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PREFACE TO THE THIRD EDITION.

Ix the preface to the second edition of my Higher
Plane Curves, I have explained the ecircumstances
under which I obtained Professor Cayley’s valuable
help in the preparation of that volume. I have
now very gratefully to acknowledge that the same
assistance has been continued to me in the re-editing
of the present work. The changes from the preceding
edition are not so numerous here as in the case of
the Higher Plane Curves, partly because the book
not having been so long out of print required less
alteration, partly because the size to which the
volume had already swelled made it necessary to be
sparing in the addition of new matter. Prof. Cayley
having read all the proof sheets, the changes made at
his suggestion are too numerous to be particularized;
but the following are the parts which, on now looking
through the pages, strike me as calling for special
acknowledgement, as being entirely or in great
measure derived from him; Arts.* 51—53 on the six
coordinates of a line, the account of focal lines Art. 146,
Arts.t 314—322 on Gauss’s method of representing
the coordinates of a point on a surface by two
parameters. The discussion of Orthogonal Surfaces
1s taken from a manuseript memoir of Prof. Cayley’s,

“* These articles have been altered in the present edition.,
t+ Now Arts, 377-384.
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Arts.* 332—337 nearly without alteration, and the
following articles with some modifications of my own.
Prof. Cayley has also contributed Arts.t 347 and 359
on Curves, Art.} 468 on Complexes, Arts. 567 to the
end of the chapter on Quartics, and Arts.§ 600 to
the end. Prof. Casey and Prof. Cayley had each
supplied me with a short note on Cyeclides, but I
found the subject so interesting that I wished to
give it fuller treatment, and had recourse to the
original memoirs.

I have omitted the appendix on Quaternions
which was given in the former editions, the work of
Professors Kelland and Tait having now made
information on this subject very easy to be obtained.
I bave also omitted the appendix on the order of
Systems of Equations, which has been transferred to
the Treatise on Higher Algebra.

I have, as on several former occasions, to acknow-
ledge help given me, in reading the proof sheets, by
my friends Dr. Hart, Mr. Cathcart and Dr. Fiedler.

* Now Arts. 476479, 1 Now Art. 453.
t Now Arts, 316 and 328. § Now Art. 620.

Owing to the continued pressure of other en-
gagements I have been able to take scarcely any
part in the revision of this fourth edition. My friend,
Mr. Catheart, has laid me under the great obligation
of taking the work almost entirely off my hands,
and it is at his suggestion that some few changes
have been made from the last edition.

TrINITY CoLLEGE DUBLIN,
Sept., 1882,
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TRRATA, &C.

PAGR
7, note, line 6, for “a,” read * a.”
8, line 7, supply “= 0.” :

62, lines 12, 13, read “ dw,, dw,,” as last terms of the equations.

90, line 6 from bottom, and 91 line 8 from bottom read * parallelepiped.”
122, ,, 5, supply “=0.”
186, note, line 38, read *“ M. Amiot (see Liouville, vIIL, p, 161, and X. p, 109).”
214, last line but one, read “are,” for “is.”
251, to last line, Art. 286, add ‘‘see Art. 607.”
273, last line, read “normal,” second note, end of line 2 add ¢ of.”
276, line 9 from bottom, for “radius,” read * axis,”
297, ,, 6, read “+ (k — 2) dt*-34,” line 6 from bottom, add ‘see p. 588.”
819, Art. 854, line 2, for ¢ (p. 298)” read (p. 297).”
829, first line, Art. 868, read “ four consecutive points.”
856, end of first line, add ‘“see p. 874.”
876, in figure read “d¢’,” for “dep,.”
1—-Au

Atp'
407, line 2 from bottom insert ¢ Art 285.”
444, ,, 10 ,, »  read “condition.”
476, , 3 ” gy (e
568, ,, 1and 8 read ‘ Article 588,” for “577.7

882, Ex. 2 the expression for;z is

Add at end of Chapter IX.

{It ought to have been stated in this Chapter, that Dr. Casey has remarked in the
Annali di Matematica, that the investigation given, Conics, p. 858, is capable of
immediate extension to space of three dimensions; that we can thus at once write
down an invariant relation between five quadrics whose equations are each of the form
8 — L? =0, and which touch another guadric also inscribed in S, and that hence the
equation of the quadric touching four others, all being inscribed in S, is

0, (12), (13), (14), JS)-L

(12), 0, (23), (24), J(8) — M

"(18), (23), 0, (34), dS)-N

(14), (24), (34), 0, N(§) - P
N(S) ~ L, J(8)— M, J(8)— N, (8)— P, 0 =0.

These formula include the invariant condition that five spheres should all touch the
same sixth, and the equation of the sphere touching four given spheres.]



ANALYTIC GEOMETRY OF THREE DIMENSIONS.

CHAPTER L

THE POINT.

1. WEe have seen already how the position of a point C
in a plane is determined, by referring it to two coordinate
axes 0X, OY drawn in the plane. To determine the position
of any point Pin space, we have only to add to our apparatus
a third axis OZ not in the plane (see figure next page).
Then, if we knew the distance measured parallel to the line OZ
of the point P from the plane XOY, and also knew the 2
and y coordinates of the point C, where PC parallel to 0Z
meets the plane, it is obvious that the position of P would
be completely determined.

Thus, if we were given the three equationszx=a, y =0, z=c,
the first two equations would determine the point C, and then
drawing through that point a parallel to OZ, and taking on it
a length PC = ¢, we should have the point P.

We have seen already how a change in the sign of a or
b affects the position of the point C. In like manner the sign
of ¢ will determine on which side of the plane XOY the line
PC is to be measured. If we conceive the plane XOY to be
korizontal, it is customary to consider lines measured upwards
as positive, and lines measured downwards as negative. In this
case, then, the z of every point above that plane is counted as
positive, and of every point below it as negative. -It is obvious

that every point on the plane has its z2=0.
B
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The angles between the axes may be any whatever; but
the axes are said to be rectangular when the lines 0X, OY

are at right angles to each other, and the line 0Z perpendicular
to the plane XOY.

2. We have stated the method of representing a point in
space, in the manner which seemed most simple for readers
already acquainted with Plane Analytic Geometry. We pro-
ceed now to state the same more symmetrically. Our appa-
ratus evidently consists
of three coordinate axes
0X, 0Y, OZ meeting
in a point O, which, as
in Plane Geometry, 1s
called the origin. The
three axes are called the
axes of =z, y, z respec-
tively. These three axes
determine also three co-
ordinate planes, namely,
the planes Y0Z, Z0X,
XO0Y, which we shall
call the planes yz, 2z,
xy, respectively. Now since it is plain that P4= CE=q,
PB= (CD=5, we may say that the position of any point P
is known if we are given its three coordinates; viz. P4 drawn
parallel to the axis of = to meet the plane yz, PB parallel to
the axis of y to meet the plane zx, and PC parallel to the
axis of # to meet the plane xy.

Again, since OD=a, OE=0, OF=c, the point given by
the equations x=a, y=05, 2=c may be found by the follow-
ing symmetrical construction: measure on the axis of =z, the
length OD = a, and through D draw the plane PBCD parallel
to the plane yz: measure on the axis of y, OE=5, and through
E draw the plane PACE parallel to zx: measure on the axis
of z, OF = ¢, and through Z draw the plane PABF parallel
to xy: the intersecti n of the three planes so drawn is the
point P, whose construction is required.
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3. The points A4, B, C, are called the projections of the
point P on the three coordinate planes; and when the axes are
rectangular they are its orthogonal projections. In what fol-
lows we shall be almost exclusively concerned with orthogonal
projections, and therefore when we speak simply of projections,
are to be understood to mean orthogonal projections, unless the
contrary is stated. There are some properties of orthogonal
projections which we shall often have occasion to employ, and
which we therefore collect here, though we have given the proof
of some of them already. (See Conics, Art. 368).

The length of the orthogonal projection of a finite right line
on any plane is equal to the line multiplied by the cosine of the
angle® which it makes with the plane.

Let PC, P'C’ be drawn perpendicular to the plane X017
and CC’ is the orthogonal pro- 4
jection of the line PP on that z
plane. Complete the rectangle
by drawing P@ parallel to C(’, Q
and P@Q will also be equal to P/
CC'. But PQ=PP cosP'Pgq. e/

4. The projection on any 0 -
plane of any area in another
plane s equal to the original .
area multiplied by the cosine of /
the angle between the planes. ¥

* The angle a line makes with a plane is measured by the angle which the line
makes with its orthogonal projection on that plane.

The angle between two planes is measured by the angle between the perpendiculars
drawn in each plane to their line of intersection at any point of it. It may also be
measured by the angle between the perpendiculars let fall on the planes from any point.

The angle between two lines which do not intersect, is measured by the angle
between parallels to both drawn through any point.

