!3}‘ i
"ii- "o.l

4

-
o
-

ki R
G e R

ARG R
1-7-.-. Bt
i<



















American athematical Sevies

E.J. TOWNSEND
GENERAL EDITOR



MATHEMATICAL SERIES

While this series has been planned to meet the needs of the
student who is preparing for engineering work, it is hoped that it
will serve equally well the purposes of those schools where mathe-
matics is taken as an element in a liberal education. In order that
the applications introduced may be of such character as to interest
the general student and to train the prospective engineer in the
kind of work which he is most likely to meet, it has been the policy
of the editors to select, as joint authors of each text, a mathemati-
cian and a trained engineer or physicist.

The following texts are ready:

I. Calculus.

By E. J. TownsenD, Professor of Mathematics, and G. A. Goop-
ENOUGH, Professor of Thermodynamics, University of Illinois.
$2.50.

Il. Essentials of Calculus.

By E. J. TownseND and G. A. GOODENOUGH. $2.00.
IIl. College Algebra.

By H. L. RieTz, Assistant Professor of Mathematics, and Dr. A.
R. CRATHORNE, Associate in Mathematics in the University of
Illinois. $1.40.

IV. Plane Trigonometry, with Trigonometric and Logarithmic

. Tables.

By A. G. HaLr, Professor of Mathematics in the University of
Michigan, and . H. Frink, Professor of Railway Engineering in
the University of Oregon. $1.25.

V. Plane and Spherical Trigonometry.
(Without Tables)

By A. G. HALL and F. H. FrRixk.  $1.00.
V1. Trigonometric and Logarithmic Tables.

By A. G. HaLL and F. H. FrRINK. 75 cents.

The following are in preparation:

Plane Analytical Geometry.

ByL.W.DowLING, Assistant Professor of Mathematics, and F. E,
TurRNEAURE, Dean of the College of Engineering in the University
of Wisconsin. :

Analytic Geometry of Space.

By VIrRGIL SNYDER, Professor in Cornell University, ana C. H,
S1sam, Assistant Professor in the University of Illinois.

Young and Schwartz’s Elementary Geometry.

By J. W. Youne, Professor of Mathematics in Dartmouth Col-
lege, and A. J. Scawartz, William McKinley High School, St. Louis.

HENRY HOLT AND COMPANY

NEW YORK CHICAGO



ANALYTIC GEOMETRY
OF SPACE

BY

VIRGIL SNYDER, Pu.D. (GOTTINGEN)

PROFESSOR OF MATHEMATICS AT CORNELL
UNIVERSITY

AND

C. H. SISAM, Pu.D. (CoRNELL)

ASSISTANT PROFESSOR OF MATHEMATICS AT THE
UNIVERSITY OF ILLINOIS

f
L fa)
S,

NG T
L

e

. NEW YORK
HENRY HOLT AND COMPANY
1914



CoPYRIGHT, 1914,
BY
HENRY HOLT AND COMPANY

Nortwood Press
J. 8. Cushing Co. — Berwick & Smith Co.
Norwood, Mass., U.8.A,



PREFACE

" Ix this book, which is planned for an introductory course,
the first eight chapters include the subjects usually treated in
rectangular codrdinates. They presuppose as much knowledge
of algebra, geometry, and trigonometry as is contained in the
major requirement of the College Entrance Examination Board,
and as much plane analytic geometry as is contained in the
better elementary textbooks. In this portion, proofs of theorems
from more advanced subjects in algebra are supplied as needed.
Among the features of this part are the development of linear
systems of planes, plane coordinates, the concept of infinity, the
treatment of imaginaries, and the distinction between centers
and vertices of quadric surfaces. The study of this portion can
be regarded as a first course, not demanding more than thirty or
forty lessons.

In Chapter IX tetrahedral coérdinates are introduced by means
of linear transformations, under which various invariant proper-
ties are established. These codrdinates are used throughout the
next three chapters. The notation is so chosen that no ambigu-
ity can arise between tetrahedral and rectangular systems. The
selection of subject matter is such as to be of greatest service for
further study of algebraic geometry.

In Chapter XIII a more advanced knowledge of plane analytic
geometry is presupposed, but the part involving Pliicker’s num-
bers may be omitted without disturbing the continuity of the
subject. In the last chapter extensive use is made of the cal-
culus, including the use of partial differentiation and of the
element of are.

The second part will require about fifty lessons.

355580
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ANALYTIC GEOMETRY OF SPACE

CHAPTER 1
COORDINATES

1. Rectangular coordinates. The idea of rectangular codrdinates
as developed in plane analytic geometry may be extended to space
in the following manner.

Let there be given three mutually perpendicular planes
(Fig. 1) X0Y, YO0Z, ZOX, intersecting at O, the origin. These
planes will be called codrdinate planes. The planes ZOX, XOY
interseet in X’0X, the X-axis; the planes XO0Y, YOZ intersect
in Y'0Y, the Y-axis; the
planes YOZ, ZOX intersect |
in Z'0Z, the Z-axis. Dis- !
tances measured in the o ~——-;»i-i,-,————

i
I
J

Z

directions X'OX, Y'0OY, oz
Z'0Z, respectively, will be
considered positive; those Y .
measured in the opposite i
directions will be regarded
as negative. The cobrdi- <

nates of any point P are its distances from the three coérdinate
planes. The distance from the plane YOZ is denoted by , the
distance from the plane ZOX isdenoted by y, and the distance
from the plane XOY is denoted by z. These three numbers
x, i, z arve spoken of as the w-, y-, z-coordinates of P, respect-
ively. Any point P in space has three real codrdinates. Con-
versely, any three real numbers x, ¥, z, taken as a-, y-, and 2-
codrdinates, respectively, determine a point P; for if we lay off a
distance OA=x on the X-axis, OB=y on the Y-axis, OC'=z on

i

%




2 ‘1. COORDINATES [Crap. 1.

the Z-axis, and draw planes through 4, B, C' parallel to the co-
ordinate planes, these planes will intersect in a point P whose
coordinates are z, y, and 2.

It will frequently be more convenient to determine the point
P whose codrdinates are z, y, and z, as follows: Lay off the
distance O4 = on the X-axis (Fig. 2). From A lay off the
distance AD =1y on a parallel to the Y-axis. From D lay off the

VA distance DP =z on a parallel to
c the Z-axis.

The eight portions of space

P separated by the coordinate

planes are called octants. If the
coordinates of a point P are a,

4 0= =X b, c, the points in the remaining
S Y octants at the same absolute
¥ B D distances from the ecoordinate

Fic. 2. planes are (—a, b, ¢), (a,— b, ¢),
(a, b, — ¢}, (—a,—b,¢),(— a, b, —¢), (@, — b, — ¢), (— a, — b,—©).

Two points are symmetric with regard to a plane if the line
joining them is perpendicular to the plane and the segment
between them is bisected by the plane. They are symmetric with
regard to a line if the line joining them is perpendicular to the
given line and the segment between them is bisected by the line.
They are symmetric with regard to a point if the segment be-
tween them is bisected by the point.

The problem of representing a figure in space on a plane is
considered in descriptive geometry, where it is solved in several
ways by means of projections. In the figures appearing in this
book a particular kind of parallel projection is used in which the
X-axis and the Z-axis are represented by lines perpendicular to
each other in the plane of the paper; the Y-axis is represented by
a line making equal angles with the other two. Distances
parallel to the X-axis or to the Z-axis are represented correctly
to scale, but distances parallel to the Y-axis will be foreshortened,
the amount of which may be chosen to suit the particular drawing
considered. It will usually be convenient for the student, in
drawing figures on cross section.paper, to take a unit on the
Y-axis 1/V/2 times as long as the unit on the other axes,
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EXERCISES

1. Plot the following points to scale, using cross section paper: (1, 1, 1),
(21 0) 3)1 ("45 o 11 _4)1 (_31 _4, 1)9 (4’ 41 - 1)1 (—77 2, 3), (“‘1, 5, —5),
(-4,2,8), B, -4, -1, (2,1, =38), (—1,0,0); (4, —2, 2), (0, 0, 2),
©, —1, 0), (—3,0,0), (0, 0, 0).

2. What is the locus of a point for which x = 0?

3. What is the locus of a point for whichx =0, y=0?

4. What is the locus of a point for whichx =a, y =0 ?

5. Given a point (%, I, m), write the codrdinates of the point symmetric
with it as to the plane XO0Y ; the plane ZOX; the X-axis; the Y-axis; the
origin.

2, Orthogonal projections. The orthogonal projection of a
point on a plane is the foot of the perpendicular from the point
to the plane. The orthogonal projection on a plane of a segment
PQ of a line * is the segment P'Q' joining the projections P’ and
Q' of P and @ on the plane.

The orthogonal projection of a point on a line is the point in
which the line is intersected by a plane which passes through the
given point and is perpendicular to the given line. The or-
thogonal projection of a segment P@ of a line 7 on a second line
I' is the segment P'Q' joining the projections P' and Q' of P and
@ on .

For the purpose of measuring distances and angles, one direc-
tion along a line will be regarded as positive and the opposite
direction as negative. A segment P@ on a directed line is
positive or negative according as @ is in the positive or nega-
tive direction from P. From thlS definition it follows that
PQ =— QP.

The angle between two intersecting directed lines ! and !’ will
be defined as the smallest angle which has its sides extending
in the positive directions along ! and I'. We shall, in general,
make no convention as to whether this angle is to be considered
positive or negative. The angle between two non-intersecting
directed lines ! and ' will be defined as equal to the angle be-
tween two intersecting lines m and m' having the same directions
as ! and ', respectively.

* We shall use the word line throughout to mean a straight line.



4 COORDINATES [Crae. L.

TuroreMm 1. The length of the projection of a segment of a
directed line on a second directed line is equal to the length of the
given segment multiplied by the cosine of the angle between the lines.

Let PQ (Figs. 3a, 3b) be the given segment on ! and let P'Q’
be its projection on . Denote the angle between ! and 7' by 6.
It is required to prove that

P’Q’ PQ cos 6.

Through P' draw a line !" having the same direction as I. The
angle between I' and I" is equal to §. Let Q" be the point in

; e /4
Ql ‘,/Q” #2 QI '/Q/l ‘/Q
- H (1
l /] l l l’ l” l
P 7)o Jp
Fic. 3a. Fic. 3b.

which " meets the plane through @ perpendicular to ! Then
the angle P'Q'Q" is a right angle. Hence, by trigonometry,
we have
P'Q = P'Q" cos 6.
But PQ" = PQ.
It follows that P'Q'= PQcos 6.

It should be observed that it makes no difference in this
theorem whether the segment P@) is positive or negative. The
segment P@Q = r will always be regarded as positive in defining
cosines.

TueoreEM 1I. The projection on a directed line 1 of a broken
line made up of segments PPy, PPy, +.+, P,_ P, of different lines is
the sum of the projections on l of its puarts, and s equal to the pro-
Jection on 1 of the straight line P\ P,.
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For, let Py, Py, Py ooey Py Plibe the projections of Py, P,
P, -, P, P, respectively. The sum of the projections is
equal to P17, ; that is,

PP, + P,Ps+ - + PP, =PFP,
But P', P, is the projection of P, P,. - The theorem therefore follows.

CoroLLARY. If Py, Py -+, P, are the vertices of a polygon, the
sum of the projections on any directed line | of the segments PP,
P,P,, -+, P, P, formed by the sides of the polygon is zero.

Since in this case P, and P, coincide, it follows that P, and P,
also coincide. The sum of the projections is consequently zero.

EXERCISES
1. If Ois the origin and P any point in space, show that the projections
of the segment OP upon the codrdinate axes are equal to the codrdinates of P.
2. If the cobrdinates of Py are &1, ¥1, 21 and of P are ¥z, ys, 22, show that
the projections of the segment Py P; upon the codrdinate axes are equal to
29 — X1, Y2 — Y1, Z2 — 21, respectively.
3. If the lengths of the projections of P, P; upon the axes are respectively
3, — 2, 7 and the codrdinates of Py are (— 4, 3, 2), find the cogrdinates of Ps.
4. Find the distance from the origin to the point (4, 3, 12).
5. Find the distance from the origin to the point (e, b, ¢).
6. Find the cosines of the angles made with the axes by the line joining
the origin to each of the following points.
(17 2, 0) (17 1’ 1) (— 7, 6, 2)
(0,2, 4) (1, — 4,2) (%, 9 2)

3. Direction cosines of a line. Z
Let I be any directed line in g
space, and let ' be a line through L
the origin which has the same ¢ r’// T
direction. If «, B, y (Fig. 4) e an
are the angles which ' makes %&a p
with. the cobérdinate axes, these b
are also, by definition (Art. 2),
the angles which I makes with
the axes. They are called the
direction angles of ! and their cosines are called direction cosines.
The latter will be denoted by A, u, v, respectively.

O

3
\
>

N\

Y
Fic. 4.
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Let P=(a, b, ¢) be any point on /' in the positive direction from
the origin and let OP=r. Then, from trigonometry, we have

(e

.
-

a b
A=cosa=-", p=cosB=-, v=1C0Sy=
i 7%

~

But r is the diagonal of a rectangular parallelopiped whose edges
are

04 = q, OB=)b, oC=c.
Hence, we obtain e V& + b+ 2

In this equation, as in the formulas throughout the book, except
when the contrary is stated, indicated roots are to be taken with
the positive sign.

By substituting this value of » in the above equations, we obtain

)\=cpsu=+,
\/a2+bz+cz
b
p=cosfB=———
\/a2+b2+c2,
v=cos7'=;-
Va:+ b4 ¢

By squaring each member of these equations and adding the
esults, we obtai
results, wi in N el a
hence we have the following theorem.

TrroreM. The sum of the squares of the direction cosines of a
line is equal to unity.

If Ay, p, v and Ay, py, v, are the direction cosines of two like
directed lines, we have

M=y =y n=v

If the lines are oppositely directed, we have

M=—Ay p=—pigy =—1p

4. Distance between two points. Let P, =(,, 11, %), Po=(%y ¥,
2,) be any two points in space. Denote the direction cosines of the
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line PP, (Fig. 5) by A, p, v and the length of the segment P, P,
by d. The projection of the segment P, P, on each of the axes is
equal to the sum of the projections V4

of P,0 and OP,, that is - e

M =2, — @, pd =Y, — Y, vd =2 — 2. b

By squaring both members of these / ; 7, |/MZX
equations, adding, and extracting the A N, N,

square root, we obtain Fia. 5.

d=V (@ — )2 +Ys — ¥1)2 + (22 — ?1)2, g
EXERCISES 0 ;

1. Find the distance between (3, 4, — 2) and (— 5, 1, — 6).

2. Show that the points (— 3, 2, — 7), (2, 2, — 3), and (— 8,6, — 2) are
vertices of an isosceles triangle. .

3. Show that the points (4,3, —4), (—2,9, —4), and (— 2, 3, 2) are
vertices of an equilateral triangle.

&

- 4. Express by -an equation that the point (z, y, 2) is equidistant from
(1,1, 1) and (2, 3, 4).

5. Show that 22 4 y% + 22 = 4 is the equation of a sphere whose center is
the origin and whose radius is 2.

6. Find the direction cosines of the line P, P;, given :

(a) P1=(0, 0, 0), Py=(2, 3, 5).
) h=(1,1,1), P=(22,2).
(cy P=(1, —2,3), Pr=(4,2, — 1).

7. What is known about the direction of a line if (e¢) cose=0?
(®) cose=0and cosB=0? (c) cose=1?

8. Show that the points (3, — 2, 7), (6,4, —2), and (5,2,1) are on a
line.

9. Find the direction cosines of a line which makes equal angles with the
coordinate axes.

5. Angle between two directed lines. Let 4, and I, be two
directed lines having the direction cosines X, p,, v; and Ay, g, vg,
respectively. It is required to find an expression for the cosine
of the angle between !, and /,, Through O (Fig. 6) draw two
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Z lines OP, and OP, having the same di-
p rections as [, and , respectively. Let
OP, = ryand let the cosrdinates of P, be

@%=0M, y=MN, z=XNF

77 X The projection of OP, on OP, is equal
N to the sum of the projections of the
FiG. 6. broken line OMNP, on OP, (Art. 2).

Hence OP,cos 0 = OMX, + MN y, 4+ NP, v,.
But OFP,=1y, OM=0,=1; MN=y, =7, NP=2z,=rm, .

e, we obtain
75 €08 0 = 1A 1Ay + Popypty + Tovyvy
or €08 & = MAy + pypa + vyva, 3

The condition that the two given lines are perpendicular is
that cos § =0. Hence we have the following theorem :

TreEorREM. Two lines I, and I, with direction cosines A, py, v, and
Agy pay vy, Tespectively, are perpendicular if

MAz + B2 + viv2 =0, 4)

The square of the sine of § may be found from (1) and (3).
Since sin?§ =1 — cos? §, it follows that

sin? 0 = (A% + e + vi) (A2 + o + ve) — (AAg + papss +vivy)?

= (Mipta — Agpar)*+ (v — pavi)® +(vidy — vy )2 )
6. Point dividing a segment in a Z P
2.
given ratio. Let P, = (z, 1, %) and PP
P, = (2, 3 25) be two given points o 2

(Fig. 7). It isrequired to find the

point P=(z, y, 2) onthe line PP, /O V\V X
such that P,P: PP,=m,: m.. Let v 4,

=N ; ¥
A, u, v be the direction cosines of Frla 7. -

the line PP, Then (Art. 2, Th. I) we have
P P\=z—ux and PP,A=1,—2.

Hence PP\ PP A=2—2 : 8y—X=m : My
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On solving for  we obtain
: My + My ! ©)
my + my
Similarly, Bl Vs L
my + Mg
M2y + My2s
= mypmy

It should be noticed that if m, and m, have the same sign, P, P
and PP, are measured in the same direction so that P lies between
P, and P,. If m and m, have opposite signs, P lies outside the
segment PP, By giving m; and m, suitable values, the cobr-
dinates of any point on the line P,P, can be represented in
this way. In particular, if P is the mid-point of the segment
P, P,, m; = m,, so that the codrdinates of the mid-point are

z + 2, Wt 2+ 2,

99 3 P 2=
S S T 2
EXERCISES
1. Find the cosine of the angle between the two lines whose direction
cosines are —1:, 2 3 aud —2— —i, L_
V14 \/14 V14 \/30 V30 V30

~2. Find the direction cosines of each of the codrdinate axes.

3. The direction cosines of a line are proportional to 4, — 3, 1. Find
their values.

4. The direction cosines of two lines are proportional to 6, 2, — 1 and
— 3, 1, — 5, respectively. Find the cosine of the angle between the lines.

5. Show that the lines whose direction cosines are proportional to 3, 6,
2; — 2,3, —6; —6,2,3are mutually perpendicular.

6. Show that the points (7, 3, 4), (1, 0, 6), (4, 5, — 2) are the vertices
of a right triangle.

. Show that the points (3, 7 2), (4, 3, 1), (1, 6, 3), (2, 2, 2) are the

vertlces of a parallelogram.

8. Find the coordinates of the intersection of the diagonals in the paral-
lelogram of Ex. 7.

9. Show by two different methods that the three points (4, 13, 3),
(3, 6, 4), (2, — 1, 5) are collinear.
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10. A line makes an angle of 75° with the X-axis and 30° with the Y-axis.
How many positions may it have ? Find, for each position, the cosine of the
angle it makes with the Z-axis. )

11. Determine the codrdinates of the intersection of the medians of the
triangle with vertices at (1, 2, 3), (2, 3, 1), (3, 1, 2).

12. Prove that the medians of any triangle meet in a point twice as far
from each vertex as from the mid-point of the opposite side. This point is
called the center of gravity of the triangle.

13. Prove that the three straight lines joining the mid-points of oppo-
site edges of any tetrahedron meet in a point, and are bisected by it. This
point is called the center of gravity of the tetrahedron.

14. Show that the lines joining each vertex of a tetrahedron to the point
of intersection of the medians of the opposite face pass through the center of
gravity.

15. Show that the lines joining the middle points of the sides of any
quadrilateral form a parallelogram.

16. Show how the ratio m,; : my (Art. 6) varies as P describes the line
P; 1P 20

7. Polar Coprdinates. Let OX, OY, OZ be a set of rectangular
axes and P be any point in space. Let O = p have the direc-

AZ tion angles «, 8, y. The position

: of the line OP is determined’ by

! P a, B, y and the position of P on

o 2 the line is given by p, so that the

NG position of the point P in space

© }'%"___ _____ is fixed when p, « B, y are
y.-"0 X known. These quantities p, &, B,
e y are called the polar codrdinates
Y FiRy 5 of P. As «, B,y are direction

angles, they are not independent, since by equation (1)
cos? « + cos? B4 cos?y =1.
If the rectangular cosrdinates of P are z, y, 2, then (Art. 3)
x=p Cos a, Yy = pcos B, z = p CoS y.
8. Cylindrical coordinates. A point is determined when its
directed distance from a fixed plane and the polar codrdinates of

its orthogonal projection on that plane are known. These co-
ordinates are called the cylindrical codrdinates of a point. If the
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point P is referred to the rectangular
axes «, ¥, %, and the fixed plane is taken
as z=0 and the ax-axis for polar axis,
we may write (Fig. 9)

x=p0089, y=psin9, =2z,

in which p, 6, z are the cylindrical codrdi- ’
nates of P. Fie. 9.

9. Spherical cobrdinates. Let OX, OY, OZ, and P be chosen as
in Art. 7, and let P’ be the orthogonal projection of Pon the plane
XO0Y. Draw OP. The position of P is defined by the distance
p, the angle ¢ = ZOP which the line OP makes with the z-axis,
and the angle 6 (measured by the angle XOP') which the plane
through P and the z-axis makes with the plane XOZ. The num-
bers p, ¢, 6 are called the spherical coordinates of P. The length
p is called the radius vector, the angle ¢ is called the co-latitude,
and 6 is called the longitude.

If P=(» ¥y, 2), then, from the figure
(Fig. 10),

OP'=pcos (90 — ¢)=p sin ¢.
Hence 2 =psin ¢ cos ¥,
Y =p sin ¢ sin 6,
Y Fe10 % 2 =p cos .

On solving these equations for p, ¢, 6, we find

p=Vat+ it + 2, ¢ =arccos— %, @=arctan Z.
'\/(l?2 + ?/2 e 22 X
EXERCISES
What locus is defined by p = 1?
What locus is defined by o = 60°?
What locus is defined by 6 = 30° ?
What locus is defined by ¢ = 45°?

5. Transform 22 4 y2 4 22 =4 to: (a) polar codrdinates, (b) spherical
codrdinates, (¢) cylindrical codrdinates.

6. Transform «2 + y2 = 22 into spherical codrdinates; into cylindrical
coordinates.

7. Express the distance between two points in terms of their polar
coordinates.

L= Do



CHAPTER 11

PLANES AND LINES

10. Equation of a plane. A plane is characterized by the
properties :

(@) It contains three points not on a line.

(b) It contains every point on any line joining two points on it.

(¢) It does not contain all the points of space.

TueorEM. The locus of the points whose covrdinates satisfy a
linear equation

Ax+By+ Cz+D =0 @)
with real coefficients is a plane.

We shall prove this theorem on the supposition that € # 0.
Since 4, B, C are nof all zero, a proof for the case in which
=0 can be obtained in g similar way. -

D

It is seen by inspection that the cobrdinates (0, 0, —6)

(O, 1, — = ED ), (1, 0, — (A’ED ) satisfy the equation. These

three points are not collinear, since no valués of m,, m, other than
zero satisfy the simultaneous equations (Art. 6)

my; =0, my =0, myA + m,B=0.
Let P, = (w0, 31, 2,) and P, = (2,, ¥, #,) be any two points whose
codrdinates satisfy (1). . The codrdinates of any point P on the
line P, P, are’of the form

o U + myx, Ml + Ml 2= Tu? + my2;
PR ey & e ’ . L —’ b § i e 5
my -+ m; my + my my + m,

The equation (1) is satisfied by the coordinates of P if
my(Ax, + By, + Oz + D)+ m,(Ax, + By, + Cz, + D)y=0,

but since the cosrdinates of I, and P, satisfy (1), we have
Awy + By, + Co, + D=0,  Ax, 4 By, + Oz, + D =0,

hence the codrdinates of P satisfy (1) for all values of m, and m,.
12
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Finally, not all the points of space lie on the locus defined by
(1), since the codrdinates <0, 0, —-Dg 0)) do mnot satisfy (1).

v

This completes the proof of the theorem. -

11. Plane through three points. Let (2, ¥, 21, (@3 Yo %))
(a3 Y5, 2;) be the codrdinates of three non-collinear points. The
condition that these points all lie in the plane

Aw+ By + Cz+D=0
is that their cobrdinates satisfy this equation, thus
Az, + By, + Oz + D=0,
Ax2+By2+C’z2+D=0,
A, + By, 4+ Cz,+ D=0.
The condition that four numbers 4, B, O; D (not all zero)
exist which satisfy the above four simultaneous equations is
e oy 2z 1
xm oy oH 1
v Y % 1
s Yy 2 1

=0 )

This is the required equation, for it is the equation of a plane,
since it is of first degree in w, y, z (Art. 10). The plane passes
through the given points, since the codrdinates of each of the given
points satisfy the equation.

12. Intercept form of the equation of a plane. If a plane inter-
sects the X-, Y-, Z-axes in three points 4, B, C, respectively, the
segments 0A, OB, and OC are called the intercepts of the plane.
Let A4, B, C all be distinct from the origin and let the lengths of
the intercepts be a, b, ¢, so that 4 =(a, 0,0), B =(0,0,0), C=
(0, 0, ¢). The equation (2) of the plane determined by these three
points (Art. 11) may be reduced to

b, f i
a +3 ar 2 (3)
This equation is called the intercept form of the equation of a
plane.
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EXERCISES

1. Find the equation of the plane through the points (1, 2, 3), (3,1, 2),
(57 o 17 3)'

2. Find the equation of the plane through the points (0, 0, 0), (1,1, 1),
(2,2, —2). What are its intercepts ?

8. Prove that the four points (1, 2, 3), (2,4, 1), (—1,0, 1), (0,0, 5)
lie in a plane. Find the equation of the plane.

4. Determine % so that the points (1, 2, —1), (8, —1, 2), (2, — 2, 8),
(1, — 1, k) shall lie in a plane.

5. Find the point of intersection of the three planes, x + y + z == (i),
22—y+2x=0,2—2y+32z=4.

13. The normal form of the equation of a plane. Let ABC
(Fig. 11) be any plane. Let OQ be drawn through the origin per-
pendicular to the given plane
and intersecting it at P'. Let
the direction cosines of OQ be
A, n, v and denote the length of
the segment OF' by p.‘

Let P=(, y, #) be any point
in the given plane. The projec-
tion of P.on OQ is P' (Art. 2).
Draw OP and the broken line
v/ OMNP, made up of segments

Fie. 11 ON =2, MN =y, and NP =z,
parallel to the X-, ¥-,and Z-axes, respectively. The projections of
OP and OMNP on OQ are equal (Art. 2, Th. IT). The projection
of the broken line is A 4+ py + vz, the projection of OPis OP' or p,
so that

Az A+ py +vz=p. 4)

This equation is satisfied by the cosrdinates of every point P in
the given plane. It is not satisfied by the codrdinates of any
other point. For, if P, is a point not lying in the given plane, it
is similarly seen, since the projection of OP, on 0@ is not equal to
p, that the codrdinates of P, do not satisfy (4).

Hence, (4) is the equation of the plane. It is called the normal
form of the equation of the plane. -The number p in this equa-
tion is positive or negative, according as P’ is in the positive or
negative direction from O on 0Q.
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14. Reduction o: the equation of a plane to the normal form. Let

Az 4+ By+ C24+D=0 6))

be any equation of first degree with real coefficients. Itisrequired

to reduce this equation to the normal form. Let @ = (4, B, C)

be the point whose cobrdinates are the coefficients of z, ¥,z in this

" equation. The direction cosines of the directed line OQ are
(Art. 3)

. B C

y = = .
VATB+C T VETB+ L VAP0
If we transpose the constant term of (3) to the other member of
the equatior, and divide both numbers by VA4 B - C%, we
obtain i
o ol e By
VAA+B+C VA4 B+
+ o 7= U
L+B+C? A+ B+
The plane determined by (7) is identical with that determined
by (5) since the coordinates of a point will satisfy (7) if, and only
if, they satisfy (5). By subtituting from (6) in (7) and comparing
with (4), we see that the locus ‘of the equation is a plane perpen-
dicular to OQ and intersecting 0@ at a point P' whose distance
from O is

()

(M)

o s

VAT B+

In these equations, the radical is to be taken with the positive

sign. The coefficients of x, y, z are proportional to A, u, v in such

a way that the direction cosines of the normal to the plane are

fixed when the signs of 4, B, C are known. But the plane is not

changed if its equation is multiplied by — 1, hence the position

of the plane alone is not sufficient to determine the direction of

the normal. In order to define a positive and a negative side of
a plane we shall first prove the following theorem :

@®)

TaeorEM. Two points P, P, are on the same side or on opposite
sides of the plane Ax+ By Cz+ D =0, according as their coordi-
nates make the first member of the equation of the plane have like or
unlike signs.
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For, let Py =(ay, ¥y, 7)), Po= (23 Yoy ’5:2) be two points not lying
on the plane. The point I> =(x, y, 2) in which the line P, P, inter-
sects the plane is determined (Art. 6) by the values of my, m,
which satisfy the equation

my(Ax, + By, + Oz, + D) + my(Ax + By, + Oz, + D)= 0.

If Axy+ By, +Cz + D and Ax, + By, + Cz + D have unlike
signs, then m, and m, have the same sign, and the point P lies be-
tween P, and P, If Ax + By, + Oy + D and Ay + By, + Oz,
+ D have the same sign, then the numbers m,, m, have opposite
signs, hence the point P is not between P, and P,

When all the terms in the equation

Aw+ By+C24+D=0

are transposed to the first member, a point (@), ¥, z,) will be said
to be on the positive side of the plane if Ax, + By, +Cz + D is a
positive number; the point will be said to be on the negative side
if this expression is a negative number. Finally, the point is on
the plane if the expression vanishes. It should be observed that
the equation must not be multiplied hy — 1 after the positive and
negative sides have been chosen.

N 15. Angle between two planes. The angle

/ \N’ between two planes is equal to the angle

between two directed normals to the planes;

A hence, by Arts. 5 and 14, we have at once
B <0 D the following theorem:
C by TueorEM. The cosine of the angle 6 be-

tween two planes '

i Ax+ By+ Cz+ D=0,
/\\ Az 4+ By 4+ C'24-D'=0
o Fra. 12. 8 defined by the equation
I/ ! !
AL - AA4'+ BB'+ CC { ©
VAL B+ CEVAR+ BR+ 07
In particular, the condition that the planes are perpendicular is

Ad'+ BB+ CC =0. (10)
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The conditions that the planes are parallel are (Art. 3)
4_B_C, ' (11)
The equations (11) are satisfied whether the normals have the
same direction or opposite directions. From the definition of the
angle between two planes it follows that in the first case the two
planes are parallel and in the second case they make an angle of
180 degrees with each other. We shall say, however, that the
planes are parallel in each case.

16. Distance to a point from a plane. Let P = (&, y;, 2;) be a
given point and 4z + By + Cz + D = 0 be the equation of a given
plane. The distance to P from the plane is equal to the distance
from the given plane to a plane through P parallel to it.

The equation

4w+ By 4 Cz — (Av, + By, + C2)=0

represents a plane, since it is of first degree with real coefficients
(Art.10). It is parallel to the given plane by Eqs. (11). It passes
through P since the coordinates of P satisfy the equation. When
the equations of the planes are reduced to the normal form, they
become, respectively,

A B
T+ Y
VAA+ B+ A+ B+
(o} —D
+ —— e L T —
VAL B0 VA B+ C?
A 5 B i
VA+B+C A+ B+ C?
C z=z1.’l7l,+ By, + Cz,.

e
VAL B+ VA EB$(C?
’

The second members of these two equations represent the dis-
tances of the two planes from the origin, hence the distance from
the first plane to the second, which is equal to the distance d to P
from the given plane is found by subtracting the former from the
latter. :
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The result is
d=Aw1+B!/l+Czl+D. 12) -

VA 4+ B4 C?

The direction to P from the plane, along the normal, is positive
or negative according as the expression in the numerator of the
second member is positive or negative (Art. 14), that is, according
as P is on the positive or negative side of the plane.

EXERCISES

1. Reduce the equation 3z — 12y — 4 2z — 26 = 0 to the normal form.

2. Write the equation of a plane through the origin parallel to the plane
r+2y==6.

3. What is the distance from the plane 3z +4y — 2 =5 to the point
@2, 2)*

4. Find the distance between the parallel planes )

20—y +32=4, 20—y+32+5=0.

5. Which of the points (4, 8, 1), (1, — 4, 3), (38, 5, 2), (— 1, 2, — 2),
(5, 4, 6) are on the same side of the plane 5 — 2y — 32z =0 as the point
(1’ 61 &1 3) ?

6. Find the codrdinates of a point in each of the dihedral angles formed
by the planes

3x+2y+bz—4=0, x—2y—2+6=0.

7. Show that each of the planes 25x 439y 4+ 82—43=0 and 25«
— 39y 4 1122z + 113 = 0 bisect a pair of vertical dihedral angles formed by
the planes 524 12247 =0 and 3y —42—6 =0. Which plane bisects
the angle in which the origin lies ?

8. Find the equation of the plane which bisects that angle formed by
the planes 8x —2y +2—4=0, 22+ y—32—2=0, in which the pomt
(1, 8, — 2) lies.

9. Find the equations of the planes ‘which bisect the dihedral angles
formed by the planes Az + By + Ciz2 + Dy =0, Asx + Boy + Coz + D2 = 0.

10. Find the equation of the locus of a point whose distance from the
origin‘is equal to its distance from the plane 3x + y — 2z =11.

11. Write the equation of a plane whose distance from the point (0, 2, 1)
is 8, and which is perpendicular to the radius vector of the point (2, — 1, —1).

12. Show that the planes 22z —y+2+43=0, 2 —y+42=0,3x+y
—224+8=0,4r—2y+22—5=0,92+ 3y —62—-T7=0,andTx —Ty
4 28z — 6 = 0 bound a parallelopiped.

13. Write the equation of a plane through (1, 2, — 1), parallel to the
plane x — 2y — z = 0, and find its intercepts.
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14. Find the equation of the plane passing through the points (1, 2} 3),
(2, — 8, 6) and perpendicular to the plane4x + 2y +3z=1.

15. Find the equation of the plane through the point (1, 3, 2) perpen--

dicular to the planes
22 +3y— 4z._2 4r—3y—2z=25.

16. Show that the planes « +2y—2=0, y+72—-2=0, x—2y —=z
—4=0, x+3y+2z=4, and 8z +3y —2=28 bound a quadrilateral
pyramid.

17. Find the equation of the locus of a point which is 3 times as far
from the plane 83z — 6y — 2z =0 as from the plane 22 — y + 2z = 9.

18. Determine the value of m such that the plane mx +2y — 32z =14
shall be 2 units from the origin.

19. Determine % from the condition that x — &y + 3 z = 2 shall be perpen-
dicular to 3z + 4y —22 = 6.

17. Equations of a line. Let A,z + By + Cz+ D, = 0and A
+ By + Cz 4 D, =0 be the equations of two non-parallel planes.
The locus of the two equations considered as simultaneous is a
line, namely, the line of intersection of the two planes (Art. 10).
The simultaneous equations '

Ax+ By+ Cz+ D, =0, ‘ /
A+ By + O+ Dy =0
are called the equations of the line.
The locus represented by the equations of two parallel planes,
considered as simultaneous, will be considered later (Art. 33).

irection cosines of intersecti planes.

Let )\, u, v be the direction cosines of the line of intersection of
the two planes

L= Aﬂf' +By,+ Cz+ D=0,

Ly = A+ By + Gz + D, =0.
Since the line lies in the plane L, =0, it is perpendicular to the
normal to the plane. Hence, (Arts. 5, 14)

A, + pB,+vC,=0.
Similarly, A, + pB, +vC, = 0.

By solving these two eqﬁations for the ratios of A, p, v, we obtain

e I B Ve S AP 13)
BO,— B0, G4 —Cd, 4B —A4B
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The denominators in these expressions are, therefore, proportional
to the direction cosines. In many problems, they may be used
instead of the direction cosines themselves, but, in any case, the
actual cosines may be determined by dividing these denominators
by the square root of the sum of their squares. It should be
observed that the equations of a line are not sufficient to deter-
mine a positive direction on it.

19. Forms of the equations of a line. If A, pu, v are the direction
cosines of a line, and if P, =(x,, ¥, %) is any point on it, the
distance d from P, to another point P =(z, ¥, #) on the line satis-
fies the relations (Art. 4)

M=x—2a, pd=y—1y, vd=2—2,.
By eliminating d, we obtain the equations

m"‘“’l:y—?/l:Z—zl, (14)
A " v

which are called the symmetric form of the equations of the line.
Instead of the direction cosines themselves, it is frequently

convenient to use, in these equations, three numbers a, b, ¢, pro-

portional, respectively, to A, u, ». The equations then become

TS BNl Y N R it (15)
a b ¢

They may be reduced to the preceding form by dividing the de-
nominator of each member by Va?+ 02 + ¢* (Art. 3).

If the line (15) passes through the point P, =(xy ¥ %), the
coordinates of P, satisfy the equations, so that :

L=t _Y—%h_%—%,
a b c

On eliminating a, b, ¢ between these equations and (15), we

obtain ?
T T S R A (16)
L= Ya2—Y%h B2

These equations are called the two-point form of the equations
of a line.
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20. Parametric equations of a line. Any point on a line may
be detined in terms of a fixed point on it, the direction cosines of
the ‘line, and the distance d of the variable point from the fixed
one. Thus, by Art. 4

x=xo+Ad, y=y,+ud, z2=2,+vd. amn
If A, u, v are given and (x,, ¥, %) represents a fixed point, any
point (, y, 2) on the line may be defined in terms of d. To every
real value of d corresponds a point on the line, and -conversely.
These equations are called parametric equations of the line, the
parameter being the distance.

It is sometimes convenient to express the coordinates of a
point in terms of a parameter « which is defined in terms of d by
a linear fractional equation of the form

s PR
v+ o’
in which «, B, y, 8 are constants satisfying the inequality
a8 — By=0.

By substituting these values of « in (17) and simplifying, we
obtain equations of the form

m=al+b,:<, y=a2+b2x, z=as+b35’ (18)
a;+ by ay+ by a4 by
in which a,, ), ete., are constants. Equations (18) are called the
parametric equations of the line in terms of the parameter «.

It should be observed that the denominators in the second
members of equations (18) are all alike. Each value of « for
which a,+ bk =0 determines a definite point on the line. As
a,+ b,k approaches zero, the distance of the corresponding point
from the origin increases without limit. To the value deter-
mined by a,+b,x=0 we shall say that there corresponds a
" unique point which we shall call the point at infinity on the line.

EXERCISES

1. Find the points in which the following lines pierce the cobrdinat
planes : . / > y
(@) x+2y—32z=1, 3x—2y+5z=2.

() x+3y+562=0, bx—3y+2=2.
(¢c) x+2y—5=0, 20— 3y +2z2=1.
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2. Write the equations of theline x +y—82z=6, 22—y +22=17 in
the symmetric form, the two-point form, the parametric form.

3. Show that the lines 42 4+ y— 32 =0, 29-—_/+‘)z+6._0 and 8
—y+z_1 10x + y — 42 + 1 = 0 are parallel.

4. Write the equations of the line through (8, 7, 8) and (—1, 5, 6).
Determine its direction cosines,

5. Find the equation of the plane passing through the point (2, —2, 6)

——and perpendicular to the line z =3, y =2z — 4.

-3 y+1 z+3andx—1

6. Find the value of % for whicl the lines ©—
2k k+1 3

sl 5 242
T )
7. Do the points (2, 4, 6), (4, 6, 2), (1, 3, 8) lie on a line ?
8. For what value of % are the points (k, — 3, 2), (2, — 2, 3), (6, —1, 4)
collinear ?

9. Isthere a value of & for which the points (Ic 2, —2), (2, — 2, k), and
(—2, 1, 3) are collinear ?

areqjerpendlcular

10. Show that the line % z c ] +12 =2= 3 Jies in the plane 2 4 2y

—-24+3=0.

11. Inequations (18) show that, as x approaches infinity, the correspond-
ing point approaches a definite point as a limit. Does this limiting point lie
on the given line ?

21. Angle which a line makes with a plane. Given the plane
Ar+By+ Cz:+D =0

i 0] FR e, O

and the line
a b ¢

The angle which the line makes with the plane is the complement
of the angle which it makes with the normal to the plane. The
direction cosines of the normal to the plane are proportional to
A4, B, C and the direction cosines of the line are proportional to
a, b, ¢, hence the angle 6 between the plane and the line is de-
termined (Art. 5) by the formula

s%n 0= G o0 > (19)
VA + B+ C*Vat + 1 + ¢

1 S 7.N et
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EXERCISES

1. Show that the planes 22 —8y+2+1=0, 52+2—1=0, 42+
9y — z— 5 =0 have a line in common, and find its direction cosines.

2. Write the equations of a line which passes through (5, 2, 6) and is

‘paralleltotheline 20 —8z+y—2=0,z+y+2+1=0.

3. Find the angle which the line x +y +22=0, 2x—;+22—1_0
makes with the plane 3z + 62— 5y +1 =0.

4. TFind the equation of the plane through the point (2, —2, 0) and
perpendicular to the line x + 2y ~3z=4,2x -3y +42=0.
5. Find the equation of the plane determined by the parallel lines
x4+l =’y—2=§ r—38 y+4_z-1
3 TS 2 T :
6. For what value of & will the two linesz +2y—2+3=0, 3 -
224+1=0;2r—y+2—2=0,x+y—2z+ k=0 intersect ?

7. Find the equation of the plane through the points (1, —1,2) and
(3,0, 1), parallel tothehne.c+y—z_0 2Jc+y+z—0

8. Show that the lines £—=% —2 i o R MR B Sorik R Ak R
T3 3 -2 - 1 3 2

; intersect, and find the equation of the plane determined by them.

9. Find the equation of the plane through the point (e, b, ¢), parallel to
8 = ./“Jl x— 2z, %—fzzy—yz:_z—-zg_
l] my ny lz ma ng

each of the lines,

10. Find the equation of the plane through the origin and perpendicular
totheline3x—y+4z+6=0,2+y—2=0.

i . g ] 1_2-3
11. Find the value of % for which the lines £—2 =¥+ G
J in e value of k& for whic e lines 7% o 5 )

x —; Py -;- 5_ z + 2 are perpendiculars

12. Find the values of % for which the planes kx — 5y +(k +6)2+3 =0
and (k — 1)z + ky + z = 0 are perpendicular.

13. Find the equations of the line through the point (2, 3, 4) which meets
the Y-axis at right angles.

22, Distance from a point to a line. Given the line
o O B Y, T
A n v
and the point P, = (a, ¥, 2,) not lying on it. It is required to find
the distance between the point and the line.
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Let P, =(ay, y, 2,) (Fig. 13) be any
point on the line; let P be the foot of
the perpendicular from P, on the line;
6 the angle between the given line and

x the line P,P,; let d be the length of

/ the segment 7,7, We have (Fig. 13)

Y Fig. 13. PP = P P?sin?f = d2 — d2 cos 6.

The direction cosines of the line PP, are 2= 0 Y2 = U1 2 — cz B
5 d a ad

from which (Art. 5)

=)= Yo—% Ea— 8
& e R
Hence,
PP} = d* — d? cos? 0 =(w, — a,)* +(y, — )2+ (2 — 2,)?
— (A (x, — )+ p (Y — )+ v (2 — 2))%  (20)

23. Distance between two non-intersecting lines. Given the
two lines
BB _Y=h 2=t —%_ Y—9_ z—2
A 1 141 2 (7% V2

which do not intersect. It is required to find the short:esti dis-

tance between them. Let A, p, v be the direction cosines of the -

line on which the distance is measured. Since this line is per-
pendicular to each of the given lines, we have, by Art. 5,
Equations (4) and (5),

Z
A i I F 27 ,
Hava— niply VA — Vz?‘l 4 M
RS RN A\
My — A, sin 6 I \d
where 6 is the angle between \-Q
the given lines. Mé——N\P
The length d of the required 0 >X
perpendicular is equal to the
projection on the common per-
Fic. 14.

pendicular of the segment PP’, Y
and is equal to the projection of ile hroken line PMNP’ (Fig. 14).
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d =Mz, — )+ w(y — 3/2)+V(z1 — %)
or .

X —x M Ay
d=% (h—Y m P

2
i 21— % W "

= 1
sin 0 e

EXERCISES

1. Find the distance from the origin to the line

4 1

2. Find the distance from (1,1,1) tox +y+2=0,3x—2y +4z= 0. -

3. Find the perpendicular distance from the point (— 2, 1, 3) to the line
z2+2y—2+3=0, 3x—y+22z+1=0.

4. What are the direction cosines of the line through the origin and the
point of intersection of the lines x +2y — 2z + 3=0,38x—y+22+1=0;
22—2y+832—2=0,c—y—2+3=0.

5. Determine the distance of the point (1, 1, 1) to the line x =0, y =0
and the direction cosines of the line on which it is measured.

x2—1_y—3_2-—-2
% .

6. Find the distance between the lines g:y +22 = z_—;l and ?—I—l

2 -1
7. Find the equations of the line along which the distance in Ex. b
is measured. 1 N ; :
8. TFind the distance between the lines 2¢ +y—2=0, 2—y+22=3
andz +2y—382z=4,2c—3y+4z="5. E

y—3 _2z+1

. 9. Express the condition that the lines - _Y-—h_z2-& T2
y < 1 my m Iz

=Y —Y3_ 2= 22 iptersect.
m2, Na .

24, System of planes through a line. If

L= Az + By + Cz + D=0,
Ly= Ay + By + Cw + D, =0

are the equations of two intersecting planes, the equation %L, +
¥y L, =0 is, for all real values of &, and k, the equation of a plane
passing through the line L, =0, L, = 0. For, kyL, + koL, = 0 is
always of the first degree with real coefficients, and is therefore
the equation of a plane (Art. 10); this plane passes through the
¢ line I, =0, I, =0, since the codrdinates of every point on the line
satisfy L, =0 and L, =0 and consequently satisfy the equation

-~
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keoly + kyL, = 0. Conversely, the equation of any plane passing
through the line can be expressed in the form %1, + kL, = 0,
since &, and k, can be so chosen that the plane kI, + kL, = 0
will contain any point in space. Since any plane through the
given line is determined by the line and a point not lying on
it, the theorem follows.

To find the equations of the plane determined by the line L, = 0,
L,=0,and a point 7 not lying on it, let the covrdinates of P, be
(@1, 2y 21).  If P, lies in the plane kI, + k,L, = 0, its codrdinates
must satisfy the equation of the plane; thus

k(42 + By + O+ D)) + ky( Aty + Byy, + Coza + Dy) = 0.
On eliminating %, and %, between this equation and k, L, + k. L, = 0,
we obtain

0 = (4 + By + O + Dy)(Ayz + By + Ciz + Dy)
— (Alxl + B + Cyz + Dl) (11275 + By + Cx + Dz);

as the equation of the plane determined by the line I, =0, L, = 0,
and the point P,.
It will be convenient to write the above equation in the abbre-

viated form
Ly(y) Ln(2) — Ly(o;) Lo(x) = 0.

The totality of planes passing through a line is called a pencil
of planes The number %,/k, which determines a plane of the
pencil is called the parameter of the pencil.

If, in the equation

Ly + kyLy = 0)

k, and k, are given such values that the coefficient of z is equal to
zero, the corresponding plane is perpendicular to the plane 2 =0.
Since this plane contains the line, it intersects the plane z = 0 in
the orthogonal projection of the line L, =0, L, =0. Similarly,
if k, and %, are given such values that the coefficient of y is equal
to zero, the corresponding plane is perpendicular to the plane y =0
and will cut the plane y =0 in the projection of L, =0, L,=0 on
that plane; if the coefficient of z is made to vanish, the plane will
contain the projection of the given line upon the plane z =0. The
three planes of the system &, L, + k,L, = 0 obtained in this way
are called the three projecting planes of the line 7, =0, L, = 0 on
the coordinate planes.
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Since two distinct planes
passing through a line are
sufficient to determine the
line, two projecting planes of
a line may always be em-
ployed to define the line. If
the line is not parallel to the
plane z=0, its projecting
planeson x =0 and y = 0 are
distinet and the equations of

zZ
1 A~
[ ‘!x'/‘/
— TP
0 I
Fia. 15.

Y

27

the line may be reduced to the form (Fig. 15)

r=mz+4+a, y=nz+b.

If the line is parallel to z = 0, the value of ¥ for which the coeffi-

X

(22)

cient of  is made to vanish will also reduce the coefficient of y to

y ;

A

- Fig. 16.

to define the line.

r=py4c¢ z=c.

Z zero, so that the projecting planes on
=0 and on y=0 -coincide.
projecting plane z =c and the projec-
ting plane on z = 0 may now be chosen
If the line is not

0 / >y parallel to the X-axis, the equations

This

of the line may be reduced to (Fig. 16)

(23)

Finally, if the line is parallel to the X-axis, its equations may be

reduced to (Fig. 17)

Y= b, Z=C.

If the planes L, = 0, L, = 0 are par-

allel but distinct, so that

4_5,_0C_D
A By 0 DY

(24)

Z

*Y/O

Fi1a. 17.

then every equation of the form k71,4 kL, =0, except when

by i Be LGy
k, 4, B, G

, defines a plane parallel to the given ones.

Conversely, the equation of any plane parallel to the given ones
can be written in the form kL, + k,L, =0 by so choosing % : k,

G
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that the plane will pass through a given point. In this case the
system of planes &, L, + k,L, = 0 is called a pencil of parallel planes.
Two equations,
L= Aw+ By + Cz+ D, =0,
L,= A + By 4 Cp + D* =0,

will represent the same plane when, and only when, the coefficients
4y, By, (), D, are respectively proportional to 4, B, C, D,; thus,
when

4_B5B_GC_D

4, B, C Dy
These conditions may be expressed by saying that every deter-
minant of order two formed by any square array in the system

'Al Bl 01 Dl
A, B, C, D,

shall vanish.

In this case multipliers %,, k, can be found such that the equa-
tion %&,L, + k. L, = 0 is identically satisfied.

Conversely, if multipliers %, &, can be found such that the pre-
ceding identity is satisfied, then the equations I,=0, L,=0
define the same plane.

EXERCISES

1. Write the equation of a plane through the line 7z + 2y — 2z — 3 =0,
3x— 3y + 2z — 5 =0 perpendicular to the plane 22 + y — 2z = 0.

2. What is the equation of the plane determined by the line 22 — 3y —
2+4+2=0,x—-y+42z=3 and the point (3, 2, — 2) ?

3. Determine the equation of the plane passing through the line

*+ 22z =4, y — 2z =8 and parallel to the linemz3=y';'4=zg &,

4. Does the plane 2 42y —z +3 =0 have more than one point in
common with the line 3z —y +22+1=0, 22 -3y +82—-2=0°?

5. Determine the equations of the line through (1, 2, 3) intersecting the
two lines  + 2 y—82=0, y—4z=4and 22—y +32=38, 32 + y + 2z + 1=0.

25. Application in descriptive geometry. A line may be repre-
sented by the three orthogonal projections of a segment of the line,
each drawn to scale. Consider the XZ-plane (elevation, or verti-
cal plane) as the plane of the paper, and the X Y-plane as turned
about the X-axis until it coincides with the XZ-plane. The pro-
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jections in the X Y-plane are thus drawn to scale on the same
paper as projections on the XZ-plane, but points are distinguished
by different symbols, as P, Pp. Q, Z
The X Y-plane is called the plan
or horizontal plane. Finally, let
the YZ-plane be turned about the
Z-axis until it coincides with the
XZ-plane, and let figures in the
new position be drawn to scale.

QI

B om
>
S
X
o

This is called the end or profile ¢ P
plane. Thus, in the figure (Fig. \\\

18), a segment PQ, wherein VY Q,
P=(1, 4, 8), @=(13, 9, 12), Fra. 18.

may be indicated by the three segments P'Q, P,Q, P,Q,.

Exampre. Find the equations of the projecting planes of the line
2¢+3y—42=5, x—4y+52=6.
Here, Li=2x+8y—42z—5, Li=x—4y+52z—6,
kiLy + koLa =(2 k1 + I’C‘z).’t -+ (3 k1 — 4 k2)y
+(—4Fk+8k)z+ (—Hk1—06k)=0.
If kg = — 2 k4, the coefficient of = disappears; thus the equation of the
plane projecting the given line on the plane » = 0 is
1ly—1424+7=0.
k3

If S the coefficient of » vanishes; the projecting plane on y =0 is
1

fonnd to be 112z — 2 = 38.
Finally, if %—2 = %, the projecting plane on z =0 is found. ~ Its equation
21

is 14z —y =49.
» EXERCISES
Find the equations of the projecting planes of each of the following lines :
1. x4+2y—32z=4, 2x—3y+42z=>5.
2 2x4+y+2=0, r—y+22=3.
3. x+y+2z2=4, r—y+3z=4
4. A+ By + Ciz+ D=0, Ayx+ Boy+ Cez+ D;=0.

26. Bundles of planes. The plane Ly = A+ By + Oz + D;
=0 will belong to the pencil determined by the planes ;= 0, L,=0,
assumed distinet, when three numbers %, k,, k;, not all zero, can
be found such that the equation &Ly + kL, + ks Ly = 0 is identi-
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cally satisfied for all values of «, 7, z. This condition requires that
the four equations &4, + k, A, + k4, =0, ’,B, + kB, + K, B; =0,
kG + k0o + %G, =0, kD, + kD, + k,D; =0 ave satisfied by
three numbers %,, k,, %;, not all zero; hence, that the four equa-
tions

|A1B203} =0, |3102D31 =0, | C\D,A4,| =0, | Dy 4,B; |=0

are all satisfied, wherein we have written for brevity,

Al Bl Ol
| 4,B,Cy| =|4, B, 0, ete.
A3 'B3 CS

These simultaneous conditions may be expressed by saying
that every determinant of order three formed by the elements
contained in any square array in the system

Al Bl Cl Dl

4, B, C, D,
4, By (5 Dy

shall vanish.

Conversely, if these conditions are satisfied, then three con-
stants %, k,, k; can be found such that the equation kL, + k,L,
+ KLy = 0 is identically satisfied, and the three planes L, =0,
L,=0, L =10 belong to the same pencil.

Let Li=Ax+ By+ Cz+ D, =0,
L,= Ax+ By + Cz + D, =0,
Li=Ax+ By+ Oz + D=0

be the equations of three planes not belonging to a pencil. If we
solve these three equations for (, ¥, 2), we find for the cosrdinates
of the point of intersection of the three planes, in case | 4,B,C |
# 0,

ENS !‘DIBZOS| Y =— I_A1D2C.l|_ o= IAIB?D:!‘ . (25)
A 20,7 | 4,B,C, |’ | 4,B,C; |

If | 4,B,C;| =0, but not all the determinants in the numerators
of (25) are zero, no set of valuesof w, y, z will satisfy all three
equations. In this case, the line of intersection of any two of the
planes is parallel to the third. For, if I, = 0 and L, = 0 intersect,
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the direction cosines of their line of intersection are proportional
(Art. 18) to ;

BOa Be PO LS el VA BE R,

The condition that this line is parallel to the plane L,=0 is
(Art. 21)

A3<Bx 02 = B201) + Bs(Culz == O‘.:Al) + Oa(Ale — AZBI) = 0’

which is exactly the condition | 4,B,0;|=0. The proof for the
other lines and planes is found in the same way.

If at least one of the determinants | 4,B,C;|, | D\B,Cs |, | A,D,Cy |,
and | 4,B,D;| is not zero, the system of planes

oLy + KoLy + R Ly = 0

is called a bundle. If [ABL]+ 0, all the planes of the bundle
pass through the point (25), since the coordinates of this point
satisfy the equation of every plane of the bundle. Conversely,
the equation of every plane passing through the point (25) can be
expressed in this form. This point is called the vertex of the
bundle. If |A4BC]=0, all the planes of the bundle are parallel
to a fixed line (such as I, =0, L,=0). In this case, the bundle
is called a parallel bundle.

27. Plane coordinates. The equation of any plane not passing
through the origin may be reduced to the form

we+vy+wz4+1=0. (26)

When the equation is in this form, the position of the plane is
fixed when the values of the coeflicients u, v, w (not all zero) are
known; and conversely, if the position of the plane (not passing
through the origin) is known, the values of the coefficients are
fixed. Since the numbers (u, v, w) determine a plane definitely,
just as (z, y, 2) determine a point, we shall call the set of num-
bers (u, v, w) the coordinates of the plane represented by equation
(26). Thus, the plane (3, 5, 2) will be understood to mean the
plane whose equation is 3z +5y+2241=0. Similarly, the
equation of the plane (2,0, —1)is 22 —2z+1=0. -

If u, v, w are different from zero, they are the negative recipro-
cals of the intercepts of the plane (u, v, w) on the axes (Art. 12).
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If u =0, the plane is parallel to the X-axis; if u = 0, v = 0, the
plane is parallel to the X Y-plane. The vanishing of the other
coefficients may be interpreted in a similar way.

28. Equation of a point. If the point (=1, 91, #) lies in the
plane (26), the equation
ury vy, +wz, +1=0 (€19)

must be satisfied. If ), y, 2 are considered fixed and u, v, w
variable, (27) is the condition that the plane (u, v, w) passes
through the point (x,, ¥, ). For this reason, equation (27) is
called the equation of the point (@, ¥1, %) in plane cobrdinates.

Thus, u—Bbv+2w41=0
is the equation of the point 1, —-5,2); ‘similarly,
SJu+w+1=0
is the equation of the point (3,0, 1).
If equation (27) is multiplied by any constant different from

zero, the locus of the equation is unchanged. Hence, we have
the following theorem :

Turorem. The linear equation
Au+ Bo+ Cw+D =0 (D=+0)
is the equation of the point (%, %, %) in plane cobrdinates,

Thus, u—5v—3w—2=0 is the equation of the point

-1 5 3
R 92/

AR
The condition that the cosrdinates g)f‘ u,’@('u/; of a plane satisfy
two linear equations

uy + 2y, +wz +1 =0, ULy + VYy + w2 +1 =0

is that the plane passes through the two points (, y, 2,) and
(2 Y2y 22) and therefore through the line joining the two points."
The two equations are called the equations of the line in plane
coordinates.
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EXERCISES

1. Plot the following planes and write their equations: (1, 2, 1), (3, — 4,
v i)v ("’ 1, %’ . %)
2. Find the volume of the tetrahedron bounded by the coérdinate planes
and the plane (— %, — }, — 3).
3. What are the codrdinates of the planes whose equations are
Te+b6y—z+1=0, r—6y+112+5=0, 9xr—4=0°?
* 4. Find the angle which the plane (2, 6, 5) makes with the plane
(_ 1, 1, 2). ¥
5. Write the equations of the points (1, 1, 1), (2, — 1, }), (6, —2, 1).
6. What are the coordinates of the points whose equations are
2u—v—3w+1=0, uw+2w—3=0, w—2=0?
7. Find the direction cosines of the line
Ju—v+2w+1=0, u+bv+2w—-1=0.
8. What locus is determined by three simultaneous linear equations in
- (uy v, w) ?
9. Write the equation satisfied by the cobrdinates of the planes whose

distance from the origin is 2. What is the locus of a plane which satisfies
this condition ?

29, Homogeneous coordinates of the point and of the plane. It is
sometimes convenient to express the codrdinates =, y, z of a point
in terms of four numbers «', ¥/, #', t' by means of the equations

A set of four numbers (2, ¥/, 2, ¢'), not all of which are zero, that
satisfy these equations are said to be the homogeneous codrdinates
of a point. If the coordinates («', ¥, 2/, t') are given, the point
is uniquely determined (for the case ¢'=0, compare Art. 32),
but if (x, y, z) are given, only the ratios of the homogeneous
coordinates are determined, since (2', ¥', 2/, ¢') and (kx', ky', k2', kt')
define the same point, k¥ being an arbitrary constant, different
from zero.

Similarly, if the cobrdinates of a plane are (u, v, w), four num-
bers (', o', w', s'), not all of which are zero, may be found such
that

u v
—5 =y, e =

£ = 0,
s! s' 7

S
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The set of numbers (u', v', w', s') are called the homogeneous coordi-

nates of the plane.

Where no ambiguity arises, the accents will be omitted from

the homogeneous codrdinates.

30. Equation of a plane and of a point in homogeneous coordinates.

* If, in the equation

Ax + By + Cz+ D=0
(D+#0, and 4, B, C are not all
zero) the homogeneous coordi-
nates of a point are substituted,
we obtain, after multiplying by
t, the equation of the plane in
homogeneous coordinates

Az + By+ Cz+ Dt =0.
The homogeneous coordinates
of this plane are (4, B, C, D).

If, in the equation

Auv+ Bv+Cw+D =0
(D=0, and A, B, (' are not all
zero) the homogeneous coordi-
nates of a plane are substituted,
we obtain, after multiplying by
s, the equation of the point in
homogeneous codrdinates

Auw+ Bv 4+ Cw+ Ds =0.

The homogeneous coordinates
of this point are (4, B, C, D).

31. Equation of the origin. Coordinates of planes through the
origin. The necessary and sufficient condition that the plane
whose equation is ux + vy + wz+st=0 shall pass through the
origin is s=0. We see then that s =0 is the equation of the
origin, and that (w, v, w, 0) are the homogeneous codrdinates of a
plane through the origin. Since s = 0, it follows from Art. 29 that
the non-homogeneous coérdinates of such a plane cease to exist.

