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PREFACE.

Tuis text-book is designed for Colleges, Universities,
and Technical Schools. The aim of the author has been
to prepare a work for beginners, and at the same time to
make it sufficiently comprehensive for the requirements of
the usual undergraduate course. For the methods of develop-
ment of the various principles he has drawn largely upon his
experience in the class-room. In the preparation of the work
all authors, home and foreign, whose works were available,
have been freely consulted.

In the first few chapters elementary examples follow the
discussion of each principle. In the subsequent chapters
sets of examples appear at intervals throughout each chapter,
and are so arranged as to partake both of the nature of a
review and an extension of the preceding principles. At the
end of each chapter general examples, involving a more
extended application of the principles deduced, are placed for
the benefit of those who may desire a higher course in the
subject.

The author takes pleasure in calling attention to a ¢ Dis-
cussion of Surfaces,” by A. L. Nelson, M.A., Professor of
Mathematics in Washington and Lee University, which
appears as the final chapter in this work.

He takes pleasure also in acknowledging his indebtedness
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to Prof. C. S. Venable, LL.D., University of Virginia, to
Prof. William Cain, C.E., University of North Carolina,
and to Prof. E. 8. Crawley, B.S., University of Penunsylvania,
for assistance rendered in reading and revising manuseript,
and for valuable suggestions given.
E. W. NicHoLs.
LEXINGTON, VA.

January, 1893,
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PLANE ANALYTIC GEOMETRY.

PART L

CHAPTER L

CO-ORDINATES. —THE CARTESIAN OR BILINEAR
SYSTEM.

1. Tug relative positions of objects are determined by
referring them to some other objects whose positions are
assumed as known. Thus we speak of Boston as situated
in latitude — ° north, and longitude — ° west. Here the ob-
jects to which Boston is referred are the equator and the
meridian passing through Greenwich. Or, we speak of Bos-
ton as being so many miles north-east of New York. Here the
objects of reference are the meridian of longitude through
New York and New York itself. In the first case it will be
observed, Boston is referred to two lines which intersect each
other at right angles, and the position of the city is located
when we know its distance and direction from each of these
lines.

In like manner, if we take any point such as P; (Fig. 1) in
the plane of the paper, its position is fully determined when
we know its distance and direction from each of the two lines
O X and O Y which intersect each other at right angles in
that plane. This method of locating points is known by the

name of THE CARTESIAN, or BILINEAR SysteEM. The lines of
1
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reference O X, O Y, are called Co-orpINATE AXEs, and, when
read separately, are distinguished as the X-axis and the
Y-ax1s. The point O, the intersection of the co-ordinate
axes, is called the OriGix oF Co-ORDINATES, or simply the
ORIGIN.

The lines «’' and gy which measure the distance of the
point P; from the Y-axis and the X-axis respectively, are

Y
P, x] R
y’
0 Y
al
R R
FiG. 1.

called the co-ordinates of the point — the distance (z') from
the Y-axis being called the abscissa of the point, and the dis-
tance () from the X-axis being called the ordinate of the
point.

2. Referring to Fig. 1, we see that there is a point in each
of the four angles formed by the axes which would satisfy
the conditions of being distant #’ from the Y-axis and distant
9’ from the X-axis. This ambiguity vanishes when we com-
bine the idea of direction with these distances. In the case
of places on the earth’s surface this difficulty is overcome by
using the terms north, south, east, and west. Inanalytic geome-
try the algebraic symbols + and — are used to serve the same
purpose. All distances measured to the right of the Y-axis
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are ecalled positive abscissas; those measured to the left,
negative ; all distances measured adove the X-axis are called
positive ordinates; all distances below, negative. With this
understanding, the co-ordinates of the point I’; become (', y') ;
of Py, (—a, y'); of Py, (—a/, —y'); of Py, (&', —¥).

3. The four angles which the co-ordinate axes make with
each other are numbered 1, 2, 3, 4. The first angle is above
the X-axis, and to the right of the Y-axis; the second angle
is above the X-axis, and to the left of the Y-axis; the third
angle is below the X-axis, and to the left of the Y-axis; the
fourth angle is below the X-axis and to the right of the
Y-axis.

EXAMPLES.
1. Locate the following points:
(=12, (23), G -1, (=1, =1, (=2 0), (0,1),
0, 0), (3, 0), (0, —4).
2. Locate the triangle, the co-ordinates of whose vertices
are,
0, 1), (= 1,—2), 3, —4).
3. Locate the quaduhte‘m% the co-ordinates of whose ver-
tices are,
(2, 0); (0, 3), (—4.0), (0, — ol
What are the lengths of its sides ?
Ans. /18, 5, 5, V/13.
4. The ordinates of two points are each = — &; how is
the line joining them situated with reference to the X-axis ?
Ans. Parallel, below.

5. The common abscissa of two points is @ ; how is the
line joining them situated ?

6. In what angles are the abscissas of points positive ?
In what negative ? £

7. In what angles are the ordinates of points negative ?
In what angles positive ?
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8. In what angles do the co-ordinates of points have like
signs ?  In what angles unlike signs ?

9. The base of an equilateral triangle coincides with the
X-axis and its vertex is on the Y-axis at the distance 3 below
the origin; required the co-ordinates of its vertices ?

Ans. (3 ~/12, 0), (0, — 3), (-} V 12, 0).

10. If a point so moves that the ratio of its abscissa to its
ordinate is always = 1, what kind of a path will it describe,
and how is it situated ?

Ans. A straight line passing through the origin, and mak-
ing an angle of 45° with the X.axis.

11. The extremities of a line are the points (2,1), ( — 1, — 2):
construet the line.

12, If the ordinate of a point is =0, on which of the
co-ordinate axes must it lie ? If the abscissa is =07?

13. Construct the points (— 2, — 3), (2, 3), and show that
the line joining them is bisected at (0, 0).

14. Show that the point (m, n) is distant vm? + 22 from
the origin.

15. Find from similar triangles the co-ordinates of the
middle point of the line joining (2, 4), (1, 1).
Ans. (3, 3).

THE POLAR SYSTEM.

4. Instead of locating a point in a plane by referring it to
two intersecting lines, we may adopt the second of the two
methods indicated in Art. 1. The point P,, Fig. 2, is fully
determined when we know its distance O P, (= r) and direc-
tion P, O X (= 6) from some given point O in some given
line O X. If we give all yalues from 0 to oo to 7, and all
values from 0° to 360° to 6, it is easily seen that the position
of every point in a plane may be located.

This method of locating a point is called the Ponar SysTEM.
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The point O is ecalled the Pore; the line O X, the PorAr
Axis, or INrT1AL Line; the distance 7, the Rap1us VEcror;
the angle 6, the DIRECTIONAL or VECTORIAL ANGLE. The
distance = and the angle 6, (r, 0), are called the PorLar Co-
ORDINATES of a point.

5. In measuring angles in this system, it is agreed (as in
trigonometry), to give the positive sign (4-) to all angles meas-

Fia. 2.

ured round to the left from the polar axis, and the opposite
sign (—) to those measured to the right. The radius vector
(r) is considered as positive (+) when measured from the
pole foward the extremity of the arc (6), and negative (—)
,when measured from the pole away from the extremity of the
arc (0). A few examples will make this method of locating
points clear.

If 7 = 2 inches and § = 45°, then (2, 45°) locates a point
P, 2 inches from the pole, and on a line making an angle
of 4-45° with the initial line.

If » = — 2 inches and 6 = 45°, then (— 2, 45°) locates a
point P; 2 inches from the pole, and on a line making an
angle of 45° with the initial line also; but in this case the
point is on that portion of the boundary line of the angle
which has been produced backward through the pole.

If »=2 inches and § = — 45°, then (2, — 45°) locates a
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point P, 2 inches from the pole, and out on a line lying below
the initial line, and making an angle of 45° with it.

If »= — 2 inches and 6= — 45° then (—2, —45°)
locates a point P, directly opposite (with respect to the pole),
the point Py, (2, — 45°).

6. While the usual method in analytic geometry of express-
ing an angle is in degrees, minutes, and seconds (%, ', "), it
frequently becomes convenient to express angles in terms of
the angle whose arc is equal in length to the radius of the
measuring circle. This angle is called the CircuLAR UNIT.

We know from geometry that angles at the centre of the
same circle are to each other as the ares included between
their sides; hence, if 6 and ¢ be two central angles, we
have,

0  arc

¢  ard
Let @ — unit angle; then ard’ =1 (radius of measuring
circle).

0 are

Hence “circular unit 7
.1 0 = are X circular unit.
1f § = 360°, common measure, then are = 2.
Hence, rX 360° =2mr X circular unit.
Therefore the equation,
360° = 27 X circular unit, . . . @)
expresses the relationship between the two units of measure.
\
EXAMPLES. '
1. What is the value in cireular measure of an angle of 30°7
From (1) Art. 6, we have,
360° =30° X 12 =2~ cireular unit.

™ . .
% Y = . civeular unit.
)
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2. What are the values in circular measure of the following

angles ?
1°, 45°, 60°, 90°, 120°, 180°, 225°, 270°, 360°,
3. What are the values in degrees of the following angles?
i Kepe @ 08 R Il e PR

™
=y =w, =, —m, & 2.

B P8 haT AT s
4. What is the unit of circular measure ?
Ans. 57°, 17, 45"\ & (4

3. Locate the following points :

@, 40°), <3, g) (— 4, 90), (3, — 135°), (— 1, — 180°),
(2, %) (1, —Z.W), (=2, 210°), (3, 2),

(s ()

6. Locate the triangle whose vertices are,

(i (5)

7. The base of an equilateral triangle (= a) coincides with
the initial line, and one of its vertices is at the pole; re-
quired the polar co-ordinates of the other two vertices.

Ans. <a, §>’ (a, 0).
8. The polar co-ordinates of a point are (2, i) Give

three other ways of locating the same point, using polar
co-ordinates.

['71' 3T (T
Ans. — 2, T, g (= = 2L B ek ) -
ns < y ) < 3 9 5

9. Construct the line the co-ordinates of whose extremities

are H=p [=ds g
6 3
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10. How is the line, the co-ordinates of two of its points

being(S, 1—1) (3, éf), situated with reference to the initial

line ? Ans. Parallel.

Find the rectangular co-ordinates of the following points :

o T ™
1. <o, 3} 13 <4, §>.
2 (-3 Z). 14. _oi
2 (=5 ) (->5)
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CHAPTER II

LOCI.

7. Tur Locus or AN EQUATION is the path described by its
generatrix as it moves in obedience to the law expressed in the
equation.

The Equation or A Locus is the algebraic expression of
the law subject to which the generatricz moves in describing that
locus.

If we take any point Pj, equally distant from the X-axis
and the Y-axis, and impose the condition that it shall so move

Y
Pz

<

P
+0

FiaG. 3.
that the ratio of its ordinate to its abscissa shall always be
equal to 1, it will evidently describe the line P;P;. The
algebraic expression of this law is

?/—=1,org/=w,
4

and is called the Equation of the Locus.
The line P;P, is called the Locus of the Equation. Again:
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if we take the point P,, equally distant from the axes, and
make it so move that the ratio of its ordinate to its abscissa
at any point of its path shall be equal to — 1, it will describe
the line P, P,. In this case the equation of the locus is

8 IR

=—1ory = —x,

and the line P, P, is the locus of this equation.

8. It will be observed in either of the above cases (the
first, for example), that while the point P moves over the
line Py P, its ordinate and abscissa while always equal are
yet in a constant state of change, and pass through all values
from — o, through 0, to 4+ . For this reason y and z are
called the VARIABLE or GENERAL Co-oRDINATES of the line.
If we consider the point at any particular position in its
path, as at P, its co-ordinates (— a/, — #/) are constant in
value, and correspond to this position of the point, and to
this position alone. The variable co-ordinates are represented
by = and y, and the particular co-ordinates of the moving
point for any definite position of its path by these letters
with a dash or subsecript; or by the first letters of the
alphabet, or by numbers. Thus (&, ¥'), (z1, 1), (a, 8), (2, 2)
correspond to some particular position of the moving point.

EXAMPLES.
1. Express in language the law of which y = 3 + 2 is the
algebraic expression.
Ans. That a point shall so move in a plane that its ordinate
ghall always be equal to 3 times its abscissa plus 2.

2. A point so moves that its ordinate 4 a quantity a is
always equal to } its abscissa — a quantity & ; required the
aloebraic expression of the law,

Ans. y +a=1%x —0b.

3. The sum of the squares of the ordinate and abscissa of
a moving point is always constant, and = « %; what is the
equation of its path ?

Ans. x* 4y =a®
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4. Give in language the laws of which the following are
the algebraic expressions:

2y=ux— g —yi= —6.
2
%4-%— ik xy = 16.
y:=4wx. 422 —5y?= —18.
222 4+ 3y*=06. a®y? + 0%x® = a2
yt = 2 pa.

9. As the relationship between a locus and its equation
constitutes the fundamental conception of Analytic Geometry,
it is important that it should be clearly understood before
entering upon the treatment of the subject proper. We have
been accustomed in algebra to treat every equation of the
form y = = as indeterminate. Here we have found that this
equation admits of a geometric interpretation ; i.e., that it repre-
sents a straight line passing through the origin of co-ordi-
nates and making an angle of 45° with the X-axis. We shall
find, as we proceed, that every equation, algebraic or transcen-
dental, which does not involve more than ¢hree variable quan-
tities, is susceptible of a geometric interpretation. We shall
find, conversely, that geometric forms can be expressed alge-
braically, and that all the properties of these forms may be
deduced from their algebraic equivalents.

Let us now assume the equations of several loci, and let us
locate and discuss the geometric forms which they represent.

10. Locate the geometric figure whose algebraic equivatent is /¥ '

y=3x+2

We know that the point where this locus cuts the Y-axis has
its abscissa @ = 0. If, therefore, we make x = 0 in the equa-
tion, we shall find the ordinate of this point. Making the
substitution we find y = 2. Similarly, the point where the
locus cuts the X-axis has 0 for the value of its ordinate. Mak-
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ing y = 0 in the equation, we find # = — . Drawing now
the axes and marking on them the points

(©, 2),(-5, 0),

we will have two points of the required locus. Now make @
successively equal to

1,23 —1, — 2, — 3, ete.
in the equation, and find the corresponding values of y. For
convenience let us tabulate the result thus:

Values of « Corresponding Values of »
1 L 5
2 Z 8
3 @ kil
—1 5 ’ -1
-2 & —4
Y
b
a/ |0 X
FiG. %

Locating these points and tracing a line through them we
have the required locus. This locus appears to be a straight
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line —and it is, as we shall see hereafter. We shall see also
that every equation of the first degree between two variables
represents some straight line. The distances Oa and 0%
-which the line cuts off on the co-ordinate axes are called
IntERCEPTS. In locating straight lines it is usually sufficient
to determine these distances, as the line drawn through their
extremities will be the locus of the equation from which their

values were obtained. /

EXAMPLES.
1. Locate the geometric equivalent of
il
—y—x=1—2zx
9 Y

Solving with respect to # in order to simplity, we have,
y=—2x42
The extremities of the intercepts are
©,2), (@@,0).
Locating these points, and drawing a straight line through
them, we have the required locus.

Construet the loci of the following equations:

2. y=—2z—2. 7.%—{—2%‘:3{1}—3/.
3. y=38x—1 8 22 43y=7—1y.
e —1 y -2
& g= b. e B e
y=ar+ 2 3
5. %y:cm—d. 10. 1——‘-/—_'-{—90 O‘T_2+g/.
6. 2y =3z 11.x—y=—gj—2x.

12. Is the point (2, 1) on the line whose equation is
y=2x2—3? Is(6,9? Is(5,4)? Is(0,—3)?

Norr. —If a point is on a line, its co-ordinates must satisfy
the equation of the line.
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13. Which of the following points are on the locus of the
equation 3 x? 4 2J =67

@ 1), V3,0), 0,V3), (- 1,3), (- V30, ¢, V5)
14, Write six points which are on the line

ly—20=3y—6

15. Construct the polygon, the equations of whose sides are
y=—2x—1, y==, y=>5.

16. Construct the lines y =sx 4+ 6 and y = sz + 4, and
show by similar triangles that they are parallel.

11. Discuss and construct the equation :
x? + y? = 16.
Solving with respect to y, we have,

¥y=4+ V16 — 2%

The double sign before the radical shows us that for every
value we assume for x there will be two values for y, equal
and with contrary signs. This is equivalent to saying that
for every point the locus has above the X-axis there is a cor-
responding point below that axis. Hence the locus is symmet-
rical with respect to the X-axis. Had we solved the equation
with respect to = a similar course of reasoning would have
shown us that the locus is also symmetrical with respect to the
Y-axis. Looking under the radical we see that any value of «
less than 4 (positive or negative) will always give two real
values for y; that # = 4 4 will give ¥y = L 0, and that any
value of « greater than L 4 will give imaginary values for y.
Hence the locus does not extend to the right of the Y-axis
farther than @ = 4+ 4, nor to the left farther than x = — 4.

Making =0, we have y = 1L 4
143 ?/-:O, 43 13 x=:l:4
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Drawing the axes and constructing the points,
0, 9, (0, — 4); (4, 0), (— 4, 0), we have four points of
the locus; i.e., B, B, A, A’
Y
B

e ——

] ™~

VA q
V4

8

e
F1G. 5.
Values of « Corresponding Values of y
1 & + 3.8 and — 3.8
2 & + 3.4 and — 3.4
3 & -+ 2.6 and — 2.6
4 13 :I: 0
-1 % + 3.8 and — 3.8
-2 s + 3.4 and — 34
-3 & + 2.6 and — 2.6
'y “ :E 0

Constructing these points and tracing the curve, we find it
to be a circle.

This might readily have been inferred from the form
of the equation, for we know that the sum of the squares
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of the abscissa (OC) and ordinate (CP,) of any point P,
in the circle is equal to the square of the radius (OP,).
We might, therefore, have constructed the locus by taking
the origin as centre, and describing a circle with 4 as a radius.

Nore. z = L 0 for any assumed value of y, or y = L 0,
for any assumed value of x always indicates a tangency. Re-
ferriug to the figure we see that as z increases the values of
y decrease and become L 0 when @ =4. Drawing the line
represented by the equation @« = 4, we find that it is tangent
to the curve. We shall see also as we proceed that any two
coincident values of either variable arising from an assumed
or given value of the other indicates a point of tangency.

12. Construct and discuss the equation

92?416 y* = 144.
Solving with respect to y, we have

1 d:\/144 — 9"

z=0gives y = L 3;
y=0 “ x=44
Drawing the axes and laying off these distances, we have
four points of the locus; ie., B, B, A, A’. TFig. 6.

Values of x Corresponding Values of y
1 L +29and — 2.9
2 “ +26 “ —26
3 I + 2 ‘o2
4 « 40
-1 £ +29 « —29
-2 g 426 « —26
— 3 7] _1_ P “ 92
—4 1 -_{: O

Locating these points and tracing the curve through them,
we have the required locus. Referring to the value of y we
see from the double sign that the curve is symmetrical with
respect to the X-axis. The form of the equation (Egllffli.lling
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only the second powers of the variables), shows that the locus
is also symmetrical with respect to the Y-axis. Looking
Y

—_—

U

cal

. Fia. 6.

under the radical we see that any value of x between the
limits 4 4 and — 4 will give two real values for y; and that
any value beyond these limits will give imaginary values for
y. Hence the locus is entirely included between these limits.
This curve, with which we shall have more to do hereafter,
is called the ELLIPSE.
13. Discuss and construct the equation
:I/2 =42
Solving, we have _
y= 4+ Vi
We see that the locus is symmetrical with respect to the
X-axis, and as the equation contains only the first power of
x, that it is not symmetrical with respect to the Y-axis. As
every positive value of z will always give real values for y,
the locus must extend infinitely in the direction of the posi-
tive absciss®; and as any negative value of x will render y
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imaginary, the curve can have no point to the left of the
Y-axis. Making 2 =0, we find y = L 0; hence the curve
passes through the origin, and is tangent to the Y-axis.
Making y =0, we find # = 0; hence the curve cuts the
X-axis at the origin.

Values of = Corresponding Values of y
1 & 42 and — 2
2 “ +28 « —28
3 @ +34 ¢« —34
4 113 + 4 (3 - 4

From these data we easily see that the locus of the equation
is represented by the figure below.

‘ =

T,
A
/

o

™~

T

Fi. 7. 3
This curve is called the PAraBoLa.
14. Discuss and construct the equation
42— 9 y* = 36.
2
Hence y = :1:\/4 i ’6
We see from the form of the equation that the locus must
be symmetrical with respect to both axes. Tooking under
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the radical, we see that any value of x numerically less than
+ 38 or — 3 will render y imaginary. Hence there is no
point of the locus within these limits. We see also that
any value of x greater than 4 3 or — 3 will always give real
values for 4. The locus therefore extends infinitely in the
direction of both the positive and negative abscisse from the
limits « = -+ 3. .

Making = =0, we find y = £ 2+ — 1; hence, the curve
does not cut the Y-axis.

Making y =0, we find = L 3; hence, the curve cuts
the X-axis in two points (3, 0), (— 3, 0).

Value of z. Corresponding. Values of y
4 i + 1.7 and — 1.7
5 o +26 « —26
6 & +34 « —34
—4 5 + 17 « —17
-5 & +26 «“ —26
—6 0 +34 « —34
N

N

// a

¥IG. 8.

This curve is called the HypPERBOLA.
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15. We have in the preceding examples confined ourselves
to the construction of the loci of RECTANGULAR equations;
i.e.,, of equations whose loci were referred to rectangular
axes. Let us now assume the Porar equation

r=26 (1 — cos 6)

and discuss and construet it.

Assuming values for 6, we find their cosines from some
convenient table of Natural Cosines. Substituting these
values, we find the corresponding values of 7.

Values of 6 Values of cos 6 Values of »

0 1. 61— 1)= 0
30° .86 6(1—.86)= .84
60° .50 6(1—.50)= 3.
90° 0 61— 0)= 6.

120° — .50 61+ .50) = 9.
160° — .94 6 (14 .94) =11.64
180° — i, 6 (14 1)=12
200° — .94 6 1+ .94) =11.64
240° — .50 6 (14 .50) = 9.
270° 0 61— 0)= 6.
300° .50 61— 50)= 3.
330° .86 6(1—.86)= .84

Draw the initial line OX, and assume any point O as the
pole. Through this point draw a series of lines, making the
assumed angles with the line OX, and lay off on them
the corresponding values of 7. Through these points, tra-
cing a smooth curve, we have the required locus.
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240 270°

Fi1a. 9.
This curve, from its heart-like shape, is called the CarpIoID.

16. Discuss and construct the transcendental equation
y = log a.

Nore. — A transcendental —equation is one whose degree
Lranscends the-power of analysis to express.

Passing to equivalent numbers we have 2% = z, when 2 is
the base of the system of logarithms selected.

As the base of a system of logarithms can never be nega-
tive, we see from the equation that no negative value of  can
satisfy it. Hence the locus has none of its points to the left
of the Y-axis. On the other hand, as every positive value of
z will give real values for ¥, we see that the curve extends
infinitely in the direction of the positive abscissee.

If ¥y = 0, then

X=r..0=logz..z=1.
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If x = 0, then
W=0. . y=1log0..y=— oo

The locus, therefore, cuts the X-axis at a unit’s distance on
the positive side, and continually approaches the Y-axis with-
out ever meeting it. It is further evident that whatever be
the base of the system of logarithms, these conditions must
hold true for all loci whose equations are of the form a¥ = x.

Values of x Corresponding Values of y
1 ié 0
2 Z 1
4 @ 2
8 4 © 3
.5 @ —1
.25 & —2

Locating these points, the curve traced through them wiil
be the required locus.
Y

FiG. 10.

This curve is called the Locaritamic Curve, its name
being taken from its equation. .
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17. The preceding examples explain the method employed
in constructing the locus of any equation. While it is true
that this method is at best approximate, yet it may be made
sufficiently accurate for all practical purposes by assuming
for one of the variables values which differ from each other
by very small quantities. It frequently happens (as in the
case of the ecircle) that we may employ other methods which
are entirely accurate.

18. In the discussion of an equation the first step, usually,
is to solve it with respect to one of the variables which enter
into it. The question of which variable to select is immate-
rial in principle, yet considerations of simplicity and conven-
lence render it often times of great importance. The sole
difficulty, in the discussion of almost all the higher forms of
equations, consists in resolving them. If this difficulty can
be overcome, there will be no trouble in tracing the locus and
discussing it. If, as frequently happens, no trouble arises in
the solution of the equation with respect to one of the vari-
ables, then that one should be selected as the dependent
variable, and its value found in terms of the other. If it is
equally convenient to solve the equation with respect to either
of the variables which enter into it, then that one shounld be
selected whose value on inspection will afford the simpler
discussion.

EXAMPLES.

Construct the loci of the following equations :

L 2y—424+1=0. 5. y*44x=0.

2.y —x?=16. 6. a2 —25=0.
3. 29 +5ax?=10. 7. r*=a%cos 2.

4 42— 992 = — 36. 8. x=1logy.
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Construct the loci of the following :

9. 22 —y:=0. 14 z2—x—6=0.
10. 22+ 2ax +a*>*=0. 15. 22 4+ —6=0.
11. 22 — a2=0. 16. 22 +4x —5=0.
12. 2 —9=0. 17. o —Ta412=0.
13. 42— 2ay +2*=0. 18. 224+ Tx 4 10 =0.

NorE. — Factor the first member: equate each factor to 0,
and construct separately.
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CHAPTER III
THE STRAIGHT LINE.
19. 70 find the equation of a straight line, given the angle

which the line makes with the X-axis, and its intercept on the
Y-axis.

Y
S
P/
B N
A~ o I .
c

FiG. 11,

Let C S be the line whose equation we wish to determine.
Let SAX =« and OB = 5. Take any point P on the line
and draw PM || to OY and BN || to OX.

Then (OM, MP) = (z, %) are the co-ordinates of P.

From the figure PM = PN 4 OB = BNtan PBN + %, but
BN = OM =z, and tan PBN = tan SAX = tan .

.. Substituting and letting tan « = s, we have,

y=szt+b...(Q1)
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Since equation (1) is true for any point of the line SC, it
is true for every point of that line; hence it is the equation of
the line. Equation (1) is called the Storr EQUATION OF THE
STRATIGHT LINE; s ( = tan «) is called the slope.

Cororrary 1. If & = 0 in (1), we have,
y=sx ... (2
for the slope equation of a line which passes through the
origin. !
Cor. 2. If s =01in (1), we have
y=>b

which is, as it ought to be, the equation of a line parallel to
the X-axis.

Cor. 3. If s = oo, then « = 90° and the line becomes
parallel to the Y-axis.

Let the student show by an independent process that the
equation of the line will be of the form x = a.

ScaoriuMm. We have represented by « the angle which the
line makes with the X-axis. As this angle may be either
acute or obtuse, s, its tangent, may be either positive or nega-
tive. The line may also cut-the Y-axis either above or below
the origin; hence, &, its Y-intercept, may be either positive or
negative. From these considerations it appears that

y=—sx+b
represents a line crossing the first angle;
y=sxr+0b

represents a line crossing the second angle;
y=—sr—2>b

represents a line crossing the third angle;
y=sx —b

represents a line crossing the fourth angle.
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EXAMPLES.

1. The equation of a line is 2y 4 @ = 3; required its
slope and intercepts.
Solving with respect to y, we have,

1 3

Comparing with (1) Art. 19, we find s = — %and ey

¢

= Y-intercept. Making y =0 in the equation, we have
2« = 3 = X-intercept.

2. Construct the line 2y 4« = 3. -

The points in which the line cuts the axes are

<0, g) and (3, ).

Laying these points off on the axes, and tracing a straight
line through them, we have the required locus. Or otherwise
thus : solving the equation with respect to y, we have,

1,48
y= 90+2-

)

“

Lay off OB =6 = ‘23; draw

BYXN || OX and make it = 2, also
NP | OY and make it = 4 1.
The line through P and B is
the required locus.

PN 1
—_— i .LT
For NE — 2 = tan PBN
= — tan BAX.

... tan BAX —_ = —

L
-
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3. Construct the line 2 y — 2 = 3.
Solving with respect to y, we have,

1 3
y=§x—|—§.

Lay off BO =0 = % Draw BN

‘

e N | to OX and make it =2; draw
also NP | to OY and make it = 1.

0
A X A straight line through P and B
will be the required locus.
For f% = ;— =tan PBN = tan

BAX =s. Hence, in general, BN is laid off to the right or
to the left of Y according as the coefficient of @ is positive
or negative.

Give the slope and intercepts of each of the following lines
and construct:

4 2y +3x—2=0.
Ans. s=—§— b=1 a=?—'.
% ’ 3

5, x — 2y +3=0.
Ans. s=%,b=%, a=—3.
1

Ans. s=—12,b=—2,a=—%.

7. xg2+3¢=4. 8.y§1+2x=1—y.

9. x+2+%=4,

NoTE. — a and b in the answers above denote the X-intercept
and the Y-intercept, respectively.
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What angle does each of the following lines cross ?

10 y =3z + 1. 12. y=22 —1.

11.y=—x+2.\y)\‘ 13. y=—3z—2. 3%
14. Construct the figure the equation of whose sides are
2y +2—-1=0,3y=22+2,y=—x — 1.
ot the cquas
15. Construct the quadri the equations of whose sides

are
2=3,y=—oc+1Ly=2x=0.

20. 7o find the equation of o straight line in terms of its
intercepts.

S

F1c. 12.
Let S C be the line.
Then OB = 4 = Y-intercept, and
OA = a = X-intercept.