‘When we speak of the angle between two lines, it is desirable to express without
ambiguity whether we mean the acute or the obtuse angle which they make with
each other. When therefore we speak of the angle between two lines (for instance
PP’, CC’ in the figure), we shall understand that these lines are measured in the
directions from P to P’ and from C to (', and that PQ parallel to CC’ is measured in
the same direction. The angle then between the lines is acute. But if we spoke of the
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For if ordinates of both figures be drawn perpendicular to
the intersection of the two planes, then, by the last article,
every ordinate of the projection is equal to the corresponding
ordinate of the original figure multiplied by the cosine of the
angle between the planes. DBut it was proved (Conics, Art. 394),
that when two figures are such that the ordinates corresponding
to equal absciss@ have to each other a constant ratio, then the
areas of the figures have to each other the same ratio.

5. The projection of a point on any line is the point where
the line is met by a plane drawn through the point perpen-
dicular to the line. Thus, in figure, p. 2, if the axes be rect-
angula¥;.D, E, F are the projections of the point P on the three
axes.

The projection of a finite right line upon another right line
is equal to the first line multiplied by the cosine of the angle
between the lines.

Let PP’ be the given line, and DIV its projection on OX.

Through P draw PQ parallel to z

OX to meet the plane P"C’D’; and

since it is perpendicular to this P Q
plane, the angle PQP” is right, and £
PQ=PP cosP'PQ. But PQ and o D 5
DI’ are equal, since they are the f

intercepts made by two parallel E V
planes on two parallel right lines. ’

6. If there be any three points P, P’, P, the projection of
PP” on any line will be equal to the sum of the projections on
that line of PP’ and P’ P”. ]

Let the projections of the three points be D, D', D”, then
if D’ lie between Degad D”, DD is evidently the sum of DI/

angle between PP’ and €’C, we should draw the parallel PQ’ in the opposite direction,

and should wish to express the obtuse angle made by the lines with each other.
When we speak of the angles made by any line OP with the axes, we shall always

mean the angles between 0P and the positive directions of the axes, viz. 0X, 0Y, 0Z.
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~and ’D”. If D’ lie between D and D', DD” is the difference
of DD’ and D’D”; but since the direction from D’ to D" is
the opposite of that from D to D', DD” is still the algebraic
sum of DD’ and D'D”. It may be otherwise seen that the
projection of P'P” is in the latter case to be taken with a
negative sign, from the consideration that in this case the
length of the projection is found by multiplying P’P” by the
cosine of an obtuse angle (see note, Art. 3). In general, if there
be any number of points P, P’, P”, P, &c., the projection
of PP on any line is equal to the sum of the projections of
PP, P’P”, P"P”, &c. The theorem may also be expressed in
the form that the sum of the projections on any line of the sides
of a closed polygon = 0.

7. We shall frequently have occasion to make use of the
following particular case of the preceding.

If the coordinates of any point P be projected on any line,
the sum of the three projections vs equal to the projection of the
radius vector on that line.

For consider the points O, D, C, P (see figure, p. 2) and
the projection of OP must be equal to the sum of the pro-
jections of OD (=z), DC(=y), and CP(=z).

8. Having established those principles concerning projec-
tions which we shall constantly have occasion to employ, we
return now to the more immediate subject of this chapter.

The coordinates of the point P dividing the distance between
two points P’ (x'y'2’), P” («”y"2") so that P’P: PP”::m : [, are

M Ama” by 4my” z_Zz’+ mz”’
= TTim YT l+m 777 l4m

The proof is precisely the same as that given at Conics, Art. 7,
for the corresponding theorem in Plane~Analytic Geometry.
The lines PM, QN in the figure there given now represent
the ordinates drawn from the two points to any one of the
coordinate plaues. b

If we consider the ratio /: m as indeterminate, we have the
coordinates of any point on the line joining the two given points.
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9. Any side of a triangle P”"P” is cut in the ratio m : n, and
the line joining this point to the opposite vertex P’ s cut in the
ratio m+n : I, to find the coordinates of the point of section.

Ans.
—Zx/+mw//+nx’// 1= ly’+my//+ny/,, z—lz’+mz’/+nz//,
B YT . Thmyn N el

This is proved as in Plane Analytic Geometry (see Conics,
Art. 7). If we consider /, m, n as indeterminate, we have the
coordinates of any point in the plane determined by the
three points.

Ex. The lines joining middle points of opposite edges of a tetrahedron meet in
a point. The 2’s of two such middle points are } (¢’ + =), 4 ("’ + £""), and the =
of the middle point of the line joining them is 1 (2’ + 2" + &’ +2""). The other
coordinates are fonnd in like manner, and their symmetry shews that this is also
a point on the line joining the other middle points. Through this same point will
pass the line joining each vertex to the centre of gravity of the opposite triangle.
For the = of one of these centres of gravity is % (z' + =" + z’”), and if the line join-
ing this to the opposite vertex be cut in the ratio of 3 : 1, we get the same value
as before,

10. To find the distance between two points P, F’, whose

rectangular coordinates are x'y'?, &y"2".

Evidently (see figure, p. 3) PP*= P@'+ QP*  But
QF =2 —2", and PQ'= CC”is by Plane Analytic Geometry
= (@' —a”)"+ (¥ —y”)". Hence

PP/2= (xf —x”)‘z + (:Z/’ _:l///)Z + (z,_ z//)2.

Cor. The distance of any point zy’2" from the origin is

given by the equation

0P2 — w/2 +y12 + z/Z.

11. The position of a point is sometimes expressed by its
radius vector and the angles it makes with three rectangular
axes. Let these angles be a, 8, v. Then since the coordinates
x, y, z are the projections of the radius vector on the three
axes, we have

x=p cosa, y=pcosB, z=p cosy.

And, since #*+y*+ 2°=p" the three cosines (which are
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sometimes called the direction-cosines of the radius vector)
are connected by the relation
cos’a + cos’B + cos’y = 1.%

Moreover (compare Art. 7), z cosa 4y cosB + z cosy =p.

The position of a point is also sometimes expressed by the
following polar coordinates—the radius vector, the angle y which
the radius vector makes with a fixed axis OZ, and the angle
COD(=¢) which OC the projection of the radius vector on a
plane perpendicular to OZ (see figure, p. 4) makes with a fixed
line OX in that plane. Since then OC = p sin v, the formulz
for transforming from rectangular to these polar coordinates are

x=p siny cosp, y=psinysin$, z2=p cosy.

12. The square of the area of any plane figure s equel to
the sum of the squares of dts projections on three rectangular
planes.

Let the area be 4, and let a perpendicular to its plane
make angles a, B, v with the three axes; then (Art. 4) the
projections of this area on the planes yz, 2z, xy respectively,
are Acosa, AcosfB, Acosy. And the sum of the squares
of these three = 4% since cos’a + cos’3 + cos™y =1.

18. To express the cosine of the angle @ between two lines
OP, OP ¢n terms of the direction-cosines of these lines.
We have proved (Art. 10) that

PP =(z- )+ (y—y) +(e— 7).

* T have followed the usual practice in denoting the position of a line by these
angles, but in one point of view there would be an advantage in using instead the
complementary angles, namely, the angles which the line makes with the coordinate
planes. This appears from the corresponding formule for oblique axes which T have
not thought it worth while to give in the text, as we shall not have occasion to use
them afterwards. Let a, 8, y be the angles which a line makes with the planes
yz, 2%, xy, and let 4, B, C'be the angles which the axis of x makes with the plane
of yz, of y with the plane of zx, and of z with the plane of xy, then the formulz which
correspond to those in the text are

zsind =psina, ysinB=psinB, zsinC= psiny.
These formulze are proved by the principle of Art. 7. If we project on a line perpen-
dicular to the plane of yz, since the projections of y and of z on this line vanish, the
projection of  must be equal to that of the radius vector, and the angles made by z
and p with this line are the complements’of 4 and a.
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But also PP*=p*+ p™ ~ 2pp’ cos 6.

And since  pf=a'+yt+2% pP=a"+y"+ 2"
we have pp’ cosO=ax’ + yy + 22/,

or cos @ = cosa cosa’ + cos B cos B’ + cosey cosey'.

Cor. The condition that two lines should be at right angles
to each other 1s

cosa cosa’ + cosB3 cos B + cosy cosy’. =9

14. The following formula is also sometimes useful :
sin“0 = (cos[3 cosy’ — cosy cosB')* + (cosy cosa’ — cosa cosy’)*
+ (cosa cos B ~ cos B cosa)*.