32. The plane at infinity. Let (@, y, 2, {) be the homogeneous
coordinates of a point. If we assign fixed values (not all zero)
to x, ¥, z and allow ¢ to vary, the corresponding point will vary in
such a way that, as ¢ = 0, one or more of the non-homogeneous co-
ordinates of the point increases without limit. If ¢ =0, the non-
homogeneous coordinates cease to exist, but it is assumed that
there still exists a corresponding point which is said to be at
infinity. It is also assumed that two points at infinity coincide
if, and only if, their homogeneous coordinates are proportional.

The equation of the locus of the points at infinity is ¢ =0.
Since this equation is homogeneous of the first degree in , ¥, 2, ¢,
it will be said that t =0 is the equation of a plane. This plane
is called the plane at infinity.
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33. Lines at infinity. Any finite plane is said to intersect the
plane at infinity in a line. This line is called the infinitely dis-
tant line in the plane. The equations of the infinitely distant line
in the plane Az + By 4+ Cz + Dt =0 are Aw + By + C2=0,t=0.

TaeoreEM. The condition that two finite planes are parallel is
that they intersect the plane at infinity in the same line.

If the planes are parallel, their equations may be written in
the form (Art. 15)

Ar+By+ Cz+Dt =0, Ax+ By+ Cz+ D't=0. (28)

It follows that they both pass through the line
Ax+ By + Cz=0, t=0. (29)
Conversely, the equations of any two finite planes through the

line (29) may be written in the form (28). The planes are there-
fore parallel.

84. Coordinate tetrahedron. The four planes whose equations

in point codrdinates are :
z=0, y=0, 2=0, t=0

will be called the four coodrdinate planes in homogeneous coordi-
nates. Since the planes do not all pass through a common point,
they will be regarded as forming a.tetrahedron, called the coordi-
nate tetrahedron. The cobrdinates of the vertices of this tetra-
hedron are Y

©,0,0,1), (0,0,1,0), (0,10,0), (1,0,0,0).
The codrdinates of the four faces in plane coordinates are
0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0).

The equations of the vertices are u =0, v=0, w=0, s=0.

EXERCISES

1. Find the non-homogeneous codrdinates of the following points and
planes:

(a) Te+3y+32—4=0, @ 9u—v—3w+2=0,
(b) 10x—3y+15=0, () u+v—w—-T7=0,
(¢) 2—2=0, (f) 2w+ 11=0.

2. Determine the codrdinates of the infinitely distant point on the line
3z +2y+6t=0, 20¢—102+3t=0.



36 PLANES AND LINES [Crap. IL

3. Show that if L;(u)=A4,u + By + Ciw + D1s =0, and Lo(u)=Asu
+ By + Cow + Dys = 0 are the equations of two points, the equation of any
point on the joining line may be written in the form %, L, + ko L; =0.

4. Show that theplanesx +2y +72—-3t=0,2+3y+ 62=0, x+4y
+ 52z — 2t = 0 determine a parallel bundle. Find the equation of the plane
of the bundle through the points (2, — 1, 1, 1), (2, 5, 0, 1).

35. Systemof four planes. The condition that four given planes

L = Ax+ By + Cz 4 Dit =0,
Ly= Ax+ By + Cz + Dyt =0,
Ly=Ax+ By + Oz + Dit =0,
Li=Ax+By+ Cz+ D¢ =0

all pass through a point is that four numbers (z, y, #, ¢), not all
zero, exist which satisfy the four simultaneous equations. The
condition is, consequently, that the determinant

4, B, C D
A, B, O, D,
4, By O Dy
4, By C, D,

is equal to zero. If this condition is not satisfied, the four planes
are said to be independent. When the given planes are independ-
ent, four numbers %, k,, ks, &, can always be found such that the
equation
kyLy + Ky Lip 4 kL + ky Ly = 0

shall represent any given plane. For, let ax + by +¢z +d =0 be
the equation of the given plane. The two equations will repre-
sent the same plane if their coeflicients are proportional, that is,
if numbers k,, k,, k;, k,, not all zero, can be found such that

a=k A + ko d;, + ks Ay + ki, Ay
b="Fk DB, + kB, + k3 B; + k,B,,
c=kC + k0, + k0 + £,C,,
d=FkD, + kD, + k; Dy + kD,

Since the planes are independent, the determinant of the coeffi-
cients in the second members of these equations is not zero, and
the numbers k,, &y, k;, k, can always be determined so as to satisfy
these equations.
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These results, together with those of Arts. 24, 26, may be ex-
pressed as follows: The necessary and sufficient condition that a
system of planes have no point in common is that the matrix*
formed by their coefficients is of rank four; the planes belong to
a bundle when the matrix is of rank three; the planes belong to
a pencil when the matrix is of rank two; finally, the planes all
coincide when the matrix is of rank one. We shall use the ex-
pression “rank of the system of planes” to mean the rank of the
matrix of coefficients in the equations of the planes.

EXERCISES

1. Determine the nature of the following systems of planes :

(@) 22—H5y+2—3t=0, x+y+42—5t=0, 2 +3y+62~¢t=0.

(b) 3z +4y+562—5t=0, 6x+5y+92—-10¢t=0, 3z +3y+52
—5t=0,2—y+22z=0.

(¢) 20 +4y=0,52+Ty+22=0,8x+4y—-22+3¢t=0, x=0.

@) 2 +6y+32=0,Ty—52+4t=0, x—y +4z=28¢

2. Show that the line x4+ 3y ~2+¢t=0,2x —y+22—3¢t=01ies in
the plane 72 + 7y +2—3¢t=0.

3. Determine the conditions that the planes

r=cy+ bz, y=axr+cz, z=bx + ay

shall have just one common point ; a common line ; are identical.

4. Prove that the planes 22 -3y —~72=0, 32 —14y—132=0,
82 — 31y — 332z =0 have a line in common, and find its direction cosines.

5. Show that the planes 32 — 2y —t =0, 42 —22—-2¢=0, 4x + 4y
— 52z =0 belong to a parallel bundle.

* Any rectangular array of numbers

4, B, ¢ D - M
Ay By C; Dy - M,
43 By O3 Dg - M
An Bn Cn Dn - M,

is called a matrix. Associated with every matrix are other matrices obtained
by suppressing one or more of the rows or one or more of the columns of the
given matrix, or both ; in particular, associated with every square matrix, that
is, one in which the number of rows is equal to the number of columns, is a de-
terminant whose elements are the elements of the matrix. Conversely, associated
with every determinant is a square matrix, formed by its elements. We shall
use the word rank to define the order of the non-vanishing determinant of high-
est order contained in any given matrix. The rank of the determinant is defined
as the rank of the matrix formed by the elements of the determinant.



CHAPTER III

TRANSFORMATION OF COORDINATES

The coordinates of a point, referred to two different systems
of axes, are connected by certain relations which will now be
determined. The process of changing from one system of axes
to another is called a transformation of codrdinates.

36. Translation. Let the coordinates of a point P with respect
to a set of rectangular axes OX, OY, OZ be (z, y, ) and with
respect to a set of axes O'X’, O'Y’, (’Z’, parallel respectively
to the first set, be («/,%,2"). If the cobrdinates of (', referred
to the axes OX, 0Y, OZ are (L, k, I) we have (Fig. 19)

e=a+h y=y +k z=2 41 @)

For, the projection on OX of OP is equal to the sum of the pro-
jections of OO’ and O'P (Art. 2), but the projection of OPis z,

z z of OO is h, and of O’ Pis a’; hence
P x=2o+h. The other for mulas are

// derived in a similar way. Since

/ the new axes can be obtained from

X the old ones by moving the three

Ao

o x coordinate planes parallel to the
// ’ / X-axis a distance 4, then parallel
¥y 'y . to the Y-axis a distance %k, and
Fra. 19. parallel to the Z-axis a distance

I, without changing their directions, the transformation (1) is
called a translation of axes.

37. Rotation. Let the codrdinates of a point P, referred to a
set of rectangular axes OX, OY, OZ, be z, y, z, and referred to
another rectangular system OX', O0Y', OZ' having the same origin,
be o, ¥, 2". Let a'= OL', y'=L'M', z' = M'P(Fig. 20); and let
the direction cosines of OX', referred to OX, OY, OZ, be A, py, v;;

those of OY' be Ay, p,, v, and of OZ' be Agy pg, v
38
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We shall show that
o= X2+ Ay + A2,
Y= + my' + i 2
z =n2 +wy' + iz
For, the projection of OP (Fig. 20) on the axis OX isx. Thesum
of the projections of O/,

L'M, and M'Pis ' +ry' N2 2 PR
+ A7 4\ ~
That these two expres- // \ %
sions are equal follows from / \ ,
Art. 2. The second and / MX
third equations are obtained L//xz M\N/
in a similar way. L '
The direction cosines of LY
0X, 0Y, and 0Z, with re- M
spect to the axes OX', O0Y',
0Z'" are Ay, Ay Agj pas Py s 4] Y’
Fic. 20.

v, vay v3, TESPeEctively. If we
project OP and OL =z, LM =y, and MP=zon OX', O0Y', and

0Z', we obtain :
' = M2+ Y + nz,

Y =My vy @)
2'= A + pgyy + vize
The systems of equations (2) and (2') are expressed in con-
venient form by means of the accompanying diagram.

&l y! z! .

& M Ay Ay

Y & Mo 3

2 121 Vo V3

Since Ay, pgy v Mgy pay 23 Agy ms v; are the direction cosines of
three mutunally perpendicular lines, we have the six relations
M4 pltvt=1, e + paps + vy =0,
A+t +nt=1, AoA + papas 4 vavs = 0, (3)
A+ pd v =1, Ashi + oy + vgny = 0.

’
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We have seen that A, Ay, A3; pyy poy p3; viy ve v; are also the di-
rection cosines of three mutually perpendicular lines. It follows
that

A4 A AP =1, Ay + Agpta + Agpy = 0,
pd o+ pl o+ pt =1, pavy + pavy + pgvs =0, “)
n'+ vl ui=1, VAL + vy 4 vy =0,

It will next be shown that
A= €(pavs — Vapis);, Ao = €(pgyy — vap); Ag = €(pyvy — vipia),
= €(vds — Agpg)y po =€(vshy — Agny),  pa = e(vidy — Awo); )
n=¢ (/\2#3— Ibz)\a)’ vy = €(Agpy — pshe); vs=e(Apy— aAs),
where e=+1. From the first and third equations of the last
column of (4) we obtain
N "

PoVs — Volhy Vi — Vil a2 — Vil

If we denote the value of these fractions by ¢, solve for A;, A, and
A; and substitute in the first of equations (4), we obtain

¢ [(I‘*z”z - V?Jls)z P (#3”1 = Val’»l)2 + (.“11’2 —n Vlf"’Z)z] =1.

Since the lines OY" and OZ' are perpendicular, the coefficient of
€? is unity (Art. 5, Eq. (5)). Itfollowsthat =1 ore=+1The
first three of equations (5) are consequently true. The other equa-
tions may be verified in a similar way.
It can now be shown that
N Dy
ppaps|=e€=+ 1. (6)

W Ve V3

For, expand the determinant by minors of the elements of the
first row, and substitute for the cofactors of Aj, Ay A, their values
from (5). The value of the determinant reduces to

Toe+ae+an=l=c
€ € ‘
It will be shown in the next Article that if e=1, the system of
axes O-X'Y'Z’ can be obtained by rotation from O-XYZ. If

e¢=—1, a rotation and reflection are necessary.
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38. Rotation and reflection of axes. Having given three mutu-
ally perpendicular directed lines, forming the trihedral angle
0-XYZ (Fig. 21), and three other mutually perpendicular directed
lines through O, forming the trihedral angle O-X'Y"'Z', we shall
show that the trihedral angle O-XYZ can be revolved in such
a way that OX and OZ coincide in direction with OX' and 0Z',
respectively. OY will then coincide with OY' or will be-di-
rected oppositely to it.

Let NN' be the line of intersection of the planes X011 and

X'0Y”. Denote the angle Z0OZ' by 0, the angle XON by ¢, and
the angle NOX' by y. Let the Z\Z
axes O-XYZ be revolved as a
rigid body about OZ through the
angle ¢, so that OX is revolved .,
into the position ON. Denote the
new position of OY by OY;, so A X’
that the angle YOY;—=¢. The 2 / -
trihedral angle O-XYZ is thus re- \V‘/’
volved into O-NY,Z Now let A\
O-NY,Z be revolved about ON Y N
through an angle 6, so that OZ Y’
takes a position OZ', and 0Y;, a Fie. 21.
position OY, Then the angle ZOZ' =angle Y,0Y,=6. The
trihedral angle O-NY;Z is thus brought into the position
O-NY,Z'. Finally, let the trihedral angle in this last position
be revolved about OZ' through an angle ¢, so that OV is revolved
into OX'. By the same operation OY is revolved into a direction
through O perpendicular to OX' and to OZ’. It either coincides
with OY"' or is oppositely directed. In the first case the trihedral
O-XYZ has been rotated into the trihedral O-X'Y'Z'. In the
second case the rotation must be followed by changing the direc-
tion of the Y-axis. This latter operation is called reflection on the
plane ¥ =0. It cannot be accomplished by means of rotations.

In case the trihedral O-XYZ can be rotated into O-X'Y'Z/,
the number e (Art. 37) is positive ; otherwise, it is negative. For,
during a continuous rotation of the axes, the value of ¢ (Eq. (6))
cannot change discontinuously. If, after the rotation, the trihe-
drals coincide, we have, in that position, A, = p, =v; =1 and the

N
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other cosines are zero, so that (Eq. (6)) e=1. If, however, at the
end of the rotation, OY and OY' are oppositely directed, \, =
=1 p=—1,and e=—1.

39. Euler’s formulas for rotation of axes. Let the coordinates of
a point P referred to O-XYZ be (z, y, ), referred to O-NY,Z be
(@1, Y1, 1), referred to O-NY,Z be (x, y, %), and referred to
O0-X'Y'Z" be (&, ¥/, ), (Fig. 21).

In the first rotation, through the angle ¢, z remains fixed.
Hence, from plane analytic geometry,

Z=12, ®=2 08¢ —y sin¢p, y=uwx sin¢ + y, cos ¢.

In the rotation through the angle §, z, remains fixed. Hence
we have .

Xy =@y Y =1, c080—28in6, 2 =y,sinb + z coséb.
Finally, if O-X"Y"Z’ can be obtained from O-XYZ by rotation,
%2, remains fixed, and we have

%H=12, m=2a cosy—y sinyg, y,=2a siny+y cosy.

On eliminating @, ¥, 235 @, %), 2, the final result is obtained,
namely :
@ =« (cos ¢ cos i — sin ¢ sin y cos ) — y'(cos ¢ sin ¢

-+ sin ¢ cos ¢ cos 6) + 2’ sin ¢ sin 6.
y = (sin ¢ cos  + cos ¢ sin ¢ cos §) — 3/ (sin ¢ sin ¢

— €08 ¢ cos Y cos ) — 2’ cos ¢ sin 6.
z =2 sinysin 6 4 ¥ cos y sin 6 + 2’ cos 6.

If O-X'Y"Z’ cannot be obtained from O-XYZ by rotation, the

sign of y’ should be changed. These formulas are known as
Euler’s formulas.

40. Degree of an equation unchanged by transformation of co-
ordinates. If in an _equation F(x, y, z) = 0 the values of x, y, z are
replaced by their values in any transformation of axes the degree
of F cannot be made larger, since =, v, z are replaced by linear ex-
pressions in «/, ¥/, 2. But the degree of the equation cannot be
made smaller, since by returning to the original axes and to the
original equation, it would be made larger, which was just seen to
be impossible.
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EXERCISES

1. Transform the equation 22 —3yz + y2—6x + 2 =0 to parallel axes
through the point (1, — 1, 2).

2. By means of equations (2) show that the expression 22 + y2 4 22 is un-
changed by rotation of the axes. Interpret geometrically.
~ 3 Show that the lines x=g g; %:—_y—1=z; gzyz_ig are mu-
tually perpendicular. Write the equations of a transformation of codrdinates
to these lines as axes.

Il

4. Translate the axes in such a way as to remove the first degree terms
from the equation 22 —2y2 + 622 — 16— 4y —242437=0.

5. Show that the equation ax 4 by + ¢z + s = 0 may be reduced to x =0
by a transformation of codrdinates.

6. Find the equation of the locus 112 + 1092 + 622 — 8yz + 42x — 12xy
— 12 = 0 when lines through the origin whose direction cosines are %, %, %;
2,1, —%; — % % — } are taken as new cotrdinate axes.

7. Show that if O-X’Y'Z' can be obtained from O-XYZ by rotation, and
if 0Y can be made to coincide with OX by a revolution of 90 degrees,
counterclockwise, as viewed from the positive end of the Z-axis, then OY'
can be revolved into OX? by rotating counterclockwise through 90 degrees as
viewed from the positive Z’-axis.

8. Derive from Ex. 7 a necessary and sufficient condition that O-X'Y'Z'
can be obtained from O-XYZ by rotation.



CHAPTER 1V

TYPES OF SURFACES

41. Imaginary points, lines, and planes. In solving problems
that arise in analytic geometry, it frequently happens that the
values of some of the quantities , y, 2 which satisfy the given
conditions are imaginary. Although we shall not be able to plot
a point in the sense of Art. 1, when some or all of its codrdinates
are imaginary, it will nevertheless be convenient to refer to any
triad of numbers @, y, 2, real or imaginary, as the codrdinates of a
point. If all the codrdinates are real, the point is real and is de-
termined by its coordinates as in Art. 1; if some or all of the
cobrdinates are imaginary or complex, the point will be said to be
imaginary. Similarly, a set of plane coordinates u, v, w will de-
fine a real plane if all the coordinates are real; if some or all
of the coordinates are imaginary, the plane will be said to be
imaginary.

A linear equation in z, y, 2, with coefficients real or imaginary,
will be said to define a plane, and a linear equation in w, v, w, °
with coefficients real or imaginary, will be said to define a point.

The equations of any two distinet planes, considered as simul-
taneous, will be said to define a line. It follows that if (x,, ¥, %)
and (2, ¥ %) are any two points on the line, then the coordinates
of any other point on the line can be written in the form
ke, + kyarp, ete. The line is also determined by the equations of
any two distinet points on it.

The line joining two imaginary points is real if it also contains
two real points. If P=(a + ik, b+ il, ¢ + @) is an imaginary
point, the point P' =(a — ik, b — il, ¢ — im), whose codrdinates
are the respective conjugates of those of P, is called the point
conjugate to P. The line joining any two conjugate points is
real; thus the equations of the line PP’ are lu — ky + bk — al =0,
(om — el)x +(ck — am)y +(al — bk)z =0. The line of intersec-

44 :

.
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tion of two imaginary planes is real if through it pass two distinet
real planes. The line of intersection of two conjugate planes
is real.

From the preceding it follows that no imaginary line can con-
tain more than one real point, and through an imaginary line
cannot pass more than one real plane. If a plane passes through
an imaginary point and not through its conjugate, the plane is
imaginary. If a point lies in an imaginary plane and not in
its conjugate, the point is imaginary.

One advantage of using the form of statement suggested in this
Article is that many theorems may be stated in more general form
than would otherwise be possible. We may say, for example,
that every line has two (distinet or coincident) points in common
with any given sphere.

With these assumptions the preceding formulas will be applied
to imaginary elements as well as to real ones. No attempt will be
made to give to such formulas a geometric meanmg when imagi-
nary quantities are involved.

In the following chapters, in all discussions in which it is
necessary to distingnish between real and imaginary quantities,
it will be assumed, unless the contrary is stated, that given points,
lines, and planes, and the coefficients in the equations of given
surfaces, are real.

EXERCISES

L 1. Show that the point (2+4¢, 1+3 4, ) lies on the plane x—2y + 52=0.
7y

2. Find the cobrdinates of the points of intersection of the line whose
parametric equations are (Art. 20) 2 =1+ J d, y=—2 + 4 d,2=5— 1§ d,
with the sphere #2 492+ 22 =1.

3. Show that the line of intersection of the planes z + iy =0, (1 + )z +
(8 —214)y =0 is real.

4. Tind the coordinates of the point of intersection of the line through
(3,2, —2) and (4, 0, 3) with the plane x +8y + (L —2¢)z+1=0.

5. Find the equation of the plane determined by the points (5 +1, 2, —2
—1i), (4+2¢ —1+27,0), (¢, 14+214, 1437).

6. Determine the points in which the sphere (x — 1)2+ %2+ (2 +2)?=1
intersects the X-axis.
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42. Loci of equations. The locus defined by a single equation
among the variables @, y, z is called a surface. A point
P= (), y, 2) lies on the surface F = 01if, and only if, the cobr-
dinates of Psatisfy the equation of the surface. We have seen,
for example, that the locus of a linear equation is a plane. More-
over, the locus of the equation

P4y 42t =1
is a sphere of radius unity with center at the origin.
The locus of the real points on a surface may be composed of

curves and points, or there may be no real points on the surface;
for example, the locus of the real points on the surface
224+ yt=0
is the Z-axis; the locus of real points on the surface
24 yt422=0
is the origin; the surface
224y +224+1=0
has no real points.

If the equation of a surface is multiplied by a constant different
from zero, the resulting equation defines the same surface as be-
fore; for, if F=0 is the equation of the surface and % a constant
different from zero, the coordinates of a point P will satisfy the
equation kF =0 if, and only if, they also satisfy the equation F=0.

The locus of two simultaneous equations is the totality of the
points whose coordinates satisfy both equations. If F(x, y, 2)=0,
[z, y, 2) =0 are the equations of two surfaces, then the locus of
the simultaneous equations F'=0, f=0 is the curve or curves in
which these surfaces intersect. Every point on the curve of in-
tersection may be imaginary.

The locus of three simultaneous equations is the totality of the
points whose codrdinates satisfy the three simultaneous equations.

Vﬁ' EXERCISES
1. Find the equation of the locus of a point whose distance fromn the Z-axis
is twice its distance from the X Y-plane.
2. Discuss the locus defined by the equation %% 4 4% = y%
3. Find the equation of the locus of a point the sum of the squares of
whose distances from the points (1, 3, —2), (6, — 4, 2) is 10.
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4. Find the equation of the locus of a point which is three times as far
from the point (2, 6, 3) as from the point (4, — 2, 4).

5. Find the equations of the locus of a point which is 5 units from the
X Y-plane and 3 units from the point (3, 7, 1).

6. Find the equations of the locus of a point which is efluidista.nt from the
points (2, 3, 7), (3, —4, 6), (4, 3, —2).

7. Find the codrdinates of the points in which the line x =—4, 2=2 in-
tersects the cylinder y2 =4 «.

43, Cylindrical surfaces. It was seen in Art. 42 that the locus
of a single equation F(x, y, 2) =0 is a surface. ~We shall now
discuss the types of surfaces which arise when the form of this
equation is restricted in certain ways.

TarEOREM. If the equation of a surface involves only two of the
coordinates x, y, z, the surfuce is a cylindrical surface whose generat-
ing lines are parallel to the axis whose coordinate does not appear
in the equation.

Let f(x, ) = 0 be an equation containing the variables z and y
but not eontaining z. If we considerthe two equations f(x, y)=0,
z =0 simultaneously, we have a plane curve f(x, ¥)=0 in the
plane z=0. If (z, 3, 0) is a point of this curve, flx}, 1) =0.
The coordinates of any point on the line # =, y =7, are of the
form 2y, 3, 2. But these codrdinates satisfy the equaﬁion Sy, 1)
=0 independently of z, hence every point of the line lies on the
surface f(x, y) =0. It is therefore generated by a line moving par-
allel to the Z-axis and always intersecting the curve f{z, ) =0 in
the X'Y-plane. The surface is consequently a eylindrical surface.
In the same way it is shown that ¢(=, 2) =0 is the equation of a
cylindrical surface whose generating elements are parallel to the
Y-axis, and that F(y, z) =0 is the equation of a cylindrical sur-
face whose generating elements are parallel to the X-axis.

44. Projecting cylinders. A cylinder whose elements are per-
pendicular to a given plane and intersect a given curve is called
the projecting cylinder of the given curve on the given plane.

The equation of the projecting cylinder of the curve of inter-
section of two surfaces F(x, y, 2) = 0, f(w, y, ) =0 on the plane
#z = 0 is independent of z (Art. 43). The equations of this eylin-
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der may be obtained by eliminating z between the equations of the
curve.

If F and f are polynomials in z, the elimination may be effected
in the following way, known as Sylvester’s method of elimination.
Since the cobrdinates of points on the curve satisfy F=0 and
f=0, they satisfy

F=0,2F=0,22F=0, ., f=0,2f=0,2=0, ..,

simultaneously. If we consider these equations as linear equa-
tions in the variables z, 2%, 2%, -, and eliminate z and its powers,
we obtain an equation R(x, y) = 0, which is the equation required.
The following example will illustrate the method.
Given the curve :
2+ 3ez+a+y=0, 2224+3z+ax+y:=0.
The equation of its projecting cylinder on z=10 is found by elimi-
nating z between the given equations and
P43+ (x+y)2=0, 2243224+ (x+y)z=0.
The result is
3z x4y 0
1 3z x4y
3 x4+ 0
2 3 x4y

=

(=R SRl

which simplifies to
P—=2y—a)=9(1—2)(ey*+2*—2—)
The equations of the projecting cylinders on =0 and on y =0
may be found in a similar manner.

45. Plane sections of surfaces. The equation of the projecting
cylinder of the section of a surface F(z, y, z)=0 by a plane z=Ek
parallel to the X Y¥-plane may be found by putting z=Fk in the
equation of the surface. The section of this cylinder F' (z,y, k)=0
by the plane z = 0 is parallel to the section by z=4%. Since paral-
lel sections of a cylinder, by planes perpendicular to the elements,
are congruent, we have the following theorem:

TaEOREM. If in the equation of a surface, we put z=Fk and con-
sider the result as the equation of a curve in the plane z =0, this curve
is congruent to the section of the surface by the plane z=k.
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46. Cones. A surface such that the line joining an arbitrary
point on the surface to a fixed pomtJhes entirely on the surface is
a cone. The fixed point is the vertex of the cone.

TueorREM. If the equation of a surface is homogeneous in x,y, z,
the surfuce is a cone with vertex at the origin.

Let f (x, 4, 2)= 0 be the equation of the surface. Let f be ho-
mogeneous of degree n in (x, ¥y, #), and let P, =(ay, y;, 2;) be an
arbitrary point on the surface, so that f (a, 1, 2,)=0. The origin
lies on the surface, since f(0, 0, 0)=0. The coordinates of any
point P on the line joining P, to the origin are (Art. 6)

My

x=kx, y=ky,, z=kz, where b= ——=2—-.
my + My

But the codrdinates of P satisfy the equation, since
(@, y, 2)= [k, kyy, kzy)=Ef (1, 91, 21)=0

for every value of k. Thus, every point of the line OP, lies on
the surface, which is therefore a cone with the vertex at the origin.

EXERCISES

1. Describe the loci represented by the following equations :
2 4 2 = 2
() 2?4+ y* =4 (@ £+?£=1_
4 9
) == ——j—l
0 Z-L
(¢) y=sinz. (f) (. — 1) (x — 1) (z — 8)=0.

2. Describe as fully as possible the locus of the equation 4 22 + y2 = 25 22.

3. Show that the section of the surface z% + y2 = 9z by the plane z =4
is a circle. Find the coordinates of its center and the length of its radius.

4. Find the equation of the projection upon the plane z = 0 of the curve
of intersection of the surfaces

y2+1=0, (22 +y?—1)z+2y=0.

5. Show that the section of the surface x222 + a2y? = r2z2 by the plane
2=k is an ellipse. Find its semi-axes. By giving % a series of values, de-
termine the form of the surface.

A 6. Show that if the equation of a surface is homogeneous in & — &, y — k,
z — I, the surface is a cone with vertex at (&, k, 7).

7. By using homogeneous codrdinates, show that the cylinder f (x, y, ) =0
can be considered a cone with vertex at (0, 0, 1, 0). I
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47. Surfaces of revolution. The surface generated by revolving
a plane curve about a line in its plane is called a surface of revo-
lution. The fixed line is called the axis of revolution. Every
point of the revolving curve describes a circle, whose plane is per-
pendicular to the axis of revolution, whose center is on the axis
and whose radius is the distance of the point from the axis.

To determine the equation of the surface generated by revolving
a given curve about a given axis, take the plane of the given curve
for the X Y-plane and the axis of revolution for the N-axis. Let
the equation of the given curve in z=0 be f(x,y)=0. Let
P,=(x,,1,,0), Fig. 22, be any point on the curve, so that f (2, 1) =0

z
\\ |
\ ]
]
L )
Vo Py
ll t \ i
Z 770 g >X
d /‘/ l/’ ,I,
72 ;
¢ !
/
Y\ / Fa. 22.

and let P’ = (z, y, #) be any point on the circle described by ;.
Since the plane of the circle is perpendicular to the X-axis, the
equation of this plane is ==, The codrdinates of the center C
of the circle are C'= (x,, 0, 0); and the radius CP, is y. The
distance from C to P is

n=v(@ —ay+y—0y+(z— 0= V42
On substituting V

u=, h= \/{/21_;2
in the equation f (%, y,)=0 we obtain, as the condition that the
point P lies on the surface,

f (@ Vi +2)=0,

which is the desired equation.
In the same way it may be seen that the equation of the sur-
face of revolution obtained by revolving the curve f(z, y)= 0 about

the Y-axis is F(V&EF2, y)=0.
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EXERCISES

1. What is the equation of the surface generated by revolving the circle
22 + y2 = 25 about the X-axis? about the Y-axis?

2. Obtain the equation of the surface generated by revolving the line
22 4 3y = 15 about the X-axis. Show that the surface is a cone. Find its
vertex. What is the equation of the section made by the plane x=10°?
Find the equation of the cone generated by revolving the line about the
Y-axis.

3. Why is the resulting equation of the same degree as that of the gen-
erating curve in Ex. 1, but twice the degree of the given curve in Ex. 2?
Formulate a general rule.

4. What is the equation of the surface generated by revolving the line
y = a about the X-axis ? about the Y-axis?

5. If the curve f(x, y) = 0 crosses the x-axis at the point (x;, 0, 0), de-
scribe the appearance of the surface

S(x, V42 + 2%) = 0 near the point (1, 0, 0).

6. Find the equation of the surface generated by revolving the following

curves about the X-axis and about the Y-axis. Draw a figure of each surface.

(@) -:i—z+-z-§=l. (¢) ¥ =8z () y=sinx.
(b) 55'3._33:1, (@) «*+(y—-1)2=4. (f) y=e>.



CHAPTER V

THE SPHERE

48. The equation of the sphere. The equation of the sphere
having its center at (xq, o, 2,) and radius 7 is

(@ — )+ — o) + (2 —20f =1, )
@42 — 2@ — 2y — 2ag 2k + Yl + 2t —r°=0.
Any equation of the form
a@+ 1+ +2fw+29y+2hz+k=0, a0 &)

or

may be written in the form

<w + >2 +Hy+ D (e ) STHEE=E

« a
If f24 ¢* 4+ h*— ak > 0, this is seen, by comparing with (1), to be

a sphere with center at (— I, =9 —’f> and radius
a a  a

VIi+F+hR—ak,
a

If the expression under the radical sign vanishes, the center is
the only real point lying on the sphere, which in this case has a
zero radius, and is called a point sphere. If the expression under
the radical is negative, no real point lies on the locus, which is
called an imaginary sphere.

49. The absolute. We shall now prove the following theorem:

Turorem I. All spheres intersect the plane at infinity in the

Q

same curve.

In order to determine the intersection of the sphere and the
plane at infinity, we first write the equation of the sphere in
homogeneous coordinates :

a(@+ P+ + 2 fat+ 29yt +2het +kt* =0, a=%0.
52
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The equations of the curve of intersection of this sphere with the
plane at infinity are
t=0, 2+ y*+22=0. 4)

Since these equations are independent of the coefficients a, f, g,
h, k& which appear in the equation of the sphere, the theorem
follows.

The curve determined by equations (4) is called the absolute.
Since the homogeneous codrdinates of a point cannot all be zero
(Art. 29), there are no real points on the absolute.

The equation of any surface.of second degree which contains
the absolute may be written in the form

a2+ + 22+ (ke +ly + mz +nt)t=0.

If a = 0, this is the equation of a sphere (Art. 48). If a =0, the
locus of the equation is two planes of which at least one is ¢t =0.
In the latter case also, we shall call the surface a sphere, since
its equation is of the second degree and it passes through the abso-
lute. When it is necessary to distinguish it from a proper sphere,
it will be called a composite sphere. With this extended defini-
tion, we have at once the following theorem :

TuroreMm II.  Every surface of the second degree which contains
the absolute is a sphere.

Any plane
uw + vy + wz + st = 0,

other than ¢ = 0, intersects the absolute in two points whose cobor-
" dinates may be found by solving the equation of the plane as
simultaneous with the equations of the absolute. Any eircle in
this plane is the intersection of the plane with a sphere. Since
the absolute lies on the sphere, the circle must pass through the
two points in which its plane intersects the absolute. These two
points are called the circular points in the plane.

Evidently all the planes parallel to the given one will contain
the same circular points. The reason for the designation circu-
lar points is seen from the fact that any conic lying in any real
transversal plane and passing through the circular points is a
circle, as will now be shown. Since the equations of the absolute
are not changed by displacement of the axes, it is no restriction
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to take z =0 for the equation of the transversal plane. The
codrdinates of the points in which the plane z=0 meets the
curve ¢ =0, 2* + 3> + 2 =0 are (1, 4, 0, 0), (1, — 4, 0, 0). A conic
in the planez =0 has an equation in homogeneous coordinates
of the form

Az + By + 2 Hry + 2 Gat 4 2 Fyt 4 Ct = 0.
1f the points (1, 4, 0, 0), (1, — 4, 0, 0) lie on this curve,
A=B, H=0.

But these are exactly the conditions that the conic is a circle.
Conversely, it follows at once that every circle in the plane z=0
passes through the two circular points in that plane. A conic
in an imaginary plane will be defined as a circle if it passes
through the circular points of the plane.

If the two circular points in a plane coincide, the plane is said
to be tangent to the absolute. Such a plane is called an isotropic
plane. The condition that the plane wux 4 vy + wz +st =0 is
isotropic is found, by imposing the condition that its intersections
with the absolute coincide, to be

w4+ v 4 wt=0. (5)

This equation is the equation of the absolute in plane codrdinates.

EXERCISES

1. Write the equation of a sphere, given
(a) center at (0, 0, 0) and radius 7,
(b) center at (— 1, 4, 2) and radius 6,
(¢) center at (2, 1, 5) and radius 4.
2. Determine the center and radius of each of the following spheres:
(@) 2+ 92+ 22+ T2 +2y+2+5=0.
@) *+y2+22+204+4y—62+14=0.
(¢) 22+ y*+22)—x—2y+52+5=0.
(@) 22+ 92+ 22+ fe =0,
3. Find the points of intersection of the absolute and the plane
2x—y+2z+15¢=0.
4. Find the codrdinates of the points of intersection of the line x =—2
2d,y=8—3%d, z=—2+ }d with the sphere 2% + 92 + 224+ 1= 0.
5. Show that 22 + y2 4 22 = 0 is the equation of a cone.
6. Find the distance of the point (1, 0, ¢) from the origin.

+
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7. Show that the radius of the circle in which z = 2 intersects the sphere
% 4+ y? + 22 =1 is imaginary.

8. Prove that, if (21, ¥1, 21) is any point exterior to the sphere (x — x,)?
+(¥ — Y0)? + (2 — 20)? =17, the expression (z1— o)+ (¥1 — %0)* + (21— 20)*
— 72 isthe square of the segment on a tangent from (1, ¥1, 21) to the point of
contact on the sphere.

50. Tangent Plane. Let P=(x, %, %) be any point on the
sphere ‘
@+ +D)+ 2+ 29y +2hz 4+ k=0
The plane passing through P perpendicular to the line joining P
to the center of the sphere is the tangent plane to the sphere at /.
It is required to find its equation. The coordinates of the

center are < —'5 , — %, — g) The equations of the line joining
the center to P are (Art. 19)
e—m _ Y~y =

The equation of the plane passing
throngh P and perpendicular to this
line is Fra. 23.

(f+ml>(w—xl)+<ﬁ+yl>(y y1)+( +zl)(z—zl) 0.

If we expand the first member of this equatmn and“ add, to it
a(@? +y2+ 2%+ 2 fo, + 2 gy, + 2 hzy + k, which is equal to zero
since the point (x,, 7y, #;) lies on the sphere, we obtain

a@@+ 0y +22) +f(@+2)+ 9@+ )+ Mz +2)+ k=0, (6)
which is the required equation of the tangent plane.

51. The angle between two spheres. The angle between two
spheres at a point P, on their curve of intersection is defined as
equal to the angle between the tangent planes to the spheres at P;.

To determine the magnitude of this angle, let the coordinates
of P, be (@, ¥, 2,) and let the equations of the spheres be

a(@ 4+ +2)+2fx+29y+2hz+ k=0,
a'@+ P+ )+ 2w+ 29'y+ 202+ k=0
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The equations of the tangent planes to these spheres at P, are
a(@e + 9y + 22) +f (@ +2)+ 9@y + 1)+ bz +2)+ k= 0-
a'(@@ + 3y +22)+ @+ @)+ 9' Y+ )+ M@ +a)+ k=
Since the angle 6 between the spheres is equal to the angle

between these planes, we have (Art. 15)

cos f =
(ax1 + F)(@'er + 1)+ (ay + 9) (a'ys + g+ (az1 + B) (@'z + ')

V(an+7)+(ay+9)*+ (az+ k)2 V (@i +/) + (a'yi+97) 2+ (@2 + 12
Since (2, ¥, 2,) lies on both spheres, this relation reduces to
20/ +299" +2Rr0 — ak'—a'k
2V P+ I —ak VP 4 g B = d'K .
Since this expression is independent of the cosrdinates of P, we
have the following theorem :

cos 0 =

)

TreoreEM. Two spheres intersect at the same angle at all points
of their curve of intersection.

If 6 =90 degrees, the spheres are said to be orthogonal. The
condition that two spheres are orthogonal is

21 +2g9' + 2Mh' — ak' — o'k = 0. (8)

52. Spheres satisfying given conditions. The equation of a
sphere is homogeneous in the five coefficients a, f, g, b, k. Hence
the sphere may be made to satisfy four conditions, as, for example,
to pass through four given points, or to intersect four given
spheres at given angles. If the given conditions are such that
a =0, the sphere is composite (Art. 49).

EXERCISES

1. Prove that the point (— 3, 1, — 4) lies on the sphere 22 + y2 4 22+ 62
+ 24y + 82 =0 and write the equation of the tangent plane to the sphere at
that point.

2. Find the angle of intersection of the spheres 2+ y2 4+ 224+ x+6y
+224+9=0,22+9y2+22+65x+82+4=0.

3. Find the equation of the sphere with its center at (1, 3, 3) and making
an angle of 60 degrees with the sphere 22 4 y2 4 22 =4,

4. Determine the equation of the sphere which passes through the points
(0, 0, 0), (0, 0, 3), (0, 2, 0), (1,2, 1).
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5. Determine the equation of the sphere which passes through the points
(1, 3,2), (38,2, —5), (—1,2,3), (4 5, 2).
6. Write the equation of the sphere passing through the points (2, 2, — 1),
3, — 1, 4), (1, 3, —2) and orthogonal to the sphere
224+y2+22—3x+y+2=0.
7. Write the equation of the sphere inscribed in the tetrahedron z =0,
y=06x4122+3=0,32z —12y + 42 =0.

53. Linear systems of spheres. Let

S = a(a:2+y2+z2)+2fa:+2gy+2hz+k=0,
S’—Ea’(w2+y2+z2)+2f'a:+2g'y—|—2h’z+k'=0

be the equation of two spheres. The equation
A8+ 18'=0,

or (ar + a')\g)(dtz + 42+ 2 (PM+ )2 +2 (g 49Ny
F 2R+ RA) 2+ kN +E A= 0

also represents a sphere for all values of A; and A, Every
sphere of the system AuS+ X,8'=0 contains the curve of inter-
section of § = 0 and ' =0 (Art. 42). In particular,if ak, =— a/A,,
the sphere A,S 4+ A,8' =0 is composite; it consists of the plane at
infinity (which intersects all the spheres of the system in the
absolute) and the plane

2(a'f—afyw+2(a'g—ag)y +2(@h—al')z+a'k —ak'=0, (9)
which intersects all the spheres of the system in a fixed cirecle,
common to S =0 and 8'=0. The plane (9) is called the radical
plane of the given system of spheres.

It will now be shown that the radical plane is the locus of the

centers of the spheres intersecting S =0 and 8’ = 0 orthogonally.
For this purpose let

a(@+ P+ +2fe+29y+2hz+ k=0 10)

be the equation of a sphere. It will be orthogonal to S if (Art.
51)

2fif+299 + 2hh — agk — aky=0,
and to §'if
2ff" + 294" + 2k — ak’ — a'ky = 0.
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If we eliminate k, between these two equations, we have
2(af—af"fo+2(a'g —ag")go+2(a'l — ak" by — (a'k— ak")a,=0, (11)
which is exactly the condition that the center (i—, i, —hL)
—ay —a, —ay,
of the orthogonal sphere lies in the radical plane (9). Con-
versely, if ay, fo 9o, o are given numbers which satisfy (9), a value
of k, can be found such that the corresponding sphere (10) is
orthogonal to every sphere of the system A,S 4+ 1,8'=0.
Again, if
S'=a" @+ 4+ +2f e +29"y+20"2+k"=0
is a sphere whose center does not lie on the line joining the
centers of S and S, every sphere of the system
AS + 08 +28"=0 (12)
passes through the pomts of intersection of the spheres S=0,
§'=0,8"=0.
Every sphere of the system (12) determined by values of
A Ay Ay for which ’
M+ A0 + A" =0
‘\Jis composed of two planes of which one is the plane at infinity
and the other passes through the line
2(a'f—afe+2(a'g — ag')y +2(a'h —ak'yz + a'k —ak' =0, (13)
2(a'f—af")z+2(a"g—ag”)y+2(a"h—ak’)z+a " k—ak” = 0.
This line is called the radical axis of the system of spheres (12).
By comparing equations (13) with (11) and the equation analo-
gous to (11) for $” = 0, it may be shown that the radical axis is
the locus of centers of the spheres which intersect all the spheres
of the system (12) orthogonally.
Now let
Sm oy a/// (1?2 + yz e zg) L 2f//lm + ngy' e 27L”’Z AL =0
be the equation of a sphere whose center is not in the plane de-
termined by the centers of § =0, 8' =0, §"=0. The condition
that a sphere of the system

MS 2,8+ 08" +2,8"=0
is composite, is that A; A, A; and A, satisfy the relation
M A a4+ Aga +Aa" =0,
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The sphere orthogonal to all the spheres of the system is in

The center of this orthogonal sphere is called the radical center
of the system. Through the radical center passes one plane of
every composite sphere of the system.

EXERGISES

1. Prove that the center of any sphere of the éystem M8+ NS =0 lies
on the line joining the center of § =0 to the center of S =0.

2. Prove that the line joining the centers of the spheres § =0 and §' =0

" is perpendicular to the radical plane of the system M8 + A8 =0.

3. Show that the radical axis of the system A\ S + AeS! + A38!! =0 is per-
pendicular to the plane of centers of the spheres belonging to the system.

4. Determine the equation of the system of spheres orthogonal to the
system A S + AgiS! 4+ N3 8/ = 0.
»_5. Show that two point spheres are included 1n the system S+ NS =0.

6. Show that any sphere of the system NS + oS’ =0 is the locus of
a point, the ratio of whose distances from the centers of the two point
spheres of the system is constant.

9. 1f §=0, 8 =0, 8 =0, 8" =0, §'" =0 are the equations of five
spheres which do not belong to a linear system of four or less terms, show
that the equation of any sphere in space can be expressed by the equation
S=3In80) = 0.

B54. Stereographic projection. Let O be a fixed point on the
surface of a sphere of radius r,and let = be the plane tangent to
the sphere at the opposite end of the diameter passing through
0. The intersection with = of the line joining O to any point P,
on the surface is called the ,
stereographic projection of A
P, (Fig. 24).

To determine the equa-
tions connecting the co-
ordinates of P, and its
projection, take the plane
« for the plane z =0, and
the diameter of the sphere
through O for Z-axis. The /
equation of the sphere is

W4y 22 —=2r2=0. Y i o,

7\

this case uniquely determined by equations analogous to 10).
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The equations of the line joining O = (0, 0, 2 7“) to P = (x,, y,, 2,)
on the sphere are (Art. 19)

EL e
x Yy 5n—2r

To determine the cobrdinates (, ¥, 0) of P, the point in which
OP, intersects =, we make the equations of the line simultaneous
with z2=0. On solving for x, %, z we obtain

2 ra, _ 27y

€= 3
2r—2z 2r—z

, 2=0.

These equations can be solved for x,, 7, 2 by making use of the
fact that, since P, lies on the sphere,

ok +yh+ 24— 218 =0.
The results are
4 r% _ 4 7%y G 2r(a?+ y?) .
442 7 222442
Tueorem 1.  The stereographic projection of a circle is a circle.

(14)

Let the equation of the plane of the given circle on the sphere be
Az + By + Cz+ D =0.
The condition that P, lies on this circle is consequently
Az, + By, + C2 + D =0.
If we substitute from (14) in this equation, we obtain as the
equation of the stereographic projection, )
4 4rc+ 4By +20r (@ + ) + D (22 + 12+ 4 %) =0, (15)
which represents a circle in the X Y-plane.

In particular, if the plane of the given cirele passes through O,
the stereographic projection of the circle is composite. The con-
dition that the plane

Ar+4 By+ C:4+ D=0

passes through O is
2rC+4+D=0.

If this condition is satisfied, the equation of the circle of projec-
tion is, in homogeneous cobrdinates,

t (Ax + By + Dt) =0.
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The points of the line ¢ =0 correspond only to the point O itself.

The line
Az + By+ Dt =0

is the line of intersection of the plane.of the circle and the plane
of projection. We have consequently the following theorem:

TuroreEM II.  The circles on the sphere which pass through the
center of projection are projected stereographically into the lines in
which their planes intersect the plane of projection.

The angle between two intersecting curves is defined as the
angle between their tangents at the point of intersection. We
shall prove the following theorem :

TueoreM 1II. The angle between two intersecting curves on the
sphere is'equal to the angle between their stereographic projections.

It will suffice if we prove the theorem for great circles. For,
let ¢, and (', be any two curves whatever on the sphere having
a point P' in common. The great circles whose planes pass
through the tangents to (', and (', at P' are tangent to (', and
(', respectively,at . Let Cy, C,, and P; be the stereographic pro-
jections of (', (', and P'. The stereographic projections of
the great circles are tangent to C) and C,, respectively, at P so
that the angle between them is the angle between C; and
C,. If, then, the theorem holds for great circles, it holds for all
intersecting curves.

The condition that a circle is a great circle is that its plane

Ar+By+Cz+ D=0
pa.sses' through the center (0, 0, r) so that
Cr+D=0.
The equation (15) of the stereographic projection reduces to
C@+y?) +4r(de+ By—rC)=0.

The angle between two great circles is equal to the angle be-
tween their planes, since the tangents to the circles at their com-
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mon points are perpendicular to the line of intersection of their
planes. The angle 6 between the planes
Ax 4+ By 4 Cz — Cr=0
and Az + By+Cz— C'r =0
is defined by the formula (Art. 15)
AA'+ BB 4 OC' .
VA + B+ C*VA® + B? + "

cos 6=

(16)

The tangents to the projections
C(@*+y*) +4r(4e + By — r() =0,
C@+y)+4r(do+By—rC)=0
of the given circles, at the point (2, %) in which they intersect, are
(Cx, +2rd)yx+ (Cpp+2rB)y + 2rde, + 2 rBy, — 4 °C=0,
(Cz, +2rA)2+ (Cyy+2rBYy+2rd'e, +2rBy, — 420" = 0.
The angle ¢ between these circles is given by the formula

coS ¢ =
(O, +274)(C'wy + 274") + (Cyy + 2rB)(C'y, + 27B)
V(O + 2 rAY+ (Cy, + 2B V(C'x, + 2 rA'y2+ (Cy, + 27B)*"

By expanding this expression and making use of the fact that
(2, 7,) lies on both circles, we may simplify the preceding equa-
tion to '

AA' + BB + CC’ ‘
VAT B+ G VA B O

From (16) and (17) we have cos § = cos ¢. We may conse-
quently choose the angles in such a way that 8 = ¢, which proves
the proposition.

The relation established in Theorem III makes stereographic
projection of great importance in map drawing.

COS ¢ =

an



CHAPTER VI

FORMS OF QUADRIC SURFACES

m55. Definition of a quadric. The locus of an equation of the
second degree in , y, # is called a quadric surface. In this chapter
certain standard types of the equation will be considered. It will
be shown later that the equation of any non-composite quadric
may, by a suitable transformation of codrdinates, be reduced to
one of these types. ;

56. The ellipsoid. TheI locus of the equation
ol A |
a? b2 02
is called the ellipsoid. Since only the second powers of the varia-
bles x, 3, z appear in the equation, the surface is symmetrical as
to each coordinate plane, as to each coordinate axis, and as to the
origin.

The cotrdinates of the points of intersection of the ellipsoid
with the X-axis are found by putting y =2=0 to be (£ a, 0, 0).
Tts intersections with the Y-axis are (0, & b, 0), and with the Z-axis
are (0, 0, & ¢). These six points are called the vertices. The seg-
ments of the codrdinate axes included between the vertices are
called the axes of the ellipsoid. The point of intersection of the
axes is called the center. The segments from the center to the
vertices are the semi-axes; their lengths are a, b, ¢ We shall
suppose the cosrdinate axes are so chosen that a = b = ¢ > 0. The
segment joining the vertices on the X-axis is then known as the
major axis; that joining the vertices on the Y-axis as the mean
axis; that joining the vertices on the Z-axis as the minor axis.

The section of the ellipsoid by the plane z=% is an ellipse
whose equations are

2 2
T rt— =1, 2=k
# 8 o (g)
c? c?

63.
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The semi-axes of this ellipse are a\/l & 15_2’ e | % | in-
¢ c?

creases from 0 to ¢, the axes of the ellipses of section decrease.
If | k| =¢, the ellipse reduces to a point. If |k| > ¢, the ellipse
of section is imaginary, since its axes are imaginary. The real
part of the surface
therefore lies en-
tirely between the
planes z=¢ and
z=—c.

Inthe same man-
ner, it is seen that
the plane y =&
intersects the sur-
faceina real ellipse
if | &'| < 0, that the
ellipse reduces to
a point if [k'| =0,
and that it becomes imaginary if |k'| > 0. Finally, it is seen
that the section z=~%" is a real ellipse, a point, or an imaginary
ellipse, according as | k" | is less than, equal to, or greater than a.
The ellipsoid, there-
fore, lies entirely
within the rectan-
gular parallelopiped
formed by the planes
B =@ =R e
x=—a, y=—19,
z= — ¢, and has one
point on each ofthese
planes (Fig. 25).

If a=10 > ¢, the
ellipsoid is a surface of revolution (Art. 47) obtained by revolving
the ellipse

Fia. 25.

wz y? 3
o & ez d
about its minor axis. This surface is called an oblate spheroid.

If a > b =c, the ellipsoid is the surface of revolution obtained
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by revolving the same ellipse about its major axis. It is called a
prolate spheroid.
If a = b= ¢, the surface is a sphere.

57. The hyperboloid of one sheet. The surface represented by
the equation 2 PPy

@ r e
is called an hyperboloid of one sheet. It is symmetricas toeach of
the coordinate planes, as to each of the codrdinate axes, and as to
the origin.
The section of the surface by the plane z=% is an ellipse
whose equations are

a2 1/2

+ =1,
a? (1 + ’°—Z> B <1 1 7“:)
C C

This ellipse is real for every real value of k. The semi-axes are

a\/l +Ii:, b\[l +E:,
C [

which are the smallest when &k = 0, and increase without limit as
| k| increases. For no value of % does the ellipse reduce to a
point.

The plane y = k' intersects the surface in the hyperbola

z=k.

G Rz

~<__=1‘, y=k’.

If |&'| < b, the transverse axis of the hyperbola is the line
z=0,y=%, and the conjuga,te axis is =0, y =Fk'; the lengths

’2
of the semi-axesare a4/1 — —, C\/l ok As | k'] increases from

zero to b, the semi-axes decrease to zero. When | &'| = b, the
2 2
equation cannot be put in the above form, but becomes 32 — % =
at ¢

and the hyperbola is composite ; it consists of the two lines

Z T z
=0y =5 =— =0,y =b;
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when k' = — b, the hyperbola consists of the lines
x, 2 T
- -—= 0 =0 —— = =—0.
e UM el e O =S

These four lines lie entirely on the surface. If |%'| > b, the
transverse axis of the section is =0, y=~%" and the conjugate
axis isz=0, y =k'. The lengths of the semi-axes are
7
axls =, onfs— 1,
b b
They increase without limit as &' increases.
The plane x = k" intersects the surface in the hyperbola
yZ 22

mo_ﬁ%_&o_ﬂs
a? a?
If |k"| < a, the transverse axis of this hyperbola is 2 =0, z = k'".
The section on the plane @ = a consists of the two lines

= 1, z=Fk".

Y42=0, o=a; {-2=0, s=a
c Cc

b b
The section on the plane 2 = — a consists of the lines
2z
%-}-;:0, =—a; %—E=O, r=—a.

If | %"| > a, the line y = 0, = k"' is the transverse axis and z = 0,
« =Fk" is the conjugate axis.
As|E" |increases, thelengths
of the semi-axesincrease with- -
out limit. The form of the
surfaceisindicatedin Fig. 26.

Fic. 26.
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If a = b, the hyperboloid is the surface of revolution obtained
by revolving the hyperbola

about its conjugate axis.

58. The hyperboloid of two sheets. The locus of the equation

is called an hyperboloid of two sheets. It is symmetric as to each
of the cobrdinate planes, the codrdinate axes, and the origin.

FIG. 27.

The plane z = k intersects the surface in the hyperbola
22 y -

a2<1 . E:) b2<1 N E:)
C C

“The transverse axis is y =0, z==£, for all values of %. The

=1, z=k.

lengths of the semi-axes are a\ll +£”;, b 1+k—:- They are
¢ ¢

smallest for & = 0, namely ¢ and b, and increase without limit as
|k| increases. The hyperbola is not composite for any real
value of k. :

The plane y = k' intersects the surface in the hyperbola

x? 22

N 2
d1+%) {1+%)

=1, y:k'.
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The transverse axis is z=0, y=~k. The conjugate axis is
z=0,y=Fk. If k'=0, the lengths of the semi-axes are a and c;
they increase without limit as &' increases.

The plane # = k' intersects the surface in the ellipse

Y i 2

k”2 k”2
b2<—aT = 1) c2<zz_ 1

This ellipse is imaginary- if || <a If |k"|=a, the semi-
axes are zero; they increase without limit as &'’ increases.

=aiky, =28

d
If b= c, the hyperboloid of two sheets is the surface of revolu-
tion obtained by revolving the hyperbola

?”?_3/_2=1, 2=0
at b?

about its transverse axis.

59. The imaginary ellipsoid. The surface defined by the equa-
tion
2
e . T
at b
is called an imaginary ellipsoid. Since the sum of the squares of

three real numbers cannot be negative, there are no real points on
it.
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EXERCISES

1. By translating the axes of coordinates, show that the surface defined
by the equation 222 +3y2 +422 — 42— 6y + 16 2 + 16 = 0 is an ellipsoid.
Find the codrdinates of the center and the lengths of the semi-axes.

2. Classify and describe the surface «2 + 2 —42x — 3y + 102 = 20 — 22.

3. Show that the surface 222 — 822 — 52 =17 — 2 y?is a surface of revo-
lution. Find the equations of the generating curve.

4. On the hyperboloid of one sheet a2 4+ y2 — 22 = 1, find the equations
of the two lines which pass through the point (1, 0, 0) ; through (- 1, 0, 0).

5. Classify and plot the loci defined by the following equations :

(a) 922+ 16y2 42522 =1, (d) 2 +y2 — 422 =25,
(b) 422 —9y2— 16 2%= 25, (&) 2 +4y2+22=9, -
(¢) 422 — 1692+ 92 = 25, (f) ©2+4y2+9224+8=0.

60. The elliptic paraboloid. The locus of the equation
@ Y
e + T 2nz

is called an elliptic paraboloid. The surface is symmetric as to
the planes # =0 and y = 0 but not as to z=0. It passes through
the origin, and lies on the positive side of z=0 if » is positive
and on the negative side if » is negative. In the following dis-
cussion it will be assumed that » is positive. If = is negative, it
is necessary only to reflect the surface on the plane z =0.

The section of the paraboloid by the plane z==% is an ellipse
whose semi-axes are av/2 nk and bv/2 nk, respectively. If k<0,
the ellipse is imaginary. If & =0, the ellipse reduces to a point,
the origin. As k increases, the semi-axes of the ellipse increase
without limit.

The section of the paraboloid by the plane y==%' is the
parabola

2 k'2
%:27@2—3? y=k’.

For all valuesof %' these parabolas are congruent. As k' in-
creases, the vertices recede from the plane y= 0 along the parabola

§=2m,m=ﬁ
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The sections by the planes x =
X k' are the congruent parabolas

2 "
Z/—=2nz—k—, x=k'".
b? a?

Their vertices describe the pa-
rabola

The form of the surface is in-
dicated by I'ig. 28.

Fia. 28.

If a = b, the paraboloid is
the surface of revolution
generated by revolving the

o xz —
parabola T 2nz, y=0
about the Z-axis.

61. The hyperbolic parab-

oloid. The surface defined
by the equation

is called an hyperbolic paraboloid. The surface is symmetric as to
the planes =0 and y = 0, but not as to z = 0.

As before, let it be assumed that n > 0. The plane z =k inter-
sects the surface in the hyperbola

AN o e e M
at2nk 0220k 40l
If & > 0, the line # = 0, z =k is the transverse axis and y =0,

z = k is the conjugate axis. If k< 0, the axes are interchanged.
The lengths of the semi-axes increase without limit as || increases.
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When % =0, the section of the paraboloid consists of the two
lines

—-‘é=o, z=0.

Fia. 29.

The section of the surface by the planes y=%' are the con-
gruent parabolas
2 k'Z
3 %=‘"z+3€’ y=FK.
The vertices of these
parabolas describe the

parabola ,
2 4
Y= _2n 2=0.
b‘l

The sections by the
planes x=Fk" are
congruent parabolas
whose vertices de-
scribe the parabola

2
z—2=2nz, y=0.

62. The quadric cones. The cone (Art. 46)
2 2
2Ly _Z_0

@ ¥ o
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is called the real quadric cone. [ts vertex is at the origin. The
section of the cone by the plane z = ¢ is the ellipse

The cone is therefore the locus of a line which passes through the
origin and intersects this ellipse.
If @ = b, the surface is the right circular cone generated by re-

volving the line * =7, y = 0 about the Zaxis.
a ¢
The equation
oy, 2
e L
represents an imaginary gquadric cone. There are no real points
on it except the origin.

63. The quadric cylinders. The cylinders (Art. 43) whose

equations are

2y, C_¥ 1, 7/2 —9

S th=l 55t Sal=—Li v
are called elliptic, hyperbolic, imaginary, and parabolic cylinders,
respectively, since the sections of them by the planes z =k are
congruent ellipses, hyperbolas, imaginary ellipses, and parabolas,
respectively.

64. Summary. The surfaces discussed will be enumerated
again for reference.

ﬂﬁ e S}Lz +Z=1. Ellipsoid. (Art. 56)
2 ¢

+ £ -2 Hyperboloid of one sheet. (Art. 57)
a? tle c?

@ _¥_ % _1. Hyperboloid of two sheets. (Art. 58)
@ b et

Ly W z_: =—1. Imaginary ellipsoid. (Art. 59)
¢

24 fg_z —2nz  Elliptic paraboloid. (Art. 60)

a
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z—:— z: =2nz. Hyperbolic paraboloid. - (Art. 61)
! + ¥ _%_0. Real quadric cone. (Art. 62)
i bz
o + ¥ + 250 Imaginary quadric cone. (Art. 62)
at B¢
g— =t z—:= +1; y2=2px. Quadric cylinders. (Art. 63)

EXERCISES

Classify the following surfaces:
42— 642 +2y2=3.

2482 4+6x+2y+7=0,

22 4+3y2+4x—22=0.

422 4+4y2—322=0.

22 g2 —8y2—2z~—12y =15
22 —2y2—06y—062z=0.

7. Find the equation of and classify the locus of a point which moves so
that (a) the sum of its distances, (b) the difference of its distances from two
fixed points is constant. Take the points (4 @, 0, 0).

ORSCIRRIN WIS IR

8. Find and classify the equation of the locus of a point which moves so
that its distance from (a, 0,0) bears a constant ratio to its distance (a) from
the plane x = 0 ; (b) from the Z-axis.

9. Show that the locus of a point whose distance from a fixed plane is al-
ways equal to its distance from a fixed line perpendicular to the plane is a
quadric cone.

10. A line moves in such a way that three points fixed on it remain in
three fixed planes at right angles to each other. Show that any other point
fixed on the line describes an ellipsoid. (Sue. Find the direction cosines of
the line in terms of the codrdinates of the point chosen, and substitute in
formula (1), Art. 3.)



