign of the product is determined by
the number of sides or angles divided internally.

The converses of these criteria are readily proved, and the

proofs are left as an exercise to the reader.

Ex. If perpendiculars be drawn to the sides of a triangle

from any point in its circumcircle, the feet of the perpendicu
lars are collinear. g

X, Y, Z are the feet of the perpendicu
lars. If X falls between B and C, LOB.C
is &amp;lt; a ~~| and therefore ^OAC is &amp;gt; a ~~|,

and Y divides AC externally ;

. . it is a case of collinearity.

Now, BX= OBcosOBC,
and AY= OAcosOAC.

But, neglecting sign, cosOBC = cosOAC,
BX_OB
AY OA

and similarly,
&amp;lt;g

= OC
_A^OA

$)=!, and X, Y, Z are collinear.

Def. The line of collinearity of X, Y, Z is known as
&quot; Simson s line for the point O.&quot;

Y A

251. Theorem. When three lines through the vertices of a

triangle are concurrent, they divide the angles into parts
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which fulfil the relation

x v sin BAX. sin CBY. sin ACZ_
V sinCAX.sinABY.sinBCZ

and they divide the opposite sides into parts which fulfil the

BX.CY.AZ,.,
CX.AY.BZ~

To prove (a). Let O be the point of concurrence ofAX, BY,
and CZ, and let OP, OO, OR be perpendiculars on the sides.

Then
sin BAX
sinCAX

1

sin CBY

OR
OQ
OP
OR

A QY

. . multiplying,

the negative sign

divided internally.

sin ABY
sin ACZ_OQ
sIrTBCZ~OP

sin BAX
\sinCAX7~

resulting from the three angles being

(230)

To prove (). From B and C let BE and CF be per

pendiculars upon AX.

Then, from similar AS BEX and CFX,

BX_BE_ABsinBAX
CX CF ACsinCAX*
CY BC sin CBY AZ CAsinACZ

Similarly,

.*. multiplying,
BXV
cx/

BA sin ABY BZ

-
i, from (a).

CBsinBCZ

The negative sign results from the three sides being divided

internally. (230)
It is readily seen that three concurrent lines through the

vertices of a triangle must divide an odd number of angles

and of sides internally, and that the resulting sign of the

product is accordingly negative.

Hence, in applying the criteria, the signs of the ratios may
be neglected.
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The remarkable relation existing between the criteria for

collinearity of points and concurrence of lines will receive an

explanation under the subject of Reciprocal Polars.

EXERCISES.

252. i. Equilateral triangles ABC ,
BCA

,
CAB are de

scribed upon the sides AB, BC, CA of any triangle.

Then the joins AA ,
BB

,
CC are concurrent.

Proof. Since AC = AB, AB =AC,
and .

^CAC =^BAB
,

ACAC =AB AB, and^iAC C = /.ABB .

T
, sin ACZ _sin ACC _AC _AB ( R0&amp;gt;

sinABY~sinAC C~AG~AC
sinBAX BC sin CBY CA

/sinBAX\
VsinCAX/

and hence the joins AA ,
BB

,
CC are concurrent.

2. The joins of the vertices of a A with the points of con

tact of the incircle are concurrent.

3. The joins of the vertices of a A with the points of

contact of an escribed are concurrent.

4. ABC is a A, right-angled at B, CD is = and J_ to CB,
and AE is = and J_ to AB. Then EC and AD inter

sect on the altitude from B.

5. The internal bisectors of two angles of a A and the

external bisector of the third angle intersect the

opposite sides collinearly.

6. The external bisectors of the angles of a A intersect the

opposite sides collinearly.

7. The tangents to the circumcircle of a A, at the vertices

of the A, intersect the opposite sides collinearly.

8. If any point be joined to the vertices of a A, the lines

through the point perpendicular to those joins intersect

the opposite sides of the A collinearly,
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9. A cuts the sides of a A in six points so that three

of them connect with the opposite vertices concurrently.

Show that the remaining three connect concurrently

with the opposite vertices.

10. Is the statement of Ex. i true when the AS are all de

scribed internally upon the sides of the given A ?

11. If L is an axis of symmetry to the congruent AS ABC
and A B C

,
and O is any point on L, A O, B O, and

C O intersect the sides BC, CA, and AB collinearly.

253. Theorem. Two triangles which have their vertices

connecting concurrently have their corresponding sides inter

secting collinearly. (Desargue s Theorem.)
?z ABC, A XB C are two AS

having their vertices connect

ing concurrently at O, and

their corresponding sides in

tersecting in X, Y, Z. To

prove that X, Y, Z are col-

linear.

Proof. To the sides of

AA B C draw perpendiculars

AP, AP , BQ, BQ , CR, CR .

Then, from similar As
)

BX = BQ;
CX CR
CY_CR/

AY AP
AZ_AP
BZ BQ

BO\CR
AP . BQ . CR

AF= sin_AA B
AP sTrTAA C&quot;

with similar expressions for the other ratios.

But
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Also, since AA
,
BB

,
CC are concurrent at O, they divide

the angles A B
,
C so that

sin AA B . sin BB C . sin CC A _
I

sin AA C. sin BB A . sin CC B

(?5)= i, and X, Y, Z are collinear.

The converse of this theorem is readily proved, and will be

left as an exercise to the reader.

Ex. A
,
B

,
C are points upon the sides BC, CA, AB re

spectively of the AABC, and AA
,
BB

,
CC are concurrent

in O. Then
1. AB and A B

,
BC and B C, CA and C A meet in three

points Z, X, Y, which are collinear.

2. The lines AX, BY, CZ form a triangle with vertices
A&quot;,

B&quot;, C&quot;,
such that

AA&quot;, BB&quot;, CC&quot; are concurrent in O.

OF RECTILINEAR FIGURES IN PERSPECTIVE.

254. Def. AB and A B are two segments and AA and

BB meet in O. A B

Then the segments AB and A B are said to

be in perspective at O, which is called their

centre ofperspective.
The term perspective is introduced from

A

Optics, because an eye placed at O would see

A coinciding with A and B with B, and the

segment A B coinciding with AB.

By an extension of this idea O is also a

centre of perspective of AB and B A . O is 6

then the external centre of perspective and O is the internal

centre.

Def. Two rectilinear figures of the same number of sides

are in perspective when every two corresponding sides have

the same centre of perspective.
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Cor. i. From the preceding definition it follows that two

rectilinear figures of the same species are in perspective when
the joins of their vertices, in pairs, are concurrent.

Cor. 2. When two triangles are in perspective, their ver

tices connect concurrently, and their corresponding sides

intersect collinearly. (253)
In triangles either of the above conditions is a criterion of.

the triangles being in perspective.

Def. The line of collinearity of the intersections of corre

sponding sides of triangles in perspective is called their axis

ofperspective; and the point of concurrence of the joins of

corresponding vertices is the centre of perspective.

255. Let AA
,
BB

,
CC be six points which connect con

currently in the order written.

These six points may be connected in four different ways
so as to form pairs of triangles having the same centre of

perspective, viz.,

ABC, A B C
; ABC, A B C

;
AB C, A BC; A BC, AB C.

These four pairs of conjugate triangles determine four axes

of perspective, which intersect in six points ;
these points are

centres of perspective of the sides of the two triangles taken

in pairs, three X, Y, Z being external centres, and three X
,

Y
,
Z being internal centres. (254)
The points, the intersections which determine them, and

the segments of which they are centres of perspective are

given in the following table :

POINT.

X
Y
Z

X
Y
7J



OF INVERSION AND INVERSE FIGURES. 207

And the six points lie on the four lines thus,

XYZ, X Y Z, X YZ
,
XY Z .

EXERCISES

1. The triangle formed by joining the centres of the three

excircles of any triangle is in perspective with it.

2. The three chords of contact of the excircles of any tri

angle form a triangle in perspective with the original.

3. The tangents to the circumcircle of a triangle at the three

vertices form a triangle in perspective with the original.

SECTION IV.

OF INVERSION AND INVERSE FIGURES.

256. Def.Two points so situated upon a centre-line of a
circle that the radius is a geometric mean (169, Def.) between
their distances from the centre are called inverse points with

respect to the circle.
/&quot;&quot;IT

Thus P and Q are inverse points if

CP.CQ= CB = R, A
R being the radius.

The 0S is the circle of inversion

or the inverting 0, and C is the centre of inversion.

Cor. From the definition :

1. An indefinite number of pairs of inverse points may lie on
the same centre-line.

2. An indefinite number of circles may have the same two

points as inverse points.

3. Both points of a pair of inverse points lie upon the same
side of the centre of inversion.

4. Of a pair of inverse points one lies within the circle and
one without.
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5.
P and Q come together at B

;
so that any point on the

circle of inversion is its own inverse.

6. When P comes to C, Q goes to oo
;
so that the inverse of

the centre of inversion is any point at infinity.

257. Problem. To find the circle to which two pairs of

collinear points may be inverse points.

P^ ^Q c pj. ^Q P, Q, P
, Q are the four

collinear points, of which

PQ and P Q are respec

tively to be pairs of in

verse points.

Through P, Q and

through P
,
O describe

any two circles S, S to intersect in two points U and V. Let

the connector UV cut the axis of the points in C, and let

CT be a tangent to circle S . Then C is the centre and CT
the radius of the required circle.

proof. CT 2 = CP . CQ = CU. CV= CQ. CP.

Cor. If the points have the order P, P
, Q, Q the centre C

is real and can be found as before, but it then lies within

both circles S and S
,
and no tangent can be drawn to

either of these circles
;
in this case we say that the radius

of the circle is imaginary although its centre is real.

In the present case P and O, as also P and O
,

lie upon

opposite sides of C, and the rectangles CP . CQ and CP . CO
are both negative. But R2

being always positive (163)
cannot be equal to a negative magnitude.
When the points have the order P, P

,
O

, O, the circle of

inversion is again real.

Hence, in order that the circle of inversion may be real,

each pair of points must lie wholly without the other, or one

pair must lie between the others.
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EXERCISES.

1. Given a Q and a point without it to find the inverse point.

2. Given a and a point within it to find the inverse point.

3. Given two points to find any to which they shall be

inverse.

4. In 3 the is to have a given radius.

5. In 3 the is to have a given centre on the line of the

points.

258. Theorem. A which passes through a pair of

inverse points with respect to another cuts the latter

orthogonally. (n5j Defs. I, 2)

And, conversely, a which cuts another orthogonally

determines a pair of inverse points on any centre-line of the

latter.

1. P and O are inverse to 0S.
Then CP. CO = CT 2

&amp;gt;

CT is tangent to 0S .

(176, Cor. 3)

And /. S cuts S orthogonally

since the radius of S is perpen
dicular to the radius of S at its end-point.

2. Conversely, let S cut S orthogonally. Then A.CTC
is a ~~|, and therefore CT is tangent to S at the point T.

Hence CT 2 = CP.CQ,
and P and O are inverse points to 0S.

Cor. i. A through a pair of points inverse to one another

with respect to two 0s cuts both orthogonally.

Cor. 2. A which cuts two 0s orthogonally determines

on their common centre-line a pair of points which are inverse

to one another with respect to both 0s.

Cor. 3. If the 0S cuts the 0s S and S&quot; orthogonally, the

tangents from the centre of S to the 0s S and S&quot; are radii of

S and therefore equal.
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/. (178) a which cuts two Qs orthogonally has its

centre on their radical axis.

Cor. 4. A having its centre on the radical axis of two

given 0s, and cutting one of them orthogonally, cuts the

other orthogonally also.

Let P, O be inverse points to circle S and D any

point on it.

Then

CP.CQ= CD2
,

.-. CP:CD = CD:CO.
Hence the triangles CPD
and CDQ are similar, and

PD and DQ are homolo

gous sides.

PD 2_CD 2_CP.CQ = CP
QD 2 CQ2 CQ2 ~CQ-

. . the squares on the joins of any point on a circle with a

pair of inverse points with respect to the circle are propor
tional to the distances of the inverse points from the centre.

Cor. i. If P and Q are fixed, PD 2
: OD 2

is a fixed ratio.

.*. the locus of a point, for which the squares on its joins to

two fixed points have a constant ratio, is a circle having the

two fixed points as inverse points.

Cor. 2. When D comes to A and B we obtain

CP_PD 2_PA2_PB 2

CQ QD* QA2 QB 2

PD = PA= PB
QD QA QB

Hence DA and DB are the bisectors of the ^PDQ, .and

the segments PB and BQ subtend equal angles at D.

Hence the locus of a point at which two adjacent segments
of the same line subtend equal angles is a circle passing

through the common end-points of the segments and having

their other end-points as inverse points.
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Cor. 3. Let P
, Q be a second pair of inverse points. Then

,
and

or the segments PP and QQ subtend equal angles at D.

Hence the locus of a point at which two non-adjacent seg

ments of the same line subtend equal angles is a circle having
the end-points as pairs of inverse points.

Cor. 4. Since AP : AQ= PB : BQ, (Cor. i)

.*. P and Q divide the diameter AB in the same manner in

ternally and externally, and B and A divide the segment PQ
in the same manner internally and externally.

. . from 208, Cor., P, Q divide AB harmonically, and A, B
divide PO harmonically.

Hence, when two segments of the same line are such that

the end-points of one divide the other harmonically, the circle

on either segment as diameter has the end-points of the other

segment as inverse points.

EXERCISES.

1. If a variable circle passes through a pair of inverse points

with respect to a fixed circle, the common chord of the

circles passes through a fixed point.

2. To draw a circle so as to pass through a given point and

cut a given circle orthogonally.

3. To draw a circle to cut two given circles orthogonally.

4. On the common centre-line of two circles to find a pair of

points which are inverse to both circles.

Let C, C be the centres of the circles S and S . Take

any point P, without both circles, and find its inverses

P and P&quot; with respect to both circles. (257, Ex. i)

The circle through P, P
,
and P&quot; cuts the common

centre-line CC in the required points Q and Q .

5. To describe a circle to pass through a given point and cut

two given circles orthogonally.
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6. To determine, on a given line, a point the ratio of whose

distances from two fixed points is given.

7. To find a point upon a given line from which the parts of

a given divided segment may subtend equal angles.

8. A, B, C, D are the vertices of a quadrangle. On the

diagonal BD find a point at which the sides BA and

BC subtend equal angles.

9. To draw a circle to pass through a given point and touch

two given lines.

260. Def. One figure is the inverse of another when every

point on one figure has its inverse upon the other figure.

THeorem. The inverse of a circle is a circle when the

centre of inversion is not on the figure to be inverted.

s

T

Let O be the centre of inversion and S be the circle to be

inverted ;
and let A

,
B

,
C be the inverses of A, B, C respec

tively. To prove that the Z-B C A =
~~|-

Proof. OK. OA = OB. OB = OC. OC = R2
, (256)

AOA C ^AOCA, and

(i) ^OCA =^OAC, and (2) ^

And

since ACB is in a semicircle.

. . as C describes S, its inverse, C
,
describes the circle S

on A B as diameter. q.e.d.
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Cor. i. The point O is the intersection of common direct

tangents.

where R is the radius of the circle of inversion ;

. . the centre of a circle and the centre of its inverse are not

inverse points, unless OD = OT, i.e., unless the centre of

inversion is at oo .

Cor. 3. When the circle to be inverted cuts the circle of

inversion, its inverse cuts the circle of inversion in the same

points. (256, Cor. 5)

261. Theorem. A circle which passes through the centre

of inversion inverts into a line.

Let O be the centre of inversion

and S the circle to be inverted, and

let P and P be inverses of Q and O .

Proof. Since

OP. OO = OP . OO = R2
,

OPiOP^OQ iOQ,
and the triangles OPP and OQ O T

are similar, and /LOPP = Z_OQ Q = ~~|, since OQ Q is in a

semicircle. And as this is true however OP be drawn, PP
is a line _L to OP, the common centre-line of the circle of

inversion and the circle to be inverted. q.e.d.

Cor. i. Since inversion is a reciprocal process, the

inverse of a line is a circle through the centre of inversion

and so situated that the line is _|_ to the common centre

line of the two circles.

Cor. 2. Let I be the circle of inversion, and let PT and PT
be tangents to circles I and S respectively. Then,

PT2= OP 2 -OT 2=OP 2 -OP.OO = OP.PQ=PT 2
,

PT= PT
,

.*. when a circle inverts into a line with respect to another

circle, the line is the radical axis of the two circles. (178, Def.)
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Cor. 3. If a circle passes through the centre of inversion

and cuts the circle of inversion, its inverse is their common
chord.

Cor. 4. A centre-line is its own inverse.

Cor. 5. Considering the centre of inversion as a point-circle,

its inverse is the line at oo .

262. A circle which cuts the circle of inversion orthogon

ally inverts into itself.

Since circle S cuts circle I orthogon

ally OT is a tangent to S, and hence

OP.OO = OT 2
,

. . P inverts into Q and O into P, and

the arc TQV inverts into TPV and vice

versa. q.e.d.

Cor. Since I cuts S orthogonally, it is evident that I inverts

into itself with respect to S.

263. A circle, its inverse, and the circle of inversion have

a common radical axis.

Let I be the circle of inver

sion, and let the circle S be

the inverse of S.

The tangents TT and VV
meet at O (260, Cor. i), and

T, T are inverse points. D,
the middle point of TT is on the radical axis of S and S

,

and the circle with centre at D and radius DT cuts S and S

orthogonally. But this circle also cuts circle I orthogonally

(258). . . D is on the radical axes of I, S and S .

Similarly D ,
the middle point of the tangent VV, is on the

radical axes of I, S and S .

. . the three circles I, S, and S have a common radical

axis passing through D and D . q.e.d.
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Remarks. This is proved more simply by supposing one

of the circles to cut the circle of inversion. Then its inverse

must cut the circle of inversion in the same points, and the

common chord is the common radical axis.

The extension to cases of non-intersection follows from the

law of continuity.

264. Theorem. The angle of intersection of two lines or

circles is not changed in magnitude by inversion.

Let O be the centre of in

version, and let P be the point

of intersection of two circles S

and S
,
and Q its inverse.^ ^

Take R and T points near P, o

and let U and V be their in

verses. Then

and

Similarly

But at the limit when R and T come to P the angle between
the chords RP and PT becomes the angle between the circles

(115, Def. i
; 109, Def. i). And, since Z.ROT then vanishes,

we have ultimately ^UQV = ^RPT.
Therefore S and S

,
and their inverses Z and Z

, intersect at

the same angle.

Cor. i. If two circles or a line and a circle touch one
another their inverses also touch one another.

Cor. 2. If a circle inverts into a line, its centre-lines invert

into circles having that line as a common diameter. For,

since the circle cuts its centre-lines orthogonally, their in

verses must cut orthogonally. But the centre-line is the only
line cutting a circle orthogonally.
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EXERCISES.

I. What is the result of inverting a triangle with respect to

its incircle ?

.2. The circle of self-inversion of a given circle cuts it or

thogonally.

3. Two circles intersect in P and (2, and AB is their common
centre-line. What relation holds between the various

parts when inverted with P as centre of inversion ?

4. A circle cuts two circles orthogonally. Invert the system
into two circles and their common centre-line.

5. Three circles cut each other orthogonally. If two be in

verted into lines, their intersection is the centre of the

third.

265. The two following examples are important.

Ex. i. Any two circles cut their common centre-line, and a

circle which cuts them orthogonally in two sets of points

which connect concurrently on the last-named circle.

S and S are the

two given circles and

Z a circle cutting

\D them orthogonally.

Invert S and S

and their common
centre-line with re

spect to a circle

which cuts S and S orthogonally and has its centre at some

point O on Z. S and S invert into themselves, and their

centre-line into a circle through O cutting S and S ortho

gonally, i.e., into circle Z.

.*. A is the inverse of A, B of B, etc
,
and the points AA ,

BB
,
CC

,
DD connect concurrently at O.

Ex. 2. The nine-points circle of a triangle touches the in

circle and the excircles of the triangle.



OF INVERSION AND INVERSE FIGURES. 2 I/

Let ABC be any triangle having its side AB touched by
the incircle I at B

T, and by the ex-

circle to the side

c at T . Take

CH = CAand CD
= CB, and joinDH
and HA.
From the sym

metry of the fig

ure it is evident

that HD touches

both the circles I and S. Let E and F be the middle points
of AB and AC, and let EF cut HA in G.

From 135, Ex. i, AT = BT = .r -a
t

whence ET =ET = (-).
But, since EF bisects HA, EG = BH = (-),

ET = ET = EG,
and the circle with E as centre and EG as radius cuts I and
S orthogonally, and, with respect to this circle, the circles I

and S invert into themselves.

Now, PF :HC = DF : DC = BC-CF : BC,

2a

. . P inverts into F, and the line HD into the circle through
E and F, and by symmetry, through the middle point of BC.
But this is the nine-points circle (116, Ex. 6). And since

HD touches I and S, the nine-points circle, which is the

inverse of HD, touches the inverses of I and S, i.e., I and S

themselves.

And, similarly, the nine-points circle touches the two

remaining excircles.



2l8 SYNTHETIC GEOMETRY.

SECTION V.

OF POLE AND POLAR.

266. Def. The line through one of a pair of inverse points

perpendicular to their axis is the polar of the other point with

respect to the circle of inversion, and the point is the pole of

the line.

The circle is called, in this relation, the polar circle, and its

centre is called the polar centre.

From this definition and from the nature of inverse points

we readily obtain the following :

Cor. i. The polar of the polar centre is a line at infinity.

But, since the point which is the inverse of the centre may go
to oo along any centre-line, all the lines obtained therefrom

are polars of the centre. And as a point has in general but

one polar with respect to any one circle, we speak of the polar

of the centre as being the line at infinity, thus assuming that

there is but one line at infinity.

Cor. 2. The polar of any point on the circle is the tangent

at that point ; or, a tangent to the polar circle is the polar to

the point of contact.

Cor. 3. The pole of any line lies on that centre-line of the

polar circle which is perpendicular to the former line.

Cor. 4. The pole of a centre-line of the polar circle lies

at oo on the centre-line which is perpendicular to the

former.

Cor. 5. The angle between the polars of two points is

equal to the angle subtended by these points at the polar

centre.

267. Theorem. If P and Q be two points, and P lies on

the polar of O, then O lies on the polar of P.
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OP and OQ are centre-lines of the polar circle I,

and PE, to OQ, is the polar of Q.

To prove that OD, _L to OP, is the

polar of P.

Proof. The AS ODQ and OEP
are similar.

OE:OP = OD:OO,
and. . OE.OQ= OP.OD.
But E and Q are inverse points with

respect to circle I,

P and D are inverse points,

and /. DQ is the polar of P. q.e.d.

(266, Def.)

Def. Points so related in position that each lies upon the

polar of the other are conjugate points, and lines so related

that each passes through the pole of the other are conjugate

lines.

Thus P and Q are conjugate points and L and M are con

jugate lines.

Cor. i. If Q and, accordingly, its polar PV remain fixed

while P moves along PE, L, which is the polar of P, will

rotate about Q, becoming tangent to the circle when P comes

to U or V, and cutting the circle when P passes without.

Similarly, if Q moves along L, M will rotate about the

point P.

Cor. 2. As L will touch the circle at U and V, UV is the

chord of contact for the point Q.

/. for any point without a circle its chord of contact is its

polar.

Cor. 3. For every position of P on the line M, its polar

passes through Q.

. . collinear points have their polars concurrent, and con

current lines have their poles collinear, the point of concur

rence being the pole of the line of collinearity.
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EXERCISES.

1. Given a point and a line to find a circle to \vhich they are

pole and polar.

2. In Ex. i the circle is to pass through a given point.

3. In the figure of 267 trace the changes,

(a) when P goes to oo along M ;

(b} when P goes to oo along OD ;

(c) when P moves along UV, what is the locus of D ?

4. From any point on a circle any number of chords are

drawn, show that their poles all lie on the tangent at

the point.

5. On a tangent to a circle any number of points are taken,

show that all their polars with respect to the circle pass

through the point of contact.

268. Theorem. The point of intersection of the polars of

two points is the pole of the join of the points.

A Let the polars of B and of C pass through A.

Then A lies on the polar of B, and therefore B
lies on the polar of* A (267). For similar

B . . c reasons C lies on the polar of A.

. . the polar of A passes through B and C and is their join.

q.e.d.

Cor. Let two polygons ABCD... and abc... be so situated

that a is the pole of AB, b of BC, c

of CD, etc.

Then, since the polars of a and b

meet at B, B is the pole of ab ;

similarly C is the pole of &r, etc.

. .if two polygons are such that

the vertices of one are poles of the sides of the other, then,

reciprocally, the vertices of the second polygon are poles of

the sides of the first, the polar circle being the same in

each case.
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Def. i.--Polygons related as in the preceding corollary are

polar reciprocals to one another.

Def. 2. When two polar reciprocal AS become coincident,

the resultingA is self-reciprocal or self-conjugate, each vertex

being the pole of the opposite side.

Def. 3. The centre of the with respect to which a A is

self-reciprocal is the polar centre of the
A&amp;gt;

and the itself

is the polar circle of theA
269. The orthocentre of a triangle is its polar centre.

Let ABC be a self-conjugate A
Then A is the pole of BC, and B of

AC, and C of AB.

Let AX, _L to BC, and BY, J_ to

AC, meet in O. Then O is the ortho-

centre. (88, Def.)