This may be derived from the following elementary theorem
for the sum of the squares of three determinants (Lessons on
Higher Algebra, Art. 26), but which can also be verified at
once by actual expansion,
(b’ — eb')* + (ca” — ac’)? + (@b — ba')*
=(a*+ 0"+ ¢") (a”+ 0”4+ ¢*) — (ad + B + cc)*.
For when q, b, ¢y &, ¥/, ¢’ are the direction-cosines of two
lines, the right-hand side becomes 1 — cos*6.
Ex. To find the perpendicular distance from a point 2'y’2’ to a line through the
origin whose direction-angles are a, 3, .
Let P be the point z'y’2’, OQ the given line, PQ the perpendicular, then it is

plain that PQ = OP sin POQ; and using the value just obtained for sin POQ, and
remembering that #” = OP cos o', &c., we have

PQ? = (y cosy — 2’ cosB)? + (2’ cosa — &’ cosy)? + (=’ cosB — y’ cosa)?

15. To find the direction-cosines of a line perpendicular to
two given lines, and therefore perpendicular to their plane.

Let o/ By, o”B"y” be the direction-angles of the given lines,
and aBy of the required line, then we have to find a8y from
the three equations

cosa cosa’ + cosB cosB + cosy cosy’ =0,
cosa cosa” + cosB cosB” + cosy cosy” =0,

cos’a + cos’B + cos’y = 1.
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From the first two equations we can easily derive, by elimi-
nating in turn cosa, cosf3, cosvy,

A cosa = cosf3 cosy” —cosB” cosy,
A cosfB =cosy” cosa” — cosy” cosd/,
A cosy =cosa’ cosB3” — cosa’” cosfF,

where A is indeterminate; and substituting in the third equa-

tion, we get (see Art. 14), if & be the angle between the two
iven lines

§ : A? = sin®.

This result may be also obtained as follows: take any two
points P, Q, or x'y'z', x”’y”2”, one on each of the two given lines.
Now double the area of the projection on the plane of zy
of the triangle POQ, is (see Conics, Art. 36) «'y” —y/'«”, or

p’p” (cosa’ cosB” — cosa’” cos3’). But double the area of the
W4

triangle is p’p” sin#, and therefore the projection on the plane
of 2y is p’p” sinf cosy. Hence, as before,

sin § cosy = cosa’ cos 8”7 — cosa” cos B,
and in like manner

sin @ cosa = cosB’ cosy” —cosB” cosy;

sin @ cos B = cosy’ cosa”’ — cosy” cosa’.

TRANSFORMATION OF COORDINATES.

16. To transform to parallel axes through a new origin,
whose coordinates referred to the old axes, are &', y’, 2.

The formule of transformation are (as in Plane Geometry)

e=X+a, y=Y+y, a=2+7.

For let a line drawn through the point P parallel to one
of the axes (for instance z) meet the old plane of zy in a point
C, and the new in a point C’; then PC=PC" + C'C.

But PC is the old 2z, PC’ is the new z; and since parallel
planes make equal intercepts on parallel right lines, C'C
must be equal to the line drawn through the new origin 0’
parallel to the axis of 2, to meet the old plane of xy.

17. To pass from a rectangular system of axes to another
system of axes having the same origin.
C
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Let the angles made by the new axes of z, 7, z with the
old axes be a, B, v; o, B, v"; o', B”, " respectively. Then
if we project the new coordinates on one of the old axes, the
sum of the three projections will (Art. 7) be equal to the
projection of the radius vector, which is the corresponding old
coordinate. Thus we get the three equations

x=X cosa + Y cosa’ + Z cosa”
y=XcosB+ YecosB + Zcos,B"}
z=Xcosy + Y cosy’ + Zcosy”

We have, of course, (Art. 11)

cos’a + cos’B + cos’y =1, cos’a’ + cos’B’ + cos’y’ =1,
AR YAl

cos’a” + cos’B” + cos’y”" =1 .ooounnnn. el D)

Let A, u, v be the angles between the new axes of y and 2,
of z and w, of @ and y respectively, then (Art. 13)

cosp = cosa” cosa 4+ cosB” cosB + cosy” cosry

cosA =cosda cosa’ 4+ cosB cosB” + cosy’ cosy”
cos v=cosa cosa’ +cosB cosf +cosy cosy’

18. If the new axes be also rectangular, we have therefore

cosol cosa” +cosB cosB” + cosy’ cosy”’ =0
cosa” cosa + cosB” cosB + cosy” cosy = OI ox ()
cosa cosa’ +cosB cosf +cosy cosy =0
When the new axes are rectangular, since a, o/, o” are
the angles made by the old axis of  with the new axes, &ec.
we must have
cos’a + cos’d’ + cos’a” =1, cos’B+ cos’S’ + cos’B =1,
cos’y + cog’y + cos'y =T.eeurininnnnn, (E),
cosB cosy +cos B cosy’ + cosB” cosy” =0
cosry cosa + cosy cosa’ + cosy” cosa” =0} ),
cosa cos B+ cosa’ cosB +cosa” cosB’ =0

and the new coordinates expressed in terms of the old are

X=xzcosa +ycosfB +=zcosy
Y= cosd +ycosf +zcosry’} Vagtives s )
Z =z cosd +ycosB” + zcosy”
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The two corresponding systems of equations 4 and G may be
briefly expressed by the diagram

P & 55 o i 1
% | &1 a -
y | B |8 |8
: gy |y |

It is not difficult to derive analytically equations E, F, @,
from equations 4, B, D, but we shall not spend time on what
is geometrically evident.

19. If we square and add equations (4) (Art. 17), attending
to equations (C), we find

4y +2=X+ Y+ 2"+ 2YZcosh+2ZX cospu +2XY cosv.

Thus we obtain the radius vector from the origin to any
point expressed in terms of the oblique coordinates of that point.
It is proved in like manner that the square of the distance
between two points, the axes being oblique, is

(wl o w//)z + (y/ - y//)ﬁ + (Z/ o z//')2 + 2 (y’ __yl/) (zl_ Z”) COSK
+2 (2 —2") (@ —a")cospu+2 (& —2)(y —y”) cosv.®

20. The degree of any equation between the coordinates 4s
not altered by transformation of coordinates.

This is proved, as at Conics, Art. 11, from the consideration
that the expressions given (Arts. 16, 17) for z, y, 2, only involve
the new coordinates in the first degree.

* Ags we rarely require in practice the formula for transforming from one set
of oblique axes to another, we only give them in a note.

Let A, B, C have the same meaning as at note, p. 7, and let a, 8, v; o, B, v';
a”, B”, v” be the angles made by the new axes with the old coordinate planes; then
by projecting on lines perpendicular to the old coordinate planes, as in the note
referred to, we find

xsind = Xsina + Y sina' + Z sina”.
ysinB=Xsinf + 1 sing’ + Zsinp”,
zsin C= Xsiny + Y singy’ + Z siny”,



(12 )

CHAPTER IL

INTERPRETATION OF EQUATIONS,

21. Ir appears from the construction of Art. 1 that if we
were given merely the two equations w=gqa, y =0, and if the
z were left indeterminate, the two given equations would de-
termine the point €, and we should know that the point P
lay somewhere on the line PC. These two equations then
are considered as representing that right line, it being the
locus of all points whose z=a, and whose y=5. We learn
then that any two equations of the form x=a, y =05 represent
a right line parallel to the axis of 2. In particular, the equa-
tions € =0, y =0 represent the axis of z itself. Similarly for
the other axes.

Again, if we were given the single equation z=a, we
could determine nothing but the point D. Proceeding, as at
the end of Art. 2, we should learn that the point P lay some-
where in the plane PBCD, but its position in that plane would
be indeterminate. This plane then being the locus of all points
whose « = a, is represented analytically by that equation. We
learn then that any equation of the form xz=a represents a
plane parallel to the plane zz. In particular, the equation
=0 denotes the plane yz itself, Similarly, for the other
two coordinate planes.

22. In general, any single equation between the coordinates
represents a surface of some kind ; any two simultaneous equations
between them represent o line of some kind, either straight or
curved ; and any three equations denote one or more points.

I. If we are given a single equation, we may take for x
and y any arbitrary values; and then the given equation
solved for z will determine one or more corresponding values
of z. In other words, if we take arbitrarily any point C in
the plane of ay, we can always find on the line P’C one or
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more points whose coordinates will satisfy the given equation.
The assemblage then of points so found on the lines PC will
form a surface which will be the geometrical representation
of the given equation (see Conics, Art. 16). '

II. When we are given fwo equations, we can, by elimi-
nating z and y alternately between them, throw them into
the form y=¢ (z), 2=+ (x). If then we take for = any ar-
bitrary value, the given equations will determine corresponding
values for y and 2. In other words, we can no longer take
the point C anywhere on the plane of wxy, but this point is
limited to a certain locus represented by the equation y = ¢ ().
Taking the point C anywhere on this locus, we determine
as before on the line PC a number of points P, the assemblage
of which is the locus represented by the two equations. And
since the points ¢, which are the projections of these latter
points, lie on a certain line, straight or curved, it is plain that
the points P must also lie on a line of some kind, though of
course they do not necessarily lie all in any one plane.