CHAPTER VII

CLASSIFICATION OF QUADRIC SURFACES

65. Intersection of a quadric and a line. The most general form
of the equation of a quadric surface is (Art. 55)
F(x, y, 2) = ax® + by + ¢2* + 2 fyz + 2920 + 2 hay
+ 2+ 2my+2nz+d=0. @€
We shall suppose, unless the contrary is stated, that the coeffi-
cients are all real, and that the coefficients of the second-degree
terms are not all zero.
To determine the points of intersection of a given line (Art. 20)
T=2+ A, Y=Y+ pr, z=2+" @
with the quadric (1), substitute the values of =, y, z from (2) in
F(=, y, %) and arrange in powers of ». The result is
QP +2Rr +8=0, ®)
in which
Q = a)\? + bu* 4+ cv® + 2 fuv + 2 gvh 4 2 hAp, “)
B E(af"’o"‘hyo'*'gzo'*‘l))\'*'(hwo‘Hl’lc'*'fza‘|‘m)/v‘+(gfﬂo‘i'f?/o+CZ’«)"!"”)"

gt
g 2 <6a:0 + 5% #3 a_zo )
8 = F(xy Yo %)-
The roots in 7 of equation (3) are the distances from the point
Py == (%, Yoy %) on the line (2) to the points in which this line
intersects the quadric.

If Q = 0, equation (3) is a quadratic in ». If @ =0, but Rand
S are not both zero, (3) is still to be considered a quadratic, with
one or more infinite roots. If Q@ = R = S =0, (2) is satisfied for
all values of r and the corresponding line (2) lies entirely on the
quadrie. We have, consequently, the following theorems :

TueoreMm L. Every line which does not lie on a given quadric
surface has two (distinct or coincident) pomts in common with the
surface. i

74
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TuroreMm 11.  If a given line has more than two points in common
with a given quadric, it lies entirely on the quadric.

For, if (3) is satisfied by more than two values of 7, it is satis-
fied for all values.

Vv 66. Diametral planes, center. Let P, and P, be the points of
intersection of the line (2) with the quadric. The segment P P,
. is called a chord of the quadric.

TreorEM 1. The locus of the middle point of a system of parallel
chords of a quadric is a plare.

Let , and 7, be the roots of (3) so that PP, =7, and PPy =1,
The condition that P, is the middle point of the chord PP, is
PP, + P,P, =0,
or
r+r,=0.
Hence, from (4), we have

(amy + Ty + 920 + DA + (haty + byo + f2o + M) p
+ (92 + fio + ¢z + n)v = 0. (%)
If, now, A, p, v are constants, but @, y,, %, are allowed to vary,
the line (2) deseribes a system of parallel lines. The locus of the
middle points of the chords on these lines is given by (5). Since
(5) is linear in @y, ¥y 2y, this locus is a plane.
Such a plane is called a diametral plane.

THEOREM I1. Al the diametral planes of a@ quadrw Iwwe at least
one (finite or infinite) point in common.

~ For all values of A, , v the plane (5) passes through the inter- .
section of the planes
aw+hy+gz+l=0,
he+by +fz+m =0, ©)
92 + fy + cz +n=0.
In discussing the locus determined by (6), it will be convenient
to put, for brevity,

a h g a h 1 agl h gl
D=|h b f|, N lbm,MEhfm,LEbfm )
g f ¢ f n gcn fc n

{) 5 A -

—t
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If D0, the planes (6) intersect in a single finite point
(Art. 26)

L e s N 7

TR— i y_D, 7 = o) M

If this point (, y %) does not lie on the surface, it is called

the center of the quadric. It is the middle point of every chord

through it. If the point (2, ¥, %) does lie on the surface, it is

called a vertex of the quadric. In either case the system of planes

(5) is a bundle with vertex at

_LM _N
( bt P B)‘

If D =0, but L, M, N are not all zero, the planes (6) intersect
in a single infinitely distant point, the homogeneous cosrdinates
of which are found, by making (6) homogeneous and solving, to
be (L, — M, N,0). The'system of planes (5) is a parallel bundle.
The quadric is, in this case, said to be non-central.

If the system of planes (6) is of rank two (Art. 35), the planes
determine a line; the diametral planes (5) constitute a pencil of
planes through the line. If this line is finite and does not lie
on the quadric, it is called a line of centers; if it is finite and does
lie on the quadric, it is called a line of vertices. If the system is
of rank one, the diametrical planes coincide. If each point of this
plane does not lie on the quadric, it is called a plane of centers; if
every point of the plane lies on the quadric, it is called a plane of
vertices.

ExampLe. Find the center of the quadric

W4yt —22t+day+4yz+2224+22+4y—22+4d=0.
The equations (6) for determining the center are
x+2y+2+1=0, r+2y+2+1=0, r+2y—2—1=0,
from which x + 2y =0,2z+1=0. This line is a line of centers unless
d =— 1, in which case it is a line of vertices.

EXERCISES
1. Find the codrdinates of the points in which the line z =1 +§r,

y=—2 —gr, z=—1 +§ intersects the quadric 22 4+ 3y2 — 422442 — 2y—
45 =0.
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Find which of the following quadrics have centers. Locate the center
when it exists.
s 2. 22 —29y2 46224 1222 —11=0.

3. 22+ 92— 22 -2z +4ay +4yz+2y—42—-4=0.
w+yz+ze—r+2y—2z—9=0.
2224+ 52+ 22 —4oy—22x—4y—8=0.
222 —xz —yz—2 =0.
L4yt 2 -2yz 4 202 —2xy—2x+y—2=0.
L4yt —dyz—2xz+ 4y + 102+ by—T72+15=0.

9. Show that any plane which passes through the center of a quadric is
a diametral plane.

® 800

10. Let P; and P;be two points on an ellipsoid, and let O be its center.
Prove that if P; is on the diametral plane of the system of chords parallel to
OP,, then P, is on the diametral plane of the system of chords parallel to
OP;. 0

67. Equation of a quadric referred to its centér. If a quadric
has a center (g, Yo, 20), its equation, referred toits center as origin,
may be obtained in the following way :

If we translate the origin to the center by putting
® = + @ y=y"+Yo z2=2"+12,
the equation F(z, y,2) = 0 is transformed into
ax"? 4 byt 4 ¢z + 2 fif'2' + 2 g2'x' + 2 ha'y' + 2(aw, + hyo +
g20+1)2" + 2(hao + byo + fro + m)Y' + 2(9%+ Yo + c2o +m)2' + 5 =0
wherein, as in Eq. (4), S = F(xy, Yo, 2)-
Since (g, Yo, %) is the center, it follows from (6) that
axy + ko + 97, +1 =0,
hay + byy + f2o 4+ m =0, (8)
9% + fifo + 2o +n =0,
so that the coefficients of =z, y', 2’ are zero, and the equation has
the form (after dropping the accents)
ax? + by + ez + 2 gyz + 2 fre + 2 haoy + S = 0. 9)
The function 8 = F(x,, %y %) may be written in the form
8 = F(wy Yo %) =
wo(aae + ko + 920 + 1) + yo(havy + byo + 120 + m) + 26(g%0 + fYo+ 2o+
n) 4 o + myo + 12y + d.
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Hence, from (8) we have
8 = lxy + my, + nzy + d. (10)
By eliminating %o, Yoy % from (8) and (10) we obtain the relation

a h g 1
h b
A
g f ¢ n '
I m n d-—S8
This equation may be written in the form
a k g Z : g
h b fl8= P Som
g c n
[
9.7 I m n d

Denote the right-hand member of this equation by A. The
coefficient of §'is D (Eq. 7). Hence .

DS = A,

or, if D +# 0,
A
S=2.

If D+#0 and A =0, it follows from (9) and (11) that the
quadric is a cone (Art. 46).V The vertex of the quadric is the
vertex of the cone,,

If A=0 and S+0, then D=0. Since (x, ¥, %) was
assumed to be a finite point, it follows that L= M= N=0 so
that the surface has a line or plane of centers.

If A=0 and S=D =0, then from (9) the surface is com-
posite. Every point common to the component planes is a vertex.

The determinant A is called the discriminant of the given
quadric. If A =0, the quadric is said to be singular. If A0,
the quadric is non-singular.

68. Principal planes. A diametral plane which is perpendic-
ular to the chords it bisects is called a principal plane.

TuroreEM. If the coefficients in the equation of a quadric are
real, and if the quadric does not have the plane at infinity as a com-
ponent, the quadric has at least one real, finite, principal plane.
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The condition that the diametral plane (5)
(aX + hp + gv)a + (A +bp + )y + (GA + fu + ev)z + -

N mp 4+ nv=10
is perpendicular to the chords it bisects is (Art. 14)
ar+hp+gv A +bp +fv__gA+fr+cv, 12)
A m v

If we denote the common value of these fractions by %, equa-
tions (12) may be replaced“lb% o
(@ —E)A+lyn + gv=0,
A +(b—E)p+ fv =0, 13)
gA+ fu + (¢ — k)r =0.
The condition that these equations in A, u, v have a solution other
than 0, 0, 0 is
a—k h g
h b—k f
g f c—k
or, developed and arranged in powers of %,

k3——(a+b+c)7c2+(ab+ bet+eca—fr—g*— 1Mk — D=0, (15)
where D has the same meaning as in (7). This equation is called
the discriminating cubic of the quadrie F(z, y, z) =0.

To each real root, different from zero, of the discriminating
cubic corresponds, on account of (13), (12), and (), a real finite
principal plane. Our theorem will consequently be proved if we

*show that equation (15) has at least one real root different from
zero. The proof will be given in the next article.

=0, (14)

69. Reality of the roots of the discriminating cubic. We shall
first prove the following theorem:

TaEOREM 1. The roots of the discriminating cubic are all real.

Let %, be any root of (15) and let Ay, py, v, (n0t all zero) be values
of A, p, v that satisfy (13) when k =%,. If %k isa complex number,
Aoy Moy ¥vo MY be complex. Let

A=A+, po=p + il~‘-’17 v= v+,

where i =V —1 and A, My, uy, ', v, v/ are real.



80 QUADRIC SURFACES [CraPp. VIL

Substitute &, and these values of Ay, po, v, for &, A, p, v in (13),
multiply the resulting equations by X, — i\, u, — u'}, v — iv'), re-
spectively, and add. The result is

(NN o 0 VR = (M ) @ (o + )

+ (Vlz P V’lz) c+2 (,U«1V1 F M’1V’1)f+ 2 (Vl)\l + V'l/\'l) )

+ 2(Ap + XDl
The coefficient of %, is real and different from zero. The number
in the other member of the equation is real. Hence & is real.
Sinee k, is any root of (15), the theorem follows.

TreorEM II. Not all the roots of the discriminating cubic are
equal to zero. )

The condition that all the roots of (15) are zero is
a4+b+c¢=0,ab+be+ca—fr—g*—1*=0, D=0.

Square the first member of the first equation, and subtract twice
the first member of the second from it. The result is

A+ 4+224202+202=0.
Since these numbers are real, it follows that
a=b=c=f=9g=h=0;

but if these conditions are satisfied, the equation of the quadric
contains no term in the second degree in «, ¥, z, which is contrary
to hypothesis (Art. 65).

70. Simplification of the equation of a quadric. Let the axes be
transformed in such a way that a real, finite principal plane of the
quadric F' (%, y, 2) =0 is taken as «=0. Since the surface is now
symmetric with respect to =0 (Art. 68), the coefficients of the
terms of first degree in # must all be zero. Hence the equation
has the form :

ar? + byt 4 c2+ 2 fyz+2my + 2nz 4+ d =0.
Moreover, @+ 0, since otherwise =0 would not be a principal
plane (Art. 69).

Now let the planes y =0, z=0 be rotated about the X-axis

2r

through the angle 6 defined by tan 2 § = b———c-' This rotation re-
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duces the coefficient of »z to zero, and the equation has the form
a'e? VP 22+ 2m'y+2n'2+d' =0, (16)

wherein a’ = 0, but any of the other coefficients may be eqﬁal to zero.

71. Classification of quadric surfaces. Since the equation of a
quadric can always be reduced to the form (16), a complete classi-
fication can be made by considering the possible values of the co-
efficients.

I: Let both &' and ¢' be different from zero. By translation of

—m' —n
b
b '

the axes in such a way that (O, > is the new origin,

the equation reduces to
a'B by 42 =d".
If @" + 0, divide by d" and put
d” d” d”
—07= :ta2’ b—'= :th’ -c—’= :tc2’
the signs being so chosen that a, b, ¢ are real. This gives the fol-
lowing four types:

mz 2 2 . . .
= %2 T ?c_i =1. Ellipsoid. (Art. 56)

a2 2
~ 4+ ==1. Hyperboloid one sheet. (Art. 57)

‘a? b2 c2

B Ly Hyperboloid two sheets.  (Art. 58)

at v e
2 2
= Z_Z—%z - ’2_2 =1. Imaginary ellipsoid. (Art. 59)

If d" =0, the reduced forms are

2 2 A

Ziz 4 % e % =0. Imaginary cone. (Art. 62)
mZ 2 Zz \

= L %2 i 0. Real cone. _ (Art. 62)

IT. Letc¢'=0,0b'%0.
If ' 0, by a translation of axes, the equations may be re-
duced to
a'?+ 0"yt +2n'2=0.
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This equation takes the form

2
12 +%=2nz Elliptic paraboloid. (Art. 60)
r Y ¥ 9 Hyperbolic paraboloid. (A
0 i T nz. yperbolic paraboloid. (Art. 61)

according as «' and b’ have the same or opposite signs.
If n'=0, the equation may be reduced to

a'v? +b'y* 4 d" = 0.
If d" # 0, this may be written in the form

i ?;2 +1=0. Quadric cylinder. (Art. 63)
and if d" =0, :t 2 =0. Pair of intersecting planes.
IIL. Let b'=¢'=0. Equation (16) is in this case
a'?42my+2n24+d'=

If m and n are not both zero, since the plane 2 m'y + 2 n'z+4 d'
=0 is at right angles to =0, we may rotate and translate the
axes so that this plane is the new y =0. The equation of the sur-
face becomes

=2my. Parabolic cylinder. (Art. 63)
If m' and »' are both zero, we have,
if d' +0, 2®4+k*=0. Two parallel planes.
if d'=0, 2?2=0. One plane counted twice.

72. Invariants uader motion. A function of the coefficients of
the equation of a surface, the value of which is unchanged when
the axes are rotated and translated (Arts. 36 and 37), is called an
invariant under motion of the given surface. It will be shown
that the expressions

I=a+b+c
J=bec+ca+ab—fr—qg*— 1
a h -(/ l
la h g :
Ly b fm
.D= h b f 5 A= q f C o )

g J ¢ I m n d
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formed from the coeficients of the equation (1) of a quadric are
invariants under motion.

73. Proof that I, J, and D are invariants. When the axes are
translated (Art. 36), the coefficients of the terms in the second
degree in the equation of a quadric are unchanged. Hence I, J,
and D are unchanged.

Since the equations of rotation (Art. 87) are linear and homo-
geneous in z, y, 2, &', ¥, 2/, the degree of any term is not changed
by these transformations, so that a term of the first degree can-
not be made to be of the second, nor conversely. Suppose the
expression

S, y, 2) =ax®+ 2 hay + by* + 2 gxz + 2 fyz + c2?
is transformed by a rotation into
S, y, 2)=da?+2 W'y + b" 2 + 29 %'z + 2 fy'2 +¢'z"
Now consider the function
$(z, ¥, Z)E S (@, y, 2) — k(@ + i +2).
The expression «? 4 42 + 22 is the square of the distance of a point~<—
(x, y, 2) from the origin, and will therefore remain of the same
form 2 4 y" 4 2/ by the transformation of rotation (Art. 37).

If, then, f(x, y, ) is changed into f'(', ¥/, 2'), qs(a:, ¥, 2) will be
changed into
$@, ¥ #) =&, 1, #) — K@+ Y.

If & has such a value that ¢ is the product of two linear factors in

, Y, 2 then, for the same value of %, the expression ¢' will be the

product of two linear factors in ', ¢, 2. The condition that ¢ is

the product of two factors is that its discriminant vanishes, that

is

a—k h g
h b—k f

[1} i c—k

which, developed in powers of k, is exactly the equation of the dis-
criminating cubic (Art. 68)

—Ik+Jk—D=0.

=0
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Similarly, the condition that ¢'is the product of two linear fac-
tors is B—IM4+J%k—D =0,

where I', J', and D' are the expressions I, J, and D formed from
the coefficients of f'(«', ¥/, 2').

These two equations have the same roots, hence the coeflicients
of like powers of & must be proportional. But the coefficient of %
is unity in each, hence,

I'=1, J' =, D' =D,
that is, I, J, D are invariants.
From the theorem just proved the following is readily obtained :

TaEOREM. When the awes are transformed in such a way that
ithe coefficients of zy, yz, and zx are all zero, the coefficients of %, y%
and 2% are the roots of the discriminating cubic.

For, if the equation of the quadric has been reduced to
a4+ by 42+ 212 +2my 42024 d' =0,
the discriminating cubic is
B—(@ 40 +cHk+(a'V +0'c + ca' )k —a'b'e =0.
The roots of this equation are a', %', and ¢. This proves the
proposition.
From the theorem just proved, the following criteria immedi-
ately follow:
If two roots of the discriminating cubic are equal and different
from zero, the quadric is a surface of revolution, and conversely.
If all three roots of the discriminating cubic are equal and
different from zero, the quadric is a sphere.
If A+0, and a root of the discriminating cubic is zero, the
quadric is non-central.
If two roots of the discriminating cubic are equal to zero, the
terms of second degree in the equation of the quadric form a
perfect square.

74. Proof that A is invariant. It will first be proved that A is
invariant under rotation. The reasoning is similar to that in
Art. 73. Let

Fw, y, 2)=aa® + by + ¢ + 2 fyz + 2 gz + 2 hay + 2 le + 2 my
) +2nz24+d=0
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be tixe equation of the given quadric. Let this equation be trans-
formed by a rotation into
F, o', 2)=a'®? + 0y 4 c2? 42 fly'2' + 2 g'2'a' + 2 Wa'y' + 21
+2mly' +2n'2' +d' =0.
This rotation transforms the expression
O(z, y, A)=F(x,y, 2)— k(@ + 2 +22+1)
into (@, ¥, #)=F'(, y', ') — k(2" +y" + 2?4 1).
The discriminants of ® and @' are, respectively,

a—k R g l a' —k L' q' A

h b—%k f m LV —k I m'

g i c—k and q' A U

l m i d—k I8 m/! n'd—k

The roots of the quartic equations in k obtained by equating these
discriminants to zero are equal; since a value of & which makes
& = 0 singular also makes &' = 0 singular and conversely (Art. 67).
Hence, since the coefficient of %* in each equation is unity, the
constant terms are equal; that is, A=A'. Hence, A is invariant
under rotation.

In order to prove that A is invariant under translation, let the
axes be translated to parallel axes through (x, ¥, %,). The equa-
tion of the quadric becomes (cf. Art. 67)

F'(2, o, 2= a4 by + 2 + 2 fu'y' + 2 gy'z' + 2 he''
+ 2 (axy + Ly, + gz, + D' + 2 (hay + by, + fz + m) y'
+ 2 (g‘TO +f?/0 + ¢z, + n)z' + S= O;

where S = F(x, ¥y %,). The discriminant of F'(2', ¢/, 2') is

a h g axo+ hyo+gzo+1

h b e hxo+byo+ fzo+m

g f ¢ gxo+ fYo+czo +n |
aro+hyo+9zo+1  hxo+dyo+fzo+m  gxo+SYo+czo+n s

Multiply the first column by #,, the second by y,, the third by z,
and subtract their sum from the last column. In the resulting
determinant, multiply the first row by u,, the second by ¥, the
third by 2, and subtract their sum from the last row. Finally
divide the first row and column each by «,, the second row and
column each by y, and the ‘third row and column each by z,
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The resulting determinant is A. Hence A’ = A, so that A is inva-
riant under translation. Since A is invariant unaer both transla-
tion and rotation, it is invariant under motion.

75. Discussion of numerical equations. In order to determine
the form and position of a quadric with a given numerical equa-
tion, it is advisable to determine the standard form (Art. 71) to
which the equation of the given quadric may be reduced, and the
position in space of the codrdinate axes for which the equation
has this standard form. For this purpose the roots ki, &y, k; of
the discriminating cubic and the value of the discriminant A
should first be computed. !

A. If all the roots %, k, k; are different from zero, the three
principal planes may be determined as in Art. 68. If these planes
are taken as codrdinate planes, the equation reduces to (Art. 67,
Eq. 11; Art. 73)

Ty 4 Fegy® 4 kg2 + ﬁ =0.

B. If one root k; is zero, two finite principal planes may be
determined as before. Let these be taken as x=0 and y=0.
At least one intersection of the new Z-axis with the surface is at
infinity. If this axis does not lie on the surface, and does meet
the surface in one finite point, the axes should be translated to
this point as origin. The equation of the surface now has the
form

kw4 ky? 4+ 20''2=0.

Since
E 0 0 0
0 k O O
A= 0o 0 0 2"
0 0 2" 0
1t follows that
=4
) — —r
i 7

If the new Z-axis lies on the quadiic, or if it has no finite point
in common with it, any point on the new Z-axis may be chosen for
origin and the equation takes the form

ka? +kyy* + S =0,
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where (Art. 67)
: S = lwy+ my, + nzy + d,
and (y, %o, %) are the old codrdinates of the new origin.

C. If two roots of the discriminating cubic are zero, the terms
of the second degree in the original equation form a pérfect square,
so that the equation of the surface, referred to the original axes,
is of the form

(a:c+By+yz)2+2la;+2mg/+2nz+d=0,
or (ax+ By+ vz + 82+ 2(1 — ad)w + 2(m — By + 2(n — yd)z
+d—8&=0. a7

If the planes ewr+By+y2+8=0

20 — adyw+ 2(m — BO)y +2(n — yd)z +d — & =0
are not parallel, we may choose & so that they are perpendicular.
The first term of (17) is proportional to the square of the distance
of the point (=, ¥, z) from the plane

ax + By + y2+8=0.

The remaining terms of (17) are proportional to the distance to
the second plane. If these planes, with the appropriate value of
8, are chosen as x = 0, y = 0, the equation reduces to

(@ + B+ ¥yt + 2V — abf+(m — B +(n — y3)* =0

If the two planes are parallel, § may be so chosen that

' l—ad=0, m—pB8=0, n—y3=0.
The equation now becomes

(@+ B4+ V) +d—-8=0,
wherein ax 4+ By + yz + 8 = 0 is the new y =0.

ExampLe 1. Discuss the equation
—2y2 462241222 —-162x—4y — 862462 =0.
The equations determining the center are x + 62z —8 =0, 2y 42 =0,
6x + 6z — 18 = 0, from which the codrdinates of the center are (2,— 1, 1).
_ The invariants are I =5, J =— 44, D =60, A = 1800.
Hence, the discriminating cubic is

k3 -5k =44k —60=0.
Its roots are k) = 10, ky =— 2, k3 =— 3. The transformed equation is
1022 — 22 —-822 430 =0.
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The direction cosines of the new axes through (2, —1, 1) are found, as in
Art. 68, by giving % the values 10, — 2, — 3, to be
2 3 -3 2
-y 0y —;0, 1, 0; —, 0, —
V13 13 V13 V13
The surface is an hyperboloid of one sheet.

-

Exaymrre 2. Discuss the quadric
11224+ 1092 + 622 —8yz+ 42— 122y + 722 -T2y + 362 + 150 = 0.
The discriminatir{g cubic is
K — 2Tk + 180 k — 324 = 0.
Its roots are 3, 6, 18. A =— 3888. The surface is an ellipsoid.
The equations for finding the center are
Nl —-6y+22+36=0, —6x+10y—42—36=0,
20 —4y+624+18=0.
The codrdinates of the center are (— 2, 2, — 1). The direction cosines of
the axes are
%7 His HLh —%; "'%1 2 "'%' ,
The equation of the ellipsoid referred to its axes is
32+ 6y + 1822 =12,
ExadmpLe 3. Discuss the quadric y
322 —y?2+2224+06yz—4zx—2xy—142 44y 4202+ 21=0.
The discriminating cubic is
k3—4k2—13k+19=0.
Its roots are approximately 1.2, 5.7, — 2.9. A = 0. The surface is a cone.
The equations for finding the vertex are
32 —y—22—-7=0, —2x—y+32+2=0, —22+32x+22z-4+10=0.
The codrdinates of the vertex are (1, — 2, — 1). The direction cosines of
the axes are approximately )
8, 4,.5; 6, -4, —.7;0, .6, — 4,
The equation of the cone referred to its axes is approximately
1.222 45792 —-2.922=0.

ExamprLe 4. Discuss the guadric
42242 +22—2yz+4aez—4ay—8ax+424+7=0.
This equation may be written in the form
Qr—y+2+8)2=(B8+48)r—25y —(4—28)2z—7+ 8%
If 8=—1, the planes 22 —y+2—1=0and 42+ 2y —-62—6=0 are
perpendicular. If we take these planes as y’ = 0 and &’ = 0, the equation of
the surface reduces to 6 2 = V56 z. The surface is a parabolic cylinder.

Y
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EXERCISES

Discuss the quadrics :

1.

=
e T T T
O 0P @D H O

=
3

. 3x2+2y2+222+2yz+6x+6y—z+9=0.
. 2xy+ 6224+ 1424 1=0. H oy

© 0O N0 vk N

a2 +292 22 —4day—4yz+2=0.
x2—y2+222—2yz+4xz+4xy—-2x—4y—1=0.
2+x+y+1=0.

22245y +222 4+ 2yz+6ay +2y +42+2=0.
B e e,

x2+y‘1—-2z‘3+2yz+221+.2xy—4x—2y‘+2z=0.

¢ S - YL
vV +Vy +Vz=0. i

.m2+:1/'2+9z?—6yz+6zx—2xy—ac+y——3z=,"-0,. A
. x‘1+y2+9z2—(iyz+6mz—2xy—4x+2y+6z+5=0.

5 3x2+2y2+4yz-—2zx—4x'—8z—8:0.
La—y2—222—4dyz+ 22y — 2y +22=0.

L x2—6yz+8zx+2xy+x—132=0.
22yt —dzr 122y +4y+42—-9=0.
222924222420y —22—4y—42=0. .
3+ttt yr -8z —2xy+2x+4y+22=0

. For what values of ¢ is the surface

5a24+3y2+c2+222+16=0

a surface of revolution ?

18.

Determine d in such a way that
2+ +522+2yz+4az—day +22+2y+d=0

is a cone.

44

™



CHAPTER VIII

SOME PROPERTIES OF QUADRIC SURFACES

76. Tangent lines and planes. If the two points of intersection
of a line and a quadric coincide at a point P, the line is called a
tangent line and P, the point of tangency. If the surface is sin-
gular, it is supposed in this definition that P, is not a vertex.

TueOREM. The locus of the lines tangent to the quadric at P, is
a plane.

Let the equation of the quadric be

F(z, y, 2) = ax? + by? + c2* + 2 fyz + 2 gz + 2 hay
+2l4+2my+2nz4d=0, @)

and let the equation of any line through P,=(x, y, 2,) be
(Art. 20)

T=x+ A, Y=Y+ pr, 2=z+ (2)
Since P, lies on the quadric, F'(xy, ¥, %) = 0. Hence, one root of
equation (3), Chapter VII, which determines the intersections of
the line (2) with the quadric (1), is zero. The condition that a
second root is zero is R = 0, or

Aaxy + hyy + gz + 1) + p (hiwy + byo + f2 + m)
+ v(gm + fio + ez +m)=0.  (3)

If we substitute in (3) the values of A, u, v from (2), we obtain

(@ — zo)(axo + hyo + 920 + D)+ (¥ — yo)(havy + by + f2o + m)

+ @ —2)(gn+ S+ cn+n)=0, (4)
which must be satisfied by the coordinates of every point of every
line tangent to the quadric at P, Conversely, if (w, ¥, 2) is any
point distinet from P, whose coordinates satisfy (4), the line de-
termined by (#, y,#) and P, is tangent to the surface at P,
Since (4) is of the first degree in (z, y, 2), it is the equatlon of a

plane. This plane is called the tangent plane at P,
90
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The equation (4) of the tangent plane may be simplified. Mul-
tiply out, transpose the constant terms to the second member, and
add Iz, + my, + nz, + d to each member of the equation. The
second member is F (2, ¥, %), Which is equal to zero, since P, lies
on the quadric. The equation of the tangent plane thus reduces
to the form
axzy + byyo + cazy + f(Y20 + 20) + g (22 + 225) + h (2Ys + Yo)

+i@+a)+my+y)+nE+z)+d=0. (5)

This equation is easily remembered. It may be obtained from
the equation of the quadric by replacing 2% #? 22 by @w, ¥y, 2%;
29z, 2z, 2 2y by yz, + 2o, 22 + 2o, XYy + Ye; and 22, 2y, 22 by
x + g, ¥ + Yo, % + %, respectively.

77. Normal forms of the equation of the tangent plane. The equa-
tion of the tangent plane to the central quadric

at + byt ct=1 (6)
at the point (xy, ¥y, %) on it is
axxy + byy, + czzy = 1.
Let the normal form of the equation of this plane (Art. 13) be

A 4 py 4 vz=p, )
so that

')-\- = QXy, (2 b_?/o, Y= CZp.
p b

Since (#,, Yo, %) lies on the quadric, we have
axe® + bys® + ez =1,

f =p ®

Conversely, if this equation is satisfied, the plane (7) is tangent
to the quadric (6).
By substituting the value of p from (8) in (7), we have

2 2
)\w+py+vz=\f§_+/"_+‘_'_2’
a b ¢

which is called the normal form of the equation of the tangent
plane to the central quadric (6).

from which
2 2
A SRR
a b
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It follows from (8) that the necessary and sufficient condition
that the plane
ur + vy +wz=1
is tangent to the quadric (5) is that

u? vt w?
—4—-+—=1
a + b + c ®)
This equation is called the equation of the quadric (6) in plane
cobrdinates.
Again, if .
ax? + by* = 2nz (10)
is the equation of a paraboloid (Arts. 60 and 61), it is proved in a
similar way that the normal form of the equation of the tangent
plane to the paraboloid is

2 2
Ax+yy+vz=~%(%+’;—> 11)

and that the condition that the plane
ur + vy +uz=1
is tangent to the paraboloid is

w v 2w

—+-4+==0 12

a + b + n 12)
Equation (12) is the equation of the paraboloid in plane cobrdinates.

78. Normal to a quadric. The line through a point P, on a
quadric, perpendicular to the tangent plane at P, is called the
normal to the surface at P,

It follows from equation (4) that the equations of the normal
at P, to the quadric F(x, y, 2)=0 are

T —% Y—% Z—% (13)

axy + hyy 4 gz +1 B hay+ byo + f2o + m 0 9%+ S + €20+ n.

EXERCISES

1. Show that the point (1, —2, 1) lies on the quadric 22 —y% + 2% +
4dyz+ 2 2% + xy —x +y+ 2+ 12=0. Write the equations of the tangent
plane and the normal line at this point.

2. Show that the equation of the tangent plane to a sphere, as derived in
Art. 76, agrees with the equation obtained in Art. 50.
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3. Prove that the normals to a central quadric ax? + by? + c2? =1, at all
points on it, in a plane parallel to a principal plane, meet two fixed lines,
one in each of the other two principal planes.

4. Prove that, if all the normals to the central quadric ax? + by? + cz2 =1
intersect the X-axis, the quadric is a surface of revolution about the X-axis.

5. Prove that the tangent plane at any point of the quadric cone
ax? + by? 4 ¢z? = 0 passes through the vertex.

6. Prove that the locus of the point of intersection of three mutually per-
pendicular tangent planes to the central quadric ax? 4 by? + cz? =1 is the
1,11
= = + =0
a + b ¢
sphere of the given central quadric.

concentric sphere 22 + y2 4 22 = This sphere is called the director

7. Prove that through any point in space pass six normals to a given
central quadric, and four normals to a given paraboloid.

79. Rectilinear generators. The equation of the hyperboloid
of one sheet
2 2 2
A At

et e .

may be written in the form

G-

or
LAY 4 1_%
:+;=w 2’ (14
Dy 2@ 6
or also
ed 1
1 y=x z e)
b a ¢

Let the value of each member in (14) be denoted by &, so that
by clearing of fractions we have

§+z=é<1+%), (1—%)=£<§—§>- (16)

For each value of ¢, these equations define a line. Every point
on such a line lies on the surface, since its codrdinates satisfy



.
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(14). Moreover, through each point of the surface passes a line
of the system (16) since the codrdinates of each point on the sur-
face satisfy (14) and consequently satisfy (16). The system of
lines (16), in which ¢ is the parameter, is called a regulus of lines
on the hyperboloid. Any line of the regulus is called a generator.

Similarly, by equating each member of (15) to 4, we obtain the
system of lines whose equations are

T2 (1Y 148, (% %2
a+c ﬂ( b>7 +b W(a C>’

in which 5 is the parameter. This system of lines constitutes a
second regulus lying on the surface. The two reguli will be
called the ¢ regulus and the 5 regulus, respectively. Through
every point I’ of the surface passes one, and but one, generator
belonging to each regulus. Moreover, any plane that contains a
generator of one regulus contains a generator of the other regulus
also. The equation of any plane through a generator of the ¢
regulus, for example, may be written in the form (Art. 24)

(Y]

Since this equation may also be written in the form

feioa(-0)-148) ()

it follows that this plane also passes through a generator of the
n regulus. Every such plane is tangent to the surface at the
point of intersection I’ of the generators in it, since every line
in the plane through P has its two intersections with the surface.
coincident at P.

ExamprLeE. The equations of the reguli on the hyperboloid
%2yl

SR L Y
4+9 2=
ate §+z—s(1+3), 1 34(2 z)
s ¥ S/ o,
and §+z_11(1 3), 1+3-—1)(2 Z)

The point (2, 6, 2) lies on the surface. The values of ¢ and » which
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determine the generators through this point are £ =1, » =— 3. Hence, the
equations of these generators are

§+z=1+%, 1_§___a2_c__z’ and §+z=—-3(1—g), 1+% =—3(§—z),

The equation of the plane determined by these lines is
3x+4y—122—6=0.
This is the equation of the tangent plane at (2, 6, 2) (Art. 76).

It is similarly seen that the equation

z Y

&+Z_ 1 _.

an_w_g_’
a b

LY,

and a b 1

W=ﬂ=’7'

a' b

Hence, on this surface also, there is a ¢ regulus and an 5 regulus
The generators of the ¢ regulus are parallel to the fixed plane
@
a
By writing the above equations in homogeneous codrdinates, it is

—%:0; those of the 5 regulus, to the fixed plane g7-}-%:0.
: a

seen that the line z-}-%: 0, ¢t = 0 in the plane at infinity belongs

to the ¢ regulus; and the line Z—%= 0,¢=0 to the 5 regulus.

Hence the plane at infinity is tangent to the paraboloid.

The hyperboloid of one sheet and the hyperbolic paraboloid are
sometimes called ruled quadrics, since the reguli on them are real.
It will be shown (Art. 115), that on every non-singular quadric
there are two reguli; but, on all the quadrics except these two,
the reguli are imaginary.

80. Asymptotic cone. The cone whose vertex is the center of
a given central quadric, and which contains the curve in which

N
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the quadric intersects the plane at infinity, is called the asymp-
totic cone of the given quadric.
If the equation of the quadric is

ax® 4 by? + cz* =17,
the equation of its asymptotic cone is

ax? + by* + ¢c2* = 0.
For, this equation is the equation of a cone with vertex at the
center (0, 0,0, 1) of the given quadric (Art. 46). Tts curve of

intersection with the plane at infinity coincides with the curve of

intersection
ax? + byt 4+ c2=1t% t =0,

of the given surface with that plane.

EXERCISES
1. Show that the quadric xy = z is ruled. Find the equations of its gen-
erators.
2. Show that 22 — 222 + 65y — x 4 8 z = 0 is a ruled quadric.

3. Prove that, for all values of %, the line x + 1= ky = — (k + 1)z lieson
the surface yz + zx + a2y +y + 2 = 0.

4. Prove that (y + mz)(x + nz) =z represents an hyperbolic paraboloid
which contains the X-axis and the Y-axis.

5. Show that every generator of the asymptotic cone of a central quadric
is tangent to the surface at infinity. From this property derive a definition
of an asymptotic cone.

6. Show that every generator of the asymptotic cone of an hyperboloid of
one sheet is parallel to a generator of each regulus on the surface.

81. Plane sections of quadrics.
TurorEM L. The section of a quadric by a finite plane, which is
not a component of the surface, is a conic.

For, let = be any given finite plane, and let the axes be chosen
so that the equation of this plane is # =0. Let the equation of
the quadric, referred to this system of axes, be

a2+ byt +c224-2 fyz+-2 gra+-2 hay+2 le+ 2 my+-2 nz+d=0. (17)
If, when z =0, (17) vanishes identically, the given quadric is
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composite and z =0 gg one component; otherwise, the locus
defined in the X Y-plane by putting z = 0 in (17) is a conie.

TureoreEM II. The sections of a quadric by a system of parallel
planes are similar conics and similarly placed.

Let the axes be chosen so that the equations of the given sys-
tem of parallel planes is z = k, and let (17) be the equation of the
given quadric. The equation of the projecting cylinder of the
section by the plane z =k is '
ax?+ 2 haoy + by + 2 (1 + gk)a + 2 (m + fk)y + ck*+ 2 nk+d=/0.
The curves in which these cylinders intersect z =0, and conse-
quently (Art. 45) the cge®® of which they are the projections,
are similar and similarly placed, since the coefficients of a? axy,
and 72 in the above equation are independent of k.* .-

The equations of the section of the surface by the plane at
infinity are found by making (17) homogeneous in #, 3, 2, t and put-
ting t= 0. They are

ax? + by + ¢+ 2 fyz +2 gz + 2 haoy = 0, t = 0.

e

The locus of these equations is called the infinitel ,
of the quadric. This conic consists of two lines if the,rﬁrst mem-
ber of the first equation is the product of two linear factors. The =
condition for factorability is e

D =0. -®

EXERCISES N S
1. Find the semi-axes of the ellipse in which the pi'an'é'z =1 intersects
the quadric 22 + 492 — 3224+ 4yz — 20— 4y =1.
2. Show that the planes z = k& intersect the quadric 222 — #2 + 322
42z —2yz+42+ 2y =0 in hyperbolas. Find the equations of the locus of
the centers of these hyperbolas.

8. Show that the curve of intersection of the sphere 2 4 y2 i; 2?2 = 12 and

2
the ellipsoid Lo v + 2 _ 1 lies on the cone
at b ¢

1 1 1 1 iff 1\,
(@2 G+ (G-m)2=0

Find the values of » for which this cone is composite. Show that each com-
ponent of the composite cones intersects the ellipsoid in a circle.

* Cf. Salmon, * Conic Sections,” 6th edition, p. 222.
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82. Circular sections. We shall prove the following theorem :

TreEoREM 1. Through each real, finite point in space pass six
planes which intersect a given non-composite, non-spherical quadric
in circles. If this quadric is not a surfuce of revolution nor a para-
bolic cylinder, these siz planes are distinct; two are real and four
are imaginary. If the quadric is a surface of revolution or a para-
bolic cylinder, four of the planes are real and coincident and two are
imaginary.

Two proofs will be given, based on different principles.

Proof I. Since parallel sections of a quadric are similar, it
will suffice if we prove this theorem for planes through the origin.
The planes through any other point, parallel to the planes of the
circular sections through the origin, also intersect the quadric in
circles.

Let the axes be chosen in such a way that the equation of the

quadric is (Art. 70)

ka? + kgt + k2 + 2l +2my + 2024+ d=0, (18)
where k,, k,, k; are the roots of the discriminating cubic (Art. 73).
The condition that a plane intersects this quadric in a circle is
that its conics of intersection with the given quadric and with a
sphere coincide.

The curve of intersection of the quadric (18) with the sphere
k(x2+y2+z2)+2lx+2my+2nz+d=0 19
coincides with the intersection of either of these surfaces with
the cone
(ky — k) a2+ (ky— k)2 + (ks — k)2 = 0.

This cone is composite if the first member of its equation is

factorable, that is, if & is equal to k&, ks, or As
It follows that each of the six planes

Vi —hhz=+Vh—Tay

Vi — Iy o=+ Vi, — ks 2

Vi, —Fky=+Vk —kz
intersects the quadric (18) in a conic which lies on the sphere 19)
and is consequently a eircle.
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If &, > k, > k;, the six planes are distinet. The planes
Vi —ka=1 Vi —Fkz
are real. The others are imaginary.

If k,=7czz k;, the last four planes coincide with z=0. The
other two are imaginary. If k =k, 0, the quadric (18) is a
surface of revolution (Art. 73). If k; =k, =0, it is a parabolic
cylinder (Art. 75).

If the equation of the surface is in the form (17), and %;, k., %;,
are the roots of its diseriminating cubie, it follows from the dis-
cussion in Article 73, that the equations of the planes of the
circular sections through the origin are

ax? + by +c2® + 2 fyr + 2 gra + 2 hay — ky (0 + 1 + 22) =0,
ax? 4 by + 2* + 2 fyz + 2 gz + 2 hay — Ky (@ + 32 + 22) =0,
ax? + byt 4 ezt + 2 fyz + 2 gzx + 2 hay — ks (@2 + 2 + 22)= 0.

Proof II' It was shown (Art. 49) that a plane section of a
quadric is a circle if it passes through the circular points of its
plane. The conic in which the quadric meets the plane at infinity
has four points of intersection with the absolute. Any plane
other than the plane at infinity which passes through two of
these points will meet the quadric in a conic through the ecircular
points of the plane; hence the section is a cirele.

The codrdinates of the points of intersection may be found by
making the equations

ar+ by + et +2 fyz+ 29z 4+ 2 haoy =0, a*+4 2 +22=0
simultaneous. Since both equations have real coefficients and the
second is satisfied by no real values of the variables; it follows
that the four points P,, P, P, P, consist of two pairs of conjugate
imaginary points, or of one pair counted twice.

In the first case, let P,, P, be one pair of conjugate points, and
P, P, the other. The lines P P, PP, are real (Art. 41), while the
lines PP, P,P, PP, P,P; are imaginary. The pairs of lines
PP, PP, PP, PP,; PP, P,P; constitute composite conics
passing through all four of the points P, P,, P, P,

In the second case, let P,= P, and P,= P, The lines P,P, and
PP, coincide, and the lines P, P;, P,P,are tangents to both curves,
which have double contact with each other at these points.
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In either case the equations of the lines PP, can be found as
follows. Through the points of intersection ot (17) and the abso-
lute passes a system of conics

ax? +bit+ e +2 fyz+2 gra+2 hawy — k(@2 +y2+2%) =0, t=0. (19"

A conic of this system will consist of two straight lines through
the four points of intersection if its equation is factorable, that is,"

a—k h g

L b—k  f

g f. e—k
thus k& must be a root of the diseriminating eubie (Art. 73). Tet
%y, ks, k, be the roots of this equation. The equations of the pairs
of lines are then
ax?+-byP4c2+2 fyz+2 gra+2 hay— k(2242424 =0, t=0, (20)
with similar expressions for k, and k. From Art. 41 it follows
that for one of the roots k, the two factors of the first member of
the quadratic equation (20) are real, but the factors for each of
the others are imaginary when the roots %, are all distinct.

If u, v are the two linear factors of (20), then the line u =0,
¢t =0 will pass through one pair of points andv =0, t = 0 will pass
throngh the other. A plane of the pencil u + pt =0 will cut the
quadric in a circle. Since a plane is determined by a line and a
point not on the line, the theorem follows.

In ease two roots of the discriminating cubic are equal and
different from zero, the quadric is one of revolution; the two
conies in the plane at infinity now have double contact.

If %, > k, > k;, the planes determined by the second root are
real. '

—

83. Real circles on types of quadrics. The above results will now
be applied to the consideration of the real planes of circular section
for the standard forms of the equation of the quadrie (Chap. VI).

(@) For the ellipsoid

2 2 2
@ 2
Y =1,

a? 174 c?

the roots of the diseriminating cubic are 1/a? 1/8%, 1/c%
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Let @ > b > c¢ > 0. Since parallel sections of the surface are
similar, it follows that the equations of the real planes of circular
section are

eV —VrtaVi—cz+d=0, (21)
where d is a real parameter.
The circle in which a plane (21) intersects the ellipsoid is real

if the plane intersects the ellipsoid in real points, that is, if it is
not more distant from the center than the tangent planes parallel
toit. The condition for thisis (Arts. 76 and 16) | d | £ acVa? — ¢
If | d | > ac Va*— ¢, the circles are imaginary.

If |d|=acVa?—¢, the circles are point circles. The four
planes determined by these two values of d are the tangent planes
to the ellipsoid at the points

Gda—b 0, Jv~&>

Each of these points is called an umbilic.
The two systems of planes (21) are also the real planes of cireu-
lar section of the imaginary cone

2 9 #_ o
b2
and of the imaginary ellipsoid
AT A A
b2
(b) The equations of the real planes of circular section of the
hyperboloids of one and two sheets
w2 y2 zZ
@ ¢ —est

and of the real cone

w2 yZ 22 _ 0
o=Nd4)
B

where a > b > 0, are found to be
cVar—b? Vy+rbvVar+z+d=0.
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On the hyperboloid of one sheet and the real cone, the radii of
the circles are real for all values of d. On the hyperboloid of two
sheets, the circles are real only if |d| > bc vV 1?+¢% The coordi-
nates of the umbilics on the hyperboloid of two sheets are

a4 ¢?
(0 :tb\/b2+ - \/b2+cz>.

(¢) The real planes of circular section of the elliptic paraboloid

w2 yz
5_*_.b_2=_-2nz, a>b>0,n>0

and the real or imaginary elliptic c¢ylinders
g+%§=:tl, a>b>0
are determined by
+Var— by +bz4+d=0.

On the real elliptic cylinder, the circles are real, and on the
imaginary cylinder they are imaginary, for all values of d. On

the elliptic paraboloid, the circles are real if d<__(a2 b%).

The codrdinates of the umbilics on the elliptic paraboloid are
[0 + V=T, B (= b”):|.

(d) For the hyperbolic paraboloid
Z_Y 2
at b
and-the hyperbolic cylinder

2_¥_p
at v
the equations of the planes of the circular sections are
b + ay + dt =
The circles in these planes are all composite. For, the planes

b+ ay + dt =
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intersect these surfaces in the fixed infinitely distant line
be+ay=0, t=0
and in a rectilinear gemerator which varies with d. Similarly,
the planes
b —ay +dt=0
intersect them in the line
br—ay=0, t=0

and in a variable generator.
Also on the hyperbolic cylinder

x* =2 myt

the real circles are all composite, since the planes x = d¢ intersect
the surface in the fixed line z = ¢ = 0, and in a variable generator.
We have, therefore, the following theorem :

Trarorem II. On the hyperbolic paraboloid, the hyperbolic
eylinder, and the parabolic cylinder, the real circular sections are
composite. The components of each circle are an infinitely distant
line and a rectilinear generator which intersects it.

EXERCISES

1. Find the equations of the real circular sections of the surface
422422+ 22+ 3yz+az=1

2. Find the equations of the real circular sections of the surface
202 4+b6y2+3224+4ay=1.

3. Find the radius of a circular section through the origin in Ex. 2.

« 4. Find the equations of the real planes through (1, — 8, 2) which in-

tersect the ellipsoid 2 #2 + y2 + 422 = 1 in circles.
s 5. Find the conditions which must be satisfied by the coefficients of the
equation F(x, y, z) =0 of a quadric if the planes z = % intersect it in circles.
. 6. Show that the centers of the circles in Ex. 5 lie on a line. Find the
equations of this line.

7. Find the second system of real planes cutting circles from the quadric
in Ex, 5.

8. Find the conditions which must be satisfied by the coefficients if the
plane Ax 4 By + Cz + D = 0 intersects the quadric F(z, y, ) = 0 in circles.

9. Find the codrdinates of the center and the radius of the circle in
which the plane x = 2 z + 5 intersects the cone 322 + 2y?2 — 222 =0.
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10. Show that, for all values of A, the equation of the planes of the cir-
cular sections of the quadrics
(@+N22 4+ +NyY2+ (c+N)22=1
are the same. The quadrics of this system are said to be concyclic.

84. Confocal quadrics. The system of surfaces represented by
the equation

2 R Do 0 (22)
a?+k B+k +k ’

in which % is a parameter, is called a system of confocal quadrics.

The sections of the quadries of the system by the principal planes

=0, y =0, 2= 0 are confocal conics.

If k& > — ¢? the surface (22) is an ellipsoid; if — ¢ >k>—b?
the surface is an hyperboloid of one sheet; if — b2 >k > — a? the
surface is an hyperboloid of two sheets; if — a? >k, the surface
is an imaginary ellipsoid.

If & >— ¢? but approaches — ¢* as a limit, the minor axis of
the ellipsoid approaches zero as a limit, and the ellipsoid ap-
proaches as a limit the part of the X¥-plane within the ellipse

xz 2
a’—c’+bz‘zic2=.1‘ (23)
If — 2>k > — 0% the surface is an hyperboloid of one sheet.
As k approaches —c?, the surface approaches the part of the
X Y-plane exterior to the ellipse (23). As k approaches — b2 the
surface approaches that part of the XZ-plane which contains the
origin and is bounded by the hyperbola
x? 22
ik ke 1. (24)
If — b* >k > — a? the surface is an hyperboloid of two sheets.
As k approaches — b2 the hyperboloid approaches that part of the
plane ¥ = 0 which does not contain the origin. As k approaches
— a? the real part of the surface approaches the plane z=0,
counted twice. '
The ellipse (23) in the XY-plane and the hyperbola (24) in the
XZ-plane are called the focal conies of the system (22).
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The vertices of the focal ellipse are
(xVar—¢, 0, 0).

(£VaE— 0, 0).

On the focal hyperbola the vertices are (+ Va?— 82 0, 0) and the
foci are (+Va?—c% 0,0). Hence, on the focal conics, the ver-
tices of each are the foci of the other.

The foci are

85. Confocal quadrics through a point. Elliptic codrdinates.

TaroreM 1. Three confocal quadrics pass through every point
P in space. If P is real, one of these quadrics is an ellipsoid, one an
hyperboloid of one sheet, and the third an hyperboloid of two sheets.

If P=(w, yi, %) lies on a quadric of the systelln (22), the param-
eter k satisfies the equation

(e + )k + V) (ks + ¢) — 22(k + b)(% + ) — 9% + ) (b + )
— 22k + a®)(k + b?)=0. (25)

Since thisis a cubic equation in k, and each of its roots determines
a quadric of the system through P, there are three quadrics of
the system (22) which pass through P.

Let P be real.

If & = + o0, the first member of (25) becomes positive.

If k=—¢? it is — 2*(— 2+ a?)(— ¢® + b%),which is negative.

If £ =—0? itis —y2(—b* + ¢*)(— b* + a?), which is positive.
If k=— a2 itis — 2% — a® + b*)(— a® + ¢*), which is negative.
Hence the roots of (25) are real. One is greater than — ¢? one
lies between — ¢? and — b?, and the third between —b% and — a2

Denote these roots by %,, k,, k. Hence, we have
By >—E>k>—0>k>—ad
Then, of the three quadrics

m2 y2 z2
=1
a2+kl+bﬂ+k1+cﬂ+kl :
at 4 y* + 22 =, (26)

w+k Vil R K

d + ?/ + Z2 — 1
w+k Vrk, E+k
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which pass through P, the first is an ellipsoid, the second an hy-
berboloid of one sheet, and the third an hyperboloid of two sheets.

TueoreM II. The three quadrics of a confocal system which
pass through P intersect each other at right angles.

For, the equations of the tangent planes to the first two quad-
ries (26) are

0% + %Yy 221z —= 1,
at+k U+E 4k
He ny _RR

@tk Dk, A4k
These planes are at right angles if
x? % L 2’
(a* + k) (a2 + kz) O+ )W+ k) (B Ek)(c2+ k2)

That this condition is satis-
fied is seen by substituting the
coordinates of P in (26), sub-
tracting the second equation
from thefirst, and removing the
factor k,—k,, which was seen
to be different from zero. The
proof for the other pairs may
be obtained in the same way.

The three roots &, k, k; of
equation (25) are called the el-
liptic codrdinates of the point P.
To find the expressions for the
rectangular coordinates of P in
terms of the elliptic coordinates,
we substitute the coordinates
(21, y1, #) of P in (26) and solve
for @2 y2 2% The result is

_ (a4 k)(@® + Ey)(@® + ka)
(0 = P)(a* — )
2= (0 + k) (B + k) (U + ka), @7
®* — a?)(b* — ¥
_ (@4 k) (+ k) (Pt Fy)
(@ —ah(e— 1Y)
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Tt is seen at once from these equations that kylem@nd &, are the
elliptical codrdinates, not only of P, but also W“ﬁs sym-
metric with P as to the coordinate planes, axes, MM
Confocal drics t. t to a lin " £
86. Confocal quadrics tangent to a line. m

Tueorem 1. Any line touches two quadrics of a confocal systess.

The points of intersection of a given line with a quadric of the
system (22) are determined by the equation (Art. 65)

A? w? v 249 L\ Yot 2V
<a2+k+b2+k+cz+k>r+ e+iTr+etorn)

@y’ Y’ 2 —1\=0
+(a2+k+b2+k+cz+k ’

The condition that this line is tangent is

XA Yo Zw \:
<a” +k+b2+ k+c2+k>

- A? 1“‘2 .V2 w02 yOZ zOZ ! 1

<a2+k+b2+k+c2+k)<a2+k+b2+k totk

When expanded and simplified, this equation reduees to
B+ [0 O (0 ) (0 + D) — (s — YA

‘ — (Yov — 2p)* — (2 — @w)*) k + [VA? + Pa’p? + @b

— (@opt — Yor) €t — (Yo — 2)V* — (A — @g)a’] = 0.

Since this equation is quadratic in %, the theorem follows.

0.

]

TueoreM - I1.  If two confocal quadrics touch a line, the tangent
planes at the points of contact are at right angles.

Let %, and %, be the parameters of the quadrics, and let
P =@,y ), P'=(", y'", 2"") be the points of tangency of the
line with the given quadrics. The equations of the tangent
‘planes at P' and P" are (Art. 76), respectively,

mlm yly Z’Z Y 1 mﬂw y”y z!lz ! 1

R e A E A
These planes are at right angles, if

(pll

x'e 7—/’2/” Z’Z”
S - =0. 8
@)@t T T B )P T | @)@+ (28)
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Since the Mbﬁugh P'and P" is tangent to both quadries, it
lies in Wt planes at both points. Hence P' and P lie in
both ‘that

- ?/'3/" P _ 2'z! yvyn 22" _

L@k bk k) a2k, Bk, o4k,
Miracting one of these equations from the other, it is seen
that (28) is satisfied. The planes are therefore at right angles.

87. Confocal quadrics in plane coordinates. The equation of the
system (22) in homogeneous plane coordinates (Art. 77) is
a?u? + b 4 ctw? — s 4 k(u? 4 v? 4+ w?) = 0.
Since this equation is of the first degree in k, we have the follow-
ing theorem:

THEOREM. An arbitrary plane (u, vy, wy, s) is tangent to one
and only one quadric of a confocal system.

The (imaginary) planes whose homogeneous codrdinates satisfy
the two equations

au? 4+ bttt —s2 =0, w4 vi4wi=0
are exceptional. They touch all the quadries of the system.
Hence, all the quadrics of a confocal system touch all the planes
common to the quadric ¥ = 0 and the absolute.

EXERCISES

1. Prove that the difference of the squares of the perpendicular from the
center on two parallel tangent planes to two given confocal quadrics is con-
stant. This may be used as a definition of confocal quadrics.

2. Prove that the locus of the point of intersection of three mutually per-
pendicular planes, each of which touches one of three given confocal quadrics,
is a sphere.

3. Write the equation of a quadric of the system (22) in elliptic codrdi-
nates. Derive from (27) a set of parametric equations of this quadric, using
elliptic codrdinates as parameters.

4. Discuss the system of confocal paraboloids

a2 I } 2
aT_— +k+b2+k_2nz it
5. Discuss the confocal cones

72 e 22 -0
a2+k+b‘~’+k+c2+k j




CHAPTER IX

TETRAHEDRAL COORDINATES

88. Definition of tetrahedral co6rdinates. It was pointed out in
Art. 34 that the four planes =0, y =0, 2=0, and ¢ = 0, which
do not all pass through a point, may be considered as forming a
tetrahedron which was called the codrdinate tetrahedron. We
shall now show that a system of codrdinates may be set up in
which the tetrahedron determined by any four given non-concur-
rent planes is the codrdinate tetrahedron. A system of coordi-
nates so determined will be called a system of tetrahedral
codrdinates. :

Let the equations of the four given non-concurrent planes (re-
ferred to a given system of homogeneous cosrdinates) be

Ax+ By + Cz+ Dt =0, i=1, 2, 3, 4 1)
Since these planes do not all pass through a point, the determinant
Al Bl Cl Dl
e A2 B2 02 D2 (2)
'AS B3 03 D3
A4 B4 04 D4
does not vanish.

Let the codrdinates (, , 2, t) of any point P in space be sub-
stituted in the first members of (1) and denote the values of the
resulting expressions by @, @, @;, @, respectively, so that

2y = Ay + By + Cz + Dy,
@y = A + By + Cx + Dy, (3)
2y = A2+ By + Cz + Dy,
v, =Agx+ By + Cz + Dyt.

We shall call the four numbers y, ,, @;, , determined by these
equations the tetrahedral coordinates of. P. The four planes (1) are
called the coordinate planes. Their equations in tetrahedral coor-
dinates are #; =0, 2,=0, 2, =0, and z, = 0, respectively.

: 109
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Since the four planes (1) do not all pass through a point, the
cobrdinates @, , a; @, cannot all be zero for any point in space.
When (z, , 2, t) are given, the values of @, x,, x; x, are uniquely
determined by (3). Conversely, since the determinant (2) does
not vanish, equations (3) can be solved for z, y, 2, ¢ so that, when
@y, %y 3, ¥, are given, one and only one set of values of =z, y, 2, ¢
can be found. Since (x,y, 2, t) and (kx, ky, kz, kt) represent the
same point (Art. 29), it follows from (3) that (w,, @, 3 x,) and
(Kawy, kay, ks, kx,) represent the same point, & being an arbitrary
constant, different from zero.

89. Unit point. A system of tetrahedral coordinates is not
completely determined when the positions of its codrdinate planes
are known. For, since the equations

k(4x + By 4 Cz + Dt) =0, k+0,
and Ar+By+ Cz+Dt =0

represent the same plane (Art. 24), it follows that if kyy kg, Ky Ry
are four arbitrary constants different from zero, the equations

o', =k,(4,2+ By + Cz + D), t=1,234 4)

define a system of tetrahedral codrdinates having the same codrdi-
nate planes as (3) but such that

o, =k, i=1,2,3,4.

The point whose tetrahedral codrdinates with respect to a given
system are all equal, so that @;: @,:2;:@=1:1:1:1, is called the
unit point of the system.

TurorEm 1. Any point P, not lying on a face of the codrdinate
tetrahedron, may be taken as unit point.

For, by substituting the coordinates (x, 7,2, t) of P in (4)
values of k,, ky, ks, k, may be found such that @,'=mz'= ' = x/,
so that P is the unit point.

Since the ratios k, : &, : k; : k, are fixed when the unit point has
been chosen, we have the following theorem : '

TuroreMm II.  The system of tetrahedral codrdinates is deter-
mined when the cobrdinate planes @, =0, x,=0, 2,=0, x,=0 and
the unit point (1,1, 1, 1) have been chosen.
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EXERCISES

In the following problems, the equations in homogeneous codrdinates of
the coordinate planes of the given system of tetrahedral coordinates are

r—y+2t=0, r+2y—2z+t=0,
3x+3y+22+2t=0, z—3y+2+2t=0.

The homogeneous coordinates of the unit point are (— 1, 2, — 1, 1).

1. Find the tetrahedral codrdinates of the points whose homogeneous
rectangular coérdinates are (z, ¥, 2, t), (0,0, 0,1), (1, 1,1, 1), (5,1, —2,1),
3,1,1,0), (0,1, — 1, 0).

2. Find the rectangular codrdinates of the points whose tetrahedral
coordinates are (—1, 1, 4, 3), (1, 2, — 1, —5), (0, 0, 1, 3), (%1, %2, %3, X4)-

3. Write the equation of the surface x; 4+ 2xy — 223 — 24 =0 in rec-
tangular codrdinates. Show that the locus is a plane.

4. Write the equation of the plane 52 + y + 2 — ¢ =0 in tetrahedral
coordinates.

5. Write the equation of the surface 23 4 #sz4 =0 in rectangular
coordinates.

6. Solve Exs. 1 and 2 when the point whose rectangular coérdinates are
(3, 1, — 2, 2) is taken as unit point.

7. Why may not a point lying in a face of the tetrahedron of reference
be taken as unit point ?

90. Equation of a plane. Plane coordinates. From the equation
ux 4 vy +wz + st =0 ®)

of a plane in homogeneous rectangular codrdinates, the corre-
sponding equations in tetrahedral coordinates can be found by
solving equations (3) for =, y, #, ¢ and substituting in (5). The
resulting equation is linear and homogeneous in @, @, 25, o, of

the form
U@y + sy + UsZy + ug2y =0, (6)

with constant coefficients w,, uy s %,. Conversely, any equation
of the form (6) defines a plane. For, if x;, @, @5, x, are replaced
by their values from (3), the resulting equation is

uw 4 vy 4 wz + st =0,
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wherein u = A;u, + Ayuy + Aqu; + Agu,,
v = By, + Byu,+ By, + By, 7
w = Cyu; + Cquy + Cpez + Cyuy, )

s = Dyu, + Dyuy + Dyuy + Dy,

The coefficients w,, us, us, u, in (6) are called the tetrahedral
codrdinates of the plane (compare Arts. 27 and 29). It follows
from equations (7) and (2) that, if wu,, us g u, (not all zero) are
given, the plane is definitely determined, and that, if the plane is
given, its tetrahedral codrdinates (uy, u,, us uy) are fixed except for
an arbitrary multiplier, different from zero.

91. Equation of a point. Let (x;, 5 @3, ;) be the cotrdinates
of a given point. The condition that a plane whose codrdinates
are (u;, uy ug, u,) passes through the given point is, from (6)

Uy + Uy + ULy + uxy, = 0. ¢)

This equation, which is satisfied only by the coordinates of the
planes which pass through the given point, is called the equation
of the point (x,, @, @5, #,) in plane covdrdinates (cf. Art. 28).