The slope equation of a line we have determined to be
Art. 19, equation (1),
y =sr + b
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From the right angled triangle AOB, we have,

tan OAB = — tan BAX — — s = 9B,
OA
b
§ = — —.
a
Substituting in the slope equation, we have,
b
y=—-x +b;
a
~EpY=1.. .

This is called the SymmeTrICAL EqQUATION Of the straight
line.

Cor. 1. If @ 4 and & +, then we have,

»

=, +;}i =1, for a line crossing the first angle.
a
If @ — and b 4, then
oy % = lis aline crossing the second angle.
a

If @ — and & —, then

-, Be % = 1 is a line crossing the third angle.
a

If a + and 4 —, then

&

- y—b =1 is a line crossing the fourth angle.
a

EXAMPLES.

z_ Yy _
1. Construct T 1.

NotEe. — Lay off 3 units on the X-axis and — 2 units on the -
Y-axis. Join their extremities by a straight line.

Across which angles do the following lines pass ?
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Give the intercepts of each, and construct.

2 S+4=1 £ ==V
3 T Y _ 1 fé 5.2 _Y 1 Lot
P i R s e

Write the slope equations of the following lines, and
construet:

6.

=Y
Ans. g/=——éac—-1.

10. Write y = sx + b in a symmetrical form. 4

Y b B ;
Ans. p 6_1' o -
s

-

Given the following equations of straight lines, to write
their slope and symmetrical forms :

1L 2y 482 —T=a+2 13 VL=2_3

—1 xz—3 x — 1 20 —1
12 Y — - - | 14, Y )
2 3 s 4 3
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21. To find the equation of a straight line in terms of the
perpendicular to it from the origin and the directional cosines

of the perpendicular.

Note. — The Directional cosines of a line are the cosines of
the angles which it makes with the co-ordinate axes.

FiG, 13.

Let CS be-the line.
Let OP = p, BOP =y, AOP = «.
From the triangles AOP and BOP, we have

cos a cos ¥
that is, a = c_o%:z’ = géjslj .
/

Substituting these values in the symmetrical equation,
Art. 20. (1), 4 +% = 1, we have, after reducing,

a

xcose +ycosy=p... (1)

which is the required equation.
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Since y = 90° — e, cos y = sin «; hence
zeosa+ysine=p ... (2)

This form is more frequently met with than that given in (1)
and is called the NormAaL Equatiox of the straight line.

Cor. 1. If « = 0, then

x=p
and the line becomes parallel to the Y-axis.
Cor. 2. If « = 90°, then
PEL
and the line becomes parallel to the X-axis.

22. If 2 cosu + y sin« = p be the equation of a given line,
then x cos« 4y sinu = p L d is the equation of a parallel
line. TFor the perpendiculars p and p 4 d coincide in direction
since they have the same directional cosines; hence the lines
to which they are perpendicular are parallel.

Cor. 1. Since

ptd—p=24d

it is evident that d is the distance between the lines. If,
therefore, (¢, ') be a point on the line whose distance from
the origin is p 4 d, we have

x' cosu + y sine =p L d.
ot d=a"cose+y sine—p... 1)
Hence the distance of a point (z, y) from the line
x cos e + y sine = p is found by transposing the constant
term to the first member, and substituting for « and y the co-
ordinates «’, ' of the point. Let us, for example, find the

distance of the point (1/ '3, 9) from the line x cos 30° 4y sin
30°. = 5.

From (1)  d = V3cos 30° + 95sin30° — 5
—v3V3ii9e.l 5

SepaA=11"
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From Fig. 13 we have cose =2, sine =4 = 1
a b a4 b?
— ab
P -\/a/Z 40 b2
Hence id:(i-{—‘i_l)——_ﬁ:{:
a b Va? 4 b?

is the expression for the distance of the point («, ) from a
line whose equation is of the form g 3_2 =1.
a

Let the student show that the expression for d becomes
_ Az 4+ By 4+ C

VAZ ;|'7B2
when the equation of the line is given in -its general form.
See Art. 24, Equation (1).

EXAMPLES.

1. The perpendicular Hzt fall from the origin on a straight
line = 5 and makes an angle of 30° with X-axis; required the
equation of the line.

Ans. V3z + y = 10.

2. The perpendicular from the origin on a straight line
makes an angle of 45° with the X-axis and its length = v/2;
required the equation of the line.

Ans. x4y =
3. What is the distance of the point (2, 4) from the line
Z gV 2
-+ o . Ans. 7 g

Find the distance of the point from the line in each of the
following cases :

4. From (2, 5) to rT_¥=1

3 2

xr 3//""
5. From (3, 0) to 1—{%:1. Tw

6. From (0,1)to2y —x=2.

7. From (a, ¢) toy = sx 4 b. TDips N2
bv‘
= Co el
—_— o = S
-+ /_{(f P /__/' o
- s

s j\vbﬂjﬁ'ﬁ
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23. To find the equation of a straight line referred to
oblique axes, given the angle between the axes, the angle which
the line makes with the X-axis and its Y-intercept.

Note. — Oblique axes are those which intersect at oblique
angles.

Fic. 14.

A
Let CS be the line whose equation we wish to determine,
it being any line in the plane YOX.
Let YOX = 8, SAX = ¢, OB =b.
Take any point P on the line and draw
PM | to OY and ON || to SC;
then, PM =y, OM =2, NOX = ¢, NP = OB =b.
From the figure :
y=MN+4NP=MN+b... ()
From triangle ONM, we have,
MXN _ sin NOM |
OM ~ sin MNO’
JMN sin «
oz sin (8 —.a)
Substituting the value of . MN drawn from this equation in
(1), we have,

sin u
NS e
sin (8 — «)
6o’

x4+b ., . (2
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This equation expresses the relationship between the co-
ordinates of at least one point on the line. But as the point
selected was any point, the above relation holds good for
every point, and is, therefore, the algebraic expression of the
law which governed the motion of the moving point in de-
scribing the line. Tt is therefore the equation of the line.

Cor. 1. If 6 = 0, then

sin «
y = m x ... (3
is the general equation of a line referred to oblique axes
passing through the origin,
Cor. 2. If 5 = 0 and « = 0, then
y=0...(#4)
the equation of the X-axis.

Cor. 3. If & = 0 and B = «, then

=0...()
the equation of the Y-axis.

Cor. 4. If B = 90°; i.e, if the axes are made rectangular,

then
y =tanax + 0.

But tan« = s .. y = sx + b.

This is the slope equation heretofore deduced. See Art.
19 (1).

Cor. 5. If B =90° and b = 0, then

y = sx. See Art. 19, Cor. 1.

EXAMPLES.

1. Tind the equation of the straight line which makes an
angle of 30° with the X-axis and cuts the Y-axis two units
distant from the origin, the axes making an angle of 60°
with each other.

Ans. y =z + 2.

2. If the axes had been assumed rectangular in the exam-
ple above, what would have been the equation ?

Ans. y = + 2.

X
V3
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3. The co-ordinate axes are inclined to each other at an
angle of 30° and a line passing through the origin is inclined
to the X-axis at an angle of 120°, required the equation of the
line,

Ans. g/=——§\/§.

24. EBvery equation of the first degree between two variables
is the equation of a straight line.

Every equation of the first degree between two variables
can be placed under the form

Az +By4+C=0... (1)

in which A, B, and C may be either finite or zero.
Suppose A, B, and C are not zero. Solving with respect to

¥, we have,

—_A,_C 9
Yy = Bw I%...(u)

Comparing equation (2) with (1) Art. 19, we see that it
is the equation of a straight line whose Y-intercept 4 =

— % and whose slope s = —%; hence (1), the equation

from which it was derived is the equation of a straight line,
C

IfA =0, then y = — 5

the equation of a line parallel to the X-axis.
C

If B = 0, then e

the equation of a line parallel to the Y-axis.

If C =0, then =——1‘§—w,

the equation of a line passing through the origin,
Hence, for all values of A, B, C equation (1) is the equa-
tion of a straight line.

v
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25. 1o find the equation of a straight line passing through
a given point.

Let (2, y') be the given point.

Since the line is to be straight, its equation must be

y=sx+0b...(@1)

in which s and 4 are to be determined.

Now, the equation of a line expresses the relationship which
exists between the co-ordinates of every point on it; hence
its equation must be satisfied when the co-ordinates of any

point on it are substituted for the general co-ordinates 2 and
y.  We have, therefore, the equation of condition.

y =se'+b...(2)

But a straight line cannot in general be made to pass
through a given point (x/, %), cut off a given distance (b) on
the Y-axis, and make a given angle (tan. = s) with the X-axis.
We must therefore eliminate one of these requirements. By
subtracting (2) from (1), we have,

y—y=s@@—2a)...@)
which is the required equation.
Cor. 1. If 2’ = 0, then
y—y =sx ... %)
is the equation of a line passing through a point on the
Y-axis.
Cor. 2. 1f 4/ = 0, then
y=s@®—2a)... )
is the equation of a line passing through a point on the X-axis.
Cor. 3. If &’ =0 and ' = 0, then
Yy = ST

is the equation (heretofore determined), of a line passing
through the origin.
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EXAMPLES.

L Write the equation of several lines which pass through
the point (2, 3).

2. What is the equation of the line which passes through
(1,—2), and makes an angle whose tangent is 2 with the
X-axis ?

Ans. y = 22 — 4.

3. A straight line passes through (—1, — 3), and makes an
angle of 45° with the X-axis. What is its equation ?
Ans. y = x — 2.

4. Required the equations of the two lines which contain
the point (a, 4), and make angles of 30° and 60°, respectively
with X-axis.

X —

Ans. y — b = 5y —b=+/3.(x — a).

/ V3

26. To find the equation of @ straight line passing through
“two given points.

Let (@', y'), (=", ¥”) be the given points.

Since the line is straight its equation must be

y=sr+b...(1)

in which s and & are to be determined.
Since the line is required to pass through the points (z’, %),
(®", ¥""), we have the equations of condition.

Y=s'+40b...(2)
Y ' =sx"+b ... (3

As a straight line cannot, in general, be made to fulfil more
than two conditions, we must eliminate two of the four con-
ditions expressed in the three equations above.

Subtracting (2) from (1), and then (3) from (2), we have,

y—y =s(x—=2x)
y/_y”:S(x’_w”)
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40
Dividing these, member by member, we have,
y—y _x—2a
yl in :’/” .T’ “= il',/ ° >

Hence y—y’:—%—:%(m——w’) oo @
is the required equation.
Cor. 1. If ' = y", then
y—y =00ry=y,
which is, as it should be, the equation of a line || to the X-axis.

Cor. 2. If ' = 2", then
x —a =0, o0rx=a,

whieh is the equation of a line || to the Y-axis.

EXAMPLES.
1. Given the two points (— 1, 6), (— 2, 8); required both
the slope and symmetrical equation of the line passing through

them.
Ans. y=—2x+4,7§+3i=1,

9. The vertices of a triangle are (— 2, 1), (— 3,—4) (2, 0);
y=>5x+11
4z —5y=38

required the equations of its sides.
dy+ax=2

Ans. %

Write the equations of the lines passing through the points :
3 (—2,8),(—3—-1 6. 5,2),(—24
Ans. y=4x+11. Ans. Ty + 22 =24.
4. (1, 4), (0,0) 7. (2,0),(— 3,0
Ans. y =4 Ans. y =
5. (0, 2), (3,—1) 8. (—1,-3),(—29
Ans. y+x =2. Ans. y +Tax 410 =0.
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27. To find the length of a line joining two given points.

e
P”
i c
(0] A B
FiG. 15.

Let (2, '), (=", ¥”) be the co-ordinates of the given points
P, P’. L =P'P” = required length.
Draw P”B and P’A | to OY, and P'C || to OX.
We see from the figure that L is the hypotlienuse of a right
angled triangle whose sides are
PC=AB=0B—0A =2"—2/, and
P'C=P'B-BC=y"—1v.
Hence,
PP =L=+V@E -2V 4+ —y)...Q
Cor. 1. If &’ =0 and ¥ = 0, the point P’ coincides with
the origin, and we have ’

L=+Vz"245"2... (2
for the distance of a point from the origin.

EXAMPLES.

1. Given the points (2, 0), (— 2, 3); required the distance
between them; also the equation of the line passing through
them.

Ans. =54y 432 =6.
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2. The vertices of a triangle are (2, 1) (—1,2) (—3,0);
what are the lengths of its sides ? i

Ans. \/8—, \/ﬁ)—, V/26.

Give the distances between the following points:

3. (2; 3)’ (1) O) o 7. (— 3’ 2)}_ (O, 1)
Ans.  V10.
4 (4, —5), (6, — 1) 8. (= (22— 1pk(2:10)
Ans. /20,
(07 2)’ ("_ 1, 0) 9 ((l, b), ((j’ d)
Ans. V5.
6- (O; 0)) (2, 0) 10 (-—- 2’ 3)’ (_ a, b).
Ans. 2.
11. What is the expression for the area of a triangle whose
vertices are (x,’ .7/,): (m”7 ?/H)a (xm’ ?/W) ?

fins: Area = = y") + 4 Q=) 5 =90

28. To find the intersection of two lines given by their
equations.

Let y = sx + b, and ~

y=sx + 0V

be the equations of the given lines.

Since each of these equations is satisfied for the co-ordinates
of every point on the locus it represents, they must wé-éhe
_same—time be satistied for the co-ordinates of their point of
intersection, as this point is common to both. Hence, forthe
co-ordinates-of this point the equations are simultaneous. So
treating them, we find

b — 'b - ab'
— §

X =

4 ,and y =
—s
for the co-ordinates of the required point.

EXAMPLES.

1. Find the intersection of y =2 +1and 2y = — 4.
Ans. (— 2,=3).
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2. The equations of the sides of a triangle are
2y=3a+lyte=12y+ic=—3;
required the co-ordinates of its vertices.

o Ay k! 4 5 5 7
“\5 s)\ T ) Tae)

3. Write the equation of the line which shall pass through
the intersection of 2y +32 +2 =0 and 3y —ax — 8 =0,
and make an angle with the X-axis whose tangent is 4.

' Ans. y =4z +410.

4. What are the equations of the diagonals of the quadri-
lateral the equations of whose sides are y —ax 1 =0,
y=—2+2,y=3x+2 andy+224+2=0?

Ans. 283y —9x 4+2=0,3y — 30z = 6.

3. The equation of a chord of the circle whose equation is
x4 y? =10 is y = x 4 2; required the length of the chord.
Ans. L = ~/32.

29. If Az+By4+C=0... ()
and Az4+By+4-C=0...(2)
be the equations of two straight lines, then

Ar+By4+C+K A2 +By4+C)=0... (3

(K being any constant quantity) is the equation of a straight
line which passes through the intersection of the lines repre-
sented by (1) and (2). It is the equation of a straight line
because it is an equation of the first degree between two
variables. See Art. 24. It is also the equation of a straight
line which passes through the intersection of (1) and (2),
since it is obviously satisfied for the values of « and y which
simultaneously satisfy (1) and (2).

Let us apply this principle to find the equation of the line
which contains the point (2, 3) and which passes through the
intersection of y =2« +1land 2y +z = 2.
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From (3) we havey — 22 — 14+ K 2y +2—2)=0
for the equation of a line which passes through the intersec-
tion of the given lines. But by hypotheses the point (2, 3) is
on this line; hence 3 —4 —14+K (6 4+2—-2)=0
1

3

Substituting this value for K we have,
y—2e—1+43@y+a-2,=0
or, y—x — 1=0 '

for the required equation. Let the student verify this result
by finding the intersection of the two lines and then finding
the equation of the line passing through the two points.

30. 7To find the angle between two lines given by their
equations.

FIG. 16.

Let y = sx - b. and
y=sx+ ¥V
be the equations of SC and MN, respectively ; then

s = tan « and s’ = tan «.
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From the figures

o = (p—l—a

.'.(p=ul—a,

From trigonometry,

tan @ = tan (¢ — o) = tan o’ — tan e

1 + tan e tan e’

.~ substituting
ta A RS G
DP= T 1)
0 —tan L =5 ()

Cor. 1. If s=¢, then
p=tan"'0..9 =0.
.. the lines are parallel.
Cor. 2. If1+4ss' =0, then
¢ =tan ! w .. ¢ = 90°
.~ the lines are perpendicular.

ScuoL. These results may be obtained geometrically.
If the lines are parallel, then, Fig. 16,

«a=da " s=4¢.

If they are perpendicular

u’=90°—|-u
cotan o = ¢ = tan (90° 4- ¢) = — cot « = — 1 .
tan «
.'.1+ss’=1—|—tanata.na'=1+tana<_ 1 >_
tane / T
1—-—1=0.
EXAMPLES.

1. What is the angle formed by the lines ¥y —ax —1 =0
and 2y 4224+1=07?
5 Ans. ¢ = 90°.
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2. Required the angle formed by the lines y 432 — 2 =0
and 2y +4+6x+48=0.
. Ans. ¢ = 0.
3. Required the equation of the line which passes through
(2, — 1) and is
(a) Parallel to 2y — 32 — 5 =0.
(b) Perpendicular to 2y — 3x — 5 =0.
Ans. (a) 3z —2y =8, B 3y+2z=1
4. Given the equations of the sides of a triangle
y=2x+4+1,y=—ax-+42and y = — 3; required.
(a) The angles of the triangle.
(6) The equations of the perpendiculars from vertices to
sides.
(¢) The lengths of the perpendiculars.

5. What relation exists between the following lines:

y = sz + 0.
y =sx — 3.
y = sx -} 6.
y = sx -+ m.

6. What relation exists between the following:
y = sx + 0. :
y=—sr—+c

7. Find the co-ordinates of the point in which a perpen-
dicular through (— 2, 3) intersects y — 2z 41 =0.

Ans. <§,Z>
5 5

8. Find the length of the perpendicular let fall from the
origin on the line 2y 4= = 4.
' Ans. L = - /80.

9. If A« By4+C=0,Az4By+4C =0, and Ay 4
B"y + C” = 0 be the equations of three straight lines, and /,
m, and n be three constants which render the equation
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l(Az+By+4C) +m (A'z+By+C)+n (A% 4By +

(C”) = 0 an identity, then the three lines meet in a point.

10. Find the equation of the bisector of the angle between
the two lines Az 4+ By 4+ C =0 and A’z + B’y 4+ ¢/ = 0.
o Az + By iC = 1 (A'e 4+ By + (,')
VA2 + B2 \/Alz -+ B2

1/

v

GENERAL EXAMPLES.

1. A straight line makes an angle of 45° with the X-axis
and cuts off a distance = 2 on the Y-axis; what is its equation
when the axes are inclined to each other at an angle of 75°?

Ans. y=~/2x + 2.
2. Prove that the lines y=x2 41, y=22 42 and

y = 3 + 3 intersect in the point (— 1, 0).
3. If (¢, ¥') and (2", y”) are the co-ordinates of the ex-
tremities of a line, show that (x” —21—95 Yy’ + A ) ar® the co-

ordinates of its middle point.

4. The equations of the sides of a triangle are y =« + 1,
x =4, y = —x —1; required the equations of the sides of
the triangle formed by joining the middle points of the sides

of the given triangle.
y=—=z+4
Ans. y=x—4
2x =3
5. Prove that the perpendiculars erected at the middle

points of the sides of a triangle meet in a common point.

Note. — Take the origin at one of the vertices and make
the X-axis coincide with one of the sides. Find the equations
of the sides ; and then find the equations of the perpendiculars
at the middle points of the sides. The point of intersection
of any two of these perpendiculars ought to satisfy the equa-

tion of the third.
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6. Prove that the perpendiculars from the vertices of a
triangle to the sides opposite meet in a point.

7. Prove that the line joining the middle points of two of
the sides of a triangle is parallel to the third side and is equal
to one-half of it.

8. The co-ordinates of two of the opposite vertices of a
square are (2, 1) and (4, 3); required the co-ordinates of the
other two vertices and the equations of the sides.

Ans. (4, 1), (2,3);y =1L y=3, =22 =4.

9. Prove that the diagonals of a parallelogram bisect each
other.

10. Prove that the diagonals of a rhombus bisect each other
at right angles.

11. Prove that the diagonals of a rectangle are equal.

12. Prove that the diagonals of a square are equal and bi-
sect each other at right angles.

13. The distance between the points (z, ) and (1, 2) is = 4;
give the algebraic expression of the fact.

Ans. (x — 124 (y — 2)? =42

14. The points (1, 2), (2, 3) are equi-distant from the point
(x, y). Express the fact algebraically.

(@ —1)2+(y—22=(@ -2+ (y—3)oz+y=4
15. A circle circumseribes the triangle whose vertices are
(8,4), (1, — 2), (— 1, 2) ; required the co-ordinates of its centre.
Ans. (2, 1).

16. What is the expression for the distance between the

points (2", ¥”), (', ¥/), the co-ordinate axes being inclined
at an angle 8 ?

Ans. L=~/(2" — ') (= yPR+2@E — x') (y' — ') cos B.
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17. Given the perpendicular distance (p) of a straight line
from the origin and the angle (¢) which the perpendicular
makes with the X-axis ; required the polar equation of the line.

dns. r=—2L
T s 6 —«)°
18. Required the length of the perpendicular from the

origin on the line g + Z =ik Ans. 2.4

19. What is the equation of the line which passes through
the point (1, 2),and makes an angle of 45° with the line
whose equationis y + 22 =17 '

Ans. g/=—%x+§.

20. One of two lines passes through the points (1, 2),
(— 4, — 3), the other passes through the point (1, — 3), and
makes an angle of 45° with the first line; required the
equations of the lines. .
Ans. y=ax 4+ 1,and y = — 3, or x = 1.

21. If p =0in the normal equation of a line, through
what point does the line pass, and what does its equation
become ? Ans. (0,0); y =s .

22. Required the perpendicular distance of the point (r cos 6,
7sin ), from the line z cos 6§ + ¥ sin 6 = p. Ans. r— p.

23. Given the base of a triangle = 2 @, and the difference
of the squares of its sides =4¢%. Show that the locus of
the vertex is a straight line.

> 24. What are the equations of the lines which pass through
the origin, and divide the line joining the points (0, 1), (1, 0),
into three equal parts. Ans. 22 =y, 2y ==
25. 1f («/, ¥/') and (2", y”’) be the co-ordinates of two points,

s ! 7’ {7
show that the point (mx sk g = + ny >divides the line
m—+n m—+n
joining them into two parts which bear to each the ratio
m:n.
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CHAPTER 1V.
TRANSFORMATION OF CO-ORDINATES.

31. Ir frequently happens that the discussion of an equa-
tion, and the deduction of the properties of the locus it
represents are greatly simplified by changing the position of
the axes to which the locus is referred, thus simplifying the
equation, or reducing it to some desired form. The operation
by which this is accomplished is termed the TRANSFORMATION
OF CO-ORDINATES.

” ‘ X
Y oL

Y

o) X’
0 X

P
Fi1G. 17.
The equation of the line PC, Fig. 17, is
y=sx+ 0

when referred to the axes Y and X. If we refer it to the
axes Y and X' its equation takes the simpler form

y = sx'.



TRANSFORMATION OF CO-ORDINATES. 51

If we refer it to Y and X”, the equation assumes the yet
simpler form
yll — 0'

Hence, it appears that the position of the axes materially
affects the farm of the equation of a locus referred to them.

Nore. — The equation of a locus which is referred to rec-
tangular co-ordinates is called the REcraxcuLAR EQuATioN of
the locus; when referred to polar co-ordinates, the equation is
called the Porar Equarion of the locus.

32. 70 find the equation of transformation from one system
of co-ordinates to a parallel system, the origin being changed.

Y {7 c
P
\M
0: A X
0 :
D B £

F16G. 18.

Let CM be any plane locus referred to X and Y as axes,
and let P be any point on that locus. Draw PB | to OY;
then from the figure, we have,

(OB, BP) = (x, y) for the co-ordinates of P when referred
to X and Y

(0’A, AP) = (2, ¥') for the co-ordinates of P when referred
to X’ and Y';

(0D, DO’) = (a, b) for the co-ordinates of O, the new
origin.
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From the figure OB = OD +4 DB; and BP = BA 4 AP}
hence x=a+x2 andy =0+ ¥y

are the desired equations.

As these equations express the relations between z, a, 2/, ¥,
b, and % for any point on the locus they express the relations
between the quantities for every point. Hence, since the
equation of the locus CM expresses the relationship between
the co-ordinates of every point on it if we substitute for
x and y in that equation their values in terms of =’ and y’
the resulting or transformed equation will express the rela-
tionship between the z' and y' co-ordinates for every point
on it.

EXAMPLES.

1. What does the equation y = 3 + 1 become when the
origin is removed to (2, 3) ?
Ans. y =3z + 4.
2. Construet the locus of the equation 2y — x = 2. Trans-
fer the origin to (1, 2) and re-construct.

3. The equation of a curve is 2 + 2>+ 4y —4x — 8 =0;
what does the equation become when the origin is taken at
@, —-2)°

Ans. x* 4y =16.

4. What does the equation y? —2ax* — 2y 462 —3 =0
become when the origin is removed to (; . 1> ?
Ans. 2y* —4x?= — 1.

5. The equation of a circle is #? + y* = a® when referred
to rectangular axes through the centre. What does this
equation become when the origin is taken at the left-hand
extremity of the horizontal diameter ?
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33. 70 find the equations of transformation from a rectangu-
lar system to an oblique system, the origin being changed.

Y Y ¢

F1G. 19.
Let P be any point on the locus CM.
Let 0'Y’, O’X’ be the new axes, making the angles ¢ and 6
with the X-axis. Draw PA | to the Y’-axis; also the lines
0'D, AL, PB | to the Y-axis, and
AF, O'K | to the X-axis.
From the figure, we have,
OB = OD 4 O'N + AF, and
PB = DO’ 4+ AN + PF.
But OB =2, OD =a, ON =2'cos §, A¥F = 5 cos ¢,
PB =y, DO’ = b, AN = a’'sin 0, PF = ¢/ sin ¢;
hence, substituting, we have,
w=a+x’cos€+y’cos¢} )
y=1042'sinf+ y sing
for the required equations.
Cor. 1. If a =0, and & = 0, O’ coincides with O, and we

have,
73 =:1:’cOS€+?/'COS(p} )
y=2'sin 0 + 3 sin ¢ |
Jor the equations of transformation from a rectangular system
to an oblique system, the origin remaining the same.
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Cor. 2. If a =0,6 =0, and ¢ = 90° + 6, O coincides with
O and the new axes X’ and Y’ are rectangular. Making these
substitutions, and recollecting that

cos ¢ = cos (90° + ) = — sin 6, and
sin ¢ = sin (90° + ) = cos 0,

we have,

x=x’cos(9—y’sin€} 3)
y=2a'sind 4y cosb)
for the equations of transformation from one rectangular system
to another rectangular system, the origin remaining the same.

Nore. — If we find the values of &’ and %' in equations (2)
in terms of x and y we obtain the equations of transforma-
tion from an oblique system to a rectangular system, the
origin remaining the same.

EXAMPLES.

1. What does the equation x? 4 y* = 16 become when the
axes are turned through an angle of 45°?
Ans. The equation is unchanged.

2. The equation of alineisy =2 —1; required the equa-
tion of the same line when referred to axes making angles of
45° and 135° with the old axis of z.

Ans. y = — /b

3. What does the equation of the line in Example 2 become
when referred to the old Y-axis and a new X-axis, making an
angle of 30° with the old X-axis.

dns. 2y=(H3—-1ax -2
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34. To find the equations of transformation from a rectangu-
lar system to a polar system, the origin and pole non-coincident.

g g S
0
g, F "
-
e
=
- /
/"\6 0
b B E
F1aG. 20.

Let O’ (a, b) be the pole and O’S the initial line, making an
angle ¢ with the X-axis. Let CM be any locus and P any
point on it. From the figure, we have,

OB = OD + O'F,
BP = DO’ + FP.

But OB =z, OD = a, O'F = O'P cos PO'F = r cos (4 + ¢)
BP =y, DO’ =, FP = O’P sin PO'F = rsin (§ + ¢);
hence, substituting, we have,
z=a -+ r cos (0-|—<p)} Q)
y=0b+rsin (04 ¢)
for the required equations.

Cor. 1. If the initial line O'S is parallel to the X-axis (it is
usual to so take it) ¢ = 0, and

r=a 4 rcos 0} 9
y=2>b-+rsiné 1
become the equations of transformation.

Cor. 2. If the pole is taken at the origin O, and the initial
line made coincident with the X-axis ¢ — 0,6 =0,and ¢ = 0.
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Hence, in this case,

x=rcos€}
y = rsinb

- ()

will be the required equations of transformation.

35. To find the equations of transformation from a polar
system to a rectangular system.

1°. When the pole and origin are coincident, and when the
initial line coincides with the X-axis.

From equations (3), Art. 34, we have, by squaring and
adding r? = x% 4 y?%; and,

by division tan § =2 .
> @

for the required equations. We have, also, from the same
equations,

X . 2, 1
cos0=9-c=——~——-sm0=l= Y
r r

2°. When the pole and origin are non-coincident, and when
the initial line is parallel to the X-axis.

From equations (2) of the same article, we have, by a simi-
lar process,

M= (z—a)+ (y—0)?

tan. 6 = -yA_—b; also
x—a
) e A SR e
r V(@ —a)* 4+ (y — )%
sin0=y—b ?'/-_b

" Va—art G-

for the required equations.
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EXAMPLES.

1. The rectangular equation of the circle is * + y* = a%;
what is its polar equation when the origin and pole are coin-
cident and the initial line coincides with the X-axis ?

Ans. r=a.

2. The equation of a curve is (z? 4 y%) * = a® (x® — y?); re-
quired its polar equation, the pole and initial being taken as
in the previous example.

Ans. r? = a*cos 2 6.