Otherwise thus: when two equations are given, we have
seen in the first part of this article that the locus of points
whose coordinates satisfy either equation separately is a surface.
Consequently, the locus of points whose coordinates satisfy
both equations is the assemblage of points common to the
two surfaces which are represented by the two equations con-
sidered separately: that is to say, the locus is the line of in-
tersection of these surfaces.

III. When three equations are given, it is plain that they
are sufficient to determine absolutely the values of the three
unknown quantities «, y, 2, and therefore that the given
equations represent one or more points. Since each equation
taken separately represents a surface, it follows hence that
any three surfaces have one or more common points of inter-
section, real or imaginary.

23. Surfaces, like plane curves, are classed according to
the degrees of the equations which represent them. Since
every point in the plane of wy has its z=0, if in any equation
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we make z=0, we get the relation between the z and y
coordinates of the points in which the plane xy meets the
surface represented by the equation: that is to say, we get
the equation of the plane curve of section, and it is obvious
that the equation of this curve will be in general of the same
degree as the equation of the surface. It is evident, in fact,
that the degree of the equation of the section cannot be greater
than that of the surface, but it appears at first as if it might
be less. For instance, the equation
2’ + oy’ + U’z =c*

is of the third degree; but when we make z=0, we get an
equation of the second degree. But since the original equation
would have been unmeaning if it were not homogeneous, every
term must be of the third dimension in some linear unit (see
Conics, Art. 69), and therefore when we make z=0, the re-
maining terms must still be regarded as of three dimensions.
They will form an equation of the second degree multiplied
by a constaut, and denote (see Conics, Art. 67) a conic and
a line at infinity. If then we take into account lines at infinity,
we may say that the section of a surface of the order =
by the plane of xzy will be always of the order n; and
since any plane may be made the plane of xy, and since
transformation of coordinates does not alter the degree of an
equation, we learn that every plane section of a surface of the
order n is a curve of the order n.

In like manner it is proved that ewvery right line meets a
surface of the order n in n points. The right line may be
made the axis of z, and the points where it meets the surface
are found by making =0, =0 in the equation of the surface,
when in general we get an equation of the degree n to de-
termine 2. If the degree of the equation happened to be less
than #, it would only indicate that some of the n points where
the line meets the surtace are at infinity (Conics, Art. 135).

24. Curves in space are classified according to the number
of points in which they are met by any plane. Two equations
of the degrees m and n respectively represent a curve of the
order mn. Tor the surfaces represented by the equations



INTERPRETATION OF EQUATIONS. 15

are cut by any plane in curves of the orders m and =
respectively, and these curves intersect in mn points.

Conversely, if the degree of a curve be decomposed in any
manner into the factors m, n, then the curve may be the inter-
section of two surfaces of the degrees m, n respectively; and it
is in this case said to be a complete intersection. But not every
curve is a complete intersection: in particular we have curves,
the degree of which is a prime number, which are not plane
curves.

Three equations of the degrees m, n, and p respectively,
denote mnp points.

This follows from the theory of elimination; since if we
eliminate y and z between the equations, we obtain an equation
of the degree mnp to determine x (sce Lessons on Higher
Algebra, Arts. 73, 78). This proves also that three surfuces of
the orders m, n, p respectively intersect in mnp points.

25. If an equation only contain two of the variables
¢ (2, ¥,) =0, the learner might at first suppose that it represents
a curve in the plane of xy, and so that it forms an exception
to the rule that it requires two equations to represent a curve.
But it must be remembered that the equation ¢ (z, ) =0 will
be satisfied not only for any point of this curve in the plane
of xy, but also for any other point having the same x and y
though a different z; that is to say, for any point of the
surface generated by a right line moving along this curve,
but remaining parallel to the axis of 2.* The curve in the
plane of 2y can only be represented by two equations, namely,
z2=0, ¢ (z,y)=0. _

If an equation contain only one of the variables, =, we
know by the theory of equations that it may be resolved
into n factors of the form xz—a=0, and therefore (Art. 21)
that it represents n planes parallel to one of the coordinate
planes.

- * A surface generated by a right line moving parallel to itself is called a cylindrical
surface,
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CHAPTER IIL

THE PLANE AND THE RIGHT LINE.

26. IN the discussion of equations we commence of course
with equations of the first degree, and the first step is to
prove that every equation of the first degree represents a plane,
and conversely, that the equation of a plane is always of the
first degree. 'We commence with the latter proposition, which
may be established in two or three different ways.

In the first place we have seen (Art.21) that the plane
of xy is represented by an equation of the first degree, viz.
z=0; and transformation to any other axes cannot alter the
degree of this equation (Art. 20).

We might arrive at the same result by forming the equation
of the plane determined by three given points, which we can
do by eliminating [, m, n from the three equations given
Art. 9, when we should arrive at an equation of the first
degree. The following method, however, of expressing the
equation of a plane leads to one of the forms most useful in
practice.

27. To find the equation of a plane, the perpendicular on
which from the origin =p, and makes angles a, B, v with the
axes.

The length of the projection on the perpendicular of the
radius vector to any point of the plane is of course =p, and
(Art. 7) this is equal to the sum of the projections on that
line of the three .coordinates. Hence we obtain for the equa-
tion of the plane

x cosa + 7y cosB + 2z cosy =p.*

* In what follows we suppose the axes rectangular, but this equation is true
whatever be the axes.
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28. Now, conversely, any equation of the first degree
Ax+ By + Cz + D=0,

can be reduced to the form just given, by dividing it by a
factor R. We are to have 4 = R cosa, B= R cos3, C= R cosvy,
whence, by Art. 11, B is determined to be =+/(4*+ B*+ C%).
Hence any equation Az+ By + Cz+ D=0 may be identified
with the equation of a plane, the perpendicular on which from
-D
V(A£+BZ+ 02)
axes whose cosines are 4, B, C, respectively divided by the
same square root. We may give  to the square root the
sign which will make the perpendicular positive, and then the
signs of the cosines will determine whether the angles which
the perpendicular makes with the positive directions of the
axes are acute or obtuse.

the origin = , and makes angles with the

29. 7o find the angle between two planes.
Ax+ By+ Cz+ D=0, A’z+ By+ Cz+ D =0.
The angle between the planes is the same as the angle
between the perpendiculars on them from the origin. By the

last article we have the angles these perpendiculars make with
the axes, and thence, Arts. 13, 14, we have

44+ BB + CC’
N{(4*+ B+ C*) (4% + B*+ C™)}?
(BCO =B (0)'+(CA’"- A+ (4B — A’B)*
(A*+B*+ C*) (4" + B+ (%) {
Hence the condition that the planes should cut at right angles
i8s AA"+ BB + CC =0.
They will be parallel if we have the conditions
BC'=8BC, C4'=C'A, AB'=A4'B;
in other words, if the coefficients 4, B, C be proportional to

A’y B, C,in which case it is manifest from the last article that
the directions of the perpendiculars on both will be the same.

cosf =

sin’f =

80. To express the equation of a plane in terms of the in-
tercepts a, b, e, which it makes on the axes.
D
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The intercept made on the axis of z by the plane
Ax+By+ Cz+ D=0
is found by making # and 2 both =0, when we have 4a + D =0.
And similarly, Bb+ D=0, Cc+D=0. Substituting in the
general equation the values just found for 4, B, C, it becomes
idelan
g T
If in the general equation any term be wanting, for instance
if A=0, the point where the plane meets the axis of z is at
infinity, or the plane is parallel to the axis of . If we have
both 4 =0, B=0, then the axes of = and y meet at infinity the
given plane which is therefore parallel to the plane of xy (see
also Art. 21). If we have 4=0, B=0, C=0, all three axes
meet the plane at infinity, and we see, as at Conics, Art. 67,
that an equation 0.2+ 0.5+ 0.2+ D=0 must be taken to re-
present a plane at infinity.

31. To find the equation of the plane determined by three
points.

Let the equation be Ax+ By+ Cz+D=0; and since this
is to be satisfied by the coordinates of each of the given points,
A4, B, C, D must satisfy the equations

Ax' + By’ + C2'+ D=0, A’ + By” + Cz" + D=0,
Az +By”,+ Cz” + D=0.

Eliminating 4, B, C, D between the four equations, the
result is the determinant

z, Y, % 1

«, ¥y, &, 1 o )
a”y y’y &% 1

w///’ y///’ z///, 1

Expanding this by the common rule, the equation is
ofy ' =47) et Q)
bY@ —a") A @) 4 @)
2@y -9") +2"(y"-y) + w"' (y' )}

rr 177 77’ / I ///)

& (y'd" —y"d )+ 2 (y=
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If we consider «, y, z as the coordinates of any fourth
point, we have the condition that four points should lie in
one plane.

32. The coeflicients of x, y, z in the preceding equation
are evidently double the areas of the projections on the co-
ordinate planes of the triangle formed by the three points.