It should be noticed that, in the equation (6) of a plane,
(uy, gy us, uy) are constants and (x, 2, 23, 2,) are variables. In
the equation (8) of a point (@, @, x; «,) are constants and
(wy, us, ug, 1) are variables.

92. Equations of a line. The locus of the points whose coordi-
nates satisfy two simultaneous linear equations

' ' ,
w2y + w'ay + 'y + u', =0, (9)
w'yy 4wy 4wy + w' =0

is a line (Art. 17). The two simultaneous equations are called
the equations of the line in point codrdinates.

Similarly, the locus of the planes whose coordinates satisfy
two simultaneous linear equations

' " =
'y 4 2uy + 2lu, + 2y, = 0, (10)
@'y + 2y + 2'quy + 2"y =0

is a line (Art. 28). These two simultaneous equations are called
the equations of the line in plane cobrdinates.
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EXERCISES

1. Write the equations and the codrdinates of the vertices and of the
faces of the coordinate tetrahedron.

2. Write the equations in point and in plane codrdinates of the edges of
the codrdinate tetrahedron.

3. Find the equations of the following points: (1,1, 1, 1), (3, — 5,7, — 1),
(-1,6, —4,2), 7,24, 6).

4, Write the codrdinates of the following planes :
X1+ X+ a3 +24=0, Txty —22—303 4204 =0, 1 + 922 — Faz3—2x4 =0.

5. Write the equations of the line @1 + 23 =0, 3 — 724 =0 in plane
coordinates. "

Sue. Write the equations of two points on the line.

6. Find the codrdinates of the point of intersection of the planes (1, 2, 7,
3), (1, 8, 6,0), (1, 4, 5, 2).

93. Duality. We have seen that any four numbers x,, z,, #;, ,,
not all zero, ave the codrdinates of a point and that any four num-
bers u;, u,, uj u, not all zero, are the coordinates of a plane.
The condition that the point (@, s, x;, x,) lies in the plane
(%y, uq ug, u,), or that the plane (uy, u,, ug, u,) passes through the
point (@, @, 5, @) is

w2y + uyy + ugrs + uwy =0,
This equation remains unchanged if @, zy, @, @, and w,, u,, u; U,
are interchanged.

The equations (9) and (10) of a line are simply interchanged if
point and plane codrdinates are interchanged.

From the above observations, the following important principle,
called the principle of duality, may be deduced ; namely, that if
we interchange ay, @, @5, @, and w,;, u, us %, in the proof of a
theorem concerning the incidence of points, lines, and planes, or
concerning point and plane codrdinates, we obtain at once the
proof of a second theorem. The theorem so derived is called the
dual of the first. It is obtained from the given one by inter-
changing the words point and plane in the statement.

In the next two Articles we shall write side by side for com-
parison the proofs of several theorems and their duals.

The symbols (z), (2'), (u), etc., will be used as abbreviations for
(2, 2y @3, 2,), (@', @'y @'y, @), (wy, Uy, g, ) ete., Tespectively.
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94. Parametric equations of a plane and of a point.

Let (), (="), (2"") be three
given non-collinear points. The
equation of the plane deter-
mined by them is found, by
the same method as that em-
ployed in Art. 11, to be

&y Ly 3 &y

N S
w”l w'lz a:l '3 m”4
w'”] m’”2 m'”s

=0. (11)
:E'H‘

Let (x) be any point in the
plane (11). From the form
(11) of the equation of the
plane it follows that there
exist four numbers p, 4, b, L
not all zero, such that

pa; = L'y + 12" 4 1",
i=1,234 (13)

In particular, we have p=0,

since otherwise it would follow

that (2'), (2"), and («"') are
collinear (Art. 95), which is
contrary to hypothesis. Con-
versely, every point () whose
cobrdinates are expressible in
the form (13), p+0 lies in
the plane (11) since its codr-
dinates satisfy the equation of
the plane.

Equations (13) are called the
parametric equations of the
plane (11),and 1, I, [, are called
the homogeneous parameters of
the points of the plane.

Let (u"), (u'), (u"") be three
given non-collinear planes. The
equation of the point deter-
mined by them is found, by
the same method as that em-
ployed in Art. 11, to be

U Uy Uy U

,ul u' ) !
S Y SO TN
u”] u!l2 ,ull3 ,M/H4 b

'
ull A 7‘”’2 mn

uw . e

uy

Let () be any plane through'
the point (12). From the form
(12) of the equation of the
point it follows that there
exist four numbers p, 1, &, I,
not all zero, such that

puy=hu's + v+ Lu'",
i=1,2 3, 4. (14)

In particular, we have p=0
since otherwise it would follow
that (u'), (»"), and (u'") are
collinear (Art. 95), which is
contrary to hypothesis. Con-
versely, every plane (u) whose
coordinates are expressible in
the form (14), p==0 passes
through the point (12) since its
coordinates satisfy the equation
of the point.

Fquations (14) are called the
parametric equations of the
point (12), and I, 1,, I; are called
the homogeneous parameters of
the planes through the point.
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The system of points (13)
1s said to form a plane field.
The equation of the points of
this plane field is found by sub-
stituting the values of =z, «,
@, @, from (13) in the equation
Su, =0 of a point. The re-
sulting equation

LS, 4 LS e, + LS 4, = 0

is the equation, in plane co-
ordinates, of the plane field
(13).

95. Parametric equations of
of planes. '

THEOREM. If ) is any
point on the line determined
by two given distinct points (&)
and ("), every determinant of
order three in the matrix

Ly Xy Xy Xy

'
o, &, o o, (15)
wlll a)//2 a;/ls wll4

8 equal to zero.

For, the points (), (2), (=)
and any fourth point (2”) are
coplanar.  Their coordinates
consequently satisfy (11). Since
(11) is satisfied for all values
of &'y, ", a5, 2", it follows
that the coefficient of each of
these variables is equal to zero,
that is, that all the determi-
nants of order three in (15) are

equal to zero.

a
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The system of planes (14) is
said to form a bundle of planes.
The equation of the planes of
the bundle is found by sub-
stituting the values of w,, wu,,
ug, , from (14) in the equation
Sua; =0 of a plane. The re-
sulting equation

I3, + L,Sw @, + LS o, =0

is the equation, in point coordi-
nates, of the bundle of planes
(14).

Pencil

line. Range of points.

TreorEM. If (u) i3 any
plane through the line determined
by two given distinct planes (u')
and (u"), every determinant of
order three in the matric

Uy Uy U3 Uy
w'y oy, oy Wy (16)
2 LH] u/;2 2 ‘”3 u//4

s equal to zero.

For, the planes (u), (v'), (v")
and any fourth plane («”’) are
concurrent. Their coordinates
consequently satisfy (12). Since
(12) is satisfied for all values
of w'"y, Wy, w5 v, it follows
that the coefficient of each of
these variables is equal to zero,
that is, that all the determi-
nants of order three in (16) are
equal to zero.
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Conversely, if the determi-
nants of order three in (15) are
all equal to zero, the points (x),
(¢'), and (2) are collinear,
since they are coplanar with
any fourth point («"’) what-
ever.

It follows from the above
theorem that there exist three
numbers p, I, I, not all zero,
such that

pry=ha;+12", i=1,2,3,4. (1T)

In particular, we have p + 0,
since otherwise the codrdinates
of the points (2/) and ()
would be proportional so that
the points would coincide.

Equations (17) are called the
parametric equations of the line
determined by (/) and (2").
The coefficients I, and I, are
called the homogeneous param-
eters of the points on the
line.

The system of points (17)
is said to form a range of
points. The equation of
the points of this range is
found, by substituting from
(17) in the equation

Sux; =0
of a point, to be

0,32 u, + 1,32 u;, = 0.

TETRAHEDRAL COORDINATES
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Conversely, if the determi-
nants of order three in (16) are
all equal to zero, the planes (u),
(w), and («"’) are collinear,
since they have a point in com-
mon with any fourth plane («'")
whatever.

It follows from the above
theorem that there exist three
numbers p, I, I, not all zero,
such that

pu =hv' +lu",1=1,2,3,4. (18)

In particular, we have p =+ 0,
since otherwise the codrdinates
of the planes (') and (u”)
would be proportional so that
the planes would coincide.

Equations (18) are called the
parametrie equations of the line
determined by («) and (w”).
The coefficients 7, and I, are
called the homogeneous param-
eters of the planes through
the line.

The system of planes (18)
is said to form a pencil of
planes (Art. 24). The equation
of the planes of this pencil is
found, by substituting from
(18) in the equation

Sux;, =0
of a plane, to be

W3 @, + 3w = 0.
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EXERCISES

1. Prove the following theorems analytically. ‘S_Eg.”te and prove their duals.
(@) A line and a point not on it determine a plane,
(b) If aline has two points in common with a plane, itlies in the plane.
(¢) If two lines have a point in common, they determine a plane.
(&) If three planes have two points in common, they determine a line.

2. Write the parametric equations of the plane determined by the points
(1,7, -1,3), (25, 4,1), (10, — 1, — 3, — 5). Find the codrdinates of this
plane.

3. Write the parametric equations of the point determined by the planes
(-5341), (7, -5,3,2), (6, —4,—38,1). TFind the coordinates of
this point.

4. Write the equation, in plane coordinates, of the field of points in the
plane x; + 22 — 25 — g = 0.

Sve. First find the codrdinates of three points in the plane,

5. Find the parametric equations of the pencil of planes which pass through
the two points 4; — Sus +3us — us =0, Tuy +2ug — uz — ug =0.

6. Prove that the points (1, 2, — 8, — 1), (3, —2, 5, —2), (1, —6, 11, 0)
are collinear. Find the parametric equations of the line determined by these
points and the equation in plane codrdinates of the range of points on this line.

96. Transformation of point coordinates. Let (x;, a, @, x,) be
the coordinates of a point referred to a given system of tetra-
hedral coordinates, so that

T, =T + apy + a2 + a4, i=1,23,4, 19
in which the determinant of the coefficients *
A=|ay ap ag  ay|+0.
Let the coordinates of the same point, referred to a second system

of tetrahedral coordinates, be

2 =ayx+ay+ a2+ d g, i=1,2 3 4, (20)
in which
A'=la'y dy dy ay|#0.

* The symbol |a); ag agy au| will be used for brevity to denote
aj; gz Qi3 ay
the determinant dgy dgg Ggz dgq|.
dg1 Qga dgg (g4
Q41 Q42 Q43 d4q
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It is required to determine the equation connecting the two sets
of coordinates (2, a,, a3, @,) and (2, 'y, a'y, 2';). For this purpose
solve equations (20) for z, 7, 2, t. The results are

Alv=34'',, A'y=34"n",, A'z=34"n', At= 34,
in which A4',, is the cofactor of «',, in the determinant A’ Sub-
stitute these values of , y, 2, ¢ in (19) and simplify. The result
is of the form

@ = oy @'y + @'y + @y + gy,
A “'nx’l + ¥y + @@y + 'y, (21)
T3 = @y x 1 + uszbz‘f‘“saws'f‘“arcv
. Ty = w2’y 4 apd'y + agr’y + age'y
wherein
Aoy =0, 4" + apd'yy + az Ay + (t,4A w LEk=1,234. (22)

The determinant

)
i

is called the determinant of the transformation (21). -This deter-
minant is different from zero, for if we substitute in it the values
of the «, from (22), we have at once *

- A.A’s

e ’ ’ ’ ’
I= Amla“ Ay Gy | | Ay A Ay Ay|= RD

* The product of two determinants of order four

+ 0.

A=|ay a ag3 ayl and B=[by by bgg byl
is also a determinant of order four
C=len c2 Cg cul,

ik = irbrg+ Qiobre + aighrz +aighry, 4, k=1,2,3,4.

This theorem can easily be verified by substituting these values of ¢;x in C and ex-
pressing (' as the sum of determinants, every element of each being the product
of an element of A and an element of B. Of the sixty-four determinants in the
sum, forty vanish identically, having all the elements of one column proportional
to the elements of another. Each of the remaining twenty-four determinants has
B as a factor. When the factor B is removed, the resulting expression is the
expansion of the determinant 4.

+ The determinant | A’y; A’sy A’gs A’y | whose elements are the cofactors
of the elements of A’ is equal to 4’3, as is seen immediately by multiplying it by
A’ by the preceding rule, and simplifying the result.

in which
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- Since 7+ 0, the system (21) can be solved for &'y, &'y, 'y, @/, in
terms of &'}, 'y, @';, @', The results are

Tx', = Bu® + Buz + Bu®; + Bas
Tx'y = Bia® + Bos + B2 + Buassr
Tx'y = By, + By + Bs; + Buss,
To'y = B + Loy + Basls + BuZy

(23)

in which B;, is the cofactor of «,, in the determinant 7.
The transformations (21) and (23) are said to be inverse to each
other.

* 97. Transformation of plane coordinates. Let
Uiy + gy + Usy + U2y =0 (24)

be the equation of a given plane, referred to the system of tetra-
hedral cobrdinates determined by (19). Let the equation of the
same plane, referred to the system (20), be

wha', 4wy 4+ uwhe'y 4w, =0. (25)
If, in (24), we replace @, @y, @;, @, by their values from (21), we
obtain, after rearranging the terms,
oyt + 0y + ety 4 02g20) "y (g2 + gty + gty + ),
- (ogy + gty + gty 4 wgg,) "5 - (g + gty + gy
+ ayu)x'y=0. (26)

Since equations (25) and (26) are the equations of the same plane,
their coefficients are proportional, hence

0 :
pus = ey + 0y + gty + 0y, i=1,2,3,4, 27

where p =0 is a factor of proportionality. If we solve equations
(27) for uy, uy, uy 1wy, we have

ou; = By + By + ﬁ.‘xu'§ + By 1=1,2,3, 4}:, (28)

in which o + 0 and the g;, have the same meaning as in (23).
Since, when x,, 2,, 2;, x, are subjected to a transformation (21),

Uy, My, Uy u, are subjected simultaneously to the transformation

(28), the systems of variables (x) and (u) are called contragredient.
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EXERCISES

1. Prove that the four planes determined by equating to zero the second
members of equations (23) are the faces of the coordinate tetrahedron of the
system (z/1, x5, '3, x's).

2. State and prove the dual of the theorem in Ex. 1 for the second mem-
bers of equations (27).

3. By means of equations (21) and (23) find the codrdinates in each sys-
tem of the unit point of the other system.

4. Determine the equations of a transformation of coordinates in which
the only change is that a different point is chosen as unit point.

98. Projective transformations. Equations (21) were derived as
the equations connecting the cobrdinates of a given arbitrary point
referred to two systems of tetrahedral codrdinates. We shall now
give these equations another interpretation, entirely distinet from
the preceding one, but equally important.

Let there be given a system of equations (21) with determinant
T not equal to zero. TLet P be a given point and let its codrdi-
nates, in a given system of tetrahedral codrdinates, be ('}, 2, 275,
2'}). By substituting the cosrdinates of P’ in the second members
of (21), we determine four numbers @,, @, a;, ,, which we consider
as the coordinates (in the same system of codrdinates as those of
P') of a second point . To each point P’ in space corresponds, in
this way, one and only one point P. Moreover, when the coordi-
nates of P are given, the coordinates of P are fixed by (23), so
that to each point P corresponds one and only one point P'. It is
useful to think of the point P’ as actually changed into P by the
transformation (21) so that, by means of (21), the points of space
change their positions.

A transformation determined.by a system of equations of the
type (21), with determinant 7" not equal to zero, is called a pro-
jective transformation. The projective transformation (23) is
called the inverse of (21). If, by (21), P’ is transformed into P,
then, by (23), P is transformed into P’.

By (21), the points of the plane () are transformed into the
points of the plane (u) determined by (28). Equations (28) are
called the equations of the transformation (21) in plane coor-
dinates.

ad
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99, Invariant points. The points which remain fixed when
operated on by a given projective transformation (21) are called
the invariant points of the transformation. To determine these
points, put x;=p«'; in (21). The condition on p in order that
the resulting equations

(e — p) @'y + @2’y + a2’y + e @'y =0,
@'y + (e — P) @'y + @'y + cp@’y =0,
! { ! ! (29)
@'y + o5’y + (ot — P) @5 + g2’y = 0,
ay's + @'y + ay2's +(y—p) 'y =0

have a set of solutions (not all zero) in common is that

Oy —pP O O3 Oy
Oy Uop — P Ogg Uay
D(p)= =0. 30
(p) oy 0273 g3 — ] Uy ( )
Oy Ogp O3 Oy — P

Let p; be a root of D(p)=0. If p, is substituted for p in (29),
the points (2') whose coordinates satisfy the resulting equations
are invariant points of the given transformation.

If D(p,) is of rank three, equations (29) determine a single
invariant point when p=p, (Art. 35). If D(p,)is of rank two,
equations (29) determine a line when p=p,. Each point of this
line is an invariant point of the transformation. If D(p,) is of
rank one, equations (29) determine a plane of invariant points
when p=p,. If all the elements of D(p,) are zero, every point
in space remains fixed. In this last case, the transformation is
called the identical transformation.

100. Cross ratio. The cross ratio of four numbers %, k,, k,, &,

is defined by the equation ) » 3
T R TS v
"=k k= i

The cross ratio of four collinear points P, P, P, P, or of four
collinear planes m, my, s, m, 1S equal to the cross ratio of the
ratios of their homogeneous parameters (equations (17) or (18)).
If the parameters of the given points or planes are, respectively,
Ly byy Uy, Uy U, 05 U7, 'y, it follows that their cross ratio is
bl — L0, UG T
oo lzz”'1 = lll’”z K l112l11r1 s l”'gl”l
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If ¢=—1, the four given points or planes are said to be
harmonic.

An important property of the eross ratio is stated in the follow-
ing theorem :

TueorREM.  The cross ratio of four points (or planes) is equal to
the cross ratio of any four points (or planes) into which they can be
projected.

In the projective transformation (21), let the points (2') and
(«"") of equation (17) be projected into (y') and (y''), respectively.
It follows that the point of the range (17) whose parameters are
l; and [, is projected into a point (y) of the range determlned by
(¥") and (y") such that

¥y =hy's +by", =123 4.

Since the parameters of the points are unchanged, the cross ratio
is unchanged. Similarly for a set of four planes through a line.

Conversely, two ranges of points, or pencils of planes, are pro-
jective if the cross ratio of any four elements in the first is the
same as that of the corresponding elements in the second.

EXERCISES

1. Let A=(1, 0, 0, 0), B=(0, 1,0, 0), C=(0, 0, 1, 0), D=(0, 0, 0, 1),
E=(1,1,1,1). Find the equations of a projective transformation which
interchanges these points as indicated, determine the roots of D(p)=0, and
find the configuration of the invariant elements when

(@) A is transformed into 4, B into B, C into C, D into E, E into D.

(b) A is transformed into B, B into A, C into D, D into C, E into E.

(¢) A is transformed into B, B into C, C into 4, D into D, F into E.

(d) A is transformed into B, Binto C, Cinto D, D into E, E into 4.

2. Show that a projective transformation can be found that will transform
five given points 4, B, C, D, E, no four of which are in one plane, into five
given points A’/, B!, C', D', E', respectively, no four of which lie in one
plane. Show that the transformation is then uniquely fixed.

3. A non-identical projective transformation that coincides with its own
inverse is called an involution. Find the condition that the transformation
(21) is an involution.

4. Show that the transformations x; = @'y, 20 = /s, 23 =+ 23, 24 == 2 4
are involutions. Find the invariant points in each case.

R e s
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5. If P, P are any two distinct corresponding points in either involution
of Ex. 4, prove the following statements :

(@) The line PP' contains two distinct invariant points M, M'.

(b) The points (PP/MM') are harmonic.

6. Find the invariant points of the transformation x; = x's, %2 = '3,
x3 = x'y, 4 = 2/1. Show that the points of space are arranged in sets of four
which are interchanged among themselves.

7. Interpret the equations (Art. 36) of a translation of axes as the
equations of a projective transformation. Find the invariant elements.

8. Interpret the equations (Art. 37) of a rotation of axes as the equations
of a projective transformation. Show how this transformation can be
effected.

9. Find the cross ratio of the four points on the line (17) whose param-
eters are (0, 1), (1, 1), (1, 6), (4, 3).



CHAPTER X

QUADRIC SURFACES IN TETRAHEDRAL COORDINATES

101. Form of equation. Since the equation F(z, y, z, t)=0
may be transformed into an equation in tetrahedral codrdinates
by means of equation (3) of Art. 88, it follows that the equation
of a quadric surface in tetrahedral codrdinates is of the form

A=3Z0,x0,= ay®,® + an®? + agw? + ayw? 4 2 oy + 2 52,25

+ 2 0325 + 2 a2y + 2 oty + 2 gy, = 0. A, = Qe @
Conversely, any equation of this form will represent a quadric
surface, since by replacing each «; by its value from (3), Art. 88,

the resulting equation F (, y, 2, ) = 0 is of the form discussed in
Chapters VI, VII, and VIII.

102, Tangent lines and planes. lLet (2) and (y) be any two
points in space. The cobrdinates of any point (z) on the line
joining (z) to () are of the form (Art. 95)

2=y +py;, t=1,2, 8,4, 2
If (2) lies on the quadric 4 = 0, then
NA@) +2 MA@, 3) + p2A(y) =0, ®)

wherein
Az, ) = Ay, @) = (@ + Aoy + anyps + yYs) % +
(Qai?fs + Aoglfy + A5 + Ay + (Aa¥s + Ao+ Ay + Agys) s +
(Gt + QuYs + Qs + gglyy) 0y = % %ﬁ% = ;: %fxu €

If (y) lies on 4 =0, then A(y) =0 and one root of (3) is A =0.
If (y) is so chosen that both roots of (3) are A = 0, we must have
A, y) =0. If () is regarded as variable, and A(x, y) is not
identically zero, the equation A(w, y) = 0 defines a plane. The
line joining any point in this plane to the fixed point (y) on the
quadric 4 touches the surface at the point (y) (Art. 76). The
line is a tangent line and the plane A(x,y) = 0 is a tangent plane
to 4 =0 at (y). i

124
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EXERCISES

1. Find the equation of the tangent plane to xf + x9? + x> — a%x2 =0 at
the point (0, 0, a, 1).

2. Show that equation (4) vanishes identically if

A = ax,? + bxs? + cx32 =0 and (y) = (0, 0,0, 1).

3. Determine the codrdinates of the points in which the line
21+ 23 + @4 =0, 23 — 2 x4 = 0 meets the surface x4 — xyx2+ %23 +4 £32= 0.

4. Show that the line x4, = 0, 2; — 8z, = 0 touches the surface

242 — 8212 + 5 2% + xa(21 + 5 %2) + w324 = 0.

103. Condition that the tangent plane is indeterminate. If
equation (4) is satisfied identically, the coefficient of each x; must
vanish. Thus we have the four equations

aul; + auly + gz + agy, =0,
Ay + Aolfy + Aglfs + Aty = 0, (5)
Qydfy + Qaglfy + Agglly + Ay = 0,
Oy + Aoy + s + Agglfy = 0.

If these equations are multiplied by ¥, s, ¥ss ¥s respectively, and
the products added, the result is 4(y)=0, hence if the coordinates
of a point (y) satisfy all the equations (5), the point lies on the
surface 4 =0. From (3) it follows that the line joining any
point in space to a point (y) satisfying equations (5) will meet
the surface 4 =0 in two coincident points at (y). If (z) is any
other point on the surface 4, so that A(x) = 0, it follows from (3)
that every point on the line joining () to (¥) lies on the surface.
The surface 4 is in this case singular and (y) is a vertex (Arts.
66 and 67).

Conversely, if A(z) =0 is singular, with a vertex at (y), the
two intersections with the surface of the line joining (y) to any
point in space coincide at (y). The coefficient A(z, y) is identi-
cally zero and the codrdinates of (y) satisfy (5). Since these co-
ordinates are not all zero, it follows that the determinant

Uy Gy Qg Oy

A Ay Ay Aoy Aoy (6)

if

O3 (zp Qg3 Qg

Ay Qg Qg Gy
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vanishes. Conversely, if A =0, then four numbers y,, 7, ¥, ¥,
can be found such that the four equations (5) are satisfied. The
point (y) lies on A(x) =0 and in the plane A(x, )=0. The line
joining (y) to any point (2) will have two coincident points in
common with A(x) =0 at (y) ; that is, (y) is a vertex of the quadric
A. We thus have the following theorem:

TurorEM. The necessary and sufficient condition that a quadric
surfuce is singular is that the determinant A vanishes.

The determinant A is called the discriminant of the quadric A.
If it does not vanish, the quadric will be called non-singular.
Unless the contrary is stated, it will be assumed throughout this
chapter that the surface is non-singular.

104. The invariance of the discriminant. In Chapter VII cer-
tain invariants under motion were considered. We shall now
prove the following theorem which will include that of Art. 74 as
a particular case.

TraeorEM L. If the equation of a quadric surface is subjected to
a linear transformation (Art. 96), the discriminant of the transformed
equation is equal to the product of the discriminant of the original
equation and the square of the determinant of the transformation.

4 4 .
Let A(x) = 2 2 a2, = 0 be the equation of a given quadric,
=1 k=1 .
and let
& = @'y 4 a2’y + a@y + ey @'y, 1=1,2,3,4

define a linear transformation of non-vanishing determinant 7.
If these values of #; are substituted in A(x), the equation becomes

4 4
T
A'(@)= z 2 oy, =0, ay=ad,
=1 #=1
in which
4 4

]
Ay = 2 2 Ay g e

=1 m=1
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If we now put
4

T = 2 Uy Oy

m=1

4
| A o
a = zali'lk'

=1

it follows that

If we form the discriminant A' of A'(2"), we may write

ATy + Gy Ty F gy + @l CnTie T P - €Ty + oy Ty

A= sty CogTyy + sy 4 €Ty Rpol1e + UnTae + el + @y o

This determinant may be expressed as the product of two deter-
minants 7" and R (Art. 96, footnote), thus

Oy gy Uz gy ™ T T Ty

Ggp  Olyg  lOog gy Ty T Tog Ty
° ’

O3y Ogp  Olgg gy Ty T T Ta

Qg Cyg Oy Oy Ty T T Tu \

the columns in the first factor being associated with the columns
in the second to form the elements of the rows in the product.
Similarly, the second factor may be expressed in the form

10y + Qyglty + Uty + Qyyty g0y + Cyollon + gtz + Ayglyy ***

Qg 0y + Cgglly) + Qoglyy + Uaglly gy @y - Cogllyy -+ Chogllzy + Uogllyp

which is the product of A by 7T, the elements of the rows in the
first factor being multiplied by the elements of the columns in
the second, hence Al = TA

On account of this relation, the discriminant is said to be a rela-
tive invariant under linear transformation of tetrahedral codrdi-
nates. Moreover, the following theorem will now be proved.

TuroremM IL.  Any sth minor of A' may be expressed as a linear
Sunction of the sth minors of A. .
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The method of proof will be sufficiently indicated by cons1der-

ation of the minor
a'u a,!
¥ of A"

a'y @'y
This determinant, when written in full,

T+ 0Ty + Gy Ty + Ty @ 01e + o T + Wy + Oy gy

a1+ CggPyy + Caglsy + Rgply a7y + Coglyy + CaoTs, + Cgglyy

may be expressed as the sum of sixteen determinants, four of
which vanish identically. The remaining ones may be arranged
in pairs, by combining the determinant formed by the ith term of
the first eolumn and the kth term in the second with that formed
by the kth term in the first column and the ith in the second.
Every such pair is equivalent to the product of a second minor of
A and a second minor of 7. If i =2, k= 3, for example, we have

O3 T3 Uy T

Ogol31  CyoT'ap

Qoo O3 T

Cpal'yy  Cgol'3p

Oy O3 Oy O3
= Toal'3e — T51T22
oy Q39 Uy Ogo
Ogy O3 Ta Tz
Oop  Olgg Toa T3

In this way it is seen that every second minor of A' is a linear
function of the second minors of the determinant R, the coeffi-
cients not containing r;,.

4
By replacing each »,, by its value Zaimamk and repeating the
m=1

same process, it may be seen that each second minor of 12 may be

expressed as a linear function of the second minors of A, the

coefficients not containing any a;. The same reasoning may be

applied to the first minors of A'. This proves the proposition.
As a corollary we have the further proposition :

Turorem III.  The rank of the discriminant of the equation of
a quadric surface is not changed by any linear transformation with
non-vanishing determinant.
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For, it follows from Th. IT that the rank of A’is not greater
than that of A. Neither can it be less, since by the inverse trans-
formation the minors of A may be expressed linearly in terms of
those of A'.

We may now conclude: if the discriminant A is of rank four,
the quadrie A(x) =0 is non-singular (Art. 103). If Ais of rank
three, 4 =0 is a non-composite cone, for if we take its vertex
(Art. 103) as the vertex (0, 0, 0, 1) of the tetrahedron of refer-
ence, the equation 4 = 0 reduces to

gy F ogy? + g, 4 2 001205 + 2 3370, + 2 s, = 0.

The line joining any point on the surface to (0, 0, 0,1) lies on
the surface, which is therefore a cone (Art. 46). Since by
hypothesis A is of rank three, we have

l Uy Callzs | O,

hence the cone is non-composite. If A is of rank two, the quadric
is composite, for if we take two vertices as (0,0,0,1) and
(0, 0, 1, 0), the equation reduces to

A2+ Ao + 2 a2, =0,

which is factorable. Since by hypothesis A is of rank two,
dy, g — @y? 18 not zero, hence the two components do not coincide.
If A is of rank one, the equation may be reduced to the form
x> = 0, which represents a plane counted twice.

105. Lines on the quadric surface.

TaeorREM. The section of a quadric surface made by any of
its tangent planes consists of two lines passing through the point
of tangency.

For, let () by any point on a quadric surface 4 =0, and (z) any
point on the tangent plane at (y), so that A(y) =0, A(y, z) = 0.
If (2) is on the curve of intersection of A(x) =0, A(x, y) =0,
then A(z) =0 and (3) is identically satisfied, hence every point
of the line joining (¥) to (#) lies on the surface. Since the sec-
tion of a quadric made by any plane is a conic (Art. 81) and
one component of this conic is the line joining (y) to (z), the
residual component in the tangent plane is also a straight line.
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The second line also passes through (), since every line lying in
the tangent plane and passing through (y) has two coincident
points of intersection with the surface at ().

106. Equation of a quadric in plane coordinates. Let the plane
Uy - Ug®y + Uy + g2, =0 Q)

be tangent to the given quadric 4, and let (y) be its point of
tangency. Since A (x, y) =0 is also the equation of the tangent
plane at (y), the equation Su;x; = 0 must differ from A(x, y)=0
by a constant factor % (Art. 24), hence

Yy + Aol + Ay Y3 + AYy = kg,
Wy + ool - Aaglfs + Agplyy = Ky, (8)
WYy + Ooslfs + Uaglys + Aty = Ky,
it + Aoglfy + U3 + QugYy = Kty

Moreover, since (y) lies in the tangent plane, we have
Uyl + wglfy + Ugls + Yy = 0. 9)

On eliminating v, s, ¥, ¥, and & between (8) and (9), we obtain
as a necessary condition that the plane (v) shall be tangent to the

surface
] Ay Qg Oy Qg U

Qg Qg gy Qg Uy 7
D(u)=|a; dyn Ay dg U =0. (10)
Oy Qgg Oy Qg Uy

u Uy uy ug 0

Conversely, if the coordinates of a plane (u) satisfy (10), and
if also A %0, then the plane is tangent to the quadric 4 =0.
For, if (10) is satisfied, five numbers ¥,, ¥s, Y5, ¥s k, Dot all zero,
can be found which satisfy (8) and (9). In particular, k=0, for
otherwise, since A =0, it would follow from (8) that Y=1p=
Y;=1y,=0, contrary to the hypotheses. Since wu,, u, us u, are
not all zero, it follows from (8) that ¥, v, ¥ ¥, are not. all zero,
and hence are the coordinates of a point. By solving (8) for
Uy, Uy, Uz, uy and substituting in (9), we obtain A(y)=0, hence
the point (y) lies on the quadric. 4. From (4) and (7) it
follows that the plane (7) is tangent to 4 at the point ().
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The equation ®(u)=0 is of the second degree in wu,, u, us wu,
It is the equation of the quadric in plane codrdinates.

By duality it follows that any equation of the second degree
in plane codrdinates, whose discriminant is not zero, is the equa-

tion of a quadric surface in plane codrdinates. i —7

If A is of rank three, so that A =0 is the equation of a cone,
the equation ®(u) =0 reduces to (Sk,u,)*= 0, Sk, =0 being the
equation of the vertex of the cone. If A is of rank less than
three, ®(u) = 0 vanishes identically. The equation ®(v) =0 was
in fact derived simply by imposing the condition that the section
of the quadric by the plane (u) should be composite.

EXERCISES

1. If the equation A(x)=0 contains but three variables, show that it
represents a singular quadric.
2. Calculate the discriminant of 242 + 242 + 222 — x32 = 0.
3. Show that the discriminant of ®(u%) = 0 contains the discriminant of
A(x)=0 as a factor.
4. Given A(x) = axy? + bxg? + cxs® + dxy® = 0, determine the form of
the equation ¢(u)= 0.
5. When the equation ®(u) = 0 is given, show how to obtain the equation
A(x) =0.
6. Given A(x)= ax12 + bxs?® + 2 casxs = 0, find &(u)= 0.
7. Find the discriminant of
A(x) =11 — 5% — T8 — XT3 -+ X124 + Loty + 2324 = 0,
and determine the form of ®(u)= 0.
8. Given ®(u)= u12 — 2 wUs + u2? + 2 uyus + 2 wyus — 2 usuz — 2 wotty +
ug? + ug? + 2 uguy = 0, find A(x) = 0 and interpret geometrically.
9. Find the two lines lying in the tangent plane xz; = 0 to the quadric
2322 + %32 — 242 = 0.
10. Write the equation of a quadric passing through each vertex of the
tetrahedron of reference.
11. Write the equation of a quadric touching each of the codrdinate
planes (use dual of method of Ex. 10).
12. Write the equation of a quadric which touches each edge of the tetra-
hedron of reference.
13. What locus is represented by the equation Za;;u,;%; = 0 when the dis-
criminant is of rank three ? of rank two ? of rank one ?
14. Show that through any line two planes can be drawn tangent to a
given non-singular quadric.

{

Ji ¢
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107. Polar planes. When the coordinates zj, 2, 25 2, of any
point () in space are substituted in A(x,z) =0, the resulting
equation defines a plane called the polar plane of (2) as to the
quadric A.

Let (y) be any point in the polar plane of (z), so that
Ay, #) =0. Since the expression

A(y: z) = A(z) y)
is symmetric in the two sets of codrdinates yi, yo ¥ ¥4 and 2z, 2,

%4 %4 it follows that (2) lies in the polar plane of (y). Hence we
have the following theorem :

TuroreM. If the point (y) lies on the polar plane of (z), then (z)
lies on the polar plane of (y).

Any two points (y), (), each of which lies on the polar plane of
the other, are called conjugate points as to the quadric 4(x) =0.

Dually, any two planes are said to be conjugate if each passes
through the pole of the other.

108. Harmonic property of conjugate points. We shall prove
the following theorem.

TueoreEM. Any two conjugate points (x), (y) and the two points
tn which the line joining them intersects the quadric constitute a set
of harmonic points.

The cobrdinates of the points (z) in which the line joining the
conjugate points (z), (y) as to the quadric A are obtained by
putting z, = Ax; + uy; and substituting these values in A(2) =0.
The values of the ratio X : u are roots of the equation (Art. 102)

NA@) + 2 Mud(@, 9) + pA(y) = 0.

Since A(z, y) = 0, if one root is A; : py, the other is —A;:py.  The
coordinates of the points (x), (y) and the two points of intersec-
tion are therefore of the form

Ty Yo M Al MT— Y T=1, 2, 3, 4,

hence, the four points are harmonie (Art. 100).

Dually, any two conjugate planes (u), (v) and the two tangent
planes to the quadric through their line of intersection determine
a set of harmonic planes.
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109. Locus of points which lie on their own polar planes. The
condition that a point () lies on its own polar plane A(x, y) =0
as to A(x)=0 is A(y, y) = A(y) =0, that is, that the point lies on
the quadric. We therefore have the theorem:

TureoreM. The locus of points which lie on their polar planes as
to a quadric A(x) = 0 is the quadric itself.

Since when (y) is a point on A(x) =0, A(x, y) = 0 is the equa-
tion of the tangent plane to A(x) =0 at (y), it follows that the
polar plane of any point on the surface is the tangent plane at
that point.

A point which lies on its own polar plane will be said to be
self-conjugate. Dually, a plane which passes through its own pole
will be said to be self-conjugate.

110. Tangent cone. If from a point (y) not on the quadric 4
all the tangent lines to the surface are drawn, these lines define a
cone, called the tangent cone to A from (y).

TaeoreEM. The tangent cone to a quadric from any point not on
the surface ts a quadric cone.

Let (x) be any point in space. The coordinates of the points
(2) in which the line joining (¥) to (¥) meets the quadric 4 are of

the form ez ALl

in which X : 4 are roots of the quadric equation
NA(®) + 2 Mud(w, §) + pAy) =O0.

The two points of intersection will be coincident if

(A, )] = A@)A®Y). 1
If now (y) is fixed and (x) is any point on the surface defined by
(11), then the line joining (x) to (y) will be tangent to A = 0.

Since this equation is of the second degree in @, the theorem
follows.

The curve of intersection of the tangent cone from (y) and the
quadric is found by considering (11) and A(x)= 0 simultaneous.
The intersection is evidently defined by

[A(x 9) =0, Adx)=0.
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This locus is the conic of intersection of the quadric and the polar
plane of the point (y), counted twice.

If (y) is a point on the surface, then A(y) = 0 and the tangent
cone reduces to the tangent plane to 4 = 0 at (y), counted twice.

111. Conjugate lines as to a quadric. We shall now prove the
following theorem.

TrEOREM. The polar plane of every point of the line joining any
two given points (y), (z) passes through the line of intersection of the
polar planes of (y) and (2).

The polar planes of (y) and of (2) are A(w, y) = 0 and A(x, 2)
= 0. The coordinates of any point of the line joining (¥) and (2)
are of the form Ay,+pz;; and the polar plane of this point is
Az, Ay + p2) = 0. Since this equation is linear in Ay, + pz,, it
may be rewritten in the form

MA(z, y) + pA(z, 2) =0,

which proves the theorem.

From Art. 107 it follows that the polar plane of every point of
the second line passes through the first. Two such lines are
called conjugate as to the quadric. If from P, any point on the
quadric, the transversal to any pair of conjugate lines is drawn, it
will meet the quadric again in the harmonic conjugate of P as to
the points of intersection with the conjugate lines, since its inter-
sections with these lines are conjugate points (Arts. 107, 108).

EXERCISES
1. Determine the equation of the polar plane of (1,1, 1, 1) as to the
quadric 212 + 292 + 232 + 242 = 0.

2. Find the equation of the line conjugate to z; = 0, x» = 0 as to the
quadric 212 + 292 + 232 - 242 = 0.

3. Show that any four points on a line have the same cross ratio as their
four polar planes.

4. Find the tangent cone to x;xs — x4 = 0 from the point (1, 2, 1, 3).

5. If a line meets a quadric in P and §, show that the tangent planes at
P and @ meet in the conjugate of the line.
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6. Show that the quadrics 2,2 + %2® + 2352 — k22 = 0, 2,2 + 292 + 232 — lag?
= 0 are such that the polar plane of (0, 0, 0, 1) is the same for both. Inter-
pret this fact geometrically.

7. Write the equation of a quadric containing the line x; =0, 2, =0.
How many conditions does this impose upon the equation ?

8. Write the equation of a quadric containing the line z; = 0, x, = 0 and
the line 23 = 0, 24 = 0.

9. Show that through any three lines, no two of which intersect, passes
one and but one quadric.

112, Self-polar tetrahedron. Associated with every tetrahedron
P,P,P,P, is a tetrahedron mmymryr, formed by the polar planes of
its vertices, m of P, m, of P, m; of P and =, of P. Conversely,
it follows from Art. 107 that the plane P, P,P; is the polar plane
of the point mym,m;, ete.

Two tetrahedra P, P,P,P, mm,mym, such that the faces of each
are the polar planes of the vertices of the other as to a given
quadric, are called polar reciprocal tetrahedra. If the two tetra-
hedra coincide, so that the plane =, is identical with the plane
P,P,P,, etc., the tetrahedron is called a self-polar tetrahedron.

To determine a self-polar tetrahedron choose any point P, not
on A(z) and determine its polar plane =. In this polar plane
choose any point P, not on A(x) and determine its polar plane ,.
This plane passes through P, (Art. 107). On the line of inter-
section of mm, choose a third point P; not on A(x) and determine
its polar plane =;. The plane =; passes through P, and P,.

Finally, let P, be the point of intersection of mm,m;. The polar
plane =, of P, passes through points P,P,P,, Hence the tetra-
hedron P,P,P,P, = mwmmrym, is a self-polar tetrahedron.

113, Equation of a quadric referred to a self-polar tetrahedron.

‘TeEOREM. The necessary and sufficient condition that the equa-
tion of a quadric contains only the squares of the codrdinates is that
a self-polar tetrahedron is chosen as tetrahedron of reference.

If the tetrahedron of reference is a self-polar tetrahedron, the
polar plane of the vertex (0, 0, 0, 1) is #,=0. But the equation
A(x, y) =0 of the polar plane of (0, 0, 0, 1) is ;@) + au®, + Az,
+ ayx, =0, hence ay=ay=a;=0. Since the polar plane of
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(0, 0, 1, 0) is @; =0, it follows further that a,;= dy = 0, and since
the polar plane of (0, 1, 0, 0) is 2,=0, that ,=0. But if these
conditions are all satisfied, then the polar plane of (1, 0, 0, 0) is
x, =0, and the equation of the quadric has the form

A2y + gty + gy 4 Ay’ = 0.
Conversely, if the equation of a quadric has the form
a2+ Ay’ + g5 + Ay =0,

the tetrahedron of reference is a self-polar tetrahedron. Since
A0, the coefficients a;; are all different from zero.

If the coefficients in the equation of a quadric are real nambers,
it follows from equation (4) that the polar plane of a real point is
a real plane, hence from Art. 89 the equation of the quadric can
be reduced to the form Sa,a?=0 by a real transformation of
coordinates, that is, one in which all the coefficients in the equa-
tions of transformation are real numbers.

By a suitable choice of a real unit point the equation of the
quadric may further be reduced to the form

x? 4o + g + 22 =0.
114. Law of inertia. The equation of a quadric having real

coefficients may thus be reduced by a real transformation to one
of the three forms

(a) w4 @ 4 ot vt =0,
(b) a4 vl —a2=0,
(o) 24 —at—al=0.

TruroreM. The equation of any real non-singular quadric may be
reduced by a real transformation to one and only one of the types (a),
®), (©)-

A quadric of type (a) contains no real points, as the sum of the
squares of four real numbers can be zero only when all the num-
bers are zero. 1f the equation is of type (b), the surface contains
real points, but no real lines, for a real line lying on the surface
would cut every real planein a real point, but the section of (b)
by #,=0 is the conic x*+ 2,2+ 22 =0, which contains no real
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points. If the equation of a quadric can be reduced to type (c),
the surface contains real points and real lines. The line
@, — a3 =0, #,— 2,=0, for example, lies on the surface. Any
real plane through it will intersect the quadric in this line and
another real line. If the equation of a quadric can be reduced
to one of those forms by a real transformation, it can evidently
not be reduced to either of the others, since real lines and real
points remain real lines and real points.

The theorem of this Article is known as the law of inertia of
quadric surfaces. It states that the numerical difference between
the number of positive terms and the number of negative terms
is a constant for any particular equation independently of what
real transformation is employed.

By a transformation which may involve imaginary coefficients
the equation of any quadric may be reduced to the form Sz2=0.
w"_ in the
.

i

For this purpose it is necessary only to replace ; by -

equation Sa;x?=0 of Art. 113.
115. Rectilinear generators. Reguli. If in the equation
Sx2=0, the transformation

Ty =a, + xly =i —aly), wy=i,+,), x,=(@5—=2)

is made, it is seen that the equation of any quadric can also be

written in the form
2,2 — g2, = 0. 12)

If the quadric is of type (c), its equation can be reduced to (12)
by a real transformation. In the other cases the transformation
is imaginary.

The line of intersection of the planes

k=g, ki, = ko, (13)

lies on the quadric for every value of &, : k,, since the coordinates
of any point (y) on (13) are seen by eliminating %, : &, to satisfy
(12). Conversely, if the coordinates of any point (y) on the
quadric are substituted in (13), a value of % :k, is determined
such that the corresponding line (13) lies on the quadric and
passes through (y).
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No two lines of the system (13) intersect, for if %, = Ky,
kyx, = kyvy, and k'@ = k'y2,, 'y, = k'yx; are the two lines, the con-
dition that they intersect is

k2, 0 %k O

K, 0 K, O ) ,

0 & 0 K |=EF—EE)=0.
0 K, 0 ¥,

But this condition is not satisfied unless %, : k&, = &', : k';, that is,
unless the two lines coincide, hence:

TuaeoreM. Through each point on the quadric (12) passes one
and but one line of the system (13), lying entirely on the surface.

A system of lines having this property is called a regulus
(Art. 79).
In the same way it is shown in the system of lines

Loy =1Ly, L2y =1l 14)

is a regulus lying on the same quadric (12). Those two reguli will
be called the k-regulus and the /-regulus, respectively. It was
seen that no two lines of the same regulus intersect. It will now
be shown that every line of each regulus intersects every line of
the other. Let P N N
be a line of the k-regulus and

Lz, =la, Ly = lyw,

be a line of the lregulus. The condition that these lines intersect

is that k0 K O
0 % 0 k|
L, 0 0 |
0 L I O

But this equation is satisfied identically ; hence the lines intersect
for all values of &, :-k, and [, : L.

116, Hyperbolic codrdinates. Parametric equations. Each value
of the ratio %, : k, uniquely determines a line of the k-regulus; each
value of [, : [, uniquely determines a line of the Iregulus. These
two lines intersect ; their point of intersection lies on the quadric;
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through this point passes no other line of either regulus. Thus,
a pair of values %, : %, and [;: 1, fixes a point on the surface.
Conversely, any point on the surface fixes the line of each system
passing through it, and consequently a pair of values of %, : k, and
l,:1, These two numbers are called hyperbolic codrdinates of the
point.

From equations (13), (14) the relations between the coordinates
Xy, @, 3, o, of a point on the surface and the hyperbolic coordi-
nates k, : k,, 1, :1, are

oy =kdoy, ®wm=kily, @y=kl, =kl - (15)

These equations are called the parametric equations of the
quadric (12). Since the equation of any non-singular quadric can
be reduced to the form (12) by a suitable choice of tetrahedron of
reference, it follows that the general form of the parametric
equation of a quadric surface, referred to any system of tetra-
hedral coordinates, may be written in the form

@, = ek, +.“25k1l1 + agkeils + ek, i=1, 2, 3, 4.

117, Projection of a quadric upon a plane. Given a quadric
surface 4 and aplane ». If each point Pof 4 is connected with a
fixed point O on 4 but not on =, the line OP will intersect = in a
point P!, called the image of P. Conversely, if any point P'in =
is given, the point P of which it is the image is the residual point
in which OP intersects A. If P describes a locus on 4, P will
describe a locus on , and conversely. This process is called the
projection of A4 upon .

Through O pass two generators g, and ¢, of 4, one of each
regulus. These lines intersect = in points O,, O, which are
singular elements in the projection, since any point of ¢, has O,
for its image, and any point of g, has O, for its image. The tan-
gent plane to 4 at O contains the lines g,, ¢, hence it inter-
sects the plane = in the line 0,0,. Any point P' of 0,0, will
be the image of O. The line 0,0, will be called a singular line.

The tangent lines to 4 at O form a pencil in the tangent plane;
any line of this pencil is fixed if its point of intersection with
0,0, is known. If a curve on A passes through O, the point in
which its tangent cuts 0,0, will be said to be the image of the
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point O on that curve. The generators of the regulus to which g,
belongs all intersect g,; each, with O, determines a plane passing
through ¢, and the intersections of these planes with = is a
pencil of lines passing through O, Similarly for the other regu-
lus and O,. The two reguli on A4 have for images the pencils of
lines in 7 with vertices at Oy, O..

118. Equations of the projection. Let O, O,, O, be three vertices
of the tetrahedron of reference; take for fourth vertex the point
of contact O' of the other tangent plane through 0,0,. If

0 =(0: 0, 0, 1)7 0, =(O; 0,1, 0)7 o' =(1: 0, 0, 0)7 0,= (O’ 1,0, 0):
the equation of the surface may be written
A= 2w, — 20, ="0.

Let £, &, & be the coordinates of a point in the image plane, re-
ferred to the triangle of intersection of @, =0, #, =0, z; = 0 and
the image plane = or Z¢2; =0. Any point of the line joining
0,0,0,1) to (1, Y2 ¥ ¥s) on A will have coordinates of the form

Ky Koy Ky Bys+ A,

wherein k3e,y; + A =0 for the point in which the line pierees
the plane .

Moreover, since & =ky, (i =1, 2, 3) and »y, — ¥4 =0,
_ Mty _ . Eoka,

h &
Hence, a point () on 4 and its image (£) in = are connected by
the equations

ph=2E2% pua=¢ébn pys=¢66, pYs= &by (16)

If ¢ =0, then 3, =0, 5, = 0, y; = 0, so that any point of the line
0,0, corresponds to 0. If &= 0and & =0, all the y, vanish, but
if we allow a point to approach O, in 7 along the line ¢ — 7§, =0,
then the corresponding point on A is

4

ph=1%% pe=1E&% ps=r1ké, pYi= Eds
from which the factor & can be removed. If now &, is made to
vanish, the point on 4 is defined by

n=0, =0, y—7y=0.
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Thus, to the point O, correspond all the points of the generator
g, but in such manner that to a direction & — 7€, = 0 through O,
corresponds a definite point (0, 0, =, 1) on ¢,. To the line
& — t6,=0 as a whole corresponds the line

?11—1'3/2=0, ya—7y4=07

that is, a generator of the regulus g;. A plane section cut from A4
by the plane Su2; =0 has for image in = the conic whose equa-
tion is

wé? + wbi&y + wsbiéy + ubdy = 0.
It passes through 0O,, O,

EXERCISES

1. Prove that if the image curve (' is a conie not passing through O, nor
0, then the curve C' on A4 has a double’point at O, intersects each generator
of each regulus in two points, and is met by an arbitrary plane in four points.

2. If (' is a conic through O; but not O, then C passes through O, inter-
sects each generator g; in two points and each generator g, in one point; it
is met by a plane in three points.

3. By means of equations (16), show that C of Ex. 1 lies on another
quadric surface, and find its equation.

4. By means of equations (16), show that C' of Ex. 2 lies on another
quadric, having a line in common with 4. Find the equation of the surface
and the equations of the line common to both.

119, Quadric determined by three non-intersecting lines. ILet
the equations of three straight lines I, 7, I”, no two of which inter-
sect, be respectively
Sux; =0, Sva,=0; Su'w, =0, Sv'x;, =0; Su’x, =0,z =0.

It is required to find the locus of lines intersecting I, 7, 1.
Let (y) be a point on !” so that

3wy, =0, 2"y, =0 7)
The equation of the plane determined by (y) and 1 is
Suy 2w, — Suw Sy, =0, (18)

and of the i)lane determined by (y) and 7’ is
Sy Sv'x, — 3w 2, Sy, =0. (19)
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The planes (18) and (19) intersect in a line which intersects I, 7,
. Moreover, the equations of every line which intersects the
given lines may be written in this form. If we eliminate y,, y,,
Y3 ¥s from (17), (18), (19), we obtain a necessary condition that
a point («) lies on such a line. The equation is

wy (va) — vy (u) up(v2) — vy (V) Up(VE) —vy(ud) u,(v) —v (V)
u'y(v'w) —0', (u'z) — — = — 9
u”l u”2 u!ls ,uH4 — 9

,UH1 1)”2 ,vHs v”4 (20)

wherein (ux) is written for Su,z,, ete.

Sinee this equation is of the second degree, the locus is a quadric.
The skew lines /, I, I' all lie on it, hence it cannot be singu-
lar. The common transversals of I, I, I'" belong to one regulus,
and /, 7/, I'" themselves are three lines of the other regulus.

If ,=0, 2,=0 is chosen for !, and #, =0, x,=0 for 1", the
equation becomes

2, —wx 0 0
0 0 z —uwu
u1 Uy Uy Ut
v, N v,

=0.

If we write
UV — UV = Uy,
this assumes the form

Uy T3+ UggZy Ty - Uggy -+ g2, = 0.

The pencil of planes k., + k@, = 0 is associated with the pencil
kyxy + ke, =0 in such a way that associated planes pass through
the same point of the line /. Two pencils of planes associated in
this way are projective (Art. 100).

The locus of the intersection of corresponding planes of two
projective pencils of planes whose axes do not intersect is a non-
singular quadric containing the axes of both pencils.

Dually, the lines joining the corresponding points of two projec-
tive ranges generate a quadric surface. The lines containing the
given ranges of points belong to the other regulus of the quadric.
For this reason it is sometimes convenient to consider the gener-
ators of one regulus as directrices of the other regulus.
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120. Transversals of four skew lines. Lines in hyperbolic posi-
tion. We can now solve the problem of determining the number
of lines in space which intersect four given skew lines I, &, I, I,
by proving the following theorem:

THEOREM. Four skew lines have at least two (distinct or coin-
cident) transversals. If they have more than two, they all belong to
a requlus.

Any three of the lines, as {,, 1, l;, determine a quadric on which
i, Uy, I, lie and belong to one regulus. The common transversals
of 1, I, I; constitute the generators of the other regulus. The
line I, either pierces this quadric in two points P, P, or lies
entirely on the surface. In the first case, through each of the
points Py, P, passes one generator of each regulus, hence one line
meeting I, I, ;. But P, P, are on [, hence through P, P, passes
one line meeting all four of the given lines. In the second case,
1, belongs to the same regulus as [, 1, I,.

Four lines which belong to the same regulus are said to be in
hyperbolic position.

EXERCISES
1. Write the equations of the quadric determined by the lines
L+ 22=0,03+24=0; 203 + 20 —23=0, 22 + 23— 224 =0
T—%y—23+24=0,20+222+3x3+424=0.
2. Find the equations of the two transversals of the four lines
21=0,22=0; 23=0,2,=0; 5y +23=0, 25+ 23, =03
x1+x4=0,xz——003=0.
3. When a tetrahedron is inscribed in a quadric surface, the tangent

planes at its vertices meet the opposite faces in four lines in hyperbolic
position.

4. State the dual of the theorem in Ex. 3.

5. Find the polar tetrahedron of the tetrahedron of reference as to the
general quadric 4 = 0.

121. The quadric cone. It has been seen (Art. 104) that the
surface 4 = Sa,x,x, =0 represents a proper cone if and only
if the discriminant is of rank three. In this case there is one
point (y) whose coordinates satisfy the four equations

At + G+ OYs + @y, =0, ¢=1,2, 3, 4. (21)
The point (y) is the vertex of the cone.
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The equation of the polar plane (Art. 107) of any point (z) with
regard to the cone is

(SBap) ® + (S 2, + (Ba;@) s + (2a.2) 2, =0. (22)
On rearranging the equation in the form
(2111.--’17.-) 2+ (Eamwi) 2+ (2‘13.“:') Z3 4 (Ea‘«iixi) z,=0, (23)

it is seen that the coordinates of the vertex (y) will make the
coefficient of every codrdinate z; vanish, hence:

TrrorEM 1. The polar plane of any point in space with regard
to a quadric cone passes through the vertex. The polar plane of the
vertex itself is indeterminate.

Moreover, the polar plane of all points on the line joining any
point (2) to the vertex will coincide with the polar plane of (2),
since the coordinates of any point on the line joining the vertex
(y) to the point (z) are of the form Xy, + ke, On substituting
these values in (23) and making use of (21) we obtain (22) again.
In particular, if (2) lies on the surface, the whole line () (2) is on
the surface; the polar plane is now a tangent plane to the cone
along the whole generator passing through (z). Hence:

Tueorem II.  Every tangent plane to the cone passes through the
vertex and touches the surface along a generator.

If the vertex of the cone is chosen as the vertex (0, 0, 0; 1) of
the tetrahedron of reference, then from (22), a,, = ay = a3, = a,,=0,
hence the equation of the surface is independent of x,. Con-
versely, if the equation of a quadric does not contain «, then
A =0 and the surface is a proper or composite cone with vertex
at (0, 0,0,1). The equation of any quadric cone with vertex at
(0, 0, 0, 1) is of the form

K = Sa,xx, =0, ,k=1,2,3.
The equation of the tangent plane to A at a point (z) is

(A2 + Q1% + A1) @)+ (@or2) + Cog?y + Bogs) T
+ (azlzl + g2, + asszs) x, =0.
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If a plane Su,2; =0 coincides with this plane, then

2y + gy - g2y = liyy

sy + Uy + gy = Ly,

Oy + Gge + gy = Lty .
Uy = 0 .

Moreover, the point (2) must lie in the plane Zw; =0, hence
Suz,=0. If 2, 2, %, | are eliminated from these equations, the
resulting equations are
Uy Qg Qg U
R e (24)
Oy O3 Qg U

w, uy u; O

which define the cone in plane codrdinates.

If the vertex of the cone 4 = 0 is at the point (k), then ®(u)
=(Ska;)* =0 (Art. 106). If ;= 0, the section of 4= 0 by
the plane a; = 0 is a conic whose equation in plane codrdinates
is obtained by equating to zero the first minor of ¢(w) correspond-
ing to a;. The first minor of any element a,; of the principal
diagonal equated to zero, together with ®(u) =0, will, if k; + 0,
define the given cone.

122, Projection of a quadric cone upon a plane. Given a point
O on a cone K, but not at its vertex. To project the cone from
O upon a plane 7 not passing through O, connect every point P on
K with O. The point P'in which OP cuts = is called the projec-
tion of P upon = Let g be the generator of K through O, and O'
the point in which ¢ pierces = Let I be the line of intersection
of = and the tangent plane along g. The point O on K corre-
sponds to any point of 7/, and to O' in = correspond all the points
of g. With these exceptions there is one-to-one correspondence
between the points of = and of K. A curve defined on either
will uniquely determine a curve on the other.

Let /X be defined by #,a,—2,2=0, = by 2,=0, and 0=(0, 0, 1, 0).

If P'=(4, & 0, ¢,), the codrdinates of P = (,, 2, 3, x,) are
seen, as in Art. 103, to be connected with those of P’ by the
equations

prL = &% puy =&y prs =& pry=&ée
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EXERCISES
1. Show that

422 +6 2129+ 8222 + 9% 4 1223704 +4 242 =0
represents a cone. Find the coordinates of its vertex.
2. Find a value of & such that the equation
212 — 5 2x1Xg + 6 292 4 4 232 — kxsxy + 242=0
represents a cone.
3. Write the equations of the cone of Ex. 1 in plane coordinates.
4. Inequations (24), replace u; by x; and interpret the resulting equations.
5. Prove that if the two lines of intersection of a quadric and a tangent
plane coincide, the surface is a cone.
6. What locus on the cone K has for its projection in = a conic :
(@) not passing through O’ ?
(b) passing through O', not touching 7 ?
(¢) touching lat O'?

7. State some properties of the projection upon = of a eurve on K which
passes k times through O, has &' branches at the vertex, and intersects g in »
additional points.



CHAPTER XI

LINEAR SYSTEMS OF QUADRICS

In this chapter we shall discuss the equation of a quadric sur-
face under the assumption that the coefficients are linear functions
of one or more parameters.

123, Pencil of quadrics. If
A=3Sauxr, =0, B=3hxx, =0
are the equations of two distinct quadric surfaces, the system
A — AB = Z(ay — Aby) 2, = 0, @)
in which A is the parameter, is called a pencil of quadries.

Every point which lies on both the given quadrics lies on every
quadric of the pencil, for if the codrdinates of a point satisfy the
equations 4 = 0, B = 0, they also satisfy the equation 4 —AB =0
for every value of A.

Through any point in space not lying on the intersection of
A =0, B=0 passes one and but one quadric of the pencil. If
(y) is the given point, its coordinates must satisfy the equation (1),
hence
If this value of X is substituted in (1), we obtain the equation

A@)B— By 4=0
of the quadric of the pencil (1) through the point (y).

124, The M\discriminant. The condition that a quadrie
A — AB =0 of the pencil (1) is singular is that its discriminant
vanishes, that is,

Gy —Aby G — by @y — Abyy @y — Abyy

Qe —Abiy  Ggy — NDay Qg — ADyy Gy — Aby,

Qs — Abyy Qo — Ay Gy — Abyy Gy — Aby,

O — Abyy Gy — ADyy @y — Mbyy @y — Aby,
147

Ia,-,, == Ab‘k[ = = O. (2)
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This determinant will be called the A-discriminant. If it is iden-
tically zero, the pencil (1) will be called a singular pencil. If the
peneil is not singular, equation (2) may be written in the form

AN+ 40N + 6PN +40N+ A" =0. 3)
If A =0, this equation is of the fourth degree in A. If A =0,
the equation will still be considered to be of the fourth degree,
with one or more infinite roots. It follows at once from equation
(3) that in any non-singular pencil of quadrics there are four
distinet or coincident singular quadries. If in (3), A is put equal
to zero, A’ results. But from (2), this is the discriminant of
A= 0. Similarly, A is the discriminant of B =0. Let S8;, be
the cofactor of b, in A. From (2) and (3) we obtain

— 40 = allBll + (122322 + cee + a’MB(M'

If ® = 0, 4 =0 is said to be apolar to B=0. Similarly, if @ =0,
B=0is said to be apolar to 4=0. A geometric interpretation
of this property will be given later (Art. 149).