Deduce the rectangular equation of the following curves,
assuming the origin at the pole and the initial line coincident
with the X-axis.

3. r=atan?@secd 5. 2 =a%sin29
Ans. a8 —at Y. Ans.  (x® 4+ y»)? =2 a’xy.
4 7= a’tan Osec’d 6. » = a (cos § — sin 0)
Ans. x® = a%y. Ans. 2* +y*=a (x — y)

GENERAL EXAMPLES.

Construet each of the following straight lines, transfer
the origin to the point indicated, the new axes being parallel
to the old, and reconstruet:

1. y=3x+1t0(1,2). 5. y=sx+bto(c d).

2. 2y—x—2=0t0(—1,2). 6 y+2x=0¢to (2 —2).
38 ty+ax—4=0to(—2, —1).7 y=mxto( n).

4 y+x+4+1=0to (0, 2). 8 y —4x+c=0to(d,o).

What do the equations of the following curves become when
referred to a parallel (rectangular) system of co-ordinates
passing through the indicated points ?

9. 3224292 =6, (V2,0).
10. y2=4x(1,0). 0
1. 9% —4x?= — 36 (3, 0). ’ )

o3

12. y2=2px<—
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13. What does the equation x* 4 y2 = 4 become when the
X-axis is turned to the left through an angle of 30° and the
Y-axis is turned to the right through the same angle ?

14. What does the equation #* — y* = a® become when the
axes are turned through an angle of — 45°?

15. What is the polar equation of the curve y* = 2 px, the
pole and origin being coincident, and the initial line coincid-
g with the X-axis ?

16. The polar equation of a curve is 7 =a (1 4 2cos §);
required 1ts rectangular equation, the origin and pole being
coincident and the X-axis coinciding with the initial line.

Ans. (22 + y* — 2 ax)® = o® (2* + y?).

Required the rectangular equation of the following curves,
the pole, origin, initial line, and X-axis being related as in
Example 16.

17. rz=ﬁ. 20. r=asecz—g~.
Ans. x* — y* = a%
18. » = a sin 6. 2. r =asin 2 6.
19. r=a6. 22. 72— 27 (cos § + V3sin ) = 5.

Find the polar equations of the loci whose rectangular
equations are:

23 2 =9y"(2a—ux). 5 a'y*=ax*— 1z

24 4a’c =y (2a — x). 26. x* 4 y¥ = a*
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CHAPTER V.
THE CIRCLE.

36. Tue circle is a curve generated by a point moving in
the same plane so as to remain at the same distance from a
fixed point. It will be observed that the circle as here de-
fined is the same as the circumference as defined in plane
geometry.

37. Given the centre of a circle and its radius to deduce its
equation.

¥ K
>
L S N
D_/
(0] ¥
A M {

FiG. 21,

Let C E;?, %) be the centre of the circle, and let P be any
point on the curve. Draw CA and PM | to OY and CN | to
OX; then P

(OA, AC) = (x, X) are the co-ordinates of the centre C.

(OM, MP) = (a, y) are the co-ordinates of the point P.
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Let CP = a. From the figure, we have,

CN? 4 NP2 = CP?; (1)
But CN% = (OM — OA)2 (x — a() ;
NP? = (MP — AC)* = (y —RY? and
CP? = o?

Substituting these values in (1) we have,
(x—¥)2+(J—3()2—a’ 5 0 o (&9

for the required equation. For equation (2) expresses the
relation existing between the co-ordinates of any point (P) on
the circle; hence it expresses the relation between the co-
ordinates of every point. It is, therefore, the equation of the
circle.

If in (2) we make x' = 0 and 3’ = 0, we have,

24 yi=a®. .. (3)
. x? y?
or, symmetrically, i + TR 1...1

for the equation of the circle when referred to rectangular
axes passing through the centre.

Let the student discuss and construct equation (3). See
Art. 11.

Cor. 1. If we transpose «? in (3) to the second member and
factor, we have,

y=(@+2) (@a—2);

L.e., in the circle the ordinate is a mean proportional between
the segments into which it divides the diameter.

Cor. 2. If we take L, Fig. 21, as the origin of co-ordinates,
and the diameter LH as the X-axis, we have,

LC=a"=qandy =0.
These values of 2" and ' in (2) give
@ = a) +y = a,

or, after reduction, 2* + 4> — 2ax =0 . .. (5)
for the equation of the circle when referred to rectangular
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axes taken at the left hand extremity of the horizontal
diameter.

38. Every equation of the second degree between two varia-
bles, in which the coefficients of the second powers of the
variables are equal and the term in xy is missing, is the equa-
tion of a circle.

The most general equation of the second degree in which
these conditions obtain is

ar’® +ay’ +cx +dy +7=0.... Q)

Dividing through by « and re-arrahging, we have,
2t lopypypdy— L
a a a

If to both members we now add
c? d?

4a ' 4q*’

the equation may be put under the form

e\ d\_cA+d®*—daf
<x+ﬂ>+<y+-2—;>———-4ar 0

Comparing this with (2) of the preceding article, we see
that it is the equation of a circle in which

_c _4d
2a’ 2a

are the co-ordinates of the centre and

Ve 4 d® — 4 af ig the radius.
2a

Cor. 1. If ax® 4 ay® + cx 4+ dy + m = 0 be the equation
of another circle, it must be concentric with the circle repre-
sented by (1); for the co-ordinates of the centre are the same.
Hence, when the equations of circles have the variables in
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their terms affected with equal coefficients, each to each, the
circles are concentric. Thus

20?4 29 +3ax+4y+9=0
20?4+ 29y +3x +4y +25=0

are the equations of concentric ecireles.

EXAMPLES.
What is the equation of the circle when the origin is
taken.
1. At D, Fig. 21? Ans. x*+ P —2ay =0.
2. At K, Fig. 217 Ans. 22+ y*+2ay =0.
3. At H, Fig. 217 Ans. 2*+y* 4+ 2ax =0.
What are the co-ordinates of the centres, and the values of

the radii of the following circles ?

4 422 +4y*—8x—8y+2=0.
Ans. (1,1), @ = /3.

5. x4 y?+4x —6y —3=0.
Ans. (—2,3),a =4

6. 2224292 —8x=0.
Ans. (2,0),a =2.

7. x4+ y2—6x=0.
f Ans. (3,0), a = 3.

8. a:2+g/2—4x+8y—5=0.
' Ans. (2,—4)a =25
9 2+ yt—max+ny+c=0.
10. 2% + o =m.
1. 22 —4¢ = — y* —my.
12. 224 y? =+ d*
13. 22+ cx 4 92 =1
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Write the equations of the ecircles whose radii and whose
centres are

14. « =3, (0, 1). 18. a =m, (b, ¢).
Ans. x* +y* —2y = 8.

15. a =2, (1, —2). 19. a = b, (¢, — d).
Ans. 2+ y*'—2x+4y+1=0.

16. a =5, (—2, —2). 20. a =5, (, k).
Ans. 224+’ +4y +4=1T.

17. a =4, (0, 0). 2l a=kFk (20).

Ans. x? 4 y* = 16.
22. The radius of a circle is 5; what is its equation if it is

concentric with «* 4+ > —4x =27
Ans. 2?4y — 42 =21,

23. Write the equations of two concentric circles which
have for their common centre the point (2, — 1). .
24. Find the equation of a circle passing through three
&given points.
39. To deduce the polar equation of the circle.
Y

>

0 B A

Fia. 22,
The equation of the circle when referred to OY, OX is
@—2) P+ @y —y)=d
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To deduce the polar equation let P be any point of the
curve, then
(OA, AP) = (x, )]
(OB, BO) = (&', 4)
(OP, POA) = (r, 6)
(00, 0'0B) = (', ¢)
From the figure, OA = @ = rcos §, AP =y =rsin 6,
OB =a =7+cos ¢, BO' =y =1"sin #;
hence, substituting, we have,
(rcos 6 — 7/ cos 6)* 4 (rsin 6 — 7/ sin ) = a ™.
Squaring and collecting, we have,
*(cos?@ + sin? 6) + 1’ *(cos® ' +- sin* ') — 2 r7’(cos 6 cos ¢
+ sin 6 sin §') = a?
ie., Pt —2rcos(@—0)=a... (1)
is the polar equation of the circle.
This equation might have been obtained directly from the
triangle: OO'P.
Cor. 1. If @ = 0, the initial line OX passes through the cen-
tre and the equation becomes
7 4 72 — 277 cos § = a’.
Cor. 2. Tf ¢ =0, and + = q, the pole lies on the circum-
ference and the equation becomes
r=2acos 6.
Cor. 3. If @ =0, and # = 0, the pole is at the centre and
the equation becomes

r=4a.

40. To show that the supplemental chords of the circle are
perpendicular to each other.

The supplemental chords of a circle are those chords which
pass through the extremities of any diameter and intersect each
other on the circumference.
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LN
NPA

Fic. 23.

>

Let PB, PA be a paix: of supplemental chords. We wish to
prove that they are at right angles to each other.
The equation of a line through B (— @, o) is
y=s (x+ a).
For a line through A (@, 0), we have
y=¢ (x —a).
Multiplying these, member by member, we have
y¥=ss (®*—a? ... (a)
for an equation which expresses the relation between the
co-ordinates of the point of intersection of the lines.
Since the lines must not only intersect, but intersect on the
circle whose equation is
P =a® —at
this equation must subsist at the same time with equation (a)
above ; hence, dividing, we have

or, 14+s=0...(@1)

Hence the supplemental chords of a circle are perpendicular
to each other.

Let the student discuss the proposition for a pair of chords
passing through the extremities of the vertical diameter.
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41. To deduce the equation of the tangent to the circle.

c
\Y
\ P/,
!
! P’
of | 5 o
A \
S’
s
Fia. 24.

Let CS be any line cutting the circle in the points P’ (2, "),
P” (2", y”). 1Its equation is
! r’
y—y =L =Y (& —a). (Art.26, (4)).
x —x
Since the points (2, »'), («”, ¥”) are on the circle, we have
the equations of condition
?+yt=a*... (1)
2yt =ad* ... (2
These three equations.must subsist at the same time ; hence,
subtracting (2) from (1) and factoring, we have,

(xl + w(l) (x’ - x//) + (:I/I + y/l) (yl _ y”) = O;

) yr__?/n=_ x/+m//
: x —x” yl +y” :
Substituting in the equation of the secant line it becomes
, wl + x/l 7
—y =T —x) ... 3
y—y S+ ( ) ©)

If we now revolve the secant line upward about P the
point P’ will approach P” and will finally coincide with if
when the secant CS becomes tangent to the curve. But when
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P’ coincides with P”, 2’ = 2” and v = ¥”; hence, substituting
in (3) we have,

s

—y == (x—a"), ... 4
y Yy .7/71 (w & )’ ( )
or, after reduction,
xa” +yy’ =a*; ... (5)
or, symmetrically,
ex” Yy _
'az,—i- pr =1 . (6)

for the equation of the tangent.

Scuon. The Sup-ranGENT for a given point of a curve is the
distance from the foot of the ordinate of the point of tangency
to the point in which the tangent intersects the X-axis; thus,
in Fig. 24, AT is the sub-tangent for the point P”. To find
its value make y = 0 in the equation of the tangent (5) and

we have,

2

a
f‘_ —_—
Ol——x_p.

But AT =0T —0A =2 _ov
a2

2 _ a2 12
substangent = & — %~ Y.

& x

42. To deduce the equation of the normal to the circle.

The normal to a curve at a given point is a line perpen-
dicular to the tangent drawn at that point.

The equation of any line through the point P” (27, y") Fig.
24, is y—y' =s@—2a")...@Q)

In order that this line shall be perpendicular to the tangent
P”T, we must have

1455 =0.

" o
But Art. 41, (4) s’ = — x_,; hence, we must have s =% .
y ’ mfl
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Therefore, substituting in (1), we have,

4
y—y' =L @—2") ... @);
x
or, after reduction,
yr' —axy” =0 ... (3)

for the equation of the normal.

We see from the form of this equation that the normal to
the cirele passes through the centre.

Scror. The Sup-vormar for a given point on a curve is
the distance from the foot of the ordinate of the point to the
point in which the normal intersects the X-axis. In the circle,
we see from Fig. 24 that the

Sub-normal = x’'.

43. By methods precisely analogous to those developed in
the last two articles, we may prove the equation of the tangent
to

(@—2)V+ @y —y)l=ad
to be

@—=a2)@ =2+ —y)W' —y)=a>... Q)
and that of the normal to be
(y _?///) (x/l 2 m/) . (x _ w’/) (Z/” — y/) — 0 a0 (2)
Let the student deduce these equations.

EXAMPLES.
1. Whatis the polar equation of the circle ax? + ay® + cx 4

dy + f =0, the origin being taken as the pole and the X-axis
as the initial line ?

Ans. r2+<£cos6+gsin0>r+f=0.
@ a a

2. What is the equation of the tangent to the circle
% + 3 = 25 at the point (3, 4)? The value of the sub-
tangent ? Ans. 3x + 4y =25; 15,

3. What is the equation of the normal to the circle
x* 4 y? = 37 at the point (1, 6) 2 What is the value of the
sub-normal ? ) Ans. y=6z; 1.

~

{
~
/
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4. What are the equations of the tangent and normal to the
circle #* 4 y* = 20 at the point whose abscissa is 2 and ordi-
nate negative ? Give also the values of the sub-tangent and
sub-normal for this point.

Ans. 22 —4y =20; 2y+442=0;
Sub-tangent = 85 sub-normal = 2.

Give the equations of the tangents and normals, and the
values of the sub-tangents and sub-normals, to the following
circles :

5. 2% 4+ 92 =12, at (2, + V3).
6. x4 32 =25, at (3, — 4).
7. 2% + y? = 20, at (2, ordinate +).
8. 2% 4 y? = 32, at (abscissa 4, — 4).
9. 2?4+ y?=a?% at (b, c).
10. z* 4 y* = m, at (1, ordinate 4).
11. 2* 4 y* = £k, at (2, ordinate —).
12, «® + y* = 18, at (m, ordinate ).

13. Given the circle #* + »* = 45 and the line 2y + « = 2;
required the equations of the tangents to the circle which are
parallel to the line.

3x 4+ 6y =45.
gy {39[: 46y =— 45

14. What are the equations of the tangents to the circle

@* + y? = 45 which are perpendicular to the line 2y 4+ = 2?

33/—69):45.
e SRy

16. The point (3, 6) lies outside of the circle 2 + y2 = 9;
required the equations of the tangents to the circle which
pass through this point.

Ans. {x T

4y —3a =15
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17. What is the equation of the tangent to the circle
(x — 2)* + (y — 3)* = b at the point (4, 4) ?

Ans. 2x +y =12.

18. The equation of one of two supplementary chords of

the cirele x* 4-y? =9 is y = 3x -4 2, what is the equation

of the other ?
Ans. 2y 4-3x =Y.

19. Find the equations of the lines which touch the cirele
(@ — a)? + (y — 0)®* = r* and which are parallel to y = sz 4 c¢.
20. The equation of a circle is 22 49> —4da +4y=9;
required the equation of the normal at the point whose

absecissa = 3, and whose ordinate is positive.
Ans. 42 — y = 10.

44. To find the length of that portion of the tangent lying
between any point on it and the point of tangency.

Let (x,, ;) be the point on the tangent. The distance of
this point from the centre of the circle whose equation is
(x — 2" + (v — y")? = a? is evidently
V(xy — ') 4 (1 — ¥')%  See Art. 27, (1).
But this distance is the hypothenuse of a right angled tri-

angle whose sides are the radius « and the required distance
d along the tangent; hence

&= (o — @)~y —a* ... (D)
Cor. 1. If 2/ = 0 and y' = 0, then (1) becomes
A=z 4 y*—a® ... (2

as it ought.

45. To deduce the equation of the radical axes of two given
circles.

The RADICAL AXIS OF TWO CIRCLES 1s the locus of a point
Srom which tangents drawn to the two circles are equal.
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Fic. 25.

Let (x—2) 4+ (y —y)? = a¥
(# — ') 4 (y — y'") = 0% be the given circles.
Let P (24, 1) be any point on the radical axis; then from
the preceding article, we have,
@ = (2 =)’ + (1 — ¥')* — o
A= (@ — 2" + (g =y =
.~ by definition @ =2+ (h—y)—a® = (x, —a")?
4+ (41 — ¥"")* — ¥?; hence, reducing, we have,
2 (z‘,, _ m,) xl + 2 (yu . ?/1) ?/1 - $”2 . x/g + yug _ yl2
+ a® — 2
Calling, for brevity, the second member m, we see that
(21, 1) will satisfy the equation.

2@ =24+ 2@ —y)y=m ... Q)
But (#y, 71) is any point on the radical axis; hence every
point on that axis will satisfy (1). It is, therefore, the re-
quired equation.

Cor. 1. If ¢ =0 and ¢' = 0 be the equation of two circles,
then, c— e =0

is the equation of their radical axis.
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Cor. 2. From the method of deducing (1) it is easily seen
that if the two circles intersect, the co-ordinates of their points
of intersection must satisfy (1); hence the radical axis of two
intersecting circles is the line joining their points of intersection,
PA, Fig. 25.

Let the student prove that the radical axis of any two
circles is perpendicular to the line joining their centres.

46. To show that the radical axes of three given circles in-
tersect in a common point.

Let ce=0,¢=0and ¢’ =0
be the equations of the three circles.

Taking the circles two and two we have for the equations of
their radical axes

c—c=0...Q1Q)
0—(‘”:0...(2)
d—c"=0...(@)

1t is evident that the values of @ and y which simultaneously
satisfy (1) and (2) will also satisty (3); hence the proposition.

The intersection of the radical axes of three given circles is
called THE Rapicar CENTRE of the circles.

EXAMPLES.
Find the lengths of the tangents drawn to the following
circles: .
1 (x — 2)* 4+ (y — 3)* = 16 from (7, 2). -
Ans. d = V/10.
2. 22 4 (y + 2)* = 10 from (3, 0). -
Ans. d = /3.

3. (x — a)*+ y* =12 from (b, ¢).
4 2?4 —2x +4y =2 from (3, 1).

5. % 4 y* = 25 from (6, 3). g
Ans. d = V20.
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6. 2> 4 y* — 22 = 10 from (5, 2).
Ans. d = 3.
7. (x —a)*+ (y — b)* = c from (d, f).
8. 22 + 5 — 4y =10 from (0, 0).
Give the equations of the radical axis of each of the follow-
ing pairs of circles:

9. {(x—?)e—{—(? y — 3)2—10 = 0.
G+ 3t + (g + 27— 6 = 0.
Ans. 5x +5y +2=0.

10. x+J—4z_O
(=32 +y—9=0. Ans. Sz =2y.
11. (x+3)2 +9yP—2y—8=0.
24y —2y=0. Ans. x = — 3.
12. (ac+ ¥ —c=0.
I i)

13. {azz + = 16.
14, (24 (y —a)i=~A~A
(e = Bty =

Find the co-ordinates of the radical centres of each of the
following systems of circles:

(sr——o)2 y* = 16.

2+ =09

x4 (y — 2)* = 25. Ans. (§, — 3).
16. (249 —4x+6y—3=0.

24y — 4 =12

2+ +6y=" Ans. (1, — 3).
17. (2 + ¥ =a

(x — 1) + 52 =9.

24y —2x4+4y=10
18. (22+ iy —hkr=c

Lot =m.

24y —ay=d
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47. To find the condition that a straight line y = sx + b
must fulfil in order that it may touch the circle x* + y* = a’

In order that the line may touch the circle the perpendicu-
lar let fall from the centre on the line must be equal to the
radius of the circle. '

From Art. 21, Fig. 13, we have

b b
=[ p—y :——.
p =008y secy V14 tanly’
b
S Ve
hence, PAl4+sH=0...Q

is the required condition.
Cor. 1. If we substitute the value of  drawn from (1) in
the equation y = sz + b, we have

y=sx LtrvVi+s... (2
for the equation of the tangent in terms of its slope.

48. Two tangents ave drawn from o point without the eircle ;
required the equation of the chord joining the points of tangency.

Let P’ (2, ') be the given point, and let P’P”, P'P, be the
tangents through it to the circle.
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It is required to deduce the equation of PP”,
The equation of a tangent through P” (2", ) is
wwli yy!/ | %y
Rl
Since P’ («, ¥) is on this line, its co-ordinates must satisfy
the equation; hence

xlzll y/:l/l/ .

T
The point (x”, y”), therefore, satisfies the equation
T+l =1;... )
a
. it is a point on the locus represented by (1). A similar
source of reasoning will show that P is also a point of this
locus. But (1) is the equation of a straight line; hence, since
it is satisfied for the co-ordinates of both P’ and P, it is the

equation of the straight line joining them. It is, therefore,
the required equation.

49. A chord of a given circle is revolved about one of its
points ; required the equation of the locus generated by the
point of intersection of a pair of tangents drawn to the circle at
the points in which the chord cuts the circle.

Let P’ (¢, ¢/), Fig. 27, be the point about which the chord
P'AB revolves. It is required to find the equation of the
* locus generated by P, (x, y1), the intersection of the tangents
AP, BP,, as the line P’AB revolves about P’

From the preceding article the equation of the chord AB is

S )
a a

Since P’ (2, %) is on this line, we have
’ 4
1z Y1y -
= ot ‘/—o =13
a a?

e LYY 1. .. Q)

hence
a? a?
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is satisfied for the co-ordinates of Py (x;, ¥;); hence P, lies on
the locus represented by (1). But P, is the intersection of
any pair of tangents drawn to the circle at the points in

>

FiG. 27.

which the chord, in any position, cuts the circle; hence (1)
will be satisfied for the co-ordinates of the points of intersec-
tion of every pair of tangents so drawn.

Equation (1) is, therefore, the equation of the required
locus. We observe that equation (1) is identical with (1) of
the preceding article; hence the chord PP” is the locus whose
equation we sought.

The point P’ (2, ) is called THE poLE of the line PP

’ ol ’
<%Z—' + 71(;—;/ = 1), and the line PP" \:%92_5 + zfal‘g/ = 1> is called

THE PoLAR of the point P’ (!, /) with regard to the circle

1.2 ,7/2

a2 a2
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As the principles here developed are perfectly general, the
pole may be without, on, or within the circle.

Let the student prove that the line joining the pole and the
centre is perpendicular to the polar.

Notre. — The terms pole and polar used in this article have
no connection with the same terms used in treating of polar
co-ordinates, Chapter I.

50. If the polar of the point P' (x'y"), Fig. 2T, passes through
P, (=, y1), then the polar of Py (%1, y1) will pass through P'
(', ¥').

The equation of the polar to P! (a/, %) is

'z | Yy _
ata=t
In order that Py (%, ;) may be on this line, we must have,
a2y Yy
a“’l + a21 - 11
But this is also the equation of condition that the point
P’ («, ) may lie on the line whose equation is
TT | Yy
Faa-
But this is the equation of the polar of Py (xy, y1); hence
the proposition.

B81. 7o ascertain the relationship between the conjugate diam-
eters of the circle.

A pair of diameters ave said to be conjugate when they are
so related that when the curve is referred to them as awxes its
equation will contain only the second powers of the variables.

Let tyr=a. .. (1)
be the equation of the circle, referred to its centre and axes.
To ascertain what this equation becomes when referred to
0Y', OX’, axes making any angle with each other, we must
substitute in the rectangular equation the values of the old
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co-ordinates in terms of the new. From Art. 33, Cor. 1, we

have
x =x'cos § + y' cos @
y=2a'sinf + y sing

for the equations of transformation. Substituting these
values in (1) and reducing, we have,

Y2422y cos(p—0) +ax%=a. .. (2
¥ Y
Xl
.\‘?
oL [0 X
Fic. 28.

Now, in order that OY’, OX’ may be conjugate diameters
they must be so related that the term containing 'y’ in (2)
must disappear; hence the equation of condition,

cos (g — 0) =0
g —0=90°o0r¢— 0 =270°

The conjugate diameters of the circle are therefore perpen-
dicular to each other. As there are an infinite number of
pairs of lines in the cirele which satisfy the condition of being
at right angles to each other, it follows that in the circle there
are an infinite number of conjugate diameters.
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EXAMPLES.

1. Prove that the line y — /3% -4 10 touches the circle
2?2 4~ y* = 25, and find the co-ordinates of the point of tangency.
q 5 = 5

Ans. Point of tangency (_ ?\/5, g\) .

2. What must be the value of & in order that the line

y = 2 x + b may touch the circle 2* 4 > =16 ? -

Ans. b= - /80.

3. What must be the value of s in order that the line

y = sx — 4 may touch the circle @ 4 3 =27 B

Ans. s= 1L V7.

4. The slope of a pair of parallel tangents to the circle
x? + 4 = 16 is 2; required their equations.

y =2z 4+ V80.

Ans.
"Ny =22 — /30

Two tangents are drawn from a point to a cirele; required
the equation of the chord joining the points of tangency in
each of the following cases:

5. From (4, 2) to a* + »* = 9.
Ans. 4 +2y=9.

6. From (3,4) to «* + y* = 8.
Ans. 3x 4+ 4y =8.

7. From (1, 5) to 2* 4+ »* = 16.
Ans. x4 5y = 16.

8. From (a, b) to a® 4 y% = ¢
Ans. ax + by = ¢~

What are the equations of the polars of the following points:
9. Of (2, 5) with regard to the circle a* 4 3 =16 ?
2z [ by
Ans. — 4+ =< =
ST
10. Of (3, 4) with regard to the circle 2* 4 y* =97
Ans. 3x +4y=9.
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11. Of (@, b) with regard to the circle 2* 4- 3> = m ?
- Adns. ax + by = m.

What are the poles of the following lines:
12. Of 2z 4 3y = 5 withregard to the circle a® + y? = 25 ?
Ans. (10, 15).

13. Of g—f + y = 4 with regard to the circle
2 2
%Jr%:w ‘ Ans. (2, 4).

14. Of y = sz + b with regard to the circle

a’s  q?
Ans. <_ > 7) .
15. Find the equation of a straight line passing through
(0, 0) and touching the circle 2* + 3* — 3z + 4y =0.

wQ Z/Q .
4L =17
a?  a?

Ans. y =2 5

GENERAL EXAMPLES.

1. Find the equation of that diameter of a cirecle which
bisects all chords drawn parallel to y = sx + b.
Ans. sy + 2 = 0.
2. Required the co-ordinates of the points in which the
line 2y — = 4+ 1 = 0 intersects the circle

a? |
=+ L =1
4+4

3. Find the co-ordinates of the points in which two lines
drawn through (3, 4) touch the circle
x| 9yt
9 v 9
[The points are common to the chord of contact and the

circle.]
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4. The centre of a circle which touches the Y-axis is at
(4, 0); required its equation.
Y Ans. (x — 4)* + > = 16.
5. Find the equation of the circle whose centre is at the
origin and to which the line y = = +4- 3 is tangent.
Ans. 22° 4+ 24 =9.
6. Given 2% 4 y*> = 16 and (z — 5)? 4+ »* = 4; required the
equation of the circle which has their common chord for a
diameter.

7. Required the equation of the circle which has the dis-
tance of the point (3, 4) from the origin as its diameter.
Ans. 2?4 y? —3x —4y =0.
8. Find the equation of the cirele which touches the lines
represented by 2 =3, y =0, and y = x.

9. Find the equation of the circle which passes through the
points (1, 2), (— 2, 3), (— 1, — 1).

10. Required the equation of the circle which circumscribes
the triangle whose sides are represented by y =0, 3y =4 «,
and 3y = — 4z 4 6. v

Ans. x4 y? —Sx—42y =0.

11. Required the equation of the cirele whose intercepts
are ¢ and b, and which passes through the origin.

Ans. 2?4 y* — ax — by = 0.

12. The points (1, 5) and (4, 6) lie on a circle whose centre
is in the line y = 2 — 4; required its equation.

Ans. 22* +2y* — 172 — y == 30.

13. The point (3, 2) is the middie point of a chord of the
circle #? + y* = 16; required the equation of the chord.

14. Given 2? + »* = 16 and the chord y — 42 = 8. Show
that a perpendicular from the centre of the circle bisects the
chord.

15. Find the locus of the centres of all the ecircles which
pass through (2, 4), (3, — 2).
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16. Show that if the polars of two points meet in a third
point, then that point is the pole of the line joining the first
two points.

17. Required the equation of the circle whose sub-tangent
= 8, and whose sub-normal = 2.
Ans.  x? 4 y? = 20.
18. Required the equation of the circle whose sub-normal
= 2, the distance of the point in which the tangent intersects
the X-axis from the origin being = 8,
Ans. x* 4+ y2 = 16.
19. Required the conditions in order that the circles
ax‘f’—i—ag/?-}—cx—}—dy-[—e=Oa.nda.7c2+ag/2-{—kw+ly+m=O
may be coneentric.
Ans. ¢c=Fk,d =L
20. Required the polar co-ordinates of the centre and the
radius of the circle
2 —27r(cos @ 4+ /3sinf) = 5.
Ans. (2, 60°); » = 3.
21. A line of fixed length so moves that its extremities

remain in the co-ordinate axes; required the equation of the
circle generated by its middle point.

22. Find the locus of the vertex of a triangle having given
the base = 2« and the sum of the squares of its sides = 282
Ans. 2 + y* = b* — a®
23. Find the locus of the vertex of a triangle having given
the base = 2 ¢ and the ratio of its sides
=2, Ans. A cirele.
n

24. Find the locus of the middle points of chords drawn

from the extremity of any diameter of the circle

2 2
g + Y —9
a? a?
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CHAPTER VL
THE PARABOLA.

52, Tur parabola is the locus generated by a point moving
in the same plane so as to remain always equidistant from a
fixed point and a fixed line.