If now we take the equation (Art. 27)

x cosa+ y cos B+ 2z cosy=p,

and multiply it by twice 4 (4 being the area of the triangle
formed by the three points), the equation will become identical
with that of the last article, since 4 cosa, 4 cosB, 4 cosvys
are the projections of the triangle on the coordinate planes
(Art. 4). The absolute term then must be the same in both
cases. Hence the quantity

(yl/ /Il /Il //) +m (yfll I I III) I/I <yl 77 yllz/)

represents double the area of the triangle formed by the three
points multiplied by the perpendicular on its plane from the
origin; or, in other words, six times the volume of the triangular
pyramid, whose base s that triangle, and whose vertex is the
origin.*®

* If in the preceding values we substitute for «/, ¥/, 2’; p’ cosa’, p’ cos B, p’ cosvy/,
&c., we find that six times the volume of this pyramid = p’p”p"”’ multiplied by the
determinant

cosa’, cosf’, cosy’
cosa”, cosp”, cosy”

cosa”’, cosB”, cosy' |,

Now let us suppose the three radii vectores cut by a sphere whose radius is unity,
having the origin for its centre, and meeting it in a spherical triangle R'R”R". Then
if @ denote the side R’R"”, and p the perpendicular on it from R'’, six times the volume
of the pyramid will be p’p”p”” sin a sinp ; for p’p" sina is double the area of one face
of the pyramid, and p"’ sin p is the perpendicular on it from the opposite vertex. It

follows then that the determinant above written is equal to double the function
J(sins sin (s — @) sin (s — ) sin (s — ¢)}

of the sides of the above-mentioned spherical triangle. The same thing may be
proved by forming the square of the same determinant according to the ordinary
rule; when if we write

cosa” cos a’’ + cosB” cos B + cosy” cos ' = cosa, &c.,
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We can at once express 4 itself in terms of the coordinates
of the three points by Art. 12, and must have 44* equal to
the sum of the squares of the coefficients of =z, y, and 2, in
the equation of the last article.

33. Tb find the length of the perpendicular from a given pomt
2’y'? on a given plane, x cosa+y cosf3 + z cosy = p.

If we draw through 2/y2’ a plane parallel to the given
plane, and let fall on the two planes a common perpendicular
from the origin, then the intercept on this line will be equal
to the length of the perpendicular required, since parallel planes
make equal intercepts on parallel lines. But the length of
the perpendicular on the plane through z'y’2" is, by definition
(Art. 5), the projection on that perpendicular of the radius

vector to «'y’2’, and therefore (Art. 27) is equal to
a’ cosa+ y cosB+ 2" cosy.
The length required is therefore
a’ cosa+ 7y cosf +z cosy — p.

N.B. This supposes the perpendicular on the plane through
a’y’z’ to be greater than p; or, in other words, that 2'y’2" and
the origin are on opposite sides of the plane. If they were
on the same side, the length of the perpendicular would be

p—(a cosa+y cosB+2" cosy). If the equation of the plane
had been given in the form Ax+ By+ Cz+ D=0, it is re-

we get

cosc, 1, cosa
cosd, cosa, 1

1, cosg, cosbl
;)

which expanded is 1 4 2 cosa cos b cos ¢ — cos?a — cos?) — cos’c, which is known to
have the value in question.

It is useful to remark that when the three lines are at right angles to each other
the determinant
cosa’, cosf, cosy
cosa”, cospB”, cosy”
cos ', cos B, cosy"’

has unity for its value. In fact we see, as above, that its square is
1, 0, 0
0,1, 0
0, 0, 1]
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duced, as in Art. 28, to the form here considered, and the length
of the perpendicular is found to be
Ax'+ By + C'+ D
NA*+ B+ C*)
It is plain that all points for which Az’ + By’ + 02’ + D
has. the same sign as D, will be on the same side of the plane
as the origin ; and vice versd when the sign is different.

34. To find the coordinates of the intersection of thres planes.

This is only to solve three equations of the first degree
for three unknown quantities (see Lessons on Higher Algebra,
Art. 29). The values of the coordinates will become infinite
if the determinant (4B’ C”) vanishes, or

AB'C'-B"C)+ 4" (B"C-BC")+ A" (BC'- B C)=0.

This then is the condition that the three planes should be
parallel to the same line. For in such a case the line of in-
tersection of any two would be also parallel to this line, and
could not meet the third plane at any finite distance.

35. To find the condition that four planes should meet in a
pont,

This is evidently obtained, by eliminating x, 7, 2z between
the equations of the four planes, and is therefore the determinant
(4B C"D™), or .

A48 G P
5l N 7 g
A B O Y
A B, O R A 6

36. To find the volume of the telrahedron whose vertices are
any four given points.

If we multiply the area of the triangle formed by three
points, by the perpendicular on their plane from the fourth,
we obtain three times the volume. The length of the per-
pendicular on the plane, whose equation is given (Art. 31), is
found by substituting in that equation the coordinates of the
fourth point, and dividing by the square root of the sum of
the squares of the coefficients of x, 7, 2. But (Art. 32) that
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square root is double the area of the triangle formed by the
three points. Hence six times the volume of the tetrahedron
wn question is equal to the determinant

w’///’ "_Z/,,,/’ z///l’
37. It is evident, as in Plane Geometry (see Conics, Art. 40),
that if S, §, §” represent any three surfaces, then aS+55,
where ¢ and ‘b are any constants, represents a surface passing
through the line of intersection of S and §; and that
aS+ b8 + ¢S” represents a surface passing through the points
of intersection of S, &', and S”. Thus then, if L, M, N denote
any three planes, alL + b3 denotes a plane passing through
the line of intersection .of the first two, and aL +bM +cN
denotes a plane passing through the point common to all three.t
As a particular case of the preceding aL +b& denotes a plane
parallel to L, and aL+ 6M+ ¢ denotes a plane parallel to the
intersection of L and M (see Art. 30).
So again, four planes L, M, N, P will pass through the
same point if their equations are connected by an identical
relation

4 7 /7
SR SO
4 77 74
xy, Yy, &, 1
777 444 V44
'y Yy, &7, 1
1

*

.

al +bM+ cN+dP=0,

for then any coordinates which satisfy the first three must
satisfy the fourth. Conversely, given any four planes inter-
secting in a common point, it is easy to obtain such an identical
relation. For multiply the first equation by the determinant

* The volume of the tetrahedron formed by four planes, whose equations are given,
can be found by forming the coordinates of its angular points, and then substituting
in the formula given above. The result is (see Lessons on Higher Algebra, Att, 80),
that six times the volume is equal to

3
(4B'C") (4'B"C")y (4"B"'C) (A" BC")
where R is the determinant (4B’C”D"") Art. 35, and the factors in the denominator
express the conditions (Art. 34) that any three of the planes should be parallel to
the same line.
+ German writers distinguish the system of planes having a line common by the
name Biischel from the system having only one point common, which they call Biindel.
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(A’B” ("), the second by — (4”B” C), the third by (4”BC’),
and the fourth by — (4B’ C”), and add, then (Lessons on Higher
Algebra, Art. 7) the coefficients of z, y, # vanish identically ;
and the remaining term is the determinant which vanishes
(Art. 35), because the planes meet in a point. Their equations
are therefore connected by the identical relation
L(AB"C")-M(A"B”C)+ N(A”BC)- P(AB'C”)=¢.

38. Given any four planes L, M, N, P not meeting in a
point, it is easy to see (as at Conics, Art. 60) that the equation
of any other plane can be thrown into the form

aLi+bM +cN+dP=0.
And in general the equation of any surface of the degree n
can be expressed by a homogencous equation of the degree n
between L, M, N, P (see Conics, Art. 289). For the number
of terms in the complete equation of the degree n between three
variables is the same as the number of terms in the komogeneous
equation of the degree n between four variables.

Accordingly, in what follows, we shall use these quadri-
planar coordinates, whenever by so doing our equations can
be materially simplified ; that is, we shall represent the equation
of a surface by a homogeneous equation between four coordinates
x, y, 2, w; where these may be considered as denoting the
perpendicular distances, or quantities proportional to the per-
pendicular distances (or to given multiples of the perpendicular
distances) of the point from four given planes =0, y=0,
z2=0,w=0.

It is at once apparent that, as in Conics, Art. 70, there is also
a second system of interpretation of our equations, in which an
equation of the first degree represents a point, and the variables
are the coordinates of a plane. In fact, if Z/II"N"P’ denote the
coordinates of a fixed point, the above plane passes through it if
all/ + bM" 4+ cN'+dP' =0, and the coordinates of any plane
through this point are subject only to this relation. The
quantities, a, b, ¢, d may be considered as denoting the perpen-
dicular distances, or quantities proportional to the perpendicular
distances (or to given multiples of the perpendicular distances)
of the plane from four given pointsa=0, =0, ¢=0, d=0.
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Ex. 1. To find the equation of the plane passing through z’y’2’, and through the
intersection of the planes

Az + By + Cz + D, A'z+ B'y+ C'z+ D’ (see Conics, Art. 40, Ex. 3).
Ans. (A'z'+ B'y'+ C'z'+ D) (Az + By + Cz + D)=(dx"+By'+-C2'+D) (A'x+ B'y+-C'2+ D'},
Ex. 2, Find the equation of the plane passing through the points ABC, figure, p. 2.