125, Invariant factors. If the equations of the quadrics of a
non-singular pencil are transformed by a linear substitution such
that A =0 is transformed into 4’=0 and B=0 into B’ =0,
then 4 —AB =0 becomes 4" — AB' = 0. Moreover, if 7 is the
determinant of the transformation of codrdinates, then (Art. 104)

[a'y — A | = TP ag — Aby |
From this formula we have at once
TueoreM L. If (A\—X)% is a factor of |a, — Ay, |, it is also a

Jactor of | &'y — AV | and conversely.

Hence the numerical value and multiplicity of every root of
the A-discriminant is invariant under any linear transformation
of codrdinates. Moreover, by a proof similar to that of Theorem
IT, Art. 104, we obtain the following theorem:

TuroreM II. Ewvery sth minor of the transformed A-discriminant
is a linear function of the sth minors of the original A-discriminant
and conversely.

From the two theorems I and 11 we obtain at once
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Treorem 1IL. If (A — \)* is a factor of all the sth minors of
lag — Aby |, then it is also a factor of all the sth minors of
| &y — AV i | and conversely.

Let (A — A))% be a factor of the A-discriminant,

(A — A\ of all its first minors,

(A — Ay)% of all its second minors, ete.,
k, being the highest exponent of the power of (A —A;) that
divides all the sth minors, and %, being the first exponent of the
set that is zero.

Let also |
L=k —ky L=k —Fk, -, L=Fk_. @

From Theorem IIT we have:

Taeorem IV. he expressions v

A=) A=) ey (A=A
W _tetrahedron of referenee:———

These expressions are called invariant factors-or—elementary

d_i_\ii_s_gl;s_,_tg_.théfﬁse.)\,— Aof the A-discriminant.
We shall next prove the following theorem :

TaeEoREM V. The exponent of each invariant factor is at least
unity.

et | — Aby | = (A — A)eF(A),
where F(X) is not divisible by (A — A,).
Then d

5\ Wy — Abik ‘ = ()‘ - Al)ko—lf()‘)f

where f(A) is not divisible by (A — A,). But the derivative of
| a; — Aby, | with respect to A may be expressed as a linear function

of the first minors,* and is consequently divisible by (A— A)%
at least.

* If the elements of a determinant [abed| are functions of a variable, it follows
from the definition of a derivative that the derivative of the determinant as to the
variable may be expressed as the sum of determinants of the form

|a'bed |+ | ab’ed |+ | abe’d | 4| abed’ |,
in which 'y is the derivative of «;, ete.

If these determinants are expanded in terms of the columns which contain the
derivative, it follows that the deritative of the given determinant is expressible as
a linear function of its first minors.
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tent b < kg—1 or L =1.

The proof in the other cases may be obtained in a similar way.

126. The characteristic. It is now desirable to have a symbol
to indicate the arrangement of the roots in a given A-discriminant.
There may be one, two, three, or four distinet roots. If &, =1 for
any root A, then L, =1, and no other I, appears for that factor.
If k,= 2, then I, may be 1 or 2, according as the same factor is
contained in all the first minors or not. If all the exponents L,
associated with the same root are enclosed in parentheses (I,
L,, --), and all the sets for all the bases in brackets, the config-
uration is completely defined. This symbol is called the charac-
teristic of the pencil (1). E.g., suppose

| — A | = (A — M)A — M)
and that A — X, is also a factor of all the first minors, but that
A—A, is not. The characteristic is [2{11)]. If A—X isalsoa
factor of all first minors so that L, =1, L,=1 to the base A —A,,
the symbol has the form [(11)(11)].

From (4) it is seen that Ly + Ly + - + L, =k, that is, that the
sum of the exponents for any one root is equal to the multiplicity
of that root. Since the sum of the multiplicities of all the roots
is equal to four, we have the following theorem :

TuroreM. The sum of the exponents in the characteristic is
always equal to four.

EXERCISES

. alip— N2 a1z — NV
1. Express the minor ,12 ,12 ,13 ,13
@23 — Nb'oz @3z — Nb/ss

of |/, — Nb/s;| in terms
of the second minors of | a@;, — Ayl

2. Tind the invariant factors and characteristic of each of the following
forms :

1—2 0 0 0 0 N0 O .o
0 0 X N0 10

@ ¢ 2105 Plo1 oy .
0 0 0 A 001

00 X O 0O N0 O

00 0 A A0 1 0

© i\ o o 1) @Dlo 12 o

00X 10 000 1—2
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127. Pencil of quadrics having a common vertex. If the A-dis-
eriminant is identically zero, the discussion in Arts. 124-126 does
not apply. In case all the quadrics have a common vertex, we
may proceed as follows. If the common vertex is taken as
(0, 0, 0, 1), the variable @, will not appear in the equation. We
then form the A-discriminant of order three of the equation in
@, ¥, ¥ 1f this diseriminant is not identically zero, we deter-
mine its invariant factors and a characteristic such that the sum
of the exponents is three.

Similarly, if the quadrics have a line of vertices in common, we
form the A-discriminant of order two, and a corresponding charac-
teristic; if the quadrics have a plane of vertices in common, the
A-discriminant is of order one.

128, Classification of pencils of quadrics. The principles de-
veloped in the preceding Articles will now be employed to classify
pencils of quadrics and to reduce their equations to the simplest
forms. When the equation of the pencil is given, the charac-
teristic is uniquely determined. It will be assumed that for any
given pencil 4 —AB=0, the A-discriminant has been calculated
and the form of its characteristic obtained. For convenience, the
cases in which 4 =0 and B =0 coincide will be included in the
classification, although in this case .A — AB = 0 does not constitute
a pencil as defined in Art. 123.

Since any two distinet quadrics of a pencil are sufficient to
define the pencil, we shall always suppose that the quadric B=0
is so chosen that the A-discriminant has no infinite roots.

129. Quadrics having a double plane in common. By taking the
plane for »; = 0, the equation reduces to
A2? — Ax2 =0,
A =azf B=uzp}
and the ¢l racteristic is [1].

1:30. Quadrics having a line of vertices in common. Let 2, =0,
2,=0 be the equations of the line of vertices. Every quadric
consists of a pair of planes passing through this line, and the
equation of the pencil has the form

A—AB= a2 + 2 ;3,2 + @’ — My + 2 by @y + byyity?) =0.
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Three cases appear :

(a) The A-discriminant has two distinet roots A;, A,

(b) The X-discriminant has a double root A;, but not every first
minor vanishes for A = A,. ‘

(¢) The A-discriminant is of rank zero for A = A,.

In case (a), 4 — A\ B is a square and 4 — A,B is another square.
Let the tetrahedron of reference be so chosen that

A—ANB=2a2 Ad—\NB=u2x>
If we solve these equations for A and B, we may, after a suitable
change of unit point, write A, B in the form
A=M22+ M2 =0, B=22+
In case (b) we have the relation
(anbzz - a22b11)2 =4 (allbl2 - ambu) (ambn - a22b12))
which is the condition that A =0, B=0 have a common factor.

By calling this common factor x,, and the other factor of B=0
(which is by hypothesis distinet from the first) 2 ,, we may put

A—MB=ua? B=2uxu,
Solving for A, B, we have
A=x?+ 2 \x2y B=2uwu,
In case (¢), we have A — \B =0, hence we may write at once
M (4 @) — A (2 4+ 2,%) = 0.

The invariant factors are A — A;, A — A,
In this case we have then the following types:

[11] - A=N 2P 4 Az B =+ 24
[2] A =2 zxx, + 2 B=2zu,
[(11)] A = M2 + 32, B=uo?4+x

131. Quadrics having a vertex in common. Let the common
vertex be taken so that the equation of the pencil contains only
three variables, @, a,, ;. It will first be assumed that the A-dis-
criminant is not identically zero.

Suppose |a;, — Ab,;|=0 has at least one simple root A,. The
expression 4 — )\, B is the product of two distinet linear factors,
hence the quadric 4— \B=0 consists of two distinct planes,
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both passing through the point (0, 0, 0, 1). Let the line of inter-
section of the planes be taken for x; =0, #, =0, so that the ex-
pression A — A, B does not contain ;. It follows that
ay — Ay =0, ap—Nbp=0, a;—Aby;=0.
By means of those relations a,;, @, @;; can be eliminated from
the A-diseriminant. The result may be written in the form
bu(A—2A) bu(A—=X) bdy(A—A)
Jag, — byl = bo(A—N)  Qp — by @y — My
bis(A— X)) @y — Aby g — Abgs
Since XA, was assumed to be a simple root of |a,, — Ab,|, it follows
that b, 0. The equation of the pencil now has the form
M2 4 2 b@@y + 2 by ) + Agpy? + gg® 4 2 s,
- A(1)119«'12 A4 2 bygtairy + 2 by @y + bagty? + 2 bygayay + b33%2)= 0.
If we make the substitution
@% + by
bll ’
then replace ¥y, ¥, ¥5 by @, @, @3, the equation of the pencil takes
the form

=+ Yo =179 Y3=Xs

Az 4 (@, 25)— M@ 4 f (25, 3))=0,

in which ¢(zy, a;) and f(x, 2;) are homogeneous quadratic func-
tions of ,, ;. The above transformation may be interpreted
geometrically as follows: Since b, # 0, the quadric B=10 does
not pass through the point (1, 0, 0, 0). The polar plane

byy + gty + bygaey =0

of the point (1, 0, 0, 0) as to B is consequently not a tangent
plane to B at this point. The transformation makes this polar
plane the new «;, changes the unit point, and leaves @, =0, 2, =0
unchanged.

The expression ¢(ay, @5) — Af (@, ¢;) may now be classified ac-
cording to the method of Art. 130, and the associated functions
of @, @, ; are obtained by adding A2, to ¢(2y ¥g), .2 to flas. @3).

Next suppose that |a,, — Ab;, | =0 has no simple root. It has,
then, a triple root which we shall denote by A;. If A—AaA;is not
a factor of all the first minors, the quadric 4 —X;B=0 consists
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of two distinet planes. Let the tetrahedron of reference be
chosen in such a way that these two planes are taken as z,=0,
2, =0, so that the equation of the quadric has the form

A — A\ B =2 (0 — Nby)x2, =0,
wherein a,; — Ay 5= 0, but
ay — My =0, ap— Mby = 0, ay—Abyy=0, ap—XNb=0,
iz — Aby3 = 0, and
buA—A) DA —=X) bg(A—X)
| @ — Aby| = by, A=) bu(A—N) ay —Aby
bs(A—=X) @y — by by (A=)

Since (A — A,)® is a factor of this determinant and ay— by # 0,
it follows that b, =0, and b;h,, =0, that is, either 4,; =0 or
b,=0. Since it is simply a matter of notation which factor is
made to vanish, let b;=0. Then b, 0, since |a; — Ab;,|#0.
Geometrically, this means that the plane x,=0 touches B=0
along the line @, =0, 2,=0. The plane a; =0 intersects the cone
B=0 in the line 2,=0, ;=0 and in one other line. By a
further change of cobrdinates, if necessary, the tangent plane to
B =0 along this second line may be taken for z; = 0.
We then have

B =2 by, 2y + bg?
but since

A =MNB+ 2 (ay — Mbg) 25

we may, by a suitable choice of unit point, write the equation of
the pencil in the form

A — 2B = M2 z@,+ x%) + 2 22 — M2 22, + 7)) = 0.

If A— A, is also a factor of all the first minors of the A-dis-
criminant, but not of all its second minors, 4 — AB is a square
and represents a plane counted twice. This plane may be chosen
for @, = 0 so that

A =N B={(ay — \by) 2%

Since (A — A,)* is a factor of the A-diseriminant, we must also

have
bybagy — by? =0.
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Geometrically, this condition expresses that #, =0 is a tangent
plane to the cone B=0. We may now write

B =2 byuayr, + by, A=MB+ (azn— AiDag) s

Hence, by a suitable choice of unit point, the equation of the
pencil may be reduced to

M(2 2@, + x3%) + 2 — A2 w2, + z2)=0.

If A — A, is also a factor of all the second minors of |y, — A,
the equation of B=0 is a multiple of that of A= 0 and the equa-
tion of the pencil may be written in the form

(@ 4 o’ + o) — My + @’ 4 %)= 0.

We have thus far supposed, in this Article, that the A-diserimi-
nant did not vanish identically. Tt may happen that the deter-
minant |a;, — Ab,| is identically zero even though the quadries of
the pencil do not have a line of vertices in common. In this case
every quadric of the pencil consists of a pair of planes. Let
A= ¢ (@, a,), B=f(x x;). Since |ay — Ab,| is identically zero,
it follows that

au(bnbss —byh)= 0, bsa(auaaz - a122> =0,

and hence that a, =0, by, =0, as otherwise the quadrics would
have a line of vertices in common, contrary to hypothesis.

By an obvious change of codrdinates, we may write the equa-
tion of the pencil in the form 2 2,2, — A2 225 =0. This is called
the singular case in three variables. Its characteristic will be
denoted by the symbol §3}. Collecting all the preceding results
of the present Article, we have the following types of pencils of
quadrics with a common vertex.

(1117  aa® + Ax? + Agxs? @+ a0 + 2
[21] May? 4 2 A2 + 2 x2 + 2 2%,
117 yzl+ (22 + %) R R

[3] M2 2@ + 2?) + 202 22242
()] M@+ z?) + @’ 2w, 4 2t
[AID] M’ + 2” + o) x? + o+ )
{34 2 M@y, 2 a2y,
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EXERCISES
1. Determine the invariant factors for each pencil in the above table.

2. Determine the nature of the locus 4 =0, B = 0 for each pencil in the
above table.

3. Find the invariant factors and the characteristic of the pencils of
quadric cones defined by

(a) A=3x12+9x2“’+49¢2x3—21113—6x19'2:0,
B:51312-{-8%22—2%32—63‘,113—14 x1£172=0.

(b) A=5x12+3x22+2x32+4mgxg—2x113+271372=O,
B =902 — 20?2 + 232 — 4 20263 + 14 2123 + 42 21705 = 0.

(C) A=59712—59322+x32+6132133—}—10&3]2}3—42‘11‘.2:0,
B(: 10 212 + 2 % + 10 32— 10 20003 + 24 2125 — 16 2129 = 0.

(@) A=2224 222 — 2w9x5 — 2123 = 0,

B = 21243 252 4 232 — 4 Xo2t3 — 2 2703 = 0.
4. Find the form of the intersection of A =0, B = 0 in each of the pencils
of Ex. 3.

5. Write the equations of each of the pencils in Ex. 3 in the reduced form.

132, Quadrics having no vertex in common. As in the preced-
ing case, we shall suppose, except when the contrary is stated,
that |a,, — Ab; | is not identically zero. If (A —X,) is a simple
factor of the A-diseriminant, then 4 — A, B =0 is the equation of
a cone. By choosing its vertex as (1, 0, 0, 0) and proceeding
exactly as in Art. 131, the equation may be reduced to the form

M@+ (g @ 24) — M + f (2 @5 1)) = 0.
By this process the variable 2, has been separated and the func-
tions ¢ (2, 25 x,), f(2 4 ;) can be reduced by the methods of
Art. 131, not including the singular case.

The only new cases that arise are those in which the roots of
| @y, — Ab,, | = 0 are equal in pairs or in which all four are equal.

Consider first the case in which there are two distinct double
roots A; and A, neither of which is a root of all the first minors of
the A-disecriminant. = The quadriecs 4 — \B=0, 4 — \,B=0 are
cones having distinet vertices. Let the vertex of the first be
taken as (0, 0, 0, 1) and that of the second as (0, 0, 1, 0). The
equation of the former does not contain #,, Hence, we have

Qg — Mbyy= 0, gy — Mbyy =0, a3 — Xbyy =0, ay— Ay =0.
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When those values of a,, are substituted in | a;—Ab, | =0, A — A
is seen to be a factor. 'The condition that (A — A,)? is a factor is
that either b, =0 or that A — A, is a factor of the minor cor-
responding to a, — Aby. But in the latter case A — A, is a factor
of all the first minors, contrary to hypothesis, hence b, = 0.

Proceeding in the same way with the factor A—A,, it is seen that

Ay — Abiy = 0, @y — Aobyg = 0, tgg — Aghyy = 0, a5 — Aoby = 0
and also that by =0. Hence the vertices of both cones lie on the
quadric B= 0. Let the tangent plane to B = 0 at (0, 0, 0, 1) be
taken as @, = 0, and the tangent plane to B= 0 at (0, 0,1, 0) be
taken as @, = 0. Since B = 0 is non-singular, by in the trans-
formed equation does not vanish, hence the plane z;=0 intersects
the cone A —\,B=0 in the line # = ,=0 and in another line.
et the tangent plane along this second line be taken as @ = 0
that is, make the transformation

N=2, =%
205\ — M)ys = (a1 — Now)w + 2 (g — Aibyo)a, + 2 bis(Ae — Ap) s,
Yo =Ty
The equation of the cone has now the form
- A — NB = (ty — Mot + 2 (a3 — Mibig) @@y = 0.
Similarly, the plane @, =0 intersects the cone A—XB=0in
the line 2, = 0, %, = 0 and in another line. Make a further trans-
formation by choosing the tangent plane to A— M\B=0 along
this line for the new x,, thus
=Dy Y=o Y=y
2 by(M — XY= (g — Aapo) 2y + (g, — Mb)@y + 2 by (A — Xg) @y
The equation of the second cone now has the form
A— NB=(ay — Mby)a® + 20ty — Aabag)py = 0.
By a suitable choice of unit point the equation of the pencil may
be reduced to
(@ 4+ 2 @) + Ao + 2 ) — M + 2 + 2w+ 2 2w,)=0.

If the invariant factors are (A — ), (A — Ay), (A — Ap)? the quad-
ric A — A, B= 0 is a pair of distinct planes and as before A — A, B=0
is a cone having its vertex on the quadric B=0. Let the line of
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intersection of the two planes of 4 — A\ B=0 be taken as x;=0,
2,=0, and let the vertex of A —A,B =0 be at (0, 0, 1, 0) as before.
Since this vertex lies on A — X\,B =0 and on B =0, it lies on every
quadric of the pencil, in particular, therefore, on 4 —X\B=0.
Thus, one of the planes of the pair constituting 4 — A B =0 is the
plane 2,=0. The other may be taken as x, =0 so that

A — MB=(ag — Mby)px, = 0.

The plane 2, = 0 is not tangent to 4 — A, B =0, since otherwise the
diseriminant |a,;, — Ab,,| would vanish identically. Hence we may
choose for x; =0, and x, =0 any pair of planes conjugate to each
other and each conjugate to @, = 0 as to the cone 4 —\,B=0. The
equation of the cone 4 — A, B=0is now

A — B = (ay — Aby)a’+ (Ggr — Agbyp)a? + (gg — Aybyg)x* = 0.

From these two equations we may reduce the equation of the pen-
cil to the form
2 Mgy + (@ 4 2+ 2 f) — M2 2, + 2 + 2’ + 2f) = 0.

If (A—X,) is also a factor of all the first minors, so that the in-
variant factors are (A — X)), (A — X)), (A — Ay), (A — A,), the quadries
A —\B=0and 4 — \B=0 both consist of non-coincident planes.
These four planes do not all pass through a common point, since
in that case all the quadries of the pencil would have a common
vertex at that point, contrary to the hypothesis. We may conse-
quently take

A — N B = (az — Mb)@ + (g — Mbyy) vy = 0,
A— XB = (ay — Agby )2 + (G — ADyo) @y = 0.
By a suitable choice of unit point the equation of the pencil as-
sumes the form
(@2 + 27) + M(@? + 22) — M@ + 2 + a’ +2,7)=0.

The remaining cases to consider are those in which |a;,— Aby|
has a fourfold factor (A —X,)% Suppose first that X — A; is not a
factor of all the first minors. The quadric 4 —XB=0is a cone
with vertex on B=0. Its vertex may be taken as (1,0, 0, 0), and
the tangent plane to B=0 at this point as 2,=0. Since 4—
MB =0 is a cone with vertex at (1, 0, 0, 0) we have

Oy —Mby =0, ap—XNb,=0, a;— Mo =0, ay—Mby =0.
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Since (1, 0, 0, 0) lies on B =0, we have b, =0, and since the tan-
gent plane at (1, 0, 0, 0) is @, =0, it follows that b;; =0, b,,=0.
The A-discriminant now has the form

0 bia(A — X)) 0 0
DA —= A1) Qe — XDy Qg3 —Abyy Gy — Aby .
0 Gy — Mgy Qg — Abgy Gy — Aby,
0 Qo — Ny Ay — A3y Gy — ADy
Since (A — A,)* is a factor and b, 0, it follows that
bys by g3 — Aby; gy — Aby
Y it PPV |

The section of the pencil of quadries A —AB=0 by the plane
x, = 0 1s the pencil of composite conics

Agss? + yy@,? + 2 g, — AM(Dggeg? + by + 2 b)) =0, 2,=0.

The characteristic of this pencil of composite conics is [2]; it con-
sists (Art. 130) of pairs of lines through (1,0, 0, 0) all of which
have one line g in common. The plane », =0 cuts the cone 4 —
M B =0 in the line g counted twice, and g is defined by one of the
factors of byw?+ 2 by, + byl since it is common to all the conies
of the pencil. The tangent plane z,=0 to B =0 therefore con-
tains the line g and another line g/. Through the line g', which
passes through the vertex of the cone 4 —A,B=0, can be drawn
two tangent planes to the cone. One of them is #,=0. Choose
the other for x;=0. The plane ;=0 will touch the cone 4 —
MB =0 along aline g". The plane containing the two generators
g, 9" of the cone is next chosen as x,=0. The equation of the
cone 4 — A B =0 now has the form

A — MB = 2(y; — Mbag)@s5 + (g — Aby)2,E = 0.

The plane x; = 0 contains the generator ¢’ of B=0, hence it is
tangent to B=0, and intersects B=0 in a line g, of the other
regulus. The plane x,=0 contains the generator g of B =0,
hence meets the surface in another line ¢,. The lines g, ¢’ are of
opposite systems, hence g,, ¢, belong to different reguli and inter-
sect. The plane of g;, g, may be taken as the plane 2, =0. The
quadric B =0 now has the equation

B=2b,xx, 4+ 2 byage, = 0.
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By means of this equation and the equation of the cone A— \,B
= 0 it is seen that the equation of the pencil may be reduced, by
a suitable choice of unit point, to

M2 2wy + 2 agx,) + 2 2y 4 22 — M2 2y, + 2 wgx,) = 0.

Now suppose A — A, is also a factor of all the first minors, but
not of all the second minors. The surface A — A\, B = 0 consists
of a pair of planes which may be taken for x, =0 and z,= 0, so
that

A—\B= 2(agy — )‘1b34)1‘3$4 =0,
and A —AB=2(az,— Mbg)xge, + (A, — X) B.

If the A-discriminant is calculated and the factor (A— X)? re-
moved, it is seen that in order for |a, — Ab;,| to have the further
faetor (A — A,)? the expression by by, — b,? must vanish. Hence
bux? + 2 by, 4 byyx,® either vanishes identically, or is a square
of a linear expression. ‘

In the first case, b, = 0, b, =0, by, = 0, so that the line x, =0,
x, =0 lies on the quadric B=0. The plane a;= 0 passes through
this line and intersects B=0 in a second line ¢’. Similarly,
x, =0 intersects B = 0 in #, =0 and in another line g”. Another
tangent plane through ¢’ may be takeu as x, = 0, and the plane of
g” and the second line in 2, =0 as @, =0. The equation of B=0

18
B =2 b2, + 2 byzsx, = 0,

and the equation of the pencil may be reduced to the form
M (2 @y + 2 2ym) + 2 25, — (2 225 + 2 w,) = 0.

In case b,,@,2 + 2 b2, + boyx,? is a square, not identically zero,
the line x; =0, ¢, =0 touches B =0 but does not lie on it. Let
the point of tangency be taken as (0, 1, 0, 0) so that &,=0,
by =0. If we now remove the factor (A —A;)* from the A-dis-
criminant and then put A equal to A;, the result is byboy(tg—Asbs,).
This expression is equal to zero, since (A —X,)*is a factor of the
A-discriminant. But a; —Aby, =0, as otherwise 4 would be
identical with Bj; hence either b,, =0 or b, =0. Let the nota-
tion be such that b,,= 0. Then the section of the quadric B=0
by the plane ;=0 consists of two lines through (0, 1, 0, 0).
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Let L be the harmonic conjugate of the line ; =0, x, = 0 with
regard to these two lines, and let P be any point on the conic
x,=0, B=0. If the plane determined by P and L is chosen for
x, = 0 and the tangent plane to B = 0 at P is taken for 2, =0, the
equation of B =0 becomes

B=by@ + 2 by, w5 + by = 0,
and the equation of the pencil has the form
M(@? 4+ af + 2 25) + 2wy — A (22 + 2l 4 2 2y25) = 0.

Now suppose that A — A, is a factor of all the second minors,
but not of all the third minors, so that 4 — X B=10 is a plane
counted twice. Let this plane be taken as x,=0.

A —NB=(ay— Mby)r=0.

By substituting these values in the A-discriminant, it is seen that
the determinant |bybuby | must also vanish if X —X; is to be
a fourfold root. This means that the section of the quadric
B=0 by the plane x, =0 consists of two lines, hence that ;=0
is a tangent plane to B =0. Let planes through these two lines
be taken as =0, 2, =0. The remaining generators in x, =0
and in @, =0 belong to opposite reguli and therefore intersect.
The plane determined by them is now to be taken as 2;=0. The
equation of B=0 is 2 b,@@, + 2 by, = 0, hence the equation
of the pencil may be reduced to the form

M2z, + 2 @) + a2 — A2 2@, + 2 mywy)= 0.

If finally A — A, is a factor of all the third minors, the two
equations 4 =0, B = 0 differ only by a constant factor. 1f B=0
is reduced to the sum of squares by referring it to any self-polar
tetrahedron, the equation of the pencil becomes

N2 + 2?4 xd +ad) — At @t fald+ 2f)=0.

Thus far it has been assumed that the A-disecriminant did notiden-
tically vanish. Now suppose |a, — Ab,,| =0 so that all the quad-
rics of the pencil are singular. By hypothesis they do not have
a common vertex. In the singular pencil two distinct composite
quadrics cannot exist, for, if 4=0, B=0 were composite, we
could choose A =2 z,x, B= 2z, since the quadrics of the pencil
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do not have a common vertex. But the A-discriminant of the
pencil 4 —AB=0 is not identically zero, contrary to hypothesis,
hence the pencil does not contain two distinet composite quadries.
The quadrics 4 =0, B=0 may therefore be chosen as cones.
Let the vertex of 4 =0 be taken as (0, 0, 0, 1) and the vertex of
B=0as (1,0, 0,0).

Let g, ¢' be generators of 4=0, B=0 which intersect, but
such that the tangent planes along each of them does not pass
through the vertex of the other cone. The plane g, g' can be
taken as @, = 0, the tangent plane to 4 =0 along g as #, =0, and
the tangent plane to B=0 along ¢' as #, = 0.

The equations of the singular quadrics 4 =0, B=0 are now of
the form

A= a4 2 a2, + 2 ay@ g + agvd =0,
B = by + 2 by + 2 by@ywy + by =0,

and the A-discriminant is

ay Az Qg 0

a, 0 0 — b
laik — Aby| = 12 2|

(UH] 0 g3 — Absy  — Abyy

0 — Ay — Ay — Aby,

Since this expression vanishes identically, the coefficient of each
power of A must be equal to zero. These conditions are a, =0,
by =0, by — bya; = 0. The last condition expresses that the
planes a0, + ;=0 and by, + byw; = 0 are coincident. By
transforming the equation of this plane to @, =0, the equation of
the pencil reduces to

2 w0, + ax? — M2 wpxy + 2t) = 0.

This case is called the singular case in four variables. The char-
acteristic will be denoted by the symbol [ {3} 1].

The determination of the invariant factors and the form of the
characteristic for each of the above pencils is left as an exercise
for the student. The properties of the curve of intersection will
be developed in Chapter XIII, but in each case the curve is
described in the following table for reference. The table includes
only those forms which do not have common double point.
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138. Forms of pencils of quadrics.

CHARACTER-
ISTIC

[1111]
[112]

(1]

(13]

[1(2D)]

[1(311)]

[22]

[2(11)]

[Anan]

SIMPLIFIED FOoRMS OF A AND B

A = Mo 4 A? + Ages® + A
B = + x4 x5 + 2/

A = Mag? 4 A® 4 2 Mgy + 5
B =g+ a?+ 25,

A= w4 Mg? 4 Ay(g 4 %)
B =2+ w2 +

A= N2 4 M2 g5 + ) 4 2 2y,
B =2 + 2 myws + 2

A=Az + M2 295 + ) + o
B =+ 2 wy0; + a)f

A=\ 4 Ao 4 2+ 2)F)
B =22+ x? + a4 )}

A= M(? + 22yw,) +
Ao (2?4 2 2y5)
B=u?+ a2+ 2 2,00, + 2 &,

A =M+ 2!+ ) + 2 Mgy
B=u224 22+ x}+ 2 xy,

A =02 4 2,2) + M0 + &%)
B=x?+ o} + xd + x
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CURVE OF INTERSECTION
oF A=0 AND B=0

A generalspace
quartic of the
first species.

A nodal quar-
tic.

Two conics
which intersect at
two distinet
points.

A cuspidal
quartic.

Two conics
which touch each
other.

A conic counted
twice. At each
point of this conic
the quadries are
tangent.

A generatorand
aspace cubic. The
generator and the
cubic intersect in
distinet points.

Two intersect-
ing generators,
and a conic which
intersects each
generator.  The
three points of in-
tersection are dis-
tinet.

Four generators
which intersect at
four points.
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CHARAC-
TERISTIC

[4]

[(22)]

[B1)]

[(211)]

[(A111)]

[§3§1]

LINEAR SYSTEMS

SIMPLIFIED ForMS OF
A aNp B

A= N2 vy + 2 2m,)
+ 2 wpy + 2

B=2uxx,+ 2w,

A=N2xx;+ 2 w,)+ 2 20,
B=2uxx, 4 2z,

A= M2+ 2f + 2 2ywy)
+ 2wy,
B=ux’+al+ 2w,

A= N2 v, + 2 a2, + 2,
B=2zx,+ 2z,

A=x (wlz + @, + st - :Ef)
B=o’4 2+ a4 2

A =2 zx, + ax;?
B =2 wyw, + g

EXERCISES

OF QUADRICS

[Crar. XL

CURVE OF INTERSECTION OF
A=0 AND B=0
A generator and a space
cubic. The generator
touches the cubie.

Three generators, one
counted twice. This
generator  intersects

each of the others.

Two intersecting gener-
ators and a conic
which touches the
plane of the generators
at their point of inter-
section.

Two intersecting gener-
ators each counted
twice. The quadrics
touch at each point of
each generator.

The quadrics coincide.

A conic and a generator
counted twice. The
vertices of the cones
all lie on this gen-
erator.

1. Derive the invariant factors of each of the above systems of quadrics.

2. Find the equatious of each conic and each rectilinear generator of in-

tersection of the quadrics of the above pencils.

3. Determine the invariant factors; find the equations of the curve of
intersection, and write the equations in the reduced form of the pencils
determined by

(@)

A=02— 2242232+ 2242 + Hx324 = 0,
DB =812 — 2% 4 232 — 8242 — 22720 — 22374 = 0.
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®) A =212+ 2% + 403% + 242 + 42129 + 0 20203 + 42103 = 0,

B =12+ 3ux32 + x4 + 22173 + 2023 = 0.

A=3$€12—3}22— 2%32 +2x42+ 2 2329 — 4.’!31.’1?3:0,
B=4x12—x22+2m32+3x42+2xlx2+2x114+4xax4=0.
A=8x2 + 2152 — 232 — 242 + 4 2120 — 203004 = 0,

B =322 — 2% — 232 — 242 + X1%5 — 20504 — 3 2904 — 3x1%4 = 0.

(0

(@

4. To what type does a pencil of concentric spheres belong ? A pencil of
tangent spheres ?

134. Line conjugate to a point. The equation of the polar
plane of a point (y) with respect to any quadric of the pencil (1) is

Sa, Y@, — AShy.x, = 0.

As X varies, this system defines a pencil of planes (Art. 24). The
axis of the pencil, namely the line

Eaiky{wk =0, Sbuyx=0 .
is said to be conjugate to the point (y) as to the pencil of quadrics.

Let (y) describe a line, two points of which are (y') and (y”).
It is required to find the locus of the conjugate line. Since

Yi=pys+pt’s 1=1,2,34
(Art. 95), the line conjugate to (¥) is, by definition,
mEay @ + 3y @ =0, m3byy @, + pe3yy” @, = 0.

As (y) describes the line joining (y) to (") the ratio w,: g, takes
all possible values. If between these equations g, :p, is elimi-
nated, the resulting equation defines the quadric surface

Ediky’ixlc Sy v, — Sagy” %, - Shyy e = 0. )

From the method of development it follows (Art. 119) that all the
lines of the system belong to one regulus (Art. 115).

The polar planes, with respect to a given quadric of the pencil,
of two fixed points (¥'), (¥’) on the given line intersect in the line

Sy — AShyy' @, =0, Sauy’ @, — A3byy” @, = 0.
If between these equations A is eliminated, the resulting equation

defines the same quadric (5). From Art. 115 it follows that this
second system of lines constitutes the other regulus on the surface.
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135. Equation of the pencil in plane coérdinates. Let 4 —AB=0
be the equation of a mnon-singular pencil of quadries. The
equation

Uy —Aby G —Aby a3 —Aby @ —Aby Y
Ay — Abyy gy — Abyy Qg3 — ADyy gy — Ay U2
Uy — Abyy Gy — Abyy g — Mgy gy — by, U3 =0 (6)
Qg — Ay Gy — Aby Qg — ADyy @y — Aby
Uy Uy U u, 0

expresses the condition that the section of a quadrie of the pencil
by a plane () is composite (Art. 106). For a given value A, of A,
(6) is the equation of the quadric 4 — B =0 in plane coordi-
nates, if it is non-singular. If A —X B=0is a cone, (6) is the
equation of its vertex counted twice. If 4 — X B =0 is composite,
(6) vanishes identically.

Equation (6) is called the equation of the pencil in plane cotr-
dinates. Arranged in powers of A, it is of the form

D, (u)AS + 3 W, (u)A? + 3 Wy(u)X + Pyp(u) = 0. )

If ®,(u)+ 0, the equation is of the third degree in A. When (7)
is not identically zero, it will be said to be a cubic in any case,
even if it has one or more infinite roots. Hence we have the fol-
lowing theorem:

TaroreM. Every plane intersects three distinct or coincident
quadrics of a non-singular pencil in composite conics.

The coefficient of each power of A in (7) is homogeneous and of
the second degree in wj, u,, s u, (if it is not identically zero), hence,
when equated to zero, it defines a quadric in plane cobrdinates.
Since the peneil is non-singular, we may, without loss of general-
ity, assume that the quadrics 4=0, and B=0 are non-singular
(Art. 128). The equation ®,(u)=0 is seen, by putting A= 0 in
(6), to be the equation of A=0 in plane coordinates. An analo-
gous statement holds for ®,(x) =0 and B= 0. The geometric
meaning of the other coefficients will be discussed later (Art.
149).
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EXERCISES
1. Write the equation in plane codrdinates of the pencil of quadrics
212 — 292 4 w32 + 3 4% — 6 2124 + 4 w0304 — N(2 X2ws + 212 + 292 + 232) = 0.
2. Determine the equations of the three quadrics of the pencil of Ex. 1
which touch the plane x; = 0.
3. Determine equation (7) for the pencil
a(2 212 + 2 2324) + 1% — N(2 x122 + 2 2524) = 0.

Show that (7) vanishes identically for each of the planes x1=0, 23 =0,
x4 = 0, and interpret the fact geometrically.

136. Bundle of quadrics. If A = Sa,xa, =0, B=3b,2,x,=0,
C = Sc,r,0, =0 are three given quadries which do not belong to
the same pencil, the system defined by the equation

MA 4+ MB+ A0 =0, (8)

in which A, A, A; are parameters, is called a bundle of quadries.
The three given quadrics 4= 0, B=0, C=0 intersect in at least
eight distinct or coincident points,* through each of which pass
all the quadrics of the bundle. These eight points cannot be
taken at random, for in order that a quadric shall pass through
eight given points, the codrdinates of each point must satisfy its
equation, thus giving rise to eight linear homogeneous equations
among the coefficients in the equation of the quadric. If the
eight given points are chosen arbitrarily, these eight equations are
independent and the system of quadrics determined by them is a
pencil. !

It is seen that seven given arbitrarily chosen points determine
a bundle of quadrics passing through them. Since all the quadries
of the bundle have at least one fixed eighth point in common, we
have the following theorem :

TueoreM 1. Al the quadiric surfaces which pass through seven
independent points in space pass through a fized eighth point.

* Three algebraic surfaces whose equations are of degrees m, n, p, respectively,
intersect in at least mnp distinct or coincident points. If they have more than
mnp points in common, then they have one or more curves in common. For a
proof of this theorem see Salmon: Lessons Introductory to Modern Higher
Algebra, Arts. 73, 78. We shall assume the truth of this theorem.
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These points are called eight associated points. If the coordi-
nates of any fixed arbitrarily chosen point (y) are substituted in
(8), the condition that (y) lies on the quadric furnishes one linear
relation among the A,. Hence through (y) pass all the quadrics
of a pencil and therefore a proper or composite quartic curve
lying on every quadric of the pencil. This quartic curve passes
through the eight associated points of the bundle.

If (y) is chosen on the line joining any two of the eight asso-
ciated points, every quadric of the pencil passing through it will
contain the whole line, since each quadric of the pencil contains
three points on the line (Art. 65, Th. IT). The residual intersec-
tion is a proper or composite cubic curve passing through the
other six of the associated points and cutting the given line in
two points.

137. Representation of the quadrics of a bundle by points of a
plane. Let A;, A, A; be regarded as the codrdinates of a point in a
plane, which we shall call the A-plane. To each point of the A-
plane corresponds a definite set of values of the ratios A, : A,: A, and
hence a definite quadric of the bundle (1) and conversely, so that
the quadries of the bundle and the points of the A-plane are in one
to one correspondence. To the points of any straight line in the
A-plane correspond the quadrics of a pencil contained in the bundle.
The line will be said to correspond to the pencil. Since any two
lines intersect in a point, it follows that any two pencils of quadrics
contained in the bundle have one quadrie in common.

138. Singular quadrics of the bundle. Those values of X;, Ay, A,
which satisfy the equation
[ A+ Agby, + A?Pekl =0 (9)
will define singular quadrics of the bundle. Unless special rela-
tions exist among the coefficients «, b, ¢, none of these cones
will be composite, for in that case all of the first minors of 9)
must vanish, thus giving rise to three independent conditions among
the A;, Ay, A;, which are not satisfied for arbitrary values of the
coefficients. It follows further that, under the same conditions, no
two cones contained in the bundle have the same vertex. For, if
K =0, L=0 were two cones having the same vertex, then every
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cone of the pencil M+ AL =10 would have this point for a ver-
tex. By choosing this point as vertex (0, 0, 0, 1) of the tetrahe-
dron of reference, the pencil could be expressed in terms of the
three variables z,, @,, . The discriminant of this pencil equated
to zero would be a cubic in A, : A, whose roots define composite
cones which were shown above not to exist for arbitrary values of
@iy Dty Cipe

It follows from (9) that the points in the A-plane determined by
values of A;, Ay, A; which define cones of the bundle of (8) lie on a
quartic curve C,. Every point of this curve defines a cone of the
bundle, and conversely. Each cone has a vertex, and it was just
shown that no two cones have the same vertex. 'We have therefore
the following theorem :

TuroreM. The vertices of the cones in a general bundle describe
a space curve J. The points of J are in one to one correspondence
with the points of the curve C, in the A-plane.

The four points in which any line in the A-plane intersects C,
correspond to the four singular quadrics of the pencil which cor-
responds to the line. If P is any point on the quartic curve, the
tangent line to C, at P defines a pencil of quadries in which one
singular quadric is counted twice; if the residual points of inter-
section of the tangent line and C, are distinet from each other and
from the point of contact, the characteristic of the pencil is [211].
All the quadrics of the pencil pass through the vertex of the cone
corresponding to the point of contact.

139, Intersection of the bundle by a plane. If the quadrics of
the bundle (8) are not all singular, the equation

Su S Siz Sy Y

Sz Sy Sz Sy Uy

Si3 S S Sy Ug|=0, 10)
Siy Sy S Sy Uy

o U uy u, 0

wherein s;, = \a;; + Ay, + Asciy, is called the equation of the
bundle in plane coordinates. If the codrdinates of a given plane
(u) are substantiated in (10), the resulting equation, if it does not
vanish identically, is homogeneous of degree three in \;, A,, A; and
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is consequently the equation of a cubic curve C;in the A-plane.
Equation (10) is the condition that the section of the quadric
(A1s Ay Xg) by the plane () shall be composite. Every such com-
posite eonie in the plane () has at least one double point. It will
now be shown that the locus of the point of tangency to () of the
quadrics of the bundle which are touched by (%) is a cubic curve.

The equation of any plane (u) may be reduced to z, =0 by a
suitable choice of codrdinates. Let A;, A, A; be any set of values
of A;, Ay A; which satisfy (10) when we have replaced w,, u,, u;, each,
by zero and u, by 1.

The section of the quadric A4+ X,B4AC=0 by the plane
x,=10 is a composite conic having at least one double point (y,, ¥,
Y1 0). The codrdinates of (y) must satisfy the relations

M S+ AZbads + A Seqy, =0, for i = 1,2, 3.
If from these three equations A, A, A; are eliminated, the result is
the equation of the locus of the point of contact (y). Sinece the re-
sulting equation is of degree three in the homogeneous variables

Y1, ¥a Y3, the locus is a cubic curve. It is called the Jacobian of
the net of conies in the given plane. ’

140. The vertex locus J. The order of a space curve is defined
as the number of its (real and imaginary) intersections with a
given plane.

‘We shall now prove the following theorem

THEOREM. The vertex locus J of a general bundle is of order six.

For, the condition that the vertex of a cone of the bundle lies
in a given plane (u) is that the corresponding point in the A-plane
lies on each of the curves (9) and (10). The theorem will follow
if it is shown that these curves have contact of just the first order
at each of the common points so that their twelve intersections
coincide in pairs.

Let the given plane be taken as @, = (0. The equation of a cone
of the bundle having its vertex in this plane can be reduced to

o + 2 4+ 22 =0,
and that of the bundle to the form
MA 4+ B + My(x? 4 2?4 2f) = 0.



Arts. 139-141] POLAR THEORY IN A BUNDLE 171

The point in the A-plane corresponding to the cone is (0, 0, 1).
It lies on C,(x) and on Cy(x). It is to be shown that Cy()), Ci(A)
have the same tangent at (0, 0, 1), but that they do not have con-
tact of higher than the first order. In (9) put cp=cy=1cyuy=1
and all the other ¢;, = 0, and develop in powers of A;. The re-
sult may be written in the form

4’11 ¢12 ¢11 ¢13
¢12 ¢22 4’13 ¢33
wherein ¢, = aud; + by = Py

Similarly in (10) put v, =u,=u;=0, uj=1, ¢, =0, and
develop in powers of A;. The result is

<ﬁll 4’12 ¢ll ¢l3
4)12 ¢22 ¢13 ¢33

These curves both pass through the point (0, 0, 1) and have the
same tangent a;A; + bA, = 0 at that point. By making the two
equations simultaneous, it is seen that they do not have contact
of order higher than the first unless

Pudu = P1dy

which is not satisfied unless particular relations exist among the
coefficients a,;, b;;.

$u bu

+ P Py

(@ + budo)As® +- [ +

})\32.}_ -_-0,

-+

‘A3+...=0.

(audy + b)) +- {

141. Polar theory in a bundle.

TrEOREM. The polar planes of a point (y) with regard to all the
quadrics of a bundle pass through a fixed point (y').

For, the polar plane of the point (y) with regard to a quadric
of the bundle A4 + AB 4 A,C = 0 has the equation
M3agay, + M3buxy, + AScuy, = 0.
For all values of A, A;, A; this plane passes through the point (y’)
of intersection of the three planes
Sagxy, =0, Zbyay, =0, Zeuxy, = 0. 11)
From the theorem that if the polar plane of () passes through

(¥'), then the polar plane of (y) passes through (y), it follows that
all the points in space are arranged in pairs of points (y), (%)
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conjugate as to every quadric of the bundle. Since the coordinates
Y1y Yo Yo Ya a0d ¥y, o5, o5, ¥y appear symmetrically in the equations

S0y =0, 30,y =0, S y.=0

defining the correspondence between (y) and (¥'), the correspond-
ence is called involutorial.

By solving the equations defining the correspondence for i,
Y’y ¥'s, ¥4 We obtain
Snye  S0yy,  Sagy,
b Zbyd by,
Soade  Soule Sl

and similar expressions for ¥/, ¥';, #/,. If we denote the second
members of the respective equations by ¢,(y), then replace both
y;and ¥; by @, and 2';, respectively, the equations defining the
involution may be written in the form

oy = (@), pr; = (). (12)

If (y) describes a plane Su; = 0, the equation of the locus of
(¥") may be obtained by eliminating the cocrdinates of (y) from
(11) and the equation Zu;y, = 0. The result is

[
o =

Uy Uy Uy Uy
Soym,  Sayw, Sayw,  Sayw, =0 (13)
Sbywy,  Shyw, 3Zhyw, Sy, ’

Seyd,  Seyd,  Soyw,  Seum,

Hence, if (y) describes a plane, (y") describes a cubic surface.
Similarly, if (y') describes a plane, (y) describes a cubic surface.

If (y') describes a line , the point (y) to which it corresponds
describes a curve of order three. For, corresponding to each
intersection of the locus of (y) with the plane Suu; =0 there is
a point of intersection of / and the cubic surface, image of the
plane. But ! intersects the surface (13) in three points, hence
Su,x, = 0 intersects the locus of (y) in three points; that is, the
locus is a curve of order three. Similarly, if (y) describes a
straight line, (') will describe a curve of order three.

The vertex locus J lies on the surface (13) for all positions
of the plane Sux,=0. For, let (y') be any point on J. Since
(¥ is the vertex of a cone belonging to the bundle, its polar plane
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with respect to this cone is indeterminate (Art. 121). Hence
there exists a set of values of A, A, Ay, not all zero, for which this
plane is indeterminate. It follows that the matrix

Soyx, S0y, a2, 3,
Shyx, 3byx, Zbyx, 2byw,
Seu®,  Bculy,  Scu®, eyl

is of rank at most two. Thus, in the equation of the cubic sur
face (13), the coefficient of each u, vanishes when the codrdinates
of any point J are substituted in it; hence the equation is satisfied
for all values of (u, u,, u;, u,).

Any two planes Sur; =0, Svw, =0 intersect in a line; their
image surfaces intersect in a composite curve of order nine, con51st-
ing of J and the cubic curve, image of the line. If the point (y)
is the vertex of a cone belonging to the bundle, the three polar
planes of (y) determined by (11) belong to a pencil. Let ! be the
axis of this pencil. Every point of the line I corresponds to (y)
in the correspondence (11), since it is involutorial.

As (y) describes J, its corresponding line I describes a ruled
surface R. The image of a cubic surface Su,¢, = 0 in the involu-
tion (12) is the plane Su;y,=0 and a residual surface of order
eight. As this residual surface is the locus of !, we conclude
that the ruled surface R is of order eight.

142, Some special bundles. While it would lead beyond the
scope of this book to give a complete classification of bundles of
quadrics, like that for pencils of quadrics as developed in
Arts. 131-133, still it is desirable to mention a few particular
cases. It was seen (Art. 138) that in the general bundle there
are no composite quadrics. But bundles containing composite
quadrics may be constructed ; for example, the bundle

MA 4 B+ Axx, =0

evidently contains the composite quadric wz,=0. If x, =0 inter-
sects the curve of intersection of 4 =0, B =0 in four points, and
if @, = 0 intersects it in four points, so that no component of the
curve lies in either plane x, = 0, 2, = 0, then these two sets of four
points constitute eight associated points.
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Every point of the line 2, =0, #,=0 is a vertex of a com-
posite cone of the bundle. The locus J consists of this line and
of a residual curve of order five. The image curve Cy(\) in the
A-plane has a double point corresponding to the composite quadrie,
as may be seen as follows. The equation of C,(\)=0 now has
the form

}\32952()\1; )‘a) s )\34’3(/\1; )\z) + 4’40\1; )\a) = 0)

in which ¢,, ¢;, ¢, do not contain A, Hence the point A, =0,
A, = 0 is a double point on Cy(A)=0; it corresponds to the quadric
@2, =0. The points of C\()\) are now in one to one correspond-
ence with the curve of order five, forming one part of ./, and the
double point is associated with the whole line o, =0, 2, =0.

Similarly, bundles of quadries may be constructed having eight
associated double points lying on two, three, four, five, or six
pairs of planes. In the last case the equation of the bundle may
be written in the form

M(2? — 2d) + M2 — 22)+ M(2? — 2,2) = 0.

The eight associated points are (1, +1, +1,1). The curve
J consists of the six edges of a tetrahedron and C,()) is composed
of the four sides of a quadrilateral. Its equation is

AlAQA.z(Al + Ae + A‘-’) = 0.

In this case the equations (12) of the involution (y), (y") have the
simple form
y’i‘:g’; i=1,2,34

in which o is constant.

Bundles of quadries exist having a common curve and one or
more distinet common points. The spheres through two fixed
points furnish an example.

EXERCISES
1. Show that (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0,0, 0, 1), (1,1, 1,1),
1,1, —1, =1, (1, =1, 1, —1), (1, =1, — 1, 1) are eight associated
points.
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2. Prove that if Pis a given point and I a given line through it, there
is one and only one quadric of the bundle to which  is tangent at P.

3. Determine the characteristic of the pencil of quadrics in a general
bundle corresponding to :

(a) A tangent to Cs(N).
(b) A double tangent to Cy(N).
(¢) An inflexional tangent to Cs(\).

4. What is the general condition under which C4(\) may have a double
point ?

5. Determine the nature of the bundle
A (212 — @ax3) + Ao (12 + 202 + 3% — 4 242) +Ng(21% — %32) = 0
and of the involution of corresponding points (¥), (¥')-

6. If three quadrics have a common self-polar tetrahedron, the twenty-four
tangent planes at their eight intersections all touch a quadric.

7. Write the equation of a bundle of quadrics passing through two given
skew lines and a given point.

8. If four of the eight common tangent planes of three quadrics meet in a
point, the other four all meet in a point.

9. Show that the cubic curve, image of an arbitrary line, intersects the
locus of vertices J in 8 points.

10. Show that the surface R of Art. 141 contains J as a threefold curve.

143. Webs of quadrics. If A =3a,2x,=0, B=3b,zx,=0,
C=3c,xx, =0, D=3d,xx, =0 are four quadrics not belonging
to the same bundle, the linear system

MA4+MNB+2C4+2D=0 (149)

is called a web of quadrics. Through any point in space pass all
the quadrics of a bundle belonging to the web, through any two .
independent points a pencil, and through any three independent
points, a single quadric of the web.

144, The Jacobian surface of a web. The polar planes of a
point (y) with regard to the quadries of a web form a linear system
M3 + A3y + A Yy + M3d@ Y, = 0. (15)

If the point (y) is chosen arbitrarily, this plane may, by giving A;,
Ay A; A, suitable values, be made to coincide with any plane in
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space, unless there are particular relations among the coefficients
@y Dy €ty Ay Thus an arbitrary plane is the polar plane of (y)
with regard to some quadric of the web. There exists a locus of
points (y) whose polar planes with regard to all the quadries of a
web pass through a fixed point (y'). This locus is called the
Jacobian of the web. Since the equations connecting (y) and (y")
are symmetrical, it follows that (y') also lies on the Jacobian. A
pair of points (y), (¥') such that all the polar planes of each pass
through the other are called conjugate points on the Jacobian.

To determine the equation of the Jacobian, we impose the con-
dition that the four polar planes of (y)

>y, =0, 3byuxy, =0, Scuxy, =0, 3d,zy,=0
pass through a point. The result is

Say:  3ayy;  3ayy; 3agy;
Shiy, by, Sbyy: Sy

i g1 v EY v EY =0. 16
Seyy;  Seay; Sy Seads (16)
Sdiy;  3dyy; 3dyy, 2dyy;

4=

The condition that a point (y) is the vertex of a cone contained
in the web is that its codrdinates satisfy the equations

NSy 4+ N3y + MSeuy; + A3d,y, =0, k=1, 2,3, 4 (17)

for some values of A, Ay, A3y A,
By eliminating A;, A, A5 A, We obtain equation (16). This gives
the theorem :

TreoreM. The Jacobian surface is the locus of the vertices of the
cones contained in the web of quadrics.

Now let (y) be a point whose polar planes not only pass through
a point but have a line / in common. At such a point (), not only
is K,= 0, but all the first minors of (16) are zero. Since equations
(17) are in this case not independent conditions on A;, Ay Ay A,
there exists at least a pencil of quadrics in the web which have (y)
for vertex. Three quadrics of this pencil are composite (Art. 131)
and their lines of vertices all pass through (). The polar planes
of the points of the line of vertices of any composite quadric of
the pencil have a point on ! in common. Since the polar planes of
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the points of ! pass through (y), the line / lies on K,=0. There
are as many lines { on K,= 0 as there are sets of values of A;, A,
As A that will make all the first minors of (16) vanish. In the
general web there are ten such sets.*

Three lines I pass through each point (y), and three points (y)
lie on each line /.

145. Correspondence with the planes of space. The polar plane
of a fixed poin (y) with regard to any quadric @ of the web will
be called the associated plane of () as to Q. When @ describes
a pencil, its associated plane will describe a pencil; when @ de-
seribes a bundle, its associated plane will describe a bundle.  The
quartic curve of intersection of two quadrics of the web corre-
sponds to the.line of intersection of their associated planes, and to
every set of eight associated points of a bundle of quadrics in the
web corresponds one point, the vertex of the bundle of associated
planes. Through any two points a straight line can be drawn,
hence through any two sets of eight associated points within the
web can be passed a pencil of quadries belonging tothe web. Since
through any three points a plane can be passed, it follows that a
quadric of the web can be found which passes through any three
sets of eight associated points in the web.

146. Web with six basis points. The maximum number of dis-
tinet basis points a web can have without having a basis curve is six.
Let 1, 2, 3, 4, 5, 6 designate the six basis points of a web having
six basis points. All the quadries of the web through an arbitrary
point P belong to a bundle, and hence have eight associated points
(Art. 136) in common, the eighth point P' being fixed when 1, 2,
3,4, 5,6 and Pare given. Between = (£¢) and P' = (¢') exists
a non-linear correspondence.

‘We shall now prove the following theorem:

TueoreM 1. In the case of @ web with six distinct basis points,
the Jacobian surface K, =0 is also the locus of points (§) such that

© =)

* Salmon: Lessons Introductory to Modern Higher Algebra, Lesson XIX.
The configuration of these lines on the Jacobian has been studied by Reye. See
Crelle’s Journal, Vol. 86 (1880).
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In order to prove this we shall prove the following theorems:

Turorem II. The quadrits of a bundle of the web which pass
through the vertex of a given cone of the web have, at this vertex, a
common tangent lire.

Tureorem III. Conversely, if all the quadrics of a bundle have
a common tangent line at a given point, a cone belonging to the
bundle has its vertex at the point.

To prove Theorem II, let the vertex of the given cone be
1, 0, 0, 0), so that its equation ('=0 does not contain z,. Let
A=0, B=0 be any two non-singular quadrics of the bundle
passing through the point, so that a,, =0, b, =0. The equation
of the tangent plane to the quadric A+ MB+XC=0 at
1, 0,0, 0) is

)\1(“12952 + Q325 + am%) + Az(buwz + by, + b14x4) =0.
But these planes all contain the line
gy + Ay + A%y = 0, byoty + byt + e, =0,

which proves the proposition.
To prove Theorem IIT, let @, = 0, #, = 0 be the equations of the
line, and (0, 0, 0, 1) the common point. We may then take

A =2 azw, + p(x), T, T3)= 0,
B =2 byax, + Py, 0y x5)=10,
C =2 c,@y + 2 cyt0y +f (1, @, 23)=0,

wherein ¢, y, f contain only ;, x,, ;.
In the bundle
MA+MB+20=0,

the quadric corresponding to A = — €0y Ay = — AysCasy Ay = Ayshyy
is a cone with vertex at (0, 0, 0, 1) since the equation of the quadric
does not contain =z,

Since at the vertex of every cone two associated points coin-
cide, and conversely, at every coincidence is the vertex of a cone,
the proposition of Theorem I follows.

The ten pairs of planes determined by the six basis points
1, 2, 3,4, 5, 6 taken in groups of three, as, for example, the pair
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of planes (123), (456), are composite quadries of the web. The
line of vertices of each pair lies on K;=0. The surface i,=0
also contains the fifteen lines joining the basis points by twos,
since through any point of such a line five lines can be drawn to
the six basis points, and a quadric cone of the web is fixed by
these five lines.

If the basis points are taken for vertices of the tetrahedron of
reference, the unit point, and the point (a,, a,, a;, a,), the equation
of K,=0 is found to be

a@Tex, X
A3 Xy®y Lo Gy

A3y Ly X3

o

gy Loy Ly Ay

This surface is known as the Weddle surface.*

If in (17) the values of y,, ,, ¥;, ¥, are eliminated, the resulting
equation A(A) =0 of degree four in the A; will define those values
for which the equation MA+AB4+AC+AD=0 is a cone of
the web. The vertex of this cone is a point &) =(€). Let a, A,
Ay Ay be considered as the tetrahedral cosérdinates of a plane. To
each plane (A) corresponds a quadric of the web (14) and con-
versely. A linear equation with given coefficients al, + b, +
¢A;+dA, =0 determines a point in the A-space (Art. 91). By
making this equation and (14) simultaneous, we define a bundle
whose basis points are the points () whose cobrdinates satisfy
the equations

==

Of the eight associated points so determined, the given points
1,2,3,4,5, 6 are six. Either of the remaining points P = (¢),
P'=(¢') will uniquely determine the other and also uniquely
determine the point (a, b, ¢, d) in the A-space. The equation
aX; + X + ¢y 4 dX = 0 thus defines a one to two correspondence
between the points of the A-space and the points P and P. For

* First discussed in the Cambridge and Dublin Mathematical Journal, Vol. 5
(1850), p. 69.
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points of XK, P and P’ coincide. The locus of the corresponding
point (a, b, ¢, d) is called the Kummer surface.*
We have thus proved the following theorem :

Tueorem IV. The points of the Weddle surface and the points
of the Kummer surface are in one to one correspondence.

EXERCISES

1. Show that all the quadries having a common self-polar tetrahedron
form a web.

2. Determine the Jacobian of the web of Ex. 1.

3. Determine under what conditions the Jacobian of a web will have a
plane as component.

4. Find the Jacobian of the web defined by the spheres passing through
the originz =0, y =0, 2 =0.

5. Show that the Jacobian of a web having two basis lines is inde-
terminate.

6. Discuss the involution of conjugate points (y), (¥') for the web of
Ex. 4.

7. Show that the spheres cutting a given sphere orthogonally define a
web.

8. Show that the equation of the quadric determined by the lines joining
the points (1, 0, 0, 0), (a1, as, as, as); (0, 1,0, 0), (0,0, 1,0); (1,1, 1, 1),
©,0,0,1) is

xaxy (a2 — a3) + (@sits — @ox3) + x1(@423 — as2)=0.

147. Linear systems of rank 7. The linear system of quadries

M+ MFy 4 oo+ NF, =0, (19)
wherein
Fi = Za, Wz, Jj=1,2,...1

is said to be of rank 7, if the matrix

1 1 1
an(l) a22( ) aax( g (134( )
an(2) a22(2) a33(2) e (L34(2)

o« e e e e . (20)
Ay an®  ag® e ag®

* First discussed by E. E. Kummer in the Monatsberichte der k. preussischen
Akademie der Wissenschaften, Berlin, 1863.
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is of rank , that is, if there does not exist a set of values of A,,
A5y ++y A, not all zero, such that the expression

A1F11-l_A"2512-*—'"'i_Av,-er

is identically zero. All the quadrics in space form a linear sys-
tem of rank ten, since the equation of any quadric may be ex-
pressed 1inearly in terms of the ten quadries, @2 @, ..., 2,0, for
which the matrix (20) is of rank ten.

All the quadries in space whose coefficients satisfy 10 —r
independent homogeneous linear equations form a linear system
of rank . For, if Sb,xa, =0 is the equation of any quadric
whose coefficients satisfy the given conditions, then all the co-
efficients b,, can be expressed linearly in terms of the coefficients
of  quadrics belonging to the system. Thus

ba= Maqk(l) + )\za;km + o+ Araik(r)? i k= 1, 2, 3; 4, (21)

sitoron Sa,Vex, =0, -+, Za;Yvx,=0
are fixed quadrics belonging to the system.

Conversely, 10 —r independent homogeneous linear conditions
may be found which are satisfied by the coefficients in the equa-
tions of the quadrics F, =0, F, =0, -, F, =0, and consequently
by the coefficients in the equations of all the quadries of the
linear system (19) of rank 7.

148. Linear systems of rank 7 in plane codrdinates. The system

of quadrics V
NP 4 APy A+ + 2,2, =0,

wherein ®, = 38,,®uu,, is called a linear system of rank » in
plane cobrdinates if there does not exist a set of values A,
Ay, +, A, for which the given equation is satisfied identically.
These systems may be discussed in the same manner as that
considered in the preceding article.