The fixed point is called the Focus; the fixed line is called
the Direcrrix; the line drawn through the focus perpendic-
ular to the directrix is called the Axis; the point on the axis
midway between the focus and directrix is called the VErTEX
of the parabola.

83. To find the equation of the parabola, given the focus and
directrix.

R Y
B &
Dl O K s
iz \ %
C
F1G. 29.

Let RC be the directrix and let F be the focus. Let OX,
the axis of the curve, and the tangent OY drawn at the vertex
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O, be the co-ordinate axes. Take any point P on the curve
and draw PA || to OY, PB || to OX and join P and F. Then
(DA, AP) = (x, y) are the co-ordinates of P.
From the right angled triangle FAP, we have
¥ =AP*=FP*—FA%; ... (1)
But from the mode of generating the curve, we have
FP? = BP* = (AO + OD)? = (x + OD),
and from the figure, we have
FA?=(AO — OF)? = (x — OF)2
Substituting these values in (1), we have
¥=(x+ 0D — (x — OF)> .. (2

Let DF = p, then OD = OF =1§0; hence
2 2
()3
or, after reduction, P=2px ... 3)

As equation (3) is true for any point of the parabola it is
true for every point; hence it is the equation of the curve.

Cor. 1. If (2, ') and (2", y”) are the co-ordinates of any
two points on the parabola, we have,
y*=2pa’ and y"? = 2 pa”;
hence 7738 P B e g ey’
L.e., the squares of the ordinates of any two points on the para-
bola are to each other as their abscissas.
ScHoL. By interchanging @ and y, or changing the sign of
the second member, or both in (3), we have
y* = — 2px for the equation of a parabola symmetrical
with respect to X and extending to the left of Y;
~@* = 2 py for the equation of a parabola symmetrical with
respect to Y and extending above X.
x* = — 2 py for the equation of a parabola symmetrical
with respect to Y and extending below X.
Let the student discuss each of those equations. See
Art. 13.
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54. To construct the parabola, given the focus and directrix.

=

>

FiG. 30.

First Method. — Let DR be the directrix and let F be the
focus.

From F let fall the perpendicular FD on the directrix; it
will be the axis of the curve. Take a triangular ruler ADC
and make its base and altitude coincide with the axis and
directrix, respectively. Attach one end of a string, whose
length is AD, to A ; the other end to a pin fixed at F.  Place
the point of a pencil in the loop formed by the string and
stretch it, keeping the point of the pencil pressed agaiust the
base of the triangle. Now, sliding the triangle up a straight
edge placed along the directrix, the point of the pencil will
deseribe the arc OP of the parabola; for in every position of
the pencil point the condition of its being equally distant
from the focus and directrix is satisfied. It is easily seen, for
instance, that when the triangle is in the position A’D’C’ that
FP = PD'".

Second Method. — Take any point C on the axis and erect
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the perpendicular P’CP. DMeasure the distance DC. With F
as a centre and DC (= FDP) as a radius describe the arc of a
circle, cutting P’CP in P and P’. P and P’ will be points of
the parabola. By taking other points along the axis we may,
by this method, locate as many points of the curve as may be
desired.

55. 7o find the Latus-rectum, or parameter of the parabola.
The Larus-RECTUM, or PARAMETER of the parabola, is the
double ordinate passing through the focus.

The abscissa of the points in which the latus-rectum pierces

the parabola is = = 5

Making this substitution in the equation

yr=2px
we have yr=2 p% =p2
Hence 2y=2p.
Cor. 1. Forming a proportion from the equation
y' = 2p,
we have @R YBYBADS

i.e., the latus-rectum of the parabola is « third proportional to
any abscissa and its corresponding ordinate.

EXAMPLES.

Find the latus-rectum and write the equation of the parab-
ola which contains the point:

1 2,4 3. (a,d).
g 2, b
Ans. 8, y* =8u. Ans. o LT
S (=24. 4 (—a,2).
4
Ans. — 8, y* = — 8. Ans. —(—L,y2=—ax.

5. What is the latus-rectum of the parabola 2 =2py?
How is it defined in this case ?
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6. What is the equation of the line which passes through
the vertex and the positive extremity of the latus-rectum of
any parabola whose equation is of the form #? = 2 px ?

Ans. y =2z

7. The focus of a parabola is at 2 units’ distance from the
vertex of the curve; what is its equation

(@) when symmetrical with respeet to the X-axis ?
(1)) “ 13 13 “ oo Y-axis 1%
Ans. (a) y* =8z, (0) * =8 y.

Construet each of the following parabolas by three differ-
ent methods.

8. 2=8u. 10. 2> =6y.

9 ¥y*=—4ua. 11. 2> = —10y.

12. What are the co-ordinates of the points on the parabola
y* = 6 x where the ordinate and abscissa are equal ?
Ans. (0, 0), and (6, 6).

13. Required the co-ordinates of the point on the parabola
x? = 4 y whose ordinate and abscissa bear to each other the
ration 3: 2. Ans. (6, 9).

14. What is the equation of the parabola when referred to

the directrix and X-axis as axes ? Ans. y* =2 px — p2

Find the points of intersection of the following:

15, y»=4zxand 2y —x =0.
Ans. (0, 0), (16, 8).

16. >=6yandy —2 —1=0.
17 y¥? = —8zxand . + 3 =0.

18. y* =2z and 2® +4* = 8.
Ans. (2, 2), (2, — 2).

19 2?= —4yand 322+ 232 =6.
20. * =4yand =4z
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56. To deduce the polar equation of the parabola, the focus
being taken as the pole. :
The equation of the parabola referred to OY, OX, Fig. 29, is
y=2pz... @)
To refer the curve to the initial line FX and the pole F

0

-

<p O) we have for the equation of transformation, Art. 34,

Cor. 1,

% = {; -+ 7 cos 6.
y = rsin 6.

Substituting these values in (1), we have
2 sin? 0 = p? + 2 pr cos 6.

But sin*f =1 — cos?6;

ot = pt-2 preos 6 4 12 cos? @ = (p -+ 7 cos )%

.7 =p + rcos b,

or, solving,

— )

T 1—cosé’
is the required equation.
We might have deduced this value directly as follows :
Let P (r, ) Fig. 29 be any point on the curve; then

FP — DA = DF 4+ FA = p + rcos6;

i e, r=p -+ rcosb.
Hence r= L .
1—cosé

Cor. 1. If 6=0, r=00.
1If 6 =90° r =p.
If 6=180° r=2L.
If 6 =270° » =p.
If - 6 = 360°, » = oo.

An inspection of the figure will verify these results.
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87. 1o deduce the equation of the tangent to the parabola.
If (@, ), (", y”) be the points in which a secant line cuts
the parabola, then
y—y = i = C@—2) ... (D)
will be its equation. Sinece (2, ¥'), (", ") are points of the
parabola, we have
yi=2px' ... (2
y2r=2px" ... (3
These three equations must subsist at the same time;
hence, subtracting (3) from (2) and factoring, we have
W —y)G+y)==2p @ —2");
y =y’ _ __2p
ie., x — ¥y +y’
Substituting this value in (1), the equation of the secant
becomes

— vy = -z ... @
y—y J+J,,( ) @

When the secant, revolved about (z”, y”), becomes tangent
to the parabola (z/, ¥’) coincides with (z”, y”); hence 2’ = «”,
vy =y". Making this substitution in (4), we have,

y—y" f(w—w) )
or, simplifying, recollecting that 3> = 2 pa”, we have
y' =p@E+a") ... 6
for the equation of the tangent to the parabola.
58. To deduce the value of the sub-tangent.
Making ¥ = 0 in (6), Art. 57, we have
x = —a”’ = 0T, (Fig. 31)
for the abscissa of the point in which the tangent intersects
the X-axis. But the sub-tangent CT is the distance of this
point from the foot of the ordinate of the point of tangency;

i.e., twice the distance just found; hence
Sub-tangent = 2 2"
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Le., the sub-tangent is equal to double the abscissa of the point
of tangency.

59. The preceding principle affords us a simple method of
constructing a tangent to a parabola at a given point.

Let P” (z”, ) be any point of the curve. Draw the ordi-
nate P”C, and measure OC. Lay off OT = OC.

Fi1G. 31.

A line joining T and P” will be tangent to the parabola
at P,

60. 7o deduce the equation of the normal to the parabola.

The equation of any line through P” (2", ") Fig. 31, is
y—y' =s@—2a") ... Q1)

We have found Art. 57, (5) for the slope of the tangent P”T

Ty
hence, for the slope of the normal P”N, we have

v
v

S = —
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Substituting this value of s in (1), we have

4

y—y'=—L@-2)...@
7Y
for the equation of the normal to the parabola.

6l. To deduce the value of the sub-normal.
Making ¥ = 0 in (2) Art. 60, we have, after reduction,

x =p +«” = ON; Fig. 31,

. Sub-normal = NC = p + 2" — 2" = p.
Hence the sub-normal in the parabole is constant and equal

to the semi-parameter FD.

62. To show that the tangents drawn at the extremities of
the latus rectum are perpendicular to each other.
The co-ordinates of the extremities of the latus-rectum are

(g-, p> for the upper point, and <]§ ,—p) for the lower point.

Substituting these values successively in the general equa-
tion of the tangent line, Art. 57 (6), we have

yp=p<w +§>,

—yp=p<w +g>,
or, cancelling,

y=x+%" @

y=—z—L2 ... ()

for the equations of the tangents. As the coefficient of =z
in (2) is minus the reciprocal of the coefficient of = in (1), the
lines are perpendicular to each other.

Cor. 1. Making y = 0 in (1) and (2), we find in each case

that z = —g; hence, the tangents at the extremities of the
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latus-rectum and the directriz meet the axis of the parabola
in the same point.

The values of the coefficients of # in (1) and (2) show that
these tangent lines make angles of 45° with the X-axis.

v

63. 7o deduce the equation of the parabola when referred to
the tangents at the extremities of the latus-rectum as axes.

=]
1o
AN
—
O

*x

=

’

X
FiG. 32.

The equation of the parabola when referred to 0Y, OX, is

y=2px ... Q).
We wish to ascertain what this equation becomes when the
curve is referred to DY’, DX’, as axes.

Let P’ (2, y') be any point of the curve; then, Fig. 32
(0C, CP") = (=, »), and (DC', C'P) = (&, ¥).
I'rom the figure, we have,

0C = DC — DO = DK + M — DO;
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but
’ 4
DK = «’ cos 45° = \%,vcm =y cos 45° = \?//5 , DO =§;
o ¥y _p
hence 8 = T =5 9"
We have, also, CP’ =MP" — (C'K;
. y g7
ie. Y=L — .
’ VRN
Substituting the values of « and y in (1), we have,
1 7 2]) ’ ’ 2 ¢
S =) ==E +y)—p ... Q)
: 2L @ +y) (

In order to simplify this expression let DP = ¢ ; then from
the triangle DPF, we have,
DF = p = acos 45° = —%_.
V2

Substituting this value of p in (2) and multiplying through
by 2, we have, (¥ — )2 =2a (2/ + 1) —a?,
or, Yr+at—2ay —2ax’ —2ay + a* =0.
Adding 4 2y to both members, the equation takes the form

@ +y —a)=4xy,

i ¥ty —a=L2x%y%;
. transposing, & L 225 y¥ + o = a;
x/x:l:y/x= :!:a%, L. (3)
or, symmetrically, dropping aceents,
x* ) yE
a_%:l:a_%_:lzl oub o ()

is the required equation.
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i EXAMPLES.

N 1. What is the polar equation of the parabola, the pole
being taken at the vertex of the curve ?
Ans. r = 2 p cot 6 cosec 6.

Find the equation of the tangent to each of the following
parabolas, and give the value of the subtangent in eacli case :

. y=4xat (1, 2). Ans. y=ax +1; 2.
2=4yat (—2 1) Ans. 2 +y+1=0; 2.
y* = — 6wat (— 6, ord +). Ans. 2y +x=3; 12
2? = — 8y at (abs +, — 2). Ans. x+y=2; 4
2 =4 ax at (¢, — 2 a).

y? = ma at (m, m).

a? = — py at (abs +, — p).
x?=2py at <abs——,§>-

Write the equation of the normal to each of the following
parabolas :

10. To 3 =16 at (1, 4).
11. Toa* = — 10y at (abs +, — 2).

12. To y* = — mw at (— m, m).

© ®ue ;R
R B

13. To x? = 2my at (abs —. %) .
14. The equation of a parabola is a¥ L ¥ = 4 a¥; what
are the co-ordinates of the vertex of the curve ? :

Ans. '<]ia,1a>-
4 4

,i 15. Given the parabola 3? = 4« and the line y — 2z =03
required the equation of the tangent which is,
(@) parallel to the line,
() perpendicular to the line.
Ans. (@) y=2+1,®) y+x+1=0.



THE PARABOLA. 95

16. The point (—1, 2) lies outside the parabola 3® = 6 x;
what are the equations of the tangents through the point to
the parabola ?

17. The point (2, 45°) is on a parabola which is symmetri-
cal with respect to the X-axis; required the equation of the

paraboly, the pole being at the focus. __
Ans. ¥ = (4 —2+/2) x.

18. The subtangent of a parabola = 10 for the point (5, 4);
required the equation of the curve and the value of the sub-
normal.

Ans.  3? =—15~6x; ?

64. The tangent to the parabola makes equal angles with the
Jocal line drawn to the point of tungency and the axis of the
curve.

From Fig. 31 we have,

FT =FO0 + OT = % + 2.
We have, also,
FP” = DC = DO 4+ 0OC = 1; + 2.
.. FT = FP”,
The triangle FP”T is therefore isosceles and
FP"T = FTP”.

!
65. To find the condition that the line y = sx + ¢ must fulfil
in order to touch the parabola y* = 2 pz.
Eliminating y from the two equations, and solving the
resulting equation with respect to x, we have,

m=1’—3":1:\/(232—20)2—0232 )

for the abscisse of the points of intersection of the parabola
and line, considered as a secant. When the secant becomes
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a tangent, these abscissas become equal ; but the condition for
equality of abscissas is that the radical in the numerator of
(1) shall be zero; hence
(es — p)? — ** =0,
or, solving, e=2L
2s
is the condition that the line must fulfil in order to touch the

parabola.
Cor. 1. Substituting the value of ¢ in the equation
y=sz+ 0
we have, Yy =sx+ g"; PN &)

for the equation of the tangent in terms of its slope.

66. To find the locus generated by the intersection of a tan-
gent, and « perpendicular to it from the focus as the point of
tangency moves around the curve.

The equation of a straight line through the focus (2‘; B 0) is

g/=s'<ac—-]§>...(1)

In order that this line shall be perpendicular to the tangent

— P
7 cx+2s @)
we must have, § = —%;
1 P
= — B N (3
hence 7 -@ + o 3)

is the equation of a line through the focus perpendicular to
the tangent. Subtracting (3) from (2), we have

<s+1>x=0,
$

or, HA=10]

for the equation of the required locus. But z =0 is the
equation of the Y-axis; hence, the perpendiculars from the
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focus to the tangents of a parabola intersect the tangents on the
Y-axis.

67. To find the locus generated by the intersection of two tan-
gents which are perpendicular to each other as the point of tan-

gency moves around the curve.
The equation of a tangent to the parabola is, Art. 65 (2),

= L. ...
Yy = st + 7 @
The equation of a perpendicular tangent is
v L, P8 9
Ul e &)

Subtracting (2) from (1), we have,

[

SRl G))
is the equation of the required locus. But (3) is the equa-
tion of the directrix; hence, the intersection of all perpendicu-
lar tangents drawn to the parabola are points of the directrix.

i

68. Two tangents are drown to the parabola from a point
without ; required the equation of the line joining the points of
tangency. '

Let (2, /) be the given point without the parabola, and let
(", y'"), (xs y2) be the points of tangency. Since (2, ¥/) is
on both tangents, its co-ordinates must satisfy their equations;
hence, the equations of condition,

'//J// _p (w/ + x//),
Yy =p (¥ + ).

The two points of tangency (x”, ¥”), (x; ¥,) must therefore

satisty
yy=p @ +2),

or yy =p@x+x)...1Q)

Since (1) is the equation of a straight line, and is satistied
for the co-ordinates of both points of tangency, it is the
equation of the line joining those points.
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69. To find the equation of the polar of the pole (x, y') with
regard to the parabola y* = 2 pax.

The polar of a pole with regard to a given curve is the line
generated by the point of intersection of a pair of tangents
drawn to the curve at the points in which a secant line through
the pole intersects the curve as the secant line revolves about the
pole.

By a course of reasoning similar to that of Art. 49, we may
prove the required equation to be

yy =p@+a)... Q1)
As the reasoning by means of which (1) is deduced is per-

fectly general, the pole may be without, on, or within the
parabola.

Cor. 1. If we make, in (1), (', y") = (g, 0), we have
o m—L;
hence, the directrix is the polar of the focus.
70. 7o ascertain the position and direction of the axes,
other than the axis of the parabola and the tangent at the

vertex, to which if the parabola be referred its equation will
remain unchanged in form. :

=

=

Fic. 33.
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Since the equation is to retain the form
oPes Biuizis 137 @)

let y2=2pa ... (2)

be the equation of the parabola when referred to the axes,
whose position and direction we are now seeking. It is
obvious at the outset that whatever may be the position of
the axes relatively to each other, the new Y’-axis must be
tangent to the curve, and the new origin must be on the
curve; for, if in (2) we make 2’ =0, we have ' = L+ 0, a
result which we can only account for by assuming the Y'-axis
and the new origin in the positions indicated. This conclu-
sion, we shall see, is fully verified by the amalysis which
follows.

Let us refer the curve to a pair of oblique axes, making
any angle with each other, the origin being anywhere in the
plane of the curve. The equations of transformation are,
Art. 33 (1),

x=a-}x cos 64y cos g
y =b 4+ 2 sin 6 + 3/ sin ¢.

Substituting these values in (1), we have,

y? sinfe 4 2a"y sin § sin g + 2%sin? 62 (dsing —p
cosq) y + 2 (bsind —pcos ) &' 4+ 02 —2pa=0...(3)

Now, in order that this equation shall reduce to the same
form as (1), we must have the following conditions satisfied :

(@) sin@sing = 0.

®) sin?6 = 0.

(¢) 0* — 2 pa = 0.

(d) bsing —pcosg =0.

If 6 = 0, then sin @ sin ¢ = 0 and sin%?§ = 0; i.e., conditions
() and (b) are satisfied for this assumed value of 6. But 6 is
the angle which the new X’-axis makes with the old X-axis;
hence, these axes are parallel.

If (a, b) be a point of the parabola 3% = 2 px, then % =2
pais an analytical expression of the fact; hence (¢) shows
that the new origin lies on the curve.
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If P _ tan ¢ =2, then (d) is satistied. But 2 is the
cos @ b b

slope of the tangent at the point whose ordinate is &, Art.
57, (5), and tan. ¢ is the slope of the new Y’-axis; hence, the
new Y’-axis is a tangent to the parabola at the point whose
ordinate is & ; .~ at (a, b); .~ at the new origin.

Cor. 1. Substituting (a), (b), (¢), and (d) in (3), recollecting
that cos § = cos 0 = 1, we have, after dropping accents,

2o 2P 4
sin? g
or, letting Y
sin? ¢
we have yr=2pc... )

for the equation of the parabola when referred to 0'Y’, 0'X,
Fig. 33. The form of (4) shows that for every value assumed
for x, y has two values, equal but of opposite sign; hence,
OX bisects all chords, drawn parallel to OY' and s therefore a
diameter of the parabola.

Nore. — A DIAMETER of @ curve is a line which bisects a sys-
tem of parallel chords.

T71. To show that the parameter of any diameter is equal
to four times the distance from the focus to the point in which
that diameter cuts the curve.

Draw the focal line FO’ and the normal O'N, Fig. 33.

Since the triangle O'FT is isosceles, Art. 64, the angle
O'FN =2 q.

Since O'N is a normal at 0/, AO'N = ¢ and AN = p, Art.
61. Hence in the triangle FO'A

A0’ = FO' sin 2 ¢ = FO' 2 sin ¢ cos .

In the triangle NO’A,

0s
AQ'=ANcotp=p cos e .
sin @
: cos
hence FO' 2singeos @ = p —o2;

G )
sin ¢
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For=_2
2sin?g

’ 2]7
B 29 = 24—
s 7= Sinty’

/ e 2])/ =4 FQ',
72. To find the equation of any diameter in terms of the

slope of the tungent and the semi-parameter.
The equation of any diameter as O’X/, Fig. 33, is

Yy = AQ =b.
But from the triangle AO’N, we have,
b =ANCOf}(p =-—p‘-— =]—);
tan ¢ 8
hence y=%L ... @
S

is the required equation.
73. To show that the tangents drawn at the extremities of

any chord meet in the diameter which bisects that chord.

F16. 34.

Let P’ (2, y'), P (x”, y”) be the extremities of the chord

@—a) ... @)

P/P,'; ) B
r Y -y

then y—y R
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is its equation. The equation of the tangents at P’ (¢, %),
P” (2", y") are

gy =p @+a) ... ©2)
vy =p( +27) ... )
Eliminating « from (2) and (3) by subtraction, we have,
x/ . x”
y=P o 4)

for the ordinate of the point of intersection of the tangents.
7 4
But if— z - is the reciprocal of the slope of chord PP,

y -y
(see (1) ). Hence, since the chord P’P” and the tangent Y'T

are parallel, we have,

x — 1
s

y —y
Substituting in (4) it becomes
y=L.
s

Comparing this value of y with (1) of the preceding
article, we see that the point of intersection is on the diameter.

EXAMPLES.
1 What must be the value of ¢ in order that the line
y = 4 x + ¢ may touch the parabola y* = 8=z ?
Ans. 3.
9. What is the parameter of the parabola which the line
y = 3z + 2 touches ?
Ans. 24,
3. The slope of a tangent to the parabola y* = 6z is = 3.
What is the equation of the tangent?
Ans. y =3z + %
4. The point (1, 3) lies on a tangent to a parabola; required
the equation of the tangent and the equation of the parabola,

the slope of the tangent = 4.
Ans. y =42 —1; yt= — 16
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5. In the parabola %? = 8 2 what is the parameter of the
diameter whose equation is y — 16 =07?

Ans. 136.

6. Show that if two tangents are drawn to the parabola

from any point of the directrix they will meet at right angles.

7. From the point (— 2, 5) tangents are drawn to y? = 8 x;
required the equation of the chord joining the points of
tangency. Ans. Sy —4x + 8 =0.

8. What are the equations of the tangents to y?=6ux
which pass through the point (— 2, 4) ?

TFind the equation of the polar of the pole in each of the
- following cases:

9. Of (— 1, 3) with regard to y* =4 x.

Ans. 3y —2x +2 =0.

10. Of (2, 2) with regard to > = — 4 .

Ans. 2y 42244 =0.

11. Of (e, ) with regard to y* = 4 «.

Ans. by —2x —2a = 0.

12. Given the parabola y* = 2 and the point (— 4, 10); to
find ‘the intercepts of the polar of the point.

Ans. a =4, = —

S =

13. The latus-rectum of a parabola = 4; required the pole
of the liney — 8z — 4 = 0.

Ans. (3, 1)

14. Given y? = 10 x and the tangent 2 y — = 10; required

_ the equation of the diameter passing through the point of

tangency.
Ans. y = 10.

GENERAL EXAMPLES.

1. Assuming the equation of the parabola, prove that every
point on the curve is equally distant from the focus and
directrix.
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2. Find the equation of the parabola which contains the
points (0, 0), (2, 3), (— 2, 3).
Ans. 3a*=4y.
3. What are the parameters of the parabolas which pass
through the point (3, 4) ?
Ans. L&, and §.
_~ 4. ¥Find the equation of that tangent to y* = 9x which is
parallel to the line y — 2x —4 = 0.
Ans. 8y —16x — 9 =0.
5. The parameter of a parabola is 4; required the equation
of the tangent line which is perpendicular to the line
y=2x 4+ 2. Give also the equation of the normal which is
parallel to the given line.

6. A tangent to »* = 4z makes an angle of 45° with the
X-axis ; required the point of tangency.
Ans. (1, 2).

Show that tangents drawn at the extremities of a focal
chord

7. Intersect on the directrix,

8. Meet at right angles.

9. That a line joining their point of intersection with the
focus is perpendicular to the focal chord.

10. TFind the equation of the normal in terms of its slope.

11. Show that from any point within the parabola three
normals may be drawn to the curve.
4

1 +cosé

gent at the point whose vectorial angle = 60°, and to find the

angle which the tangent makes with the initial line.
Ans. 6 = 60°.

13. Find the co-ordinates of the pole, the normal at one
extremity of the latus-rectum being its polar.

12. Given the parabola » = to construct the tan-
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14. In the parabola y* =4 2 what is the equation of the
chord which the point (2, 1) biseets ?
Ans. y=2x — 3.
15. The polar of any point in a diameter is parallel to the
ordinates of that diameter.

16. The equation of a chord of y? =102 is y =22 — 1;
required the equation of the corresponding diameter.

17. Show that a circle described on a focal chord of the
parabola touches the directrix.

18. The base of a triangle = 2 @ and the sum of the tan-
gents of the base angles = . Show that the locus of the
vertex is a parabola.

19. Required the equation of the chord of the parabola
y* =2 px whose middle point is (m, n).
n_x—m
r y—n
20. A focal chord of the parabola 7 = 2 px makes an
angle = ¢ with the X-axis; required its length.
Ans. 27) .
sin? ¢
21. Show that the focal distance of the point of intersec-
tion of two tangents to a parabola is a mean proportional to
the focal radii of the points of tangency.

Ans.

22. Show that the angle between two tangents to a parab-
ola is one-half the angle between the focal radii of the points
of tangency. .

23. The equation of a diameter of the parabola »* = 2 px
is ¥ = @ ; required the equation of the focal chord which this
diameter bisects.

24. The polars of all points on the latus-rectum meet the
axis of the parabola y* = 2 px in the same point ; required the
ce-ordinates of the point.
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CHAPTER VIL
THE ELLIPSE.

74. Tueellipse is the locus of a point so moving in a plane
that the sum of its distances from two fixed points is always
constant and equal to a given line. The fixed points are
called the Foct of the ellipse. If the points are on the
given line and equidistant from its extremities, then the given
line is called the Traxsverse or Masor Axis of the ellipse.

75. To deduce the equation of the ellipse, given the foci and
the transverse axis.

P

B‘
FiG. 35.

Tet F, F; be the foci and AA’the transverse axis. Draw
OY | to AA’ at its middle point, and take OY, OX as the
co-ordinate axes,
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Let P be ary point of the curve. Draw PF, PF,; draw
also PD || to OY.

Then (OD, DP) = (x, y) are the co-ordinates of P.

Let AA'= 2e, FF; = 20F = 20F; =2 ¢, FP = and
I RE=F7 '

From the right angled triangles FPD and F,PD, we have,

r=Vyi+@—clandr =Vy'+(x+c)?... (a)
From the mode of generation of the curve, we have,
r++v=2a;

hence Vit (@ —co+Vy+ @+ =2a;...Q)
or, clearing of radicals, and reducing,
(Pt -t =a’ (@ =) ... (2

As this equation (2) expresses the relationship between the
co-ordinates of any point on the curve, it must express the
relationship between the co-ordinates of every point; hence
it is the required equation.

Equation (2) may be made, however, to assume a more
elegant form. Make z = 0 in (2), we have,

?/2 — 0/2 _ 02
for the square of the ordinate of the point in which the
curve cuts the Y-axis; ie., OB = (ﬁlz). Representing
this distance by &, we have,
b = a? — %
net=at— b ... (3)
Substituting this value of ¢%in (2) and reducing, we have,
Ay 4Pt =a?t?; ... (4)
or, symmetrically,
2 2
%+%=1”.@

for the equation of ellipse when referred to its centre and
axes.
Let the student discuss equation (4). See Art. 12.
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Cor. 1. If we make b = a in (4), we have,
x2 + yz = az
which is the equation of a circle.
Cor. 2. If we interchange ¢ and b in (5), we have,

x? 2
F+%_2=1...(6)

for the equation of an ellipse whose transverse axis (= 2a)
lies along the Y-axis.

Cor. 3. If («, ) and (2", y”) are two points on the curve,
we have from (4)

2 __ b2 2 ’9 d 72 b2 2 7Y
y? =5 (@ — o) and yt =75 (@ — ;5

hence, 5% " (o — @) (a + ) : (2 — @) (a +4);

le., the squares of the ordinates of any two points on the
ellipse are to each other as the rectangles of the segments in
which they divide the transverse axis.

Cor. 4. By makingz =2’ — a and y =y  in (4), we have
after reduction and dropping accents,

2yt 4+t —2abtx=0...(7)
for the equation of the ellipse, A’ being taken as the origin
of co-ordinates.

76. The line BB/, Fig. 35, is called the CoxsuGATE or
Mixor axis of the ellipse; the points A and A’ ave called the
Verrices of the ellipse. It is evident from the figure that
the point O bisects all lines drawn through it and terminating
in the curve. For this reason O is called the CENTRE of
the cllipse.

2 __ 32
The ratio Y= _f— ¢ See(3) Art.T5... (1)
a a
is called the EccexTriciTy of the ellipse. It is evident that
this ratio is always < 1. The value of ¢ = L \a? — b? meas-
ares the distances of the foci F, I, from the centre.
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If @ =& in (1), then e = 0; i.e., when the ellipse becomes a
circle its eccentricity becomes zero.

If 5 =01in (1), then e = 1; i.e., when the ellipse becomes a
straight line the eccentricity becomes unity.