The equations of the line BC are evidently Z =1,%+%

y 3F = 1. Hence obviously the

Y
b

three lines joining the three given points.

equation of the required plane is g + +—i = 2, since this passes through each of the

Ex. 3. Find the equation of the plane PEF in the same figure.

The equations of the line £F are x = 0, —Z + % = 1; and forming as above the equa-
tion of the plane joining this line to the point abe, we get %+—z - -3 = 1

39. If four planes which intersect in a right line be met by
any plane, the anharmonic ratio of the pencil so formed will be
constant. For we could by transformation of coordinates make
the transverse plane the plane of ay, and we should then obtain
the equations of the intersections of the four planes with this
plane by making z =0 in the equations. The resulting equations
will be of the form oL + M, bL + M, cL+ M, dL + M, whose
anharmonic ratio (see Conics, Art. 59) depends solely on the
constants a, b, ¢, d; and does not alter when by transformation
of coordinates L and M come to represent different lines.

THE RIGHT LINE.

40. The equations of any two planes taken together will
represent their line of intersection, which will include all the
points whose coordinates satisfy both the equations. By elimi-
nating « and y alternately between the equations we reduce
them to a form commonly used, viz.

x=mz+a, y=nz+D.

The first represents the projection of the line on the plane of
az and the second that on the plane of yz. The reader will ob-
serve that the equations of a right line include four independent
constants.

We might form independently the equations of the line
joining two points; for taking the values given (Art. 8) of the



THE RIGHT LINE. 25

coordinates of any point on that line, solving for the ratio
m : [ from each of the three equations there given, and equa-
ting results, we get
x-a y—y z-7
o -’y -y -2

bJ

for the required cquations of the line. It thus appears that
the equations of the projections of the line are the same as the
equations of the lines joining the projections of two points on
the line, as is otherwise evident.

41. Two right lines in space will in general not intersect.
If the first line be represented by any two equations L =0,
M=0, and the second by any other two N=0, P=0, then if
the two lines meet in a point, each of these four planes must
pass through that point, and the condition that the lines should
intersect is the same as that already given (Art. 35).

Two intersecting lines determine a plane whose equation
can easily be found. For we have seen (Art. 387) that when
the four planes intersect, their equations satisfy an identical
relation '

aL+bM+cN+dP=0.

The equations therefore al +0M =0, and ¢N+dP=0 must
be identical and must represent the same plane. But the form
of the first equation shows that this plane passes through the
line L, 3, and that of the second equation shows that it passes
through the line NN, P.

Ex. When the given lines are represented by equations of the form
z=mz+a, y=nz+bd; x=mz+a, y=nz+¥,

the condition that they should intersect is easily found. For solving for z from the
first and third equations, and equating it to the value found by solving from the
second and fourth, we get

a—a b=V

m—m' n—n""

Again, if this condition is satisfied, the four equations are connected by the identical
relation

(n—n") {(.1:‘- mz—@a) = (z—m'z—a’)} = (m—w){(y —nz—b) — (y — u'z — b))},
and therefore (n—n") (x —mz —a) = (m —m') (y — nz — b)

is the equation of the plane containing both lines.
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42. To find the equations of a line passing through the point

a'y's', and making angles a, B, y with the axes.
- The projections on the axes, of the distance of a'y’2” from
any variable point xyz on the line, are respectively x— 2,
y-y,2z—2"; and since these are each equal to that distance
multiplied by the cosine of the angle betwcen the line and the
axis in question, we have

x—o y-—y a-—2

cosa  cosB  cosy’

a form of writing the equations of the line which, although
it includes two superfluous constants, yet on account of its
symmetry between x, y, z is often used in preference to the
first form in Art. 40.

Reciprocally, if we desire to find the angles made with the
axes by any line, we have only to throw its equation into the
x—-2 y-y a—2

1A T e | B
line will be respectively 4, B, C, each divided by the square
root of the sum of the squares of these three quantities.

form when the direction-cosines of the

Ex. 1. To find the direction-cosines of @ = mz + @, y = nz + b Writing the equa-

Jo z—a_y—b_=z = !
tions in the form e ?/T =1 the direction-cosines are

m n 1
JA+m2 4 2?)? J(L+m?+a2)’ J1 +me+ a2’

l m o
JEmy) [t

Ex, 2, To find the direction-cosines of %c = % s, 2=0. Ans.

Ex. 3. To find the direction-cosines of
Az + By+ Cz+ D, Az+B'y+ Cz+ D'

Eliminating y and z alternately we reduce to the preceding form, and the
BC'—B'C CA'—-(CA AB — A'B

irection-cosi T
direction-cosines are 7 > 7 y 3

the squares of the three numerators.

, where 122 is the sum of

Ex. 4. To find the equation of the plane through the two intersécting lines

2—2 y—y _2—2 z—a_ y—y =z2-2
cosa  cosfB ~ cosy’ cosa’ cosB T cosy’’

’

The required plane passes through z'y’z’ and its perpendicular is perpendicular to two
lines whose direction-cosines are given; therefore (Art. 15), the required equation is
(x — ') (cos B cosy’ — cosy cosfB) + (y — ) (cosy cosa’ — cos 7’ cos a)

+ (z — 2") (cosa cos 3’ — cosa’ cos8) =0,
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Ex.5. To find the equation of the plane passing through the two parallel lines
x_ml—y_yl_z-_zl‘ x_xll_y_yll_z_zll
cose cosf  cosy’ cose  cosB  cosy '
The required plane contains the line joining the given points, whose direction-
cosines are proportional to =’ —z"”, 3 —y”, 2’ —2"; the direction-cosines of the
perpendicular to the plane are therefore proportional to

& —y")cosy — (&' —2") cosB, (2 —2") cose — (z' — ") cos vy,
(' —z") cosB— (¥ — y") cos a.

These may therefore be taken as the coefficients of z, y, 2, in the required equation,
while the absolute term determined by substituting z"y’z’ for xyz in the equation is

(ylz"_ylfz’) cosa + (zl L A 'I l) COSﬁ-*_ (xl lI Il l) cos‘y

%

43. To find the equations of the perpendicular from «’y'z
on the plane Ax+ By + Cz+D. The direction-cosines of the
perpendicular on the plane (Art. 28) are pr op01t10na1 tod, B, C;
hence the equations required are

v—x _y-y _
TR e

44, To ﬁnd the dzrectzon-cosmes of the bisector of the angle

between two given lines.
As we are only concerned with directions it is of course

sufficient to consider lines through the. origin. If we take
pomts Zy’2’, «’y”’2z” one on each line, equidistant from the
origin, then the middle point of the line joining these points
is evidently a point on the bisector, whose equation therefore is
gEey WV iahS L, T
CE,+.’0” —y/+y// = Z,-]- Z”
and whose direction-cosines are therefore proportional to

xl+wll, y/+yll, z/+z//
but since &, 3, 23 z”, y”, 27 are evidently proportional to the
direction-cosines of the given lines, the direction-cosines of the
bisector are

cosa’ + cosa”, cosB + cosB”, cosy + cosy”,

each divided by the square root of the sum of the squares of

these three quantities.
The bisector of the supplemental angle between the lines

I/ 4 PWi4

is got by substituting for the point a”%”2” a point equidistant
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from the origin measured in the opposite direction, whose
4

coordinates are — a”, —y”, —2”; and therefore the direction-
cosines of this bisector are

cosa’ — cosa”y cosB — cosB”, cosy’ — cosy”,

each divided by the square root of the sum of the squares of
these three quantities. The square roots in question are ob-
viously 4/(2+2 cosd); that is, 2 cos}d and 2 sindd, if & is the
angle between the two lines.

N.B. The equation of the plane bisecting the angle between
two given planes is found precisely as at Conics, Art. 35, and is

(x cosa+y cosB+ zcosy—p) =1 (x cosa’+ y cos B'+ 2z cosy’—p’).

45. To find the angle made with each other by two lines
_y—b s8—-c x—a y—-b z—oc

ARCETIRESY A S SR T Y

Evidently (Arts. 13, 42),

U+ mm” +nn
/\/U:_‘_ 7712 +n2[\l '\/(lu’l' ”2/2_’_ n/z) *

Cor. The lines are at right angles to each other if

cosf =

W+ mm’ + nn' =0.