Now, as AX is _L to BC, and as A
is the pole of BC, the polar centre

lies on AX. For similar reasons it

lies on BY. (266, Cor. 3)

. . O is the polar centre of the AABC. q.e.d.

Cor. i. With respect to the polar of the A, the on

AO as diameter inverts into a line J_ to AO (261). And as

A and X are inverse points, this line passes through X
;

therefore BC is the inverse of the on OA as diameter.

Similarly, AC is the inverse of the on OB as diameter,

and AB of the on OC as diameter.

Cor. 2. As the on AO inverts into BC, the point D is

inverse to itself, and is on the polar of the A (256, 5)

/. OD is the polar radius of the A-

Cor. 3. If O falls within the
A&amp;gt;

it is evident that the on

OA as diameter will not cut CB. In this case the polar

centre is real while the polar radius is imaginary. (257, Cor.)

Hence a A which has a real polar circle must be obtuse-

angled.
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Cor. 4. The on BC as diameter passes through Y since

Y is a ~1
But B and Y are inverse points to the polar 0.
/. the polar cuts orthogonally the on BC as diameter.

(258)
Similarly for the circles on CA and AB.

. . the polar of a A cuts orthogonally the circles having
the three sides as diameters.

Cor. 5.

And CX = OC sin AOZ= OC sin B, also =-cosC,

OC=--^ cosC=-^cosC,smB
where d is the diameter of the circumcircle (228) to the

triangles AOC or BOC or AOB or ABC, these being all

equal. (116, Ex. 4)

Similarly OA = ^/cos A, OB = &amp;lt;/cos B.

But OX = OCcosB=-^cosBcosC,
R2= OX. OA=-^2cosAcosBcosC

In order that the right-hand member may be +, one of the

angles must be obtuse.

Cor. 6. R2= OC.OZ

and OC=-^cosC, and CZ= ^sinB =
, (228)

R2= ^/
2
(i

- sin 2
C) -ab cos C

=^2 -i(^ + 2 + ^2
). (217)

If O is within the triangle, d2
&amp;lt; %(a

2 + b2+ &amp;lt;:

2
) and R is

imaginary.

EXERCISES.

1. If two triangles be polar reciprocals, the inverse of a side

of one passes through a vertex of the other.

2. A right-angled triangle has its right-angled vertex at the

centre of a polar circle. What is its polar reciprocal ?

3. In Fig. of 269, if the polar circle cuts CY produced in C
,

prove that CY =YC .
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4. If P be any point, ABC a triangle, and A B C its polar

reciprocal with respect to a polar centre O, the per

pendiculars from O on the joins PA, PB, and PC
intersect the sides of A B C collinearly.

270. Theorem. If two circles intersect orthogonally, the

end-points of any diameter of either are conjugate points

with respect to the other.

Let the circles S and S in

tersect orthogonally, and let

PQ be a diameter of circle S .

Then P is inverse to P, and

P Q is JL to CP.

/. P O is the polar of P with

respect to circle S.

.*. Q lies on the polar of P, and hence P lies on the polar

of O, and P and Q are conjugate points (267 and Def.).

q.e.d.

Cor. i. PQ2= CP2 + CO 2 -2CP.CP (172, 2)

= CP 2 + CO 2 -2R2

= CP2 -R2~+CQ 2-R2=T 2+T 2
,

where T and T are tangents from P and Q to the circle S.

.*. the square on the join of two conjugate points is equal

to the sum of the squares on the tangents from these points

to the polar circle.

Cor. 2. If a circle be orthogonal to any number of other

circles, the end-points of any diameter of the first are conju

gate points with respect to all the others. And when two

points are conjugate to a number of circles the polars of either

point with respect to all the circles pass through the other

point.

271. Theorem. The distances of any two points from a

polar centre are proportional to the distances of each point

from the polar of the other with respect to that centre.

(Salmon)
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NN is the polar of P and MM is the polar of Q. Then
PO :QO =PM :QN.

Proof. Let Ow be
||

to MM
and O;/ be

||
to NN . Then

OP . OP= OQ . OQ

OQ OP N
But the triangles OPw and OQ;/
are similar,

O&quot;Q

n N _ ,

QN q

Cor. i. A, B are any two points and L and M their polars,

and P the point of contact of any tangent N.

AX and BY are _L upon N, and PH and PK are JL upon L
and M respectively. Then

flT^ and

BY. AX AO.BO

AX_AO
PH R

PK.PH R2 -k, a constant,

If A and B are on the circle, L and M become tangents

having A and B as points of contact, and AO^BO = R.

AX.BY = PH.PK. (See 211, Ex. i)

EXERCISES.

1. If P and Q be the end-points of any diameter of the polar

circle of the AABC, the chords of contact of the point

P with respect to the circles on AB, BC, and CA a;;

diameters all pass through Q.

2. Two polar reciprocal triangles have their corresponding

vertices joined. Of what points are these joins the

polars ?
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3. A, B, C are the vertices of a triangle and L, M, N the

corresponding sides of its reciprocal polar. If T be a

tangent at any point P, and AT is J_ to T, etc.,

= a constant.

If A, B, C are on the circle,

AT.BT.CT = PL.PM.PN.
4. In Ex. 3, if A

,
B

,
C be the vertices of the polar reciprocal,

A T . B T . CT_A O . B O . C O
AT . BT . CT R3

The right-hand expression is independent of the position

ofT.

5. If ABC, A B C be polar reciprocal triangles whose sides

are respectively L, M, N and L
,
M

,
N

,
and if AM is

the _L from A to M
, etc.,

AM . BN . CL =AN . BL . CM
,

and A M . B N . C L=A N . B L . CM.

272. Theorem. Triangles which are polar reciprocals to

one another are in perspective.

Let ABC and A B C be polar recipro

cals. Let AP, AP be perpendiculars on

B ,

A B and A C, BQ and BQ be perpen
diculars on B C and B A

,
etc.

Then (2 7
AP

=AO, BQ =BO ^
AP . BQ . CR _
AP.BQ.CR

But AP =AA sinAA P^ AP-AA sin AA P
,

AP = sinAA P
AP~sinAA P

and similarly for the other ratios. Hence AA
,
BB

,
CC

divide the angles at A, B, and C, so as to fulfil the criterion

of 251.
. . AA

,
BB

,
and CC are concurrent, and the triangles are

in perspective. (254, Cor. 2)

P
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SECTION VI.

OF THE RADICAL AXIS.

273. Def. i. The line perpendicular to the common
centre-line of two circles, and dividing the distance be

tween the centres into parts such that the difference of

their squares is equal to the difference of the squares on the

conterminous radii, is the radical axis of the two circles.

Cor. i. When two circles intersect, their radical axis is the

secant line through the points of intersection.

Cor. 2. When two circles touch, their radical axis is the

common tangent at their point of contact.

Cor. 3. When two circles are mutually exclusive without

contact, their radical axis lies between them.

Cor. 4. When two circles are equal and concentric, their

radical axis is any line whatever, and when unequal and con

centric it is the line at oo .

Def. 2. When three or more circles have a common
radical axis they are said to be co-axal.

274. If several circles pass through the same two points

they form a co-axal system.

For (273, Cor. i) the line through the points is the radical

axis of all the circles taken in pairs, and is therefore the

common radical axis of the system.

Such circles are called circles of the common point species,

contracted to c.p. -circles.

Let a system of c.p. -circles S, S
15
S 2 , ..., pass through the

common points P and O, and let L L be the right bisector

of PO.

Then the centres of all the circles of the ^/.-system lie

on L L and have M M for their common radical axis.
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Hence from any point C in M M the tangents to all the

circles are equal to one another. (178)

Let CT be one of these tangents. The circle Z with C as

centre and CT as radius cuts all the ^./.-circles orthogonally.

Similarly, a system of circles Z, Z
lt
Z

2,
... may be found

with centres lying on M M such that each one of the system
cuts orthogonally every one of the ./. -circles.

Since the centre of any circle of this new system is obtained

by drawing a tangent from any one of the circles, as S^ of

the ^.-species, to meet MM
,

it follows that no circle of this

new system can have its centre lying between P and Q. As
T approaches P the dependent circle Z contracts until it be

comes the point-circle P, when T comes to coincidence with P.

Hence P and O are limiting forms of the circles having
their centres on M M and cutting the ^.-circles orthogon

ally. The circles of this second system are consequently
called limiting point circles

,
contracted to /./.-circles.

From the way in which /./.-circles are obtained we see that

from any point on L L tangents to circles of the /./.-system

are all equal, and hence that L L is the radical axis of the

/./.-circles. Thus the two systems of circles have their radi-
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cal axes perpendicular, and every circle of one system cuts

every/ circle of the other system orthogonally.

Hence P and Q are inverse points with respect to every
circle of the /./.-system, and with respect to any circle of

either system all the circles of the other system invert into

themselves.

If P and Q approach L, the r./.-circles separate and the

/./.-circles approach, and when P and Q coincide at L the

circles of both species pass through a common point, and the

two radical axes become the common tangents to the respec

tive systems.

If this change is continued in the same direction, P and Q
become imaginary, and two new limiting points appear on

the line L L, so that the former /./.-circles become ./. -circles,

and the former r./.-circles become /./.-circles.

Thus, in the systems under consideration, two limiting

points are always real and two imaginary, except when they

all become real by becoming coincident at L.

Cor. i. As the r./.-circles and the /./.-circles cut each other

orthogonally, the end-points of a diameter of any circle of one

species are conjugate points with respect to every circle of

the other species. But a circle of either species may be found

to pass through any given point (259, Ex. 5). . . the polars

of a given point with respect to all the circles of either species

are concurrent.

Cor. 2. Conversely, if the polars of a variable point P with

respect to three circles are concurrent, the locus of the point

is a circle which cuts them all orthogonally.

For let Q be the point of concurrence. Then P and Q are

conjugate points with respect to each of the circles. Hence

the circle on PQ as diameter cuts each of the circles ortho

gonally. (270)

Cor. 3. If a system of circles is cut orthogonally by two

circles, the system is co-axal.

For the centres of the cutting circles must be on the radical
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axis of all of the other circles taken in pairs ; therefore they

have a common radical axis.

Cor. 4. If two circles cut two other circles orthogonally, the

common centre-line of either pair is the radical axis of the

other pair.

Cor. 5. Two /./.-circles being given, a circle of any required

magnitude can be found co-axal with them. But if the circles

be of the
&amp;lt;:./.-species no circle can be co-axal with them whose

diameter is less than the distance between the points.

EXERCISES.

1. Given two circles of the /./.-species to find a circle with a

given radius to be co-axal with them.

2. Given two circles of either species to find a circle to pass

through a given point and be co-axal with them.

3. To find a point upon a given line or circle such that tan

gents from it to a given circle may be equal to its

distance from a given point.

4. To find a point whose distances from two fixed points may
be equal to tangents from it to two fixed circles.

275. Theorem. The difference of the squares on the tan

gents from any point to two circles is equal to twice the

rectangle on the distance between the centres of the circles

and the distance of the point from their radical axis.

Let P be the point, S and

S the circles, and LI their

radical axis. Let PQ be _L

to AB.

PT2_pT 2

= PA2 -PB2 -(r
2 -r/2

),

where r, r are radii of S

and S .

But, 273, Def. I,
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and PA2-PB 2=A0 2 -QB2
, (172, i)

PT2-PT 2=AQ2-QB2
-(AI

2 -IB2
)

=AB(AO - QB) - AB(AI -
IB)

= 2AB.IQ= 2AB.PL. q.e.d.

This relation is fundamental in the theory of the radical axis.

Cor. i. When P is on the radical axis PL=o, and the

tangents are equal, and when P is not on the radical axis the

tangents are not equal.

Cor. 2. The radical axis bisects all common tangents to the

two circles.

Cor. 3. If P lies on the circle S
,
PT =

o, and

.*. the square of the tangent from any point on one circle to

another circle varies as the distance of the point from the

radical axis of the circles.

Cor. 4. If C is the centre of a circle S&quot; passing through P
and co-axal with S

,
PT2= 2AC . PL.

Now, if P could at any time leave this circle we would have

where PT&quot; is the tangent from P to the circle S&quot;

PT2= PT 2
-PT&quot;

2
,

which is impossible unless PT&quot;=o.

Hence the locus of a point, which so moves that the square
on the tangent from it to a given circle varies as the distance

of the point from a given line, is a circle, and the line is the

radical axis of this circle and the given circle.

Cor. 5. Let PT =
. PT, where k is a constant. Then

pT2_2AB.PL
i-k 2

As PT2 varies as PL, P lies on a circle co-axal with S and S .

. . the locus of a point from which tangents to two given

circles are in a constant ratio is a circle co-axal with the two.
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EXERCISES.

1. In Cor. 5 what is the position of the locus for =o, k=i,
&amp;gt;=&amp;gt; i, k negative?

2. What is the locus of a point whose distances from two

fixed points are in a constant ratio ?

3. P and Q are inverse points to the circle I, and a line

through P cuts circle I in A and B. PQ is the internal

or external bisector of the ^AQB, according as P is

within or without the circle.

4. P, Q are the limiting points of the /.^.-circles S and S
,
and

a tangent to S at T cuts S

in A and B.

Then, considering P as a

point-circle, tangents from

any point on S to P and S

are in a constant ratio.

. . AP:AT = BP:BT, and PT is the external bi

sector of ^APB. If S were enclosed by S, BT would

be an internal bisector.

5. The points of contact of a common tangent to two Lp.-

circles subtend a right angle at either limiting point.

276. Theorem. The radical axes of three circles taken in

pairs are concurrent.

Let S
15
S 2,

S3 denote the circles, and let L be the radical

axis of S
t
and S 2 ,

M of S 2 and 8$ and N of S3 and Sj.

L and M meet at some point O, from which OT1
= OT2,

and OT2=OT3 ,
where OT

l
is the tangent from O to S

15 etc.,

OT
1
= OT3 ,

and O is on N,

L, M, and N are concurrent at O.

Def. The point of concurrence of the three radical axes of

three circles taken in pairs is called the radical centre of the

circles.

Cor. i. If S
1}
S 2 are cut by a third circle Z, the common

chords of S
1}
Z and S 2 ,

Z intersect on the radical axis of S x

and S 2 .



232 SYNTHETIC GEOMETRY.

Hence to find the radical axis of two given circles S x
and

S 2,
draw any two circles Z and Z

x cutting the given circles.

The chords S
15
Z and S 2 ,

Z give one point on the radical axis

and the chords S
15
Zx and S2 ,

Z
x give a second point.

Cor. 2. If three circles intersect each other, their three

common chords are concurrent. (See 249, Ex. i.)

Cor. 3. If a circle touches two others, the tangents at the

points of contact meet upon the radical axis of the two.

Cor. 4. If a circle cuts three circles orthogonally, its centre

is at their radical centre and its radius is the tangent from

the radical centre to any one of them.

Cor. 5. If in Cor. 4 the three circles are co-axal, any num
ber of circles may be found to cut them orthogonally, and

hence they have no definite radical centre, as any point upon
the common radical axis of the three becomes a radical

centre.

Cor. 6. If in Cor. 4 the three circles mutually intersect one

another, the radical centre is within each circle (Cor. 2), and

no tangent can be drawn from the radical centre to any one

of the circles. In this case the circle which cuts them all or

thogonally has a real centre but an imaginary radius.

277. Theorem. If any three lines be drawn from the ver

tices of a A to the opposite sides, the polar centre of the A
is the radical centre of the circles having these lines as

A R z B diameters.

ABC is a A and O its ortho-

centre, and AP, BQ, CR are lines

from the vertices to the opposite

sides.

Q
the circle on AP as diameter

passes through X, and OX . OA is equal to the square on the

tamrent from O to the circle on AP.
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Similarly OY. OB is the square of the tangent from O to

the circle on BQ as diameter, and similarly for OZ.OC.
But as O is the polar centre of AABC, (269)

OX . OA= OY . OB = OZ . OC.

/. the tangents from O to the three circles on AP, BQ, and

CR are equal, and O is their radical centre. q.e.d.

Cor. i. Let P, Q, R be collinear.

Then the polar centre of AABC is the radical centre of

circles on AP, BQ, and CR as diameters.

Again, in the AAQR AP, QB, and RC are lines from the

vertices to the opposite sides.

/. the polar centre ofAAQR is the radical centre of circles

on AP, BQ, and CR as diameters.

Similarly the polar centres of the AS BPR and CPQ are

radical centres to the same three circles.

But these AS have not a common polar centre, as is readily

seen. Hence the same three circles have four different

radical centres. And this is possible only when the circles

are co-axal. (276, Cor. 5)

/. the circles on AP, BQ, and CR are co-axal.

.&quot;. if any three collinear points upon the sides of a A be

joined with the opposite vertices, the circles on these joins as

diameters are co-axal.

Cor. 2. Since ARPC is a quadrangle or tetragram (247,

Def. 2), and AP, BQ, CR are its three diagonals,

. . the circles on the three diagonals of any quadrangle are

co-axal.

Cor. 3. The middle points of AP, BQ, and CR are col

linear. But ARPC is a quadrangle of which AP and CR are

internal diagonals, and BQ the external diagonal.

. . the middle points of the diagonals of a complete quad

rangle, or tetragram, are collinear. (See 248, Ex. 2)

Cor. 4. The four polar centres of the four triangles deter

mined by the sides of a tetragram taken in threes are collinear
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and lie upon the common radical axis of the three circles

having the diagonals of the tetragram as diameters.

278. Theorem. In general a system of co-axal circles

inverts into a co-axal system of the same species.

(i.) Let the circles be of the r./. -species.

The common points become two points by inversion, and

the inverses of all the circles pass through them. Therefore

the inverted system is one of ^./.-circles.

Cor. i. The axis of the system (LL of Fig. to 274) inverts

into a circle through the centre of inversion (261, Cor. i), and

as all the inverted circles cut this orthogonally, the axis of

the system and the two common points invert into a circle

through the centre and a pair of inverse points to it.

(258, Conv.)

Cor. 2. If one of the common points be taken as the centre

of inversion, its inverse is at oo .

The axis of the system then inverts into a circle through
the centre of inversion, and having the inverse of the other

common point as its centre, and all the circles of the system
invert into centre-lines to this circle.

(2.) Let the circles be of the /./.-species.

Let the circles S and S pass through the limiting points

and be thus ^./.-circles.

Generally S and S invert into circles which cut the in

verses of all the other circles orthogonally. (264)
. . the intersections of the inverses of S and S are limiting

points, and the inverted system is of the /./.-species.

Cor. 3. The axis of the system (MM of Fig. to 274) be

comes a circle through the centre and passing through the

limiting points of the inverted system, thus becoming one of

the
&amp;lt;r./.-circles

of the system.

Cor. 4. If one of the limiting points be made the centre of
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inversion, the circles S and S become centre-lines, and the

//.-circles become concentric circles.

Hence concentric circles are co-axal, their radical axis

being at oo .

EXERCISES.

1. What does the radical axis of (i, 278) become?

2. What does the radical axis of (2, 278) become ?

3. How would you invert a system of concentric circles into

a common system of /./.-circles ?

4. How would you invert a pencil of rays into a system of

^./.-circles.

5. The circles of 277 are common point circles.

279. Theorem. Any two circles can be inverted into

equal circles.

Let S, S be the circles

having radii r and r
,
and

let C, C be the equal
circles into which S and

S are to be inverted
;
and

let the common radius be p.

Then
OP

, SSOP.OQ
r OO 2

Simila^ ;=^.
But, since P and Q and also P and Q are inverse points,

OP. OO = OP . OQ ,

OQ 2 /
and (275, Cor. 5) O lies on a circle co-axal with S and S .

And with any point on this circle as a centre of inversion S
and S invert into equal circles.

Cor. i. Any three non-co-axal circles can be inverted into

equal circles.
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For, let the circles be S, S
, S&quot;,

and let Z denote the locus

of O for which S and S invert into equal circles, and Z the

locus of O for which S and S&quot; invert into equal circles. Then
Z and Z are circles of which Z is co-axal with S and S

,
and

Z is co-axal with S and S&quot;. And, as S, S
,
and S&quot; are not

co-axal, Z and Z intersect in two points, with either of which

as centre of inversion the three given circles can be inverted

into equal circles.

Cor. 2. If S, S , and S&quot; be /./.-circles, Z and Z being
co-axal with them cannot intersect, and no centre exists with

which the three given circles can be inverted into equal circles.

But if S, S and S&quot; be
&amp;lt;:./. -circles, Z and Z intersect in the

common points, and the given circles invert into centre-lines

of the circle of inversion, and having each an infinite radius

these circles may be considered as being equal. (278, Cor. 2)

Cor. 3. In general a circle can readily be found to touch

three equal circles. Hence by inverting a system of three

circles into equal circles, drawing a circle to touch the three,

and then re-inverting we obtain a circle which touches three

given circles.

If the three circles are co-axal. no circle can be found to

touch the three.

280. Let the circles S and S
,
with centres A and B and

radii r and r, be cut

by the circle Z with

centre at O and radius

OP^R. Let NLbe
the radical axis of S

and S .

Since AP is _L to

the tangent at P to

the circle S, and OP
is J_ to the tangent

at P to the circle Z,

the z_APO= is the angle of intersection of the circles S
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and Z (115, Def. i). Similarly BQO = is the angle of

intersection of the circles S and Z. Now

and QQ
OP / -OQ = 2(r cos0-rcos0).

But R.OP -R.OQ = OT 2-OT 2
(where OT is the

tangent from O to S, etc.) =2AB . OL, (275)

.OL.

Cor. i. When $ and are constant, R varies as OL.

/. a variable circle which cuts two circles at constant

angles has its radius varying as the distance of its centre from

the radical axis of the circles.

Cor. 2. Under the conditions of Cor. i ON varies as OL,

and . . T is constant.
ON

/.a variable circle which cuts two circles at a constant

angle cuts their radical axis at a constant angle.

Cor. 3. When OL= o, /cos0= rcos0,

and r:r = cos : cos 6.

. . a circle with its centre on the radical axis of two other

circles cuts them at angles whose cosines are inversely as the

radii of the circles.

Cor. 4. If circle Z touches S and S
,
6 and are both zero

01 both equal to TT,
or one is zero and the other is *.

.-. when Z touches S and S
,
R=

.

A
,

B
. OL, where the

r+r
variation in sign gives the four possible varieties of contact.

Cor. 5. When = 0=^, Z cuts S and S orthogonally, and

OL = o, and the centre of the cutting circle is on the radical

axis of the two.
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SECTION VII.

CENTRE AND AXES OF SIMILITUDE OR
PERSPECTIVE.

The relations of two triangles in perspective have been

given in Art. 254. We here propose to extend these rela

tions to the polygon and the circle.

281

B

Let O, any point, be connected with the vertices A,

B, C, ... of a polygon, and on

OA, OB, OC, ... let points a, b,

c, ... be taken so that

OA : Oa= OE : O=OC : Qc...

and

OA : O^ =OB : O = OC : OS...

Then, since OAB is a A and ab

is so drawn as to divide the sides

proportionally in the same order,

.*. ab is
||
to AB. (202, Conv.)

Similarly,

to BC, cd to CD, etc.,

to BC, dd 1

to CD, etc.,

AOAB
similarly,

and

. . the polygons ABC..., abc..., and a b c
1

... are all similar

and have their homologous sides parallel.

Def. The polygons ABCD... and abed... are said to be

similarly placed, and O is their external centre of similitude;

while the polygons ABCD... and a b c d ... are oppositely

placed, and O is their internal centre of similitude.

Hence, when the lines joining any point to the vertices of

a polygon are all divided in the same manner and in the

same order, the points of division are the vertices of a second
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polygon similar to the original, and so placed that the

homologous sides of the two polygons are parallel.

282. When two similar polygons are so placed as to have

their homologous sides parallel, they are in perspective, and

the joins of corresponding vertices concur at a centre of

similitude.

Let ABCD..., abed... be the polygons.
Since they are similar, AB : # = BC : ^=CD : cd... (207),

and by hypothesis AB is
||
to ab

t
BC to be, etc.

Let Aa and B meet at some point O.

Then OAB is a A and a&is\\ to AB.

OB = A_B= BC =
Ob ab be

. . Cc passes through O, and similarly Bypasses through O,
etc.

By writing db c ... for abc... the theorem is proved for the

polygon a b c d , which is oppositely placed to ABCD...

Cor. i. If Aa and B&amp;lt; meet at oo, ^= AB, and hence

&:=BC, etc., and the polygons are congruent.

Cor. 2. The joins of any two corresponding vertices as A,

C
; a, c

; ,
c are evidently homologous lines in the polygons

and are parallel.

Similarly any line through the centre O, as XxOx is

homologous for the polygons and divides them similarly.

283. Let the polygon ABCD... have its sides indefinitely

increased in number and diminished in length. Its limiting
form (148) is some curve upon which its vertices lie. A
similar curve is the limiting form of the polygons abed... as

also of db c d ..., since every corresponding pair of limiting or

vanishing elements are similar.

Hence, if two points on a variable radius vector have the

ratio of their distances from the pole constant, the loci of the
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points are similar curves in perspective, and having the pole
as a centre of perspective or similitude.

Cor. i. In the limiting form of the polygons, the line BC
becomes a tangent at B, and the line be becomes a tangent at

b. And similarly for the line be *

. . the tangents at homologous points on any two curves in

perspective are parallel.