149. Apolarity. Let F=Sa,xx, =0 be the equation of a
quadrie in point codrdinates and ® = S8, u;u, = 0 be the equation
of a quadric in plane codrdinates. If the equation

S = auBu + U + 5By + tayBuy + 2 apBri+ 2 apfis + 2 a1Bs
+ 2 ayBn + 2 a4B9s + 2 a3y =0 (22)
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is satisfied by the coefficients in the equations of the two quadrics,
F =0 is said to be apolar to =0, and &= 0 is said to be apolar
to F=0. It should be noticed that in this definition the equa-
tion F=0 is given in point codrdinates, and that of & =0 in
plane coordinates. It should also be noticed that if F=0 and
®=0 are two given apolar quadrics, and if Se,uu, =0 is the
equation of F'=0 in plane codrdinates, and Sb,xx, =0 is the
equation of ® = 0 in point cosrdinates, then it does not necessarily
follow that Sw,b,, = 0 because 3a,,8;, =O0.

In order to show the significance of the condition (22) of
apolarity, we shall prove the following theorem :

TrEOREM L. The expression a,B;, is a relative invariant.
Let the codrdinates of space be subjected to the linear trans-
formation
;= o'y + 0@’y 4 @'y + i@’y 1=1,2,3,4

of determinant 7'=0. The codrdinates of the planes of space
undergo the transformation (Art. 97)

ug= A’y + Ay + Ay + A0y, =1, 2, 3, 4.
The equation F(x)= 0 goes into Za',2'x', =0,

wherein (Art. 104)
W' = 30 0 0

and ® =0 is transformed in 38,4« =0, wherein
Bi = 32, 8im i A e
The proof of the theorem consists in showing (Art. 104) that
Sa' B = T Sa,B:
In the first member, replace a';, B8, by their values from the

above equations, and collect the coefficients of any term a,,8,, in
the result. We find

334, - a4, = S A, - Syt Ay = T7,
3a'y 8 = T*3a,8,,
which proves the proposition.

The vanishing of this relative invariant may be interpreted
geometrically by means of the following theorem :

hence
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Tueorem II. If F=0,® = 0 are apolar quadrics, there exists
a tetrahedron self-polar as to ® = 0 and inscribed in F = 0.

This theorem should be replaced by others in the following
exceptional cases in which no such tetrahedron exists.

() If FF=0 is a plane counted twice. In this case (22)
is the condition that the coordinates in this plane satisfy
& =0.

(b) If ® =0 is the equation of the tangent planes to a proper
conic C and if F =0 intersects the plane of C=10 in a line
counted twice, (22) is the condition that this line touches C.

We shall consider first the special cases () and (b).

Let F = (uy, + ugty + usivy + w,0,)%

Then a,, = u,u, and (22) reduces at once to ® = 0.

In case (b), let the plane of C be taken as x, = 0 and the line
of intersection of F = 0 with x, = 0 be taken as x; = 2, = 0.
Then

@ = Buus® + Butts® + Bisits® + 2 Puttyits + 2 Bty + 2 Byugu, =0,
and F= ayz,® + 2 a2, + 2 ap@y + 2 a5, + 2 g = 0,

where a;, = 0. Hence (22) reduces to B, = 0, that is, to the con-
dition that x; = @, = 0 touches C.

To prove Theorem II, excluding cases (a) and (b), we must
consider various cases. First suppose ® =0 is non-singular.
Choose a point P, on F'= 0, not on the intersection F = 0, ® = 0,
and find its polar plane = as to ®=0. In  take a point P, on
F =0, not on ® =0, and find its polar plane =, as to ® =0. On
the line mm, choose a point P; on F =0, not on & = 0, and find
its polar plane =3 If the point of intersection of my, m,, = is
called P, then P,P,P,P, = mmymryr, is taken for the tetrahedron
of reference; we may, by proper choice of the unit plane, reduce
the equation of ® = 0 to u,? + u’ + u? + u,2 = 0. Equation (22)
now has the form a, + ay, + a3 + a,, = 0. Since three of the
vertices P, P,, P; were chosen on F = 0, three coefficients a,; = 0,
hence the fourth must also vanish, which proves the proposition
for this case.

It should be observed that if F =0, ® =0 define the same

afd
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quadric, equation (22) cannot be satisfied since their equations
may be reduced simultaneously to

F=a+ 2!+ 2 +22=0, D = u? 4 u? fu? 4 u,2=0.

Now let ® =0 be the equation of the tangent planes to a

proper conic ¢c. Take the plane of O as x, = 0, so that
Bis = Bo = Bs = Bu = 0.

If F=0 is composite and @, is one component, equation (22)
is identically satisfied. In this case we may take three vertices
of a triangle in x, = 0 self-polar as to the conic C and any point
on F'=0 not on &, = 0 as vertices of a tetrahedron self-polar to
® =0 and inseribed in F’=0. If F=0 consists of z, =0
counted twice, (22) expresses the condition that the plane
belongs to ® = 0, whether ® = 0 is singular or not. This is the
exceptional case (a).

If #, = 0 is not a component of F' = 0, (22) has the form

aufu + WBas + 5aBas + 2 Ao + 2 3Bz + 2 AnyByy = 0,

which is the condition that the section (' of F = 0 by the plane
2, = 0 is apolar to C.

It follows by the theorem for apolar conics analogous to
Theorem II that a triangle exists which is inscribed in €' and is
self-polar to C. A tetrahedron having the vertices of this tri-
angle for three of its vertices and a fourth vertex on F = 0 but
not on @, =0 satisfies the condition of the theorem (dual of
Th. I, Art. 121).

If ® = 0 is the equation of two distinet points, (22) expresses
the condition that these points are conjugate as to F = 0. This
is also the condition that a tetrahedron exists which is inseribed
in =0 and is self-polar to ® =0. If & =0 is the equation of
a point counted twice, (22) expresses that the point lies on
F=0. Thisis the dual of the exceptional case (a).

In each of the above cases, the tetrahedron which satisfies the
conditions of the theorem can be chosen in an infinite number of
ways, hence we have the following theorem.

TureoreM III. If one tetrakedron exists which is inscribed in
F =0 and is self-polar as to &= 0, then an infinite number of such
tetrahedra exist.
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By duality we have the following theorems:

TaeoreM IV. If F =0, ® = 0 are apolar quadrics, there exists
a tetrahedron self-polar as to F = 0 and circumscribed to & = 0.

TuareoreM V. If one tetrahedron exists which is circumscribed to
® = 0 and s self-polar asto F' = 0, then an infinite number of such
tetrahedra exist.

Moreover, both the exceptional cases of Theorem II have an
immediate dual interpretation; they will not be considered further.

With the aid of these results we can now give an interpretation
to the vanishing of the coefficients ® and ®' of equation (3), Art.
124, and of ¥,(u), ¥,(u) of equation (7), Art.135. If B=0in (1)
is non-singular, let its equation in plane coordinates be %8;u,u,=0.
Since B, is the first minor of b, in the discriminant of B =0, it
follows at once from equation (3) that ® = 3a,,8,,, Hence ® =0
is the condition that 4 = 0 is apolar to B=0. If B = 0is a cone,
it is similarly seen that ® = 0 is the condition that the vertex of
the cone B=10lieson 4 =0. If B=0is composite, ® is iden-
tically zero, independently of A, since the diseriminant of B=0
is of rank two, hence all the coefficients S3;, vanish. An analogous
discussion holds for ® = 0.

The surface ¥,(z) = 0 (Art. 135) may be defined as the envelope
of a plane which intersects 4 =0 in a conic which is apolar to
the conic in which it intersects B = 0. For particular singular
quadries this definition will not always apply.

Let an arbitrary plane of ¥,(v) =0 be taken as x; = 0. It fol-
lows from equation (7) that

l 031 bsb3y I + l b11Gasbss l + | b1 basthss | =0. (23)

Let the sections of 4 =0, B=0 by z, =0 be C, ", respectively.
If ¢ is not composite, it is seen by writing the equation of ¢’ in
line cobrdinates that (23) is the condition that C is apolar to C'.
If ' is a pair of distinet lines, (23) is the condition that their
point of intersection lies on €. If (’ isa line counted twice, (23)
is satistied identically for all values of a,,, since all the first minors
of the discriminant of ¢ vanish.
An analogous discussion holds for ¥,(u) = 0.
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150. Linear systems of apolar quadrics. Since equation (22) is
linear in the coeflicients of F = 0, from Art. 147 we may state the
following theorem :

Tureorem 1. Al the quadrics apolar to a given quadric Jorm a
linear system of rank nine.

Conversely, since the coefficients of the equations of all the
quadrics of a linear system of rank nine satisfy a linear condition
which may be written in the form of equation (27), we have the
further theorem :

Turorem 11, All the quadrics of any linear system of rank nine
are apolar to a fixed quadric.

From the condition that a plane counted twice is apolar to a
quadrie (Art. 149), it follows that this fixed quadric is the envelope
of the double planes of the given linear system.

If a quadric F = 0 is apolar to each of » quadrics

O, =3B, =0, & = 38,Puu, =0,...,
®, = 36, "uw, =0,

the coefficients in its equation satisfy the r conditions

Sau B =0, ZuuB,» =0, .-, (24)

SauBu" = 0.
It follows that if a quadric is apolar to each of the given quadrics,
it is apolar to all the quadrics of the linear system
MNP 4+ APy + or XD, = 0.

The conditions that this linear system is of rank » are equivalent
to the conditions that the corresponding equations (24) are inde-
dendent. Hence:

Tueorem III. Al the quadrics apolar to the quadrics of a linear
system of rank rin plane covrdinates form a linear system of rank
10 — r in point covrdinates and dually.

EXERCISES

1. Find the equation of the quadric in plane codrdinates to which all the
quadrics through a point are apolar.
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2. How many double planes are there in a general linear system of rank
seven in point codrdinates ?

3. Show that all the pairs of points in a linear system of rank six in plane
coordinates lie on a quadric surface.

4. Show that all the spheres in space form a linear system and find its
rank.

5. Find the system apolar to the system in Ex. 5.

6. Show that a system of confocal quadries (Art. 84) is a linear system of
rank two in plane coordinates. Determine the characteristic and the singular
quadrics of the system (Art. 133).

7. Show that, if the matrix (20) is of rank ¢/ < r, the system of quadrics
(19) is a linear system of rank 7/,



CHAPTER XII

TRANSFORMATIONS OF SPACE

151. Projective metric. In order to characterize a transfor-
mation of motion, either translation, or rotation, or both, or a trans-
formation involving motion and reflection, as a special case of a
projective transformation, it will first be shown under what cir-
cumstances orthogonality is preserved when a new system of
codrdinates is chosen.

If the new axes can be obtained from the old ones by motion
and reflection, the plane ¢ = 0 must evidently remain fixed, and
the expression a? + y* 4 2% which defines the square of the dis-
tance from the point (0, 0, 0, 1) to the point (z, y, 2, 1), must be
transformed into itself or into (v — af)®+ (y — bt)*+ (z — ct)?,
according as the point (0,0, 0, 1) remains fixed or is transformed
into the point (a,b,¢,1). Tt will be shown that, conversely, any
linear transformation having this property is a motion or a motion
and a reflection.

152. Pole and polar as to the absolute. e shall first point out
the following relation between the direction cosines of a line and the
coordinates of the point in which it pierces the plane at infinity.

TareorEM 1. The homogeneous codrdinates of the point in which
a line meets the plane at infinity are proportional to the direction
cosines of the line.
The equations of a line through the given finite point (a4, ¥q, %, &)
and having the direction cosines (A, u, v) are
Lo — ot _ boyy — Yol __ Loz — 2t )
A o v .
The point (x, ¥, 2, 0) in which the line pierces the plane at infinity is
given by the equations

e _ by _ ez
A p v’

from which the theorem follows.

188
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We shall now establish the following theorems concerning poles
and polars as to the absolute.

Turorem II. The necessary and sufficient condition that a plane
and a line are perpendicular is that the line at infinity in the plane is
the polar of the point at infinity on the line as to the absolute.

The absolute was defined (Art.49) as the imaginary circle in the
plane at infinity defined by the equations
P +22=0, t=0. 2
The polar line as to the absolute of the point (, u, v 0) in which
the line (1) intersects the plane at infinity is

e 4 py+v2=0, t=0. 3)
The equation of any plane through this line is of the form
w4 py + vz + kt =0. (4)

These planes are all perpendicular to the line (1). Conversely,
the equation of any plane perpendicular to the line (1) is of the
form (4); the plane will therefore intersect the plane at infinity
in the line (3).

Turorem 1II.  The necessary and sufficient condition that two
lines are perpendicular is that their points at infinity are conjugate
as to the absolute.

The condition that two lines are perpendicular is that each lies
in a plane perpendicular to the other, that is, that each intersects
the polar line of the point at infinity on the other as to the absolute.

Finally, since two planes are perpendicular if each contains a
line perpendicular to the other, we have the following theorem :

TuroreM 1V. The necessary and suffictent condition that two
planes are perpendicular is that their lines at infinity are conjugate
as to the absolute.

A tangent plane to the absolute is conjugate to any plane pass-
ing through the point of contact; in particular, it is conjugate to
itself. It should be observed that the equation of a tangent plane
to the absolute cannot be reduced to the normal form, hence we
cannot speak of the direction cosines of such a plane.
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Consider the pencil of planes passing through any real line.
We may choose two perpendicular planes of the pencil as =0,
¥ =0, and write the equation of any other plane of the pencil in
the form

Y =mex.
The equations of the two tangent planes to the absolute which
pass through this line are y =iz and y=—1ix. By using the
usual formula to obtain the tangent of the angle ¢ between y =i
and y = ma, we obtain
m—i__ m—i 1

==

14+ 1'7n_1’(m—~ 7) y;

tan ¢ =

independent of m. For this reason tangent planes to the absolute

are called isotropic planes. The cone having its vertex at (a, b, ¢)

and passing through the absolute has an equation of the form
(@—a)+ @ -0+ (z—cy=0.

If we employ the formula of Art. 4 for the distance between
two points, we see that the distance of any point of the cone from
the vertex is equal to zero. For this reason the cone is called a
minimal cone. Moreover, if P, and P, are any two points on the
same generator, since

VP, — VP = PP,
we conclude that the distance between any two points on any line
that intersects the absolute is zero. For this reason these lines
are called minimal lines. They have no direction cosines (Art. 3).

153. Equations of motion. Let an arbitrary point P be referred
to a rectangular system of cotrdinates z, ¥, z, ¢ and to a tetrahe-
dral system a;, @, @, x,, with the restriction that xy,=0 is the equa-
tion of the plane at infinity t=0. The equations connecting the
two systems of codrdinates are

ox = A2, + Nz, + 'z, + ha,,

oY = pay + p'w, + p''wy N2y, )
02 = v, + v'e, + v''v; + bz,
ot =,

Divide the first three equations of (5) by the last, member by

member, and replace the non-homogeneous codrdinates %, ete., by



ArTs. 153, 154) PROJECTIVE TRANSFORMATIONS 191

x', y', 2 and of‘—, ete., by 2/}, #'5, 2. If P is any point not in the
s Yo P » DY VA Y
4

plane at infinity, we shall pl'ox}e the following theorem :
[ ]

TreoreM 1. The most general linear transformations of the form
(5) that will transform the expression
2% 4 y't 4 2" into @2+ @' + a?
are the rotations and reflections about the point a' =0, y' =0,
2 =0.
If we substitute the values of =z, y', 2' in the expression
@' 4+ y'* 4 2", we obtain
(/\.'z:’, + )\’x'z + }\”.’12'3 + 7L)2 + (lel + p.':v'g + I"”w’3+ h7)2
+ (va'y + V2l + v’y + A%
If this is equal to 2',2 + «',2 + '@ for all finite values of ', @,
@', we have the following relations
)\2+;L2+V2= PN + /"'2 + V2= A2 + #!!2_’_ A 1,
A,)\.' + ’L,U.’ + V'V’ = A'A’H + ,"Ilu‘” + V'V” = }\”A + l"”l'l‘ + V”V = O, (6)
BA + R+ k' =0, AN + W' + B =0, AN + A'p! + R'"V'= 0.
Since the determinant |Au'»"| is not zero, it follows that
h=h=h"=0. The formulas (6) which do not contain %, %',
L' are exactly the relations among the coefficients to define a
rotation or a rotation and reflection about the origin (Art. 37).

This proves the proposition.
By similar reasoning we may prove the theorem:

Taeorem II.  Transformations that will transform
& 4y 4 22 into () — @) + (@', — b)? + (&3 — ©)*

consist of motion or of motion and reflection.

154, Classification of projective transformations. The equations
of any projective transformation (Art. 98) are of the form
ka'y =y + 4y 4 Gy + Gy,
ka'y = 0y @y -+ Gopy + Qogls + Aoy
ka'y = ay@, 4 gty + 050 + Ay
ka'y = ag®) + @y + Gy + Ayl

)
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We shall now consider the problem of classifying the existing
types of such transformations and of reducing their equations to
the simplest form.

The invariant points of the transformation (7) are determined
by those values of k which satisfy the equation

ay — k (1) Q3 Qg
D(k) - Ay ay — k (179 gy -0 ®)
225 Uso Uy — K 3y
Ay Ay gy gy — k

The classification will depend fundamentally on the invariant
factors (Art. 125) of this determinant.

In equation (7), (x) and (2') are regarded as different points,
referred to the same system of coérdinates. In order to simplify
the equations, we shall refer both points to a new system of
coordinates. To do this both () and («') are to be operated upon
by the same transformation

@; = 2Pyl @'; = 3paye
We shall use the symbols (x), () to indicate coordinates of the
same point, referred to two different systems of coordinates, while
equations between (2) and (') or between (y) and (y') will define
a projective transformation between two different points, referred

to the same system of codrdinates.
Let %, be a root of D (k) =0. The four equations

(ay — k), + ayity + a2 + ayw, = 0,

gy, + (Ol — Fy) @ + gy + Ay, = 0,

U@y + Ay + (A — ky)ay + ageey = 0,

Ug®, + gy + Ayl + (A — )2y =0
are therefore consistent and determine at least one point invariant
under the transformation.

Let 3B, =0 (=23 4)
k=1

be the equations of three planes passing through this invariant
point but not belonging to the same pencil, and let

4
20y, =0
k=1
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be the equation of any plane not passing through the invariant
point. If now we put

Yi = 2Pudy, i=1,234,
and solve the equations for the z;,
4
@, = Sy, and put also @'; = Sy,
k=1
then substitute these values in the members of (7), the new equa-

tions, when solved for y';, will be of the form

¥'y =k + by + bugys + Dl

Y= bontfs + basts + boslfss
Y= b3lfs + bssYs + bagfe
Y= bagys + bis¥s + bagls

Without changing the vertex (1,0, 0, 0), the planes y, =0, y, =0,
7,=0 may be replaced by others by repeating this same process
on the last three equations; in this way we may replace the
coefficients by, by, by 0; by a further application to the variables
5 Y4 we may replace b by O.

Referred to the system of coordinates just found, the equations
of the projective transformation (7) are

x'| = k@) + €197 +- €153 4 €147y
To= Coay + Cog®3 + Cossy 9
: ©)

L'y = C3303 + C34%4,

Ty= Cy4®yy

in which ¢y, ¢, ¢y are all roots of D (k)= 0.

Equations (9) represent the form to which the equations of any
projective transformation may be reduced. The further simplifi-
cation depends upon the values of the coefficients, that is, upon
the characteristic (Art. 127) of D (k).

If ¢,, % 0 and ¢ # ¢y, make the further transformation

_ - — C34Y4
B=Yy =Yy B=Y+——; Ty=1Y,

Cyy — Cg3

On making this substitution we reduce the equations of (9) to a
form in which the coefficient ¢, is replaced by zero.
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In any case, if i <% and c;; # ¢;, we may always remove the
term ¢;, by replacing «; by x, + —%*  in both members of the
Crk — Cig
equation. If ¢; =¢, and ¢, 0, by a change of unit point, c,
may be replaced by unity; thus, if ¢; = ¢y and ¢y = 0, by writing
€34, = Y5 We obtain the equations

Ys=culs + U .

Y= Ca3lsr
These two types of transformations will reduce the equations to
their simplest form in every case in which D (%)= 0 has no root
of multiplicity greater than two.

If D(k)=0 has one simple root k, and a triple rcot k,, the pre-

ceding method can be applied to reduce the equations of the
transformation to

@'y =k,

aly= kg, 4 g5y + g4y,
oy = Fe,y 4+ a3y,
(c' 4= k2x4.

In case a, =0, the preceding method can be applied again; thus,
if @y % 0, ay = 0, each may be replaced by unity; if coefficients
Qlysy Gy (5 aTe zero, the transformation is already expressed in its
simplest form. 1f a, =0, either or both of the coefficients ay,
and @y, if not zero, may be replaced by unity by a transformation
of the type just discussed.

If a, =+ 0, a,, = 0, replace z, by the substitution

Aogll3
Ly=1Yy+ —
Q34

In the transformed equation, the new a,, is zero. In the same
way, if ay # 0, az, = 0, but ay, = 0, put

“04?/4

=Ys—
“23

and the same result will be accomplished. Finally, if a, 0,
but ay =0, a,; =0, put

=, C=Y, TB=Yy =Y (10)
in both members of the equation. Now a, = 0, and the complete
reduction can be made as before.
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If D(%)=0 has a fourfold root k,, equations (9) reduce to

)
x'y =k, + 0,5%y + A3 + A2,

1
&Ly = ey, 4 ogs 4 oy,
x'y = ks 4+ az,,
]
A = ke,

By transformations analogous to those in the preceding case, the
coefficients a,, a,, and a,, may be reduced to zero, and the coeffi-
cients a,,, @y, and ay to zero or to unity.

This completes the problem of reduction. The determination
of the locus of the invariant points and the characteristic of D(k)
in the various cases is left as an exercise for the student. The re-
sults are collected in the following table.

155. Standard forms of equations of projective transformations.

CHARACTERISTIO Equarions Locus oF INVARIANT PoINTS
111 = !y = . .
8 Z,l _ klil’ 2,2 B 7752(9:2 Four distinet points.
3= 3 4 — gt
[112] o) =k, oy = kyt, Two distinet, two co-
&=k, +w, @ =k, incident points.
[11an] o\ =ka, @y = ky, Two distinet points
=l o =k, and a line.
[13] o = kay, @'y =k, +x, One distinct, three
@y =k, 4wy, @, =k, coincident points.
— o
[121)] 2:1 : ’721217-*_ . i/z = 7]?22 A point and a line.
3= fiply 4 4 = gy
N o
0| 2,‘ B Z‘z" 2,2 - Zzzz A point and a plane.
1= sy 2leSlivosty
[22] =k +xy, =k, Two pairs of coinei-
2y =koxy -y &=y, dent points,
P
[2(11)] oy =k, =k, Two coincident points
@ g = ks, oy =k, and a line.
1)1 = =
[ADAL)] z,l _ Z’zl’ ::2 _ k‘z” Two lines.
78— 2y 4 — 224
4 =k =
[4] i=katay, &=kE&+2 pocincident points.

. ; :
ofy=kws+w, o,=ka,
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CHARACTERISTIC EQUATIONS Locus oF INVARIANT PoINTS
[(22)] o =k w, =k, A line
oy = ks +x,, o, =k, ’
[(23)] ¥y =k, @'y = Ky, + @, 7 B
Y=k, +x, ¥,= Feyr,
112 .'B’ =k CL" = (5
(A12)] 1= 0y 2= Nty A plane.

¥y =kw,+ o, 2, =ka,
All points of space;

1 Ng— gy 9 Q
(@ 11)] ¥y =k, m’2 kv the identical trans-
'y = Ry, ¥y = kg formation.
EXERCISES

1. In type [1111] obtain the necessary and sufficient condition that the
transformation obtained by applying the given transformation p times is the
identity.

2. In [1(111)] show that the line joining any point P to its image P’
always passes through the invariant point.

3. In Ex. 2, let O be the invariant poiﬁt, and let a line PP intersect
the invariant plane in . Show that the cross ratio of OMPP’ is constant.
This transformation is called perspectivity, If the points OMPP' are har-
monic, it is called central involution.

4. In [(11)(11)] show that the line joining any point P to its image P’
meets both invariant lines, and that the cross ratio of P, P! and these points
of intersection is constant.

5. Discuss the duals of the types of transformations of Art. 155.

156. Birational transformations. DBesides the projective trans-
formations, we have already met (Arts. 141, 146) with certain
non-linear transformations in which corresponding to an arbitrary
point (x) is a definite point (2/) and conversely. These are all
particular illustrations of a class of transformations which will
now be considered.

Let
= b(m, Ty 2y 2,), 1=1,2,34 (11)

be four rational integral functions of x;, @,, 23, 2, all of the same
degree. When w,, 2, x;, x, are given, the values of &', ¥, /5, /,
are uniquely determined, hence corresponding to a point () is a
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definite point («). If the equations (11) can be solved rationally
for z,, @,, @, @, in terms of &'y, o'y, 'y, @/,

@, = (@ @y &gy &), =1, 2,3, 4, 12)

in which all the functions y; are of the same degree, then to a
point (@) also corresponds a definite point (x). In this case the
transformation defined by (11) is called birational; that defined by
(12) is called the inverse of that defined by (11).

When the point (2') deseribes the plane Su'@'; =0, the corre-
sponding point (#) describes the surface

'y (%) 4 w'sa(@) + wshy(2) + ' spy(2) = 0. (13)

This surface will be said to correspond to the plane (v'). If the
u'; are thought of as parameters, we may say: corresponding to all
the planes of space are the surfaces of a web defined by (13).
In the same way it is seen that, corresponding to the planes
Su;x; =0 of the system (), are the surfaces of the web

w (@") + uspy(@') + usy () + (@) = 0. (14)

Three planes (u’) which do not belong to a pencil have one and
only one point in common, hence three surfaces of the web (13),
which do not belong to a pencil, determine a unique point (x)
common to them all, whose coordinates are funections of the coor-
dinates of (u').

This fact shows that in the case of non-linear transformations
the web defined by (13) cannot be a linear combination of arbi-
trary surfaces of given degree. For if the ¢, are non-linear, any
three of them intersect in more than one point, but it was just
seen that of the points of intersection there is just one point
whose coérdinates depend upon the particular surfaces of the web
chosen. The remaining intersections are common to all the sur-
faces of the web. They are called the fundamental points of the
system () in the tranformation (11). When the codrdinates of a
fundamental point are substituted in (9), the coordinates of the
corresponding point (2') all vanish. For the fundamental points
the correspondence is not one toone. The fundamental points of
(#') are the common basis points of the surfaces y,(2") = 0.
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157. Quadratic transformations. We have seen (Art. 98) that
if the ¢, are linear functions, the transformation (11) is projective,
and that no point is common to all four planes ¢,(z) =0. The
simplest non-linear transformations are those in which the ¢, are
quadratic. We shall consider the case in which all the quadries
of the web have a conie ¢ in common.

Let the equations of the given conic be

Eu,.wl = 0, f(x) =0.
Any quadric of the system
Su @ (M@, + My + Ay + A2y) + A /(@) =0

will pass through this conic. Among the quadries of this system
those passing through an arbitrary point P define a web. Any
two quadrics If; =0, H,=0 of this web intersect in a space
curve consisting of the conie ¢ and a second conic ¢’ which passes
through P. The planes of ¢ and of ¢' constitute a composite
quadric belonging to the pencil determined by H, =0 and H,=0,
and the conics ¢, ¢’ lie on every quadric of the pencil. Hence ¢, ¢'
intersect in two points, as otherwise the line of intersection of the
two planes would have at least three points on every quadric of
the pencil, which is impossible.

Any third quadric H;=0 of the web but not of the pencil
determined by H, =0, I{,= 0 passes through ¢ and P. The plane
of ¢' intersects H;=10 in a conic ¢" passing through P and the
two points common to ¢, ¢’ and in just one other point. The posi-
tion of this fourth point of intersection depends on the choice of
the bundle H, =0, H,=0, H{;=0. We have thus proved that the
web of quadrics defined by a conic and a point P has the neces-
sary property mentioned in Art. 156 possessed by the web deter-
mined by a birational transformation.

Let the equations of the conic ¢ be

2,=0, ex?+ ex?+ ex,?=0.

If P is not on the plane z,=0, it may be chosen as vertex
(0, 0, 0, 1) of the tetrahedron of reference. The equation of the
web has the form

M2y Agaty + Agasy + A€y, 4 ewy® + exs?) = 0.
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In analogy with equation (11) we may now put
@'y = am, @y =0 ¥y = Xy, ¥y = e + ey’ + e’ 15)

The most general form of the transformation of this type may be
obtained by replacing the a'; by any linear functions of them with
non-vanishing determinant.

In the derivation of equations (12) it makes no difference
whether the conic ¢ is proper or composite, hence three cases
arise, according as e, =e,=e¢;=1o0r eg=e,=1, =0 or ¢ =1,
e,=e,=0. The equations are

(- 0= = (- 2

a =wx, o=, Ty=aw, o= 40"+’ (@)

g = 0 — ! — 2 2

oy =wx, =y, Cy=wgw, o= x’ + 20 ®)
0 = —

M=y, =y, X=X =2’ (c)

Now let P approach a point K on the conicc. If ¢ is com-
posite, suppose its factors are distinct and that A lies on only
one of them. In the limit the line KP is tangent to all the quad-
rics of the web determined by ¢ and P. But the tangent to ¢ at K
is also tangent to all these quadrics at K. Hence the plane of
these two lines is a common tangent plane to all the quadries of
the web at K= P.

Let P be taken as (1, 0, 0, 0), the common tangent plane at P
as #,=0, and let the equations of the conic be reduced to z,=0,
x, + ex? =0. The equation of the web has the form

My + A3y + g + Ay, + ewg?) = 0.

The two cases, according as e=1 or e=0, give rise to the
transformations

oy =awy, ¥y =2y ¥y=ad o= 00, + 25 ()
oy =2y ¥y =a5xy ¥y=ul o= m, (e)
of this type.

Finally, let ¢ be composite and let the point K which P ap-
proaches lie on both components of ¢. Since all the quadrics
through ¢ have in this case the plane of ¢ for common tangent
plane at X, the point P» must approach ¢ in such a way that the
line K P approaches the plane of ¢ as a limiting position. The
conics in which the quadrics of the web are intersected by any
plane through P and K have two points in common at K and one
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at P. Hence in the limit, all these conics must have three inter-
sections coincident at K = P.

Let the equations of ¢ be 2,=0, x> + ex? =0, and the coordi-
nates of P be (1,0, 0, 0). The equations of the system of rank
five of quadries through ¢ is

M2y + Mgy + Mgy + Ay + Ay(2,2 + exy”)= 0.

The section of this system by any plane through P, different from

@, = 0, will consist of a system of conies touching each other at P.

The required web belongs to this system and satisfies the condi-

tion that its section by any plane through P other than x,= 0 is a

system of conics having three intersections coincident at (1, 0, 0, 0).
The equations of the section by the plane x, =0 are

M2y + Aoy + A2 + At =0, a,=0.

All these conics touch each other at 2. Let X, Xy, X, X; be the
parameters of one conic, and A;, A, A,, A; of another contained in
this system. The equations of the lines from (1, 0, 0, 0) to the
two remaining intersections of these two conic are

(A5 — AN D@ + (M, — AN Dy, + (AN, — AN Da2=0.

One of these remaining points is also at P if ANy — AN, =0.
Hence all the quadrics of the web satisfy a relation of the form
As+ kM =0. It is no restriction to put k=1. It can now be
shown that the conics eut from the quadrics of the web Ay 4+, =0
by any plane a,w, 4+ @@, + a;z; = 0 through P have three coinci-
dent points in common at P.

The equation of the web is

MLy 4 My + Mg, + Ay (,2 + e — 2,2) = 0.
The two birational transformations defined by webs of quadrics
of this type are
¥y =mmy, ¥y =ay ¥y =0l o =20+ v — o, @)
¥y =iy &y =@, V=l o= x? — o, @

The inverse transformations of forms (a) -+ (g) are also quadratie.
For this reason transformations of this type are called quadratic-
quadratiec.
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158. Quadratic inversion. A geometric method of constructing
some of the preceding types of birational transformations will
now be considered. Given a quadric 4 and a point O. Let P be
any point in space, and P’ the point in which the polar plane of
P as to A cuts the line OP. The transformation defined by hav-
ing P’ correspond to P is called quadratic inversion. If O does
not lie on the quadric 4= 0, let 0= (0, 0, 0, 1) and let the equa-
tion of 4 =0 be

ey 4 eyt + e — vl =0.

If P=(y\; ¥ Ys, ¥s), the coordinates of P’ are
Vi=Yls Yo=Y Yo=Y Y=’ + e’ + e,
which include forms (a), (), (¢). If O lies on 4, we may take
A=wl4exlt—aw, =0, 0=(0, 0, 0, 1).

The codrdinates of P’ in this case are functions of ¥, ¥s, s ¥4
defined by (f) and (9). The quadratic-quadratic transformations
(@), (b), (¢), (), (g) can therefore be generated in this manner.

159. Transformation by reciprocal radii. If, for the quadrie
A =0 (Art. 158) we take the sphere

2% 4 y? 4 22 = kA (16)
and for O the center of this sphere, the equations of the trans-
formation assume the form

o =kt f =k¥yt, =K%t ¢ =+ +ah an
On aceount of the relation
OP.-0OP =# 18)

existing between the segments from O to any pair of correspond-
ing points P, P’, it is called the transformation by reciprocal radii.
Any plane not passing through O goes into a sphere passing
through O and the circle in which the given plane meets the
sphere (16), which is called the sphere of inversion.

The fundamental elements are the center O, the plane at
infinity, and the asymptotic cone of the sphere of inversion.
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A plane ax + by + cz+ dt = 0 not passing through the origin
(d=0) is transformed into a sphere

akxt + bkt 4 ckzt + d(a* + y* +2%)=0
passing through the origin.
A plane passing through the origin is transformed into a com-
posite sphere consisting of the given plane and the plane at in-

finity. We shall say that planes through the origin are trans-
formed into themselves.

A sphere
a(P+ 1y +2)+ 2 fot +2 gyt + 2 hat + m*=0 19)
not passing through the origin (m==0) is transformed into the
sphere

m(x?+ y? +2%) + 2 fk%et + 2 gyt + 2 Wkt + ak'=0.  (20)
The factor 2?+ 3*+2* can be removed from the transformed
equation. A sphere passing through the origin (m = 0) is trans-
formed into a composite sphere consisting of a plane and the
plane at infinity.

If any surface passes through the origin, its image is seen to be
composite, one factor being the plane at infinity. The plane at -
infinity is the image of the center O, which is a fundamental
point.

In particular, the sphere (19) will go into itself if m = ak?;
but this is exactly the condition that the sphere (19) is orthogonal
to the sphere of inversion, hence we may say :

THEOREM L. The spheres which are orthogonal to the sphere of in-
version go into themselves when transformed by reciprocal radii.

We shall now prove the following theorem :

Tueorem I1.  Angles are preserved when transformed by recipro-
cal radii.

Let A+ By+ Cz+ Dit=0, 4+ By+ Ciz+ Dyt =0
be any two planes. The angle  at which they intersect is de-
fined by the formula (Art. 15)
A,4,+ BB, + GG,

cos 0= 5
V(4P + B+ C3 (A2 + B2+ CF)

@1
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These planes go into the spheres
D,(a? + * + 22)+ Akt + Bkt + Ck*%t =0,
Dy(a* + 32 + 2%) + Akt + Byki*yt + Cok’2t = 0.

Since the angle of intersection of two spheres is the same for
every point of their curve of intersection (Art. 51) and both
spheres pass through O, we may determine the angle at which the
spheres intersect by obtaining the angle between the tangent
planes at 0. These tangent planes are

Ax+ By + Cre=0, A+ By + Cz= 0,

hence the angle between them is defined by (21). Since the angle
of intersection of any two surfaces at a point lying on both is de-
fined as the angle between their tangent planes at this common
point, the proposition is proved.

160. Cyclides. Since lines are transformed by reciprocal radii
into eircles passing through O, a ruled surface will be transformed
into a surface containing an infinite number of circles. A quadric
has two systems of lines, hence its transform will contain two sys-
tems of circles, and every circle of each system will pass through
0. Moreover, the quadric contains six systems of circular sections
lying on the planes of six parallel pencils (Art. 82). IHence the
transform will also contain six additional systems of circles, not
passing through O, but so situated that each system lies on a
pencil of spheres passing through O.

By rotating the axes (Art. 37), we may reduce (Art. 70) the
equation of any quadric not passing through O to the form

o + bttt + 24+ 21et +2myt +2nzt =0 (22)

without changing the form of the equation of the sphere of inver-
sion. By transforming this surface by reciprocal radii, we obtain

(@ + * + 22 + 2 B2 (2? + * + &) (Ix + my + nz)t
+ ki(ax? 4+ by? + )2 =0.
This surface is called the nodal cyclide; it contains the absolute
as a double curve and has a double point at the point O.*
T*A point P on a surface is called a double point or node when every line
through P meets the surface in two coincident points at P. A curve on a surface

is called a double curve when every point of the curve is a double point of the
surface.
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If the given quadric is a cone with vertex at P, its image will
have a double point at O and another at P. The circles which
are the images of the generators of the cone pass through O
and P’

The equation of the cone may be taken as
a(@— [+ b(y — gt)> + c(z — ht)2 =0 (23)
and the equation of the transform is

(@f* + bg® + ch?)(2® 4 i + 2°) — 2 k(2?3 +22) (afe + bgy + chz)
+ K (ax? + by + 2Bt = 0.

This surface has a node at the origin and at the transform
(fs 9 Iy f*+ ¢* + 1?) of the vertex of the cone (23). It is called a
binodal cyclide.

If, in equation (22), b = ¢, so that the given quadric is a surface
of revolution, the transformed equation may be written in the
form

[@*+ 2+ 22 + K2 (lx + my + nz)t -+ g EY7)? 4 (a — b)kat?
— k‘(l:v + my -+ nz + g k%)zt? =0.

It has a node at O and at the points in which the line z=0,
21z + 2 my + 2 nz + Kt = 0 intersects the sphere a2 + 32 4 22 + 2 lut
+ 2 myt+ 2 nzt + bk =0. It is called the trinodal cyclide,

Finally, if the cone (21) is one of revolution, the resulting
cyclide has four nodes, and is called a cyelide of Dupin. If the
center of inversion is within the cone, so that no real tangent
planes can be drawn to the cone through the line OP, the surface
is called a spindle cyclide; if the center is outside the cone, the
resulting surface is called a horn eyclide.

The generating circles of a cone of revolution intersect the recti-
linear generators at right angles. Since both the lines and the
circles are transformed into circles and angles are preserved by
the transformation, we have the following theorem:

Tueorem III.  Through eack point of a cyclide of Dupin pass
two circles lying entirely on the surface. These circles meet each
other at right angles.
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A particular case of the spindle cyclide is obtained by taking
the axis of the cone through the center of inversion. The result-
ing eyclide is in this case a surface of revolution. It may be
generated by revolving a circle about one of its secants. If the
points of intersection of the circle and the secant are imaginary,
the cyclide is called the ring cyelide. It has the form of an
anchor ring. In this case all the nodes of the cyclide are
imaginary.

EXERCISES

1. If A consists of a pair of non-parallel planes and O is taken on one of
them, show that the quadratic inversion reduces to the linear transformation
defined in Art. 155, Ex. 3 as central involution.

2. Obtain the transform of the ellipsoid

%2y, 2

e T nta
with regard to the sphere z2 + 2 + 2> = 1. How many systems of circles
lie on the resulting surface ? Show that four minimal lines pass through O
and lie on the surface.

= {2

3. Show that the transform of the paraboloid ax? + by? =2 z by reciprocal
radii is a cubic surface. How many systems of circles lie on this surface ?
How many straight lines ?

4. Discuss the transform of a quadric cone by reciprocal radii when the
center of the sphere of inversion lies on the surface but is not at the vertex.

5. Show that a surface of degree n passing % times through the center of
inversion is transformed by reciprocal radii into a surface of degree 2(n — k),
having the absolute as an (n — k)-fold curve.

6. Show that the center of an arbitrary sphere is not transformed into
the center of the transformed sphere by reciprocal radii.

7. Given the transformation
xly = (o1 — 3) &z, @'y =(2p — X2)%3, X'z =21 — )Xy, ®'4 = X3

Find the equations of the inverse transformation and discuss the basis points
in (x).

8. Given the transformation

X'y = Ty, X'y = Loy, X'z =x3k1, 'g = rs(21 + Tz + X3).

Find the equations of the inverse transformation. Discuss the basis points
in the web of quadrics A\ja122 + Nax20's + Ngits®r + Nxg(1 + 22 + 23) = 0.



CHAPTER XIII

CURVES AND SURFACES IN TETRAHEDRAL COORDINATES

1. Algebraic Surfaces

161. Number of constants in the equation of a surface. The
locus of the equation

S(@)= Eu,B, 51

wherein «, 8, y, 8 are positive integers (or zero) satisfying the
equation ¢+ B8+ y+ 8=mn, is called an algebraic surface of
degree n.

If the equation is arranged in powers of one of the variables,
as 2, thus

aaﬁysxxa%ﬁwsyxf =0, (1)

Uy + e 4 e fu, =0, (2)
in which u, is a homogeneous polynomial of degree 7 in x;, x,, @,
the number of constants in the equation can be readily calculated.
For we may write

Uy = o5’ + P’ T 4 o0 + Py,
¢, being a homogeneous polynomial in 2y, ,, of degree & and con-
sequently containing k + 1 constants. The number of constants
in w; is therefore

1424 o fi4+l1=

(+DE+2) _(+2)!
2 12!
This number of constants in »; is now to be summed for all inte-
gral values of ¢ from O to n. By induction the sum is readily
found to be
3)!

2 n! 3! .
which is the number of homogeneous coefficients in the equation
of the surface. The number of independent conditions which
the surface can satisfy is one less than this or

(3! 4 _n+6n+1in
n! 3! - 6

.

206
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162. Notation. 1t will be convenient to introduce the follow-
ing symbols :

oz, Yoo,
62
A (x)= 23/% o gx : (&)
i k
_ o of@)
AT = 7 aq) byy ey d \
/J®) Za biotal VY Gresupangan

wherein 1 Z » Zn and «, b, ¢, d are positive integers (or zero),
satisfying the condition a + b+c+d=r.

EXERCISES

Let f(x) = aso00%1* + Qosoo®s + @ooao%s* + Aooosrs? +6 a200021222% +6 @o22022%05%
+ 6 aozor22x4? + 6 agonsrs®es® + 6 asnar%es? + 6 @aozr?es®

FindA,f (x) for r=1,2, 8, 4.

Show that A, [A,2f(x)] = A2 f(%).

Show that %A,,”f(x) = A, f(y).

Show that A,2f(x) = A2 f(¥).
Show that A,f(x) =47 (2); ALf(@) =12/(x); ALS(2) =245 (®).

ok 0 NF

163. Intersection of a line and a surface. If (y), (¥) are any two
points in space, the codrdinates of any point (z) on the line joining
them are of the form z, = Ay, + pa; (Art. 95). If (2) lies on
f(x)=0, then f(Ay + px) = 0. By Taylor’s theorem for the
expansion of a function of four variables, we have, since
A+ f(y) = 0 for all positive integral values of %,

SO+ po) = X F @) + XA @) + o
X A @) + o A S@) =0 ©)
This equation may also be written in the form
FOy + pe) = prf(@) + p2 N, f (@) + o
X AL F@) + -+ g AN @) =0, ®)

which is equivalent to the preceding one.
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If these equations are identically satisfied, the line joining )
to () lies entirely on the surface. TIf they are not identically
satisfied, they are homogeneous, of degree » in A, u and conse-
quently determine » intersections of the line and the surface. If
we define the order of a surface as the number of points in which
it is intersected by a line, we have the following theorem.

TueorREM. The order of a surfuce is the degree of its equation in
point codrdinates.

164. Polar surfaces. In (4) let the point (y) be fixed but let
(x) vary in such a way that the equation

o A S (w)=0 (6)
is satisfied.

This equation defines a surface of order n — 7 called the rth polar
surface of the fixed point () with regard to the given surface
S (@) =0. When r=n—1, the surface (6) is a plane. It is
called the polar plane of the point (y) as to f(¢) =0; when
r=mn—2, the resulting quadric defined by (6) is called the
polar quadric, ete.

In the identities (4) and (X) the coefficients of like powers of
A, p are equal, that is,

Lasr@=—1_arr@).

@—r)!
From this identity we have the following theorem :
TaEOREM I.‘ If (x) lies on the rth polar of (y), then (y) lies on
the (n — 7)th polar of ().
If in (4), the two points (y), (¥) are coincident, then
SO+ pz) = A+ )" f(@) =2 (@) + 1 7pb, f(@) + -
+N:*;'U'r Arf(x) + -

By expanding (A 4+ )" by the binomial theorem and equating
coefficients of like powers of A, u in the preceding identity, we
obtain

M@ =t @),

(n
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which is called the generalized Euler theorem for homogeneous
functions. From this identity we have the following theorem :

Turorem II.  The locus of a point which lies on any one and
therefore on all its own polar surfaces is the given surface f(x) = 0.

From the definition of A, f(x) (Art. 162) it follows that if
s < 7‘ < n 8 r—s
’ A/ f@) = A [A7f(@)]
From this identity we have the theorem: .
TaeoreM ILI.  The sth polar surface of the (r — s)th polar sur-
Jace of (y) with respect to f(x) = 0 coincides with the rth polar sur-

Sace of (¥)-
EXERCISES

1. Determine the cotrdinates of the points in which the line joining

(1, 0, 0, 0) to (0, 0, 0, 1) intersects the surface
218 + 2 @08 — 233 — 4 248 + 421204 — 11242 4 b X%z — 6 212003 = 0.

2. Determine @ so that two intersections of the line joining (0, 1, 0,0)
to (0, 0, 1, 0) with the surface

xrt + xst + 23t + 24t 4 axsdez + 2 (@ — Daoles® + 4 Xo%3® + 6 Tyxoxsxs = 0
coincide.

3. Show that any line through (1,0, 0, 0) has two of its intersections
with the surface

3xotrs® + st + 6 2122002 + 12 2320642 + 4 ZLo3® + 24 X120003%4 = 0

coincident at (1, 0, 0, 0).

4. Prove the theorems of Art. 164 for the surface of Ex. 3 by actual
differentiation.

165. Tangent lines and planes. A line is said to touch a sur-
face at a point P on it if two of its intersections with the surface
coincide at P. In equation (4) let (y) now be a fixed point on
the given surface so that fly) =0. One root of (4) is now u=0,
and one of the intersections (x) coincides with ().

The condition that a second intersection of the line (y)(x) coin-
cides with (y) is that p?is a factor of (4), that is, that (x) is a
point in the plane

\ A f)=m "’f@_ b aﬂ?/) o af(z/) 4, ) @

0y
% All the lines which touch f(x) =0 at (y) lie in the plane (7) and
every line through () in this plane is a tangent line. This plane
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is called the tangent plane of (y). The plane (7) is also the polar
plane of (y); hence we have the theorem:

TuroreM. The polar plane of a point P on the surface is the
tangent plane to the surface at P.

From Art. 164, Theorem III it also follows that the tangent
plane to flz) =0 at a point (y) on it is also the tangent plane at
(y) to all the polar surfaces of (y) with regard to f{(x) = 0.

166. Inflexional tangents. A line is said to have contact of
the second order with a surface at any point 2’ on it if three of
its intersections with the surface coincide at P.

Let (y) be a given point on the surface, so that f(y)=0. The
condition that the line (y)(z) has contact of the second order at
(y) is that p® is a factor of (4), that is, that (z) lies on the tangent
plane and on the polar quadric of (y). Hence (z) lies on the

intersection of
A fly=0, A’y)=0.

Since A,f(y)=0 is the tangent plane of the quadric A2f(y)=0
at (), the conic of intersection of the tangent plane and polar
quadric consists of two lines, each of which has contact of the
second order with f(x) =0 at the point (y). These two lines are
called the inflexional tangents to the surface at the point . The
section of the surface by an arbitrary plane through either of
these lines has an inflexion at (y), the given line being the inflex-
ional tangent.

167. Double points. A point P is said to be a double point or
node on a surface if every line through the point has two inter-
sections with the surface coincident at P. If (y) is a double
point on f(x) =0, equation (4) has u® as factor for all positions
of (z), that is, A,f(y) =0 is an identity in 2, 2,, 2;, 2, It follows
that if (y) is a double point, its coordinates satisfy the four
equations

AW o, ¥W_o, MD_o HWD_o (g
e dy Sy

Conversely, if these conditions are satisfied, it follows, since
nf(y) = A,f(y), that equation (4) has the double root p?=0 and
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(y) is a double point. Hence the necessary and sufficient condi-
tion that f(x) =0 has a double point at (y) is that the codrdinates
of (y) satisfy equations (8). Unless the contrary assumption is
stated, it will be assumed that f(«) = 0 has no double points.

EXERCISES

1. Impose the condition that the point (0, 0, 0, 1) lies on the surface
f(x)=0 and find the equation of the tangent plane to the surface at that
point. ]

2. Determine the condition that the surface of Ex. 1 has a double point
at (0, 0, 0, 1).

3. Show that the point (1, 1, 1, 1) lies on the surface of Ex. 1, Art. 164, ~
and determine the equation of the tangent plane at that point.

4. Find the equations of the inflexional tangents of the surface of Ex. 1,
Art. 164, at the point (1, 1, 1, 1).

5. Show that the lines through a double point on a surface f(x) = 0 which
have three intersections with the surface coincident at the double point form
a quadric cone,

6. Show that there are six lines through a double point on a surface
f(x)=0 which have four points of intersection with the surface coincident
at the double point.

7. Prove that the curve of section of a surface by any tangent plane has a
double point at the point of tangency, and the inflexional tangents are the
tangents at the double point.

168. The first polar surface and tangent cone. If in equation (7),
the coordinates @, @,, «;, x, are regarded as fixed, and y,, ¥y, ¥s ¥s
as variable, the locus of the equation is the first polar of the
point ().

TuroreM 1. The first polar surface of any point in space passes
through all the double points of the given surface.

For, if f(xz)=0 has one or more double points, the codrdinates
of each must satisfy the system of equations (8) and also (7).

TuroreM II.  The points of tangency of the tangent planes to the
surface from a point (x) lie on the curve of intersection of the given
surface and the first polar of (x).

For, if (y) is the point of tangency of a tangent plane to
f(@)=0 which passes through the given point (), the coordi-
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nates of (y) satisfy f(y)=0 and A_f(y)=0. Conversely, if (y)
is a non-multiple point on this curve, it follows that the tangent
plane at (y) passes through the given point (x).

Since the line joining (z) to any point (y) on the curve defined
in Theorem II lies in the tangent plane at (y), it follows that it is
a tangent line. The locus of these lines is a cone called the
tangent cone from (x) to the surface f(x)=0. To obtain the
equation of this cone we think of (x) as fixed in (4) and impose
the condition on (y) that two of the roots of the equation in A: u
shall be coincident. Hence we have the following theorem :

Turorem I1I.  The equation of the tangent cone from any point
(®) is obtained by equating the discriminant of (4) to zero.

169. Class of a surface. Equation in plane codrdinates. A point
(x) lies on the surface f(x)=0 if its cobrdinates satisfy the equa-
tion of the surface. Similarly, a plane () touches the surface if
its coordinates satisfy a certain relation, called the equation of
the surface in plane codrdinates. The class of a surface is the
dual of its order; it is defined as the number of tangent planes to
the surface that pass through an arbitrary line and is equal to
the degree of the equation of the surface in plane coodrdinates.

TuroreM. The class of an algebraic surfuce of order n, having
8 double points and no other singularities, is n(n — 1) — 24,

Let f(#)=0 be of order n, and let P, =(y), P,=(z) be two
points on an arbitrary line /. The point of tangency of every
tangent plane to f(x)=0 that passes through [ lies on the surface
f(x)=0, on the polar of (y) and on the polar of (z), so that its
coordinates satisfy the equations

f@)=0, A, f(®)=0, A,f(x)=0.

These surfaces are of orders n, n —1, n — 1, respectively, and
have n(n — 1) points in common; if f(2)= 0 has no double points,
each of these points is a point of tangency of a plane through the
line 7, tangent to the given surface. If f(z)=0 has a double
point, A, f(x)= 0 and A, f(x)=0, both pass through it, hence the
number of remaining sections is reduced by two.

If the plane w, + w2, 4+ @, + w2, = 0 is tangent to f(x)=0
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at (y), then this plane and that defined by equation (7) must be
identical, hence

A _95() _9) @, (9

P P ey PT gy Py O
Moreover, (y) lies in the given plane and also on the given sur-
fhcoanenes wyy + waYy + usys + 2wy, =0, f(y)=0. (10)

If between (9) and (10) the coordinates of (y) are eliminated, the
resulting equation will be the equation of the given surface in
plane coordinates. If f(x)=0 has double points, the resulting
equation will be composite in such a way that the equation of
each double point appears as a double factor.

EXERCISES

1. Determine the equation of the tangent cone to the surface
218 + 208 + 23 + 242 =0

from the point (1, 0, 0, 0).

2. Write the equation of the surface of Ex. 1 in plane codrdinates.

3. Write the equation of the surface

Z1%oX3 + X1%3%s + X1Xoks + LoXzrs = 0

in plane codrdinates.

4. Write the equation of the surface x;2x3 — 22x4 = 0 in plane codrdinates.

170. The Hessian. The locus of the points of space whose
polar quadrics are cones is called the Hessian of the given sur-
face f(x)=0. The equation of the polar quadric of a point (x)
may be written in the form

0*f (96)
2 dx, 0z, Yid. (1%

in which #;, ¥, ¥s, ¥ are the current codrdinates. This quadric
will be a cone if its discriminate vanishes (Art. 103), hence if we

put for brevity &1 ()
Ju= dx,0x,
the equation of the Hessian may be written in the form

.f‘u j‘lz j‘la j;.‘i
e e R
=l B A (12)

Su Sfu S Su
It is of order 4 (n — 2).
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It will now be shown that the Hessian may also be defined as
the locus of double points on first polar surfaces of the given
surface. The equation of the first polar of (y) as to f(x)=0 is

ofiw) _
Ey,.a—;f) = 0.

If this surface has a double point, the codrdinates of the double
point make each of its first partial derivatives vanish, by (8), thus

92 f(x) af 3 f O _
% T o, 0, t 0,0, + ox,dx, 0,

A £ o f & ef
Y1 Gt T oz T ¥ G T Y g, (13)
a*f 32]" QZ *f
h dx, 0, I duy0, v 1/3 : Oxydm, 0,
&f af P - 32f
e e mi iR E il

The condition that these equations in y,, v, ¥s, ¥, are consistent
is that their determinant is equal to zero, that is, that (z) lies on
the Hessian. -

171. The parabolic curve. The curve of intersection of the
given surface with its Hessian is called the parabolic curve on the

surface.

THEOREM. At any point of the parabolic curve the two inflexional
tangents to the surface coincide.

For, let () be a point on the parabolic curve. Since () lies on
the Hessian, its polar quadric is a cone. This cone passes through
() (Art. 164). The inflexional tangents are the lines which the
cone has in common with its tangent plane at (x) (Art. 166).
These lines coincide (Art. 121).

172. The Steinerian. It was just seen that the polar quadric of
any point on the Hessian is a cone. Let () be a point on H, and
(y) the vertex of its polar quadric cone. As (x) describes H, (y)
also describes a surface, called the Steinerian of f{x) =0. The
polar quadric of (x) is given by equation (11). If (y) is the ver-
tex of the cone, its codrdinates satisfy (13). The equation of the
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Steinerian may be obtained by eliminating @, @,, @;, x, from these
four equations (13). As the equations (13) were obtained by im-
posing the condition that the first polar of (x) has a double point,
we may also define the Steinerian as the locus of a point whose
first polar surface has a double point (lying on the Hessian).

EXERCISES

1. Prove that the Hessian and the Steinerian of a cubic surface coincide.

2. Prove that if a point of the Hessian coincides with its corresponding
point on the Steinerian, it is a double point of the given surface, and con-
versely.

3. Determine the equation of the Hessian of the surface

x1d + agxs® + azrsd + asxsd + as(xy + *a + T3+ 24)3 =0.

4. Determine the order of the Steinerian of a general surface of order n.

II. Algebraic Space Curves

173. Systems of equations defining a space curve. A curve
which forms the complete or partial intersection of two algebraic
surfaces is called an algebraic curve; if the curve does not lie in
a plane, it is called a space curve.

If a given curve C forms the complete intersection of two sur-
faces F}, =0, F, =0, so that the points of C, and no other points,
lie on both surfaces, then the equations of these surfaces, consid-
ered as simultaneous, will be called the equations of the given
curve.

If the intersection of the surfaces F, =0 and F, =0 is composite,
and C is one component, the equations #, =0, F, =0 are satisfied
not only by the points of € but also by the points of the residual
curve. If a surface F; =0 through C can be found which has no
points of intersection with the residual curve except those on C,
the simultaneous equations ¥, = 0, F, =0, F, = 0 are satisfied only
by the points of C' and are called the equations of the curve.

If the surfaces Fy =0, F,=0, F;=0 through C have one or
more points in common which do not lie on C, then a fourth sur-
face F,= 0 can be found through C which does not contain these
residual points, but may intersect the residual curve of Fy =0,
F,=0 in other points not on ¥, =0; in this case the simultaneous
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equations F} =0, F, =0, F; =0, F,= 0 are called the equations of
the curve. In thisway a system of equations can be found which
are simultaneously satisfied by points of C'and by no others.

As an illustration, consider the composite intersection of the
quadric surfaces

Xy — " =0, @yw, —22=0.

It consists of a space curve and the line x,=0, 23 =0. The
surface aw, — ;=0 also contains the space curve since it
contains every point common to the quadrics except points
on the line 2,=0, 2;=0. These three surfaces are sufficient
to define the curve. The surface 2y () — 2,) — 2,3 + 2,052, = 0
also contains the given curve. It does not, however, with
the two given surfaces constitute a system whose equations
define the given curve. All three equations are satisfied, not
only by the cosrdinates of the points of the curve, but by the
codrdinates of the point (1, 0, 0, 1) which does not lie on the
curve, since it does not lie on the surface @2, — 2,2, =0. The sur-
face aya, (@, +a,) — ,° — 2, = 0 passes through the curve but not
through the point (1, 0, 0, 1). The curve is therefore completely
defined by regarding the four equations

2y — 2t = 0, Xy — ? = 0,
2y, () — @) — 2 4 @ywgx, = 0, @y (2 + ) — a2 — a3 =0

as simultaneous.

174. Order of an algebraic curve. Let F,=0,F,.=0 be two
surfaces of orders u, p', respectively, and let C' be their (proper
or composite) curve of intersection. Any plane that does not con-
tain C (or a component of it) intersects € in upu’ points. For,
any such plane intersects ¥, = 0 in a curve of order y, and inter-
sects F,. in a curve of order p'. These coplanar curves have
precisely uu' points in common.*

It canin fact be shown that every algebraic curve, whether
defined as the complete intersection of two surfaces or not, is
intersected by any two planes, neither of which contains the
curve or a component of it, in the same number of points.t We

* See, e.g., Fine: College Algebra (1905), p. 519.
1 Halphen: Jour. de I'école polytechnique, Vol. 52 (1882), p. 10.
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shall assume, without proof, the truth of this statement. The
number of points in which an arbitrary plane intersects an alge-
braic curve is called the order of the curve (Art. 140).

175. Projecting cones. If every point of a space curve is
joined by a line to a fixed point P in space, a cone is defined,
called the projecting cone of the curve from the point P. If the
point P lies at infinity, the projecting cone from P is a cylinder
(Art. 44). Except in metrical cases to be discussed later we
shall make no distinction between cylinders and cones.

For an arbitrary point P an arbitrary generator of the project-
ing cone intersects the curve in only one point. It may happen,
however, for particular positions of the point P, that every
generator meets the curve in two or more points. If in
this case P does not lie on the curve or if P lies on the
curve and every generator through P intersects the curve in
two or more points distinet from P, the curve is called a conical
curve. e

Let P be a point not on the curve, such that an arbitrary
generator of the projecting cone from P meets the curve in just
one point. The order of the projecting cone is the number of
generators in an arbitrary plane through its vertex. Each gener-
ator contains one point on the curve, hence the order of the pro-
jecting cone is equal to the order of the curve. If P is on the
curve, the order of the projecting cone is one less than the order
of the curve.

TuroreM. To find the equation of the projecting cone of the
simple or composite curve defined by the complete intersection of two
surfaces, from a vertex of the tetrahedron of reference, eliminate be-
tween the equations the wariable which does not vanish at that
vertex.

Let the equations of the given surfaces be F, =0and F, = 0
and let it be required to project the curve of intersection of these
surfaces from the point (0, 0, 0, 1).

Let (y) be any point of space. The codrdinates of any point
() on the line joining (0, 0, 0, 1) to (y) are of the form

T=MNy G=Ny T=My BG=Mt o
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The points in which this line intersects F, =0, F.=0are de-
fined by
FM(QJ) = FF()\yl; AYay Az, AYy + ‘T)

= NLF#(%: Yo Y3 Yst §>= 0,
Fu(w) = Fe(\y1, Aoy A3y Ay + o)

= ’\F:FM' Yo Y Y3 Ya +;)=O)

respectively. The condition that the line intersects both surfaces
in the same point is that these equations have a common root in

(19)

%, hence the equation of the projecting cone is obtained by elimi-

nating ;—i between these two equations (cf. Art. 44), If % is elimi-

nated from (14), y, is also eliminated and the resulting surface is
identical with that obtained by eliminating x, between the equa-
tions of the given surfaces. '

If the curve of intersection is composite, the projecting cone is
composite, one component belonging to each component curve,

A method for determining the projecting cone from any point
P in space may be deduced by similar reasoning, but the process
is not quite so simple.