Ex. To find the angle between the lines & = L = 2 3 =iy o1, W 1%e 302,

46. To find the angle between the plane Ax+ By + Cz+ D,
and the lz'nem—-a:y—b =
{ m n :
The angle between the line and the plane is the complement
of the angle betwecen the line and the perpendicular on the
plane, and we have therefore

Al+ Bm + Cn
V(4 m* 4+ n®) § (A + B+ CF)°

Cor. When Al+ Bm+ Cn=0, the line is parallel to the
plane, for it is then perpendicular to a perpendicular on the
planc.

sin6’=
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47. To find the conditions that a line x=mz+ a, y=nz+b
should be altogether in a plane Ax+ By+ Cz+ D. Substitute
for z and y in the equation of the plane, and solve for z, when
we have

- ~Aa+ Bb+ D

~ " Am+ Bn+ C?
and if both numerator and denominator vanish, the value of z
is indeterminate and the line is altogether in the plane. We
have just seen that the vanishing of the denominator expresses
the condition that the line should be parallel to the plane; while
the vanishing of the numerator expresses that one of the points
of the line is ¢» the plane, viz. the point ab where the line meets
the plane of ay.

In like manner in order to find the conditions that a right
line should lie altogether in any surface, we should substitute
for # and y in the equation of the surface, and then equate to
zero the coefficient of every power of z in the resulting equation.
It is plain that the number of conditions thus resulting is one
more than the degree of the surface.®

48. To find the equation of the plane drawn through a given
line perpendicular to a given plane.

Let the line be given by the equations

Ax+ By + Cz2+ D=0, Ax+By+ Cz+D =0,
and let the plane be
A’z + B"y+ "2+ D" =0.

Then any plane through the line will be of the form
' AMAx+By+ Co+ D)+ pu(d’z+ By+ Cz+D')=0,

and, in order that it should be perpendicular to the plane, we
must have

(A + pd') & + (B4 pB) B +(AC+pC’) C” =0

* Since the equations of a right line contain four constants, a right line can be
determined which shall satisfy any four conditions. Hence any surface of the second
degree must contain an infinity of right lines, since we have only three conditions to
gatisfy and have four constants at our disposal. Every surface of the third degree
must contain a finite number of right lines, since the number of conditions to be
satisfied is equal to the number of disposable constants. A surface of higher degree
will not necessarily contain any right line lying altogether in the surface,
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This equation determines A : u, and the equation of the required
plane is
(44" + BB+ C'C”)(Ax + By + Cz + D)

= (44" + BB" + CC") (A’x+ B'y+ C'z+ D).
When the equations of the given plane and line are given
in the form
x-od y—y z2—2
cosa’ cosf’ cosy ’

x cosa+ 3y cosB +2zcosy=p;

we can otherwise easily determine the equation of the required
plane. For it is to contain the given line whose direction-angles
are o/, By o; and it is also to contain a perpendicalar to the
given plane whose direction-angles are a, B, v. Hence (Art. 15)
the direction-cosines of a perpendicular to the required plane are
proportional to

cos3’ cosy—cosB cosy’, cosy” cosa—cosy cosa’, cosa’ cosB—cosa cosf3’,
and since the required plane is also to pass through 2'y2’, its
equation is

(z—a) (cos B cosy’ — cos B costy) + (y—y’) (costy cosa’~ cosy’ cosa)

+ (2 — 2) (cosa cos B’ — cosa’ cos B) =0.

49. Ghven two lines to find the equation of a plane drawn
through either parallel to the other.

First, let the given lines be the intersections of the planes
L, M; N, P, whose equations are given in the most general
form. Then proceeding exactly as in Art. 37, we obtain the
identical relation

L(4'B"C")-M(4"B” C)+N(A"BCO")~PAB O")=(4'B" "' D),

the right-hand side of the equation being the determinant, whose
vanishing expresses that the four planes meet in a point. It is
evident then that the equations

L(4B"C") - M(A"B” 0)=0, N(A”BC)~P(4BC")=0

represent parallel planes, since they only differ by a constant
quantity ; but these planes pass each through one of the given
lines.
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Secondly, let the lines be given by equations of the form
x_m/_y—yl_z_z/. x_mll_?/_y//—z_zl/

cosa cosS cosy’ cosa’  cosB  cosy °

Then since a perpendicular to the sought plane is perpendicular
to the direction of each of the given lines, its direction-cosines
(Art. 15) are the same as those given in the last example, and
the equations of the sought parallel planes are

(®— ') (cos B cosy’ —cos B cosey)+(y—z')(cosy cosa’ — cosy’ cosar)
+ (2 —2")(cosa cos3’ — cosa cos3) =0,

(z—2")(cos B cosy’— cos B’ cosy)+(y—y”) (cosey cosa’—cosy cosa)
+(z —2")(cosa cos B’ — cosa’ cos B)=0.

The perpendicular distance between two parallel planes is equal
to the difference between the perpendiculars let fall on them
from the origin, and is therefore equal to the difference between
their absolute terms, divided by the square root of the sum of
the squares of the common coefficients of , 7, 2. Thus the per-
pendicular distance between the planes last found is

(x'— ) (cos B cosy’— cos B cosy)+(y'—y") (cosy cosa’— cosy’ cosa)
+ (2’ — 2"”) (cosa cos B’ — cosa’ cos B) divided by sin b,
where 0 (see Art. 14) is the angle between the directions of the
given lines. It is evident that the perpendicular distance here

found is shorter than any other line which can be drawn from
any point of the one plane to any point of the other.

50. To find the equations and the magnitude of the shortest
distance between two non-intersecting lines.

The shortest distance between two lines is a line per-
pendicular to both, which can be found as follows: Draw
through each of the lines, by Art. 48, a plane perpendicular
to either of the parallel planes determined by Art. 49; then the
intersection of the two planes so drawn will be perpendicular
to the parallel planes, and therefore to the given lines which
lie in these planes. From the construction it is evident that
the line so determined meets both the given lines. Its mag-
nitude 1s plainly that determined in the last article. Calculating
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by Art. 48 the equation of a plane passing through a line whose
direction-angles are a, 8, v, and perpendicular to a plane whose
direction-cosines are proportional to
cosf’ cosy—cosBcosy’, cosy’ cosa—cosycosa’, cosa’ cosB—cosacosS’,
we find that the line sought is the intersection of the two planes
(x—2)(cosa’ — cost cosa) + (y — ') (cos B’ — cos & cos3)
+ (2 —2")(cosy’ — cos & cosy) =0,
(x —a”)(cosa—cosf cosa’)+ (y — y”) (cos B — cos @ cos B)
+ (2 —2")(cosey — cosfl cosy’)=0.

The direction-cosines of the shortest distance must plainly be
proportional to
cos3’ cosy—cosf cosy’, cosrycosa—cosy cosa’, cosa cos3—cosacosS’.

Ex. To find the shortest distance é between the right line

. xzcosa +ycosPB +2zcosy =p,
xzcosa +ycosB +zcosy =p',

and that joining the points P’ (¢, ¥, 2’) and P~ (z"y"2").

Denoting by L, M the perpendiculars from any point zyz on the two given planes
and by L'M’, L"M" those from the points P', P”; L + AM =0 is the equation of

g . I’ + ma"

any plane passing through the first right line, and B F4Tic
any point on the second. Hence, if the point in which this second right line meets

L + AM = 0 be taken infinitely remote, or having I+ m = 0, A can be found so as to
determine the plane through the first line parallel to the second. This gives

L'+ AM' = L™+ AM".
Hence LM" — LM = LM’ — L'M is the plane through L, M required.
Again, LM —L'"M=LM —L'M+L'M"—L"'M

differs from the former only by a constant, therefore is parallel to it, but also this
equation is satisfied by the coordinates of the points P’ and P”, therefore it passes
through the second line.

Thus by dividing L'M" — L”M’ by the square root of the sum of squares of
coefficients of z, y and z in either of these equations, we find the required shortest
distance.

The result of reducing this expression can also be arrived at thus: L'’ are the
lengths of perpendiculars from P’ on the two given planes. They are both contained
in a plane through P’ at right angles to the right line L}, In like manner L"M" are
contained in a parallel plane through P”. Now considering projections on either of
these planes, if ¢ be the angle between the planes L and M, double the area of the
triangle subtended by the projection of P’P” at the intersection-of L, 3 multiplied
by sin¢ = L'M" — L"M’'. But that double area is evidently the product of the
required shortest distance & between the two given lines by the projection of P'P”,
Hence, calling 6 the angle between the two lines, we see that

L'M" — L"M' = (P'P""). 6.sin 0 sin ¢,

&c. are the coordinates of
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51. When the equations of a right line are written in the
x—x y-y z2-—42
R TR
they appear to involve five independent quantities, viz. o'y’7/,
and the ratios 7: m : n. But itis easily seen that z'y’2" occur in
groups which are not independent, and the total number of
independent constants is only four, as we saw in Art. 40. In
fact, if we denote respectively by q, b, ¢ the quantities mz" — ny/,
nx’ — 2/, ly’ — ma’, we have at once the relation la 4+ mb + nc =0,
and subject to this the equations of the right line are any two of
the four equations

form to any system of coordinate axes

ny — mz+a =0,

— nx + 10z +56=0,
mx — ly +c=0,
ax + by + cz =0,

for by the above relation the remaining two can in all cases be
deduced.