284. Since abed... and a b c d ... are both in perspective with

ABCD... and similar to it, we see that two similar polygons

may be placed in two different relative positions so as to be

in perspective, that is, they may be similarly placed or oppo

sitely placed.

In a regular polygon of an even number of sides no dis

tinction can be made between these two positions ; or, two

similar regular polygons are both similarly and oppositely

placed at the same time when so placed as to be in per

spective.

Hence two regular polygons of an even number of sides

and of the same species, when so placed as to have their sides

respectively parallel, have two centres of perspective, one due

to the polygons being similarly placed, the external centre
;

and the other due to the polygons being oppositely placed,

the internal centre.

Cor. Since the limiting form of a regular polygon is a circle

(148), two circles are always similarly and oppositely placed

at the same time, and accordingly have always two centres of

perspective or similitude.

285. Let S and S be two circles with centres C, C and

radii r, r respectively, and let O and O be their centres of

perspective or similitude.

Let a secant line through O cut S in X and Y, and S in X
and Y .
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Then O is the centre of similitude due to considering the

L,

circles S and S as being

similarly placed.

Hence X and X
,
as also

Y and Y
,
are homologous

points, and (283, Cor. i)

the tangents at X and X
are parallel. So also the

tangents at Y and Y are

parallel.

Again O is the centre

of similitude due to con

sidering the circles as

being oppositely placed,

and for this centre Z and Y as also U and U are homologous

points ;
and tangents at Y and Z are parallel, and so also

are tangents at U and U .

Hence YZ is a diameter of the circle S and is parallel to

Y Z a diameter of the circle S .

Hence to find the centres of similitude of two given

circles : Draw parallel diameters, one to each circle, and

connect their end-points directly and transversely. The

direct connector cuts the common centre-line in the external

Q
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centre of similitude, and the transverse connector cuts it in

the internal centre of similitude.

286. Since OX : OX = OY : OY
,
if X and Y become coin

cident, X and Y become coincident also.

/. a line through O tangent to one of the circles is tangent

to the other also, or O is the point where a common tangent

cuts the common centre-line. A similar remark applies to O .

When the circles exclude one another the centres of

similitude are the intersections of common tangents of the

same name, direct and transverse.

When one circle lies within the other (2nd Fig.) the com
mon tangents are imaginary, although O and O their points

of intersection are real.

287. Since AOCY^AOC Y
,

/. OC:OC = r:r
,

and since AO CZ^AO C Y
, . . O C : O C = r : r .

. . the centres of similitude of two circles are the points

which divide, externally and internally, the join of the centres

of the circles into parts which are as the conteiminous radii.

The preceding relations give

OC = -A- .CC, and O C=-^- . CC.
r - r r + r

OC is &amp;lt;
r according as CC is ^ r -r,

and O C is
&amp;lt;

r according as CC is ^ r + r.

Hence

1. O lies within the circle S when the distance between the

centres is less than the difference of the radii, and O lies

within the circle S when the difference between the centres is

less than the sum of the radii.

2. When the circles exclude each other without contact both

centres of similitude lie without both circles.

3. When the circles touch externally, the point of contact

is the internal centre of similitude.

4. When one circle touches the other internally, the point

of contact is the external centre of similitude.
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5. When the circles are concentric, the centres of similitude

coincide with the common centre of the circles, unless the

circles are also equal, when one centre of similitude becomes

any point whatever.

6. If one of the circles becomes a point, both centres of

similitude coincide with the point.

288. Def. The circle having the centres of similitude of

two given circles as end-points of a diameter is called the

circle of similitude of the given circles.

The contraction of s. will be used for circle of similitude.

Cor. i. Let S, S be two circles and Z their of s.

Since O and O are

two points from which

tangents to circles S and

S are in the constant

ratio of r to r
,
the circle o~

Z is co-axal with S and

S (275, Cor. 5). Hence

any two circles and their of s. are co-axal.

Cor. 2. From any point P on circle Z,

PT :TC = PT :T C,
and. . .TPC = ^T PC .

Hence, at any point on the of s. of two circles, the two

circles subtend equal angles.

Cor. 3. OC = CC. -J1-, and O C = CC .

r
. (287)

r -r r + r

whence OO CC^3 y

.*. i. The of s. is a line, the radical axis, when the given
circles are equal (r=r \

2. The Qofs. becomes a point when one of the two given
circles becomes a point (r or r = o).

3. The of s. is a point when the given circles are con

centric (CC =o).
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289. Def. With reference to the centre O (Fig. of 285),
X and Y

,
as also X and Y, are called antihomologous points.

Similarly with respect to the centre O
,
U and Z, as also U

and Y
,
are antihomologous points.

Let tangents at X and Y meet at L. Then, since CX is
||

to CX
,
z.CXY= z.C X Y = ^C Y X . But ^LXY is comp. of

^CXY and z_LY X is comp. of LC YX .

ALXY is isosceles, and LX = LY .

L is on the radical axis of S and S .

Similarly it may be proved that pairs of tangents at Y and

X
,
at U and Y

,
and at U and Z, meet on the radical axis of

S and S
,
and the tangent at U passes through L.

. . tangents at a pair of antihomologous points meet on the

radical axis.

Cor. i. The join of the points of contact of two equal

tangents to two circles passes through a centre of similitude

of the two circles.

Cor. 2. When a circle cuts two circles orthogonally, the

joins of the points of intersection taken in pairs of one from

each circle pass through the centres of similitude of the two

circles.

290. Since OX : OX = r : r\

OX.OY :OX . OY = r:r .

But OX . OY = the square of the tangent from O to the circle

S and is therefore constant.

OX.OY =
-,. OT 2= a constant.
r

. . X and Y are inverse points with respect to a circle

whose centre is at O and whose radius is OT A /
r

.V r

Def. This circle is called the circle of antisimilitude, and

will be contracted to of ans.

Evidently the circles S and S are inverse to one another

with respect to their of ans.
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For the centre O the product OU . OY is negative, and the

of ans. corresponding to this centre is imaginary.

Cor. i. Denoting the distance CC by rf,
and the difference

between the radii (r
1

r) by 5, we have

where R = the radius of the of ans. Hence

1. When either circle becomes a point their of ans.

becomes a point.

2. When the circles S and S are equal, the of ans. be

comes the radical axis of the two circles.

3. When one circle touches the other internally the of
ans. becomes a point-circle. (d= 5.)

4. When one circle includes the other without contact the

of ans. is imaginary. (d&amp;lt;8.}

Cor. 2. Two circles and their circle of antisimilitude are

co-axal. (263)

Cor. 3. If two circles be inverted with respect to their

circle of antisimilitude, they exchange places, and their radi

cal axis being a line circle co-axal with the two circles

becomes a circle through O co-axal with the two.

The only circle satisfying this condition is the circle of

similitude of the two circles. Therefore the radical axis

inverts into the circle of similitude, and the circle of simili

tude into the radical axis.

Hence every line through O cuts the radical axis ajid the

circle of similitude of two circles at the same angle.

291. Def. When a circle touches two others so as to

exclude both or to include both, it is said to touch them

similarly, or to have contacts of like kind with the two.

When it includes the one and excludes the other, it is said to

touch them dissimilarly ,
or to have contacts of unlike kinds

with the two.
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292. Theorem. When a circle touches two other circles,

its chord of contact passes through their external centre of

similitude when the contacts are of like kind, and through
their internal centre of similitude when the contacts are of

unlike kinds.

Proof. Let circle Z touch circles S and S at Y and X .

Then CYD and C X D are lines. (113, Cor. i)

Let XYX Y be the secant through Y and X . Then

. . CX and C X are parallel, and X X passes through the

external centre of similitude O. (285)

Similarly, if Z includes both S and S
,

it may be proved
that its chord of contact passes through O.

Again, let the circle W, with centre E, touch S at Y and

S at U so as to include S and exclude S, and let UY be the

chord of contact. Then

. . EY and CV are parallel and VY connects them trans

versely ;
. . VY passes through O . q.c.d.

Cor. i. Every circle which touches S and S similarly is

cut orthogonally by the external circle of antisimilitude of S

and S .
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Cor. 2. If two circles touch S and S externally their points

of contact are concyclic. (i 16, Ex. 2)

But the points of contact of either circle with S and S are

antihomologous points to the centre O.

. . if a circle cuts two others in a pair of antihomologous

points it cuts them in a second pair of antihomologous points.

Cor. 3. If two circles touch two other circles similarly, the

radical axis of either pair passes through a centre of simili

tude of the other pair.

For, if Z and Z be two circles touching S and S externally,

the external circle of antisimilitude of S and S cuts Z and Z

orthogonally (Cor. i) and therefore has its centre on the

radical axis of Z and Z .

Cor. 4. If any number of circles touch S and S similarly,

they are all cut orthogonally by the external circle of anti-

similitude of S and S
,
and all their chords of contact and all

their chords of intersection with one another are concurrent

at the external centre of antisimilitude of S and S .

293. Theorem. If the circle Z touches the circles S and

S
,
the chord of contact of Z and the radical axis of S and S

are conjugate lines with respect to the circle Z.

Proof. Let Z touch S and S in Y and X respectively.

The tangents at Y and X meet at a point P on the radical

axis of S and S . 078)
But P is the pole of the chord of contact YX .

. . the radical axis passes through the pole of the chord of

contact, and reciprocally the chord of contact passes through
the pole of the radical axis (267, Uef.) and the lines are

conjugate. q.e.d.
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AXES OF SIMILITUDE.

294. Let S
1?
S 2 ,

S3 denote three circles having their centres

A, B, C and radii r
lt

r&amp;gt;2 ,
r3 ,

and let X, X , Y, Y , Z, Z be their

six centres of similitude.

Now X, Y, Z are

three points on the

sides of the AABC,
A BX r*and =

-&amp;gt;

AY
AZ
BZ

cx
and X, Y, Z are col-

x linear.

Similarly it is proved that the triads of points XY Z
,
YZ X

,

ZX Y are collinear.

Def. These lines of collinearity of the centres of similitude

of the three circles taken in pairs are the axes of similitude

of the circles. The line XYZ is the external axis, as being
external to all the circles, and the other three, passing be

tween the circles, are internal axes.

Cor. i. If an axis of similitude touches any one of the

circles it touches all three of them. (286)

Cor. 2. If an axis of similitude cuts any one of the circles

it cuts all three at the same angle, and the intercepted chords

are proportional to the corresponding radii.

Cor. 3. Since XYX Y is a quadrangle whereof XX
,
YY

,

and ZZ are the three diagonals, the circles on XX
,
YY

,
and

ZZ as diameters are co-axal. (277, Cor. 2)

. . the circles of similitude of three circles taken in pairs

are co-axal.
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Cor. 4. Since the three circles of similitude are of the c.p.-

species, two points may be found from which any three circles

subtend equal angles. These are the common points to the

three circles of similitude. (288, Cor. 2)

Cor. 5. The groups of circles on the following triads of

segments as diameters are severally co-axal,

AX, BY, CZ ; AX, YZ
,
Y Z

; BY, Z X, ZX ; CZ, XY ,
X Y.

295. Any two circles Z and Z
,
which touch three circles

S
1}
S 2,

S3 similarly, cut their circles of antisimilitude ortho

gonally (292, Cor. i), and therefore have their centres at the

radical centre of the three circles of antisimilitude.

(276, Cor. 4)

But Z and Z have not necessarily the same centre.

.*. the three circles of antisimilitude of the circles S
1}
S 2,

and

S3 are co-axal, and their common radical axis passes through
the centres of Z and Z .

296. Theorem. If two circles touch three circles similarly,

the radical axis of the two is an axis of similitude of the

three
;

and the radical centre of the three is a centre of

similitude of the two.

Proof. The circles S and S

touch the three circles A, B,

and C similarly.

i. Since S and S touch A
and B similarly, the radical axis

of S and S passes through a

centre of similitude of A and B.

(292, Cor. 3)

Also, the radical axis of S

and S passes through a centre of similitude of B and C, and

through a centre of similitude of C and A.

/. the radical axis of S and S is an axis of similitude of

the three circles A, B, and C.
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2. Again, since A and B touch S and S
,
the radical axis of

A and B passes through a centre of similitude of S and S .

For similar reasons, and because A, B, and C touch S and

S similarly, the radical axes of B and C, and of C and A,

pass through the same centre of similitude of S and S . But

these three radical axes meet at the radical centre of A, B,

and C.

/. the radical centre of A, B, and C is a centre of simili

tude of S and S . q.e.d.

297. Problem. To construct a circle which shall touch

three given circles.

In the figure of 296, let A, B, and C be the three given

circles, and let S and S be two circles which are solutions

of the problem.
Let L denote one of the axes of similitude of A, B, and C,

and let O be their radical centre. These are given when the

circles A, B, and C are given.

Now L is the radical axis of S and S (296, i), and O is

one of their centres of similitude.

But as A touches S and S the chord of contact of A passes

through the pole of L with respect to A (293). Similarly the

chords of contact of B and C pass through the poles of L

with respect to B and C respectively. And these chords are

concurrent at O. (292)
Hence the following construction :

Find O the radical centre and L an axis of similitude of A,

B, and C. Take the poles of L with respect to each of these

circles, and let them be the points p, g, r respectively.

Then O/, Qq, Or are the chords of contact for the three

given circles, and three points being thus found for each of

two touching circles, S and S
,
these circles are determined.

(This elegant solution of a famous problem is due to M.

Gergonne.)

Cor. As each axis of similitude gives different poles with

respect to A, B, and C, while there is but one radical centre
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O, in general each axis of similitude determines two touching
circles

;
and as there are four axes of similitude there are

eight circles, in pairs of twos, which touch three given circles.

Putting i and e for internal and external contact with the

touching circle, we may classify the eight circles as follows :

(See 294)
AXES OF SIMILITUDE. ABC
X Y Z

*

lipr.
e e e)

X Y Z i
Upr.

/ e e)

X Y Z
. Upr.

e i e)

X Y Z * i



PART V.

ON HARMONIC AND ANHARMONIC RATIOS
HOMOGRAPHY, INVOLUTION, ETC.

SECTION I.

GENERAL CONSIDERATIONS IN REGARD TO
HARMONIC AND ANHARMONIC DIVISION.

298. Let C be a point dividing a segment AB. The posi

tion of C in relation to A and JB is determined by the ratio

( t

AC : BC. For, if we know this ratio, we
A CD know completely the position of C with

respect to A and B. If this ratio is negative, C lies between

A and B ;
if positive, C does not lie between A and B. If

AC : BC= i, C is the internal bisector of AB
;
and if

AC : BC= + i, C is the external bisector of AB, i.e., a point

at oo in the direction AB or BA.

Let D be a second point dividing AB. The position of D
is known when the ratio AD : BD is known.

Def. If we denote the ratio AC : BC by ;;z, and the ratio

AD : BD by ;z, the two ratios m : n and n : m, which are

reciprocals of one another, are called the two (inharmonic

ratios of the division of the segment AB by the points C and

D, or the harmonoids of the range A, B, C, D.

252
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Either of the two anharmonic ratios expresses a relation

between the parts into which the segment AB is divided by
the points C and D.

Evidently the two anharmonic ratios have the same sign,

and when one of them is zero the other is infinite, and vice

versa.

These ratios may be written :

AC ^5 Or
AC - BD

or
AC. ED

BC BD BC.AD AD . BC
AD

.
AC AD.BC AD . BC

BD BC BD.AC AC.BD*

The last form is to be preferred, other things being convenient,

on account of its symmetry with respect to A and B, the

end-points of the divided segment.

299. The following results readily follow.

1. Let ^--| be +. Then^ and
|j?

have like signs,

and therefore C and D both divide AB internally or both

externally. (298)
In this case the order of the points must be some one of

the following set, where AB is the segment divided, and the

letters C and D are considered as being interchangeable :

CDAB, ACDB, CABD, ABCD.

2. Let ^BD be _
f Then

AC
and

AD
haye opposite

signs, and one point divides AB internally and the other

externally.

The order of the points is then one of the set CADB, ACBD.

3. When either of the two anharmonic ratios is i, these

ratios are equal.

4 - Let ^?= +i - Then I and c and D are

both internal or both external.
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AC-BC AD-BD AB AB
EC~ -BD BCBD

and C and D coincide.

Hence, when C and D are distinct points, the anharmonic

ratio of the parts into which C and D divide AB cannot be

positive unity.

, , AC.BD , AC AD

And since C and D are now one external and one internal

(2), they divide the segment AB in the same ratio internally

and externally, disregarding sign. Such division of a line

segment is called harmonic. (208, Cor. i)

Harmonic division and harmonic ratio have been long em

ployed, and from being only a special case of the more

general ratio, this latter was named &quot;anharmonic&quot; by
Chasles, &quot;who was the first to perceive its utility and to

apply it extensively in Geometry.&quot;

300. Def. When we consider AB and CD as being two

segments of the same line we say that CD divides AB, and

that AB divides CD.

Now the anharmonic ratios in which CD divides AB are

AC.BD , AD.BC____ rind ___
AD . BC AC . BD

And the anharmonic ratios in which AB divides CD are

CA^DB , CB.DA
CB7DA

a
CATTJB

But the anharmonic ratios of these sets are equal each to

each in both sign and magnitude.
. . the anliarmonic ratios in which CD divides AB are the

same as those in which AB divides CD.

Or, any two segments of a common line divide each other

equianharmonically.

301. Four points A, B, C, D taken on a line determine six

segments AB, AC, AD, BC, BD, and CD.
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These may be arranged in three groups of two each, so that

in each group one segment may be considered as dividing

the others, viz., AB, CD
; BC, AD ; CA, BD.

Each group gives two anharmonic ratios, reciprocals of one

another ;
and thus the anharmonic ratios determined by a

range of four points, taken in all their possible relations, are

six in number, of which three are reciprocals of the other

three.

These six ratios are not independent, for, besides the

reciprocal relations mentioned, they are connected by three

relations which enable us to find all of them when any one is

given.

Then P, O, R are the anharmonic ratios of the groups

ABCD, BCAD, and CABD, each taken in the same order.

But in any range of four (233) we have

AB. CD + BC. AD + CA. BD=o.
And dividing this expression by each of its terms in succes

sion, we obtain O +
^
= R+ = P + I-=i.

From the symmetry of these relations we infer that any

general properties belonging to one couple of anharmonic

ratios, consisting of any ratio and its reciprocal, belong

equally to all.

Hence the properties of only one ratio need be studied.

The symbolic expression {ABCD} denotes any one of the

anharmonic ratios, and may be made to give all of them by
reading the constituent letters in all possible orders.

Except in the case of harmonic ratio, or in other special

cases, we shall read the symbol in the one order of alternat

ing the letters in the numerator and grouping the extremes

and means in the denominator. Thus

r AT^TA! j AC.BD
{ABCD} denotes AD BC

-

It is scarcely necessary to say that whatever order may be
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adopted in reading the symbol, the same order must be em

ployed for each when comparing two symbols.

302. Theorem. Any two constituents of the anharmonic

symbol may be interchanged if the remaining two are inter

changed also, without affecting the value of the symbol.

Proof.- {ABCD }=AC.BD IAD.BC.

Interchange any two as A and C, and also interchange the

remaining two B and D. Then

{CDAB} =CA. DB : CB. DA
=AC.BD: AD. BC.

Similarly it is proved that

(ABCD} = {BADC} = {CDAB} = {DCBA}. q.e.d.

303. If interchanging the first two letters, or the last two,

without interchanging the remaining letters, does not alter

the value of the ratio, it is harmonic.

For, let {ABCD} = {ABDC}.

T , AC.BD =AD^BC
ADTBC AC.BD

or, multiplying across and taking square roots,

AC.BD=AD.BC.
But the positive value must be rejected (299, 4), and the

negative value gives the condition of harmonic division.

Let ABCD be any range of four and O any point not

on its axis.

The anharmonic ratio of the pencil

O.ABCD corresponding to any given

ratio of the range is the same function

^ of the sines of the angles as the given
A B c D

ratio is of the corresponding segments.
~, sin AOC. sin BOD AC.BD
1 hus -. -. . , ^ corresponds to ;

sinAOD. sin BOG AD . BC

or, symbolically, O-fABCD} corresponds to {ABCD}.
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To prove that the corresponding anharmonic ratios of the

range and pencil are equal.
AC

=!AAOC_OA.OCsin_AOC QA sinAOC
BC ABOC OB.OCsinBOC OB sinBOC

Similarly,
BD = OB sinBOD
AD OA sinAOD

AC. BD_ sinAOC. sin BOD
AD.BC sinAOD.smBOC*

Hence, symbolically

{ABCD} = 0{ABCD} ;

and, with necessary formal variations, the anharmonic ratio
of a range may be changed for that of the corresponding
pencil, and vice versa, whenever required to be done.

Cor. i. Two angles with a common vertex divide each
other equianharmonically. (300^

Cor. 2. If the anharmonic ratio of a pencil is +i, two rays
coincide, and if - i, the pencil is harmonic. (299, 4, 5)

Cor. 3. A given range determines an equianharmonic pen
cil at every vertex, and a given pencil determines an equian
harmonic range on every transversal.

Cor. 4. Since the sine of an angle is the same as the sine
of its supplement (214, i), any ray may be rotated through a
straight angle or reversed in directionwithout affecting the ratio.

Corollaries 2, 3, and 4 are of special importance.

305. Theorem It three pairs of corresponding rays of two
equianharmonic pencils intersect collinearly, the fourth pair
intersect upon the line of collinearity.

Proof. Let

0{ABCD}=0 fABCD },

and let the pairs of corresponding rays
OA and O A, OB and O B, OC and O C

A

intersect in the three collinear points A,
B, and C. Let the fourth corresponding
rays meet the axis of ABC in D and D &quot;cr o&quot;

respectively. Then {ABCD} =
XABCD }, (304)
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AC.BD_AC.BD , BD =BD
AD . BC AD . BC AD AD&quot;

which is possible only when D and D coincide.

.*. the fourth intersection is upon the axis of A, B, and C,

and the four intersections are collinear. q.e.d.

Cor. If two of the corresponding rays as OC and O&quot;C

become one line, these rays may be considered as intersecting

at all points on this line, and however A and B are situated

three corresponding pairs of rays necessarily intersect col-

linearly.

. . when two equianharmonic pencils have a pair of cor

responding rays in common, the remaining rays intersect

collinearly.

306. Theorem. If two equianharmonic ranges have three

pairs of corresponding points in perspective, the fourth

points are in the same perspective.

Proof
{ABCD} = {A B C D },

and A and A
,
B and B

,
and C and C

are in perspective at O. Now

O{ABCD} = O{A B CT&amp;gt; },

and we have two equianharmonic pen-
cils of which three pairs of correspond-

A

ing rays meet collinearly at A, B, and C. Therefore OD
and OD meet at D, or D and D are in perspective at O.

Cor. If two of the corresponding points, as C and
C&quot;,

be

come coincident, these two points
&amp;lt; are in perspective at

every centre, and hence three corresponding pairs of points

are necessarily in perspective.

. . when two equianharmonic ranges have a pair of cor

responding points coincident, the remaining pairs of cor

responding points are in perspective.
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SECTION II.

HARMONIC RATIO.

307. Harmonic ratio being a special case of anharmonic

ratio (299, 5), the properties and relations of the latter

belong also to the former.

The harmonic properties of a divided segment may ac

cordingly be classified as follows :

1. The dividing points alternate with the end points of the

divided segment.
For this reason harmonic division is symbolized by writing

the letters in order of position, as, {APBO}, where A and B
are the end points of the segment and P and Q, the dividing

points (301). A P B Q.

2. The dividing points P and Q divide the segment extern

ally and internally in the same ratio, neglecting sign. (299, 5)

3. If one segment divides another harmonically, the second

also divides the first harmonically. (3)
4. A harmonic range determines a harmonic pencil at every

vertex, and a harmonic pencil determines a harmonic range
on every transversal. (304, Cor. 3)

5. If one or more rays of a harmonic pencil be reversed in

direction the pencil remains harmonic. (34j Cor. 4)

6. Two harmonic pencils which have three pairs of corre

sponding rays intersecting collinearly have all their corre

sponding rays intersecting collinearly. (305)

7. Two harmonic ranges which have three pairs of corre

sponding points in perspective have all their corresponding

points in perspective. (36)
8. If two harmonic pencils have a corresponding ray from

each in common, all their corresponding rays intersect col

linearly. (35&amp;gt; Cor.)

9. If two harmonic ranges have a corresponding point

from each in common, all their corresponding points are in

perspective. (306, Cor.)
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308. Let APBQ be a harmonic range. Then
AP:PB =AQ:BQ,

Q
.% AP:AQ=AB-AP:AQ-AB.

Taking AP, AB, AQ as three magnitudes, we have the

statement :

The first is to the third as the difference between the first

and second is to the difference between the second and the

third. And this is the definition of three quantities in

Harmonic Proportion as given in Arithmetic and Algebra.

EXERCISES.

1. When three line segments are in harmonic proportion the

rectangle on the mean and the sum of the extremes is

equal to twice the rectangle on the extremes.

2. The expanded symbol {APBQ}=-i gives AP : AQ
= - BP : BQ. Why the negative sign ?

3. Prove from the nature of harmonic division that when P

bisects AB, Q is at &amp;lt;x&amp;gt; .