77. To find the values of the focal radii, r, v/, of a point on
the ellipse in terms of the abscissa of the point.
The FocArn RADIUS of @ point on the ellipse is the distance
of the point from either focus.
From equations («), Art. 75, we have,
r= VT @ o
from the equation of the ellipse, Art. 75 (4), we have,
2 __ b2 2 2y bZ bll x2:
Yn = P (@ — %) = — P
hence, substituting

r= 62/—23332—{-902—20.%-}—02
\ \ a®

[24

P
=\/c2+62——20x+a 21'90“’.
N P
—\/(1 —.,cac-{—z—zx

c
=a——;
a

hence r=a—ex. See (1) Art.76 . .. (1)
Similarly we find
r=a4ex ... (2)

78. Having given the transverse axis and the foci of any
ellipse, the principles of Art. 75 enables us to construct the
ellipse by three ditferent methods.

First Method. — Take a cord equal in length to the trans-
verse axis AA’. Attach one end of it at F, the other at F'.
Place the point of a pencil in the loop formed by the cord
and streteh it upward until taut. Wheeling the pencil around,
while keeping. the point on the paper and tightly pressed
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against the cord, the path described will be an arc of the
ellipse. After describing the upper half of the ellipse, re-
move the penecil and form the loop-below the transverse axis.
By a similar process the lower half may be described. It is

>

Fic. 36.

evident during the operation that the sum of the distances of
the point of the pencil from the foci is constant and equal to
the length of the cord; i.e.. to the transverse axis.

Second Method. — Take any point C on the transverse axis
and measure the distances A’C, AC. With F" as a eentre and
CA’ as a radins describe the arc of a circle; also with F as a
centre and CA as a radius describe another are. The points
R, R’ in which these ares intersect are points of the ellipse.
By interchanging the radii two other points P, P’ may be
determined. A smooth curve traced through a number of
points thus located will be the required ellipse.

Third Method. —Let the axes AA’=2 a, BB'=2 b be
given. Lay off on any straight edge MN (a piece of paper
will do) KD =0A =a and DL =0B=23. Place the
straight edge on the axes in the position indicated in the
figure. Then as K and L slide along the axes, the point D
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will describe the ellipse. For from the figure DLH and
DKE are similar triangles:
DK _ DL .
RE — i e
the co-ordinates of D).
Hence, squaring, clearing of fractions, and transposing, we
have

b .
————— (x and y being

\/1)2__ !/2

a
x

a?y? + 0%t = a®h
That is the locus deseribed by D is an ellipse. An instru-

ment based upon this prineiple is commonly used for drawing
the ellipse.

Vg, Tv find the latus rectum, or parameter of an ellipse.
The latus rectum or parameter of an ellipse is the double
ordinate passing through the focus.
The abscissas of the points in which the latus rectum
pierces the ellipse are 2 = L Va? — $%. Substituting either
of these values on the equation of the ellipse

zz—ﬁ(a"—xz)
= ’

2 LD S
we have g/z_.?(a—(a — ))_?..y_;_.
2 b2

Hence Latus rectum = 2 y = '

a

- (@)

Forming a proportion from this equation there results,
29y:2b:b:0a;
hence 29:26:20:2a;

Le., the latus rectum is a third proportional to the two axes.

EXAMPLES.

Find the semi-axes, the eccentricity, and the latus rectum
of each of the following ellipses:

1 32 +24=6. 3. ?*’4+3y=2.

2 2
2. -”;—+_1{2~=1. 4 442 4+6=8—22
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2

5. ax® + by* = ab. 7. 3/2—|—%—=m.
22

6. ¢y’ +x>=d. 8 x4+ ¥ —
m

Write the equation of the ellipse having given:
9. The transverse axis = 10; the distance between the toei
= 8.
Ans. + —‘/— =1,

&)0

10. Sum of the axes = 18; difference of axeb = 6.

Ans. VL)
ol = 9
11. Transverse axis = 10; the conjugate axis = 14 the

transverse axis.
2

L
25 25

Ans.

12. Transverse axis = 20; conjugate axis = distance be-
tween foci.
1:2
Ans. 5 + »2 = 50.

13. Conjugate axis = 10; distance between foci = 10.
2
Ans. % + y* = 25.

14. Given 3¢* 4 42? = 12; required the co-ordinates of the
point whose ordinate is double its abscissa.

6 o \/ 6
Ans. =y S\ =
ns. < 8 ’ 8)
15. Given theellipse 3 2 + 2 »* = 12, and the line y = = —1;
to find the co-ordinates of their points of intersection.

&x

16. Given the ellipse E—QI -|—~1—,_ ==1, and the abscissa of a

point on the curve = }; required the focal radii of the point.
Ans. r=Tgg v = 8.
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80. 7o deduce the polar equation of the ellipse, either focus
being taken as the pole.

F1a. 37.

Let us take F as the pole, and let (FP/, P'FA) = (», 6) be
the co-ordinates of any point P’ of the ellipse. From Art. 77

(1) we have, r=a —ex' ... (1)
From the figure, OD = OF 4 FD;
ie., & = ae + r cos 6.

Substituting this value of 2’ in (1), we have
r=a —e (ae + r cos 6),

or, reducing, we have

g U, o 2)
14 ecosé

for the polar equation of the ellipse, the right-hand focus
being taken as the pole.
From Art. 77 (2),

FP =+ =a+ ex'.
We readily determine from this value
D=l e MG
1—ecosf

for the polar equation of the ellipse, the left-hand focus being
taken as the pole.
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Cor. If 0 =0, r=a (1 —e)=FA,
¥ =a(14e) =TA

2 _ 72
It 0=90° r—a(l-e)ma—a® 0
=£=FL\T.
a
7"=a(1—gz)=a_aiff’_2=b_2:FIN.
a? o

It 6 =180° r=a (1 4+ ¢) =TFA’,
=a 1 —e)=TFA.

If 0=270° r=ua (1 —e*=FM,
" =a (1 —e*) = TN

If 0 =360° »r=a (1 —e)=FA,
=0 (1 +e) =TA

81. 70 deduce the equation of condition for the supplemental
chords of an ellipse.

>

F1G. 38.

Let AP, A’P be a pair of supplemental chords.
The equation of a line through A (a, o) is

y=3s(x—a).
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The equation of a line through A" (— «, o) is
y=¢5 (x + a).
Where these lines intersect we must have
yr=ss (@*—a? ... 1) .
In order that the lines shall intersect oz the ellipse their
equations must subsist at the same time with the equation of
the ellipse

2_£ 2 .2 9
y=n@—=2)...0@0

Dividing (1) by (2), we have

or s =—— ... ()

for the required condition.
Cor. If @ =0, the ellipse becomes -2 circle and (3) be-

comes
s’ = —1,

a relationship heretofore deduced. Art. 40 (1).

Scror. The preceding discussions have developed a remark-
able analogy between the ellipse and circle. As we proceed
we shall find that the circle is only a particular form of the
ellipse and that all of the equations pertaining to it may be
deduced directly from the corresponding equations deduced
for the ellipse by simply making @ =& in those equations.

82. ' To deduce the equation of the tangent to the ellipse.
Let P” (27, ), P’ (&, &/') be the points in which a secant
P”S cuts the ellipse. Its equation is, therefore,

, Z// | m yr/ :
Y — 1 e —2) ... (1
y—v ok ) @
As the points are on the ellipse, we must have
62
y’2=_a2 (> —a ... (2)

72 b? 2 779 3
Y —?(a —2") ... (8)
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o

=

=z
] SRS

Fi1cG. 39.

These three equations must subsist at the same time ; hence
subtracting (3) from (2) and factoring, we have

(y—M9@“+M%=—§;W—x@@“+W%

hence Fet ) . ¥ + x”.
( x/ - x// CLZ ]// + y//

Substituting this value in (1) it becomes
Lt ).
ety +y

Revolving the secant line upward about the point P” (z”, y”)
the other point of intersection P’ (2, 3//) will approach P” and
will finally coincide with it. When this occurs the secant
becomes a tangent and ' = 2, ¥’ = #/’; hence, substituting,
we have

§ = H =

2 &
y—y' = -0z 7@
iter a?yy” + Vxx” = a®?; . .. (4)
xx” | oy
or e G,

for the equation of the tangent



THE ELLIPSE. 117

Cor. If b = a, we have

wm/l yyll
s e
for the equation of the tangent to the circle. See Art. 41 (6).

Scuor. If we make x and y successively = 0 in the equa-

2 2
tion of the tangent (5), we have y =yi” and x = 9% for the

values of the variable intercepts O'I’, O, Fig. 39;
’ v? 7 a?
hence y'=—anda’=".
y x
These values in the equation
x//g ?//2
=t
give, after reduction,
a? b*

+ 2 =1...0)

x? y

for the equation of the ellipse, the intercepts of its tangents
on the axes being the variables.

83. To deduce the value of the sub-tangent.
Making y = 0 in (5), Art. 82, we have

2

r a
z=0T=—;
7

x

‘. sub-tangent =DT =2 _ " —

I

Cor. If b =a, then from Art. 41, Schol. a® = 2% = y”,
s/
*. sub-tangent in the circle = yﬂg 0
x

Scuor. The value of the sub-tangent being independent of
the value of the minor axis (24) it follows that this value is
the same for every ellipse which is concentric with the given
ellipse, and whose common transverse axis is 2 a.
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84. The equation of condition that a line shall pass through
the centre of the ellipse and the point of tangency is, Fig. 39,
?// = ta’,

.. the slope of this line is

4

t="4

(L‘” :

The slope of the tangent at (2", y”) is, Art. 82,
B e

?‘ . 7 .

Multiplying, member by member, we have

b2

¢ o= —

t=—-—z. @
But Art. 81 (3)
b?
88y = — —
P
- 58’ =tt';

i.e., the tangent to the ellipse and the line joining the centre and
the point of tangency enjoy the property of being supplemental

] q b
chords of an ellipse whose semi-axes bear to each other the ratio P

Cor. If s =t then s’ = #'; ie., if one supplementary chord
is parallel to a diameter of the ellipse, the other supplementary
chord is parallel to the tangent drawn at the extremity of that
diameter.

85. The principles of Arts. 83, 84 afford us two different
methods of constructing a tangent to the ellipse at a given
point.

First Method. — Art. 83, Schol. Let P”, Fig. 40, be the given
point. Through P” draw the ordinate P”D and produce it
until it meets the cirele described upon the transverse axis
of the ellipse (AA’) in P’; draw P'T tangent to the circle
at P’. Join P” and T; P”7T will be the required tangent.
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F1a. 40.

Second Method. — Art. 84 and Cor. Draw P”R through the
centre, and from A’ draw A'R’ || to P”R; P”T drawn through
P” || to R’A will be tangent to the ellipse at P”.

86. To deduce the equation of the normal to the ellipse.
The equation of any line through P” (2”, y”), Fig. 39, is
y—y' =s@x—x") ... Q).

In order that this line and the tangent at P” (2", »”) shall
be perpendicular their slopes must satisfy the condition
1+4+s'=0...(2.
We have found Art. 82 for the slope of the tangent

Y » oo
= 20 =5
a

hence, the slope of the normal is

- a2 y//
o 2

Substituting this value of s in (1), we have

2./

B =gy ZZ (@ —2"y ... (3).

for the equation of the normal to the ellipse.
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Cor. 1.. If @ = b, then (3) becomes, after reduction,
:[/xll _u xyll s O’
which is the equation of the normal line to the circle.

87. To deduce the value of the sub-normal.
Making y = 0 in the equation of the normal, (3), Art. 86,

2 __ 72
we have, Fig. 39, ON =& = “ = g o = G
a

2 2 2]
a—1b b
x = "—2x".

a

. Sub-normal = DN= 2" —
2 aﬂ

Cor. 1. Ifa =9, then
Sub-normal for the circle = z”.

EXAMPLES.

1. Deduce the polar equation of the ellipse, the pole being

at the centre and the initial line coincident with the X-axis.
ab

T Ja?sin®6 + Pcos?

Ans. r

Write the equation of the tangent to each of the following
ellipses, and give the value of the sub-tangent in each case.

2 22?4+ 42=38at (1, 3).
Ans. x + 6y =19; 18.

22 y2 . o
3. —3— + %— —1, at (1, ordinate positive).
B 3
Ans. x+——=y=3; 2.

V3 ’

2 2

4. %+%=1’ at (2, 0).
Ans. x=2; 0.

5. 222+ 3y*=11at (2, —1).
= ’ Ans, 4z —3y=11; &

2 2 -
6. L4+ Z 1, at (0, Va).
a b
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2 2
% _27+_§)/?=1, at (a, 0)
8 yP4bx2=2 at(l, — V2—5).
9. %2.1. F—1, at (abs +, .5).

Write the equation of the normal to each of the following
ellipses, and give the value of the sub-normal.

10. 392 +42?=39, at (3, 1).

11. 442 + 22 =44, at (— 2, ord negative).

12. ifli+%=1, at (— 1, ord —).
13 2 L% 1 a2

. _3—+6—= s @ ( )

14. %+f= , at (3,ord +).

15. m?y? + n%? = m™?% at (m, o).

16. The equation of a chord of an ellipse is y = — 2z + 65
what is the equation of the supplementary chord, the axes of

the ellipse being 6 and 4 ?
Ans. =%z §

2 2
17. Given the equation % +.1y—6 =1,and y — 2 =0; re-
quired the equation of the tangents to the ellipse at the points
in which the line cuts tne curve.

18. Given the ellipse i’; + ﬂ;— =1, and the line y — = 4

2 = 0; required
(a) The equation of a tangent to the ellipse || to the line.
(b) “ @ 43 @ - 13 “ 1o« o« “
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19. The point (4, 3) is outside the ellipse
& o oF
LY 1,
679 ’

required the equations of the tangents to the ellipse which
pass through the point.

88. The angle formed by the focal lines drawn to any point
of an ellipse is bisected by the normal at that point.

G

1
9]

._/

F1a. 41

Let P”N be a normal at any point P” (2", ). Draw P”F, P"F.
We have found, Art. 87, that
i s
a
From Art. 76 we have OF = OF’ = «e; hence
NF = OF — ON = ae — e’ = ¢ (@ — ex)
NF' = OF + ON = ae - %" = ¢ (a + ex”)
. NF:NF i (@ —ex”) : (a + ex”)
But FP” : F'P” :: (a — ex”’) : (a + ex’’) Art. 77, (1) and (2);
.. NF:NF : FP”: FP”.

ON =

x’ = %,
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The normal, therefore, divides the base of the triangle
F’P”F into two segments which are proportional to the adja-
cent sides. Hence

LWI)//N — F/PIIN.
Scuor. 1. If P”T be a tangent drawn at P”, we must have
F/P//C = FPI/V \;
for each of these angles is equal to the difference between a
right angle and the angle F'P”N (= FP”N). Hence, the
tangent to the ellipse makes equal angles with the focal radii
drawn to the point of tangency.

Scror. 2. The principles of this article afford us another
method of drawing a tangent to the ellipse at a given point.
Let P” be a point at which we wish to draw a tangent. Pro-
duce F'P” to R, making P”R = FP”; join F and R. A line
P71, drawn through P” 1 to FR will be tangent to the ellipse
at P,

89. To find the condition that the straight line y = sx + ¢
must fulfil in order that it may touch the ellipse
2 2
L+ L =1
a® b

If we consider the line as a secant and combine the equations
Yy =sx +c
1.2 :{/2
e

we obtain the co-ordinates of the points of intersection.
Eliminating y from these equations, we have

— salc L ab V/s*a® 4+ 12 — ¢

o= .
sfa? + 0*

- (@D

for the abscissas of the points of intersection. Now, when the
secant line becomes a tangent, these abscissas become equal.
Looking at (1) we see that the condition for equality of ab-
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scissas is that the radical in the numerator shall disappear;
hence
sa* 4 0 — & =0,
or S+ = ... (2)
is the required condition.
Cor. If we substitute the value of ¢ drawn from (2) in the
equation of the line, we have

y=sx L Vs2a®?+8 ... (3)
for the equation of the tangent to the ellipse in terms of its
slope.

90. 7o find the locus generated by the intersection of a tan-
gent to the ellipse and a perpendicular to it from a focus as
the point of tangency moves around the curve.

The equation of a straight line through the focus (ae, o) is

y==s"(x — ae).

In order that this line shall be perpendicular to the tangent

y=sx L Vsa®+ 0. .. (1),

its equation must be
y=—1(x—ae) AN )]
8

If we now combine (1) and (2) so as to eliminate the slope
(s), the resulting equation will express the relationship be-
tween the co-ordinates of the point of intersection of these
lines in every position they may assume; hence it will be the
equation of the required locus.

Transposing sz to the first member in (1), and clearing (2)
of fractions and transposing, we have

y — s = + Vs%a? + 82
sy 4+ x = ae.

Squaring these equations and adding, remembering that
a? — b? = a%?, Art. 76, we have, *

1+ @+ =1+ d
or 224+ yi=0a?; ... 3);
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hence, the circle constructed on the transverse axis of the ellipse
is the locus of the intersection of the tangents and the perpen-
diculars let fall from the focus on them.

This circle is known as the Major-Director circle of the

ellipse. (See Tig. 45.)

91. 7o find the locus generated by the intersection of two
tangents which are perpendicular to each other as the points of
tangency move around the curve.

The equation of a tangent to the ellipse is

y=sx + Vs + 0. .. €))

The equation of a tangent perpendicular to (1) is
1 2
y=—;m—|—\/i—2+bz; )

hence, by a course of reasoning analogous to that of the pre-
ceding article, we have

4 yt=a* 40 ... (3)
The required locus is, therefore, a cirele concentric with the
ellipse and having its radius equal to v/ a* + b2

92. Two tangents are drawn to the ellipse from a point with-
out ; required the equation of the line joining the points of
tangency.

Let ¥’ (¢, o), Fig. 42, be the given point, and let P” (z”, y"),
P, (x5, ;) be the points of tangency. Since P’ (2, %) is a
point common to both tangents, its co-ordinates must satisfy
their equations; hence,

x/xll .7//?/l/
R

x'zy | Yy
o Tt

Hence (z”, y”) and (x,, y.) will satisfy the equation

o e e BN

a? 0?



126 PLANE ANALYTIC GEOMETRY.

As (1) is the equation of a straight line, and is satisfied for
the co-ordinates of both points of tangency, it must be the
equation of the straight line which joins them.

93. 7o find the equation of the polar of the pole (x',y'), with
regard to the ellipse

F16. 42.

By the aid of Fig. 42, and a course of reasoning similar to
that of Art. 49, the equation of P,P”, the polar to P/, may be
shown to be

N
a? + b '

Cor. If the polar of the point P’ («/, »') passes through
Py (x1, 1), then the polar of P, (xy, 7,) will pass through
P’ (@, y). (See Art. 50.)

94. To deduce the equation of the ellipse when referred to a
pair of conjugate diameters as axes.
A pair of conjugate diameters of the ellipse are those diam-
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eters to which if the ellipse be referred its equation will contain
only the second powers of the variables.
The equation of the ellipse when referred to its centre and
axes is
w2 2/2
= + o Lo @)
If we refer the ellipse to a pair of oblique axes having the
origin at the centre, we have, Art. 33, Cor. 1,
x=2x cos § + y cos ¢
y=2x'sinf + ¥ sing

for the equations of transformation. Substituting in (1), we
have
(a®sin® @ + b%cos? 0) 2 + (a®sin ¢ + 0% cos?¢) ¥/ 2
+ 2 (a®sin @ sin ¢ 4 b%cos fcos @) 2y’ = a®? . . . (2

for the equation of the ellipse referred to oblique axes. But,
by definition, the equation of the ellipse when referred to a
pair of conjugate diameters contains only the second powers
of the variables; hence

a*sin @sin g + *cosfecosg =0 . . . (3)

is the condition that a pair of axes must fulfil in order to be
conjugate diameters of the ellipse.

Making the co-efficient of 'y’ equal to zero in (2), we have
after dropping accents

(a*sin? @ 4 0% cos? 0) 2? 4 (a® sin? @ + 0% cos? ¢) 32 = a%?. . . “4)
for the equation of the ellipse when referred to a pair of con-
jugate diameters. This equation, however, takes a simpler

form when we introduce the semi-conjugate diameters. Mak-
ing y = 0 and « = 0, successively, in (4), we have

2 Gy — o)
a?sin?@ + B2 cos? | .
2202 . '} 50 o (&)
yzhaﬁsin?(p + b2coste )
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in which & and ¥ represent the semi-conjugate axes. From
(5), we have

2
gty 2 2 ao”
a? sin? 6 + 0* cos 6;7,
272

. a

a? sin? ¢ -+ ¥ cos? ¢ = b’I;

Substituting these values of the co-efficients in (4), we have,
after reduction,

%2+£=1 ... (6

for the required equation.

Cor. As equation (6) contains only the second powers of
the variables, it follows that each of the two diameters to
which the curve is referred will bisect all chords drawn
parallel to the other.

Scror. The equation of condition for conjugate diameters
(3) may be put under the forms

b2
tan 6 tan PES e M

Comparing this expression with (3) Art. 81, we see that the
same result was obtained for the supplementary chords of an
ellipse; hence, Fig. 40, if AR/, R’A be a pair of supplement-
ary chords, then RP”, PR”, drawn through the centre parallel
to these chords, will be a pair of conjugate diameters. Again:
comparing (7) with (1) Art. 84, we see that the same relation-
ship was obtained for a diameter and the tangent drawn at
its extremity; hence, Fig. 40, if P”R be a diameter and P”T
be a tangent drawn at its extremity, then PR”, drawn through
the centre parallel to T, is the conjugate diameter to RP”.

The equation of condition (7) being a single equation con-
taining two unknown quantities (tan. 6, tan. ¢), we may
assume any value we please for one of them, and the equation
will make known the value of the other; hence, in the ellipse
there are an infinite number of pairs of conjugate diameters.
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95. To find the equation of a conjugate diameter.
Let PR, R'P’ be a pair of conjugate diameters. We wish

to tind the equation of R'P’.
Y

ane)
o

O fanmnenamanass
(@)
[ ) —
=
>

FiaG. 43.

The equation of the tangent line P’T, drawn through
P// (x’/’ yll) is

xx// g/g//l
ot =t
By Art. 94, Schol., the diameter P'R’ is parallel to P"T;
hence its equation must be the same as that of the tangent,
the constant term being zero.
.z’ + w' o _o . .. )

a? b*
b
or y———-az—y,,m...(Z)
is the equation of a diameter expressed in terms of the co-
ordinates of the extremity of its conjugate diameter.
~ Cor. Let s represent the slope of the diameter P”R; then,
from (2)

— V" b2k
a?y” a® s
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since. ob _ 2" 1 ;
DP” y// s
hence we have
v e 3
Y= —"—x ...
y a’s 7 ()

for the equation of a diameter in terms of the slope of its
conjugate diameter.

96. 7o find the co-ordinates of either extremity of a diam-
eter, the co-ordinates of one extremity of its conjugate diameter
being given. _

Let P”R and R'P’, Fig. 43, be a pair of conjugate diameters.
Let (2", y”) be the co-ordinates of P”. We wish to find the
co-ordinates (', ') of P’ in terms of the co-ordinates of P.”

The equation of condition that P’ (#, ') shall be on the
diameter P'R’ is, Art. 95, (1)

4

A S O

a? H?
Since P’ («/, y’) is on the ellipse, we have also
/2 /2
& 2
Al Y
a? " b*
Eliminating 7" and &', successively, from these equations,
we find
b
2 = T gy// and y/ = 4 9
b a
These expressions, taken with the upper signs, are the co-

ordinates of T”; taken with the lower signs, they are the
co-ordinates of R/.

97. To show that the sum of the squares on any pair of
semi-conjugate diameters is equivalent to the sum of the squares

on the semi-axes.
Let P” (2", y”) and P’ (o, /), Fig. 43, be the extremities
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of any two semi-conjugate diameters. Let OP” = o/, OP' = ¥';
then, from the triangles ODP”, OD'Y’, we have,

a?=a" 4y . .. 1)

and eyt @)
But, Art. 96, 2'?= il y"*
y . b 62 b
2
and Y= —Z—z a7g
2 2
hence 2= % v+ % 2"t ... (3).

Adding (1) and (3), we have

22 '?/”2 )
but o + E e ils
hence, a?+ 0 =a®+0*. .. (4)

98. To show that the parallelogram constructed on any two
conjugate diameters is equivalent to the rectangle constructed
on the axes.

Let P"R (= 2a’), P'R’ (= 2V), Fig. 44, be any two conju-
gate diameters. To prove that area CTC'T’ = area BB’H'H.

The area of the parallelogram OP”TR’ is
OR’ x P"P.

From the figure P”P = OP” sin P”OR’
=a sin (180° — (¢ — 6) ) = @’ sin (¢ — 6);
.. area of OP"TR/ = &'t/ sin (p — D ola o (@)
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(&
H \ B
P/ P/I
| 7
1 4 i
’ E ’ 'O \‘b\‘ // E
T4 A D \ l, iD A T
P
R R’
H/ B’
C/
Fia, 44.
From the triangles OD'P’, @DP”, we have
asls 4 V4 V4
Sinqﬁ':%:%:%;sin@:}j_,
OD/ m/ ai {4 x/l
oS P = o= =~ g =
Hence sin (¢ — 6) = sin ¢ cos § — cos ¢ sin
. [)1‘”2 ay//g

ad ' ba't
0 a¥y”
o aa’b’b !
a?h?
abad't’”
ab
T
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Substituting this value in (1) and multiplying through by

4, we have
area OP"TR’ X 4 = 4 ab;
ie., area CTC'T" = area BB'H'H.

99. To show that the ordinate of any point on the ellipse is
to the ordinate of the corresponding point on the circumseribing
cirele as the semi-conjugate awis of the ellipse is to the semi-
transverse axis.

R B p ”
N " P
A = D c A
B’
Fic. 45.

Let DP’, DP” be the ordinates of the corresponding points
P @, o) and P (2", y").
Since P’ (2, %) is on the ellipse, we have
H? ) 7
y:= = (a® — 2'?).
Since P” (2", y”) is on the circle whose radius is a, we have
:1/1/2
Dividing these equations, member by member, we have

2 2
Z—:é=£—2, (since =’ ==z");

Yy e b

= 02 = @,
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Similarly we may prove that
Tyixynab,
where ; is the abscissa of any point on the ellipse, and =z, is
the corresponding abscissa of a point on the inscribed circle.

100. The principles of the preceding article give us a
method of describing the ellipse by points when the axes are
given.

From O, Fig. 45, as a centre with radii equal to the semi-
axes OA, OB describe the circles A’'RA, BCB’. Draw any
radius OR of the larger circle, cutting the smaller circle in M;
draw MN | to OA’, cutting the ordinate let fall from R in N
N is a point of the ellipse. Since MN is parallel to the base
of the triangle RO, we have

D'N:D'R:: OM: OR;
i e, ¥y nbia;
hence, the construection.

101. 7o show that the area of the ellipse is to the area of
the circumseribing circle as the semi-minor axis of the ellipse is

to its semi-major axis.

B R R, P
R _—3/—\ R'I
a
’ |
A 0. Ds 5, D, D &

FiG. 46.



THE ELLIPSE. 135

Inscribe in the ellipse any polygon ARR,R,R;R,A, and
from its vertices draw the ordinates RD,R, D, ete., producing
them upward to meet the circle in P, Py, Py ete. Joining
these points we form the inscribed polygon APP,P,P,P,A’ in
the ecircle.

Let (=, %), (', w1), (#”, y.) ete., be the co-ordinates of
P, Py, Py, ete., and let (z, y), (2, o), &, "), ete., be the co-ordi-
nates of the corresponding points R, Ry, R,, ete., of the ellipse.

Then Area RDD,R, = (z — z') *i/—-;ﬂ—/

Area PDD,P; = (x — ') ?/o‘zf‘ .7/1;

heiida Area RDD\R,  y +¥/

Area PDD,P;  yo+

But, Art. 99, £ — % ana ¥ _ 0,

Yo @ " a
LYty _b
Yot a

Hence

Area RDD,R, _
Area PDD,P, o

We may prove in like manner that every corresponding pair
of trapezoids bear to each other this constant ratio; hence,
by the Theory of Proportion, the sum of all the trapezoids in
the ellipse will bear to the sum of all the trapezoids in the
circle the same ratio. Representing these sums by 3¢ and
37T, respectively, we have

3t b

ST o
As this relationship holds true for any number of trape-
zoids, it holds true for the limits to which the sum of the

trapezoids of the ellipse and the sum of the trapezoids of
the circle approach as the number of trapezoids increase.
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But these limits are the area of the ellipse and the area of
the circle; hence
_area of ellipse __ b
area of?'zTrcle a

Cor. Since the area of the cirele is = a? we have

area of ellipse _ b

T a’ a
.. area of ellipse = = ab.
Since wat:imwab::wab:wbl

we see that the area of the ellipse is a mean proportional be-
tween the areas of the circumscribed and inscribed circles.

EXAMPLES.

1. What must be the value of ¢ in order that the line
y = 2z 4 ¢ may touch the ellipse
xZ 1,/2
Z 4L =17
4 + 9
Ans. ¢=25.
2. The semi-transverse of an ellipse is 10; what must be
the value of the semi-conjugate axis in order that the ellipse
may touch theline 2y +x —14=07? o
Ans. b= V24.

3. What are the equations of the tangents to the ellipse
x|y
5 + e 1,

whose inclination to X-axis =45°?

4. The locus of the intersection of the tangents to the
x2

2
ellipse — + ¥ =1

2
drawn at the extremities of conjugate diameters is an ellipse;
required its equation.

x? y2
Ans. ? + —b—E =1 2"
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5. Tangents are drawn from the point (0, 8) to the ellipse
2 .
THo=1
required the equation of the line joining the points of
tangency. Ans. 8y —1=0.