EXERCISES
1. Show that the intersection of the surfaces
212y — X3%1 + T4? — Xax3 = 0, L1252 — X102y + To(%g? — Xokz) = 0

is composite,

2. Represent each component curve of Ex. 1 completely by two or more
equations.

3. Find the equation of the projecting cone of the curve

22+ w22+ 2024 =0, 22+ 22004 — 212 + 2252 =0

from the point (0, 0, 0, 1).

4. Find the equation of the projecting cone of the curve

12+ 422 —22 =0, 22 —222+ 2252 =3242=0

from the point (0, 0, 0, 1).

5. Find the equation of the projecting cone of the curve

w4 a? + a2 + 22 =0, an?+ agrs? + azxs? + a2 =0

from the point (0, 0, 0, 1).
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6. Show by means of elimination that, if (0, 0, 0, 1) does not lie on the
curve F, =0, F, =0, the order of the projecting cone from (0, 0,0, 1) is up’,
provided the curve is not conical from (0, 0, 0, 1).

7. Find the equation of the projecting cone of the curve

224 2002 — 232 =0, 242 — o3+ x12=0
from the point (1, 1, 1, 1).

176. Monoidal representation. If a non-composite space curve
C, of order m is defined as the complete or partial intersection
of two surfaces F, = 0, F,. = 0, other surfaces on which the curve
lies can be obtained from the given ones by algebraic processes.
Among such surfaces we have already discussed the projecting
cone from a given point P. We shall now show how to obtain
the equation of a surface which contains C,, and has at P a point
of multiplicity one less than the order of the surface. Such a
surface is called a monoid.

In determining the equation of a monoid through C,, we shall
assume that neither the complete intersection of Fﬂg 0 and
F,. =0 nor any component of it is a conical curve from P. We
shall also assume that P’ does not lie on this curve of intersection.

Let P be chosen as (0, 0, 0,1) and let the equations ¥, =0,
F,. =0 be arranged in powers of x, (Art. 161).

F, = u@d +uwad ' + o +u, =0,
F, =vet +oxf 4 40, =0,

wherein u;, v; are homogeneous functions of w;, x,, x; of degree i.
Let the notation be so chosen that u’ > p. The equation

vy mF, — uF, =0

contains @, to at most the power ' — 1. The surface represented
by it passes through the curve C,, since the equation is satisfied
by the coordinates of every point which satisfy , = 0 and F, = 0.

The equation

v F,—uF,. =0

is divisible by «,. If this factor is removed, the resulting equation
is of degree at most ' — 1 in x, and determines a surface which
passes through C,,. »

If either of these equations contains w, to the first but to no
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higher power, the surface determined by it is of the type required.
If not, the two equations cannot both be independent of «, nor
can they coincide, since in that case the curve F,=0, F.=0
would be conical from (0, 0, 0, 1).

By applying this same process to the two equations just ob-
tained, we may obtain two new ones which contain x, to at most
the power ' — 2.

Continuing in this way with successive partial elimination, we
obtain finally an equation of the form

M = w4, _i(21, Ty 25) — b (0, @y x3) = 0,

in which ¢,_, and ¢, are homogeneous functions, not identically
zero, of degree n — 1 andn, respectively, in x,, @, 2;. The surface
M = 0 is of order » and has an (n —1)-fold point at (0,0, 0,1). Tt
is consequently a monoid. The surface ¢, =0 is a cone; it is
called the superior cone of the monoid. If n>1, ¢,_, = 0 is the
equation of another cone, called the inferior cone of the monoid.

Let f,, (@, @5, ;) = 0 be the equation of the projecting cone from
0, 0,0,1). The equations

T (@1 @y @) = 0, @4,y (21, Tyy @) — b, (@, ¥, X5)=0
are said to constitute a monoidal representation of the curve C,.
The advantage of this representation is that the residual inter-
section, if any, of the two surfaces M = 0, f,, = 0 consists of lines
common to the three cones

Jn=0, ¢,1=0, ¢, = 0.

For, let P be a point common to f,, =0, M = 0, but not lying on
C,,, nor at the vertex (0, 0, 0, 1). The generator of f,, = 0 passing
through P intersects C,, in some point P’. Since this generator
has P, P’ and » — 1 points at (0, 0, 0, 1) in common with M = 0,
it lies entirely on the monoid (Art.164). For every point of this
line, that is, independently of the value of =, the equation
24$,_; — ¢, = 0 must be satisfied ; hence the given generator lies
on the inferior cone and on the superior cone.

It follows at once from the above discussion that if any genera-
tor of f,, = 0 intersects O, in two points P, @, it lies entirely on
the monoid and forms a part of the residual intersection. Sucha
line is called a double generator of the projecting cone, since, in
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tracing the curve, the generator takes the position determined by
Pon C, and also the position, coincident with the first, determined
by Q. Every such line counts for two intersections of M =0
and f,, = 0.

Each of these bisecants of the curve is said to determine an
apparent double point of C, from (0, 0, 0, 1); the curve appears
from (0, 0, 0, 1) to have a double point on each of these lines.

It can be proved* and will here be assumed that the number
of apparent double points of a given curve is the same for every
point not lying on it, except the vertices of the cones, if any, on
which C, is a conieal curve. This number will be denoted by %.

We shall now show that if a point P which does not lie on C,,
nor on any line that intersects C, in more than two points, nor at
the vertex of a cone (if any) of bisecants to C',, is chosen for the
vertex, then the order of the monoid from P is at least half the
order of C,.

The complete intersection of the projecting cone f,, =0 and the
monoid ¢, , — ¢, =0 is a curve of order mn. The curve C,, is
one component of order m, and the A bisecants of C, through
(0, 0, 0, 1) together form a component of order 24. If the num-
ber of residual intersecting lines is denoted by %, then

mn—m—2h=Fk k0.

The A bisecants of C,, and the % residual lines are components of
the intersection of ¢, ;, =0, ¢,=0. Hence

nn—)=h+k=h(n—1)—h,
from which
(m——n)(n—l):hé%(n—l),
and
nZ

o )

B

which proves the proposition.

177. Number of intersections of algebraic curves and surfaces.

THEOREM. Any surface of order n which does not contain a given
non-composite curve of order m intersects it in mu points.

* Noether: Zur Grundlegung der Theorie der algebraischen Raumkurven, Ab-
handlungen der k. preussischen Akademie der Wissenschaften fiir 1882.
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Let C,, be the given curve and F, =0 be the equation of the
given surface. Choose (0, 0, 0, 1) not on F,=0, and let the
monoidal equations of C, be f, =0, 2,4, , — ¢,=0. The com-
plete intersection of f,, =0, z,¢,_; — ¢, =0 consists of C, and of
m(n—1) lines through (0, 0, 0, 1). As F, =0 does not pass
through (0, 0, 0, 1), it cannot contain any of these lines. Hence
F,=0,f,=0,M,=0 have no common component. They con-
sequently intersect in mnpu points. Of these, mu (n — 1) points are
where the residual lines intersect #,=0. The remaining mpu points
lie on C,. 1If C, has mu + 1 points on F, =0, it lies on the sur-
face, for the three surfaces f, =0, M, =0, F,=0 have now
mnp.+1 points in common, and therefore all contain a common
curve. Since the lines do not lie on F, =0, and f,, =0, M, =0
have no other component curve except C,, it follows that C,, must
lie on F, =0.

EXERCISES
Show that a plane or any proper quadric is a monoid.
Write the equation of a monoid of order three.
Show that the only curve of order one is a line.
Show that the only irreducible curve of order two is a conic.

RGN

5. Show that a composite curve of order two exists which does not lie in
a plane. How many apparent double points has this curve ?

6. Show that a bundle of quadrics pass through a proper space cubic curve.

7. Write a monoidal representation of a space cubic curve.

8. Show that every irreducible curve of order four lies on a quadric
surface.

9. Discuss the statements of Exs. 6 and 8 for the case of composite cubics
and composite quartics.

178. Parametric equations of rational curves. Since a space
curve is defined as the complete or partial intersection of two
surfaces, the coordinates of its points are functions of a single
variable. The expressions for the cosrdinates of a point as func-
tions of a single variable may not be rational. A curve which
possesses the property that all its codrdinates can be expressed
as rational functions of a single variable is called a rational curve.
By definition the equations of such a curve can be written para-
metrically in the form

&=L ="+ apt™ e g, =1, 2,3, 4.
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Since the variables z; are homogeneous, it is no restriction to
suppose that the polynomials f;(¢f) have no common factor. To
every value of ¢ corresponds a unique point () on the curve, but
it may happen that more than one value of ¢ will define the same
point () on the curve. If, for example, the functions f;(¢) can
be expressed in the form

L&) =F (), ¥ (),
in which F, are homogeneous rational functions, of the same order,
of the two polynomials ¢ (t), ¢ (¢), then f;(¢) will define the same
point for every value of ¢ that satisfies the equation

b(t) = sy ()
where s is given. In this case the codrdinates of the.points on
the curve are rational functions of s.

Conversely, it will now be shown that if to each point (x) of the curve
correspond n values of ¢ (n = 1), then ¢ may be replaced by a new variable,
in terms of which the correspondence between it and the point (x) on the
curve is one to one.

Let ¢1, 83, -+, t, all correspond to the same point (x). The expressions

Li@Onm) -0 k=1, 2,3, 4

vanish for ¢t =ty ts, .-, t,, hence they have a common factor of order =,
whose coefficients contain ¢, ’

o(t)t" + ¢1(81) 1" + oo + 9, (81)-

If ¢; is replaced by ts, the expression must have the same factor, hence the
function

Po(t2)t" + P1(82)t7! + oo + Pu(l2)
has the same roots. Similarly for ¢3, -+, ¢,. It follows that the ratios of the

coefficients
Po:p1: - Py
have the same values for ¢, ¢s, ---, ¢,. These ratios cannot be constant for

every point (z) on the curve, since in that case ¢, .-, ¢, would be independent
of (x), contrary to hypothesis. If we now put

M:S, i;‘:k:l,...n

ok (t)
and eliminate ¢ between this equation and x; = f;(¢), the resulting equations
may be written in the form

Z; = bioS? + buse 1 + v + byp,
in which np = m.
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When the correspondence between () and ¢ is one to one, the
order of the curve @, = f;(t) ism. For, to each point of intersection
of the curve with an arbitrary plane Su2; =0 corresponds a root
of the equation Su, f;(t) =0, and conversely.

179. Tangent lines and developable surface of a curve. Let C be
the intersection of two algebraic surfaces =0, F' =0 and let P
be an arbitrary point on C. The line ¢ of intersection of the
tangent planes to #'=0and #'=0 at P has two points in common
with each of the surfaces coincident at > (Art. 165), and hence
with C. The line is called the tangent line to the curve C at the
point 2. The locus of the tangent lines to C'is a ruled surface.
This surface is called the developable surface of C. Its equation
may be found by eliminating the coordinates w,, ¥, %5 ¥y of P
between the equations of (' and of the tangent planes, thus:

_ T , OF(y) _ L OF (y) _
F)=0, Fy)=0, > a—y‘,LO’ZM 0.

ExampLE. The intersection of the surfaces
x12 + x4 252 + 12 =0, m1x1® 4 asTo? + a3 + asx? =0
is a quartic curve. The equation of the developable surface of this quartic
is obtained by eliminating 1, ¥2, ¥s, ¥4 between the equations
24y + y? +yld =0, awn® + aya? + asys? + ald =0,
Y1 + Zays + 3yz + Tays =0,
MY + GXeY2 + Asrsys + aaxays = 0.
If we write a;;, for a; — a;, the result may be written in the form
4 19013042043 (@1321% + 25297 4 Ag384%) (A2121% + A23%5% + Wa4ds?) LaZs?
— [@230042201 2242 + B240152201205% + Q34012201200 + 200342232042 - 031024229704
+ @ag( @12035 + Q130 24) X252 ]2 = 0.

The number of tangents to the curve C, which meet an
arbitrary line is called the rank of the curve. From this defini-
tion it follows that the rank is equal to the order of the develop-
able surface. It is the same number for every line not on the
surface (Art. 163).

180. Osculating planes. Equation of a curve in plane cobrdi-
nates. Every plane through the tangent line to C at P contains
the line and has therefore two points in common with C at P.
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Such a plane is called a tangent plane. Among the tangent planes
there is one having three intersections with ¢ at P. This plane
is called the osculating plane to C'at P. The number of osculating
planes to C which pass through an arbitrary point in space is
called the class of C. This number is the same for every point in
space.* If O is the intersection of F'=0 and F' =0, we can
obtain two equations which must be satisfied by the codrdinates
of the osculating planes of C by eliminating two of the variables,
as @, @, between the equations =0, F' = 0, and the equation of
the plane Su,x; = 0, then imposing the condition that the resulting
homogeneous equation in the other two variables has a triple root.

ExamprLeE, The two surfaces x12 4+ 2xorq =0, 222 4 22123 = 0 intersect
in the line x; = 0, x2 = 0 and a space cubic curve. If between the first equa-
tion and Zux; = 0 we eliminate x4, we find

U2 — 2 X1 Xg — 2 UXy? — 2 Ugxorz = 0.
Now if we eliminate z3 between this result and the second given equation,

we obtain
Wax1® — 2 U X120 — 2 U122 + Uzde® = 0.

Finally, if this cubic has three equal roots, its first member must be a cube.
Hence
2 w2 + 3 ugus =0, 2 ug2+3uuz =0.

A system of two or more equations in plane coérdinates (Art. 173)
which are satisfied by the codrdinates of the osculating planes of
C, and by no others, is said to define the curve C in plane coor-
dinates. To a curve C defined in this way may be applied a dis-
cussion dual to that given in Arts. 174-179.

EXERCISES

1. Find a system of parametric equations of the rational curve .
210y — X3xg = 0, Xox3 = 212 — X2,
2. Write the equation of the developable surface of the cubic curve lying

on the surfaces
2124 2 w9y = 0, 292+ 2 21253 =0,

3. Find two equations satisfied by the cobrdinates of the osculating planes

of the curve
2129 — Xalg = 0, Xof = 232 + 142,

* See reference in Art. 176.
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4. Define the dual of the projecting cone of a curve and show how its
equation may be obtained. )

5. Derive the dual of a monoidal representation of a curve.
6. Define the dual of an apparent double point.
7. What is the dual of the rank of a space curve ?

181. Singular points, lines, and planes. A point P on a curve
is called an actual double point if two of the points of intersection
of C with any plane through P coincide at P. If the two tangent
lines to O at P are distinet, the point is called a node. If the two
tangents at P coincide, the point is called a cusp or stationary
point. Curves may have higher point singularities, for example,
a curve may pass through the same point three or more times, etc.,
but such singularities will not be considered here.

A plane is said to be a double osculating plane if it is the oscu-
lating plane at two points on the curve. A plane having four
points of intersection with the curve coincident at P is called a
stationary plane,

A line is called a double tangent if it touches the curve in two
distinet points. If ‘a tangent line has three coincident points in
common with the curve, it is called a stationary or an inflexional
tangent. The point of contact is called a linear inflexion.

182. The Cayley-Salmon formulas. We shall now colleet, for
the purpose of pointing out certain relations existing among them,
the following numbers associated with a given space curve. We
shall assume that these numbers are fixed when the curve is given,
and are independent of the arbitrarily chosen plane, line, or point
that may be used to determine them.

Given a space curve C. Let

m = its order (Art. 140).

n =its class (Art. 180).

=its rank (Art. 179).

H =the number of its nodes (Art. 181).

h = the number of its apparent double points (Art. 176).

g = the number of lines of intersection of two of its osculating

planes which lie in a given plane (dual of Z).

G = number of double osculating planes (Art. 181).

o = the number of its stationary planes (Art. 181).
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B = the number of its stationary points (Art. 181).

v = the number of its linear inflexions (Art. 181).

o = the number of its actual double tangents (Art. 181).

« = the number of points lying in a given plane, through
which pass two distinet tangents to C.

y = the number of planes passing through a given point, which
contain two distinct tangents to C.

These numbers are connected by certain equations called the
Cayley-Salmon formulas; they are derived from the analogous
equations, known as Plucker’s formulas, connecting the character-
" istic numbers of plane curves. Let u = order, v = class, 8 = num-
ber of double points, + = number of double tangents, x = number
of cusps, ¢ =number of inflexions, of an algebraic plane curve.
Plucker’s formulas are *

v=p(pu—1)—28—3«k; t=3u(p—2)—68—8«;
p=v(¥—1)—27r—3:; xk=3v(y—2)—67—8u

Those in the second line are the duals in the plane of those in the
first line. ,

Let the given space curve C be projected, from an arbitrary
point P not lying on it, upon an arbitrary plane not passing
through P. The plane curve then has the following characteristic
numbers : =

,u.='m',v=7‘,3=h+H,-r=y+w,x=,8,c=n+v.
By substituting in the Pliicker formulas, we obtain
r=m(m—1) -2("h+ H) —3 B;
ntv=3m(m—2)—6(IL+1)—88;
m=r(r—1)—2@H+ o) —3(n+v);
B=3r(r—2)—6(y+wv) —8(n+v).
By duality in space, that is, by taking the section of the develop-
able surface by an arbitrary plane, we have
r=nn—1)—2(G+g)—3«;
m+v=3n(n—2)—6(G+9)—8«; 6)
n=r(r—1) =2+ o) — 3(m +v);
e =3r(r—2)—6(+ o) —8(m + v).
* Salmon : Higher Plane Curves, 3d edition (1879). See p. 66.

15)
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Of these eight equations, six are independent. One relation
exists among the first set of four, and one relation among the
second set.

The genus of a curve is the difference between the sum of its
apparent and actual double and stationary points and the maxi-
mum number of double points which a non-composite plane curve
of the same order may have. If the genus of the space curve '
is denoted by p, we have

= (%,1.)2(”1?—2-1—(][-{% +8)= ,(“—1)0(1"‘__2)_((;+g+a)=

—1(r—2 — —
D= ) _(y+ w4 n + ) =(T,,_%(Lﬁ_(m+w+m+q,).
183. Curves on non-singular quadric surfaces. It has been seen
(Art. 115) that the equation of any non-singular quadric surface
may be reduced to the form
2,2y — X3, =0, 1n
and that through each point of the surface passes a generator of
each regulus of the two systems :
o — A, =0, x3—Ax,=0, (18)
@y — p, =0, ®— pr,=0. 8"
The coordinates of the point of intersection of the generator
A = constant with the generator u = constant are (Art. 115)
pLy=2X, pXy=p, PT3=2Mp, PT= 1. 19)
Consider the locus of the points whose parameters A, u satisfy a
given equation f(A, p)=0, algebraic, and of degree k, in A and of
degree k, in u.  The curve f(), p)=0 meets an arbitrary generator
4= constant in &, points, and an arbitrary generator A= constant
in k, points. It will be designated by the symbol [k, k,]. The
order of the curve is k, + k,, since the plane determined by any two
generators of different reguli meets the curve in k, + %, points on
these two lines, and nowhere else.
By replacing A, pin f(A, ) =0 by their values, we see from (17),
(18), (18') that the curve is the intersection of the two surfaces
f(ﬁ; ?"’2) =0, w,— 22, =0

T, %
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The second is a monoid of order two (Art. 176) and the first is a
cone with vertex at (0,0, 1, 0), a(2—1)-fold point on the monoid.
Thus, these equations constitute a particular monoidal representa-
tion of the curve. The equations of the image (Art. 118) of the
given cone on the plane 2, =0 are

T Xp) _ —

The two generators to the quadric through the vertex of the cone
f=0 meet the plane in the points (1, 0, 0, 0), (0, 1, 0, 0). The
former is a k,fold point on the plane curve, and the latter a
k-fold point.

TueoreM 1. Two curves of symbols [ky, k,], [k',, k's] on the same
non-singular quadric intersect in kik'y+ kok'y points.

Let C, C' be the given curves of symbols [k, k], [¥, k'], re-
spectively, and let the equation of the quadric be reduced to the
form (17) in such a way that the point (0, 0, 1, 0) does not lie on
either curve, and that the generators 2, =0, ,=0; 2,=0, 2,=0
through (0, 0, 1, 0) do not pass through a point of intersection of
the given curves. Project the curves from (0, 0, 1, 0). Their
images on 2, =0 are of orders &, + k,, k', + &', respectively ; they
intersect in (%, 4 k,)(k'; + ;) points. Of these points, k%', coin-
cide at (0, 1, 0, 0) and &', at (1,0, 0,0). They are the projections
of the points in which the curves meet the generators passing
through (0, 0, 1, 0), the vertex of the projecting cone, and are
therefore apparent, not actual, intersections of the space curves.
The remaining

(kx il ke)(kll i k'z)— k1k’1 — kok'y =Ry R’y + k',
intersections of the plane curves are projections of the actual in-
tersections of the space curves, hence the theorem is proved.

TueoreM II.  The number of apparent double points of a curve
of symbol [k, k,] on a quadric is
h=L(k2+ ks —k — k).
Through an arbitrary point O on the surface pass only two lines

which meet the curve in more than one point, namely, the two
generators passing through O.. The generator wu= constant
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through O meets the curve in % points, consequently counts
for %(kl—l) bisecants through O. Similarly, the generator

A= constant, which passes through (0, 0, 1, 0), meets the curve
in k, points and counts for % (k,— 1) bisecants. The number of

apparent double points is the sum of these two numbers.

184. Space cubic curves.*

TaroreEM I.  Through any siz given points in space, no four of
which lie in a plane, can be passed one and only one cubic curve.

Let Py, ..., P; be the given points. The five lines connecting P,
to each of the remaining points uniquely determine a quadric
cone having P, as vertex. Similarly, the lines joining P, to each
of the other points define a quadric cone having P, as vertex.
These two cones intersect in a composite curve of order four, one
component of which is the line P, P, since it lies on both cones.
The residual is a curve of order three. This curve cannot be com-
posite, for if it were, at least one component would have to be a
straight line common to both cones. But that would require that
the cones touch each other along P, P,, which would count for two.
The residual intersection would in that case be a conic passing
through Pj, -, Ps. But this is impossible as it was assumed that
the points P, -, Py do not lie in a plane. No other cubic curve
can be passed through the given points, for every such curve would
have seven intersections with the two cones (the vertex counting
for two). Hence it would lie on their curve of intersection, which
is impossible, since the complete intersection is of order four.

TuroreM 1I. A space cubic curve lies on all the quadrics of a
bundle.

For, let Py, ..., P, be seven given points of the curve. Every
quadric through these points has 2 . 3 4- 1 points in common with
the curve and consequently contains the curve (Art. 177). But
through the given points pass all the quadrics of a bundle (Art.
136), which proves the theorem.

Not all the quadries of this bundle can be singular, for if so, at

* Unless otherwise stated, it will be assumed in the following discussion that
the curve is non-composite.
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least one of them would be composite (Art. 131) and still contain the

curve. Thisis impossible,since the given curve is not a plane curve.
The symbol (Art. 183) of a space cubic curve on a non-singular

quadrie is [2, 1] or [1, 2], since such symbols as [0, 3] and [3, 0]

simply define three generators belonging to the same regulus.
The forms of f(X, n) corresponding to these symbols are

(aoX? 4+ 2 a4+ ap)p + (BA? + 2 DA + by) =0, (20)
(@' +2 ayp + @' )\ + (blop? + 20" p + V'y) =0. (20"

Conversely, every irreducible equation of this form will define
a cubic curve on the quadric.

Since these equations have six homogeneous coefficients, five in-
dependent linear conditions are sufficient to determine a curve of
either system. Hence through any five points on a given non-
singular quadric can be drawn two cubics, one of each symbol.
Some of these cubics may be composite.

From the formula of Art. 183 it follows that on a given non-
singular quadric two cubics having the same symbol intersect in
four points, while two cubices having different symbols intersect
in five points.

TuroreM 1II. Ewvery space cubic curve is rational.

Let the parametric equations of a non-singular quadrie through
the given cubic be reduced to the form (19). The equations of
the curve in A, p are of the form (20) or (20'). In (20), let A=¢,
solve for p in terms of ¢, and substitute the values of A and of p
in terms of ¢ in (19).

The resulting equations reduce to the form

2; = ut® + @t + apt + Ay t=1,2,3,4. (21)
These are the parametric equations of the curve (Art.178). Since
the curve is by hypothesis of order three, to each value of ¢ cor-
responds a definite point on the curve, and conversely.

Since the cubic (21) does not lie in a plane, the determinant
| @ | # 0. The parametric equations, referred to the tetrahedron
defined by

@ = @’y + 'y + At + Aty i=1,234,
are, after dropping the primes,
o =08 w=t xn=t =1 (22)
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From (22), the intersections of the curve with the plane Sua,=0
are defined by the roots of the equation

w s + upt? - ugt + gy = 0. (23)
The condition that the plane is an osculating plane is that the
roots of (23) are all equal (Art. 180). It follows that the coor-

dinates of the osculating plane at the point whose parameter is ¢
may be expressed in the form

=1, wy=—3¢t u=3¢ u=—4=8

These equations are called the parametric equations of the cubic
curve in plane codrdinates.

The condition that the osculating plane at the point whose
parameter is ¢ passes through a given point (y) in space is that ¢
is a root of the equation

Yt — 3yt + 3yt — gy, = 0. (24)
Since this equation is a cubic in ¢, it follows that the cubic curve

is of class three.
We shall now prove the following theorem:

Turorem IV.  The points of contact of the three osculating planes
to a cubic curve through an arbitrary point P lie in a plane passing
through P.

Let Sar; = 0 be the plane passing through the points of oscu-
lation of the three planes passing through any given point
P = (y). The parameters of the points of osculation of the three
osculating planes through (y) are the roots of (24). The roots of
(24) must also satisfy the equation

at® + at? + at + a, =0,
hence

From these conditions it follows that Sa,y; =0, so that (y) lies
in the plane of the points of osculation.

By the method of Art. 179 the equation of the developable sur-
face of the cubic curve is found to be

(T1y — a3 )t — 40" — @,%5) (25> — @) = O,
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This is also the condition that equation (24) has two equal roots.
From this equation it follows that the rank of the cubic curve is
four (Art. 179).

It was stated without proof in Art. 133 that the basis curve of
a pencil of quadrics of characteristic [22] is a cubic and a bi-
secant; it was also stated that the basis curve of a pencil of char-
acteristic [4] is a cubic curve and a tangent to it. We shall now
prove these statements.

It was shown in Art. 132 that the [22] pencil of quadrics is
defined by the two surfaces

w42 2w, =0, x4 2wx2,=0.

These quadrics intersect in the line @, =0, ,=0 and the space
cubic whose parametric equations can be found by putting #,=1,
@, =2t in the equations of the surfaces, in the form

=2t w=—28 x,=—10, z=1

It intersects the line z, =0, #,=0 in the two points (0, 0, 0, 1),
0, 0,1, 0).

Similarly, it was seen that a pencil of characteristic [4] is
defined by the surfaces

2y + 2y =0, 22+ 22=0.
The basis curve of this pencil consists of the cubic
=1 =28 x=—t =27

and of the line @, = 0, 2, = 0 which touches it at (0, 1, 0, 0).

If in the parametric equation (20) of a cubic we replace A by
i and p by %2 we determine as the projecting cone from
Ty Xy
(0, 0, 1, 0) a cubic cone with a double generator. It follows that
the projecting cone of the cubic is intersected by a plane in a
nodal or cuspidal plane cubic curve. We shall now prove the

converse theorem.

TuroreM V. Any nodal or cuspidal plane cubic curve is the
projection of a space cubic.

Let the plane of the cubic be taken as @; =0, and the node or
cusp at (0, 1, 0, 0). The equation of the curve is of the form

To(agy? + 2 a4+ as?) 4+ bey 'y + 2 b + byl = 0.
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By dividing this equation by 22 and replacing x, : 2, by A, 2,: 2,
by u, we obtain equation (20) of a space cubic curve of which the
given curve is the projection.

Tueorem VI.  Any plane nodal cubic curve has three points of
inflexion lying on a line.

If a space cubic is projected from any point (y) upon a plane,
the osculating planes from (y) will be cut by the plane of projec-
tion in the inflexional tangents of the image curve and the points
of osculation will project into the points of inflexion. From the
theorem that the points of osculation lie in a plane through () it
follows that the points of inflexion of the plane cubic lie on a line.

EXERCISES
1. Show that any space cubic curve and a line which touches it or inter-
sects it twice form the basis curve of a pencil of quadrics.

2. Show that a composite cubic curve exists, through which only one
quadric surface can pass.

3. Prove that the osculating planes to a cubic curve at its three points of
intersection with a given plane (u) intersect at a point in (u).

4. Show that if a cubic curve has an actual double point or a trisecant it
must lie in a plane. i
5. Obtain all the Cayley-Salmon numbers for the proper space cubics.

6. Where must the vertex of the projecting cone be taken, in order that
the plane projection of a proper space cubic shall have a cusp ?

7. Show that the projection of a space cubic upon a plane from a point
on the curve is a conic.

8. Show that the cubic curve through the six basis points of a web of
quadrics determined by six basis points lies entirely on the Weddle surface
(Art. 146).

9. Show that a cubic through any six of eight associated points (Art.
136) will have the line joining the other two for bisecant (or tangent).

185. Metric classification of space cubic curves. The space cubic
curves are metrically classified according to the form of their
intersection with the plane at infinity. If the three intersgetions
are rea] and distinct, the curve is called a cubical hyperbola. It
has three rectilinear asymptotes and lies on three cylinders all of
which are hyperbolic. If the points at infinity are all real and
two are. coincident, the curve is called a cubical hyperbolic
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parabola. It has one asymptote, and lies on one parabolic cylin-
der and on one hyperbolic cylinder. If all three of the points of
intersection are coincident, the plane at infinity is an osculating
plane. The curve is called a cubical parabola. It has no recti-
linear asymptote and lies on a parabolic cylinder. Finally, two
of the points of intersection may be imaginary. The curve is
now called a cubical ellipse. It has one rectilinear asymptote
and lies on one elliptic cylinder. An interesting particular case
of the cubical ellipse is the curve called the horopter curve on
account of its part in the theory of physiological optics. If one
looks with both eyes at a point P in space, the eyes are turned so
that the two images fall on corresponding points of the retinae.
The locus of the points in space whose images fall on correspond-
ing points is a horopter curve through the point P.

186. Classification of space quartic curves.*

TueoreMm 1. Every space quartic curve lies on at least one quad-
ric surface.

For, through any nine points on the curve a quadric surface
can be passed. This surface must contain the curve, since it has
2 X 4 +1 points in common with it (Art. 177).

If a quartic curve lies on two different quadriecs 4 =0, B=0,
it is called a quartic of the first kind. A quartic of the first kind
is the basis curve of a pencil 4 — AB =0 of quadrics. Not all
the quadrics of this pencil are singular, since in every singular
pencil are some composite quadrics. Composite quadrics are im-
possible in this case, since the curve does not lie in a plane. The
symbol of the curve on any non-singular quadric on which it
lies is [2, 2], since each generator of one quadric will intersect
the other quadric defining the curve in two points.

A quartic having the symbol [1, 3] cannot lie on two different
quadries, nor can it lie on a quadric cone, since every generator
would have to cut the curve in the same number of points. The
[1, 3] curve is called a quartic of the second kind.

It follows from Arts. 132 and 184 that except in the cases of
the characteristics [1111], [112], [13], the basis curve of a pencil

* See footnote of Art. 184.
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of quadrics is composite. It will now be shown that in these
three cases the basis curve is not composite, that in the case
[1111] the basis curve has no double point, that in the case [112]
it has a node, and that in the case [13] it has a cusp or stationary
point (Art. 181). That the basis curve is not composite may be
seen as follows: If it were, one component would have to be a
line or a conic. It cannot be a line, for the line would have to
lie on every quadric of the pencil, hence pass through the vertex
of every cone contained in the pencil. From the equations of the
pencils having these characteristics (Art. 133) it is seen that in
each case there is at least one cone whose vertex does not lie on
the basis curve. Moreover, one component cannot be a conic, for
the quadric of the pencil determined by an arbitrary point P in
the plane of the conic would contain the plane of the conic, and
hence be composite; but pencils having these characteristics have
no composite quadrics. It will now be shown that the basis curve
of the pencil [1111] has no actual node or cusp. It will be called
the non-singular quartic curve of the first kind. Suppose the
basis curve had a node at O. The projecting cone to the curve
from O is of order two. The quadric of the pencil through an
arbitrary point P on the projecting cone contains the line OP,
since it has three points in common with it. This quadric and the
cone must coincide, since they have a quartic curve and a straight
line in common. Hence the cone would belong to the pencil, but
this is impossible, since no cone of the pencil [1111] has its ver-
tex on the basis curve.

From the equation of the pencil of characteristic [112] it
follows that the vertex (0, 0, 0, 1) of the cone

()\1 — )\3)9712 + ()\2 — Aa)%z +22=0

of the pencil lies on the basis curve. This point is an actual
double point on the curve, since every plane through it has two
points of intersection with the curve coincident at that point.
All the quadrics of the pencil touch the plane a; =0 at (0, 0,0, 1);
every plane through either of the distinct lines (X — Xg)x® +
(A, — A)a2 =0, in which 2, =0 intersects the cone has three in-
tersections with the curve coincident at (0, 0, 0, 1). These two
lines are tangents at the node.
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Finally, the vertex of the cone
(M — M)+ 22, =0

of the [13] pencil is a double point on the basis curve. The tan-
gent lines @, = 0, #; =0 coincide. The double point is a cusp.

The parametric equation of a quartic of symbol [2, 2] has the
form

(2 + 2 d + )t + 20N +2 DA+ B)paF e 42 A+ 0,=0. (25)

The quartic defined by (25) is the intersection of the quadric
@@, — 22, = 0 (Art. 183) and the quadric

s + 2 g,y - apt,? + 2 boyay + 4 byyay + 2 bywaty 4 cov,® + 2 02,2
+ ez 2=0. (25"

If the quartic of intersection has a double point or cusp, we
may take the double point as (0, 0, 0, 1), and a cone with vertex
at that point for one of the quadries passing through it. The
parametric equation (25) now has the form

(2 @+ a)pe? + 2(By N + 2 B A+ e\ =0, (26)

If in (26) we put A = ut, solve for ¢, and put the values of p and
A= ut in equations (19), we obtain a set of parametric equations
of the singular quartic curve of the first kind, of the form

@, = gt + @l + agt +ay,  T=1,2,3,4; @7

hence the nodal and cuspidal quartics are rational.

A quartic of the second kind can be expressed parametrically
in terms of the parameter which appears to the third degree in its
parametric equation, hence the quartics of the second kind are also
rational. Rational curves will be discussed later (Art. 188).

TueoreM IL.  Through a quartic curve of the second kind and
any two of its trisecants can be passed a non-composite cubic surface.

For, through nineteen points in space a cubic surface can be
passed (Art. 161). Choose thirteen on the quartic curve, one on
the trisecant g, one on the trisecant ¢’, not on the curve, and four
others in space, not in a plane nor on the quadric on which the
quartic lies. The quartic curve and the lines g and ¢’ must lie on
the non-composite cubic surface determined by these nineteen
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points as well as on the quadric containing the regulus of tri-
secants, hence together they form the complete intersection of the
cubic and the quadric.

187. Non-singular quartic curves of the first kind. Two quartic
curves of the first kind lying on the same quadric intersect in
eight points (Art. 183); these points are eight associated points
defining a bundle (Art. 136), since they lie on three distinct
quadrics not having a curve in common.

The number of apparent double points of a non-singular quartic
C, of the first kind is two. For each bisecant of C, through an
arbitrary point P is a generator of the quadric of the pencil hav-
ing C, for basis curve which passes through P. Conversely, each
generator of every quadric through C, is a bisecant.

Of the Cayley-Salmon numbers we now have m=4, h=2,
B=0, H=0. It also follows from the definition that G'=wv
= 0 =0, hence from the formulas of Art. 182 we have

m=4, n=12, r=8, H=0, h=2, G=0, =38, « =16, 3 =0,
=0, 0=0, x=16, y=8, p=1.

TaroreMm 1. Through any bisecant of a mnon-singular space
quartic curve of the first kind can be drawn four tangent planes
to the curve, besides those having their point of contact on the given
bisecant.

Let the given bisecant be taken as x, = 0, 2, = 0 and the quadric
of the pencil containing it as @@, — 2,2, = 0. Let another quadric
of the pencil be determined by (25'). Any plane of the pencil
2, = mx, intersects C, in two points on @, = 0, #,=0 and in two
other points determined by the roots of the quadratic equation in
Xy X

o @2 (agm? + 2 aym + a,) + 2 wyx, (bym?* + 2 bym + b,)
+ &2 (com? + 2 eym + )= 0.

The planes determined by values of m which make the roots of
this equation equal are tangent planes. The condition on m is
4(bgmi+2 bym +b,)*— 4 (agm?+2 aym +-a,) (cgmP+2 eym+-¢) =0.  (28)

Since this equation is of the fourth degree, the theorem is
established.
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TuroreM 1I. An arbitrary tangent to a non-singular quartic of
the first kind intersects four other tangents at points not on the curve.

This is a particular case of Theorem I, since a tangent is a
bisecant whose points of intersection with the curve coincide.

TuroreM III.  The cross ratio of the four tangent planes through
any bisecant is the same number for every bisecant of the curve.

Two cases are to be considered, according as the two given
bisecants intersect on C, or not. Let g, ¢’ be two bisecants
through a point P on C,, but not lying on the same quadric of
the pencil. Let the equation of the quadric of the pencil through
C, which contains ¢ be reduced to the form 2, — 2, =0 in such
a way that the equations of g are #, =0, 2,=0 and the points of
intersection of ¢’ with C, are (0, 0, 1, 0)(0, 0, 0, 1). In (25") we
now have a,=0, ¢,=0, and also in (28). The points of inter-
section not on ¢’ of a plane @, =nw, and C, are determined by the
roots of the equation

2 (eyn? + byn) .2 + (cn? + 4 byn + ay) 2425 + 2 (bgn + ;) 2> = 0.

The parameters n,, n, ng n, of the four tangent planes are roots
of the equation

(egn® + 4 by + ay)® — 16 (ben + a,) (eyn® + byn) = 0.
The cross ratio of the four roots of this equation is equal to the
cross ratio of the roots of (28) (when a,= ¢,=0), since the two
equations can be shown to have the same invariants.*

To prove the theorem when ¢, ¢’ intersect at P on C; and
lie on the same quadric through C,, consider any third bisecant
g” of C, through P. The cross ratios on g and on ¢’ are each
equal to that on ¢”.

This completes the proof of the first case.

To prove the theorem when the two bisecants do not intersect
on C,, consider a third bisecant connecting a point of intersection
on the first with a point of intersection on the second. The
cross ratio on each of the given lines is equal to that on the
transversal.

This cross ratio is called the modulus of the quartic curve.

* Burnside and Panton: Theory of Equations, 3d edition, p. 148, Ex. 16. It
will be found that I and J have the same values for each equation.
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The projecting cone of ¢, from a point on it is a cubie cone.
The section of this cone made by a plane not passing through the
vertex is a cubic curve. Conversely, any plane cubic curve is the
projection of a space quartic curve of the first kind. Consider
the cubic curve in the plane 2;=0. It is no restriction to choose
the triangle of reference with the two vertices (1, 0, 0, 0), (0, 1,
0, 0) on the curve. The most general cubic equation in x,, @, x,,
but lacking the terms 2,3, x>, may be written in the form

2 ay)ey + @’y + 2 by, + 4 b, + 2 byt + Coy" 04
+ 2 c@d + el =0.

But this is exactly the result of projecting (Art. 175) from the
point (0, 0, 1, 0) the curve (25) for the case «,=0, that is, when
the quartic curve passes through (0, 0, 1, 0).

From Theorem III it now follows that the cross ratio of the
four tangents to any non-singular cubic curve from a point on it,
not counting the tangent at the point, is constant.

It was seen that every non-singular quartic lies on four quadric
cones whose vertices (Art. 133) are the vertices of the tetrahedron
self-polar as to the pencil of quadric surfaces on which the curve
lies (Art. 112). Let ¢, ¢' be two distinct tangents of €, which
intersect in a point . The plane = determined by ¢, t' touches C,
in the points of contact T, 7" of ¢, ¢/, respectively. The following
properties will now be proved :

(1) The line I = T'T is a generator of a quadric cone on which
O, lies.

(2) The plane = is a tangent plane to this cone along I

(3) The point P lies in the face of the self-polar tetrahedron
opposite to the vertex through which [ passes.

The plane = cuts the pencil of quadric surfaces on which C| lies
in a pencil of conies touching each other at 7"and 7". One conic
of this pencil consists of the line ! counted twice, hence [ is a
generator of a cone of the pencil and = is its tangent plane. More-
over, I is the polar line of P as to the pencil of conics, hence the
vertex of the cone and the point P are conjugate points. Thus
P lies in that face of the self-polar tetrahedron which is opposite
the vertex of the cone.

If 7 approaches a stationary plane (Art 181), then 7, 7", P
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approach coincidence, and the tangents ¢, ¢' both approach /. This
occurs at every point in which C, intersects the faces of the self-
polar tetrahedron. We have thus the following theorem:

TaroreM V. The points of contact of the sivteen stationary
planes (e = 16) of a non-singular quartic curve of the first kind lie
in the faces of the common self-polar tetrahedron. The planes be-
longing to the points in each face puss through the opposite vertew.

Referred to the self-polar tetrahedron, the equations of the
quartic are (Art. 133)

e+ x?+ 2 fal=0, a@’+ awd + aw’ + agd =0.
The equation of the developable was derived in Art. 179.

The section of the developable surface by the plane x, =0 is
the quartic curve (a;, = a;, — a;),

g%, 205+ g y520,205% - g (Ualyy + Cygllag) )"0 = 0
counted twice. It is a double curve on the developable. It is
the locus in the plane z, = 0 of the points of intersection of tan-
gents to C,. A similar locus lies in each of the other faces of the
self-polar tetrahedron. Since the Cayley-Salmon number « is 16,
the entire locus of intersecting tangents to C, is these four curves.

Since the points of intersection of C, with the faces of the
self-polar tetrahedron are the points of contact of the sixteen
stationary planes, the codrdinates of these points are

(£ Vay, +Vag, tVay 0), (£Vay +Vag, 0, £Va,),
(j:'\/@, 0, lt\/a:;; :t\/a_ls); (07 :t\/a_.m i\/a;) i\@)-

EXERCISES

1. Find the locus of a point P such that the two bisecants to Cy from P
coincide.

2. How many generators of each quadric through C, are tangent to the
curve ? )

3. By the method of Art. 180 find the equations of the stationary planes.

4. Show that any plane containing three points of contact of stationary
planes will pass through a fourth. How many distinct planes of this kind
are there ?

5. Find the locus of a point P such that the plane projection of Cj from
P will be a quartic curve with one double point and one cusp ; two cusps.
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188. Rational quartics. The parametrie equations of any
rational quartic may be written in the form
=0t +da,t® + 6a,? +dayt + Ay t=1,2,3, 4.
The parameters of the points of intersection of the curve with
any plane Sux; = 0 are the roots of the equation
#1300 + 4 83u,0, + 6 2Su.a,, 4- 4 tSu,a; + Su,a, = 0.

Let t,, t,, t,, t, be the roots of this equation. From the formulas
expressing the coefficients in terms of the roots we have at once

(tl + b+ + t4) Sagun, + 4 Sa;u, =0,

(tty + tity + bty + bty + bty + tty) Sa,ou; — 6 Sazu, =0,
(Btats + titot, + Utaty + Lotsty) Saen, + 4 Sagzu; = 0,

blotst S, — Sagu; = 0.

(29)

If we eliminate u, : u, : u : u, from these four equations, we obtain
as the condition that ¢, - . -, ¢, are the parameters of four coplanar
points, the equation

12 A4tlt2tst4 +3 Aa(tltzta + Lty + bitgty + tztat4)
+ 2 Ay (bt + ity + b, + bty + bty + tit,) (30)
+ 3 A,y +htt+t)+12. 4, =0,

in which A4, =|ayamaza, A= S [, ete. If t,=¢,
=ty =1, in (29), the corresponding point will be a point of con-
tact of a stationary plane. Hence there are four points of con-
tact of stationary planes. These four points are defined by the.

equation
AP+ A+ A,8 + At + A, = 0. 31)

TrEOREM. If @ quartic curve has a double point, the parameters
of the points of contact of the stationary planes are harmonic.

Let P be the double point and let ¢, ¢, be the values of the para-
meter at P. Since P is coplanar with any other two points on
the curve, equation (30) is satisfied independently of the values
of t;and ¢, Thus ¢, ¢, must satisfy the conditions

12 At + 3 A, (tl +6)+24, = 0,

3dtit, + 2.4, (t, + t,) + 3 4, = 0, (32)
2 ity + 3 A, (t + t,) + 12 4, = 0.
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These equations are compatible only when the determinant

vanishes, thus 124, 34, 24, .
3 A3 2 ‘AZ 3 Al = O'
24, 34, 124,

But this is the condition that the roots of (31) are harmonic.*
The condition that the double point is a cuspis ¢; = ¢,. In this
case equations (32) are replaced by the quadratic equations
6482 +34¢+4,=0, 342 +44t+34,=0,
A+ 34t +64,=0.

But these are the conditions that (31) has a triple root. Hence,
on a cuspidal cubic, three of the points of contact of stationary
planes coincide at the cusp. There is in this case only one proper
stationary plane.

Three points on C, are collinear if their parameters ¢, ¢, t;
satisfy (30) for all values of t,, The necessary conditions are
12 Agitaty + 3 Ay(tits + tots +tat) + 2 Aol + 1+ &)+ 34, =0, (33)
S Agtitats + 2 Ay(tyty + tots + 1) + 34,(t +t.+ ts) + 12 A4,=0.
If the curve has a double point, the parameters ¢, ¢, of the double
point satisfy these conditions for every value of ;. If it does
not have a double point, the equations (33) are satisfied, for any
given value of t;, by the parameters of the other points on the
trisecant through ¢.

If the equations resulting from (33) by putting ¢, = ¢, = #; have
a common solution ¢, the curve has a linear inflexion at the point
whose parameter is ¢. The condition that these equations in ¢
have a common solution is exactly the condition that (31) has a
double root. In particular, if (31) is a square, the curve has two
distinet linear inflexions.

EXERCISES

1. Obtain the Cayley-Salmon numbers for:
(a) the nodal quartic.
(b) the cuspidal quartic.
(c¢) the general quartic of the second kind.
(@) the quartic having a linear inflexion.
(e) the quartic having two linear inflexions.

* When the roots of a quartic equation are harmonic, the invariant J vanishes.
See Burnside and Panton: Theory of Equations, 4th edition, Vol. 1, p. 150.
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2. Show that every [1, k] curve on a quadric is rational and can have no
actual double point.

3. Show that every rational guartic'is nodal, cuspidal, or a quartic of the
second kind.

4. Show that if a rational quartic does not have a cusp or a linear in-
flexion, its parametric equations can be written in the form

=04+ DY m=>_C+a), z3=1t, x4=1.
Find the values of ¢ for which the curve is nodal.
5. Prove that if a quartic has a single linear inflexion, its equations can
be written in the form
=t w=1, x3=(t+1), x4=1,
and if it has two distinet linear inflexions, in the form
X =t re=10% x3=1t, x4=1.

6. Show that the equations of a cuspidal quartic can be written in the form

=1t T2=18, x3=12, a4=1.

7. Show that the tangents at the points of contact of the stationary planes
of a rational quartic are in hyperbolic position (Art. 120).

8. Show that through any point P on a rational quartic curve pass three
osculating planes to the curve besides the one at P, and that the plane of the
points of contact passes through P.

9. Determine the number of generators of a quadric surface which are
tangent to a [1, 3] curve lying on it.

10. Determine the number of generators of a quadric surface which are
tangent to a nodal quartic curve lying on it.

11. Find the parametric equations in plane codrdinates of the curves of
Ex. 5.



CHAPTER XIV

DIFFERENTIAL GEOMETRY

In this chapter we shall consider some of the properties of
curves and surfaces which depend on the form of the locus in the
immediate neighborhood of a point on it. Since the properties
to be determined involve distances and angles, we shall use rec-
tangular codrdinates.

I. Analytic Curves

189, Length of arc of a space curve. The locus of a point whose
coodrdinates are functions, not all constant, of a parameter »

e=fi(w), y=rHk), z=1f{) (1)

is a space curve. The length of arc of such a curve is defined as
the limit (when it exists) of the perimeter of an inscribed poly-
gon as the lengths of the sides uniformly approach zero. Curves
for which no such limit exists will be excluded from our discus-
sion.

By reasoning similar to that in plane geometry it is seen that
the length of arc s from the point whose parameter is u, to the
point whose parameter is u is

v [7da\E | [dy\? , [dz\? '
= = = -, du. 2
* f \Kdu) +(du> +<du>’ “ @
This equation defines s as a funection of ». If the function so

defined is not a constant, equation (2) also defines » as a function
of s. In this case we may write (1) in the form

a=w(s), y=y(s), z=2(9), ®)

in which s is the parameter.
Unless the contrary is stated, we shall suppose that s is the
parameter in each case, and that x, y, z are analytic functions of
245
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s in the interval under consideration. In the neighborhood of
(#(s), y(s), 2(s)), to which we shall refer as the point s, we have

xl=w+w’As+%"(As)2+ 200 g

1"
é‘ K=y +yAs+ % (As)’+ ..., )
!
2 =2z +2'As +%'(A.<>')2 + oy
in which o= %ﬁ, i e %, ete.

Tt follows from equation (2) that

x4y 42 =1, ®)
By differentiating equation (5) we obtain
22 y'y" 22 =0. (6)

We have thus far supposed that the second member of (2) was
not a constant. If the second member of (2) is a constant, we

have
Aot L (WY 4 (BN
(du> +<du> +(du> ’ @

Curves for which this condition (7) is satisfied are called minimal
curves. They will be discussed presently. It will be supposed,
except when the contrary is stated, that the curve under consider-
ation is not a minimal curve.

190. The moving trihedral. The tangent line to the curve at
the point P = (=, y, 2) on it may be defined as the limiting posi-
tion of a secant as two intersections of the line with the curve

approach P.
From (4) the equations of the tangent at P are
X—2_ Y-y Z—z _ . ®)
' - yv - 2! : :

Let A, u, v be the direction cosines of the tangent, the direction
in which s increases being positive. From (8) and (5) we have

A=day p=y, v=z. ®
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The plane through P = (x, y, 2) perpendicular to the tangent line
is called the normal plane. Its equation is

V(X —2)+y (Y—y)+2'(Z—2)=0. (10)

The osculating plane at P is the limiting position of a plane
through the tangent line at P and a point P’ on the curve, as P!
approaches P. We shall now determine the equation of the
osculating plane.

The equation of any plane through P is

AX-2)+B(Y—y)+C(Z—2)=0.
It contains the tangent (8) if
Az’ + By' 4+ C2' =0,
and will be satisfied for powers of As up to the third (Egs. (4)) if
Ax' + By" + C2" = 0.

By eliminating 4, B, C, we obtain, as equation of the osculating
plane at P,
X—2 Y-y Z-—z
2! y' 7 | =0. (11)
Cl)" y" zl'
The line of intersection of the osculating plane and the normal

plane is called the principal normal. From (10) and (11) its
equations are found to be

X—ax Y—y Z-—=z
Y T =

If A, py, 1 are the direction cosines of the principal normal, and
if we put

%:Vm, (13)
we have
N=p2", p=py’, v =p7". (14

The plane through P perpendicular to the principal normal is
called the rectifying plane. From (12) its equation is

(X —2)+y' (Y —y)+2'(Z—2)=0. (15)
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The intersection of the rectifying plane and the normal plane is
called the binormal. From equations (10) and (15) its equations
are

X—2 Y—y Z—z

(16)

ylzr/ _ ynz/ - o — Ay = xr?// . xuyr *
If A, oy v, are the direction cosines of the binormal, we have the
relations

M=p(f2 —y'7), p=p@H — ), w=p@y —ay). (IT)

The trirectangular trihedral whose edges extend in the positive
directions from P along the tangent, principal normal, and bi-
normal is called the moving trihedral to the curve at P =(x, ¥, 2).

From (9), (14), and (17), we have

A pov
N o on| =1 (18)
A omon

It follows at once (Arts. 37, 38) that the positive directions of
the coordinate axes ean be brought into coineidence with the
positive directions of the moving trihedral at the point P by
motion alone, without reflexion. Moreover, we have (Art. 37)

A=y — vip, B = A — Ay, Vo= Mpp — Mgy,
A= P2V — Vo, M= A — A, Vi = )\2# — Aptgy (19)
A=wnp — py Mo = Ay — ) Ve = Mg — Afa.

191. Curvature, The curvature of a space curve is defined,
like that of a plane curve, as the limit, if it exists, of the ratio
of the measure of the angle between two tangents to the length
of arc of the curve between their points of contact, as the-points
approach coincidence.

Let 6 be the angle between the tangents to the curve at P and
P'. The direction cosines of the tangent at P are o, ¥/, 2 (9),
those at P’ are

@+ &'AS A ey Y F Y AsF ey Z 42 AS A e,
From Art. 5, we have
Siﬂz Ao =4 {(ylz/, _y/rzl)z +(le” A mlzll)g + (xlyll -l g w”?l')2§ (As)2+ oory
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the remaining terms all containing higher powers of As. From
(5) and (6) the coefficient of (As)® reduces to 24y 42
Since

line S Af _ 1,
Asz0

we have, on account of (13),
dg_ 1
Z== (20)
ds P
as the expression for the curvature at P. The reciprocal of the
curvature is called the radius of curvature.

If l=0 at a point P on the curve, the tangent at P has three

P
points of intersection with the curve coincident at P; hence P is
a linear inflexion.

192. Torsion. The torsion of a space curve is defined as the
limit, if it exists, of the ratio of the angle between two osculating
planes to the length of arc between their points of osculation, as
the points approach coincidence. The reciprocal of the torsion
is called the radius of torsion and is denoted by o.

In order to find the value of o, let Ar be the angle between the
osculating planes at the points whose parameters are s and s 4 As.
By a process similar to that of Art. 191 we obtain

sin? At = {(pa/s — vap's)* + (raN'as — Mv'a)” +(Aap's — pad'a)? § (A8)" +
the remaining terms all containing higher powers of As. By dif-
ferentiating (17) we have

12 =£_ )\2 AL p(?/’zm 2 m) [L = ; e L p(z g m),

V = g_ Vy + p (w/ " y/wm). (21)

It follows that
oy 2
pV a—vaple = p' |y 2,

wlll ylll z/ll

with similar expressions for v,\’; — A’y and for A’y — pNy
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If we substitute these values in the above expression for sin Ar,
pass to the limit, take the square root, and assign opposite signs to
the two members, we obtain the result

? y 7
g_;=1=_p2 bl :![” z”i , (22)
o "y 2"

which is the formula required. Expand the determinant of equa-
tion (22) in terms of the elements of the second row, replace
o', y”, 2’ by their values from (14), and the cofactors of these
numbers by their values from (21), and put A, + pypy + vy, equal
to zero, since the principal normal and binormal are orthogonal.
By performing these operations we simplify (22) to the form

% == >\1Xz + ,“1,“«12 + VlVlz- (23)

193. The Frenet-Serret formulas. The nine equations

V= ’\1 ‘u,_,ul v'=v—‘,
P P

="<P+ ) (%"'%)3 V'1=“‘ Z+V2>’ (24)
Az—_; ,“'2—ﬂ V’2=ﬁ7
(14 2 [

are called the Frenet-Serret formulas.

The first three follow at once by replacing A, p, v and Ay, pyy 1
by their values from (9) and (14).

To derive the last three, differentiate the identities

MApt+vi=1, Mo+ ppy+ =0

with respect to s and substitute for X', u’, +’ their values from (24)
which we have just established. The results are

NN+ pols + v = 0, A+ ppy + v/, =0.
From these equations we obtain, after simplifying by means of (19),

Ny= 08Ny po=8py,y vy=2dn,
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8 being a factor of proportionality. To determine its value, sub-

stitute these values of Xy, /5 v/5 in (23). Since A2+ pu®+»?2=1,

wefind §= L. Thelast three equations of (24) are thus established.
g

To find the values X,, differentiate the identity A, = pw — vou

(19) and substitute for ', v/, s, vy their values from (24). By

(19) the result reduces to the form N, = ——(/ﬁ\]-+ &> The values
o
of w',, v/, are found in the same way. '

194. The osculating sphere. The sphere which has contact of
the third order with a curve at a point P is called the osculating
sphere of the curve at P. To determine the center and radius of
the osculating sphere at P=(w, y, z), denote the codrdinates of
the center by (w, ys, 2,) and the radius by R.

The equation of the sphere is

(X =@ (Y= g4 (Z— ) = B
This equation must be satisfied by the coordinates defined by (4)
to terms in (As)® inclusive. From these conditions we obtain the
following equations
(@ =z +(y — 92)* + (2 —2)* = R,
({D - xz)x, + (y N yz)?/ + (Z - z2)z’ - 0) (25)
(@ — 2" +(y—y)y’ +(z —2)?" +1=0,
(m - w2)xﬂl +(y — yz)yﬂl +(z — 22)2”’ = 0.
By solving the last three equations for & — ,, ¥ — ¥y, 2 — 2, and
simplifying by means of (21), (22), and (24) we find
By =2+ pA, — p'oAy, Yo=Y + pp1 — p'opry 2 =2+ pvy — p'ove.  (26)
If we substitute these values of @, ¥,, 2, in the first of equations
(25) and simplify, we obtain
R*= p2 + a'zp'z. (27)
TaeorEM. The condition that a space curve lies on a sphere is
p+ (s’ +ap”)=0.

If a given curve lies on a sphere, the sphere is the osculating
sphere at all points of the curve so that x, ¥, 2, and R are con-
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stants. Conversely, if these quantities are constants, the curve
lies on a sphere.

To determine the condition that the codrdinates of the center
are constant, differentiate equations (26) and simplify by means
of (24). Since A, py, v, are not all zero, the condition is

‘ p+ (s + ap”) = 0.
By differentiating (27) we see that R is also constant if this equa-
tion is satisfied. This proves the proposition.

195. Minimal curves. We have thus far excluded from discus-
sion those curves (Art. 189)

v=fi(u), y=riv), 2z =f3(w),
@ e

Such curves we called minimal curves. A few of their properties
will now be derived.
From (28) we may write

for which

do | dy_
du = du du
de .dy dz
d f—— 2\ 92
an (du ’ du) du
in terms of a parameter ¢. From these equations we deduce
de  dy  dz
du du du

If we denote the value of these fractions by &(u), solve for

d—w, d_y, oL and integrate, assuming that ¢(u) is integrable, we
du’ du’ du

find that the equations of a minimal curve may be written in the form
e=3 fA-sdn, =1 fA+mswm, o= S tg0an,
2 2
(29)
in which ¢ is a constant or a function of w. If¢is constant, the
locus (29) is a line. For, let k be defined by k = f “$(u)du.
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In terms of & we obtain

— 12 )
w=17tk+% y=5(1+Ok+y, z=th+z,

wherein x,, ¥;, 2, are constants of integration. The locus of the
point (, y, #) is the minimal line through the point (2, ¥, %)
T Y=Y 2%,
1—-8 1+8)" ¢
2 2
The equation of the locus of the minimal lines through any point

(@, 1, 71) is found by squaring the terms of these equations and
adding numerators and denominators, respectively, to be the cone

(@ —2)*+(y —9)* + (2 — 2)* =0,
having its vertex at (w, 7, 2,) and passing through the absolute.
This is identical with the equation of the point sphere (Art. 48).
If ¢t is not constant, but a function of u, we may take ¢ as the
parameter. Let uw=y(t), and let $(u)du = ¢(y(2))y'(t)dt be re-
placed by F(t)dt. Equations (29) have the form

s=1 f A—e)F@ydt, y=" f A+ F@d, 2= (tFEdt. (30)

Let f(¢) be defined by = F(t). By integrating equations (30)

by parts we have
(1 _ tz) dzf(t) +t df(t> f(t)—|— @,

5 ar
Md%— it ﬁl + i)+ % (31)
s T L L(Q e

dt?

@, ¥, % being constants. The equations of any non-rectilinear
minimal curve may be expressed in this form.

EXERCISES
1. The curve
t=acos¢, y=asing, z=a¢
is called a circular helix. Find the parametric equations of the curve in
terms of the length of arc.
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2. At an arbitrary point of the helix of Ex. 1 find the direction cosines
of the tangent, principal normal, and binormal. Also find the values of p
and 0.

3. Find the radius of the osculating sphere at an arbitrary point of the
space cubicx =¢t,y =2, z =¢3.

4. Show that the equations of a curve, referred to the moving trihedral of
a point P on it, may be written in the form

$3 s? dp\ s s
r=8———+ .. =" () 2. ave = — e “er
6 p2 0 Y 2p (ds)6p2+ v 6pa'+ i
s being the length of arc from P.
5. Discuss the equations (81) of a minimum curve in each of the follow-
ing cases:

(@) f(t) a quadratic function of ¢.
(b) f(t) a cubic function of ¢.

II. Analytic Surfaces

196. Parametric equations of a surface. The locus of a point
(2, ¥, ) whose coordinates are analytic real functions of two in-
dependent real variables u, v

v=fi(u, v), y=rw v), 2=rfi(x v), (32)
such that not every determinant of order two in the matrix
% 9 U
<0
du Odu -« du (33)
oh 9 9%
dv dv v

is identically zero, is called an analytie surface. The locus de-
fined by those values of u, » for which the matrix (33) is of rank
less than two is called the Jacobian of the surface. Points on
the Jacobian will be excluded in the following discussion.

The reason for the restriction (33) is illustrated by the follow-
ing example.

Exampre. Consider the locus
c=u+v, y=(u+72)? z2=_~u+v)>
For any given value ¢, any pair of values u, » which satisfy the equation
% + v = ¢ define the point (¢, ¢2,¢3). The locus of the equations is a space
cubic ecurve. In this example the matrix (33) is of rank one.
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The necessary and sufficient condition that u, v enter f, f;, f; in
such a way that «, y, 2 can be expressed as functions of one vari-
able is that the matrix is of rank less than two.