4. Prove that if OP bisects ^AOB internally OQ bisects it

externally ;
O {APBQ} is equal to i.

5. Trace the changes in the value of the ratio AC : BC as C
moves from oo to +00.

309. In the harmonic range APBQ, P and Q are called

conjugate points, and so also are A and B.

Similarly in the harmonic pencil O.APBQ, OP and OQ
are conjugate rays, and so also are OA and OB.

Ex. i. Given three points of a harmonic range to find the

fourth.

Let A, P, B be the three given points.

By (259, Ex. 7) find any point O at which the segments

AP and PB subtend equal angles. Draw OO the external

bisector of the z_AOB. O is the fourth point.

For OP and OQ are internal and external bisectors of the

(208, Cor. i)
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Ex. 2. Given three rays to find a fourth so as to make the

pencil harmonic.

Let OA, OP, OB be the three rays.

On OA take any two equal distances

OD and DE.
Draw DF

||
to OB, and draw OQ ||

to

EF. OQ is the fourth ray required.

For since OD = DE, EF - FG. And OQ meets EF at oo .

Then EFGoo are harmonic and hence O . APBQ are

harmonic.

Cor. In the symbolic expression for a harmonic ratio a pair

of conjugates can be interchanged without destroying the

harmonicism.

for. {APBQ} gives AP.BQ:AQ.BP= -i,
and {BPAQ} gives BP.AQ :BQ.AP,
and being the reciprocal of the former its value is -

i also.

And similarly for the remaining symbols.

HARMONIC PROPERTIES OF THE TETRAGRAM
OR COMPLETE QUADRANGLE.

310. Let ABCD be a quadrangle, of which AC, BD, and
EF are the three diagonals.

Also let the line EO cut two sides

in G and H, and the line FO cut

the other two sides in K and L.

Then
i. AED is aA whereof AC, EH,

and DB are concurrent lines from

the vertices to the opposite sides.

. . AB.EC.DH=-AH.DC.EB.

Also, AED is a A and FCB is a

transversal. A

(247, Def. 2)

AB . EC . DF =AF . DC . EB,

H D

(250, a)
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and dividing the former equality by the latter,

DH AH
DF AF

and AHDF is a harmonic range.

2. Again, {AHDF} = E{AHDF} = E{LOKF}= E{BGCF}.
(307, 4)

LOKF and BGCF are harmonic ranges.

3. O{AHUF}= O{CEDK}= F{CEDK}= F{GEHO}
= F{BEAL}, (307, 4, 5)

but {CEDK}= {DKCE}, etc. (309, Cor.)

DKCE, HOGE, ALBE are harmonic ranges.

4. If AC be produced to meet EF in I, AOCI is a harmonic

range.

/. all the lines upon which four points of the figure lie are

divided harmonically by the points.

And the points E, F, and O at which four lines concur are

vertices of harmonic pencils.

EXERCISES.

1. A line
||
to the base of a A nas its points of intersection

with the sides connected transversely with the end

points of the base. The join of the vertex with the

point of intersection of these connectors is a median,

and is divided harmonically.

(Let F go to co in the last figure.)

2. ABC is a A and BD is an altitude. Through any point

O on BD, CO and OA meet the sides in F and E
respectively. Show that DE and DF make equal

angles with AC.

3. The centres of two circles and their centres of similitude

form a harmonic range.

4. In the Fig. of 310 the joins DI, IB, BH, and LD are all

divided harmonically.
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311. Let APBQ be a harmonic range and let C be the

middle point of AB. Then

AP__BP_PB
AQ BQ~BQ

CB+CP CB-CP

CB+CP_CQ+CB
CB-CP CQ-CB

.hence ..
/. CP . CQ= CB 2

,,

or P and Q are inverse points to the circle

having C as centre and CB as radius.

. . i. The diameter of a circle is divided harmonically by

any pair of inverse points.
And a circle having a pair of conjugates of a harmonic

range as end-points of a diameter has the other pair of
conjugates as inverse points.

Again, let EF be any secant through P meeting the polar
of P in V.

A circle on PV as diameter passes through Q and P, and
therefore cuts S orthogonally. (258)
Hence also the circle S cuts the circle on PV orthogonally,

and E and F are inverse points to the circle on PV.
. . EPFV is a harmonic range.
.*. 2. A line is cut harmonically by a point, a circle^ and

the polar of the point with respect to the circle.

Ex. P, Q are inverse points, and from Q a line is drawn

cutting the circle in A and B. The
join&amp;gt;PB cuts the circle in

A . Then AA is _L to PQ.

312. Let P be any point and L its polar with respect to

the circle Z. And let PCD and PBA be any two secants.

Then
i. PCED and PBFA are harmonic ranges having P a cor

responding point in each. Therefore AD, FE, and BC arc

concurrent. And BC and AD meet on the polar of P. (309, 9)
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2. Again, since {PCED}={PDEC}, (309, Cor.)

.\ PDEC and PBFA are harmonic ranges having P a cor

responding point in each. Therefore DB, EF, and CA are

concurrent, and AC and DB meet on the polar of P.

Q

. . Iffrom any point two secants be drawn to a circle, the

connectors of their points of intersection with the circle meet

upon the polar of thefirst point.

3. Since O is on the polar of P, P is on the polar of O.

But since Q is a point from which secants are drawn satis

fying the conditions of 2, Q is on the polar of O.

.*. PQ is the polar of O.

Now ABCD is a concyclic quadrangle whereof AC and

BD are internal diagonals and PQ the external diagonal.

.*. In any concyclic quadrangle the external diagonal is the

Polar of the point of intersection of the internal diagonals,

with respect to the circumcircle.

4. Since Q is on the polar of P and also on that of O,

therefore PO is the polar of Q, and POQ is a triangle self-

conjugate with respect to the circle.

5. Let tangents at the points A, B, C, D form the circum

scribed quadrangle USVT.
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Then S is the pole of AB, and T of DC.

. . ST is the polar of P, and S and T are points on the

line QO.
Similarly U and V are points on the line PO.

But XY is the external diagonal of USVT, and its pole is

0. the point of intersection of DB and AC.

. . X and Y are points on the line PQ.

Hence, If tangents be drawn at the vertices of a coneydie

quadrangle so as toform a circumscribed quadrangle, the in

ternal diagonals of the two quadrangles are concurrent, and
their external diagonals are segments of a common line; and
the point of concurrence and the line are pole andpolar with

respect to the circle.

EXERCISES.

1. UOVP and SOTQ are harmonic ranges.

2. If DB meets the line PQ in R, IOR is a self-conjugate

triangle with respect to the circle.

3. To find a circle which shall cut the sides of a given

triangle harmonically.

4. QXPY is a harmonic range.

313. Let S be a circle and A P B O a harmonic range.

Taking any point O on the

circle and through it projecting

rectilinearly the points A P B Q
we obtain the system APBO,
which is called a harmonic sys-

tern ofpoints on the circle.

Now, taking O any other point
on the circle, O .APBQ is also

harmonic. For

zJPOB = ^PO B, etc.

. . Def. Four points on a circle

form a harmonic system when their A P B

joins with any fifth point on the circle form a harmonic pencil.
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AP
Cor. i. Since sinz_AOP = -:,,a

= -f , etc., (228)a

. . (304), neglecting sign, AP . BQ=AQ . PB,

. . Whenfourpoints form a harmonic system on a circle, the

rectangles on the opposite sides of the normal qiiadrangle
which they determine are equal.

Cor. 2. If O comes to A, the ray OA becomes a tangent

at A.

. . When fourpointsform a harmonic system on a circle,

the tangent at any one of them and the chordsfrom the point

ofcontact to the othersform a harmonic pencil.

314. Let the axis of the harmonic range APBO be a tan

gent to the circle S.

Through A, P, B, and

Q draw the tangents Atf,

B, P/, and Qq.
These four tangents

form a harmonic system
of tangents to the circle S.

Let L be any other tan

gent cutting the four tan

gents of the system in A
?

P
,
B

,
and Q .

Then, considering Aa, P/, B3, etc., as fixed tangents, and

A P B Q as any other tangent.

z_AOP=zAO P
,
^POB=^P OB

, etc., (116, Ex. i)

. . the pencils O.APBQ and O . A P B Q are both har

monic, and A P B Q is a harmonic range.

.*. Whenfour tangentsform a harmonic system to a circle,

they intersect any other tangent in points which form a har

monic range.

Cor. i. If the variable tangent coincides \vith one of the

fixed tangents, the point of contact of the latter becomes one

of the points of the range.
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.r. Whenfour tangentsform a harmonic system to a circle,

each tangent is divided harmonically by its point of contact

and its intersections with the other tangents.

EXERCISES.

1. Tangents are drawn at A, A the end-points of a diameter,

and two points P, B are taken on the tangent through
A such that AB= 2AP. Through P and B tangents are

drawn cutting the tangent at A in P and B . Then
2A B =A P

,
and AA

,
PB

,
and BP are concurrent.

2. Four points form a harmonic system on a circle. Then the

tangents at one pair of conjugates meet upon the secant

through the other pair.

3. If four tangents form a harmonic system to a circle, the

point of intersection of a pair of conjugate tangents lies

on the chord of contact of the remaining pair.

4. If four points form a harmonic range, their polars with

respect to any circle form a harmonic pencil ; and

conversely.

SECTION III.

OF ANHARMONIC PROPERTIES.

315. Let A, E, C and D, B, F be two sets of three col-

linear points having their

axes meeting in some

point R.

Join the points alter

nately, as ABCDEFA.
Then AB and DE, BC and

EF, CD and FA meet in D

P, Q, O. To show that these points are collinear.
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O{ECQF}= C{EOQF} (referred to axis EF)
= C{RDBF} (referred to axis DR)
=A{RDBF}
=A{EDPF} (referred to axis DE)
= O{EDPF}
= O{ECPF}. (by reversing rays, etc.)

. . the pencils O. ECQF and O. ECPF are equianharmonic,
and having three rays in common the fourth rays must be in

common, i.e., they can differ only by a straight angle, and

therefore O, P, Q are collinear.

(Being the first application of anharmonic ratios the work

is very much expanded.)
. . If six lines taken in order intersect alternately in two

sets of three collinear points; they intersect in a third set of
three collinear points.

Cor. i. ABC and DEF are two triangles, whereof each has

one vertex lying upon a side of the other.

If AB and DE are taken as corresponding sides, A and F
are non-corresponding vertices. But, if AB and EF are

taken as corresponding sides, A and D are non-corresponding
vertices.

Hence the intersections of AB and EF, of ED and CB,
and of AD and CF are collinear.

. . If two triangles have each a vertex lying upon a side of

the other, the remaining sides and the joins of the remaining

non-corresponding vertices intersect collinearly.

Cor. 2. Joining AD, BE, CF, ADBE, EBFC, and ADFC
are quadrangles, and P, Q, O are respectively the points of

intersection of their internal diagonals.

. . if a quadrangle be divided into two quadrangles, the

points of intersection of the internal diagonals of the three

quadrangles are collinear.
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316. Let A, A , B, B , C, C be six points lying two by two

on two sets of three con

current lines, which meet

at P and O. Then the

points lie upon a third set p
of three concurrent lines

meeting at O.

We are to prove that

AO and AA are in line.

A{&amp;lt;XrCB}B {O*C Q}
= B

{CPC&amp;gt;}

.-. the pencils A.O^rC B
and A.A ^rC B are equi- Q

anharmonic, and have three corresponding rays in common.

Therefore AO and AA are in line.

Cor. ABC and A B C are two As which are in perspective

at both P and Q, and we have shown that they are in per

spective at O also.

As there is an axis of perspective corresponding to

each centre, the joins of the six points, accented letters

being taken together and unaccented together, taken in

every order intersect in three sets of three collinear

points.

EXERCISES.

1. If two AS have their sides intersecting collinearly, their

corresponding vertices connect concurrently.

2. The converse of Ex. i.

3. Three equianharmonic ranges ABCD, A B C D
,
and

PQRS have their axes concurrent at Y, and AA
,
BB

,

CC
,
DD concurrent at X. Then the two groups of

joins AP, BQ, CR, DS, and A P, B Q, C R, D S are
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concurrent at two points O and O which are collinear

with X.

4. From Ex. 3 show that if a variableA has its sides passing

through three fixed points, and two of its vertices lying

upon fixed lines, its third vertex lies upon a fixed line

concurrent with the other two.

5. If a variable A has its vertices lying on three fixed lines

and two of its sides passing through fixed points, its

third side passes through a fixed point collinear with

the other two.

317. The range ABCD is transferred to the circle S by
o rectilinear projection through

any point O on the circle.

Then A B C D is a system of

points on the circle which is

equianharmonic with the range
ABCD.

i. If O be any other point
on the circle, theABCD z_ =z., etc.,

and the two pencils O . A B C D and O . A B C D are equi

anharmonic.

/. four points on a circle subtend equianharmonic pencils

at all fifth points on the circle.

2. Since
A TV
-~,
a

sin COD

and (233)

d

AB . CD + BC . AD -AC . BD,

A B . C D + B C. A D =A C. B D ;

which is an extension of Ptolemy s theorem to a concyclic

quadrangle. (2O5)
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3. If the range ABCD is inverted with O as the centre of

inversion, the axis of the range inverts into a circle S through

O, and A, B, C, D invert into A
,
B

,
C

,
and D respectively.

Hence, in general, anharmonic relations are unchanged by

inversion, a range becoming an equianharmonic system on a

circle, and under certain conditions vice versa.

4. In the inversion of 3, A and A
,
B and B

, etc., are pairs

of inverse points.

OA.OA = OB.OB
= OC.OC=OD.OD

,

and the AS OAB and OB A
,
OAC and OCA

, etc., are

similar in pairs.

And if P be the J_ from O to AD, and P
t ,
P 2 ,

P3,
and P4 be

the J_s from O to A B
,
B C, CD ,

and D A
,
we have

BC B C
P P! P P2

CD = CIV DA_
p ~py IP py

DA_A B B C CD
,
D A

P P! P2 P3 P4

But (232) AB + BC + CD +DA= o,

A B B C CD D A
-p +-p-+-p- + -p-=o.*1 *2 *3 *4

And since the same principle applies to a range of any
number of points,

/. in any concyclic polygon, if each side be divided by the

perpendicular upon it from any fixed point on the circle, the

sum of the quotients is zero.

In the preceding theorem, as there is no criterion by which

we can distinguish any side as being negative, some of the

perpendiculars must be negative.

Of the perpendiculars one falls externally upon its side of
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the polygon and all the others fall internally. Therefore the

theorem may be stated :

If J_s be drawn from any point on a circle to the sides of an

inscribed polygon, the ratio of the side, upon which the JL

falls externally, to its J_ is equal to the sum of the ratios of

the remaining sides to their J_s.

318. Theorem, If two circles be inverted the ratio of the

square on their common tangent to the rectangle on their

diameters is unchanged.
Let S, S be the

circles and AD be the

P/ ^D common centre line,

and let the circles s

and s and the circle

Z be their inverses

respectively.

Then Z cuts s and /

orthogonally, and

O{ABCD}=6{A B C D }.

But if abed be the

common centre line of

s and y, rtA
,
B

,
&amp;lt;:C

,

and dU are concurrent

at O. (265, Ex. i)

or

= O(ABCD},

AB.CD ab.cd

But AC. BD = the square on the common direct tangent to S

and S
,
and ac . &/=the square of the corresponding tangent

to s and s . ( I 79 J
Ex. 2)

And AB . CD and ab . &amp;lt;7/are the products of the diameters

respectively.



OF ANHARMONIC PROPERTIES. 273

And the theorem is proved.

Cor. i. Writing the symbolic expressions {ABCD} and

{abed} in another form, we have

AB.CD ab.cd

And AD . BC and ad. be are equal to the squares on the

transverse common tangents respectively.

Cor. 2. If four circles S^ S 2,
S3 ,

S4 touch a line at the

points A, B, C, D, and the system be inverted, we have four

circles s
lt

s2 ,
s3 . s^ which touch a circle Z through the centre

of inversion.

Now let d-b d.2 , d%, d be the diameters of S^ S2 , etc., and let

5v 5
2&amp;gt;

5
35

5
4 be the diameters of s^ s.2 , etc., and let /12 be the

common tangent to s
l
and s2 ,

/34 be that to s3 and j-4 ,
etc.

Then AB, etc., are common tangents to S 4 and S 2 , etc.,

and AB.CD + BC.AD + CA.BD=o. (233)

And

and similar equalities for the remaining terms,

/12/34+ /23^ 4+ /3l/24
= o.

This theorem, which is due to Dr. Casey, is an extension

of Ptolemy s theorem. For, if the circles become point-

circles, the points form the vertices of a concyclic quadrangle
and the tangents form its sides and diagonals.

If we take the incircle and the three excircles of a triangle

as the four circles, and the sides of the triangle as tangents,

we obtain by the help of Ex. i, 135,
2- c2+ c 2 -a2+ a2 -fi2

as the equivalent for /12/34+ etc.; and as this expression is

identically zero, the four circles given can all be touched by
a fifth circle.

S
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319. LetA,B,C, D, E ,
F be six points on a circle so con

nected as to form a hexagram,

i.e., such that each point is con

nected with two others.

Let the opposite sides AB,
DE meet in P ; BC, EF in Q ;

and CD, FA in R.

To prove that P, Q, and R are

collinear.

Q{BDER}= Q{CDER}
= F{CDEA}
= B{CDEP}
= Q{BDEP},

. . QR and QP are in line.

/. if a hexagram have its

vertices concyclic, the points of

intersection of its opposite sides

in pairs are collinear.

Def. The line of collinearity is called the pascal of the

hexagram, after the famous Pascal who discovered the

theorem, and the theorem itself is known as Pascals

theorem.

Cor. i. The six points may be connected in 5 x 4 x 3 x 2 or

120 different ways. For, starting at A, we have five choices

for our first connection. It having been fixed upon, we have

four for the next, and so on to the last. But one-half of the

hexagrams so described will be the other half described by

going around the figure in an opposite direction. Hence, six

points on a circle can be connected so as to form 60 different

hexagrams. Each of these has its own pascal, and there are

thus 60 pascal lines in all.

When the connections are made in consecutive order about

the circle the pascal of the hexagram so formed falls without

the circle
;
but if any other order of connection is taken, the

pascal may cut the circle.
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Cor 2. In the hexagram in the figure, the pascal is the line

through P, O, R cutting the circle in H and K. Now

C{KFBD}= C{KFQR)
= F{KCOR}
= F{KCEA},

{KFBD}={KCEA},
and K is a common point to two equi-

anharmonic systems on the circle. So

also is H.

These points are important in the theory of homographic
systems.

Cor. 3. Let i, 2, 3, 4, 5, 6 denote six points taken consecu

tively upon a circle. Then any particular hexagram is denoted

by writing the order in which the points are connected, as for

example, 2461352.

In the hexagram 246135 the pairs of opposite sides are 24
and 13, 46 and 35, 61 and 52, and the pascal passes through
their intersections.

Now taking the four hexagrams

246135, 245136, 246315, 245316,

the pascal of each passes through the intersection of the

connector of 2 and 4 with the connector of i and 3. Hence
the pascals of these four hexagrams have a common point.

It is readily seen that inverting the order of 2 and 4 gives

hexagrams which are only those already written taken in an

inverted order.

. . the pascals exist in concurrent groups of four, meeting
at fifteen points which are intersections of connectors.

Cor. 4. In the hexagram 1352461 considerjhe two triangles
formed by the sides 13, 52, 46 and 35, 24, 61. The sides 13

and 24, 35 and 46, 52 and 61 intersect on the pascal of

1352461, and therefore intersect collinearly.

Hence the vertices of these triangles connect concurrently,

i.e., the line through the intersection of 35 and 6? and the

intersection of 52 and 46, the line through the intersection of
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35 and 24 and the intersection of 13 and 46, and the line

through the intersections of 24 and 61 and the intersection

of 13 and 25 are concurrent.

But the first of these lines is the pascal of the hexagram

1643521, the second is the pascal of the hexagram 3564213,
and the third is the pascal of the hexagram 4256134.

. . the pascals exist in concurrent groups of three, meeting
at 20 points distinct from the 1 5 points already mentioned.

Cor. 5. If two vertices of the hexagram coincide, the figure be

comes a pentagram, and the missing side becomes a tangent.

/. if a pentagram be inscribed in a circle and a tangent at

any vertex meet the opposite side, the point of intersection

and the points where the sides about that vertex meet the

remaining sides are collinear.

Ex. i. The tangents at opposite vertices of a concyclic quad

rangle intersect upon the external diagonal of the quadrangle.

Ex. 2. ABCD is a concyclic quadrangle. AB and CD
meet at E, the tangent at A meets BC at G, and the tangent
at B meets AD at F. Then E, F, G are collinear.

320. Let six tangents denoted by the numbers i, 2, 3, 4, 5,

and 6 touch a

circle in A, B, C r

D, E, and F.

And let the

points of inter

section of the

tangents be de

noted by 12, 23,

34, etc.

Then the tan

gents form a

hexagram about

the circle.

Now, 12 is

the pole of AB, and 45 is the pole of ED. Therefore the
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line 12.45 is the polar of the point of intersection of AB
and ED.

Similarly the line 23 . 56 is the polar of the intersection of

BC and EF, and the line 34.61 is the polar of the intersec

tion of CD and FA.

But since ABCDEF is a hexagram in the circle, these

three intersections are collinear. (319)
/. the lines 12 . 45, 23. 56, and 34. 61 are concurrent at O.

And hence the hexagram formed by any six tangents to a

circle has its opposite vertices connecting concurrently.

Def. The point of concurrence is the Brianchon point, and

the theorem is known as Brianchoris theorem.

Cor. i. As the six tangents can be taken in any order to

form the hexagram, there are 60 different hexagrams each

having its own Brianchon point.

Now take, as example, the hexagram formed by the lines

T234~56 taken in order.

The connectors are 12 . 45, 23 . 56, 34. 61, and these give

the point O.

But the hexagrams 126453, 123546, and 126543 all have

one connector in common with 123456, namely, that which

passes through 12 and 45. Hence the Brianchon points of

these four hexagrams lie upon one connector.

. . the 60 Brianchon points lie in collinear groups of four

upon 15 connectors of the points of intersection of the

tangents.

Cor. 2. Consider the triangles 12.56.34 and 45.23.61.
These have their vertices connecting concurrently, and there

fore they have their sides intersecting collinearly.

But the point of intersection of the sides 61 . 23 and 56. 34
is the Brianchon point of the hexagram formed by the six

lines 234165 taken in order
;
and similar relations apply to

the other points of intersection.

Hence the 60 Brianchon points lie in collinear groups of

three upon axes which are not diagonals of the figure.
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Cor. 3. Let two of the tangents become coincident.

Their point of intersection is then their common point of

contact, and the hexagram becomes a pentagram.
. . in any pentagram circumscribed to a circle the join of

a point of contact with the opposite vertex is concurrent with

the joins of the remaining vertices in pairs.

Ex. i. In any quadrangle circumscribed to a circle, the

diagonals and the chords of contact are concurrent.

Ex. 2. In any quadrangle circumscribed to a circle, the

lines joining any two vertices to the two points of contact

adjacent to a third vertex intersect on the join of the third

and the remaining vertex.

SECTION IV.

OF POLAR RECIPROCALS AND RECIPROCATION.

321. The relation of pole and polar has already been

explained and somewhat elucidated in Part IV., Section V.

It was there explained that when a figure consists of any
number of points, and their connecting lines, another figure

of the same species may be obtained by taking the poles of

the connectors of the first figure as points, and the polars of

the points in the first figure as connecting lines to form the

second.

And as the first figure may be reobtained from the second

in the same way as the second is obtained from the first, the

figures are said to be polar reciprocals of one another, as

being connected by a kind of reciprocal relation. The word

reciprocal in this connection has not the same meaning as in

184, Def.

The process by which we pass from a figure to its polar

reciprocal is called polar reciprocation or simply reciprocation.



OF POLAR RECIPROCALS AND RECIPROCATION.

322. Reciprocation is effected with respect to a circle

either expressed or implied. The radius and centre of this

reciprocating circle are quite arbitrary, and usually no

account need be taken of the radius. Certain problems in

reciprocation, however, have reference to the centre of re

ciprocation, although the position of that centre may gener

ally be assumed at pleasure.

From the nature of reciprocation we obtain at once the

following statements :

1. A point reciprocates into a line and a line into a point.

And hence a figure consisting of points and lines reciprocates

into one consisting of lines and points.

2. Every rectilinear figure consisting of more than a single

line reciprocates into a rectilinear figure.

3. The centre of reciprocation reciprocates into the line at

oo
,
and a centre-line of the circle of reciprocation reciprocates

into a point at co in a direction orthogonal to that of the

centre-line.

4. A range of points reciprocates into a pencil of lines, and

the axis of the range into the vertex of the pencil. And

similarly, a pencil of lines reciprocates into a range of points,

and the vertex of the pencil into the axis of the range.

323. Let O.LMNK be a pencil of four, and C be the

centre of reciprocation. j
Draw the perpendiculars

K

C/ on L, Cm on M, Cn
on N, and Ck on K.

The poles of L, M, N,
K lie respectively on these

perpendiculars, forming a

range of points as /, ;;z, ;/,

k. Then
i. Evidently the

etc.