Required the polar of the point (5, 6) with respect to the
following ellipses :

©

2

6. 2*+3y"=0. 7. L 4L <1,
x*+ 3y 5 ot S
(132 y2
8. o~ ~+ = 1.
9. What are the polars of the foci ?
Ans. z= L2
e
10. What is the pole of ¥ = 3z + 1 with respect to
22 2 12
Tt =t
Ans. (—12,9).
11. The line 3y = 5« is a diameter of
m2 yZ
——— —— = 1 M
4 v 9 ’

required the equation of the conjugate diameter.
Ans. 20y + 27 2 = 0.

12. A pair of conjugate diameters in the ellipse

$2 y2
LA
16 g 9
3 3 9
make angles whose tangents are 4 and — 7 respectively,

with the X-axis; required their lengths.
13. What is the area of the ellipse
.'152 y2
4L =17
4 + 10

Ans. 2z V10.
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14. The minor axis of an ellipse is 10, and its area is equal
to the area of a circle whose diameter is 16; what is the length
of the major axis ? Ans.  253.

15. The minor axis of an ellipse is 6, and the sum of the
focal radii to a point on the curve is 16; required the major
axis, the distance between the foci, and the area.

GENERAL EXAMPLES.

1. What is the equation of the ellipse which passes through
(2, 4) (— 2, 4), the centre being at the origin ?

2. The major axis of an ellipse is = 18, and the point
(6. 4) is on the curve; required the equation of the ellipse.

: 1 1 3
3. Thelinesy = — 5% +6and y = g +gare supplemen-
tal chords drawn from the extremities of the transverse axis

of an ellipse ; required the equation of the ellipse.

4. The minor axis of an ellipse is = 12, and the foci and
centre divide the major axis into four equal parts; required
the equation of the ellipse.

5. Assuming the equation of the ellipse show that the
sum of the distances of any point on the ellipse from the foci
is constant and = to the transverse axis.

6. The sub-tangent for a point whose abscissa is 2 is = 6

in an ellipse whose eccentricity is %; required the equation

1 2 2
of the ellipse. A, 13% +% =1
7. What are the equations of the tangents to
2Ly
9 25

which form with the X-axis an equilateral triangle ?

8. Show that the tangents drawn at the extremities of any
chord intersect on the diameter which bisects that chord.
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9. What are the equations of the tangents drawn at the
extremities of the latus-rectum ?

10. Show that the pair of diameters drawn parallel to the
chords joining the extremities of the axes are equal and
conjugate.

11. A chord of the ellipse

A
16 i 9
passes through the point (2, 3) and is bisected by the line

y —x = 0; required the equation of the chord.

12. What are the equations of the pair of conjugate diam-
eters of the ellipse 16 y2 + 9 2? = 144 which are equal ?

13. Show that either focus of an ellipse divides the major
axis in two segments whose rectangle is equal (@) to the
rectangle of the semi-major axis and semi-parameter; (%) to
the square of the semi-minor axis.

14. Show that the rectangle of the perpendiculars let fall
from the foci on a tangent is constant and equal to the square
of the semi-minor axis.

15. A system of parallel chords which make an angle whose
tangent = 2 with the X-axis are bisected by the diameter of
an ellipse whose semi-axes are 4 and 3; required the equation
of the diameter.

16. Show that the polar of a point on any diameter is
parallel to the conjugate diameter.

17. Find the locus of the vertex of a triangle having given
the base = 2 a, and the product of the tangent of the angles
at the base = O :

o2

Ans. Vx? 4 ¢ty = bal
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18. : Find the locus of the vertex of a triangle having given
the base = 2 a, and the sum of the sides = 2.

2 2
Ans. £ e

2 b*— a?

19. Find the locus of the intersection of the ordinate of
the ellipse produced with the perpendicular let fall from the
centre on the tangent drawn at the point in which the ordi-
nate cuts the ellipse.

20. Find the locus generated by the intersection of two
tangents drawn at the extremities of two radii vectores (drawn
from centre) which are perpendicular to each other.

Ans.  aty? + 0%? = a® b* + b’at.

21. A line of fixed length so moves that its extremities
remain in the co-ordinate axes; required the locus generated
by any point of the line.

22. The angle AOP” = ¢ (Fig. 45) is called the eccentric
. angle of the point P’ (', ') on the ellipse. Show that (2, )
= (a cos @, bsin ¢) and from these values of the co-ordinates
deduce the equation of the ellipse.

23. Express the equation of the tangent at (x”, ") in terms
of the eccentric angle of the point.

Ans. Zeosq + % sin ¢ = 1.
(27

24. If (2, &), (", y¥”) are the ends of a pair of conjugate
diameters whose eccentric angles are ¢ and ¢/, show that
7 o
¢ — ¢ = 90°.
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CHAPTER VIIL
THE HYPERBOLA.

102. TuE hyperbola is the locus of a point so moving in a
plane that the difference of its distance from two fixed points
is always constant and equal to a given line. The fixed
points are called the Foci of the hyperbola. If the points
are on the given line produced and equidistant from its
extremities, then the given line is called the TRANSVERSE AXIs
of the hyperbola.

103. 7o deduce the equation of the hyperbola, given the foci
and the transverse axis.

Fic. 47.

Let ¥, F be the foci, and AA’ the transverse axis. Draw
OY Lto AA’at its middle point, and take OY, OX as the
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co-ordinate axes. Let I’ be any point of the curve. Draw
PF, PF’; draw also PD | to OY.

Then (OD, DP) = (x, y) are the co-ordinates of P.

Let AA'=2a, FF' =2 0F =2 OF = 2¢, FP = r and F'P
=P

From the right angled triangles FPD and ¥'PD, we have

r=Vy*+ (= ——csz and 7 = V! + (x4c)? ... (a)
From the mode of generating the curve, we have
Y —r=2a.
Hence, substituting,
\/Z/T—}—(‘x-{:gﬁ—\/yg—{-(x——c)?:Za; N E))
or, clearing of radicals and reducing, we have
(F—a)x? —ayft=a*(F—a®) ... (2)

for the required equation. This equation, like that of the
ellipse (see Art. 75), may be put in a simpler form.

Let A—a=0...(3)
This value in (2) gives, after changing signs,
Ay — v = —a%? . .. (4)
or, symmetrically,
x? v 5
Z—te=1...(
at ®)

for the equation of the hyperbola when referred to its centre
and axes.

Let the student discuss this equation. (See Art. 14)
Cor.1. TIf b =a in (5), we have

2 —f=a?. .. (6)

The curve represented by this equation is called the Hgui-
lateral IIyperbola. Comparing equation (6) with the equation
of the circle

z* s .7/2 = a‘z;
we see that the equilateral hyperbola bears the same relation to
the common hyperbola that the circle bears to the ellipse.
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Cor. 2. If (2, %) and (2, y”) are the co-ordinates of two
points on the curve, we have from (4)

2 U 2 e O 2y .
Y?P=— (#" — a* and y =?(x — a?);
@

hence y?:y”u (2" —a) (@ +a): (@ —a) (@ +a);
Le, the squares of the ordinates of any two points on the
hyperbola are to each other as the rectangles of the segments in
which they divide the transverse axis.
Cor. 3. By making # =2’ —a and y =3 in (4) we have
after reducing and dropping accents,
o’y —at 4+ 2abr =0 ... (7)
for the equation of the hyperbola, A’ being taken as origin,
104. From equation (3) Art. 103, we have
b= 1+ Vet —at
Laying this distance off above and below the origin on the
Y-axis, we have the points B, B/, Fig. 47, Art. 103. The line
BB’ is called the ConsueaTe Axis of the hyperbola. The
points A and A’ are called the VerTices of the curve. The
point O biseets all lines drawn through it and terminating in
the curve; for this reason it is called the CeNTRE of the
hyperbola.
The ratio 2 p2 -
VAL e, e (3) Art. 103 . . . (1

a a
is called the EccrntrIiciTY of the hyperbola. This ratio is
evidently > 1. The value of ¢ = L Va? + 5% measures the
distance of the foci F, ¥’ from the centre.

If b = a in (1), we have e = /2 for the eccentricity of the
equilateral hyperbola.

105. To find the walues of the focal radii, r, v of a point
on the hyperbola in terms of the abscissa of the point.
From equations («) Art. 103, we have

R= \/_Z/ZT(.L‘_: c)'z.
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* From the equation of the hyperbola, (4) Art. 103, we have
2 2
y? =%(112 —a?) = —2?302 —b%
Hence, substituting

b‘Z
7'=\/a2 22— 02 -2t — 22 + 2,

2 2
=\/a Sl x? — 2 cx 4 ¢ — b2,

a?

/2
- \/ 2 a? — 2ex 4 a? Art. 104 (1),
[42

¢
=lxr—a;
a

hence r=ex—a... (1)
Similarly, we find
r=ex+a... (2

106. 7o construct the hyperbola having given the transverse
axis and the foci of the curve.

Ry

=

[Sys)

R2

F1aG. 48.

First Method. — Let AA’ be the transverse axis and F, F/, the
foci. Take a straight-edge ruler whose length is L and attach



THE HYPERBOLA. 145

one of its ends at F’ so that the ruler can freely revolve about
that point. Cut a piece of cord so that its length shall be
=L — 2 a, and attach one end to the free end of the ruler,
and the other end to the focus F. Place the ruler in the
position indicated by the full lines, Fig. 48, and place the
point of a pencil in the loop formed by the cord. Stretch
the cord, keeping the point of the pencil against the edge of
the ruler. If we now revolve the ruler upward about F’, the
point of the pencil, kept firmly pressed against the ruler,
will describe the arc AP’ of the hyperbola. By fixing the
end of the ruler at F, we may describe an arc of the other
branch. It is evident in this process that the difference of
the distances of the point of the pencil from the foci F/F,
is always equal to 2 a.

Second Method. — Take any point D on the transverse axis.
Measure the distances A’D, AD. With F’as a centre and A’D
as a radius describe the arc of a circle; with I as a centre and
AD as a radius describe another arc. The intersection of
these ares will determine two points, P, Py, of the curve. By
interchanging centres and radii we may locate the points R;,
R,, on the other branch. In this manner we may determine as
many points as the accuracy of the construction may require.

107. To find the latus-rectum or parameter of the hyperbola.
The Larus-ReEctruM, or PARAMETER of the hyperbola, is the
double ordinate passing through either jfocus.

Making @ = L Va? -4 2 in'the equation of the hyperbola
62
Y= ot (@* — a?),

we have 2 =£.~.2y=2bz.
a a

Forming a proportion from this equation, we have
29:2b2b:a;
n2y:20:20:2a;
i.e, the latus-rectum of the hyperbola is a third proportional to
the axes.
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108. The equation of the ellipse when referred to its centre
and axes is
a*y? 4- 0% = a*>
The equation of the hyperbola when referred to its centre
and axes is
a?yt — PP = — o
Comparing these equations, we see that the only difference
is in the sign of 4% If, therefore, in the various analytical
expressions we have deduced for the ellipse, we substitute
— 6% for 1% or, what is the same thing, + 4+ — 1 for b, we
will obtain the corresponding analytical expressions for the
hyperbola.

109. To deduce the equation of the conjugate hyperbola.
Two hyperbolas are CONJUGATE when the transverse and con-
Jugate axes of one are respectively the conjugate and trans-
verse uxes of the other.

Thus in Fig. 49, if AA” be the transverse axis of the hyper-
bola which has BB’ for its conjugate axis, then the hyperbola
which has BB’ for its transverse axis and AA’ for its conjugate
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axis is its conjugate; and, conversely, the hyperbola whose
transverse axis is BB’ and conjugate axis is AA’ has for its
conjugate the hyperbola whose transverse axis is AA' and
whose conjugate axis is BB'.
We have deduced, Art. 103, (5),
2 7 2
%_#=1u.®

for the equation of the hyperbola whose transverse axis lies
along the X-axis. We wish to find the equation of its conju-
gate. It is obvious from the figure that the hyperbola which
has BB’ for its transverse axis and AA’ for its conjugate axis
bears the same relation to the Y-axis as the hyperbola whose
transverse axis is AA’ and conjugate axis is BB’ bears to the
X-axis; hence, changing a to b and b to @,  to ¥ and y to «
in (1), we have

Y
b2 —az—l’
22 y?
or F—Z_2=—1...(2)

for the equation of the conjugate hyperbola to the hyperbola
whose equation is (1).

Comparing (1) and (2) we see that the equation of any
hyperbola and that of its conjugate differ only in the sign of
the constant term.

Cor. Since V2 + a? = Vu? 4 0%, the focal distances of
any hyperbola and those of its conjugate are equal.

The eccentricities of conjugate hyperbolas, however, are
not equal. For the hyperbola whose semi-transverse axis is
a and semi-conjugate axis is 4, we have

Art. 104, (1) ¢ = Y&+
a

For its conjugate hyperbola, we have

(’./ = -\/(l2 + b2
7 .
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EXAMPLES.

Find the semi-axes, the eccentricity and the- latus-rectum
of each of the following hyperbolas :

1 94 —4a*= — 36. 5 3y —22=12.
2. %—%:1. 6. ay® — bx® = — ab.
3, y*— 1622 = — 16. 7. %2_¢=m.

4 42 —16y'= — 64. 8 ¥ — ma?=n.

Write the equation of the hyperbola having given:

9. The transverse axis = 12; the distance between the
foci = 16.

fE2 ?/2

Ans. = — L =1
" 36T 28
10. The transverse axis = 10; parameter = 8.
. A m2 7/2 _ 1
me. e —oh =
11. Semi-conjugate axis = 6 ; the focal distance = 10.
Ans. I e = il
64 36

12. The equation of the conjugate hyperbola, * — 3 5* = 6.
Ans. x* —3y*+ 6 =0.

13. The conjugate axis is 10, and the transverse axis 1s

double the conjugate.
xZ

Ans, =
"S- 300

e
o5

14. The transverse axis is 8, and the conjugate axis =1}
distance between foci.
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15. Given the hyperbola

2 2
10 4
required the co-ordinates of the point whose abscissa is double

its ordinate. -
Ans. (2\/2—0,\/29>
3 33

16. Write the equation of the conjugate hyperbola to each
of the hyperbolas given in the first eight examples above.

17. Given the hyperbola 9 y* — 4 #* = — 36; required the
focal radii of the point whose ordinate is =1 and abscissa
positive.

18. Determine the points of intersection of

a2 y? 22 N
Z —Z =l,and -+ =1
o M TR T5

110. To deduce the polar equation of the hyperbola, either
Sfocus being taken as the pole.

Let us take F as the pole, Fig. 47.

Let (FP, PFD) = (7, §) be the co-ordinates of any point P
on the curve. From Art. 105, (1), we have

' FP=r=ex—a... (1)
From Fig. 47, OD = OF + FD;
i.e., x = ae + rcos 6.

Substituting this value in (1) and reducing, we have

P = a(l—¢) )

T 1—ecosf

for the polar equation of the hyperbola, the right hand focus
being taken as the pole.
Similarly from Art. 105, (2), we have

o a(l—2¢% ®)

=1—ecos€ T

for the polar equation, the left hand focns being the pole.
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Cor. If0=0,r=—a—ae=—TFA
¥ =a+4 ae =FA.
If § = 90°,
2,2 _ 2 2
r=—a 4+ ae*= Il G2 e = semi-latus rectum.
a a
2 2,2 2
¥ o=a —aet =2 ot _ _ B _ semi-latus rectum.
a @
If 6 =180° r = — a + ae = FA,
¥ =a—ae= — A
° b2 .
If 6 = 270°% r = — a + ae® = — = semi-latus rectum.
@
’ H? .
¥ =a — ae* = — — = semi-latus rectum.

a

111. 7o deduce the equation of condition for the supple-
mentary chords of the hyperbola.

By a method similar to that of Art. 81, or by placing — 4
for 4? in (3) of that article, we have

ss’=b—z; RS
@

hence, the product of the slopes of any pair of supplementary
chords of an hyperbola is the same for every pair.

Cor. If @ = b, we have

& =il O, 8= =
s

.otan o = cot o
hence, the sum of the two acute angles which any pair of sup-
plementary chords of an equilateral Lyperbola make with the
X-azis is equal to 90°.

112. 7o deduce the equation of the tangent to the hyperbola.

By a method entirely analogous to that adopted in the
cirele, or ellipse, or parabola, Arts. 41, 82, 57; or substituting
— %? for 4% in (b) of Art. 82, we find :

2 Wy ()

.
a’ b?

to be the equation of the tangent to the hyperbola.
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113. 70 deduce the value of the sub-tangent.
By operating on (1) of the preceding article (see Art. 83),

we find
2 2 _ 2
Sub-tangent =2 — ¢ =L =@

” "
X

z
114. The slope of a line passing through the centre of an
hyperbola (0, 0) and the point of tangeney (z”, ¥’) is
t= 7‘/—” o
x!l
The slope of the tangent is, Art. 112, (1)

I
oSy

ay

¢ =

Multiplying these equations, member by member, we have
1)2

t=-—"... Q)
Comparing (1) of this article with (1) of Art. 111, we find
ss'=tt' ... (2)

Hence, the line from the centre of the hyperbola to the
point of tangency and the tangent enjoy the property of being
the supplemental chords of an hyperbola whose semi-axes

bear to each other the ratio g.

Cor. If s=¢, then s’ =¢; i.e., if one supplementary
chord of an hyperbola is parallel to a line drawn through the
centre, then the other supplementary chord is parallel to the
tangent drawn to the curve at the point in which the line
through the centre cuts the curve.

115. The preceding principle affords us a simple method
of drawing a tangent to the hyperbola at any given point of
the curve.
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|

F16. 50.

Let P’ be any point at which we wish to draw a tangent.
Join P’ and O, and from A’ draw A’C | to P'O; join C and A
The line P'T, drawn from P’ || to CA will be the required
tangent.

116. 7o deduce the equation of the normal to the hyperbola.
We can do this by operating on the equation of the tangent
as in previous cases, or by changing #* into — 4* in the equa-

- ' oy
tion of the normal to the ellipse, Art. 86, (3)
method, we obtain

By either
2.1
y—y' =—L

ng// (ZC - 92'”) st (1)
for the required equation.

117. 7o deduce the value of the sub-n ormal

By a course of reasoning similar to that of Art. 87, we have
[)2

sub-normal =

—
Cor. If b = a,

x/l

sub-normal = '

i.e., in the equilateral hyperbola the sub-normal is equal to
the abscissa of the point of tangency
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EXAMPLES.

1. Deduce the polar equation of the hyperbola, the pole
being at the centre.
2 a*h?

= — : .
a?sin? @ 4- b2 cos 26

Write the equation of the tangents to each of the foliow-
ing hyperbolas, and give the value of the sub-tangent in
each case.

2. 99— 4= — 36, at (4, ord. 4).

2 2
! Z(/_) = % = —1, at (5, ord. 4).
4 2 _v _ 1, at (4, ord. +).
9 16

5. y* —4x>= — 36, at (abs. 4, 6).
6. ay? — bax*= — ad, at (\/Eb—, ord. +).

1

Y —1, at (/m,0).
m n

8. Write the equation of the normal to each of the above
hyperbolas, and give the value of the sub-normal in each
case.

9. The equation of a chord of an hyperbolais y —a — 6
= 0; what is the equation of the supplemental chord, the
axes of the hyperbola being 12 and 8 ?

4
Ans. =56 =
ns. y 900

Lol o

10. Given the equations
) 2 2
%——-ZA=—1,andg/—w=O;

required the equations of the tangents to the hyperbola at the
points in which the line pierces the curve.
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11. One of the supplementary chords of the hyperbola
9y? — 1622 = — 144 is parallel to the line y == ; what are
the equations of the chords?

y=2+3
Ans. 16 1G.
Y=——x—-
(=9°"3

12. Given the hyperbola 222 — 3 y2= 6; required the
equations of the tangent and normal at the positive end of
the right hand focal ordinate.

13. What is the equation of a tangent to

' 2 Y
N
which is parallel to the line2y — 241 =07

118. The angle formed by the focal lines drawn to any point
of the hyperbola is bisected by the tangent at that point.
Making y = o in the equation of the tangent line, Art.
112, (1), we have
2
= =0T. Fig. 50.
)

From Art. 104, (1) OF = OF' = ae;
2
hence  OF — OT = FT = ae — 5, = - (ex” — a).
o "
OF 4+ 0T = FT =ae 4+ -2 = " (ex" + a);
x x
S ET:FTuex —azex 4 a.
But from Art. 105 we have
FP =ex" —a
FP =ex’ +a;
S FP PP nex —azex +a.
Hence FT:T'7T:FP: F'Y;
i.e., the tangent P"1' divides the base of the triangle FP'I

into two segments, which are proportional to the adjacent
sides; it must therefore bisect the angle at the vertex.
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Cor. Since the normal P'N, Fig. 50, is perpendicular to
the tangent, it bisects the external angle formed by the focal
radii.

Scuon. The principle of this article gives us another
method of drawing a tangent to the hyperbola at a given
point. Let P’ be the point, Fig. 50. Draw the focal radii
FP, ¥’P’. The line P"I' drawn so as to bisect the angle
between the focal radii will be tangent to the curve at P’

119. 7o find the condition that the line y = sx 4 ¢ must
Julfil in order that it may touch the hyperbola

a? P
Fa
By a method similar to that employed in Art. 89, we find
sta—0t=c*. .. (1)
for the required condition.
Cor. 1. Substituting the value of ¢ drawn from (1) in the
equation of the line, we have
y=sx L Vsa® -0 ... (2
for the equation of the tangent to the hyperbola in terms of its
slope.

120. To find the locus generated by the intersection of a
tangent to the hyperbola and a perpendicular to it from a focus
as the point of tangency moves around the curve.

B yrt=a?... 1)
is the equation of the required locus. (See Art. 90.)
121. 7o find the locus generated by the intersection of two

tangents which are perpendicular to each other as the points of
tangency move around the curve.

x?tyt=0a2—02... ()
is the equation of the required locus. (See Art. 91.)



156 PLANE ANALYTIC GEOMETRY.

122. Two tangents are drawn to the hyperbola from a point
without ; required the equation of the line joining the points of
tangency.

®r Yy _
=q s CHaEE @)
is the required equation. (See Art. 92.)

123. 7o find the equation of the polar of the pole (', y'),
with regard to the hyperbola
2 2

« Yy

e w=t .
¥r Yy _
-=1...@

is the required equation. (See Arts. 49-and 93.)

124. 7o deduce the equation of the hyperbola when referred
to a pair of conjugate diameters.

A pair of dicaneters ave said to be conjugate when they are so
related that the equation of the hyperbola, when the curve 1s
referred to them as awxes, contains only the second powers of the

variables.

2 2

z Y
a'? y?

is the required equation, and

Q@)

a?sin @sin ¢ — b*cos B cos ¢ =0,
b?
or tan 6 tan (p=? .. (2)

is the condition for conjugate diameters. (See Art. 94.)
Cor. From the form of (1) we see that all chords drawn
parallel to one of two conjugate diometers are bisected by the other.
Scuor. From Art. 111, (1) we have

b?
88 = —;
a?
hence ss’ = tan 4 tan ¢.

1f, therefore, s —tan §, we have s’ =tang; i.e., if one of
two conjugate diameters is parallel to « chord, the other conju-
gate diameter is parallel to the supplement of that chord.
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From Art. 114 we have
’ (e
tt - -a,—2 ’

hence : tt’ = tan 6 tan ¢.

1f, therefore, ¢ =tan6, we have # =tang; ie., if one of
two conjugate diameters is parallel to a tangent of the hyper-
bola, the other conjugate diameter coincides with the line joining
the point of tangency and the centre.

125. From the condition for conjugate diameters,

2
tan ftan ¢ = %
a

we see that the products of the slopes of any pair of conju-
-gate diameters is positive; hence, the slopes are both positive
or both negative. 1t appears, therefore, that any two conju-
gate diameters must lie in the same quadrant.

126. 7o find the equation of a conjugate diameter.

Y
M
c’ ) P’ D’
N
P//
[6) A @
R/I
NI
D = @€
M/

FiG. 51.
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Let P”R” be any diameter ; then P’R’, drawn through the
centre O parallel to the tangent at P” (P”N’) will be its con-
jugate diameter. Art. 124, Schol.

The equation of the tangent at P” (2", y”) is

A A TR ¢))

a? b*
hence, the equation of P'R’ is
" ’”
wo_ Y o,

a? 0
_ 2 5
or y_?..Tm S on(2)
But 2 = cot P'OX = 1;
Y s
b?
hence y=—=z...03)
a*s "

is the equation of « diameter in terms of the slope of its conju~
gate diameter.

127. To find the co-ordinates of either extremity of a
diameter, the co-ordinates of one extremity of its comjugate
diameter being given.

Let the co-ordinates of P” (2", y”), Fig. 51, be given.

By a course of reasoning similar to that of Art. 96, we find

’ V4 b 4
x =:[,_.»0£]/,y’=:1:5:r.

The upper signs correspond to the point P’ (2/,%/); the
lower signs to the point R’ (— &/, — %).

128. 70 show that the difference of the squares of any pair
of semi-conjugate diameters is equal to the difference of the
squares of the semi-axes.

By a course of reasoning similar to that of Art. 97, or, by
substituting — 4% for 22, — " for &2 in (4) of that article, we

find
a?—r=a* =0 ... Q1)
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Cor. If @ = b, then o =10'; ie., the equilateral hyperbola
has equal conjugate diameters.

129. To show that the parallelogram constructed on any two
conjugate diameters is equivalent to the rectangle constructed
on the axes.

By a method similar to that of Art. 98, we can show that

4 @'t sin (p — 0) =4 ab;

ie., Area MNM'N’= Area CDC'D’. Fig. 51.
EXAMPLES.
1. The line y = 2= + ¢ touches the hyperbola
x? _ yr_
5o b
what is the value of ¢? L.
. Ans. ¢ = L /32
2. A tangent to the hyperbola
®2 Y
10 12

has its Y-intercept = 2; required its slope and equation.
Ans. V1.6; y = V1.62 + 2
3. A tangent to the hyperbola 43 — 22? = 6 makes an
angle of 45° with the X-axis; required its equation.
4. Two tangents are drawn to the hyperbola 4 y? — 9 &2
— 36 from the point (1, 2), required the equation of the chord
of contact.
Ans. 9z — 8y = 36.
5. What is the equation of the polar of the right-hand
focus ?  Of the left-hand focus ?

6. What is the polar of (1, §) with regard to the hyperbola

4t —a?= —47? Ans. x — 2y =4.
7. Find the diameter conjugate to ¥ = 2 in the hyperbola

AR i

g e

Ans. y =1z,
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8. Given the chord ¥ = 2z + 6 of the hyperbola

2 9]
Y =1,

9 4
required the equations of the supplementary chord.
Ans. y=3x— %

9. In the last example find the equation of the pair of
conjugate diameters which are parallel to the chords.
Ans. y=2x, 9y = 2.

10. The point (5, 1#) lies on the hyperbola 972 — 16 2* =
— 144 ; required the equation of the diameter passing through
it; also the co-ordinates of the extremities of its conjugate
diameter.

130. 70 deduce the equations of the rectilinear asymptotes
of the hyperbola.

An ASYMPTOTE of a curve is aline passing within a finite
distance of the origin which the curve continually approaches,
and to which it becomes tangent at an infinite distance.

Y P

B/

F1G. 52.
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The equation of the hyperbola whose transverse axis lies
along the X-axis may be put under the form

p=2w_w ...
=

The equations of the diagonals, DI, CC, of the rectangle
constructed on the axes AA’, BB are

; b
¥y=4 (TL Z,
. b2
or, squaring, y?=—2a%... (2
a

where y represents the ordinates of points on the diagonals.
Let P’ (x, y) be any point on the X-hyperbola; and let D”
(%, ¥") be the corresponding point on the diagonal DD’. Sub-
tracting (1) from (2) and factoring, we have
W= +y="0;
& ®
y +y
As the points D”, P’ recede from the centre, O, their ordi-
nates D”N, P'N increase and become infinite in value when
D” and P’ are at an infinite distance. But as the ordinates
increase the value of the fraction (3), which represents their
difference, decreases and becomes zero when 3 and y are
infinite ; hence, the points D” and P’ are continually approach-
ng each other as they recede from the centre until at infinity
they coincide. But the locus of D” during this motion is the
infinite diagonal DD’; hence, the diagonals of the rectangle
constructed on the axes of the hyperbola are the asymptotes of
the curve. ’

hence Yy —y=D'P =

Therefore 5 = 4 i zand y = — & x
a a

are the required equations.
Cor. 1. If a = b, then

y=4xand y = — x; °
Le., the asymptotes of the equilateral hyperbola make angles of
45° with the X-axis.
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Cor. 2. The equation of the hyperbola conjugate to (1)
may be put under the form

s b2
y 2=?(.7c2—|—a2) RN E))
Subtracting (1) from (4), we have
y' —y=Pp =28,
Yty

hence, an hyperbola and its comjugate are curvilinear asymp-
totes of each other.
Cor. 3. Subtracting (2) from (4), we have
1t Py 0 .
y —Y _llD _y//_l_y/’
hence, the rectilinear asymptotes of an hyperbola and of its con-
Jugate are the same.

131. 7o deduce the equation of the hyperbola when referred
to its rectilinear asymptotes as axes.

YI
Y o
B’ B P ‘:.‘:, P
P
H
NN
lo) K yJA_|C X
B&—-- R
M
Xl
F1G. 53.

The equation of the hyperbola when referred to OY, OX,
is o ) .
CA i TR

a? b?
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We wish to ascertain what this equation becomes when
OY’, OX'’ the rectilinear asymptotes are taken as axes.

Let P’ be any point of the curve; let YYOX = XOX' = 6.
Then (OC, CP') = (z, ); (OD, DY) = (=, ¥').