197. Systems of curves on a surface. If in (32) u is given a
constant value, the resulting equations define a curve on the sur-
face. If u is given different values, the corresponding curve
describes a system of curves on the surface. Similarly, we may
determine a system of curves v =const. The two systems of
curves u = const., v = const. are called the parametric curves for
the given equations of the surface; the variables u, » are called
the curvilinear codrdinates on the surface.

Any equation of the form

o(u, v)=c¢ (34)
determines, for a given value of ¢, a curve on the surface. The
parametric equations of the curve may be obtained by solving
(34) for one of the variables and substituting its value in terms of
the other in (32). If we now give to ¢ different values, equation
(34) determines a system of curves on the surface.

If ¢(u, v) = ¢, Y(u, v) = ¢’ are two distinct systems of curves on
the surface, such that

FI IR MWL

by putting ¢(u, v) =, ¢ (u, v)'=v and solving for v, v we may
express ¥, ¥, z in terms of u', v'. This process is called the trans-
formation of curvilinear codrdinates.

198. Tangent plane. Normal line. The tangent plane to a sur-
face at a point P on it is the plane determined by the tangents
at P to the curves on the surface through P.

The equations of the tangent lines to the curves u = const.
and v = const. at P = (x, y, 2) = (4, v) are (Art. 190)

X—ao Y-y Z—z

dw 3y %
v 3 D
X—2 Y—y Z-—=z
oz Ty %

M du Ju
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The plane of these two lines is
X—2 Y-y Z—2
dx dy 9z
Ju du  du |=0. (85)
Iy &
dv v dv

Let v= ¢(u) be the equation of any other curve on the surface
through (v, v). The equations of its tangent lines are

X—2 = Y-y . Z—z
O 0vdg 3y, 0ydp 5, 52d
du  dvdu Ou Jvdu Ju Ovdu

This line lies in the plane (35) independently of the form of
¢(u), hence (35) is the equation of the tangent plane.

The normal is the line perpendicular to the tangent plane at
the point of tangency. Its equations are

X—2 _ Y—y _ Z—z .
dyodz 020y 020x dxdz dxdy dyox

dudv Jdudv Judv Judv Judv OJudv

We shall denote the direction cosines of the normal by A, f, v.
Their values are

A= L/ 02 0zdy
D\oudv Odudv)
—_1/0zdx dxdz
M_5<Buév Ju 61))’ (36)
L1 (owdy_dyon
"TD\oudw uan)
wherein
Oy dz 9z dy\? | [0z dx  Qx dz\* | /dx dy Oy dx\? 3
2 — [ 2222 2 s e e S ot S, L S SO 7
> (auav auav) +(6u,av 8u6)v> +<61¢60 du dv (%)

If D=0, the tangent plane (35) is isotropic (Art. 152), and the
formula for determining the direction cosines of the normal fails.
We shall limit our discussion to the case in which D == 0.

The equation of the tangent plane may be written in the form

MX—0)+ 5 (Y —y)+7(Z—2)=0.
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199. Differential of arc. Let ¢(u, v)=0 be the equation of a
curve on the surface (32). The differential of the length of arc of
this curve is given by the formula (Art. 189)

ds? = da? + dy? + d2?,
in which
x

dox ) oy dy oz 0z
= == =4 du4-Ldv, dz=—d —d
dx audu-}-avdv, dy 70 u+6v v, dz Tu u+8v v,

and the differentials du, dv satisfy the equation
d¢ d¢
2du+—Ldv=0.
du =% v Y

If we substitute these values for dw, dy, dz in the expression for
ds we obtain

ds? = Edu? + 2 Fdudv + Gdv?, (38)
in which
_ -a_w 2 a—y< 2 -a—z 2
#=(5) +(6e) *(&)"
_Owdz  Oydy  0z0z (39)

T Oudv  dudv  dudv

_[9x\F, [Oy\* | [0z}

a=(ae) +(5e) +(55)°
Since the expression ¢(u, v) does not enter explicitly in the equa-
tion (39), the expression for ds has the same form and the coeffi-
cients E, F, G have the same values for all the curves passing
through P, but the value of dv: du depends upon the curve chosen.
The coefficients E, F, G are called the fundamental quantities of

the first order. From (37) and (39) it follows that

D*=EQG—F*

Let C be a curve on the'surface through (u, v) and let ds be the
element of arc on C. The direction cosines A, u, v of the tangent
to C are

der _dxdu , dxdv _dy_08ydu  dydv

=E§_£(_Z; v ds’ 'u—ds duds  dvds’
dz_dzdu | dzdv

= —_———

ds Ouds Odvds
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If we replace ds by its value from (38), divide numerator and
denominator of each equation by du, and replace dv:du by k,
we have

dx ox
Ry i
du + v

P N P —
VE +2 Fk + Gi#’

dy dy
oY 1%
Ju + dv

" (40)

TVEL2Fi 1 GR
0z oz
ERL

V= m—————— — — .

VE +2 Fk + Gk?

It follows from these equations that at a given point on the sur-
face the tangent line to a curve passing through the point is
uniquely determined when the value of the ratio dv:du=Fk is

known, since g_m’ g—ﬁ, ete., are fixed when the point (v, v) is given.
u

200. Minimal curves. Each factor of the expression
Eduw? 4+ 2 Fdudv 4 Gd?,

when equated to zero, determines a system of curves on the sur-
face. Let ¢ (u, v)du + ¢(u, v)dvbe such a factor. By equating to
zero and integrating we obtain an equation of the form f(u,v,)=c,
in which ¢ is a constant of integration, which determines a system
of curves on the surface.

The two systems of curves determined in this way are minimal
curves (Art. 195), since the differential of arc of every curve of
each system satisfies the condition

dst = Edu? + 2 Fdudv + Gdv*=0.

This equation determines, at (v, v), two values of the ratio
dv:du =k which define two imaginary tangents to minimal
curves. The two tangents coincide at points for which D= 0.

In the succeeding discussion we shall assume that minimal
curves are excluded.



ArTs. 200-202] RADIUS OF NORMAL CURVATURE 259

201. Angle between curves. Differential of surface. The angle
between the tangents to the curves u = const., v = const. is deter-
mined from Art. 198 by the formula (Art. 5)

VEG—F'_ D .
VEG VEG

The curvilinear quadrilateral whose vertices are determined by

(%, v), (u+ Ay, v), (4, v + Av), (v + Au, v+ Av) is approximately

a parallelogram such that the lengths of the adjacent sides are,

from (38), vV Edu, v Gdv, and the included angle is .
Hence we have in the limit for the differential of surface

dS = sin oV EGdudv = Ddudv.

cos o = , from which sin o =

Let C, " be two given curves on the surface through a point P.
‘We shall denote the differentials of w, v, s on C by du, dv, ds and
the differentials of u, v, s on ¢’ by 8u, 8v, 8s. The direction co-
sines A, u, v of the tangent to C are determined by replacing k in
(40) by dv:du; similarly the direction cosines X, u, +' of the
tangent to €’ are determined by replacing %k by &v: 8u.

If 4 is the angle between the tangents to ¢ and ' at (u, v),

Edub‘u + F'(dudv + dvdu)+ deSv
dsds

cos § = AN + pp’ 4 wv (41)

From (41) we have at once the following theorem:

TueoreEM. The condition that two directions determined by the
ratios dv : du, v : du are orthogonal is

Edudu + F(dudv + dvdu) + Gdvdv =0, (42)

202, Radius of normal curvature. Meusnier’s theorem. Let y
be the angle which the principal normal to ¢ makes with the
normal to the surface. Let A;, p;, v, denote the direction cosines
of the principal normal and ds the differential of arc along C.

We have, from (14)
' d | —dy | - d
OOSt[/ )\1/\+P«1F»+V1V—P< d2+MZI—s—+ d;):

p being the radius of curvature of C at (u, v).
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But
@ _ Poldu\ ,, Oz dudv | Fx/do\ | dx du | dwdw
dst dut\ds dudv dsds ' dvi\ds) ' Suds® ' dvds?’
with similar expressions for %’ % Substitute these values
52" ds

for the second derivatives in the equation for cosy. Since the
normal to the surface is perpendicular to the tangents to the
curves u = const., v = const., we have the relations
ox _By _6z - 0x _61/ 0z
A= =0 = =0.
ot Fou T » Aty
If we replace ds by its value from (38), the equation for cos ¢ may
be reduced to
cos y _ Ldu®+ 2 Mdudv + Ndv?

= iy 43
p  Edw+2 Fdudv + Gdv?’ (43)
wherein
0z 0% - 0%
L=)x%%
A Ju? Tu P auz R du?’
Fx Oy | - %
M= — 44
A dudn T 5wt T Sudn’ “4)
N=2x % o dy | - B?z

o Par TR

The quantities L, M, N are called the fundamental quantities of the
second order for the given surface.

The second member of equation (43) depends only on (u, v) and
the ratio dv:du=~%. Consider the plane section of the surface
determined by the normal to the surface and the tangent to C.
Such a section is called a normal section. Let the radius of
curvature of this normal section at («, v) be denoted by B. From
(43) we have
1 Lduw*+ 2 Mdudv 4 Ndv? (45)

R Edw?+ 2 Fdudv + Gdv?’

and hence
R cosy=p. (46)

The result expressed in equation (46) may be stated in the follow-
ing form, known as Meusnier’s theorem :
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TueoreM. The center of curvature of any point of a curve on a
surfuce is the projection on its osculating plane of the center of curva-
ture of the normal section tangent to the curve at the point.

203. Asymptotic tangents. Asymptotic curves. The two tan-
gents to the given surface at (v, v) defined by the equation

Ldu? + 2 Mdudv + Ndv*=0 47)

are called the asymptotic tangents at P.
From (45) we have at once the following theorem:

TureoreM L. If the curve C on the surface istangent to an asymp-
totic tangent at (u, v), then either the osculating plane to C coincides
with the tangent plane to the surface or C has a linear inflexion at

(u, v).

The two systems of curves defined by the factors of (47) are
called the asymptotic curves of the surface. They have the prop-
erty that their tangents are the asymptotic tangents to the sur-
face. We have the further theorems:

TuroreMm 1L If a straight line lies on a surface, it coincides
with an asymptotic tangent at each of its points, hence the line is an
asymptotic curve.

TuroreM II1. The osculating plane at each point of a real
asymptotic curve, not a straight line, coincides with the tangent plane
to the surface at that point.

204. Conjugate tangents. The equations of the tangent planes
at P= (, y, #) and at P’ =(x +Ax, y + Ay, z + Az) on the surface
are (Art. 198)

) MX—2)+u(Y—y) +W(Z—2)=0,
A+ AN(X —w—A2)+(p + Ap)( Y—y — BY)
+ @+ Aav)(Z—2—A2)=0. (48)

Let P’ approach P along a curve whose tangent at P is deter-

mined by k =dv:du. We shall now determine the limiting posi-
tion of the line of intersection of the planes. If we subtract the
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first of equations (48) from the second, member by member, and
pass to the limit, we have

ANMX — @) + da(Y —y) + dv (Z — 2) + Adx + dy + vdz = 0.

But Adz 4 pdy +vdz =0, since the normal to the surface at P is
perpendicular to every tangent at P. Hence the limiting position
of the line of intersection passes through P, since it lies in the
tangent plane at P and in the plane dMX —z)+du(Y —1y)
+ dy(Z—2)=0 through P. Let the point (X, Y, Z) on the line

&

of intersection be denoted by X==z+ 8z =z g—x du + az v, ete.
v

u
(Art. 199). We have
= (0w oz dy dy 0z 0z
d S — O dn| =+ —= — - =U.
)»(auSu +3 80) ¥ ,L(au bu+ 3 8u> ¥ d?(au du+ % Sv) 0

If we replace A, i, v by their values from (36) and simplify, this
equation reduces to

Ldudu + M(dudv + dvdu) + Ndvdv=0, 49)

which determines v : du linearly in terms of dwv: du.
~ Since equation (49) is symmetric in dv: du and 8v: 8u, it follows
that if a point P” approaches P in the direction determined by
8v: du, the limiting position of the line of intersection of the tan-
gent planes at P and P is determined by dv: du.

Two tangents determined by dv: du, 8v: du which satisfy (49)
are called conjugate tangents.

THEOREM. The necessary and sufficient condition that a tangent
coincides with its conjugate is that it is an asymptotic tangent.

For, if in (49) we put 8v:8u =dv: du, we obtain (47). Con-
versely, if dv:du satisfies (47) and 8v: du is conjugate to it, then
dv: du = 8v: du.

205. Principal radii of normal curvature. In order to determine
the maximum and minimum values of R in equation (45)at a
given point (u, v) put dv: du =k and differentiate B as a function
of k. The derivative vanishes for values of % determined by the

equation
(FN—-GM)k*—(GL—EN)k+ (EM—FL)=0. (50)
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If this equation is not identically satisfied, the two roots k,, k, are
real and distinet, since the part under the radical may be expressed
as the sum of two squares.

(GL — ENY: — 4(FN— GM)(EM— FL)
=1 %(EM—FL)2+ [EN— GL— %(EM— FL)T:

One root will determine the tangent dv: du such that the normal
section through it will have a maximum radius of curvature B, and
the other will determine the normal section having the minimnm
radius of curvature R,.

The tangents at (u, v) determined by the roots of (50) are called
the tangents of principal curvature, and the corresponding radii
R, R, are called the principal radii of curvature. To determine
the values of R, and R, we have from (45) and (50)

L+kM_M+4+EN_1,
E+kF F+kG R
By eliminating k between these equations, we obtain the quad-
ratic equation
(LN— M*»R*— (EN—2FM + GL)R+ EG—F*=0, (51)

whose roots are R, and R,

The expressionRi-i-—l% is called the mean curvature of the sur-
1 2
face at (v, v); the expression -]%— . L s called the total curvature
1 2
of the surface at (v, v). From (51) we have

1,1 EN—2FM+ GL

SR S 52

R1+R EG-—-F ° &2)
1 _LN—M?

R,R, EQG —F?

206. Lines of curvature. If in (50) we put k = dv: du, we obtain
(EM — FL)du* — (GL — EN)dudv + (FN — GM)dv* =0. (53)

The two factors of this equation determine two systems of curves
called lines of curvature of the surface. If the two directions at
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(u, v) of the lines of curvature are denoted by dv:du and v : du,
then, from (53)

dvdu+ Svdu _ GL— EN dvdv _ EM—FL
dudu T FN—GM duSu  FN—GM’

from which
Edudu + F(dvdu + dudv) + Gdvdv =0, (54)
Ldudu + M(dvdu+ dudv) + Ndvdv = 0.

From the first of these equations we have, by (41), the following
theorem :

Tureorem L. The two lines of curvature at a point on the sur-
face are orthogonal.

From the second equation we have, by (49), the further theorem:

Traeorem II. The tangents to the lines of curvature at a point
on the surface are conjugate directions.

Conversely, if two systems of curves on the surface are orthog-
onal and conjugate, their equations satisfy (53) and (54), hence
they are lines of curvature.

The normals to the surface at the points of a given curve C' on
it generate a ruled surface. The ruled surface is said to be de-
velopable if the limit of the ratio of the distance between the
normals to two points P, P' on C to the arec PP’ approaches zero
as P’ approaches P.

It should be noticed that in particular a cone satisfies the con-
dition of being a developable surface. A cylinder is regarded as
a limiting case of a cone, and is included among developable
surfaces.

TuaroreEM I1I. The condition that the normals to a surface at the
points of a curve on it describe a developable is that the curve is a
line of curvature.

Let P=(x, y, z) and P' = (x+ Az, y + Ay, 24 Az) be two
points on the given curve C. The equations of the normals at
P and P are (Art. 20)

X=z+\, Y=y+p, Z=z2+w,
X=z4 Az +(A+ AN, Y =y4 Ay +(n+pA)’,
Z =z+ Az +(v + Av)rl
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The ratio of the distance Al to the arc Asis (Art. 23)
Al Az(pAV —vAR) + Ay(vAX — AAY) + A2(AAji— RAX)

As AsV (A — yAE) + (PAX — AAV)2+ (ABp — RAX)?
Divide numerator and denominator of the second member of this
equation by As? and pass to the limit as As=0. Using the dif-
ferential notation to indicate lim Az : As, ete., we have

lim A7 _ da(ady — vdp) + dy(;d_X — _Xd;) + d_z(Xd,; "_@0. 55)

a0 AS V(pdy — vdp)? + (v — Adv)? + (Adj — pdA)?

Both numerator and denominator of the second member of this
equation vanish for those values of A, w, v which satisfy the
equations

and the limiting value of the ratio 2—; is indeterminate. The de-
nominator cannot vanish for any other values of A, g, v.

Since A4 pi4ir=1,

we have, by differentiating,
AdX + pdi + vy = 0,

which reduces, under the condition that dx = ka, ete., to
ER 4 p* +°) =k=0.

Since k=0, we have dX = d¥=dy = 0. Hence the normal to
the surface has a constant direction tor all points of the curve C.
The surface generated by the normal is in this case a cylinder.

If the denominator of (55) is not zero, the condition that the
surface generated by normals to the surface along C is a develop-

able is that the numerator of the second member of (55) is zero,
that is, that

da (udy — vdp) + dy(vdX — Ady) + dz (Adp — pdA) = 0.
If we substitute for A, g, ¥ their values from (36) and for dz, dy,
dz their values ? du + aa_m dv, ete., we can reduce this equation to
u v

(53), which proves the theorem.
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207. The indicatrix. Let the lines of curvature be chosen for
parametric curves. In (54), dv =0 and 8u= 0, but du =0, Sv = 0,
hence F =0, M = 0.

Let ¢’ be a curve making an angle 8 with « = cons. and let R
be the radius of normal curvature in the direction of ¢'. Along
u = cons., ds = V/Gdv, hence from (41),

cos f = \/5@, sin 0 =vVE
ds ds

From (45) and (52) we now have the formula
1 _ cos’f, sin’@
B R R
This equation is known as Euler’s formula for the radius of
curvature of normal sections. It is intimately connected with the
shape of the surface about P.
Let the surface be referred to the tangents of principal curva.
ture and normal at P as X, Y, Z axes.
Let 2, y be taken as parameters. The equation in x, y, z has
the form

= (% 9z 170%\ 5 | (% L08%Nn o ...
“= (6w>m + (8y>y + 2<3w2>x +(3x8y>xy al 2<6y’)y +

Since z =0 is the equation of the tangent plane at the origin,

(g_z> =0 and (%2): 0. Sincethe X and Y axes are the tangents
& y
of principal curvature at the origin,
\ aﬁ)—l G, (L
éx2) R, \dwdy) =~ \o*) R,

hence, neglecting powers of » and y higher than the second, the
approximate equation of the surface for points near (0, 0, 0) is
g 56
“=rth (56)
If R}— and R%— are both different from zero, the surface defined by
1 2
(56) is a paraboloid. If one of them is zero and the other finite,
the surface is a parabolic cylinder. If both are zero, the surface
is the tangent plane to the given surface. This last case will not
be considered further.
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The section of the quadric (56) by a plane z=cons. is called the
indicatrix of the given surface at a point P.

If R, and R, have the same sign, the section is an ellipse for a
plane on one side of the tangent plane, and is imaginary for a
plane on the other side. In the neighborhood of P the surface
lies entirely on one side of the tangent plane. Such a point P is
called an elliptic point on the surface.

If R, and R, have opposite signs, the paraboloid (56) is hyper-
bolic and the section by any plane z = cons. on either side of the
tangent plane is a real hyperbola. The point P is in this case
called a hyperbolic point on the surface.

1t Loor Lis zero, the section 2z = cons. consists of two paral-

1 2
lel lines for a plane on one side of the tangent plane, and is im-

aginary for a plane on the other side. It follows from (52) that at
such points LN — M2?=0, and from (47) that the two asymptotic
tangents coincide. The point P is in this case called a parabolic
point on the surface.

In all three cases, the directions of the asymptotic tangents to
the surface at a point P are the directions of the asymptotes of
the indicatrix. At an elliptic point the asymptotic tangents are
imaginary; at a hyperbolic point they are real and distinet; at a
parabolic point they are coincident. Moreover, conjugate tangents
on the surface are parallel to conjugate diameters on the indica-
trix. The asymptotic tangents are self-conjugate.

EXERCISES

1. Find the equation of the tangent plane and the direction cosines of the
normal to the surface x = u cos v, ¥ = u sin v, z = u? at the point (u, v).

2. Determine the differential equation of the asymptotic lines on the sur-
face defined in Ex 1.

3. Show that the parametric curves in Ex. 1 are orthogonal.

4. Find the lines of curvature on the surface = a(u + v), ¥y = b(u — v),
2 = uv.

5. Prove that if E: F: G = L: M: N for every point of a surface, the
surface is either a sphere or a plane.
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Page 3. Art. 1

. The YZ-plane. 8. The Z-axis.
. A line parallel to the Z-axis through (a, b, 0).
. (ky by —m), (ky — 1, m), (ky, — 1, —m), (k1 —m), (—k, =1, —m).

Page 5. Art. 2
. (-1, 1,9). 4. 13. 5. Va2 +b%+ ¢

1 2 401 1 1b-7 6 2,
C VB VB ' V3 V3 v3 vB) VE) VBD
o_L,l;L,:A,i;
VB VB VBl Vel vl
x Y 2

\/x2+y2+z2’ \/x2+y2+22’ \/x‘l+y2+z‘l.
Page 7. Art. 4
. V89 4 V(e-1)2+(y— 1)2+(z_1)2=V(z—2)2+(y—3)2+(z—4)2.‘

2 3 5 1 1
. (a) —y = T =" () —_y — =
. V38 V38 V38 \/3 V3 V3
T4 -4
(¢) ’é_——a —==0 =19 /7
V4l vil V4
. (@) Parallel to the YZ-plane. (b) Parallel to the Z-axis.
(¢) Parallel to the X-axis. 9. —l—, —1—, _1—7
V3 V3 V38
Page 9. Art. 6
V105, 5 1,0,0;0,1,0;0,0,1. 3 -+, =2 1.
4 V36 V26 V26
=1l 8 (5,3.2. 10 Two. +VV3—1 11. (2, 2,2).
V1435 2

Page 11. Art. 9

. Sphere of radins 1, center at origin.

2. Cone of revolution, with X-axis for axis.

269
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. Plane through Z-axis, making angle of 30° with X-axis.

Cone of revolution, with Z-axis for axis.

- (a) p=2; (b) p'=2; (©) p2+22=4. 6. ¢ =45° p2 =22,
. ViR p2—2 p1p2(COS ¢y COS 02 + COS By €OS B2 + COS Y1 COS ¥2).

b S B -]

Page 14. Art. 12

3+ 4y+22=117. 2. x—y=0. X-and Y- intercepts zero.
8. —4x+3y+2=>5. 4. k=2 5. (—3,4,5).

[

Page 18. Art. 16
1. fo—Py—thz=2" 2. 24+2y=0.

7 9
B Oy =2 5. (4,38, 1); (1, — 4, 3).

7. 26x 4+ 39y +82—43 =0. 8 bz—y—22—-6=0,
9. A1x+B1y+021+D1=iA2z+B2y+02z+Dz,
VA2 + B 4+ 02 VA2 + B + 0
10, 14(x2 4+ 92+ 20)=Br+y—22z—11)2
11. 22—y—2+3+38vV6=0. 18. z—2y—2+2=0; —2,1,2.
14. 21z -9y —222+4+63=0. 15. 3x+2y+3z.-—16=0.
17 e —y +162—63=0and 17Tx — 18y + 122 —63 =0.
18. m =4 6. 19. k=—-4.

Page 21. Art. 20 J

113\, /11 , —1\. /3 1
0 0 i =Vl 0_7 ' a 0).
l(a)(’4 2) (14’ ’14) (4 8 )
-5 1 5 -1\, (1 —1
op=i2e M (2 yg, =t (£ =TSl
® (0 %5 (% 57) (3 5 °)
5 29 29 3
Dy Ao flah ) = SN /20 6 g
@ (%3 %) (503 )(77 °)
—3_y—T7_2z~—38 =3
4 T=°_ = ; =Y 5. 2y+2=0.
R 1 v I SR
6. k=13 7. Yes. 8. k=—2. 9. No. 11. Yes.
Page 23. Art. 21
| 5

3v3' 3v3' 3v3
2. 224+y—32+4+6=0, 24+y+2~13=0.
16

4
3. arcsin——. 4 x+10y+724+18=0,
V29 V70
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5. 82+y—~262+6=0. 6. k=—-1. 7. 2+ 2z=05.
: r—a y—b z—c
8. 3x—y+32—-7=0. 9. Uy ma n |=0.
lg mg Ng
10. 3x—T7y—42z=0. 11. k=
12. k=2and k = 3. 13. 22 —2=0, y=3.
Page 25. Art. 23
i. /8. 2. V3. 3. 0. 4. 1 _ o =8.
21 viizs' ~ Vii8
1 1 1
5. V2; —, —, 0. 6. —-. 7. 160 +43=0, 12y=62z+ 13.
T ve Vel V5 ’
xp—x2 U U2
8. \/T‘i 9. — Y M1 M2 =0.
2 21— 22 M g
Page 28. Art. 24
1. 612 —52y+352—93=0. 3. x4+5y—32—44=0.
2. 122-17y4+32+4=0. 4. Yes.

5. Tx+12y—132+8=0, z—3y+42—T7=0.

RN CIRNORE

. Page 29. Art. 25
Ty—102-8=0, T2 —2—22=0, 10x—y—31=0.
y—2+2=0, z+2z=1, z+y=1
y—2=0, z4+22=4, z+2y=4
(41B2 — A2 By + (410 — A2C1)z + (A1D2 — A2Dy) = 0.
(B1dz — B241)x + (B1C2 — B2C1)z + (ByD2 — BaDy) =0
(C142 — Cod)x + (C1B: — CoB)y + (C1D2 — C2D1) = 0.

Page 33. Art. 28

x+2y+§+1=‘0; 3z—%—§+1=0; +Z §+1 0.
—6 11\ (9
5. 8. (1, 5, —1); (%,’ 1) (Z 0, )
o arccos3\/_0-
V299

. ut+v+w=1 6u—3v+w+3=0,6u—2v+w+1=0.
= —2 —=1 1 1 1
@ -t - (Fho (60 o

v3 V3 V8

. A plane, 9. 4(ut+2+w)=1. A 'sphere.
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Page 35. Art. 34

1. (a) (:1, =3 —_3) @ (% :2_1 —73)

® (3 5 o) @ (=2 =4 1)

@G o)
2. (—10,15,—2,0). 4 Te+9y+54iz—50¢=0.

Page 37. Art. 35

1. (a) Parallel bundle. Rank 3. (b) Rank 4. (¢) Rank 4.
(@) Parallel bundle. Rank 3.

-1 ¢ b
3. The determinant a —1 ¢| is of rank 3; of rank 2; of rank 1.
b a —1
— 59 5 —19

V36T V3867 V3867
Page 43. Art. 40
1. 22—3yz+y2—4x—8y+42z+4=0.

3 g @ 2y, 22
Vel V6 V14
_4x _y | 27
Vel V6 Vi

TVal VB V4
4, New equation is 22 — 22 + 6 2% = 49.

] ' 0
2_2.7: +L._3‘.

Translationisz =o' + 8, y=y' —1,z2=2"+2.
6. 3x2 4+ 6y2+1822=12.

Page 45. Art. 41

2 (28:|:6i —648i bF24i g (V=4 6480 _ 4,

. L ’ : O y ——y — %1
13 13 13 ) 5 b )

5. (13+90)z+(3+ 40y + (16 — T4z =23 + 6414

6. (1+iVv3,0,0).

Page 46. Art. 42

1. 224+ y2=42% 8. 2+ +22—-Tx+y+30=0.
4. 8(x24+ Y2+ 22)—68x+ 48y —662z+ 2756 =0.
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. 2=5, (@=82 +(y—D*+(z -1 =9

6. 2x—14y-—2z+1=0,4x—18z+33=0.

Le

1.
2.

3.

Page 49. Art. 46

. Center at (0, 0, 4); radius 6. 4. ?2—y’=1

Page 51. Art. 47

.22 4yt 422 =26, 2 92+ 22)=(15-2x)%

z =0, 9(y? + 22)= 226 ; 4(x? 4 22)= 9(5 — y)*.

@2 tt=al; y=a.

2 2 2 2 2 2
(@) %4.%_.*.2.:1; %+%+2 =1

9 4
®) 2, g L
@ b b2 @ ¥ oa

(c) y2+ 22 =8ux; yt =64(z +2%).

273

7. (—4, +4i,2).

Vertex (33, 0, 0);

(@) @+ +22—5)2=16—42%; 2+ (y—1NT+22=4.

(e) y* + 22 =sin%x; y =sin Va2 + 2%

() 9+ 2 =e=; y=eVara

Page 54. Art. 49

(¢) 22492422 —4x—2y—102+14=0.
(a) Center (—Z, -1, —l); radius V34,

2 2 2
(b) Center (— 1, — 2, 3); radius 0.

11 =5 + . V10
(¢) Center (Z’ 3’ —4—); radius 1‘\;—-

(d) Center (-—- '2£’ 0, 0); radius [

(—4+8%2+64,5,0).

2+2ivV2 1F2iV2 —2:{:\/51')_
3 ! 3 ’ 3

Page 56. Art. 52
Y= s

V10

.(a) 2yt 4Rt =12 ) 2 4+y? 422422 -8y —42=15.

Arc cos o The spheres have no real point in common.

24yt 422-22—-6y—62+10=0 and 24yt +22—-2x—6y
—62~-6=0.
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224+ +22+2x—2y—~32=0.

2x—3y+ 2+ 5=0. The sphere is composite.
10(x? + 42+ 22) + Tlx — 68y — 892z — 185 = 0.

4232 (2% + y2 + 22) — 276 x + 276y + 1932 2 + 225 = 0.

SUNCGISCHRIE

Page 69. Art. 59
Center (1, 1, — 2); - \/15 \/5

semi-axes —— ,
3 ' 2

V205
2

-

[

b Sphere;center(2, 5;-, —5) ; radius

3. y=0,222=322452+ 7. Rotated about the Z-axis.

4. z=1, y=z; x=1,y=—2; c=—1, y=2; c=-1, y=— 2.

5. (2) Ellipsoid. (b) Hyperboloid of two sheefs. (¢) Hyperboloid of
one sheet. (d) Hyperboloid of revolution of one sheet. (e) Ellipsoid.
(f) Imaginary ellipsoid.

Page 73. Art. 64

1. Hyperboloid of one sheet. 2. Imaginary cylinder.
8. Elliptic paraboloid. 4. Real cone. 5. Hyperboloid of two sheets.
6. Hyperbolic paraboloid. ¥+

-

8. (¢) A—m)22+y2+22—2ax+a2=0
O A=)+ (1=-r)y+ 2 ~2ax+ =

Page 76. Art. 66

L (—si\/109’ 54:\/109, —171\/109)_ 2. (0, 0, 0).
3 3 6
. (% % —%) 4. (—1,2, —1). 5. (3, 1, 0).
6. Vertex (0, —1, 0). 7. Plane of centers 2(x —y 4+ 2) — 1 =0.
8. Non-central. ’

Page 89. Art. 75

1. Hyperboloid of two sheets. Center (0, 0, 0). Direction cosines of axes
H-bHL AL - LbE bxP42y2-2242=0.
2. Hyperboloid of one sheet. Center (1, 2, — ). Direction cosines of axes

2+2V5 vE—1 b+VvE6 . 2—-2V56 , —VB —1 ,
2V16+4vE 2V15+4vV6 2V16+4v5s 2V16—4vE 2V16—4VE
65—v6 = -3 _4 2 64VE, 5-V6 \f> _32=10
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3. Parabolic cylinder. New origin on 2=0, ¢ + ¥+ 1=0. Direction

1 1 1 -1 L
cosines of axes —, —, 0; 0,0, 1; —, ==, 0. ¥+V2xr=0.
va' vel T T Ve Ve
4, Two imaginary planes. Line of verticesis2x+8y=0,y+22+2=0.
S 1 -3 3 5 1 3 —2
Direction cosines of axes —, 0, ——; —— Y ) ——, =2
Vo' | VIO ¥3% V35 V3 Vid Vi
1
—_ 2224+ Ty2=0.
Vi
5. Hyperbolic paraboloid. New origin (}, %, 2). Direction cosines of
1 1 v6—2 | 1 1
axes

oV3_v6 2V3_v6 2V3_v6 2\/3+\/6’ 2V3 46

—_L.____E; :-l, —-L, 0. V62 —V6y2+vV2z=0.
2V3ive V2 V2

6. Ellipsoid of revolution. Center (- i :61—3 5 %) Direction cosines
. . 1 1 5 7
of axis of revolution 0, —, —. 322 +3y?+22=—.
V2 V2 6

7. Hyperbolic cylinder. Line of centersz =0,y + 32+ 7=0. Direc-
tion cosines of axes

vi0 1 3 . —V10 1 8 .o =3 _1

1

V' Va3 V2 &  v20 | v va0 | V10
VI022 —V10y: +1=0.

8. Real cone of revolution. Vertex (0, 0, 0). Direction cosines of axis

2

of revolution L_, L, _1: 2224292 —22=0,
v3 V38 V3
9. Two parallel planes. Plane of centers 22 —2y+62z—1=0. Direc-

1 —1 3
= == =0
Vil Vil V1l

10. Parabolic cylinder. Origin on 83x—2y =493, 2— 62 ={}3. - Direc-
tion.cosines of axes

tion cosines of new X-axis 1122 = i

28 e mael =t 1 s b 9 1
) y T =y T —===0 Y .
V1208 V1298 V1298 Vil V11 Vil Vi Viis VI8
112 = 51927:
1

11. Real cone. Vertex (0, 2, —2). Direction cosines of axes, .67, — .56,
—.48; .71, .67, .23 ; .19, — .50, — 85. 8.7222+4 2.68y2—1.4022=0.
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q 3 ol 36 183 -1 9 : .
12. Hyperbolic paraboloid, Origin (==, =, — ). Direction cosines
727 727 12
of axes L , VT2 ’ i 5 = ’
V28107 V28—10v7 V28 -10v7 V28 +10V7
V742 Vied 1 =1 1

V281 10vi Vasiiovi V3 V3 VB
(—14+VDa2 -+ VDY =4V3z
8§ =7 &
6’ 4 '18
of axes .21, — .65, .69; .91, .41, .10; .36, — .64, — .68.
3.0922 + 1.59 y2 — 8.6722 = 3.

14. Hyperboloid of one sheet. Center (—1%, %, —TSG) Direction cosines
5

of axes — .77, .56, .28; .14, —.31, .94; .63, .76, .13. 6.17 22 + .T1y2
—6.8822 =162,
15. Ellipsoid. Center (0, 1, 1). Direction cosines of axes

13. Hyperboloid of one sheet. Center( ) Direction cosines

2 1+V5 . —2 —1+v5 .
_, 0; = ~,050,0,1.
V10 +2v5 V10+2v6  V10—-2v5 V1o—2v5

3+2\/5 o4 3=V5 \/ay2+222
16. Ellipsoid. Center (:2—9 , _77.’ - 6). Direction cosines of axes .83,
— .33, — .44; .26, .95, — .22; 49, .07, .87. 4.20 22 4 .59 y2 + .20 22 = 33,
17. §,5+£2i 18 —2_59

Page 92. Art. 78

-1 +2 _z-1
. 10y — 22 =0, X =Y = .
1. 2410y -8z + D = —3

Page 96. Art. 80

l. y=¢ z=x; =19, 2=7y.

Page 97. Art. 81
1.\/3,_‘?. 2. z+2+1=0,y+2-1=0. 3. a,bec
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Page 103. Art. 83

Loty—z=dande—y+2z=p. 2 z—(2+Vly=4d.
8. L. 4 yaBivAE—9=0. © 5 a=p a=0
V3
6. ax+ gz +1=0, ay +fz+m =0. 7. 2924+ 2fy+(c—a)z=d.
8. 0—k)A2+(a—k)B2—2hAB=0,
(c—k)B2+(b— k)02 — 2fBC =0,
(@a—%k)02 4 (c—k)A2—2gCAd =0,
k being a root of the discriminating cubic.
V30,

9. (-1,0, —3). 5
Page 108. Art. 87

3. k;=cons. i=1,2,8,4. Forparametric equations, substitute this value
of k;, in Egs. (27).
Page 111. Art. 89

L (—62+6y—122, 2 +2y—2241¢, 62+6y+42+4¢ /—x+8y
—-2—21), (—12,1,4, —-2), (12, —2, —20, 1), (18, —p6, —16, 1),
(12, ~ 8, —28,1), (3,2, 1, 2).

2. (—3718, 179, 92, 283), (~ 500, 181, 145, 344), (- 158, 61, 88, 107),
(—387Tx1— 9625 — 925 + 156 24, 1121 42425 — 83 — 6025, 8+ 48z,
— 623 —86xy, 31a 4+ 6022 + 323 — 108 x4).

3. 15x+5y+4+11z+416¢=0.

4. 197 x; + 468 x5 + 57 03 — 792 24 = 0.

5. 6a2% — 15y2+2z2+3yz—zx—3xy+l7xt+9yt-—6zt+10t2=0.

6. (22x—22y +44¢, 122 4 24y — 2424 124, 33x+33y+22z+22t,
86 x—198 y+66 2+1321), (22, 6, 11, 66), (22, 12, 55, 33), (33, 36, 44, 33),
(22, 18, 77, 33), (22, —48, — 11, 264), (— 97121, 36427, 22804, 66851),
(296167, — 115487, — 64346, — 206981), (~— 185625, 71181, 42570, 128403),
(814 21 — 6912 x5 — 29T 25 — 61776 24, — 2421 + 1728 3 — 99 25 + 28760 1y,
— 176 21 + 3456 25 — 198 23 + 14256 x4, —682 2144320 w2499 23442768 Z4).

Page 113. Art. 92

1. Vertices: u1 =0, (1,0, 0, 0); uy = 0, (0, 1, 0, 0);
ug =0, (0,0, 1, 0); ug =0, (0, 0,0, 1).

Faces: 2,=0,(1,0,0,0); x2=0, , 1, 0, 0);

23 =0, (0,0,1,0); x4=0, (0,0, 0, 13

2. 21=0, 22=0; u3 =0, ug=0.
21=0, 23=0; wy =10, ug =0.
21=0, 24=0; up=0, us =0.
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22=0, 23=0; w1 =0, ug=0.
=0, 24 =0; ug =0, ug=0.
23=0, 24=0; w1 =0, ug = 0.
3. wptus+us+us=0 8w —Sus+ Tug—us=0,
-—u1+6u2—4u3+2u4=0,7u1+2u2+4u3+6u4=0.
4 (,1,1,1, (7,—-1, =38 1), (1,9, — b, 2).
6. ul—u2=0,7u3+u4=0. 6. (—9, 1, 1, 0).

Page 117. Art. 95
2. px1=l1+2lz+1013,
pre=Th+6la—1s, (176, — 175, 40, 363).
prz3=—1U+ 4l —3ls
px4=3l1+lg—5la.
3. pu1=—-5l1+7l2+6l3,
pus =8l —bla— 41, (21, 32, 1, 5).
pus=4U+8L—31,
pus=h+20k+10b.
5. pu1=l1-|-7lg., pu2=—5l1+2l2, pug =311 — I p1l4=—l1—~lz.
6. pm1=l1+3l2, px2=2l1-—212, p13=—3l1+512, px4=—-ll—2lz.
ll(u1+2u2—3u3—u4)+lg(31¢1——2u2+5u3—2u4)=0.

Page 120. Art. 97

8. (e 4 Gz + g + gy Cor+ Gop + Gog + Gogy a1 + tg2 + g3 + oy
g + g2 + gz + Q). (Bu + Ber + Bar + Bar, Prz + Baz + Baz + Paz
Bis + B + Bas + Baz, Bua+ Paa + Bas + Baa)-

4. 2 = ket X2 =koxe, @3 =ksxs/y, 4= kaxq’.

Page 122. Art. 100

L (@) m=x/ —ady ;a=1 — !, Ty=0g — 24y Ty=— 24/

D(p)=(1 +p)(1 —p)® Invariant points are (1, 1, 1, 2) and all the
points of x5 = 0.

®) =2, 2=y Tz=2d, Ta= zg. D(p)=(p*— D%

Every point on each of the lines

1422 =0, 23+ x4 =0; t1—22=0, x3 — 24 = 0.

(© ;= m=2, s =2, =2 D(P)=(1-pHP*+p+ 1).

The points (1, @, &2, 0), (1, % w, 0), w®=1, and every point of the line
X = X2 = X3.

(@) m=—a4, 22=0 — 24, T3 = ol — x4, 24 =03' — 4.
DD =P+ + P +p+1 (6,146, —#(1+0), =), =101
3. “ik—cons. i, k=128 4

ﬁki
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In case x3 = x3/, the point (0, 0, 0, 1) and all the points of the plane

X4 = 0.
In case x3 = — 3/, every point of each of the lines x; =0, 2, =0; 23 =0,
x4 =0.

LI

© ® 2o

SLRST =

< (la 1, la 1)1 (19 o 11 11 T 1)» (17 i’ —11 = i)a (ly —iy _11 i)-

All the points in the plane at infinity.

1
Page 125. Art. 102

. xg—axy=0.

(2 £ 24V12T, — 8 F V12T, 8, 4). .

Page 131. Art. 106
A=—1,
ug?

wm? | ug? u?_y
T ’

. beus? 4 caus? + 2 abugugy = 0.

A=} P(u)=u? — wgus + uUrUs — UgUty — U Uy + UoUg — 2 Ugug = 0.
A(x)=0.

=0, 23 —24 =0 and 2, =0, x3+ x4 =0.

. a,-;=0. = 1, 2, 3, 4.
12.
13.

a.-,,“’ = @i Ay ‘I:, k= ], 2, 3, 4,
A conie ; two distinet points ; two coincident points.

Page 134. Art. 111
%1 + %2 + 23 + x4 = 0. 2 x3=0, 24=0.
2x1+ 22 — 3 23— 24)2 + 4 (122 — x325) = 0.
12Uy — 2920 x; = 0. Three.

A1301%3 + A14X1%4 + A23X2x3 + A24.24 = 0.

Page 141. Art. 118

3. an®® + anr? + asars? + 2 a1atixs + 2 aasiears + 2 a132123 = 0.

4. auxi? + axnrst + 2 aygitrirs + 2 aositars + 2 argxixs = 0.

2 =10 ws'=0:
Page 143. Art. 120

8212 4+ 22 -5 232 =222+ 9 212246 21203+ 18 2124 + 13 2924 — T X34 =0,

. (o + x3)— (22 + 24) =0, (w1 + 24) — (2 — x3) =0, and

i(y + 23) + (22 + 24) =0, i(21 + 24) + (%2 — 3) = 0.
Equations of faces Jq;x, =0, i=1, 2, 3, 4.
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Page 146. Art. 122
, 0,2, —3). 2 k=+4.

. T2u + 36 us? + 28 uz? — 54 mue =0; 2uz — 3 ug =0.
. (@) A quartic curve with double point at O.

(b) A cubic curve passing through 0.
(¢) A plane section of K, not passing through O.

Page 150. Art. 126

s |G =N @a— Moy W1 | |02 Gy

At — N Qy — Nt |Gm1 Gm3] [ O3
(@ » -1, M\, [1E@D)]. (€) 22, w [(22)].
(b)) M [4]. (@) N, A—1 [313.

Page 156. Art. 131

[111]. Four distinct lines.

[21]. Two distinct and two coincident lines.
[1(11)]. Two pairs of coincident lines.

[8]. Three coincident lines and one distinct line.
[@D]. Four coincident lines.

[(111)]. A quadric cone.

{3} A plane and a line.

(@) A\=1, A=}, A=} [111].
O A+ A =4 2—-1.  [AD]
(¢) (\=1)% A—4. [21].
@ (A=1)3 [3].

. (@) Four distinet lines.

(b) Two pairs of coincident lines.
(¢) Two distinet and two coincident lines.
(d) Three coincident lines and one distinct line.

(a) 2 + 0%2 +E§E— N (@2 + 222 4 25%) = 0.
®) ‘Tff + @D Nt 4wt + 2i?) =0
(e) A + 2 2903 + 22 — (212 + 2 25%3) =0.

(@) 2m2 + 232 + 2 2923 — N2 1122 + a32) =

Page 164. Art. 133

[11(11)]. VAL — Ny + Vs — Aare = 0, 02 + xe? + x5 + x2 =0,
[1enl. VA, — N2y + 25 =0, 9:12+2x2x3+x =0.
[1(111)]. 21=0, x/ 2 4+ 232 + X4% =
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[22]. xr = 0, Ty = 0.
[2(11)]. x1+123=0, 24=0; 21 —129=0, £4=0; 23=0, 212+ 2.2+ 242=0.
[(A1)(A1)]. 21+ 22 =0, 23 + x4 =0; 21 + (22 =0, 23 —ixg =0
X —te =0, x3+ixs=0; 11 — 22 =0, 23 —ixg =0.
[4]. Xy = 0, T4 = 0.
[(22)]. 20=0,23=0; 21 =0, x4 =0; x5 =0, x4 =0; the last one
counted twice.
[(31)]. 21+ ixg=0, 23=0; 21 —124=0, 23=0; 24=0, 2,2+2 x223=0.
[(211)]. :l)1=0, x3=0; 1 =0, Cl:4=0.
[{3311]. Te=23=0; 21 —axs = 0, 22924 + 22 = 0.

. (a) A=14 (A =12 m—x2=0,234+224=0;

xl—xg—\/g(ar;,+2x4)=0, \/3(x1+z2)+ 2.’1:3—}-.’1;4:0;

x — a2 +V3(wz + 224)=0. V3(x1 + 2)~ 2 3 — 4 = 0.

125 + Xocs + 2 T304 — N(2 2123 + 2 22704) = 0.

() A=LA—=1, A+1)2 21 +4+25=0, ;1 — T2+ 04 =0 ) + x3 =0,
2y — 22— x4 =0;

21+ 23 + 422 =0, 22 + (21 — 22)2 — 24 292 — 16 x93 = 0.

x1’+x22+zc42——2ac3x4-—)\(a:12+a:22+z42+2:c3x4)=0.

@QON+3, A=, =1L, A—=1 & +2x35+24=0, 512 — x? + 632
+ 4123 + 2 2302 =0.

— 3m?+ x? + 25? + @ — N(a? + x? + w5® +24%)=0.

@rx=1, A=1,N xm+x2=0, s1+23+x4=0; x+22=0,
2y —x3— 24 =0; 2o+a4=0, 3212 + 292 — 32 + 4 X125 + 2 2973 = 0.

212 + @ + 24 — M@ + 22 + 24 + 2 2324) = 0.

4. [1(111)]. [2QD)].

Page 167. Art. 135

LB+ 2N 440+ Du + BN+ T —10)ug® + (M3 4 2N + 9\ +6) us?
+ (A2 = 1)(A = Dug —6(A2 — N)ugug + 12(N + 1)2ujus + 6(A2 — 1)uruy
+ 4(\2 = N uguz + 2NN — 1)2ugug — 4(N2 — 1) uguy = 0.

2. 2292 —3 w42 + 6 w124 + 2 w0k — 4 2374 = 0, twice.
252+ 2133?4— 3242 — 621204 + 2 Xog + 42374 =0.

3. 2(u1ug + usug) N + (ug? — 6 auiuz — 6 quguy)\2
+ (6 a?uruz + 6 a?uzuy — 2 aus?)\ + a2uz? — 2 adujuy — 2 aduzuy = 0.
Page 174. Art. 142
3. (@) [211]. (b) [22]. (¢) [381].
4. All the quadrics of the bundle touch a fixed line at a fixed point.

" 5. The quadrics touch 23=10, 22 —2x, =0 at (0, 2, 0,1), and x3=0,
22 +2x4=0at (0, 2,0, —1); they have four basis points in the plane
xz — x3 = 0, at the points
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(2,2,2, V3), (2,2, 2, —V8), (—2,2 2, V3), (-2,2,2, —V3).
Vi=4ys%s  Ya=4 91 (2 ys—¥a),
YVs=4ywys, y's=u 2 ys?+ 2 yays — y2).
8. Ni(ux) (ux!)[ (u!a) (we) — (u!') (u!''z')]
+ Na(u''z) (w'e") [ (u'x) (ux') — (ux) (u'z')]
+ N[ (w'z) (u'"'z) (uz') (w''2’ ) — (ux) (u!'x) (u'x’) (u!'z!) ] = 0.
(For notation, see Art. 119.)

Page 180. Art. 146
2. niyaysys = 0. 8. The plane counted twice is a quadric of the web.

4. (224 y2 4202 =0.
6. Any point on 22 + y2 + 22 =0 is conjugate to any point on ¢ = 0,

Page 187. Art. 150
1. (Zu)? = 0. 2. 8. 4. 5.
5. M(u? — w?) 4 N (v2 — w?) + Muv + Agow + Agwow = 0.
6. [1111]. (a%— c?)u? + (b2 — c2)v? = 52,
(a2 — b2)u? — (b2 — ?)v? = 2
(a2 —d)u? + (a2 — )? +s2=0;
u? + 02 4 w? = 0.

Page 196. Art. 155

1. k1P = kop = k3P = kyp.
Page 205. Art. 160
2 2 22 .
2. (22492 + 222 = (&_2 + %3 . a)tﬁ. Eight.

3. 22(2% 4+ y? + 2%) = (ax? + by?)t. Kight. Fifteen.

7. 21 = le(zl’ + 24’) (le + x;’), X = xz’x4’(.’)$1’ + x4'),
x3 = xo'xy/ (22! + x4'), x4 = x3'xs’ (23! + 24).
1,0, 0, 0), (0,1,0,0); the line z; =0, xz3 =0. Touch at (0, 0, 0, 1).
8. @1 = ai/wy! (x1'2y! + 2wy + 3'm!), xp = x1'%! (21 x2! + Xo'xs! + x3'T2'),
x3 = xolay! (1! xs’ + 2wy + x3'x1!), x4 = ;a'xl w3y’
(1, 0,0,0), (0,1,0,0), (1, 0,0, 0). Four coincident at (0, 0, 0, 1).

Page 207. Art. 162

1 A, f(x) =4 y1(as000%1® + 3 aszot122? + 3 @g20x123% + 3 agoear1ts®)
+ 4 y2(3 a00212r2 + do40072® + 3 @o220%a3? + 3 Ag202%9%42)
+ 4 y3(3 az02001%3 + 3 ao220%2?3 + Coo40%3® + 3 doo22¥3%a?)
+ 4 ¥4(3 a200211%4 + 3 @020972%%4 + 3 Q002275724 + A0004243).
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A% () = 12 yr?(ag000%1? + 220022 + 2020232 + @2002%4%)
+ 12 y2*( a2200%12 + @oa00%2% + Co220%3% + @o202%42)
+ 12 y3?( 2020212 + @o220%2% + Ao040%3 + @oo22%a?)
+ 12 y42(@200921% + Go202%22 + @o022%32 + C0004%42)
+ 48 y1y2a22007122 + 48 Y1Y3a202001%3 + 48 Y1Ya@a009%124
+ 48 y2y3aue0tars + 48 Yaya@o200%2x4 + 48 Y3Yao0222324.
ASf (%) = 24(yrPas000%1 + Y2Posoo22 + Y33@004073 + Y4P@000s%s
+ 3 yi%y2aa200%2 + 3 Y1y2®a2000%1 + 3 Y12Y3@2090%3
+ 3 y1ystazrs + 3 Y12yaaz00224 + 3 Y1y4>az000%1
+ 3 Y2?yatoz20Ts + 3 YaysPaoazez + 8 Y22yadtozosis
+ 3 yaysPao2a®s + 3 Ys2Ystoo2as + 3 Y3Ys>aoozats).

Af(x) =241 ().
Page 209. Art. 164

© (1, 01 0’ 1), (1’ 01 Oa S 1)? (41 07 01 - 1)'
4 2359 + 131V17
. 3

2359 — 131 V17
376 ! 376

Page 211. Art. 167

. @ooon =0, @100n-1%1 + Q010 n—1T2 + Coo1 123 = 0.

a00n =0, @00n-1=0, @o0a1=0, am1n-1=0.
2(1’'— x3) + 5(x2 — 24) = 0.

. 2(@1 — #5)+ 5(as — 24) =0, 421 + 825 — 36 24 + VIO (% —24) = 0.

Page 213. Art. 169

* (x2a + 5% + 143)2 =0. 3. ul‘iF + uz% + 1(3% + u4% =0.
. ul’% + ’ll,z% + ua% + uﬁ =|0% 4. wuuz + usluy = 0.

Page 215. Art. 172

e . . =0. 4. 4(n—2y.
@A Aa¥z A3z Aa®s @5(X1 + X2 + X3 + Xy)

Page 218. Art. 175
21=0, 22 — 223 =0; 2 —203=0, 22—24=0;
21Xy — X123 + 742 —x223 = 0, 232 — Loy — x9% + 223 =0,
292 4 X3 + 2 Xy + X3xg — X122 = 0.

o (@02 F x2? — wg?)? — 4 (1 — 22) (X1® + 27 + wows® — 2 21232) = 0.
. X124 22 + 532 =0,

(a1 — (14).’1,'12 +(az— a4)x22 + (az - (Z4)J732 =0.

(%12 — 229 4232 F 2242 —2 12m3)2

— 2(x1 — B xa + 2 24)[(212 + 242 — Xa03) (221 + 4202 — 2123)
—-(2‘212 + 2 x2 — x32)(2x1 — X —u3 + 2%4)]: 0.
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Page 225. Art. 180
Xy = t(tz— 1), 20=08—1,123 =(— N2 gt =t
5 (4 X3xy — 9:1962)2 -_ 4(@22 +2 1’413)((1312 + 2 x2x4) =0.
12(ug? — ua?) (u2? — ug?) — 12(maus — ugwg)?
-+ (U12 + 2 ug? — uz? — U42)2 =0.
36(u? — u3?) (u? — ug?) (w1® + 2 u® — uz? — uy?)
+ 18(w1% — 4 u? + 2 ug? + 2 ug?) (wrus — uguy)?
—(m? 4 2 ug? — uz? — u2)3 = 0.

©w o e

Page 234. Art. 184
5 m=3,n=3,r=4,H=0,h=1,G=0,9g=1,6=0,8=0,
v=0,0=02x=0,y=0,p=0.

6. On the developable of the given curve.

Page 241. Art. 187

1. The four quadric cones on which Cj lies.

w

Eight. Four of each regulus.

4. 16 stationary planes.
° 24 planes tangent to Cy at each of two stationary points.
96 planes tangent at one and passing through two other stationary points,
116 planes through four distinct stationary points.

5. The developable surface of (4. The four quartic curves in which the
faces of the self-polar tetrahedron intersect the developable surface.

Page 243. Art. 188
1. (a) m=4, n=6, r=6, H=1, h=2, G=0, g=6, a =4, =0,
v=20, w=0,2=6, y=4, p=0.
(b)) m=4, n=4,r=5, H=0, kI =120Gi=10) gi=12; ol=H1 Bi=)l)
v=0, w=0,x=2, y=2, p=0.
(¢) m=4, n=6, r=86, H=0,h=3, G=0,9g=6, e=4, §=0,
v=0, w=0, =6, y=4, p=0.
(d) m=4,n=56 r=6, H=0, h=38, §=0, g=4, e =2, 8 =0,
v=1 w=0, =5 y=4, p=0.
() m=4, n=4,r=06, H=0, h =3, G=0,9=3, ¢ =0, §=0,
v=2 w=0,x=4 y=4, p=0.
4. —-1,2, % 9. Four. 10. Four. Two of each regulus.
11, wy=8—=382—2, up =41t + 1)2, ug =— 18, ug = 3(¢ + 1)2

u1=1, U3 =—2t, ug =2t8, Uy =— 4.
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Page 253. Art. 195

1. z=acos—>—, y= 2= 2.
av?2 a\/ V2
2. Tangent ——— sin —°—, L cos—5_, L.
V2 av2 V2 ave V2
Principal normal — cos —>—, —sin -5, 0.
ax/f av2

Binormal — sin —— cos =, —1—_
a\/— \/_ av2 V2
p=2a, o =—2a.
1+42494\} 3
3. R=—("""T""—1"(36(1+424+9¢*)+ (4867456715490 3—61¢)2
12(1+9tz+9t‘)( (1+4 8249 18) + (486 7+ 567 £54-90 59— 6 ¢)2)
5./ (@) No curve. (b) A cubic curve.

Page 267. Art. 207

1. 2ucosvxr+ 2usinvy =24 u?,
2ucosvy 2usinw -1
\/1+4u2, \/1+4u2, V14 4ul

2. du? 4 u?dv? = 0.

4. (w+Vul+a?+d?)(v+Velta+d)=c.
U+ Vud+ o + b2 = ¢/ (v? + VoI + a? + b2).







Absolute, 53
Angle, 3
between two lines, 3, 22
between two planes, 22
Apolar, 182
Axis, radical, 47
of revolution, 50
major, mean, minor, 63

Binormal, 248

Bundle of planes, 31, 115
of quadrics, 167
parallel, 31

Burnside and Panton, 239

Center, 76
of ellipsoid, 63
radical, 59
Characteristic, 150
" Class of a curve, 225
of a surface, 210
Cone, 49
asymptotic, 96
minimum, 190
projecting, 217
quadric, 72-
tangent, 212
Conjugate points, 132
planes, 132
point and line, 165
Contragredient, 119
Cobrdinates, 1
curvilinear, 255
eylindrieal, 10
elliptic, 106
homogeneous, 33
hyperbolie, 139
plane, 31
polar, 10
spherical, 11
tetrahedral, 109
Correspondence, 120
involutorial, 172

INDEX

The numbers refer to pages.

Cross ratio, 121
Curvature, 248
mean, 263
total, 263
Curve, 46
algebraic, 215
asymptotic, 261
minimum, 252
parametric, 255
space, 215, 245__
Cusp, 226
Cyeclide, 203
binodal, 204
Dupin, 204
horn, 204
nodal, 203
ring, 204
spindle, 204
Cylinder, 49
elliptie, 72
hyperbolie, 72
imaginary, 72
parabolic, 72
projecting, 47

Direction, 3

cosines, 5
Discriminant, 78, 126
Discriminating cubie, 79
Distance, 4, 7

between two lines, 24

between a point and line, 23

from a plane to a point, 17
Double point of a curve, 226

apparent, 221

of a surface, 203, 210
Duality, 113

Ellipse, cubical, 235

Ellipsoid, 63
imaginary, 68

Equation of plane, 12
of point, 32

287.
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Equations of a line, 19
parametric, 138
Euler, 42

Factors, invariant, 149
Field, plane, 115

Fine, 216

Formulas, Euler’s, 42
Frenet-Serret, 250

Generator, 94
Genus, 228

Halphen, 216

Harmonic, 122

Hessian, 212

Horopter, 235

Hyperbola, cubical, 234

Hyperboloid of one sheet, 65
of two sheets, 67

Image, 139
Independent planes, 36
Indicatrix, 267
Inflexion, linear, 226
Intercepts, 13
Invariant

points, 121

relative, 127

under motion, 82
Inversion, quadratie, 201
Involution, 122
Isotropic planes, 54

Jacobian of a net, 170
of a web, 176

Kummer, 180
surface, 180

Law of inertia, 136
Lines, conjugate, 134
minimum, 190
normal, 255
of centers, 76
of curvature, 263
of vertices, 76

Matrix, 37
Meusnier, 260
Monoid, 219

Node, 226
Noether, 221
Normal, 92

INDEX

Normal form, 13
principal, 247

Octant, 2

Order of curve, 170
of surface, 208

Origin, 1

Parabola, eubical, 235
Paraboloid, elliptic, 69
hyperbolic, 70
Parameter, 21
Parametric equations, 21
Pencil of planes, 26, 115
of quadrics, 147
Perspectivity, 196
Plane, 13
at infinity, 76
diametral, 75
double osculating, 226
fundamental, 73
normal, 132, 208
of centers, 76
principal, 78
radical, 57
rectifying, 247
self-conjugate, 133
stationary, 226
tangent, 210
Planes, codrdinate, 1
isotropic, 190
projecting, 26
Point, at infinity, 21
stationary, 226
Points, associated, 168
circular, 53
conjugate, 132, 153
elliptic, 267
fundamental, 197
hyperbolic, 267
imaginary, 44
parabolic, 267
self-conjugate, 133
Polar reciprocal figures, 135
tetrahedra, 135
Position, hyperbolic, 143
Projection, orthogonal, 3
quadric on a plane, 139
quadric cone on a plane, 149
stereographic, 59

Quadric cone, 72
non-singular, 78 -
gingular, 78
surface, 63, 124



Quadrics, confocal, 104

Quartic curve, 235
first kind, 242
non-singular, 238

Quartic curve, rational, 240

second kind, 237

Radii, reciprocal, 201

Radius of curvature, 249

of torsion, 249
Range of points, 115
Rank of curves, 224

of determinants, 37

of a matrix, 37
Reflection, 41
Regulus, 94, 138
Reye, 77
Rotation, 38

Salmon, 167, 177, 227
Section, circular, 98
Semi-axis, 63
Sphere, 52
director, 93
imaginary, 52
osculating, 251
point, 52
Spheroid, oblate, 64
prolate, 65
Steinerian, 214
Surface, 46
algebraic, 206

INDEX 289

Surface, developable, 225
of revolution, 50
polar, 208
quadrie, 63

Tangent, 209
double, 226
inflexional, 226
stationary, 226
Tangents, asymptotic, 261
conjugate, 262
inflexional, 210
Tetrahedron, cosrdinate, 35
self-polar, 135
Torsion, 248
Transformation, birational, 197
of codrdinates, 38
projective, 120
Translation, 38

Umbilie, 101
Unit plane, 110
point, 110

Vertex of bundle, 31
of quadric, 76
Vertices of ellipsoid, 63

Web, 176
Weddle, 179
surface, 179
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