. the angle between two lines is equal to that subtended at
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the centre of reciprocation by the poles of the lines
;
and the

angle subtended at the centre of reciprocation by two points

is equal to the angle between the polars of the points.

2. Any pencil of four is equianharmonic with its polar

reciprocal range. And hence anharmonic or harmonic re

lations are not altered by reciprocation.

Def. Points are said to be perpendicular to one another

when their joins with the centre of reciprocation are at right

angles. In such a case the polars of the points are perpen
dicular to one another.

324. In many cases, and especially in rectilinear figures,

the passing from a theorem to its polar reciprocal is quite a

mechanical process, involving nothing more than an intel

ligent and consistent change in certain words in the statement

of the theorem.

In all such cases the truth of either theorem follows from

that of its polar reciprocal as a matter of necessity.

Take as example the theorem of 88,
&quot; The three altitudes

of a A are concurrent.&quot;

To get its polar reciprocal put it in the following form, where

the theorem and its polar reciprocal are given in alternate

lines :

The threel
lines throu^h thevertices

|
of a A perpendicular

(points on the sides )

to the opposite j
sides

}
are

( vertices ) ( collmear.

To get a point J_ to a vertex we connect the vertex to the

centre of reciprocation, and through this centre draw a line _L

to the connector. The point required lies somewhere on this

line. (323, Def.)

And as the centre may be any point, we may state the

polar reciprocal thus :

&quot; The lines through any point perpendicular to the joins of
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that point with the vertices of a triangle intersect the opposite

sides of the triangle collinearly.&quot; (252, Ex. 8)

325. Consider any two As. These reciprocate into two

AS ;
vertices giving sides, and sides, vertices.

If the original AS are in perspective their vertices connect

concurrently. But in reciprocation the vertices become sides

and the point of concurrence becomes a line of collinearity.

Hence the polar reciprocals of these AS have their sides

intersecting collinearly and are in perspective.

. . AS in perspective reciprocate into AS in perspective.

But any three concurrent lines through the vertices of a A
intersect the opposite sides in points which form the vertices

of a new A m perspective with the former.

Hence all cases of three concurrent lines passing through
the vertices of a A reciprocate into AS in perspective with

the original. Such are the cases of the concurrence of the

three medians, the concurrence of the three altitudes, of the

three bisectors of the angles, etc.

326. The complete harmonic properties of the tetragram

may be expressed in the two following theorems, which are

given in alternate lines, and are polar reciprocals to one

another :

Four{
lines

I determine by their (intersections)
-f points,)

(points) (connectors j (lines, )

and the
Jf

onnectors )

f these fc ^(intersectionsKeter.
( intersections ) ( connectors )

mine three new{P
oints

}
The(

connectors
I of any of the

(lines, ) (intersections)

three new{P
oints

j
with the original six (P

oints
j form a har-

( mies ) (lines )

monic (P
enciL

( range.

Other polar reciprocal theorems, which have been already
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given, are Pascal s and Brianchon s theorems with all their

corollaries, the theorems of Arts. 313 and 314, of Arts.

315 and 316, etc.

The circle, when reciprocated with respect to any centre of

reciprocation not coincident with its own centre, gives rise to

a curve of the same species as the circle, i.e., a conic section,

and many properties belonging to the circle, and particularly

those which are unaltered by reciprocation, become properties

of the general curve.

These generalized properties cannot be readily understood

without some preliminary knowledge of the conic sections.

SECTION V.

HOMOGRAPHY AND INVOLUTION.

327. Let A, B and A
,
B be fixed points on two lines, and

-t .
. let P and P be variable points,ABCD E_^ k___J.

one on eac^ ^ne wmcn so move
A B c D

r E as to preserve the relation

AP , A P
BP B P&quot;

where k is any constant
;
and let C, C ; U, D ; E, E , etc.,

be simultaneous positions of P and P .

Then the points A, B, C, I), E, etc., and A
,
B

,
C

,
D

,
E

,

etc., divide homographically the lines upon which they lie.

AC, A C ,AD , A D
BC~ B7e aid BD~ B D&quot;

AC.BD_A C .B D
AD.BC A D .B C&quot;

or {ABCD} = {A B CD }.

Similarly, {ABCE) = {A B C E }, {BCDE} = {B C D E }, etc.
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Evidently for each position of P, P can have only one

position, and conversely, and hence the points of division on

the two axes correspond in unique pairs.

.*. two lines are divided homographically by two sets of

points when to each point on one corresponds one and only

one point on the other, and when any four points on one line

and their four correspondents on the other form equianhar-
monic ranges.

Cor. i. If the systems of points be joined to any vertices O
and O

,
the pencils O.ABCD... and O . A B C D ... are

evidently homographic, and cut all transversals in homo-

graphic ranges.

Cor. 2. The results of Arts. 304, Cors. 3 and 4, and of

Arts. 305 and 306 and their corollaries are readily extended

to homographic ranges and pencils.

The following examples of homographic division are given.

Ex. i. A line rotating about a fixed point in it cuts any two

lines homographically.

Ex. 2. A variable point confined to a given line determines

two homographic pencils at any two fixed points.

Ex. 3. A system of ^.-circles determines two homographic

ranges upon any line cutting the system.

Consider any two of the circles, let P, Q be the common

points, and let the line L cut one of the circles in A and A
and the other in B and B . Then the ^PBB =^PQB ,

and

Hence the segment BA subtends the same angle at P as

the segment at B A does at Q. And similarly for all the

segments made in the other circles.

Ex. 4. A system of /.^.-circles determines two homographic

ranges upon every line cutting the system.
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DOUBLE POINTS OF HOMOGRAPHIC SYSTEMS.

328. Let ABCD... and A B CD ... be two homographic

ft
B c D ranges on a common axis.

A B c&amp;gt; D If any two correspondents
from the two ranges become coincident the point of co

incidence is a double point of the system.
If A and A were thus coincident we would have the rela

tions (ABCE}= {AB C E }, etc.

Thus a double point is a common constituent of two equi-

anharmonic ranges, of which the remaining constituents are

correspondents from two homographic systems upon a

common axis.

ABC and A B C being fixed, let D and D be two variable

correspondents of the doubly homographic system.

Then {ABCD}={A B C D },

Now taking O, an arbitrary point on the axis, let

OD=.r, OD =^ OA=
,
OA =rf

,
OB =

,
OB =#.

ThenBD=.r-/;, B D = .r -
,
AD=.r-

which reduces to the form

xx + P,r+ Qx + R =o.

When D and D become coincident x becomes equal to x
and we have a quadratic from which to determine x, i.e., the

positions of D and D when uniting to form a double point.

Hence every doubly homographic system has two double

points which are both real or both imaginary, and of which

both may be finite, or one or both may be at infinity.

Evidently there cannot be more than two double points,

for since such points belong to two systems, three double

points would require the coincidence of three pairs of corre

spondents, and hence of all. (306)
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329. If D be one of the double points of a doubly homo-

Now DB.DA and DA.DB are respectively equal to the

squares on tangents from D to any circles passing through

B, A and B
,
A.

But the locus of a point from which tangents to two given
circles are in a constant ratio is a circle co-axal with both.

(275, Cor. 5)

Hence the following construction for rinding the double

points.

Through A, B and

A
,
B draw any two

circles so as to intersect

in two points U and _,

V, and through these

points of intersection pass the circle
S&quot;,

so as to be the locus

of a point from which tangents to the circles S and S are in

the given ratio *JP : \/Q-

The circle S&quot; cuts the axis in D, D, which are the required

double points.

Evidently, instead of A, B and A
,
B we may take any pairs

of non-corresponding points, as A, C and A
, C; or B, C and

B
,
C. The given ratio N/P : VQ is different, however, for

each different grouping of the points.

AP AT
Cor. i. When P = Q, i.e., when ^=^~,, the circle S&quot;

BC, B C
takes its limiting form of a line and cuts the axis at one finite

point or at none.

In this case both double points may be at oo or only one

of them.

Cor. 2. If any disposition of the constituents of the system
causes the circle S&quot; to lie wholly upon one side of the

axis, the double points for that disposition become imagin
ary.
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330. Let L be the axis of a doubly homographic system.

Through any point O on the
A

circle S transfer the system,

by rectilinear projection, to

the circle. Then ABC...,
B&amp;gt; A B C... form a doubly

homographic system on the

circle.

Now, by connecting any
two pairs of non-correspond

ents A, B and A
,
B

; B, C
and B

,
C

; C, A and C
, A,

we obtain the pascal line

KH which cuts the circle in

two points such that

{KABC} = (KA B C }.

(319, Cor. 2)

Hence H and K are double points to the system on the

circle. And by transferring K and H back through the point

O to the axis L, we obtain the double points D, D of the

doubly homographic range.

Cor. i. When the pascal falls without the circle, the double

points are imaginary.

Cor. 2. When one of the joins, KO or HO, is
||
to L, one of

the double points is at oo .

Cor. 3. If the system upon the circle with its double points

H and K be projected rectilinearly through any point on

the circle upon any axis M, it is evident that the projected

system is a doubly homographic one with its double points.

Cor. 4. Cor. 3 suggests a convenient method of finding the

double points of a given axial system.

Instead of employing a circle lying without the axis, employ

the axis as a centre-line and pass the circle through any pair

of non-correspondents.
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Then from any convenient point on the circle transfer the

remaining points, find the pascal, and proceed as before.

331. The following are examples of the application of the

double points of doubly homographic systems to the solution

of problems.

Ex. i. Given two non-parallel lines, a point, and a third

line. To place between the non-parallels a segment which

shall subtend a given angle at the given point, and be parallel

to the third line.

Let L and M be the non-

parallel lines, and let N be

the third line, and O be the

given point.

We are to place a segment
i T j TV/T \ o- b cdc b a M
between L and M, so as to \

subtend a given angle at O and be
||
to N.

On L take any three points A, B, C, and join OA, OB, OC.
Draw Art, B^, Cc all

||
to N, and draw O^

, O//, Oc so as to

make the angles AO , BO#, CO*: each equal to the given

angle.

Now, if with this construction a coincided with &amp;lt;?

,
or b with

//, or c with
,
the problem would be solved.

But, if we take a fourth point D, we have

O{ABCD} = {ABCD} = {abed}
=
{a &Sd } .

.-. abed and a b c d are two homographic systems upon the

same axis. Hence the double points of the system give the

solutions required.

Ex. 2. Within a given A to inscribe a A whose sides shall

be parallel to three given lines.

Ex. 3. Within a given A to inscribe a A whose sides may
pass through three given points.

Ex. 4. To describe a A such that its sides shall pass

through three given points and its vertices lie upon three

given lines.
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SYSTEMS IN INVOLUTION.

332. If A, A , B, B are four points on a common axis r

whereof A and A
,
as also B and B

,
are correspondents, a

point O can always be found upon the axis such that

OA.OA = OB.OB .

This point O is evidently the centre of the circle to which

A and A
,
and also B and B

,
are pairs of inverse points, and

is consequently found by 257.

Now, let P, P be a pair of variable conjugate points which

so move as to preserve the relation

OP.OP =OA.OA = OB.OB .

Then P and P by their varying positions on the axis deter

mine a double system of points C, C , D, D , E, E , etc.,

conjugates in pairs, so that

OA . OA =OC . OC-OD . OD = OE . OE = etc.

Such a system of points is said to be in involution^ and O
is called the centre of the involution.

When both constituents of any one conjugate pair lie upon
the same side of the centre, the two constituents of every

conjugate pair lie upon the same side of the centre, since

the product must have the same sign in every case.

With such a disposition of the points the circle to which

conjugates are inverse points is real and cuts the axis in two

^
, , , i .

i points F and F .

^ C 6 A E^ F B A ^ these po
.

nts yari-

able conjugates meet and become coincident.

Hence the points F. F are the double points or foci of the

system.

From Art. 311, i, FF is divided harmonically by every

pair of conjugate points, so that

FAF A
,
FBF B

, etc., are all harmonic ranges.

When the constituents of any pair of conjugate points lie

upon opposite sides of the centre, the foci are imaginary.
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333. Let A, A , B, B , C, C be six points in involution, and

let O be the centre. Q

Draw any line OPQ through O,

and take P and Q so that

OP.OQ= OA.OA ,

and join PA, PB, PC, and PC
,

and also QA , QB , QC ,
and QC.

Then, / OA. OA = OP . OQ,
A B c c B- A

/ . A, P, Q, A are concyclic. / . LO PA=^OA Q.

Similarly, B, P, Q, B are concyclic, and Z_OPB=^OB O, etc.

Similarly, z.BPC-^B QC ,
z_CPC = Z-C OC, etc

Hence the pencils P(ABCC ) and Q(A B C C) are equianhar-

monic, or {ABCC }
= {A B C Cf.

Hence also {ABB C} = {A B BC }, {AA BC} = {A AB C J.

And any one of these relations expresses the condition that

the six points symbolized may be in involution.

334. As involution is only a species of homography, the

relations constantly existing between homographic ranges and

their corresponding pencils, hold also for ranges and pencils

in involution. Hence
1. Every range in involution determines a pencil in involu

tion at every vertex, and conversely.

2. If a range in involution be projected rectilinearly through

any point on a circle it determines a system in involution on

the circle, and conversely.

Ex. The three pairs of opposite connectors of any four

points cut any line in a six-point involution.

A, B, C, D are the four points, xJR___J
and P, P the line cut by the six

connectors CD, DA, AC, CB, BD,
and AB. Then

D{PQRR }
= D{CARB}
= B{CARD}
= B{Q P RR }

= {P Q R R}, (302)
T
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and the six points are in involution.

Cor. i. The centre O of the involution is the radical centre

of any three circles through PP
,
GO

,
and RR

; and the

three circles on the three segments PP
, OQ ,

and RR as

diameters are co-axal.

When the order of POR is opposite that of P O R as in the

figure, and the centre O lies outside the points, the co-axal

circles are of the /./.-species, and when the two triads of

points have the same order, the co-axal circles are of the

f./.-species.

Cor. 2. Considering ABC as a triangle and AD, BD, CD
three lines through its vertices at D, we have

The three sides of any triangle and three concurrent lines

through the vertices cut any transversal in a six-point

involution.

EXERCISES.

1. A circle and an inscribed quadrangle cut any line through
them in involution.

2. The circles of a co-axal system cut any line through them

in involution.

3. Any three concurrent chords intersect the circle in six

points forming a system in involution.

4. The circles of a co-axal system cut any other circle in

involution.

5. Any four circles through a common point have their six

radical axes forming a pencil in involution.
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Syllabus issued by the Society for the Improvement of Geometrical

Teaching. By A. COCKSHOTT, M.A., formerly Fellow and

Assistant-Tutor of Trinity College, Cambridge, and Assistant-

Master at Eton ;
and Rev. F. B. WALTERS, M.A., Fellow of

Queens College, Cambridge, and Principal of King William s

College, Isle of Man. With Diagrams. Crown Svo.

[/&amp;gt;/
the press.
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Cotterill. APPLIED MECHANICS : an Elementary General
Introduction to the Theory of Structures and Machines. By
JAMES H. COTTERILL, F.R.S., Associate Member of the Council
of the Institution of Naval Architects, Associate Member of the
Institution of Civil Engineers, Professor of Applied Mechanics in

the Royal Naval College, Greenwich. Medium 8vo. iSs.

ELEMENTARY MANUAL OF APPLIED MECHANICS.
By the same Author. Crown 8vo. [In preparation.

Day (R. E.) ELECTRIC LIGHT ARITHMETIC. By R. E.

DAY, M.A., Evening Lecturer in Experimental Physics at King s

College, London. Pott 8vo. 2s.

DodgSOn. CURIOSA MATHEMATICA. Part I. A New
Theory of Parallels. By CHARLES L. DODGSON, M.A., Student
and late Mathematical Lecturer of Christ Church, Oxford, Author
of &quot;

Euclid and his Modern Rivals,&quot; &quot;Euclid, Books I. and II.,&quot;

&c. Crown 8vo. 2s.

Drew. GEOMETRICAL TREATISE ON CONIC SECTIONS.
By W. H. DREW, M.A., St. John s College, Cambridge. New
Edition, enlarged. Crown 8vo. $s.

Dyer. EXERCISES IN ANALYTICAL GEOMETRY. Com
piled and arranged by J. M. DYER, M.A. With Illustrations.

Crown 8vo. 4^. 6d.

Eagles. CONSTRUCTIVE GEOMETRY OF PLANE
CURVES. ByT. H. EAGLES, M.A., Instructor in Geometrical

Drawing, and Lecturer in Architecture at the Royal Indian En
gineering College, Cooper s Hill. With numerous Examples.
Crown Svo. I2s.

Edgar (J. H.) and Pritchard (G. S.). NOTE-BOOK ON
PRACTICAL SOLID OR DESCRIPTIVE GEOMETRY.
Containing Problems with help for Solutions. By J. H. EDGAR,
M.A., Lecturer on Mechanical Drawing at the Royal School of

Mines, and G. S. PRITCHARD. Fourth Edition, revised by
ARTHUR MEEZE. Globe 8vo. 4^. 6d.

Edwards. THE DIFFERENTIAL CALCULUS. With Ap
plications and numerous Example?. An Elementary Treatise by
JOSEPH EDWARDS, M.A., formerly Fellow of Sidney Sussex

College, Cambridge. Crown Svo. ioj. 6d.

Ferrers. Works by the Rev. N. M. FERRERS, M.A., Master of

Gonville and Cains College, Cambridge.
AN ELEMENTARY TREATISE ON TRILINEAR CO
ORDINATES, the Method of Reciprocal Polars, and the Theory
of Projectors. New Edition, revised. Crown Svo. 6s. 6d.

AN ELEMENTARY TREATISE ON SPHERICAL HAR
MONICS, AND SUBJECTS CONNECTED WITH
THEM. Crown Svo. js. 6d.

Forsyth. A TREATISE ON DIFFERENTIAL EQUA
TIONS. By ANDREW RUSSELL FORSYTH, M.A., F.R.S., Fellow

and Assistant Tutor of Trinity College, Cambridge. Svo. l^s.
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FrOSt. Works by PERCIVAL FROST, M.A., D.Sc., formerly Fellow
of St. John s College, Cambridge ;

Mathematical Lecturer at

King s College.
AN ELEMENTARY TREATISE ON CURVE TRACING,

SvO. 12S.

SOLID GEOMETRY. Third Edition. Demy 8vo. i6s.

HINTS FOR THE SOLUTION OF PROBLEMS in the Third
Edition of SOLID GEOMETRY. 8vo. 8*. 6d.

Greaves. A TREATISE ON ELEMENTARY STATICS. By
JOHN GREAVES, M.A., Fellow and Mathematical Lecturer of

Christ s College, Cambridge. Second Edition. Crown 8vo. 65-. 6J.

STATICS FOR SCHOOLS. By the Same Author. \_In the press.

Greenhill. DIFFERENTIAL AND INTEGRAL CAL
CULUS. With Applications. By A. G. GREENHILL, M.A.,
Professor of Mathematics to the Senior Class of Artillery Officers,

Woolwich, and Examiner in Mathematics to the University of

London. Crown 8vo. 75. 6d.

Hemming. AN ELEMENTARY TREATISE ON THE
DIFFERENTIAL AND INTEGRAL CALCULUS, for the

Use of Colleges and Schools. By G. W. HEMMING, M.A.,
Fellow of St. John s College, Cambridge. Second Edition, with

Corrections and Additions. 8vo. gs.

Ibbetson. THE MATHEMATICAL THEORY OF PER
FECTLY ELASTIC SOLIDS, with a short account of Viscous

Fluids. An Elementary Treatise. By WILLIAM JOHN IBBETSON,
M.A., Fellow of the Royal Astronomical Society, and of the Cam
bridge Philosophical Society, Member of the London Mathematical

Society, late Senior Scholar of Clare College, Cambridge. 8vo. 2is.

Jellett (John H.). A TREATISE ON THE THEORY OF
FRICTION. By JOHN H. JELLETT, B.D., late Provost of Trinity

College, Dublin; President of the Royal Irish Academy. 8vo.

Ss. 6d.

Johnson. Works by WILLIAM WOOLSEY JOHNSON, Professor of

Mathematics at the U.S. Naval Academy, Annopolis, Maryland.
INTEGRAL CALCULUS, an Elementary Treatise on the;

Founded on the Method of Rates or Fluxions. Demy Svo. gs.

CURVE TRACING IN CARTESIAN CO-ORDINATES.
Crown Svo. 4^. 6d.

Jones. EXAMPLES IN PHYSICS. By D. E. JONES, B.Sc.,

Lecturer in Physics in University College of Wales, Aberystwyth.

Fcap. Svo. 3-r. 6d.

Kelland and Tait. INTRODUCTION TO QUATER
NIONS, with numerous examples. By P. KELLAND, M.A.,

F.R.S., and P. G. TAIT, M.A., Professors in the Department of

Mathematics in the University of Edinburgh. Second Edition.

Crown Svo. ?s. 6J.

Kempe. HOW TO DRAW A STRAIGHT LINE : a Lecture

on Linkages. By A. B. KEMPE. With Illustrations. Crown Svo.

is. 6d. (Mature Series.}
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Kennedy. THE MECHANICS OF MACHINERY. By A.
B. W. KENNEDY, F.R.S., M.Inst.C.E., Professor of Engineering
and Mechanical Technology in University College, London. With
Illustrations. Crown 8vo. 12s. 6d.

Knox. DIFFERENTIAL CALCULUS FOR BEGINNERS.
By ALEXANDER KNOX. Fcap. 8vo. 3$. 6d.

Lock. Works ly the Rev. J. B. LOCK, M.A., Author of

&quot;Trigonometry,&quot;
&quot; Arithmetic for Schools,&quot; &c.

HIGHER TRIGONOMETRY. Sixth Edition. Globe 8vo. 4*. 6d.

DYNAMICS FOR BEGINNERS. Second Edition. (Stereo

typed.) Globe 8vo. 3.?. 6d.

ELEMENTARY STATICS. Globe 8vo.

(See also under Arithmetic, Euclid, and Trigonometry.}

Lupton. CHEMICAL ARITHMETIC. With 1,200 Examples.
By SYDNEY LUPTON, M.A., F.C.S., F. I.C. fl formerly Assistant-

Alaster in Harrow School. Second Edition. Fcap. 8vo. 4;. 6d.

Macfarlane, PHYSICAL ARITHMETIC. By ALEXANDER
MACFARLANE, M. A., D.Sc., F.R.S.E., Examiner in Mathematics
to the University of Edinburgh. Crown Svo. Js. 6d.

MacGregor. KINEMATICS AND DYNAMICS. An Ele

mentary Treatise. By JAMES GORDON MACGREGOR, M.A.,
D.Sc., Fellow of the Royal Societies of Edinburgh and of Canada,
Munro Professor of Physics in Dalhousie College, Halifax, Nova
Scotia. With Illustrations. Crown Svo. io.y. 6d.

Merriman. A TEXT BOOK OF THE METHOD OF LEAST
SQUARES. By MANSFIELD MERRIMAN, Professor of Civil

Engineering at Lehigh University, Member of the American

Philosophical Society, American Association for the Advancement
of Science, &c. Demy Svo. 8^. 6d.

Millar. ELEMENTS OF DESCRIPTIVE GEOMETRY. By
J.B. MILLAR, C.E., Assistant Lecturer in Engineering in Owens
College, Manchester. Second Edition. Crown Svo. 6s.

Milne. Works by the Rev. JOHN J. MILNE, M.A., Private Tutor,
late Scholar, of St. John s College, Cambridge, &c., &c., formerly
Second Master of Heversham Grammar School.

WEEKLY PROBLEM PAPERS. With Notes intended for the

use of students preparing for Mathematical Scholarships, and for the

Junior Members of the Universities who are reading for Mathematical
Honours. Pott Svo. 4*. 6d.

SOLUTIONS TO WEEKLY PROBLEM PAPERS. Crown
Svo. los. 6d.

COMPANION TO &quot; WEEKLY PROBLEM PAPERS.&quot; Crown
Svo. los. 6d.

Muir. A TREATISE ON THE THEORY OF DETERMI
NANTS. With graduated sets of Examples. For use in Colleges
and Schools. By THOS. MUIR, M.A., F.R.S.E., Mathematical

Master in the High School of Glasgow. Crown Svo. 7*. 6d.
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Palmer. TEXT BOOK OF PRACTICAL LOGARITHMS
AND TRIGONOMETRY. By J. H. PALMER, Head School-
master R.N., II. M.S. Cambridge, Devonport. Globe 8vo. ^s. 6d.

Parkinson. AN ELEMENTARY TREATISE ON ME
CHANICS. For the Use of the Junior Classes at the University
and the Higher Classes in Schools. By S. PARKINSON, D.D.,
F.R. S., Tutor and Fra.lector of St. John s College, Cambridge.
With a Collection of Examples. Sixth Edition, revised. Crown
8vo. gj. 6d.~*

Pirie. LESSONS ON RIGID DYNAMICS. By the Rev. G.

PIRIE, M.A., late Fellow and Tutor of Queen s College, Cam
bridge ; Professor of Mathematics in the University of Aberdeen.
Crown 8vo. 6^.