From the figure, OC = OK + DR; CP’ = RP’ — DK

i.e., x= (2 +y)cosb; y=(y —a)sin 6.
But from the triangle OAB, we have
sin § = . b &
OB N ’
coff = OA _ _a ;
OB \/(12 + H?
hence, z = (&' + ) ——ae—; y = (y' — @) .
’ \/az_}_bz’ b \/a'z+b2.

Substituting these values in (1), we have
@ 49— — )= B

or, reducing and dropping accents,
2 2
xy = %{’_ )

for the equation of the hyperbola referred to its asymptotes.
In a similar manner we may show that
2 2
st S SRIO, Y,
4
is the equation of the hyperbola conjugate to (1), when re-
ferred to its asymptotes as axes.

Cor. Multiplying (2) by sin 2 § we may place the result in
the form

yrsin26 \/a22+ 6% \/“224— H? sin26;

that is DRLGPHA=IONAHS: o

. therefore area QODP'P = area OMAN ;

hence, the area of the parallelogram constructed upon the co-
ordinates of any point of the hyperbola, the asymptotes being
axes, 1is constant and equal to the area of the rhombus con-
structed upon the co-ordinates of the vertex.
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132. To deduce the equation of the tangent to the hyperbola
when the curve is referred to its rectilinear asymptotes as awes.

Y
B o
TI
H
6) A
D L
M
T K
R/
X
FiaG. 54.

By a course of reasoning similar to that employed in Arts.
41, 57, 82, we find the required equation to be

1/

y—y' = — :27(96—90") N (Y)
or, symmetrically,

T 4Y s (2

x Y

Cor. If we make y =0 in (2), we have
x=2x" = OT. Fig. 54
But OM =", ...OM = MT .. T'D = TD;

hence, the point of tangency in the hyperbola bisects that por-
tion of the tangent included between the asymptotes.
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133. Since D (2", y") is a point of the hyperbola, we have
(see Fig. 54)
4@'”3/” = a4+ 62,
or 22" .24y" = @® + b*;
i.e., OT.OT =a*+0... (1)
hence, the rectangle of the intercepts of a tangent on the asymp-

totes is constant and equal to the sum of the squares on the
semi-axes.

134. From (1) of the last article we have, after multiply-
sin 2 6
Op

ing through by

?

2
P nog= («* 4+ b*) sin 0 cos 6.

m nv
Qé% sin 26 = 9
But, Art. 131,

L , COS 0 = 4

Va® £ 0 NCES
orT.or

ie., area OTT = area OAD'B.

sin 0 =

hence

sin26 =ab;

.. the triangle formed by a tangent to the hyperbola and its
asymptotes is equivalent to the rectangle on the semi-axes.

135. Draw the chord RR/, Fig. 54, parallel to the tangent
T"L.  Draw also the diameter OL through D.
Since TD = T'D, we have R’LL = RL.
Since OL is a diameter, we have LK = LH ; hence
R'L — LK = RL — LLH;
ie., R’K = RH;

hence, the intercepts of a chord between the hyperbola and its
asymptotes are equal.
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EXAMPLES.
1. What are the equations of the asymptotes of the hyper-
m2 1 2
bola A e

9 16
Ans. y = L ta.
What are the equations of the asymptotes of the follow-
ing hyperbolas:

2 2 2
2 X _p=1. 4 ¥ _*_ 14
67 109"
Ans. g/=:1:§.
3. 32 —2x= —6. 5. ma® —nyr =c.

Ans. y =1 Vi
6. What do the equations given in the four preceding ex-
amples become when the hyperbolas which they represent are
referred to their asymptotes as axes ? '

7. The semi-conjugate axis of the hyperbola zy = 25 is
6; what is the value of the semi-transverse axis ?
Ans. 8.
What are the equations of the tangents to the following
hyperbolas :
8. To zy =10, at (1, 10).
Ans. y + 102 = 20.
9. To xy = -+ 12, at (2, 6).
Ans. y = —3x + 12
10. To ay = m, at (— 1, —m).

11. To xy = —p, at <_2,];;)

12. Required the point of the hyperbola xy = 12 for which
the sub-tangent = 4.
Ans. (4, 3).
13. The equations of the asymptotes of an hyperbola
whose transverse axis = 16 are 3y =2z and 3y + 2z = 0;
required the equation of the hyperbola.
64 256
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14. Prove that the product of the perpendiculars let fall
from any point of the hyperbola on the asymptotes is con-
stant and '

GENERAL EXAMPLES.

L. The point (6, 4) is on the hyperbola whose transverse is
10; required the equation of the hyperbola.
’ ' a® 112
Ans. = — —J4 —1
25 400
2. Assume the equation of the hyperbola, and show that
the difference of the distances of any point on it from the
foci is constant and = 2 a.

3. Required the equation of the hyperbola, transverse
axis = 6, which has 5y =2 and 3 y =13 = for the equa-
tions of a pair of conjugate diameters.

Ans, 2 iff =1
9 8

4. Show that the ratio of the sum of the focal radii of any
point on the hyperbola to the abscissa of the point is con-
stant and = 2 e. -

5. What are the conditions that the line Yy = s + ¢ must
fulfil in order to touch
S =1 at infinity ?
a3 02
o b
ns. s=4—,¢c=0.
o
6. Show that the conjugate diameters of an hyperbola are
also the conjugate diameters of the conjugate hyperbola.
7. Show that the portions of the chord of an hyperbola
included between the hyperbola and its conjugate are equal.
8. What is the equation of the line which passes through
the focus of an hyperbola and the focus of its conjugate
hyperbola ? -
Ans. x4y = \/aQ—I—“bE.
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9. Show that

o
als

when ¢ and ¢’ are the eccentricities of two conjugate hyper-
bolas.

10. Find the angle between any pair of conjugate diame-
ters of the hyperbola.

11. Show that in the hyperbola the curve can be cut by
only one of two conjugate diameters.

12. Find whether the line ¥ = ¢ « intersects the hyperbola
16 y* — 92® = — 144, or its conjugate.

13. Show that the conjugate diameters of the equilateral
hyperbola make equal angles with the asymptotes.

14. Show that lines drawn from any point of the equilat-
eral hyperbola to the extremities of a diameter make equal
angles with the asymptotes.

15. In the equilateral hyperbola focal chords drawn parallel
to conjugate diameters are equal.

16. A perpendicular is drawn from the focus of an hyper-

bola to the asymptote : show
(@) that the foot of the perpendicular is at the distance a

from the centre, and
(b) that the foot of the perpendicular is at the distance &

from the focus.

17. For what point of an hyperbola is the sub-tangent =
the sub-normal ?

18. Show that in the equilateral hyperbola the length of
the normal is equal to the distance of the point of contact
from the centre.

19. Show that the tangents drawn at the extremities of any
chord of the hyperbola intersect on the diameter which
bisects the chord.
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20. Find the equation of the chord of the hyperbola
S
9 12
which is bisected at the point (4, 2).

21. Required the equations of the tangents to

a® _ Y _
16 10
which make angles of 60° with the X-axis.

22. Show that the rectangle of the distances intercepted on
the tangents drawn at the vertices of an hyperbola by a
tangent drawn at any point is constant and equal to the
square of the semi-conjugate axis.

23. Given the base of a triangle and the difference of the
tangents of the base angles; required the locus of the vertex.

24. Show that the polars of (m, m) with respect to the
hyperbolas L
2 2 2
r _ ¥ -1, ¥ — % —1 are parallel.

P SRS

25. If from the foot of the ordinate of a point (z, ) of the
hyperbola a tangent be drawn to the circle constructed on
the transverse axis, and from the point of tangency a line be
drawn to the centre, the angle which this line forms with the
transverse axis is called the eccentric angle of (x, 7). Show
that (z, ) = (a sec ¢, b tan @), and from these values deduce
the equation of the hyperbola.

26. If («/, ¥), (", y"’) are the extremities of a pair of
conjugate diameters whose eccentrie angles are ¢’ and ¢, show
that ¢’ + ¢ = 90°.
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CHAPTER IX.
THE GENERAL EQUATION OF THE SECOND DEGREE.

136. The most general equation of the second degree be-
tween two variables is
ay? + bry +cx* +dy +ex +f=0... (1)
in which a, b, ¢, d, e, f are any constant quantities whatever.
To investigate the properties of the loci which this equation
represents under all possible values of the constants as to
sign and magnitude is the object of this chapter.

137. The equations of the lines in a plane, with which we
have had to do in preceding chapters, are
Az + By 4+ C =0. Straight line.
(Az 4+ By + €)* = 0. Two coincident straight lines.
y* — x? = 0. Two straight lines.
y? 4+ a? =% Circle.
y? + 22 = 0. Two imaginary straight lines.
y? = 2 px. Parabola.
a%y? 4 0% = o%% Ellipse.
ayt — b = — a®%®.  Hyperbola.
a%y? — Vx® = a*?.  Hyperbola.

Comparing these equations with the general equation, we
see that all of them may be deduced from it by making the
constants fulfil certain conditions as to sign and magnitude.
We are, therefore, prepared to expect that the lines which
these equations represent will appear among the loci repre-
sented by the general equation of the second degree between
two variables. In the discussion which is to ensue we shall
find that these lines are the only loci represented by this
equation. i
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DISCUSSION.

138. 7o show that the locus represented by a complete equa-
tion of the second degree between two variables is also represented
by an equation of the second degree between two variables, in
which the term containing xy is wanting.

Let us assume the equation

ay® +bay 4 et +dy +ex + =0 ... (1)
and refer the locus it represents to rectangular axes, making
the angle 6 with the old axes, the origin remaining the same.
From Art. 33, Cor. 2, we have
x=2x'cos @ — y sin 0
y==a'sin 0 4 3 cos 4
for the equations of transformation. Substituting these values
in (1), we have,
dy? VY + et L dy X+ f=0...(2)
in which
@' = acos?f + ¢sin?§ — bsin 6 cos @
0" =2 (a— c)sin § cos § 4 b (cos? § — sin® )
¢ = asin?6 + ccos?§ 4 b sin @ cos 6 560 (&)
d =dcosf —esin @
¢ =dsinf 4 ecos 6

Since 6, the angle through which the axes have been turned,
is entirely arbitrary, we are at liberty to give it such a value
as will render the value of &" equal to zero. Supposing it to
have that value, we have

2 (@ —c) sinfcos § + b (cos? § — sin? §) = 0,
or (@—c)sm20+4bcos20=0... 4

b
s - EE)

Since any real number between 4 oo and — o is the tan-
gent of some angle, equation (5) will always give real value
for 26; hence the above transformation is always possible.
Making &' = 0 in (2), we have, dropping accents,

dy et dy +ede+f=0...(6)
for the equation of the locus represented by (1). To this
equation, then, we shall confine our attention.

or tan 260 =
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Cor. 1. To find the value of o’ and ¢’ in terms of a, D,
and ¢. Adding and then subtracting the first and third of
the equations in (3), we have

d4+d=c+a... (T
¢ —a’'=(—a)cos 26 +0bsin26 ... (8)
Squaring (4) and adding to the square of (8), we have
(@ —a)t=(c—a)y+ 0%
e —d =Ve—aP+0t. .. 9
Subtracting and then adding (7) and (9), we have
Vie+a— V(e —aP+0% ... (10)
d=3%ce+a+Ve—a)+0 ... 11

Coxr. 2. To find the signs of a/ and ¢. Multiplying (10)
and (11), we have

ae =} i(c+a) — (e—a) + 5
ol =—1 (% —4ac) ... (12)

Hence, the signs of @ and ¢’ depend upon the sign of the
quantity * — 4 ac.

The following cases present themselves:

1. 52 < 4ac. The sign of the second member of (12) is
positive, .. o’ and ¢ are both positive, or both negative.

9 32— 4 ac. The second member of (12) becomes zero, ..
a =0,orc¢ =0.

[Tt will be observed that a’ and ¢ cannot be equal to zero
at the same time, for such a supposition would reduce (6) to
an equation of the first degree. ]

3. 2> 4ac. The sign of the second member of (12) is
negative, .. o’ must be positive and ¢ negative, or o/ must be
negative and ¢’ positive.

139. To transform the equation a'y* + cx® + dy +éx +
f = 0into an equation in which the first powers of the vari-
ables are missing.
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Let us refer the locus to a parallél system of rectangular
axes, the origin being at the point (m, ). From Art. 32, we
have

x=m+a,y=n-+y.
Substituting these values in the given equation, we have
ayt 4+t +d'y + e+ =0...(2)
in which
d'=2adn+d
c'=2cm + ¢ 500 ()
Jl'=an*+ dm®* +dn 4 em 4 f

Since m and n» are entirely arbitrary, we may, in general,

give them such values as to make
2an 4+d =0and 2cm + ¢ =0;

l.e., in general, we may make
d ¢
n=—_—andm=—— ...
2a 2¢

We see from these values that when o and ¢ are not zero,
this transformation also is possible ; and equation (2) becomes,
after dropping accents,

ay e+ =0...(5)

Equation (5), we observe, contains only the second power of
the variables; hence it is satisfied for the points (x, ) and
(—x, — y). But only the equation of curves with centres
can satisfy this condition; hence, equation (5) is the equa-
tion of central loci. When either o’ or ¢’ is zero, then n or m
is infinite and the transformation becomes impossible. Hence
arise two cases which require special consideration.

140. CasE 1. ¢’ =o.
Under this supposition equation (6), Art. 138, becomes
et +dy+edx+f=0...Q)
Referring the locus of this equation to parallel axes, the:

origin being changed, we have for the equations of trans-
formation

r=m+a,y=n-+y.
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Substituting in (1), we have
da?*+dy +2dm+ e +dm*+dn+em+fF=0...(2)
Now, in general, we may give m and n such values as to
make
2¢m 4+ ¢ =0,and ¢'m? 4+ d'n 4+ e'm 4+ f=0;
i.e., we may make

’

m = — —, and
20ch
n = — dm*+ e'm 4 f _ e —Afe 5 0 o (a)
d’ 4 d/cl

If d’ is not zero (since @’ = 0, ¢ is not zero), this transfor-
mation is possible and (2) becomes, after dropping accents,

de? + dy =0,
or ) d
r=——y... )
¢

Cor. If &' =0, (1) becomes
e+ e +f=0... %

or, solving with respect to x,

— L Vet —4afd )

€r =
2¢
% 141. Case 2. ¢ =o.

Under this supposition equation (6), Art. 138, becomes
dy +dyFedx4+F=0...(Q1)
Transforming this equation so as fo eliminate y and the
constant term, by a method exactly similar to that of the
preceding article, we find

d’
"= 2a’
d*—4a
m_—_Ala’e'f;

and, if ¢ is not zero, we have (a’ is not zero since ¢’ = 0)
/

¢=_%xu.@
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Cor. If ¢’ =0, equation (1) becomes
dyt + dy +f=0,

e —d'i;/d,'2—4f“' RUE)
a

142. Summarizing the results of the preceding articles, we
find that the discussion of the general equation

ay’ + by + cx* +dy - ex + f =0
has been reduced to the discussion of the three simple forms :
L &y 4 da® + f” = 0. Art. 139, (5)

or y

2= =Ly Art 140, (3)
[
2. ’
¥=—2L 2 Art 141, (2)
a
(gL \2/"“ — 4R A, 140, (5)
C
* 3 & LN~ T
e = = J2 vt 141, (3)
/A

The discussion now involves merely a consideration of the
sign and magnitude of the constants which enter into these
equations.

143. B < 4ac.

Under this supposition, since a’ and ¢ are both positive or
both negative, Art. 138, Cor. 2, neither a’ nor ¢’ can be zero;
hence, forms 2 and 3 of the preceding article are excluded
from consideration.

The first form becomes either

a/y2+clm2 +fll =07 e (1)
or —a'yz—”'$2+f" =0

in which ¢’ and ¢ may have any real value and f” may have
any sign and any value. Hence arise four cases:



176 PLANE ANALYTIC GEOMETRY.

Case 1. If f” has a sign different from that of a’ and ¢/,

equations (1) are equations of ellipses whose semi-axes are
an/i" By .
a —\/C—, andb_\/—(?.

Case 2. If f” has the same sign as that of " and ¢, equa-
tions (1) represent imaginary curves.

Casg 3. If o/ = ¢ and f” has a different sign from that of
« and ¢, equations (1) are equations of circles. If " has
the same sign as @’ and ¢, then the equations represent imagi-
nary curves.

Case 4. If £ = 0, equations (1) are equations of two imagi-
nary straight lines passing through the origin.

Hence, when 8% < 4 ac, every equation of the second degree
between two variables represents an ellipse, an imaginary curve,
a circle, or two i{maginary straight lines intersecting at the
origin.

144. b =4 ac.

Under this supposition, Art. 138, Cor. 2, either o/ =0, or
¢ — 0; hence, form (1) of Art. 142 is excluded.

Resuming the forms

2 d ]
= — —-1

(4

L@
y2=_-_6x

a )
RNy
e 20

. I S ()

—d L= 4
’l/__’r*,_‘)_a"——A_.

we have four cases depending upon the sign and magnitude
of the constants.

Case 1. If d& and ¢ in the first form of (2) are not zero,
and if ¢ and ¢ in the second form of (2) are not zero, then
equations (2) are equations of parabolas.



EQUATION OF THE SECOND DEGREE. 177

Case 2. Since the first form of (3) is independent of y, it
represents two lines parallel to each other and to the Y-axis.
The second form of (3) represents, similarly, two lines which
are parallel to the X-axis.

Case 3. If €2 < 4 f¢ the first form of (3) represents #wo
imaginary lines.

If d'* < 4 fa/, the second form of (3) represents two imagi-
nary lines.

Case 4. If ¢? =4/, the first form of (3) represents one
straight line parallel to the Y-axis.

If d* = 4 fa/, the second form of (3) represents one straight
line parallel to the X-axis.

Hence, when b* = 4 ac, every equation of the second degree
between two variables represents a parabola, two parallel straight
lines, two tmaginary lines, or one straight line.

145. 0> > 4 ac.

Under this supposition, Art. 138, Cor. 2, since o' and
¢ must have opposite signs, neither o’ nor ¢ can be zero;
hence forms (2) and (3) of Art. 142 are excluded from con-
sideration under this head. The first form becomes either

dyt — et + 7 =0
7.2 ") " o (1)
or —ady -t 4 =0

We have here three cases.
Case 1. If #” has a different sign from that of ¢/, equations
(1) are equations of hyperbolas whose semi-axes are

a=\/£andb=\/£.
c a’

If £ has a different sign from that of ¢, equations (1) are
still equations of hyperbolas.

Casg 2. If & = ¢/, equations (1) are equations of equilat-
eral hyperbolas.

Case 3. If f” =0, equations (1) are equations of two inter-
secting straight lines.
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Hence, when 0* > 4 ac, every equation of the second degree
between two variables represents an hyperbola, an equilateral
hyperbola, or two intersecting straight lines.

146. Summary. The preceding discussion has elicited the
following facts :

1. That the general equation of the second degree between
two variables represents, under every conceivable value of the
constants which enter into it, an ellipse, a parabola, an hyper-
bola, or one of their limiting cases.

2. When b? < 4ac it represents an ellipse, or a limiting case.
3. When b* = 4dac it represents a parabola, or a lmiting
case.

4. When b* > 4ac it represents an hyperbola, or a limiting
case.

EXAMPLES.

1. Given the equation 3y* 4+ 2xy + 32> — 8y —8x = 0;
to classify the locus, transform and construct the equation.

(2) To classify. Write the general equation and just below
it the given equation, thus:

ay? 4 by + ca® +dy + ex + f=0
34 2ay +3a2 =8y —8x=0... ()

Substituting the co-efficients in the class characteristic
* — 4 ac, we have 1?2 —4dac=4—36= — 32;
“hence 0?2 <4 ac.
and the locus belongs to the ellipse class, Art. 146.

() To refer the locus to axes such that the term containing
xy shall disappear.

From Art. 138, (5), we have

b

tan 26 = ;
cC—a

9

20=-—"—= oo,
hence tan 26 33 —+ oo,

20=90°. 0 =45 ... (2
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i.e., the new X-axis makes an angle of 4 45° with the old
Taking now (10), (11), (3), Art. 138, and substitut-

X-axis.
ing values, we have

pie+a—Vie—a)}+04=2
Yota+ Vie—aP 4 =4

d 0s9—651110—5\/.,(d——e)—0

dsing +ecos@=1}~/2(d+e) =—8V2

d =

Substituting these values in (6), Art. 138, we have (f

being zero),
292+ 402 —-8V2.2=0...(@3)

(¢) To refer the locus to its centre and awes
Substituting the values found above in (4), Art. 139, we

d’
h' =—-——-=0_
ave n Y%
me__ 2 _8Y2 _ 15
2¢ 8

Hence " = a'n®> + ¢m* + d'n + e'm + f= — 8, Art. 139

()R

Substituting this value of f” together with the values of «
and ¢ found above in (5), Art. 139, we have
24 dat 8 =0,

X

o + e 1...4

The semi-axes of the ellipse are

1o

S
<

or

for the reduced equation.
a=+2andb =2
(d) To construct.
Draw the axis OX/, making an angle of 45° with the old
The equation of the

X-axis. See (). Draw OY’ Lto OX'
curve when referred to these axesisgivenin (3). Constructing



180 PLANE ANALYTIC GEOMETRY.

the point O’ (v/2, 0) we have the centre of the ellipse. See
(¢). Draw O'Y" i to OX"at O'. The equation of the curve
when referred to O'Y"”, O’X’ as axes is given in (4).

Y’\’ Y
© X
A
i ¢

4

O
b}
0O 4 b
A
FiG. 55.

Having the semi-axes, V2 and 2, we can construct the
ellipse by either of the methods given in Art. 78.

DISCUSSION.
If y =0 in (1), we have for the X-intercepts O, OD,
m =0, 6= 8 .
3
If « = 0 in (1), we have for the Y-intercepts O, OC,
8
=0, y=_.
¥ y=g3

If 2 =01in (3), we have y = L 0; i.e, the ellipse is tangent

to the Y’-axis.
If ¥ =0 in (3), we have for the X'intercepts 0, OB,

r=0,2z=2V 2.
If z = 0 in (4), we have for the Y"-intercepts O’A, O'A’
y=£2
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If y =0 in (4), we have for the X’-intercepts 0’B, 0’0,
i =rilt VR
2. Given the equation y? — 2ay 4 2? — 2y — 1 — 0, class-
ify the locus, transform and construct the equation.

(a) To classify.
ay* +bxy + ca® + dy + ex + f =0

Y—=2ay+a2—2y—1=0... ()
hence ' —dac=4—4 =0,
b= 4dac;

hence the locus belongs to the parabola class, Art. 146.

(6) To refer the locus to axes such that the term containing
zy shall disappear.

From Art. 138, (5), we have

tan 26 = 2 g
c—a
hence, substituting
2
20=— -~ _ __ _ .
tan 26 1 =— %

0= —45° ... (2
Substituting the values of the coefficients in (10), (11), (3)
of Art. 138, we have
a’=%§c+a—\/(c-—a)2+62§=0.
d=1jcta+4 V(e —a)l+ 2§ =2
d =dcosf —esinh=—2(}vV2) = — 2.
¢ =dsinf4ecosf=—2(—31vV2) =4 /3
Substituting these values in (1), Art. 140 (since o’ = 0),
we have 20— V2 y +V2z—1=0... (3
(¢e) To refer the parabola to a tangent at the vertex and the
axis.
Substituting the values of the constants in («), Art. 140,

we have e 2
m_~ﬁ_ ~ — .35 nearly.
/2 ’ 5
n=2 Vel = = = — .90 nearly.

4d'¢ 4/2
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Substituting the values of ' and ¢/ in (3), Art. 140 (since &'
" is not zero). we have
ac2=1}\/§.y RN )]
for the reduced equation.
(d) To construct.

Y

X//
FiG. 56.

Draw OX’ making an angle of —45° with the X-axis;
draw OY’ L to OX'. See (b). The equation of the parabola
when referred to these axes is given in (3).

Constructing the point (— .35, —.90), we have the vertex
of the parabola O'. See (¢). Draw O'X" and O'Y” parallel to
the axes OX’, OY' respectively. The equation of the parab-
ola referred to these axes is given in (4). The curve can now
be constructed by either of the methods given in Art. 54.
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DISCUSSION.
If @ = 01in (1), we have for the Y-intercepts OC, OC',
y=24 y=—.4
If y =01n (1), we have for the Y-intercept OD, OIY,
ape= Jb 1l 0
If = 0in (3), we have for the Y'intercept OK,
1 "
= —— = — .707.
y 75 ‘
If y = 0 in (3), we have for the X"intercepts OL, OI/,
» o — V24 V10 _ —V2_~10
N 4 ’ 4 ’

Ifr=0in(4),y=0;if y=0in (4), 2z = L 0.
3. Given the equation 3> — 2% —2y + 62 — 3 =0, classify
the locus, transform and construet the equation.
(a) To classify. .
ay® + bxy 4 cx® + dy + ex + f= 0.
Y¥'—22°—2y4+62x—3=0...()
P —dac=38 .. 1*> 4ac;
hence, the locus belongs to the hyperbola class, Art. 146.
() To ascertain the direction of the rectangular axes (xy
being wanting).
b

cC—a

0
—5=0

tan 20 =

o0 =0;
Le., the new X-axis is parallel to the old X-axis.

(¢) To refer the hyperbola to its centre and axes, we have,
Art. 139, (4),

’ /
e
n—___’f)n—._

2a 2¢
hence n=1m= g
Substituting in the value of f”, Art. 139, (3), we have
b =a’n2+c’m2+d’n+e’m+f=1—3—2 + 9 — 3;
1

hence "=,
s 2
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This value, together with the values of «’ and ¢’ in (5), Art.
139, gives 2yt —dxt=—1 ... ()
for the required equation.

(d) To construct.

Y Yll
G
Al o \A N
o D \D X
CI
FiG. 57.

Construct the point O’ (3, 1), and through it draw O’X” || to
0X, and O'Y” | to OY. The equation of the hyperbola
referred to these axes is given in (3). We see from this equa-

tion that the semi-transverse axis is % Laying off this dis-

~

tance to the right and then to the left of O’, we locate the
vertices of the curve A, A'.

DISCUSSION.
If 2 = 0in (1), we have for the Y-intercepts 0¢, 0C/,
y=38y=—1
If y =0 in (1), we have for the X-intercepts OD, OD’,

_34V3 __3—V3
5 2
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If 2 =0 in (3), we have

y=4V-}
If y = 0 in (3), we have for the X-intercepts 0’A, O'A’,
_, 1
x =1 7

From this data the student may readily determine the
eccentricity, the parameter, and the focal distances of the
hyperbola. ,

4. Given the equation y? +a* —4y + 42 —1 =0, class-
ify the locus, transforin and construct the equation.

(a) 0* <4 ac ... the locus belongs to the ellipse class.

(6) 6 =0..new X-axis is || to old X-axis.

(© (myn)y=(—22and f”" =—9
hence 224+ P =9
is the transformed equation of the locus, which from the form
of the equation is evidently a circle.

(d) Locate the point (— 2, 2). With this point as a centre,
and with 3 as a radius, describe a circle; it will be the re-
quired locus.
5. ¥ — 2wy 42> —2=0.
(@) 6* =4 ac .. parabola class.
(b) 6 = — 45° .- new X-axis inclined at an angle of — 45°
to the old X-axis. We have also
a=0d=2d=0¢=0
222 —2=0;
ie,z=lande=—1...(Q)

are the equations of the locus when referred to the new axes.

(e) The construction gives the lines OX’, OY’ as the new
axes of reference.

Equations (1) are the equations of the two lines CM, C'M’
drawn || to the Y’-axis and at a unit’s distance from it.



186 PLANE ANALYTIC GEOMETRY.

C
Yl
]
CI
O
X
M
7 ' 4
M X
F1a. 58.

We may construct the locus of the given equation without
going through the various steps required by the general
method. Factoring the given equation, we have

G —2+V2) (y—x— V3 =0;

hence y=2—V2andy =2 4 /2
are the equations of the locus. Constructing these lines
(0OY, OX being the axes of reference), we get the two
parallel lines CM, (/M.

Classify, transform, and construct each of the following
equations :

6y —2ay+att2y—2241=0,

=z —1.
7. ¥4+ 2xy 422 —1=0.
:l/:—-x_—_]:l.
8. 5y +2xy 45— 1226 —12y = 0.
T i
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9 2y 422 —4y—4x+1=0.

10.

11.

12.

13.

14.

15.

16.

17.
18.
19.
20.
21
22.

x® 4yt = 3.

@, 0).

Pt —2z+1=0.

y+att+2c4+2=0.

Imaginary ellipse.
y?— 2wy 4+ a* — 8x + 16 = 0.

Parabola.
y¥—2xy+xt—y+2x—1=0.
Parabola.
day —2x+4+2=0.
Hyperbola.

y¥—22+2y+1=0.
Two intersecting lines.

y—xt4+2y+4+2x—-4=0.
Equilateral hyperbola.

Y—2xy+a2+2y+1=0.
yr4+4daey +42°—4=0.

Yy —2xy +22*—2y+22=0.
v—4dxy +422=0.

y—2xy —2*+2=0.

yr—axt=0.
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CHAPTER X.

HIGHER PLANE CURVES.

147. Locr lying in a single plain and represented by equa-
tions other than those of the first and second degrees are
called Hicaer Praxe Curvis. We shall confine our atten-
tion in this chapter to the consideration of a few of those
curves which have become celebrated by reason of the labor
expended upon them by the ancient mathematicians, or which
have become important by reason of their practical value in
the arts and sciences.

EQUATIONS OF THE THIRD DEGREE.
148. THE SEMI-cUBIC PARABOLA.