We have now six quantities q, 3; ¢, [, m, n which serve to
determine the position of a right line provided the relation
la+ mb + nc=0 hold, and these we shall call the six coordinates
of the right line. If we examine the conditions, as in Art. 47,
that this right line may be wholly contained in the plane

Ax+ By+ Cz+ D=0,
we find they are any two of the four equations
Be — Cb + DIl =0,
— Ac + Ca+ Dm =0,
Ab — Ba + Dn =0,
Al + Bm + Cn =0,
from which also by the universal relation al+ &m +cn =0, the
remaining two can ‘in all cases be deduced. It is important to
observe that the quantities @, b, ¢ which are the functions
mz —ny, nx — lz, ly — mx of the coordinates z, y, z of any point
on the right line have the same values for each point on it.
‘We are thus enabled to express in z, y, z coordinates the

relation equivalent to any ‘given relation in @, b, ¢. Again, if
F
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we suppose the z, y, z axes rectangular, so that {=-cosa,
m=cos3, n=cosy, it is easily seen, by Art. 15, that a, b, ¢
are the coordinates of a point on the perpendicular through
the origin to the plane passing through the origin and the
given line, and at a distance from the origin equal to that of
the given line.

Ex, To express by the coordinates of two right lines the shortest distance between
them,

The expression found at the close of Art. 49 for the product of the shortest
distance & between two right lines by the sine of the angle 0 at which they are
inclined may be written

' — 2", cosa, cosa
Yy —y", cosB, cosp
2’ — 2", cosy, cosy’
if we replace cosa, &c., by ¥, &c., cosa’, &c., by ", &c. this may be written

- wl’ ll’ l” m”’ l’, ll’ 3
’ ’ ” " ’ ”
Yy, m, m Yy, m, m
z” nl’ nl’ z'l, n/, n//

in which we see that the coordinates of the points ', &c. occur only in the groups
mentioned above. '
Hence in the notation of this article, also omitting reference to sign,

a Si.ne — llall + mlb'l + n’ ' + lllal + mllbl + nllcl
This quantity has been called by Prof. Cayley (Trans. Cambridge Phil. Soc.,
vol. XI. part ii. 1868) the moment of the two lines.

52. Before proceeding to further considerations on the co-
ordinates of a right line we introduce some properties of tetra-
“hedra obtained by various methods, which will be useful in
the sequel.

To find the relation between the six lines joining any four
points in a plane.

Let a, b, ¢ be the sides of the triangle formed by any three
of them ABC, and let d, e, f be the lines joining the fourth
point D to these three. Let the angles subtended at D by
a, b, ¢ be a, B, v; then we have cosa = cos(8 + ), whence

cos’a + cos’B + cos’y — 2 cosa cos B cosy = 1.

This relation will be true whatever be the position of D,
either within or without the triangle ABC. But

62+f2—a2 —fz+d2 bz —Jz+ez_c2
BB hlter e ey

Cosa =
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Substituting these values and reducing, we find for the required
relation

@@= &) (@ =)+ B (E =) (=) + 8 (= 2) (=)
+a*'d* (@ — b* — &) + b (b* = ¢ — ') + ¢f* (¢* — a*— b*) +a’b’c’=0,
a relation otherwise deduced Conics, p. 134.

53. To express the volume of a tetrahedron in terms of its
six edges.

Let the sides of a triangle formed by any face ABC be
a, b, c; the perpendicular on that face from the remaining
vertex be p, and the distances of the foot of that perpendicular
from 4, B, Cbe d,¢,f’. Thena,bd,c,d, ¢, f are connected
by the relation given in the last article. But if d, e, f be the
remaining edges &*=d”+p?, ¢ =¢*+p’, f'=f"+p’; whence
d*—e*=d" - ¢, &c., and putting in these values, we get

— F=p*(2b°C + 2¢’a* + 2’0" — a* — b* — '),

where F is the quantity on the left-hand side of the equation
in the last article. Now the quantity multiplying p* is 16 times
the square of the area of the triangle ABC, and since p
multiplied by this area is three times the volume of the
pyramid, we have F'=— 144 V"

54. To find the relation between the sixz arcs joining four
points on the surface of a sphere.

We proceed precisely as in Art. 52, only substituting for
the formule there used the corresponding formula for spherical
triangles, and if a, B, v, §, ¢, ¢ represent the cosines of the six
arcs in question, we get
&+ B+ + 8+ e+ P — a8 — B — " + 20882 + 2Byed + 2yadp

— 2083y — 20z — 288 — 28z = 1.
This relation may be otherwise proved as follows: Let the
direction-cosines of the radii to the four points be

cosa, cosf, cosvy,
cosa, cosfB’, cosy,
cosa”’, cosfB”, cosy”,

, cosB8

4 /77

cosa” , cosy”.
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Now from this matrix we can form (by the method of Lessons
on Iligher Algebra, Art. 25) a determinant which shall vanish
identically, and which (substituting cos’a + cos’8 + cos’y =1,
cosa cosa’ 4 cos B cos B’ + cosy cosy’ = cosab, &e.) is
1, cosab, cosac, cosad

cosba, 1, cosbe, cosbd

cosca, cosch, 1, cosed

cosda, cosdb, cosde, 1 =0,

which expanded has the value written above.

This relation might have been otherwise derived from the
properties of tetrahedra as follows: ~

Calling the areas of the four faces of a tetrahedron
4, B, C, D; and denoting by AB the internal angle between
the planes 4 and B, &c. we have evidently any face equal
to the sum of the projections on it of the other three faces.
Hence we can write down

—A4 +DBcosdB+ CcosAC+ D cosdD =0,
AcosB4 —B + CcosBC+DcosBD =0,
AcosCA+BcosCB —-C +DcosCD=0,
AeosDA+ BcosDB+ CcosDC —D =0,

from which we can eliminate the areas 4, B, C, D, and get
a determinant relation between the six angles of intersection
of the four planes.

Now as these are any four planes, the perpendiculars let
fall on them from any point will meet a sphere described
with that point as centre in four quite arbitrary points, say
a, b, ¢, d, and each angle as ab is the supplement of the cor-
responding angle 4B between the planes, hence the former
condition.

N.B. The vanishing of a determinant (see Higher Algebra,
Art 33, Ex. 1) shows that the first minors of any one row are
respectively proportional to the corresponding first minors of
any other. We see by this article that the minors of the
second- determinant are proportional to the areas of the faces
of the tetrahedron.

The reader will not find it difficult to show that for any
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four points on the sphere, each first minor of the corresponding
determinant is that function of one of the four spherical triangles
formed by the points which we mentioned in the note to Art. 32
and which has been called by v. Staudt, Crelle, 24, p. 252,
1842, the sine of the solid angle that triangle subtends at the
centre of the sphere.

55. To find the radius of the sphere circumscribing a tetra-
hedron.

Since any side a of the tetrahedron is the chord of the arc
2

At a B :
whose cosine is a, we have a=1— 5,0 with similar expressions
=

for B, y, &c.; and making these substitutions, the first formula
of the last paragraph becomes f

F 200 + edf + 20, a’d’ — a'd' = bie — o

st 16:° ah
whence if ad + be + ¢f =28,
, 2_ 8(8—ad) (85— be) (S§—¢f)
we have § = TNE :

which has been otherwise deduced, see Higher Algebra, Art. 26.

The reader may exercise himself in proving that the shortest
distance between two opposite edges of the tetrahedron is equal
to six times the volume divided by the product of those edges
multiplied by the sine of their angle of inclination to each other,
which may be expressed in terms of the edges by the help of
the relation 2ad cosd = b* + ¢’ — ¢* — f*.

56.% We can establish the general formule for transforma-
tion of quadriplanar coordinates by proceeding one step farther
in finding the centre of mean position than we did in Art. 9.
We see that if in the tetrahedron whose vertices are P, P,
‘P, P, the line joining P, to P, be cut in P, in the ratio n : m,
then the line joining P’ to P, in P” in the ratio {: m + n, and
lastly that joining P” to P, in P in the ratio & : [+ m +n, the

* The student may omit the rest of this chapter on first reading..
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perpendicular 2 from P on any plane on which the perpendiculars
SR RSP P ate ) 8, W, e, 18

_ kx4 lo, 4 mx, 4 nx,

 ktl+m+n

Now it is evident that 2 : %z + !+ m+n as the pyramid on
PP P, whose vertex is at P is to the pyramid on the same base
whose vertex is at P, or, as the perpendiculars from those points
on the plane P,P,P,. We have similar values for the coefficients
of Ly Lgy Lye :
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