Puckle. AN ELEMENTARY TREATISE ON CONIC SEC
TIONS AND ALGEBRA.IC GEOMETRY. With Numerous
Examples and Hints for their Solution ; especially designed for the

Use of Beginners. By G. H. PUCKLE, M.A. Fifth Edition,
revised and enlarged. Crown 8vo.

&quot;js.
6d.

Reuleaux. THE KINEMATICS OF MACHINERY. Out
lines of a Theory of Machines. By Professor F. REULEAUX
Translated and Edited by Professor A. B. W. KENNEDY, F.R.S.
C.E. With 4$a Illustrations. Medium 8vo. 2is.

Rice and Johnson DIFFERENTIAL CALCULUS, an

Elementary Treatise on the ; Founded on the Method of Rates or

Fluxions. By JOHN MINOT RICE, Professor of Mathematics in

the United States Navy, and WILLIAM WOOLSEY JOHNSON, Pro-

fes;or of Mathematics at the United States Naval Academy.
Third Edition, Revised and Corrected. Demy 8vo. i8.r.

Abridged Edition, qs.

Robinson. TREATISE ON MARINE SURVEYING. Pre

pared for the use of younger Naval Officers. With Questions for

Examinations and Exercises principally irom the Papers of the

Royal Naval College. With the results. By Rev. JOHN L.

ROBINSON, Chaplain and Instructor in the Royal Naval College,
Greenv\ich. With Illustrations. Crown Svo. Js. 6d.

CONTENTS. Symbols used in Charts nnd Surveying The Construction and Use
of Scales Laying off Angles Fixing Positions by Angles Charts and Chart-

Drawing Instruments and Observing l)a:-.e Lines Triangulation Levelling
Tides and Tidal Observations Soundings Chronometers Meridian Distances

Method of Plotting a Survey Miscellaneous Exercises Index.

Routh. Works by EDWARD JOHN ROUTH, D.Sc., LL.D.,
F.R.S., Fellow of the University of London, lion. Fellow of St.

Peter s College, Cambridge.
A TREATISE ON THK DYNAMICS OF THE SYSTEM OF
RIGID BODIES. With numerous Example.*. Fourth and

enlarged Edition. Two Vols. Svo. Vol. I. Elementary Parts.

I4J. Vol. II. The Advanced Parts. 14^.

STABILITY OF A GIVEN STATE OF MOTION, PAR-
TICULARLY STEADY MOTION. Adams Prize Essay for

1877. Svo. 8j. 6d.
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Smith (C.). Works by CHARLES SMITH, M.A., Fellow and
Tutor of Sidney Sussex College, Cambridge.

CONIC SECTIONS. Fourth Edition. Crown Svo. 7*. 6d.

SOLUTIONS TO CONIC SECTIONS. Crown Svo. los. 6d.

AN ELEMENTARY TREATISE ON SOLID GEOMETRY.
Second Edition. Crown Svo. gs. 6d. (See also under AIgebra.}

Tait and Steele. A TREATISE ON DYNAMICS OF A
PARTICLE. With numerous Examples. By Professor TAIT
and Mr. STEELE. Fifth Edition, revised. Crown Svo. 12s.

Thomson. Works by J. J. THOMSON, Fellow of Trinity College,

Cambridge, and Professor of Experimental Physics in the University.
A TREATISE ON THE MOTION OF VORTEX RINGS. An

Essay to which the Adams Prize was adjudged in 1882 in the

University of Cambridge. With Diagrams. Svo. 6s.

APPLICATIONS OF DYNAMICS TO PHYSICS AND
CHEMISTRY. Crown Svo. yj. 6ct.

Todhunter. Works by I. TODHUNTER, M.A., F.R.S., D.Sc.,
late of St. John s College, Cambridge.

&quot; Mr. Todhunter is chiefly known to students of Mathematics as the author of a
series of admirable mathematical text-books, which possess the rare qualities of being
cltar in style and absolutely free from mistakes, typographical and other.&quot;

SATURDAY REVIEW.

MECHANICS FOR BEGINNERS. With numerous Examples.
New Edition. i8mo. 4-c. 6d.

KEY TO MECHANICS FOR BEGINNERS. Crown Svo. 6s. 6d.

AN ELEMENTARY TREATISE ON THE THEORY OF
EQUATIONS. New Edition, revised. Crown Svo. yj. 6d.

PLANE CO-ORDINATE GEOMETRY, as applied to the Straight
Line and the Conic Sections. With numerous Examples. New
Edition, revised and enlarged. Crown Svo. yj. 6d.

KEY TO PLANE CO-ORDINATE GEOMETRY. By C. W.
BOURNE, M.A. Head Master of the College, Inverness. Crown
Svo. i or. 6d.

A TREATISE ON THE DIFFERENTIAL CALCULUS. With
numerous Examples. New Edition. Crown Svo. los. 6d.

A KEY TO DIFFERENTIAL CALCULUS. By H. ST. J.

HUNTER, M.A. Crown Svo. los. 6d.

A TREATISE ON THE INTEGRAL CALCULUS AND ITS
APPLICATIONS. With numerous Examples. New Edition,
revised and enlarged. Crown Svo. icxr. 6d.

EXAMPLES OF ANALYTICAL GEOMETRY OF THREE
DIMENSIONS. New Edition, revised. Crown Svo. 4*.

A TREATISE ON ANALYTICAL STATICS. With numerous
Examples. Fifth Edition. Edited by Professor J. D. EVERETT,
F.R.S. Crown Svo. IQJ. 6d.

A HISTORY OF THE MATHEMATICAL THEORY OF
PROBABILITY, from the time of Pascal to that of Laplace.
Svo. i&.
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Todhunter. continued.

A HISTORY OF THE MATHEMATICAL THEORIES OF
ATTRACTION, AND THE FIGURE OF THE EARTH,
from the time of Newton to that of Laplace. 2 vols. 8vo. 24*.

AN ELEMENTARY TREATISE ON LAPLACE S, LAME S,
AND BESSEL S FUNCTIONS. Crown Svo. IQJ. 6,/.

(See also under Arithmetic and Mensuration, Algebra, and Trigonometry. )

Wilson (J. M.). SOLID GEOMETRY AND CONIC SEC-
TIONS. With Appendices on Transversals and Harmonic Division.

For the Use of Schools. By Rev. J. M. WILSON, M.A. Head
Master of Clifton College. New Edition. Extra fcap. Svo. 3*. 6d.

Woolwich Mathematical Papers, for Admission into

the Royal Military Academy, Woolwich, iSSo 1884 inclusive.

Crown Svo. 3$. 6J.

Wolstenholme. MATHEMATICAL PROBLEMS, on Sub
jects included in the First and Second Divisions of the Schedule of

subjects for the Cambridge Mathematical Tripos Examination.
Devised and arranged by JOSEPH WOLSTENHOLME, D.Sc., late

Fellow of Christ s College, sometime Fellow of St. John s College,
and Professor of Mathematics in the Royal Indian Engineering
College. New Edition, greatly enlarged. Svo. i8s.

EXAMPLES FOR PRACTICE IN THE USE OF SEVEN-
FIGURE LOGARITHMS. For the Use of Colleges and
Schools. By the same Author. Svo. 5-y.

SCIENCE.
(i) Natural Philosophy, (2) Astronomy, (3)

Chemistry, (4) Biology, (5) Medicine, (6) Anthro
pology, (7) Physical Geography and Geology, (8)

Agriculture.

NATURAL PHILOSOPHY.
Airy. Works by Sir G. B. AIRY, K.C.B., formerly Astronomer-

Royal.

ON SOUND AND ATMOSPHERIC VIBRATIONS. With
the Mathematical Elements of Music. Designed for the Use of

Students in the University. Second Edition, revised and enlarged.
Crown Svo. gs.

A TREATISE ON MAGNETISM. Designed for the Use of

Students in the University. Crown Svo. gr. 6d.

GRAVITATION: an Elementary Explanation of the Principal Per

turbations in the Solar System. Second Edition. Crown Svo.
&quot;js.

6d.
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Alexander (T.). ELEMENTARY APPLIED MECHANICS.
Being the simpler and more practical Cases of Stress and Strain

wrought out individually from first principles by means of Ele

mentary Mathematics. By T. ALEXANDER, C.E., Professor of

Civil Engineering in the Imperial College of Engineering, Tokei,
Japan. Crown 8vo. Part I. 4J-. 6d.

Alexander Thomson. ELEMENTARY APPLIED
MECHANICS. By THOMAS ALEXANDER, C.E., Professor of

Engineering in the Imperial College of Engineering, Tokei, Japan ;

and ARTHUR WATSON THOMSON, C.E., B.Sc., Professor of

Engineering at the Royal College, Cirencester. Part II. TRANS
VERSE STRESS

; upwards of 150 Diagrams, and 200 Examples
carefully worked out. Crown 8vo. los. 6d.

Ball (R. S.). EXPERIMENTAL MECHANICS. A Course of

Lectures delivered at the Royal College of Science for Ireland.

By SirR. S. BALL, LL.D., F.R.S., Astronomer Royal of Ireland.
Second and Cheaper Edition. Crown 8vo. 6s.

Bottomley. FOUR-FIGURE MATHEMATICAL TABLES.
Comprising Logarithmic and Trigonometrical Tables, and Tables
of Squares, Square Roots, and Reciprocals. By J. T. BOTTOMLEY,
M.A., F.R.S E., F.C.S., Lecturer in Natural_Philosophy in the

University of Glasgow. 8vo. 2s. 6d.

Chisholm. THE SCIENCE OF WEIGHING AND
MEASURING, AND THE STANDARDS OF MEASURE
AND WEIGHT. By II.W. CHISHOLM, Warden of the Standards.
With numerous Illustrations. Crown Svo. 4^. 6d. (Nature Series}.

Clausius. MECHANICAL THEORY OF HEAT. By R.
CLAUSIUS. Translated by WALTER R. BROWNE, M.A., late

Fellow of Trinity College, Cambridge. Crown Svo. los. 6d.

Cotterill. APPLIED MECHANICS : an Elementary General
Introduction to the Theory of Structures and Machines. By
JAMES H. COTTERILL, F.R.S., Associate Member of the Council
of the Institution of Naval Architects, Associate Member of the
Institution of Civil Engineers, Professor of Applied Mechanics in

the Royal Naval College, Greenwich. Medium Svo. i8j.

ELEMENTARY MANUAL OF APPLIED MECHANICS.
By the same Author. Crown Svo. [In preparation.

Gumming. AN INTRODUCTION TO THE THEORY OF
ELECTRICITY. By LINNAEUS GUMMING, M.A., one of the

Masters of Rugby School. With Illustrations. Crown Svo. 8s. 6d.

Daniell. A TEXT-BOOK OF THE PRINCIPLES OF
PHYSICS. By ALFRED DANIELL, M.A., LL.B., D.Sc.,

F.R.S.E., late Lecturer on Physics in the School of Medicine,

Edinburgh. With Illustrations. Second Edition. Revised and

Enlarged. Medium Svo. 2is.

Day. ELECTRIC LIGHT ARITHMETIC. By R. E. DAY,
M.A., Evening Lecturer in Experimental Physics at King s

College, London. Pott Svo. 2s.
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Everett. UNITS AND PHYSICAL CONSTANTS. By J. D.
EVERETT, M.A., D.C.L., F.R.S., F.R.S.E., Professor of

Natural Philosophy, Queen s College, Belfast. Second Edition.
Extra fcap. 8vo. 5^.

Gray THE THEORY AND PRACTICE OF ABSOLUTE
MEASUREMENTS IN ELECTRICITY AND MAGNET
ISM. By ANDREW GRAY, M.A., F.R.S.E., Professor of Physics
in the University College of North Wales. Two Vols. Crown
Svo. Vol. I. 12s. 6d. [Vol. II. In the press.

Greaves. STATICS FOR SCHOOLS. By JOHN GREAVES,
M.A., Fellow and Mathematical Lecturer of Christ s College,

Cambridge. [/ preparation.

ELEMENTARY STATICS, A TREATISE ON. By the same.
Second Edition, revised. Crown Svo. 6^. 6d.

Grove. A DICTIONARY OF MUSIC A.ND MUSICIANS.
(A.D. 1450 1888). By Eminent Writers, English and Foreign.
Edited by Sir GEORGE GROVE, D.C.L., Director of the Royal
College of Music, &c. Demy Svo.

Vols. I., IL, and III. Price 21 j. each.

Vol. I. A to IMPROMPTU. Vol. II. IMPROPERIA to

PLAIN SONG. Vol. III. PLANCHE TO SUMER IS
ICUMEN IN. Demy Svo. cloth, with Illustrations in Music

Type and Woodcut. Also published in Parts. Parts I. to XIV.,
Parts XIX XXII., price 3^. 6d. each. Parts XV., XVI., price ?s.

Parts XVII., XVIII., price ?s.

%* (Part XXII.) just published, completes the DICTIONARY OF
Music AND MUSICIANS as originally contemplated. But an Appendix
and a full general Index are in the press.

&quot;Dr. Grove s Dictionary will be a boon to every intelligent lover of music.&quot;

SATURDAY REVIEW.

Huxley. INTRODUCTORY PRIMER OF SCIENCE. By T.

H. HUXLEY, F.R.S., &c. i8mo. is.

Ibbetson. THE MATHEMATICAL THEORY OF PER
FECTLY ELASTIC SOLIDS, with a Short Account of Viscous

Fluids. An Elementary Treatise. By WILLIAM JOHN IBBETSON,

B.A., F.R.A.S., Senior Scholar of Clare College, Cambridge. Svo.

Price 2is.

Jones. EXAMPLES IN PHYSICS. By D. E. JONES, B.Sc.

Lecturer in Physics in University College of Wales, Aberystwyth.

Fcap. Svo. 3-r. 6d.

Kempe. HOW TO DRAW A STRAIGHT LINE; a Lecture

on Linkages. By A. B. KEMPE. With Illustrations. Crown
Svo. is. 6d. (Nature Serifs.}

Kennedy. THE MECHANICS OF MACHINERY. By A. B.

W. KENNEDY, F.R.S., M.Inst.C.E., Professor of Engineering and

Mechanical Technology in University College, London. With
numerous Illustrations. Crown Svo. 12s. 6d.
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Lang. EXPERIMENTAL PHYSICS. By P. R. SCOTT LANG,
M.A., Professor of Mathematics in the University of St. Andrews.
With Illustrations. Crown 8vo. [/ thepress.

Lock. Works by Rev. J. B. LOCK, M. A., Senior Fellow, Assistant

Tutor and Lecturer in Gonville and Caius College, Cambridge,
formerly Master at Eton, &c.

DYNAMICS FOR BEGINNERS. Globe 8vo. 3^.6^.
ELEMENTARY STATICS. Globe 8vo. 45. 6d.

Lodge. MODERN VIEWS OF ELECTRICITY. By OLIVER

J. LODGE, F.R.S., Professor of Physics in University College,

Liverpool. Illustrated. Crown 8vo. [In preparation.

Loewy. QUESTIONS AND EXAMPLES ON EXPERI
MENTAL PHYSICS : Sound, Light, Heat, Electricity, and

Magnetism. By B. LOEWY, F.R.A. S., Science Master at the

London International College, and Examiner in Experimental
Physics to the College of Preceptors. Fcap. 8vo. 2s.

Lupton. NUMERICAL TABLES AND CONSTANTS IN
ELEMENTARY SCIENCE. By SYDNEY LUPTON, M.A,.
F.C.S., F.I.C., Assistant Master at Harrow School. Extra fcap.
8vo. 2s. 6d.

Macfarlane, PHYSICAL ARITHMETIC. By ALEXANDER
MACFARLANE, D.Sc., Examiner in Mathematics in the University
of Edinburgh. Crown Svo. JS. 6d.

MacgregOF. KINEMATICS AND DYNAMICS. An Ele

mentary Treatise. By JAMES GORDON MACGREGOR, M.A., D. Sc.,

Fellow of the Royal Societies of Edinburgh and of Canada, Munro
Professor of Physics in Dalhousie College, Halifax, Nova Scotia.

With Illustrations. Crown Svo. los. 6d.

Mayer. SOUND : a Series of Simple, Entertaining, and Inex

pensive Experiments in the Phenomena of Sound, for the Use of

Students of every age. By A. M. MAYER, Professor of Physics
in the Stevens Institute of Technology, Sac. With numerous
Illustrations. Crown Svo. 2s. 6d. (Nature Series.)

Mayer and Barnard. LIGHT: a Series of Simple, Entertain

ing, and Inexpensive Experiments in the Phenomena of Light, for the

Use of Students of every age. By A. M. MAYER and C. BARNARD.
With numerous Illustrations. Crown Svo. 2s. 6d, (Nature Series.)

Newton. PRINCIPIA. Edited by Professor Sir W. THOMSON
and Professor BLACKBURNE. 4to, cloth. $is. 6d.

THE FIRST THREE SECTIONS OF NEWTON S PRIN
CIPIA. With Notes and Illustrations. Also a Collection of

Problems, principally intended as Examples of Newton s Methods.

By PERCIVAL FROST, M.A. Third Edition. Svo. 12s.

Parkinson. A TREATISE ON OPTICS. By S. PARKINSON,

D.D., F.R.S., Tutor and Prelector of St. John s College, Cam
bridge. Fourth Edition, revised and enlarged. Crown Svo. los. 6J.

c a
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Perry. STEAM. AN ELEMENTARY TREATISE. By
JOHN PERRY, C.E., Whitworth Scholar, Fellow of the Chemical
Society, Professor of Mechanical Engineering and Applied Mech
anics at the Technical College, Finsbury. With numerous Wood
cuts and Numerical Examples and Exercises. i8mo. 4?. 6d.

Ramsay. EXPERIMENTAL PROOFS OF CHEMICAL
THEORY FOR BEGINNERS. By WILLIAM RAMSAY, Ph.D.,
Professor of Chemistry in University Coll., Bristol. Pott Svo. 2s. 6J.

Rayleigh. THE THEORY OF SOUND. By LORD RAYLEIGH,
M.A., F.R.S., formerly Fellow of Trinity College, Cambridge,
Svo. Vol. I. I2s. 6d. Vol. II. I2s. 6&amp;lt;t. {Vol. ///. in the press.

Reuleaux. THE KINEMATICS OF MACHINERY. Out.
lines of a Theory of Machines. By Professor F. REULEAUX.
Translated and Edited by Professor A. B. W. KENNEDY, F.R.S.,
C.E. With 450 Illustrations. Medium Svo. 2is.

Roscoe and Schuster SPECTRUM ANALYSIS. Lectures
delivered in 1868 before the Society of Apothecaries Jof London.

By Sir HENRY E. ROSCOE, LL.D., F.R.S., formerly Professor of

Chemistry in the Owens College, Victoria University, Manchester.
Fourth Edition, revised and considerably enlarged by the Author
and by ARTHUR SCHUSTER, F.R.S., Ph.D., Professor of Applied
Mathematics in the Owens College, Victoria University. With Ap
pendices, numerous Illustrations, and Plates. Medium Svo. 21 s.

Shann. AN ELEMENTARY TREATISE ON HEAT, IN
RELATION TO STEAM AND THE STEAM-ENGINE.
By G. SHANN, M.A. With Illustrations. Crown Svo. 4*. 6ci.

Spottiswoode. POLARISATION OF LIGHT. By the late

W. SPOTTISWOODE, F.R.S. With many Illustrations. New
Edition. Crown Svo. $s. 6d. (Natiire Series.)

Stewart (Balfour). Works by BALFOUR STEWART, F.R.S.,
late Langworthy Professor of Physics in the Owens College,
Victoria University, Manchester.

PRIMER OF PHYSICS. With numerous Illustrations. New
Edition, with Questions. iSmo. is. (Science Primers.)

LESSONS IN ELEMENTARY PHYSICS.
With^

numerous

Illustrations and Chromolitho of the Spectra of the Sun, Stars,

and Nebulae. New and Enlarged Edition. Fcap. Svo. 45. 6d.

QUESTIONS ON BALFOUR STEWART S ELEMENTARY
LESSONS IN PHYSICS. By Prof. THOMAS H. CORE, Owens

College, Manchester. Fcap. Svo. 2s.

Stewart and Gee. ELEMENTARY PRACTICAL PHY
SICS, LESSONS IN. By BALFOUR STEWART, M.A., LL.D.,
F.R.S. ,

and W. W. HALDANE GEE, B.Sc. Crown Svo.

Vol. L GENERAL PHYSICAL PROCESSES. 6s.

Vol. II. ELECTRICITY AND MAGNETISM, -js. 6J.

Vol. III. OPTICS, HEAT, AND SOUND. [In the press.

PRACTICAL PHYSICS FOR SCHOOLS AND THE JUNIOR
STUDENTS OF COLLEGES. By the same Authors. Globe Svo.

Vol. I. ELECTRICITY AND MAGNETISM. 2s. 6J.
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Stokes. ON LIGHT. Being the Burnett Lectures, delivered in

Aberdeen in 1883, 1884, 1885. By GEORGE GABRIEL STOKES,
M.A., P.R.S., &c., Fellow of Pembroke College, and Lucasian
Professor of Mathematics in the University of Cambridge. First

Course : ON THE NATURE OF LIGHT. Second Course : ON
LIGHT AS A MEANS OF INVESTIGATION. Third Course : ON THE
BENEFICIAL EFFECTS OF LIGHT. Complete in one volume.
Crown 8vo. Js. 6d.

%* The Second and Third Courses may be had separately. Crown
8vo. 2s. 6d, each.

Stone. AN ELEMENTARY TREATISE ON SOUND. By
W. H. STONE, M.D. With Illustrations. iSmo. y. 6d.

Tait HEAT. By P. G. TAIT, M.A., Sec. R.S.E., formerly
Fellow of St. Peter s College, Cambridge, Professor of Natural

Philosophy in the University of Edinburgh. Crown 8vo. 6.?.

Thompson. ELEMENTARY LESSONS TN ELECTRICITY
AND MAGNETISM. By SILVANUS P. THOMPSON, Principal
and Professor of Physics in the Technical College, Finsbury. With
Illustrations. New Edition, Revised. Twenty-Eighth Thousand.

Fcap. 8vo. $s- 6d.

Thomson, Sir W. ELECTROSTATICS AND MAG
NETISM, REPRINTS OF PAPERS ON. By Sir WILLIAM
THOMSON, D.C.L., LL.D , F.R.S., F.R.S.E., Fellow of St.

Peter s College, Cambridge, and Professor of Natural Philosophy
in the University of Glasgow. Second Edition. Medium 8vo. i8s.

Thomson, J. J. Works by J. J. THOMSON, Fellow of Trinity

College, Cavendish Professor of Experimental Physics in the

University.

THE MOTION OF VORTEX RINGS, A TREATISE ON.
An Essay to which the Adams Prize was adjudged in 1882 in

the University of Cambridge. With Diagrams. 8vo. 6s.

APPLICATIONS OF DYNAMICS TO PHYSICS AND
CHEMISTRY. By the same Author. Crown 8vo. fs. 6d.

Todhunter. NATURALPHILOSOPHY FOR BEGINNERS.
By I. TODHUNTER, M.A., F.R.S., D.Sc.

Part I. The Properties of Solid and Fluid Bodies. l8nio. 3*. 6d.

Part II. Sound, Light, and Heat. 18010. $s. 6d.

Turner. HEAT AND ELECTRICITY, A COLLECTION OF
EXAMPLES ON. By II. H. TURNER, B. A., Fellow of Trinity

College, Cambridge. Crown 8vo. 2f. 6d.

Wright (Lewis). LIGHT; A COURSE OF EXPERI
MENTAL OPTICS, CHIEFLY WITH THE LANTERN.
By LEWIS WRIGHT. With nearly 200 Engravings ancl Coloured

Plates. Crown Svo. 7-f. CJ.
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ASTRONOMY.
Airy. POPULAR ASTRONOMY. With Illustrations by Sir

G. B. AIRY, K.C.B., formerly Astronomer-Royal. New Edition.
i8mo. 4s - &*.

Forbes. TRANSIT OF VENUS. By G. FORBES, M.A.,
Professor of Natural Philosophy in the Andersonian University,

Glasgow. Illustrated. Crown 8vo. 3^. 6d. (Nature Series.)

Godfray. Woiks by HUGH GODFPAY, M.A., Mathematical

Lecturer at Pembroke College, Cambridge.

A TREATISE ON ASTRONOMY, for the Use of Colleges and

Schools. Fourth Edition. 8vo. I2s. 6d.

AN ELEMENTARY TREATISE ON THE LUNAR THEORY,
\vith a Brief Sketch of the Problem up to the time of Newton.
Second Edition, revised. Crown Svo. $s. 6d.

Lockyer. Works by J. NORMAN LOCKYER, F.R.S.
PRIMER pF ASTRONOMY. With numerous Illustrations.

New Edition. l8mo. is. (Science Primers.)

ELEMENTARY LESSONS IN ASTRONOMY. With Coloured

Diagram of the Spectra of the Sun, Stars, and Nebulae, and
numerous Illustrations. New Edition, revised. Fcap. Svo. $s. 6d.

QUESTIONS ON LOCKYER S ELEMENTARY LESSONS IN
ASTRONOMY. For the Use of Schools. By JOHN FORBES-
ROBERTSON. i8mo, cloth limp. u. 6d.

THE CHEMISTRY OF THE SUN. With Illustrations. Svo. 145.

Newcomb. POPULAR ASTRONOMY. By S. NEWCOMB,
LL.D., Professor U.S. Naval Observatory. With 112 Illustrations

and 5 Maps of the Stars. Second Edition, revised. 8vo. iBs.

&quot;It is unlike anything else of its kind, and will be of more use in circulating a

knowledge of Astronomy than nine-tenths of the books which have appeared on the

subject of late years.&quot;
SATURDAY REVIEW.

CHEMISTRY.

Armstrong. A MANUAL OF INORGANIC CHEMISTRY.
By HENRY ARMSTRONG, Ph.D., F.R.S.

,
Professor of Chemistry

in the City and Guilds of London Technical Institute. Crown Svo.

[7;z preparation.

Cohen. THE OWENS COLLEGE COURSE OF PRAC
TICAL ORGANIC CHEMISTRY. By JULIUS B. COHEN,
Ph.D., F.C.S., Assistant Lecturer on Chemistry in the Owens

College, Manchester. With a Preface by SIR HENRY ROSCOE,
F. U.S., and C. SCHORLEMMER, F.R.S. Fcap. Svo. 2s. 6d.

Cooke. ELEMENTS OF CHEMICAL PHYSICS. By JOSIAH
P. COOKE, Junr., Erving Professor of Chemistry and Mineralogy
in Harvard University. Fourth Edition. Royal Svo. 2U.
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Fleischer. A SYSTEM OF VOLUMETRIC ANALYSIS.
By EMIL FLEISCHER. Translated, with Notes and Additions,
from the Second German Edition by M. M. PATTISON MUIR,
F.R.S.E. With Illustrations. Crown 8vo.

&amp;gt;js.6d.

Frankland. AGRICULTURAL CHEMICAL ANALYSIS
A Handbook of. By PERCY FARADAY FRANKLAND, Ph.D.,
B.Sc., F.C.S. Associate of the Royal School of Mines, and
Demonstrator of Practical and Agricultural Chemistry in the

Normal School of Science and Royal School of Mines, South

Kensington Museum. Founded upon Leitfadcnfiir die Agriculture
Chemiche Analyse, von Dr. F. KROCKER. Crown 8vo. Js. 6d.

Hartley. A COURSE OF QUANTITATIVE ANALYSIS
FOR STUDENTS. By W. NOEL HARTLEY, F.R.S., Professor

of Chemistry, and of Applied Chemistry, Science and Art Depart
ment, Royal College of Science, Dublin. Globe 8vo. 5*.

Hiorns. Works by ARTHUR H. HIORNS, Principal of the School
of Metallurgy, Birmingham and Midland Institute.

PRACTICAL METALLURGY AND ASSAYING. A Text-Book
for the use of Teachers, Students, and Assayers. With Illustra

tions. Globe 8vo. 6s.

A TEXT-BOOK ON ELEMENTARY THEORETICAL
METALLURGY. Globe 8vo. {In the press.

Jones. Works by FRANCIS JONES, F.R.S.E., F.C.S. ,
Chemical

Master in the Grammar School, Manchester.
THE OWENS COLLEGE JUNIOR COURSE OF PRAC
TICAL CHEMISTRY. With Preface by Sir HENRY ROSCOE,
F.R.S., and Illustrations. New Edition. i8mo. 2s. 6d.

QUESTIONS ON CHEMISTRY. A Series of Problems and
Exercises in Inorganic and Organic Chemistry. Fcap. Svo. $s.

Landauer. BLOWPIPE ANALYSIS. By j. T.AXDAUER.
Authorised English Edition by J. TAYLOR and W. E. KAY, of

Owens College, Manchester. Extra fcap. Svo. 4$. 6d.

Lupton. CHEMICAL ARITHMETIC. With 1,200 Problems.

By SYDNEY LUFTON, M.A., F.C.S., F.I.C., formerly Assistant-

Master at Harrow. Second Edition, Revised and Abridged.

Fcap. Svo. 4s. 6d.

Meldola. PHOTOGRAPHIC CHEMISTRY. By RAPHAEL
MELDOLA, F.R.S., Professor of Chemistry in the Technical

College, Finsbury. Crown Svo. (Nature Series.} [In the press.

Muir. PRACTICAL CHEMISTRY FOR MEDICAL STU
DENTS. Specially arranged for the first M.B. Course. By
M. M. PATTISON MUIR, F.R.S.E. Fcap. Svo. is. 6d.

Muir and Wilson. THE ELEMENTS OF THERMAL
CHEMISTRY. By M. M. PATTISON MUIR, M.A., F.R.S.E.,
Fellow and Prgelector of Chemistry in Gonville and Caius Colleges,

Cambridge ;
Assisted by DAVID MUIR WILSON. Svo. I2s. 6d.
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Remsen. Works by IRA REMSEN, Professor of Chemistry in the

Johns Hopkins University.

COMPOUNDS OF CARBON ; or, Organic Chemistry, an Intro
duction to the Study of. Crown 8vo. 6s. 6d.

AN INTRODUCTION TO THE STUDY OF CHEMISTRY
(INORGANIC CHEMISTRY). Crown 8vo. 6s. 6d.

THE ELEMENTS OF CHEMISTRY. A Text Book for

Beginners. Fcap. 8vo. zs. 6J.

ROSCOC. Works by Sir HENRY E. ROSCOE, F.R.S., formerly
Professor of Chemistry in the Victoria University the Owens College,
Manchester.

PRIMER OF CHEMISTRY. With numerous Illustrations. New
Edition. With Questions. i8mo. is. (Science Primers.}

LESSONS IN ELEMENTARY CHEMISTRY, INORGANIC
AND ORGANIC. With numerous Illustrations and Chromolitho
of the Solar Spectrum, and of the Alkalies and Alkaline Earths.
New Edition. Fcap. 8vo. 45. 6d. (See under THORPE.)

Roscoe and Schorlemmer. INORGANIC AND OR
GANIC CHEMISTRY. A Complete Treatise on Inorganic and

Organic Chemistry. By Sir HENRY E. ROSCOE, F.R.S., and Prof.

C. SCHORLEMMER, F.R.S. With Illustrations. Medium 8vo.

Vols. I. and II. INORGANIC CHEMISTRY.
Vol. I. The Non-Metallic Elements. Second Edition, revised.

2 if. Vol. II. Part I. Metals. i8f. Vol. II. Part II. Metals.
i8f.

Vol. III.-ORGANIC CHEMISTRY.
THE CHEMISTRY OF THE HYDROCARBONS and their

Derivatives, or ORGANIC CHEMISTRY, With numerous
Illustrations. Five Parts. Parts I., II., and IV. 21 s. each.
Part III. iSs. [Part V. Immediately.

Thorpe. A SERIES OF CHEMICAL PROBLEMS, prepared
with Special Reference to Sir II. E. Roscoe s Lessons in Elemen
tary Chemistry, by T. E. THORPE, Ph.D., F.R.S., Professor of

Chemistry in the Normal School of Science, South Kensington,
adapted for the Preparation of Students for the Government,
Science, and Society of Arts Examinations. With a Preface by Sir

HENRY E. ROSCOE, F.R.S. New Edition, with Key. i8mo. 2s.

Thorpe and Rucker. A TREATISE ON CHEMICAL
PHYSICS. By T. E. THORPE, Ph.D., F.R.S. Professor of

Chemistry in the Normal School of Science, and Professor A. W.
RUCKER. Illustrated. 8vo. {In preparation.

Wright. METALS AND THEIR CHIEF INDUSTRIAL
APPLICATIONS. BY C. ALDER WRIGHT, D.Sc., &c.,
Lecturer on Chemistry in St. Mary s Hospital Medical School.

Extra fcap. 8vo. 3-r. 6d.
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BIOLOGY.

Allen. ON THE COLOUR OF FLOWERS, as Illustrated in

the British Flora. By GRANT ALLEN. With Illustrations,

Crown 8vo. 3s.6d. (Nature Series.)

Balfour. A TREATISE ON COMPARATIVE EMBRY.
OLOGY. By F. M. BALFOUR, M.A., F.R.S., Fellow and
Lecturer of Trinity College, Cambridge. With Illustrations.

Second Edition, reprinted without alteration from the First

Edition. In 2 vols. 8vo. Vol. I. i8j. Vol. II. 2is.

Balfour and Ward. A GENERAL TEXT BOOK OF
BOTANY. By ISAAC BAYLEY BALFOUR, F.R.S., Professor of

Botany in the University of Edinburgh, and H. MARSHALL WARD,
F.R.S., Fellow of Christ s College, Cambridge, and Professor of

Botany in the Royal Indian Engineering College, Cooper s Hill.

8vo. [In preparation.

Bettany. FIRST LESSONS IN PRACTICAL BOTANY.
By G. T. BETTANY, M.A., F.L.S., formerly Lecturer in Botany
at Guy s Hospital Medical School. i8mo. is.

Bower. A COURSE OF PRACTICAL INSTRUCTION IN
BOTANY. By F. O. BOWER, D.Sc., F.L.S., Regius Professor

of Botany in the University of Glasgow. Crown 8vo. Part I.

Second Edition, revised and enlarged. Phanerogams Pterido-

phyta. 6s. 6d. Part II. Bryophyta Thallophyta. 45. 6d. Or
both Parts in one volume, los. 6d.

Darwin (Charles). MEMORIAL NOTICES OF CHARLES
DARWIN, F.R.S., &c. By THOMAS HENRY HUXLEY, F.R.S.,
G. J. ROMANES, F.R.S., ARCHIBALD GEIKIE, F.R.S., and
W. T. THISELTON DYER, F.R.S. Reprinted from Nature.
With a Portrait, engraved by C. H. JEENS. Crown 8vo.

2s. 6d. {Nature Series.)

Fearnley. A MANUAL OF ELEMENTARY PRACTICAL
HISTOLOGY. By WILLIAM FEARNLEY. With Illustrations.

Crown 8vo. *js.
6d.

Flower and Gadow. AN INTRODUCTION TO THE
OSTEOLOGY OF THE MAMMALIA. By WILLIAM HENRY
FLOWER, LL.D., F.R.S. ,

Director of the Natural History De
partments of the British Museum, late Hunterian Professor of Com
parative Anatomy and Physiology in the Royal College of Surgeons
of England. With numerous Illustrations. Third Edition. Re
vised with the assistance of HANS GADOW, Ph.D., M.A., Lecturer

on the Advanced Morphology of Vertebrates and Strickland

Curator in the University of Cambridge. Crown Svo. los. 6d.

Foster. Works by MICHAEL FOSTER, M.D., Sec. R.S., Professor

of Physiology in the University of Cambridge.
PRIMER OF PHYSIOLOGY. With numerous Illustrations.

New Edition. iSmo. is.
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Foster continued.

A TEXT-BOOK OF PHYSIOLOGY. With Illustrations. Fifth

Edition, largely revised. In Three Parts. Part I., comprising
Book I. Blood The Tissues of Movement, The Vascular
Mechanism. IGJ. 6d.

Parts II. and III. are in the press preparing for early publication.

Foster and Balfour. THE ELEMENTS OF EMBRY
OLOGY. By MICHAEL FOSTER, M.A., M.D., LL.D., Sec. R.S.,
Professor of Physiology in the University of Cambridge, Fellow
of Trinity College, Cambridge, and the late FRANCIS M. BALFOUR,
M.A., LL.D., F.R.S., Fellow of Trinity College, Cambridge,
and Professor of Animal Morphology in the University. Second
Edition, revised. Edited by ADAM SEDGWICK, M.A., Fellow
and Assistant Lecturer of Trinity College, Cambridge, and WALTER
HEAPE, Demonstrator in the Morphological Laboratory of the

University of Cambridge. With Illustrations. Crown 8vo. ioj. 6d.

Foster and Langley. A COURSE OF ELEMENTARY
PRACTICAL PHYSIOLOGY. By Prof. MICHAEL FOSTER,
M.D., Sec. R.S., &c., and J, N. LANGLEY, M.A., F.R.S., Fellow
of Trinity College, Cambridge. Fifth Edition. Crown 8vo. 7*. 6d.

Gamgee. A TEXT-BOOK OF THE PHYSIOLOGICAL
CHEMISTRY OF THE ANIMAL BODY. Including an
Account of the Chemical Changes occurring in Disease. By A.

GAMGEE, M.D., F.R.S., formerly Professor of Physiology in the

Victoria University the Owens College, Manchester. 2 Vols. 8vo.

With Illustrations. Vol.1. iSs. [Vol. II. in the press.

Gray. STRUCTURAL BOTANY, OR ORGANOGRAPHY
ON THE BASIS OF MORPHOLOGY. To which are added
the principles of Taxonomy and Phytography, and a Glossary of

Botanical Terms. By Professor ASA GRAY, LL.D. 8vo. los, 6d.

Hamilton. A PRACTICAL TEXT-BOOK OF PATHO
LOGY. By D. J. HAMILTON, Professor of Pathological Anatomy
(Sir Erasmus Wilson Chair), University of Aberdeen. Illustrated.

8vo. [In the press.

Hooker. Works by Sir J. D. HOOKER, K.C.S.I., C.B., M.D.,
F.R.S., D.C.L.

PRIMER OF BOTANY. With numerous Illustrations. New
Edition. l8mo. is. (Science Primers.)

THE STUDENT S FLORA OF THE BRITISH ISLANDS.
Third Edition, revised. Globe 8vo. los. 6d.

Howes. AN ATLAS OF PRACTICAL ELEMENTARY
BIOLOGY. By G. B. HOWES, Assistant Professor of Zoology,
Normal School of Science and Royal School of Mines. With a

Preface by THOMAS HENRY HUXLEY, F.R. S. Royal 4to. 14^.
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Huxley. Works by THOMAS HENRY HUXLEY, F.R.S.
INTRODUCTORY PRIMER OF SCIENCE. i8mo. is.

(Science Primers.}

LESSONS IN ELEMENTARY PHYSIOLOGY. With numerous
Illustrations. New Edition Revised. Fcap. 8vo. 4.5. 6d.

QUESTIONS ON HUXLEY S PHYSIOLOGY FOR SCHOOLS.
By T. ALCOCK, M.D. New Edition. i8mo. is. 6d.

Huxley and Martin. A COURSE OF PRACTICAL IN
STRUCTION IN ELEMENTARY BIOLOGY. By T. H.

HUXLEY, F.R.S. , LL.D., assisted by H. N. MARTIN, M.A.,
M.B., D.Sc., F.R.S., Fellow of Christ s College, Cambridge.
New Edition, revised and extended by G. B. HOWES, Assistant

Professor of Zoology, Normal School of Science, and Royal School

of Mines, and D. H. SCOTT, M.A., PH.D., Assistant Professor of

Botany, Normal School of Science, and Royal School of Mines.

New Edition, thoroughly revised. With a Preface by T. H.

HUXLEY, F.R.S. Crown Svo. IQJ. 6d.

Kane. EUROPEAN BUTTERFLIES, A HANDBOOK OF.

By W. F. DE VISMES KANE, M.A., M.R.I. A., Member of the

Entomological Society of London, &c. With Copper Plate Illustra

tions. Crown Svo. los. 6d.

A LIST OF EUROPEAN RHOPALOCERA WITH THEIR
VARIETIES AND PRINCIPAL SYNONYMS. Reprinted
from the Handbook of European Butterflies. Crown Svo. is.

Klein. MICRO-ORGANISMS AND DISEASE. An Intro-

duction into the Study of Specific Micro-Organisms. By E.

KLEIN, M.D., F.R.S,, Lecturer on General Anatomy and Physio
logy in the Medical School of St. Bartholomew s Hospital, London.
With 121 Illustrations. Third Edition, Revised. Crown Svo. 6s.

THE BACTERIA IN ASIATIC CHOLERA. By the Same.
Crown Svo. [In preparation.

Lankester. Works by Professor E. RAY LANKESTER, F.R.S.
A TEXT BOOK OF ZOOLOGY. Svo. [In preparation.
DEGENERATION : A CHAPTER IN DARWINISM. Illus

trated. Crown Svo. 2s. 6d. (Nature Series.)

Lubbock. Works by SIR JOHN LUBBOCK, M.P., F.R.S., D.C.L.
THE ORIGIN AND METAMORPHOSES OF INSECTS.

With numerous Illustrations. New Edition. Crown Svo. 3-r. 6d.

(Nature Series.)

ON BRITISH WILD FLOWERS CONSIDERED IN RE
LATION TO INSECTS. With numerous Illustrations. New
Edition. Crown Svo. $s. 6d. (Nature Series. )

FLOWERS, FRUITS, AND LEAVES. With Illustrations.

Second Edition. Crown Svo. 45-. 6d. (Nature Series.)

Martin and Moale.ON THE DISSECTION OF VERTE
BRATE ANIMALS. By Professor H. N. MARTIN and W. A.
MOALE. Crown Svo. [In preparation.
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Mivart. Works by ST. GEORGE MIVART, F.R.S., Lecturer on

Comparative Anatomy at St. Mary s Hospital.
LESSONS IN ELEMENTARY ANATOMY. With upwards of

400 Illustrations. Fcap. 8vo. 6s. 6d.

THE COMMON FROG. Illustrated. Cr.Svo. 3*. 6d. (Nature Series.}

Miiller. THE FERTILISATION OF FLOWERS. By Pro
fessor HERMANN MULLER. Translated and Edited by D ARCY
W. THOMPSON, B.A., Professor of Biology in University College,
Dundee. With a Preface by CHARLES DARWIN, F.R.S. With
numerous Illustrations. Medium 8vo. 2is.

Oliver. Works by DANIEL OLIVER, F.R.S., &c., Professor of

Botany in University College, London, &c.

FIRST BOOK OF INDIAN BOTANY. With numerous Illus

trations. Extra fcap. 8vo. 6s. 6d.

LESSONS IN ELEMENTARY BOTANY. With nearly 200
Illustrations. New Edition. Fcap. 8vo. $s. 6d.

Parker. A COURSE OF INSTRUCTION IN ZOOTOMY
(VERTEBRATA). By T. JEFFREY PARKER, B.Sc. London,
Professor of Biology in the University of Otago, New Zealand.

With Illustrations. Crown 8vo. &s. 6d.

LESSONS IN ELEMENTARY BIOLOGY. By the same Author.

With Illustrations. Svo. [In the press.

Parker and Bettany. THE MORPHOLOGY OF THE
SKULL. By Professor W. K. PARKER, F.R.S., and G. T.

BETTANY. Illustrated. Crown Svo. IDS. 6d.

Romanes. THE SCIENTIFIC EVIDENCES OF ORGANIC
EVOLUTION. By GEORGE J. ROMANES, M.A., LL D.,

F.R.S., Zoological Secretary of the Linnean Society. Crown
Svo. 2s. 6d. (Nature Series.}

SeJgwick. A SUPPLEMENT TO F. M. BALFOUR S

TREATISE ON EMBRYOLOGY. By ADAM SEDGWICK,
M. A., F.R.S., Fellow and Lecturer of Trinity College, Cambridge.
Svo. Illustrated. [In preparation.

Smith (W. G.). DISEASES OF FIELD AND GARDEN
CROPS, CHIEFLY SUCH AS ARE CAUSED BY FUNGI.

By WORTHINGTON G. SMITH, F.L.S., M.A.I., Member of the

Scientific Committee R.H.S. With 143 New Illustrations drawn

and engraved from Nature by the Author. Fcap. Svo. qs. 6d.

Stewart Corry. A FLORA OF THE NORTH-EAST OF
IRELAND. Including the Phanerogamia, the Cryptogamia

Vascularia, and the Muscinece. By SAMUEL ALEXANDER

STEWART, Fellow of the Botanical Society of Edinburgh, Curator

of the Collections in the Belfast Museum, and Honorary Associate

of the Belfast Natural History and Philosophical Society ;
and the

late THOMAS HUGHES COKRY, M.A., F.L.S., F.Z.S., M.R.I.A.,

F.B.S. Edin., Lecturer on Botany in the University Medical and

Science Schools, Cambridge, Assistant Curator of the University

Herbarium, &c., &c. Crown Svo. 5*. 6&amp;lt;/.
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Ward. TIMBER AND ITS DISEASES. By H. MARSHALL
WARD, F.R.S., Professor of Botany in the Royal Indian Engineer
ing College, Cooper s Hill. Illustrated. Crown Svo.

[Inpreparation.

Wiedersheim (Prof.). ELEMENTS OF THE COM
PARATIVE ANATOMY OF VERTEBRATES. Adapted
from the German of ROBERT WIEDERSHEIM, Professor of Ana
tomy, and Director of the Institute of Human and Comparative
Anatomy in the University of Freiburg-in-Baden, by W.
NEWTON PARKER, Professor of Biology in the University College
of South Wales and Monmouthshire. With Additions by the

Author and Translator. With Two Hundred and Seventy Wood
cuts. Medium Svo. 12s. 6d.

MEDICINE.

Brunton. Works by T. LAUDER BRUNTON, M.D., D.Sc.,
F.R.C.P., F.R.S., Assistant Physician and Lecturer on Materia
Medica at St. Bartholomew s Hospital ; Examiner in Materia
Medica in the University of London, in the Victoria University,
and in the Royal College of Physicians, London ; late Examiner
in the University of Edinburgh.

A TEXT-BOOK OF PHARMACOLOGY, THERAPEUTICS,
AND MATERIA MEDICA. Adapted to the United States

Pharmacopoeia, by FRANCIS II. WILLIAMS, M. D., Boston, Mass.
Third Edition. Adapted to the New British Pharmacopoeia, 1885.
Medium Svo. 21 s.

TABLES OF MATERIA MEDICA : A Companion to the Materia
Medica Museum. With Illustrations. New Edition Enlarged.
Svo. ioj. 6d.

Griffiths. LESSONS ON PRESCRIPTIONS AND THE
ART OF PRESCRIBING. By W. HANDSEL GRIFFITHS,
PH.D.,L.R.C.P.E. New Edition. Adapted to the Pharmacopoeia,
1885. iSmo. 3-r. 6cf.

Hamilton. A TEXT-BOOK OF PATHOLOGY. By D. J.

HAMILTON, Professor of Pathological Anatomy (Sir Erasmus
Wilson Chair) University of Aberdeen. With Illustrations. Svo.

[/ the press.

Klein. MICRO-ORGANISMS AND DISEASE. An Intro

duction into the Study of Specific Micro- Organisms. By E.

KLEIN, M.D., F.R.S., Lecturer on General Anatomy and Physio
logy in the Medical School of St. Bartholomew s Hospital, London.
With 121 Illustrations. Third Edition, Revised. Crown Svo. 6s.

THE BACTERIA IN ASIATIC CHOLERA. By the Same
Author. Crown Svo. [/ preparation.
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Ziegler-Macalister. TEXT-BOOK OF PATHOLOGICAL
ANATOMY AND PATHOGENESIS. By Professor ERNST
ZIEGLER of Tiibingen. Translated and Edited for English
Students by DONALD MACALISTER, M.A.,M.D., B.Sc.,F.R.C.P.,
Fellow and Medical Lecturer of St. John s College, Cambridge,
Physician to Addenbrooke s Hospital, and Teacher of Medicine in

the University. With numerous Illustrations. Medium 8vo.

Part I. GENERAL PATHOLOGICAL ANATOMY. Second
Edition. 12s. 6d.

Part II. SPECIAL PATHOLOGICAL ANATOMY. Sections

I. VIII. Second Edition. 12S.6J. Sections IX. XII. \2s.6d.

ANTHROPOLOGY.
Flower. FASHION IN DEFORMITY, as illustrated in the

Customs of Barbarous and Civilised Races. By Professor

FLOWER, F.R.S., F.R.C.S. With Illustrations. Crown 8vo.

2s. 6d. (Nature Series.)

Tylor. ANTHROPOLOGY. An Introduction to the Study of

Man and Civilisation. ByE. B. TYLOR, D.C.L., F.R.S. With
numerous Illustrations. Crown 8vo. 7-f. 6d.

PHYSICAL GEOGRAPHY & GEOLOGY.

Blanford. THE RUDIMENTS OF PHYSICAL GEOGRA
PHY FOR THE USE OF INDIAN SCHOOLS ;

with a

Glossary of Technical Terms employed. By H. F. BLANFORD,
F.R.S. New Edition, with Illustrations. Globe 8vo. 2s. 6d.

Geikie. Works by ARCHIBALD GEIKIE, LL.D., F.R.S., Director

General of the Geological Survey of Great Britain and Ireland, and

Director of the Museum of Practical Geology, London, formerly

Murchison Professor of Geology and Mineralogy in the University
of Edinburgh, &c.

PRIMER OF PHYSICAL GEOGRAPHY. With numerous

Illustrations. New Edition. With Questions. i8mo. if.

(Science Primers.)

ELEMENTARY LESSONS IN PHYSICAL GEOGRAPHY.
With numerous Illustrations. New Edition. Fcap. 8vo. 4^. 6d.

QUESTIONS ON THE SAME. u. 6d.

PRIMER OF GEOLOGY. With numerous Illustrations. New
Edition. i8mo. is. (Science Primers.)

CLASS BOOK OF GEOLOGY. With upwards of 200 New
Illustrations. Crown 8vo. IQS. 6d.

TEXT-BOOK OF GEOLOGY. With numerous Illustrations.

Second Edition, Sixth Thousand, Revised and Enlarged. 8vo. 28j.
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Geikie continued.

OUTLINES OF FIELD GEOLOGY. With Illustrations. New
Edition. Extra fcap. 8vo. %s. 6d.

THE SCENERY AND GEOLOGY OF SCOTLAND,
VIEWED IN CONNEXION WITH ITS PHYSICAL
GEOLOGY. With numerous Illustrations. Crown 8vo. I2s. 6d.

(See also under Geography. ]

Huxley. PHYSIOGRAPHY. An Introduction to the Study
of Nature. By THOMAS HENRY HUXLEY, F.R.S. With
numerous Illustrations, and Coloured Plates. New and Cheaper
Edition. Crown 8vo. 6s.

Lockyer. OUTLINES OF PHYSIOGRAPHY THE MOVE
MENTS OF THE EARTH. By J. NORMAN LOCKYER, F.R.S.,

Correspondent of the Institute of France, Foreign Member of

the Academy of the Lyncei of Rome, &c., &c.
; Professor of

Astronomical Physics in the Normal School of Science, and
Examiner in Physiography for the Science and Art Department.
With Illustrations. Crown 8vo. Sewed, is. 6d.

Phillips. A TREATISE ON ORE DEPOSITS. By J. ARTHUR
PHILLIPS, F.R.S., V.P.G.S., F.C.S., M.Inst.C.E., Ancien Eleve
del Ecole des Mines, Paris; Author of &quot; A Manual of Metallurgy,&quot;

&quot;The Mining and Metallurgy of Gold and Silver,&quot; &c. W ith

numerous Illustrations. Svo. 25 s.

AGRICULTURE.
Frankland. AGRICULTURAL CHEMICAL ANALYSIS,

A Handbook of. By PERCY FARADAY FRANKLAND, Ph.D.,
B.Sc., F.C.S., Associate of the Royal School of Mines, and
Demonstrator of Practical and Agricultural Chemistry in the

Normal School of Science and Royal School of Mines, South

Kensington Museum. Founded upon Lcitfadtnfur die Agriculture
Chemiche Analyse, von Dr. F. KROCKER. Crown Svo.

&amp;gt;js.
6d.

Smith (Worthington G.). DISEASES OF FIELD AND
GARDEN CROPS, CHIEFLY SUCH AS ARE CAUSED BY
FUNGI. By WORTHINGTON G. SMITH, F.L.S., M.A.I.,
Member of the Scientific Committee of the R.H.S. With 143

Illustrations, drawn and engraved from Nature by the Author.

Fcap. Svo. 4-r. 6d.

Tanner. Works by HENRY TANNER, F.C.S., M.R.A.C.,
Examiner in the Principles of Agriculture under the Government

Department of Science ;
Director of Education in the Institute of

Agriculture, South Kensington, London ; sometime Professor of

Agricultural Science, University College, Aberystwith.

ELEMENTARY LESSONS IN THE SCIENCE OF AGRI
CULTURAL PRACTICE. Fcap. Svo. y. 6d.
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Tanne r continued.
FIRST PRINCIPLES OF AGRICULTURE. i8mo. is.

THE PRINCIPLES OF AGRICULTURE. A Series of Reading
Books for use in Elementary Schools. Prepared by HENRY
TANNER, F.C.S., M.R.A.C. Extra fcap. Svo.

I. The Alphabet of the Principles of Agriculture. 6d.

II. Further Steps in the Principles of Agriculture, is.

III. Elementary School Readings on the Principles of Agriculture
for the third stage, is.

POLITICAL ECONOMY.
Cairnes. THE CHARACTER AND LOGICAL METHOD

OF POLITICAL ECONOMY. By J. E. CAIRNES, LL.D
,

Emeritus Professor of Political Economy in University College,
London. New Edition. Crown Svo. 6s.

Cossa. GUIDE TO THE STUDY OF POLITICAL
ECONOMY. By Dr. LUIGI COSSA, Professor in the University
of Pavia. Translated from the Second Italian Edition. With a
Preface by W. STANLEY JEVONS, F.R.S. Crown Svo. 4*. 6d.

Fawcett (Mrs.) Works by MILLICENT GARRETT FAWCETT:
POLITICAL ECONOMY FOR BEGINNERS, WITH QUES
TIONS. Fourth Edition. i8mo. 2s. 6d.

TALES IN POLITICAL ECONOMY. Crown Svo. 3*.

Fawcett. A MANUAL OF POLITICAL ECONOMY. By
Right lion. HENRY FAWCETT, F.R.S. Sixth Edition, revised,
with a chapter on &quot;State Socialism and the Nationalisation

of l.he Land,&quot; and an Index. Crown Svo. 12s.

AN EXPLANATORY DIGEST of the above. By CYRIL A.

WATERS, B. A. Crown Svo. 2s. 6d.

Gunton. WEALTH AND PROGRESS: A CRITICAL EX
AMINATION OF THE WAGES QUESTION AND ITS
ECONOMIC RELATION TO SOCIAL REFORM. By
GEORGE GUNTON. Crown Svo. 6s.

Jevons. Works by W. STANLEY JEVONS, LL.D. (Edinb.), M.A.

(Lond.), F.R.S., late Professor of Political Economy in University

College, London, Examiner in Mental and Moral Science in the

University of London.
PRIMER OF POLITICAL ECONOMY. New Edition. iSmo.

is. (Science Primers.)
THE THEORY OF POLITICAL ECONOMY. Third Edition.

Revised. Demy Svo. los. 6d.

Marshall. THE ECONOMICS OF INDUSTRY. By A.

MARSHALL, M.A., Professor of Political Economy in the Uni

versity of Cambridge, and MARY P. MARSHALL, late Lecturer at

Newnham Hall, Cambridge. Extra fcap. Svo. 2s. 6d.

Marshall. ECONOMICS. By ALFRED MARSHALL, M.A.,
Professor of Political Economy in the University of Cambridge.
2 vols. Svo. [/ the press.
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Sidgwick. THE PRINCIPLES OF POLITICAL ECONOMY.
By Professor HENRY SIDGWICK, M.A., LL.D., Knightbridge
Professor of Moral Philosophy in the University of Cambridge,
&c., Author of &quot;The Methods of Ethics.&quot; Second Edition,
revised. 8vo. i6s.

Walker. Works by FRANCIS A. WALKER, M. A., Ph.D., Author
of &quot;Money,&quot; &quot;Money in its Relation to Trade,&quot; &c.

POLITICAL ECONOMY. Second Edidon, revised and enlarged.
8vo. I2s. 6d.

A BRIEF TEXT-BOOK OF POLITICAL ECONOMY.
Crown 8vo. 6s. 6 /.

THE WAGES QUESTION. 8vo. 145.

Wicksteed. ALPHABET OF ECONOMIC SCIENCE. By
PHILIP H. WICKSTEED, M. A. Globe 8vo. \Justready.

MENTAL & MORAL PHILOSOPHY.
Boole. THE MATHEMATICAL ANALYSIS OF LOGIC.

Being an E -say towards a Calculus of Deductive Reasoning. By
GEORGE BOOLE. 8vo. Sewed.

5.5-.

Calderwood. HANDBOOK OF MORAL PHILOSOPHY.
By the Rev. HENRY CALDERWOOD, LL.D., Professor of Moral

Philosophy, University of Edinburgh. Fourteenth Edition, largely
rewritten. Crown 8vo. 6s.

Clifford. SEEING AND THINKING. By the late Professor

W. K. CLIFFORD, F.R.S. With Diagrams. Crown 8vo. 3*. 6&amp;lt;/.

(Nature Series.)

Jardine. THE ELEMENTS OF THE PSYCHOLOGY OF
COGNITION. By the Rev. ROBERT JARDINE, B.D., D.Sc.

(Edin.), Ex-Principal of the General Assembly s College, Calcutta.

Third Edition, revised and improved. Crown 8vo. 6s. 6 //.

Jevons. Works by the late W. STANLEY JEVONS, LL.D., M.A.,
F.R.S.

PRIMER OF LOGIC. New Edition. iSmo. is. (Science Primers.)

ELEMENTARY LESSONS IN LOGIC
;
Deductive and Induc

tive, with copious Questions and Examples, and a Vocabulary of

Logical Terms. New Edition. Fcap. 8vo. 3.?. 6d,

THE PRINCIPLES OF SCIENCE. A Treatise on Logic and
Scientific Method. New and Revised Edition. Crown 8vo. 12s. 6J.

STUDIES IN DEDUCTIVE LOGIC. Second Edition. Cr. 8vo. 6s.

KeyneS. FORMAL LOGIC, Studies and Exercises in. Including
a Generalisation of Logical Processes in their application to

Complex In rerences. By JOHN NEVILLE KU.YNES, M.A., late

Fellow of Pembroke College, Cambridge. Second Edition,
Revised and Enlarged. Crown 8vo. los. 6.Y.

d
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Kant Max Miiller. CRITIQUE OF PURE REASON.
By IMMANUEL KANT. In commemoration of the Centenary of

its first Publication. Translated into English by F. MAX MLJLLER.
With an Historical Introduction by LUDWIG NOIRE. 2 volsf

8vo, i6s. each.

Volume I. HISTORICAL INTRODUCTION, by LUDWIG
NOIRE ; &c., &c.

Volume II. CRITIQUE OF PURE REASON, translated by
F. MAX MULLER.

For the convenience of students these velurnes are now sold separately.

Kant Mahaffy and Bernard. COMMENTARY ON
KANT S CRITIQUE. By J. P. MAHAFFY, M.A., Professor of

Ancient History in the University of Dublin, and J. H. BERNARD,
M.A. New and completed Edition. Crown 8vo. [In preparation.

McCosh. PSYCHOLOGY. By JAMES McCosn, D.D., LL.D.,
Litt.D. President of Princeton College, Author of &quot;Intuitions of

the Mind,&quot;
&quot; Laws of Discursive Thought,&quot; &c. Crown 8vo.

I. THE COGNITIVE POWERS. 6s. 6d.

II. THE MOTIVE POWERS. Crown 8vo. 6s. 6d.

Ray. A TEXT-BOOK OF DEDUCTIVE LOGIC FOR THE
USE OF STUDENTS. By P. K. RAY, D.Sc. (Lon. and Edin.),
Professor of Logic and Philosophy, Presidency College Calcutta.

Fourth Edition. Globe 8vo. 45. 6d.

The SCHOOLMASTER says :&quot; This work . . . is deservedly taking a place among
the recognised text-books on Logic.&quot;

Sidgwick. Works by HENRY SIDGWICK, M. A., LL.D., Knight-

bridge Professor of Moral Philosophy in the University of

Cambridge. -

THE METHODS OF ETHICS. Third Edition. 8vo. 14*. A
Supplement to the Second Edition, containing all the important
Additions and Alterations in the Third Edition. Demy 8vo. 6s.

OUTLINES OF THE HISTORY OF ETHICS, for English
Readers. Second Edition, revised. Crown 8vo. 3^. 6d.

Venn. THE LOGIC OF CHANCE. An Essay on the Founda
tions and Province of the Theory of Probability, with special

Reference to its Logical Bearings and its Application to Moral and

Social Science. By JOHN VENN, M.A., Fellow and Lecturer in

Moral Sciences in Gonville and Caius College, Cambridge, Ex
aminer in Moral Philosophy in the University of London. Second

Edition, rewritten and greatly enlarged. Crown 8vo. lOs. 6&amp;lt;/.

SYMBOLIC LOGIC. By the same Author. Crown 8vo. los. 6d.

GEOGRAPHY.
Bartholomew. THE ELEMENTARY SCHOOL ATLAS.

By JOHN BARTHOLOMEW, F.R.G.S. is.

This Elementary Atlas is designed to illustrate the principal text

books on Elementary Geography.
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Clarke. CLASS-BOOK OF GEOGRAPHY. By C. B. CLARKE,
M.A., F.L.S., F.G.S., F.R.S. New Edition, with Eighteen
Coloured Maps. Fcap. 8vo. 3.?.

Geikie. Works by ARCHIBALD GEIKIE, F.R.S., Director-General

of the Geological Survey of the United Kingdom, and Director of

the Museum of Practical Geoloyy, Jermyn Street, London ;

formerly Murchison Professor of Geology and Mineralogy in the

Umver-ity of Edinburgh.
THE TEACHING OF GEOGRAPHY. A Practical Handbook

for the use of Teachers. Crown 8vo. 2s. Being Volume I. of a

New Geographical Series Edited by ARCHIBALD GEIKIE, F.R.S.
*
#
* The aim of this volume is to advocate the claims of geography as

an educational
discipline

of a high order, and to show how these

claims may be practically recognised by teachers.

AN ELEMENTARY GEOGRAPHY OF THE BRITISH
ISLES. 181110. I*.

Green. A SHORT GEOGRAPHY OF THE BRITISH
ISLANDS. By JOHN RICHARD GREEN and ALICE STOPFORD
GREEN. With Maps. Fcap. 8vo. 3-r. 6d.

Grove. A PRIMER OF GEOGRAPHY. By Sir GEORGE
GROVE, D.C.L. With Illustrations. iSino. is. (Science Primers.}

Hughes. MAPS AND MAP MAKING. By ALFRED HUGHES,
M.A., late Scholar of Corpus Christi College, Oxford, Assistant

Master at Manchester Grammar School. Cr. 8vo. [In the press.

Kiepert. A MANUAL OF ANCIENT GEOGRAPHY. From
the German of Dr. H. KIEPERT. Crown 8vo. 5*.

Macmillan s Geographical Series. Edited by ARCHIBALD

GEIKIE, F.R.S., Director-General of the Geological Survey of the

United Kingdom.
The following List of Volumes is contemplated :

THE TEACHING OF GEOGRAPHY. A Practical Handbook
for the use of Teachers. By ARCHIBALD GEIKIE, F.R.S.,
Director-General of the Geological Survey of the United Kingdom,
and Director of the Museum of Practical Geology, Jermyn Street,

London ; formerly Murchison Professor of Geology and Mineralogy
in the University of Edinburgh. Crown 8vo. 2s.

%* The aim of this volume is to advocate the claims of geography
as an educational discipline of a high order, and to show how
these cl-iims may be practically recognized by teichers.

AN ELEMENTARY GEOGRAPHY OF THE BRITISH
ISLES. By ARCHIBALD GEIKIE, F.R.S. i8mo. is.

THE ELEMENTARY SCHOOL ATLAS. With 24 Maps in

Colours, specially designed to illustrate all Elementary Text-bocks

of Geography. By JOHN BARTHOLOMEW. F.R.G.S. 4to. is.

MAPS AND MAP MAKING. By ALFRED HUGHES, M.A.,
late Scholar of Corpus Christi College, Oxford, Assi-tant Master

at Manchester Grammar School. Crown 8vo. [In the press.

AN ELEMENTARY GENERAL GEOGRAPHY. By HUGH
ROBERT MILL, D.Sc. Edin. Crown 8vo. [In the prei.

A GEOGRAPHY OF THE BRITISH COLONIES.
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Macmillan s Geographical Series continued.

A GEOGRAPHY OF EUROPE. By JAMES SIME, M.A.
\2n preparation.

A GEOGRAPHY OF AMERICA.
A GEOGRAPHY OF ASIA.
A GEOGRAPHY OF AFRICA.
A GEOGRAPHY OF THE OCEANS AND OCEANIC
ISLANDS.

ADVANCED CLASS-BOOK OF THE GEOGRAPHY OF
BRITAIN.

GEOGRAPHY OF AUSTRALIA AND NEW ZEALAND.
GEOGRAPHY OF BRITISH NORTH AMERICA.
GEOGRAPHY OF INDIA.
GEOGRAPHY OF THE UNITED STATES
ADVANCED CLASS-BOOK OF THE GEOGRAPHY OF
EUROPE.

Mill. AN ELEMENTARY GENERAL GEOGRAPHY. By
HUGH ROBERT MILL, D.Sc. Edin. Crown 8vo. [In the press.

Sime. A GEOGRAPHY OF EUROPE. By JAMES SIME, M.A.
[/ preparation.

Strachey. LECTURES ON GEOGRAPHY. By General R.

STRACHEY, R.E., C.S.I., President of the Royal Geographical
Society. Crown 8vo. 4J-. 6d.

HISTORY.
Arnold (T.). THE SECOND PUNIC WAR. Being chapters

from THE HISTORY OF ROM hi. By THOMAS ARNOLD,
D.D. Edited, with Notes, by W. T. ARNOLD, M.A. With 8

Maps. Crown Svo. Ss. 6d.

Arnold (W. T.). THE ROMAN SYSTEM OK PROVINCIAL
ADMINISTRATION TO THE ACCESSION OF CONSTAN-
TINETHE GREAT. By W. T. ARNOLD, M.A. Crown Svo. 6j.

&quot;Ought to prove a valuable handbook to the student of Roman history.&quot;

GUAKDIAN.

Beesly. STORIES FROM THE HISTORY OF ROME.
By Mrs. BEESLY. Fcap. 8vo. 2s. 6af.

Bryce. THE HOLY ROMAN EMPIRE. By JAMES BRYCE,
D.C.L., Fellow of Oriel College, and Kegius Professor of Civil La\v

in the University of Oxford. Eighth Edition. Crown Svo. js. 6d.

Buckland. OUR NATIONAL INSTITUTIONS. A Short

Sketch for Schools. By ANNA BUCKLAND. With Glossary.
i8mo. is.

Buckley. A HISTORY OF ENGLAND FOR BEGINNERS.
By ARABELLA B. BUCKLEY. Author of &quot; A Short History of

Natural Science,&quot; &c. With Coloured Maps, Chronological and

Genealogical Tables. Globe Svo. $s.

Bury. A HISTORY OF THE LATER ROMAN EMPIRE
FROM ARCADIUS TO IRENE, A.D. 395-800. By JOHN P.

BURY, Fellow of Trinity Coll., Dublin. 2 vols. Svo. [In the
j;r*s!&amp;gt;.
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Dicey. T ECTURES INTRODUCTORY TO THE STUDY
OF THE LAW OF THE CONSTITUTION. By A. V. DICEY,
B.C.L., of the Inner Temple, Barret er-at-Law ; Vinerinn Professor

of English Law ;
Fellow of All Souls College, Oxford; Hon. LL.D.

Glasgow. Second Edition. Demy Svo. 12s. 6J.

English Statesmen, Twelve. A Series of Short Bio

graphies, not designed to be a. complete roll &amp;lt; f Famous Statesmen,
but to present in historic order the lives and virrk of those leading
actors in our affairs who by their direct influence have left an

abiding mark on the policy, the institutions, and the position of

Great Britain among States.

The following list of subjects is the resnlt of careful selection. The

great movements of national history are made to follow one
another in a connected course, and the series is intended to form a

continuous narrative of English freedom, order, and power. The
volumes as follow, Crown Svo, 2s. 6d. each, are ready or in

preparation :

WILLIAM THE CONQUEROR. By EDWARD A. FREEMAN, D.C.L.,
LL.D. [Ready.

HENRY II. By Mrs. J. R. GREEN. [Ready.
EDWARD I. By F. YORK POWELL.
HENRY VII. By JAMES GAIRDNER.
CARDINAL WOLSEY. By Professor M. CREIGHTON. [Ready.
ELIZABETH. By the DEAN OF ST. PAUL S.

OLIVER CROMWELL. By FREDERIC HARRISON. {Ready.
WILLIAM III. By H. D. TRAILL. [Ready
WALPOLE. By JOHN MORLEY. [In the press.
CHATHAM. By JOHN MORLEY.
PITT. By JOHN MORLEY.
PEEL. By J. R. THURSFIELD.

Freeman. Works by EDWARD A. FREEMAN, D.C.L., LL.D.,
Regiu-&amp;lt;

Professor of Modern History in ihe University of Oxford, &c.

OLD ENGLISH HISTORY. With Five Coloured Maps. New
Edition. Extra fcap. Svo. 6s.

A SCHOOL HISTORY OF ROME. Crown Svo. [In preparation.

METHODS OF HISTORICAL STUDY. A Course of Lectures.
Svo. los. 6d.

THE CHIEF PERIODS OF EUROPEAN HISTORY. Six
Lectures read in the University of Oxford in Trinity Term, 1885.
With an Essay on Greek Cities under Roman Rule. Svo. ioj. 6J.

HISTORICAL ESSAYS. First Series. Fourth Edition. Svo.
ioj. 6(/.

Contents: The Mythical and Romantic Elements in Early English History
The Continuity of English Hi-tory The Relations between the Cr^wn of

England and Scotland St. Thomas of Canterbury and his Biographers, &c.

HISTORICAL ESSAYS. Second Series. Second Edition, with
additional Essays. Svo. IOJ. 6d.

Contents : A,nc.ent Greece and Mediaeval Italy Mr. Gladstone s Homer and
the Homeric Ages The Historian* of Atl-.ens The Athen.an Democracy-
Alexander the Great Greece during the Macedonian Period Mommsen s

History of Rome Lucius Cornelius Sulla The Flavian Caesars, &c.. c.
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Freeman continued.

HISTORICAL ESSAYS. Third Series. 8vo. I2.r.

Contents : First Impressions of Rpme The Illyrian Emperors and their Land
Augusta Treverorum The Goths at Ravenna Race and Language The

Byzantine Empire First Impressi ns of Athens Mediaeval and Modern
Greece The S uthern Slaves sicilan Cycles The Normans at Palermo.

THE GROWTH OF THE ENGLISH CONSTITUTION FROM
THE EARLIEST TIMES. Fourth Edition. Crown 8vo. 5*.

GENERAL SKETCH OF EUROPEAN HISTORY. New
Edition. Enlarged, with Maps, &c. i8mo. 3^. 6d. (Vol. I. of
Historical Course for Schools.)

EUROPE. i8mo. is. (History Primers.}

Fyffe. A SCHOOL HISTORY OF GREECE. By C. A. FYFFE,
M.A. Crown 8vo. [In preparation.

Green. Works by JOHN RICHARD GREEN, M.A., LL.D.,
late Honorary Fellow of Jesus College, Oxford.

A SHORT HISTORY OF THE ENGLISH PEOPLE. New
and Thoroughly Revised Edition. With Coloured Maps, Genea

logical Tables, and Chronological Annals. Crown 8vo. 8s. 6d.

1 36th Thousand.
Also the same in Four Parts. Parts I. and II. ready ; Parts III.

and IV. shortly. With the corresponding portion of Mr. Tait s

&quot;Analysis.&quot; Crown 8vo. 3.?. 6 /. each. Part I. 607 1265. Part

II. 12651540. Part III. 1540 1660. Part IV. 16601873.
HISTORY OF THE ENGLISH PEOPLE. In four vols. 8vo.

Vol. I. EARLY ENGLAND, 449-1071 Foreign Kings,
1071-1214 The Charter, 1214-1291 The Parliament, 1367-
1461. With eight Coloured Maps. 8vo. i6s.

Vol. II. THE MONARCHY, 1461-1540 The Reformation,
1540-1603. 8vo. i6s.

Vol III. PURITAN ENGLAND, 1603-1660 The Revolu
tion, 1660-1688. With four Maps. 8vo. ids.

THE MAKING OF ENGLAND. With Maps. 8vo. i6s.

THE CONQUEST OF ENGLAND. With Maps and Portrait.

8vo. iSs.

ANALYSIS OF ENGLISH HISTORY, based on Green s
&quot; Short

History of the English People.&quot; By C. W. A. TAIT, M.A.,
Assistant-Master, Clifton College. Crown 8vo. 3^. 6d.

READINGS FROM ENGLISH HISTORY. Selected and
Edited by JOHN RICHARD GREEN. Three Parts. Globe 8vo.

is. 6d. each. I. Hengist to Cressy. II. Cressy to Cromwell.
III. Cromwell to Balaklava.

Guest. LECTURES ON THE HISTORY OF ENGLAND.
By M. J. GUEST. With Maps. Crown 8vo. 6s.

Historical Course for Schools Edited by EDWARD A.

FREEMAN, D.C.L., LL.D., late Fellow of Trinity College, Oxford,

Regius Professor of Modern History in the University of Oxford.
I. GENERAL SKETCH OF EUROPEAN HISTORY. By
EDWARD A. FREEMAN, D.C.L. New Edition, revised and

enlarged, with Chronological Table, Maps, and Index. i8mo. 3-r. 6d.

II. HISTORY OF ENGLAND. By EDITH THOMPSON. New
Ed., revised and enlarged, with Coloured Maps. i8mo. 2s. 6d.
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Historical Course for Schools continued.

III. HISTORY OF SCOTLAND. By MARGARET MACARTHUR.
New Edition. i8mo. 2s.

IV. HISTORY OF ITALY. By the Rev. W. HUNT, M.A.
New Edition, with Coloured Maps. i8mo. $s. 6d.

V. HISTORY OF GERMANY. By J. SIME, M.A. New
Edition Revi ed. i8mo. $s.

VI. HISTORY OF AMERICA. By JOHN A. DOYLE. With

Maps. i8mo. 41-. 6d.

VII. EUROPEAN COLONIES. By E. J. PAYNE, M.A. With

Maps. i8mo. 4?. 6d.

VIII. FRANCE. By CHARLOTTE M. YONGE. With Maps.
i8mo. 3-r. 6J.

GREECE. By EDWARD A. FREEMAN, D.C.L. [In preparation.
ROME. By EDWARD A. FREEMAN, D.C.L. [In preparation.
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