This curve is the locus generated by the intersection of the
ordinate TT" of the common parabola with the perpendicular
OP let fall from its vertex upon the tangent drawn at T’ as
the point of tangency moves around the curve.

1. To deduce the rectangular equation.
Let T/ (x”, y”) be the point of tangency, and let P (z, y)
be a point of the curve.
Let %® = 4 px be the equation of the common parabola.
Since the equation of the tangent line T'M to the parabola
is Art. 57, (6),
yy" =2p(x+ "),

the equation of the perpendicular (OM) let fall from the
vertex is

\

y=—§/—m...(1) }\‘)\/\’X{&

\\)f ¥y



N
/O 0

HIGHER PLANE CURVES. 189

F1c. 59.
Sinee TT’ is parallel to OY, we have for its equation
z=2"...(2
Combining (1) and (2), we have

1

y=— ;Z;/ a7
i
But ¥ = Vdpx';
=
hence Y= — Vi pa x.

9
Squaring and dropping accents, we have
=" 3
' p
for the equation of the semi-cubic parabola.
This curve is remarkable as being the first curve which was
rectified, that is, the length of a portion of it was shown to



190 PLANE ANALYTIC GEOMETRY.

be equal to a certain number of rectilinear units. It derives
its name from the fact that its equation (3) may be written

3 1
x? =p?y.
2. To deduce the polar equation.
Making @ = rcos§ and y = »siné in (3), we have, after
reduction,
r=ptan?f@sechd ... (4

for the polar equation of the curve.
Scuorn. Solving (3) with respect to y, we have

Yy = /wE .
y ==L\ »
An inspection of this value shows
(a) That the curve is symmetrical with respect to the
X-axis;
() That the curve extends infinitely from the Y-axis in
the direction of the positive abscissas.

149. 7o duplicate the cube by the aid of the parabola.

Let a be the edge of the given cube. We wish to con-
struct the edge of a cube such that the cube constructed on it
shall be double the volume of the given cube; i.e., that the
condition «® = 2 «? shall be satisfied.

/N

>
=<

Fi1G. 60.
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Construct the parabola whose equation is
y¥*=2ax ... (1)

Let MPO be the curve. Construct also the parabola whose

equation is
22=ay ... (2)

Let NPO be this curve.

Then OA (= @), the abscissa of their point of intersection
is the required edge. For eliminating y between (1) and (2),
we have

23 =2 a’

This problem attained to great celebrity among the ancient
geometricians. We shall point out as we proceed one of the
methods employed by them in solving it.

150. Tur Cissoip.
The cissoid is the locus generated by the intersection (P) of
the chord (OM') of the circle (OMM'T) with the ordinate

le\
i\
Y S
Y },/ \
\
A
// |
M "R/
/// {
/ |
i) |
V4 P |
///
ol c y
N L o~

Fi1G. 61.
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MN (equal to the ordinate M'N’ let fall from the point
M on the diameter through O) as the chord revolves about
the origin O.

It may also be defined as the locus generated by the inter-
section of a tangent to the parabola y*= — 8 ax with the
perpendicular let fall on it from the origin as the point of
tangency moves around the curve.

1. To deduce the rectangular equation.

First Method. — Let OT = 2 a, andlet P (, y) be any point
of the curve. From the method of generation in this case
MN = M'N’ ... ON = N’T. From the similar triangles ONP,
ON'M’, we have

NP:ON:: M'N': ON.
But NP =4, ON =2, M'N’ = VON' . NT=V(2a—2)x,
ON' =2a¢ —x;

sy V@a—a)x:i2a —a.
o

Al &
20 —x

Hence Y

is the required equation.
Second Method. — The equation of the tangent line to the
parabola y* = — 8 ax is Art. 65, (2)

y=—sx+gg.
s

The equation of a line passing through the origin and per-
pendicular to this line is
@

y=-"
S

Combining these equations so as to eliminate s, we have
3
%
V=5
20 —2x
for the equation of the locus.
This curve was invented by Diocles, a Greek mathematician

of the second century, B.c., and called by him the cissoid from
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a Greek word meaning “ivy.” 1t was employed by him in
solving the celebrated problem of inserting two mean propor-
tionals between given extremes, of which the duplication of
the cube is a particular case.

2. To deduce the polar equation.

From the figure (OP, PON) = (», 6)
we have also » = OP = M'K = OK — OM".

But OK =2 a sec § and OM' = 2 « cos 6; hence

r = 2a (sec § — cos 0),

or r=2atan 6 sin 6

is the polar equation of the curve.
Scror. Solving (1) with respect to y, we have

1.3
: y=4=4 Y

An inspection of this value shows

(@) That the cissoid is symmetrical with respect to the
X-axis.

(6) That x = 0 and @ = 2 ¢ are the equations of its limits.

(¢) That ® =2« is the equation of a rectilinear asymp-
tote (S8).

151. 7o duplicate the cube by the aid of the cissoid.

Let OL, Fig. 61, be the edge of the cube which we wish to
duplicate. Construct the arc BO of the cissoid, CO =a
being the radius of the base cirele. TLay off CD = 2CA =
2aand draw DT intersecting the cissoid in Bj; draw BO
and at L erect the perpendicular LR intersecting BO in R.
Then LR is the edge of the required cube; for the equation

of the cissoid gives
3

2__ _ @ :
Y 20 —x’
. OH® . r
hence HB = AT (since HB =y, OH =«, and HT =
2a —x).

The similar triangles CDT and HBT give
CIDECIEFHIBENEIIT
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But CD =2 CT by construction; hence HB =2 HT
.. HT = H_B .

This value of HT in the value of HB? above gives
HEB? — 2}?}?3 ; hence HB® = 2 OH?,
The triangles OHB and OLR are similar; hence
HB:OH: LR:0L
.. HB®: OH®:: LR%:: OL3
But HB® = 2 OHS3, hence LR®= 2 OL®; whence the con-
struction.

152. Tue WitcH.

Fi1c. 62.
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The witch is the locus of a point P on the produced ordi-
nate DP of a circle, so that the produced ordinate DP is to
the diameter of the circle OA as the ordinate DM is to the
outer segment DA of the diameter.

It may also be defined as the locus of a point P on the
linear sine DM of an angle at a distance from its foot D equal
to twice the linear tangent of one-half the angle.

1. To deduce the rectangular equation.

First Method. — From the mode of generation, we have
DP:0OA:DM:DA

But DP =y, OA =24, DM = VOD.DA = V2 (2a — x),

DA=2a —x;
hence v:2a:V@2a—2)x:2a — .
e da% 1
Y= .

is the required equation.
Second Method. — Let MCO = #; then by definition
J—2atan_=2 \/M‘
a (1 + cos )
Buta (1 —cos§) =a —acos§ = OC — DC = OD = «, and
a(l4cos ) =a -+ acos 0—00+DC=OD’=2a—m;
hence y=2a \/

5
20 —x

. 4daxx
Z2a —x

or, squaring  y

This curve was invented by Donna Maria Agnesi, an Italian
mathematician of the eighteenth century.
ScHOL. Solving (1) with respect to 3, we have

— o ‘/ r
y==xZa 20 —x

Hence (a) the witeh is symmetrical with respect to the
X-axis.

(6) * =0and x = 2« are the equations of its limits.

(¢) @ = 2a is the equation of the rectilinear asymptote SS'.
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EQUATIONS OF THE FOURTH DEGREE.
153. Tue CoNCHOID.

The conchoid is the locus generated by the intersection of
a circle with a secant line passing through its centre and a
fixed point A as the centre of the circle moves along a fixed
line OX.

As the intersection of the circle and secant will give two
points P, P, one above and the other below the fixed line, it
is evident that during the motion of the circle these points
will generate a curve with two branches. The upper branch
MBM’ is called the Superior Braxcu; the lower, the Ix-
FERIOR BrAaxcH. The radius of the moving circle O'P
(= OB) is called the MopuLus. The fixed line OX is called
the DireEcTRIX ; the point A, the PoLE.

e

FiG. 63.

1. To deduce the rectangular equation.
Let P (x, y), the intersection of the circle PP'P and the
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secant AO'P, be any point of the curve. Let O'P = OB =,
and let OA = a. :
The equation of the circle whose centre is at 0’ (z/, 0) is
(x — )% 4 % = b2
The equation of the line AO'P is
y=sxt—a ... (1)
Making y = 0 in (1), we have
x=2
S
for the distance 00
But 00’ = a’; hence

@—éf+¢=m.”(@

is the equation of the circle. If we now combine (1) and (2)
so as to eliminate s, the resulting equation will express the
relationship between the co-ordinates of the locus generated
by the intersection of the loci they represent. Substituting
the value of s drawn from (1) in (2), we have

2
_ aw 2 _ 2.
<-"U (L+]/>+y b

Ry =0 —y) (et y)?. .. 3)
is the required equation.
We might have deduced this equation in the following very
simple way: Draw AT || to OX, and PT | to OY. Since the
triangles ATP and O’SP are similar, we have

PS:80": PT: TA;

ie., vV —ytua + .
Hence 2yt = (1* — ) (a + y)
This curve was-invented by Nicomedes, a Greek mathema-

tician who flourished in the second century of our era.

It was employed by him in solving the problems of the
duplication of a cube and the trisection of an angle.
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2. To deduce the polar equation.

From the figure we have (AY being the initial line, and A
the pole)

(AP, PAB) = (», 6)

But AP = A0 L OP;
hence r=asect L b
is the polar equation of the curve.

Scuor. Solving (3) with respect to x, we have

p= VR

An inspection of this value shows

(a) That the conchoid is symmetrical with respect to the
Y-axis.

(b)) That y = b and y = — b are the equations of its limits.

(¢) That y = 0 gives = L o, .~ the X-axis is an asymp-
tote.

(d) 1t a =0, then @ = L V#* — y*; i.e., the conchoid be-
comes a circle.

(¢) 1f b > a, the inferior branch has a loop as in the figure.

(f) 1f b = a, the points A’ and A coincide and the loop
disappears.

(9) If b < a, the inferior branch is similar in form to the
superior branch, and the point A (o, — a) is isolated; ie.,
though entirely separated from the curve, its co-ordinates still
satisfy the equation.

154. 7o trisect an angle by the aid of the conchoid.

Let PCX be the angle which we wish to trisect. From C
with any radius as CD describe the semi-circle DAH. From
the point A draw AB | to CX and make OB = CD. ‘With
A as a pole and OB as a modulus construct a conchoid on
CX as a directrix. Join H, the intersection of the inferior
branch and the circle, with A and produce it to meet the
directrix in K then

CKA = 3 PCX.

«
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Fic. 61.

For join H and C; then from the nature of the conchoid
HK = HC = OB.

From the figure PCX = CAK 4 CKA;
but CAK = CHA =2CKA;
hence PCX = 2 CKA + CKA.

Therefore CKA =} PCX.

‘We might have used the superior branch for the same pur-
pose.

155. Tue LIMAC’ON.
Y

F1G. 65.
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The limagon is the locus generated by the intersection of
two lines OP, CP which are so related that during their revo-
lution about the points O and C the angle PCX is always
equal to 3 POX.

1. 7o deduce the polar equation.

Let O be the pole, and OX the initial line. Let P be any
point of the curve, and let OC = «; then

(0P, POX) = (, 6).
From the triangle POC, we have
OP : OC :: sin OCP : sin OPC;

Moy riazsind A:sin } 6.
a sin § 6
Henee P = ——i .
sin } 6

From Trigonometry
sin3f =3sin40 —4sin®L6=(3—4sin’46)sing0;
hence r=a (3 —4sin’} 6),

=a(l+42cos6) ... (1)
is the polar equation of the limagon.
2. To deduce the rectangular equation.

From Art. 35, we have

—— x
r = Va®+ 9% cos b =

Va4
for the equations of transformation from polar to rectangular
co-ordinates. Substituting these values in (1), we have

Vet —a =" -L’a_m;_;
Va? 4y
or @4y —2ar)=a’@+y°) ... (2

for the required equation.
Scror. 1. From the triangle ODA, we have
OD = OA cos 6 = 2 a cos 0.
From (1) OP =a + 2acosb;
hence OP —OD =DP =a;
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ie., the intercept between the circle ODA and the limagon
of the secant through O is constant and equal to the radius of
the circle.
ScHoL. 2. If 6 =0,r=3a = 0B.
If 6 =90° » =a = OM.
If 6 =180°% r= — a = OC
If 6 = 2700, r=a=0M

156. T'ne LEMNISCATA.

The lemniscata is the locus generated by the intersection of
a tangent line to the equilateral hyperbola with a perpen-
dicular let fall on it from the origin as the point of tangency
moves around the curve.

U
Y /
/
7/
/7
4
/
/,
Y.
T
i
i
/
Y/
o N
/7 7
N[ _F A
7
\\\\ I/
\\\ /I
Sl p
ol
7 P\\\
Fi1G. 66.

1. o deduce the rectangular equation.
Sinee T (x”, y”) is a point of the equilateral hyperbola, we
have, Art. 103, Cor 1,
P —yt=a. .. Q)
The equation of the tangent line TT is, Art. 112,
zx” —yy"' =a® ... (2)
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4
Since the slope of this line is ;—jl—,, the equation of the per-
pendicular OP is
y//
y=—"5%. - (3)

Treating (2) and (3) as simultaneous and solving for x" and
y", we find

2 2
e
Substituting these values in (1), we have
atx? — aty® _ s,
@+
or (@ + y)? = a® (&* — v ... @)

for the required equation.

This curve was invented by James Bernouilli. It is quad-
rable, its area being equal to the square constructed on the
semi-transverse axis OA.

2. To deduce the polar equation.

We have Art. 34, (3), for the equations of transformation

x =7 cos 6, y = rsin 6.
These values in (4) give
§12 (cos? 0 + sin® 0)§2= a* §7* (cos* 6 — sin? §)};
therefore M =a’r*cos 26,
or P2 =a%cos 26 ... (D)
is the required equation.

ScuoL. If 6 =0,c08 20 =cos0=1..r=La

If 6 < 45° cos 20 < cos 90° .- has two equal values with
opposite signs.

If 6 — 45° cos 260 = cos 90° =0 .~. r=_0.

If § > 45° and <135° r is imaginary.

1f 6 — 135°, cos 2 § — cos 270° =0 .~ r=0.

If 6 = 180°, cos 2 6 — cos 360° =1 ... 7 = L a.

An examination of these values of 7 shows that the curve
occupies the opposite angles formed by the asymptotes of the
hyperbola.

The curve is symmetrical with respeet to both axes.
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TRANSCENDENTAL EQUATIONS.

157. Tue Curve or SINEs.
This curve takes its name from its equation
Yy = sin x,
and may be defined as a curve whose ordinates are the sines
of the corresponding abscissas, the latter being considered as
rectified arcs of a cirele.
Y

FiG. 67.

To construct the curve. Give values to  which differ from
each other by 30°, and find from a “TipLg OF NATURAL
SixEs ” the values of the corresponding ordinates.

Tabulating the result, we have,

Value of « Corresponding Value of y
0 & 0
30° =T — 52 “ .
6 50
60° = 26” — 1.04 ‘ 87
07 S SFt ) « 1.00

120° =27 — 208 « . .87
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Value of Corresponding Value of Y
150° = i’(” — 2.60 « 50
)
180° = 7 = 3.14 « 0
210° = LGI = 3.66 “ — .50
240° = 5’6_" — 418 « — 8T
270° — %E = 470 « —1.00
300° = %l’ — 5.22 % _ 87
330° — 1_1(_” — 5.75 « — 50
)
360° = 27 = 6.28 “ - 0

Constructing these points and tracing a smooth curve
through them, we have the required locus. As x may have
any value from 0 to J- o and yet satisfy the equation of the
curve, it follows that the curve itself extends infinitely in
the direction of both the positive and negative abscissas.

158. Tue CurveE oF TANGENTS.

~

FiG. 63.
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This curve also takes its name from its equation.
y =tan a.

To construct the curve. Give x values differing from each
other by 30° and find from a Table of Natural Tangents the
corresponding values of y. Tabulating, we have,

Value of « Corresponding Value of y
0 « 0
300 = T — 52 « 57
6
27
60° = 27 — 104 « , 1.73
90° = 57 — 1.56 « o
6
120° =47 — 208 « = i
150° — 56” — 2.60 « — 5T
180° = 7 = 3.14 « 0
210° = '™ _ 3.66 « 57
6
240° = ‘%" — 418 ‘ 1.73
270° = 961’ — 470 « -
300° = NT” — 5.92 « — 178
330° — “T” - ks « — 57
360° = 27 = 6.28 2 0

Constructing these points and tracing a smooth curve
through them, we have the locus of the equation.

This curve, together with that of the preceding article,
belong to the class of Repeating Curves, so called because
they repeat themselves infinitely along the X-axis.
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159. Tue Cycroip.

This curve is the locus generated by a point on the circum-
ference of a circle as the circle rolls along a straight line.

The line OM is called the Bask of the cycloid ; the

Fig. 69.

point P, the GexErATING PoIint; the circle BPL, the Gex-
ERATING CrrcLe; the line HB', perpendicular to OM at its
middle point, the Ax1s. The points O and M are the VERTICES
of the cycloid.

1. 7o deduce the rectangular equation, the origin being
taken at the left-hand vertex of the curve.

Let P .be any point on the curve, and the angle through
which the cirele has rolled, PCB — 4. Let LB, the diameter
of the circle, = 2 a.

Then OA = OB — AB and AP = CB — CK.

ButOA — 2,08 = 0.6, AB — PK —a sin §,AP — ,CB—q,
CK = a cos #; hence, substituting, we have

=af —asinb
T =aqa asm}_“a)

y=a — acosf

———
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Eliminating 6 between these equations, we have
=

Y
a

x = acos™! — V2ay — y* = a vers

—VZay—y. .. (D
for the required equation.
Scuor. An inspection of (2) shows
(@) that negative values of y render » imaginary.

(») When y =0, z = a vers™0 =0; butavers™0 =2ra,
or 4 a, or 67 a, or etc.; hence there are an infinite number
of points such as O and M.

() When y =2a, z=avers?2=ma=O0B; but

avers?2=3ma,or dra, or Twa,or ete.; hence, there are
an infinite number of points such as H.

(d) y = 0and y = 2 a are equations of the limits.

(¢) For every-value of y between the limits 0 and 2 « there

are an infinite number of values for «.

2. To deduce the rectangular equation, the origin being at the

highest point H.

We have for the equations of transformation
2=0A=0B —PK' =7wa+2a
y=AP=BH -~HK' =2a + ¥

These values in (1) above give

; .
x/_a(ﬁ—vr)—asm(} SEG
Y = —a —acos 0 ]
But ¢, the angle through which the circle has rolled from
H, =0 — =; hence
{7 4 ° %
m,_aO +cfs1n0 ] L@
Y =a(ost —1) |

Hence w’=a,vers—‘—a—y+\/~2ag/—y2...(5)

The invention of this curve is usually attributed to Galileo.
With the exception of the conic sections no known curve
possesses so many useful and beautiful properties. The fol-
lowing are some of the more important :
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1. Area OPHDB'O = area HDB' = = a2

2. Area of cycloid OHMO = 3 HDB' = 3 7 a2

3. Perimeter OPHM = 4 HIB' = 8 a.

4. If two bodies start from any two points of the curve
(the curve being inverted and friction neglected), they will
reach the lowest point H at the same time.

5. A body rolling down this curve will reach the lowest
point H in a shorter time thaw if it were to pursue any other
path whatever.

SPIRALS.

160. The SpiraL is a transcendental curve generated by a
point revolving about some fixed point, and receding from it
in obedience to some fixed law.

The portion of the locus generated during one revolution of
the point is called a SpIrE.

The circle whose radius is equal to the radius-vector of the
generating point at the end of the first revolution is called
the Measuring Circii of the spiral.

161. THE SPIRAL OF ARCHIMEDES.

>

Fig. 20.
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This spiral is the locus generated by a point so moving
that the ratio of its radius-vector to its vectorial angle is
always constant.

From the definition, we have

e

0 ’ .
hence P60 0% @)
is the equation of the spiral.

To construct the spiral.

Assuming values for § and finding from (1) the correspond-
ing value for », we have

Values of § Corresponding Values of r
0 % 0
D =& K K
45° = 1 1 c
90° = 27 « ang
4 4
135° =37 « 8=,
4 4
180° == & Te
2207 =10 « b,
4
270° = 87 « ba;
4 4
Balhmy « ' Tr,
4 4
360° =2 ¢ & - 27¢
w ¢ ®

Constructing these points and tracing a smooth curve
through them, we have a portion of the spiral.

Since 6 = 0 gives » — 0, the spiral passes through the pole.

Since 6 = o gives » = oo, the spiral makes an infinite
number of revolutions about the pole.

Since § = 27 gives r =27 ¢, OA (= 2= ¢) is the radius of
the measuring circle.
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162. Tae HYPERBOLIC SPIRAL.

This curve is the locus generated by a point so moving that
the product of its radius-vector and vectorial angle is always
constant.

From the definition we have

rf =c,

¢
- _ ... (1
or r g @

for the equation of the spiral.

Fic. 71.

To construct the spiral.
Giving values to 6, finding the corresponding values of r,

we have
Values of 6 Corresponding Values of »
0 “ %
w « 4_6
4 P
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Values of 6 Corresponding Values of »
2 2e¢
90° = o ="
a” T
g e « g¢
4 3w
180° = = & ¢
™
5 5 4e¢
225° == £ Sl
5 s Eo
L 6 de
270° = = & i
" 6
7 de¢
S0 = & “
5 " —
360° = 2 & —q
" Ta
® & 0

Construeting the points we readily find the locus to be a
curve such as we have represented in the figure.

Since § =0 gives r = oo there is no point of the spiral
corresponding to a zero-vectorial angle.

Since § = oo gives r = 0, the spiral makes an infinite number
of revolutions about the pole before reaching it.

Since § = 2« gives

¢

27’
¢ is the circumference of the measuring ecirele.

ScrHoL. Let P be any point on the spiral; then

(0P, POA) = (r, 6).

With O as a centre and OP as a radius describe the arc PA.

By circular measure, Arc PA =6, and from (1) ¢ =0;
hence Arec PA =¢;

ie., the arc of any circle between the initial line and the
spiral is equal to the circumference of the measuring circle.

=
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163. THE PARABOLIC SPIRAL.

This spiral is the locus generated by a point so moving
that the ratio of the square of its radius-vector to its vectorial

angle is always constant.
From the definition we have

o
g9
or, rt=cf ... ()

for the equation of the spiral.

Q
bS
Fi16. 72.
To construct the spiral.
Values of 6 Corresponding Values of »
0 @ 0
=T « A
90° = 27 « T
4
135° = %Z £ +V3er
180° = 6 Ve
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Values of 6 Corresponding Values of »
o_5b S
225° = Tﬂ- “ }Voer
N N
270° = T‘” “ +V6en
SO ‘ }VTow
360° = 2 e “ \/2 cm
® ¢ ®

Constructing these points and tracing a smooth curve
through them we have the required locus.

Since § = 0 gives r = 0, the spiral passes through the pole.

Since § = oo gives 7 = oo, the spiral has an infinite num-
ber of spires.

164. Tur Lituus or TRUMPET.

This curve has for its equation

rf=c,

or r=\/§...(1)

>

1. 73.
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If 6=0,r= o; if § = o, »=0. This curve has the
initial line as an asymptote to its infinite branch.

165. The Logarithmic Spiral.

This spiral is the locus generated by a point so moving that
the ratio of its vectorial angle to the logarithm of its radius
vector is equal to unity. Hence

0

@'r—l;i'e" 0 = log r;

or passing to equivalent numbers (a being the base), we have
=af...(1)

for the equation of the spiral.

>

To construct the spiral. Tt « =2, then
r =20

is the particular spiral we wish to construct.
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Values of 6 Corresponding Values of »
0 “ 1

1=57.°3 & 2

2 = 114.°6 & 4

3=171.°9 @ 8

4 = 229.°2 « 16

» “ ®

— 1= —57.°3 @ 5

— 2= —114.% % 25

— 3= —171."9 & 125

— 4 = — 229.°2 & .062

— 3 O

A smooth curve traced through these points will be the
required locus.

Since § = 0 gives » = 1 whatever be the assumed value of
a, it follows that all logarithmic spirals must intersect the
initial line at a unit’s distance from the pole.

Since 6§ = o gives r — w0, the spiral makes an infinite
number of revolutions without the circle whose radius OA = 1.

Since § = — o gives » =0, the spiral makes an infinite
number of revolutions within the eircle OA before reaching
its pole.

EXAMPLES.
1. Discuss and construct the cubical parabola
mS
=
2. What is the polar equation of the limagon, Fig, 65, the
pole being at C ?

Ans. r = 2 a cos % 6.

3. Let OF = OF' = a /], Fig. 66. Show that the lemnis-

cata is the locus generated by a point so moving that the
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product of its distances from the two fixed points F, F’ is
constant and
IpF/ 2
(7

Discuss and construct the loei of the following equations:

4, x=tan y. 12, a® = a® — awy.
5. y =cos . 13. ot 448 = 1.
6. y =secx. 14.x—2+y3=1.
a’ bt
7. x=siny. 15, r=asin 2 6.
8. y =cota. 6. »r= % |
sin246
9. y = cosec . 17. » = a sin®_,
9
10. y=52—1 18. r2sin?2 = 1,
X
. 14 siné
2,2 2 . Y
11 2%? 4 ay? = 1. 19. r 1 sing

20. Discuss and construct the locus of the equation
yt — 96 %y + 100 a®x? — x* = 0 or
y = 4+ V48 ;}:—xr/(;;c —6 @) (:;' + ();)—“(x _8 a) '(;;— 8 a).
21. Show that y = L @ are the equations of the rectilinear

asymptotes of the locus represented by the equation of
Ex. 20.




SOLID ANALYTIC GEOMETRY.

PART I1

CHAPTER L

CO-ORDINATES. — THE TRI-PLANAR SYSTEM.

166. The position of a point in space is determined when
we know its distance and direction from three planes which
intersect each other, these distances being measured on
lines drawn from the point parallel to the planes. ~Although
it is immaterial in principle what angle these planes make
with each other, yet, in practice, considerations of convenience
and simplicity have made it usual to take them at right
angles. They are so taken in what follows.

Let X0Z, ZOY, YOX be the Co-orpINATE PLANES inter-
secting each other at right angles. Let OX, OY, OZ be the
Co-orpINATE AxEes and O, their intersection, the Oricix of
Co-ORDINATES.

Let P be any point in the right triedral angle O-XYZ.
Then P is completely determined when we know the lengths
and directions of the three lines PA, PB, PC let fall from
this point on the planes.

As the planes form with each other eight right triedral
angles, there are evidently seven other points which satisfy
the condition of being at these distances from the co-ordi-
nate planes. The ambiguity is avoided here (as in the case

217
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of the point in a plane) by considering the directions in which
these lines are measured.

Assuming distances to the right of YOZ as positive, distances
to the left will be negative.

+Z
Py R
/i R/ A
il | ]
PYAR: B/ 4 P
P i 7
i A
P ; s ]
I i/ \
e N e g
1! o) 'y’ q
—X ol T +X
i N/ T
i ! | (¢
| !
1 '
! Y,
LA N | e
by i
¥ i
| I A ———
/l g
B 5 R
Fia. 75.

Assuming distances above XOY as positive, distances below
will be negative.

Assuming distances in front of XOZ as positive, distances to
the rear will be negative.

Calling o, o/, ' (= BP, AP, CP, respectively) the co-ordi-
nates of the point P in the FrrsT ANGLE, we have the follow-
ing for the co-ordinates of the corresponding points in the
other seven:

SecoND ANGLE, above XY plane, to left YZ plane, in front
of XZ plane, (— ', ¥, 2') Pa.

Trrrp ANGLE, above XY plane, to left YZ plane, in rear
of XZ plane, (— ', — ¥/, ) Ps.
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FourTH ANGLE, above XY plane, to right YZ plane, in
rear of XZ plane, (&', — ¥, #") P,

Firra ANGLE, below XY plane, to right YZ plane, in
front of XZ plane, (&, y', — #') Ps.

SixtH AxGLE, below XY plane, to left YZ plane, in front
of XZ plane, (— @, y', —2') Pe.

SEVENTH ANGLE, below XY plane, to left YZ plane, in
vear of XZ plane, (—a/, — 3, —2') P

Eicara ANGLE, below XY plane, to right YZ plane, in rear
of XZ plane, (&, —y, — ) P

EXAMPLES.

1. In what angles are the following points:
(1,2, —38), (—=1,3 —2),(—1, =2, —4), 3, —2,1).

2. State the exaet position with reference to the co-ordi-
nate axes (or planes) of the following points:

0,0,2), (—2,1,2),(,1,0), 3, —1,2), (2,0,3), (-1, 2
0), (0, —1,0), 3, 0, 1), 1, —2, 3), (0, 0, —2), (4, 1, 2),
", 1, —1), 1,1, —1).

3. In which of the angles are the X-co-ordinates positive ?
In which negative? In which of the angles are the Y-co-
ordinates positive ? In which are the Z-co-ordinates negative?

167. Projections. The projection of a point on a plane is
the foot of the perpendicular let fall from the point on the
plane. Thus A, B, and C, Fig. 75, are the projections of the
point P on the planes XZ, YZ, XY, respectively.

The projection of a line of definite length on a plane is the
line joining the projections of its extremities on that plane.
Thus OC, Fig. 75, is the projection of OP on the XY plane.

The projection of a line of definite length on another line
is that portion of the second line included between the feet of
the perpendiculars drawn from the extremities of the line of
definite length to that line.
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Thus OM, Fig. 75, is the projection of OP on the X-axis.

Norr. — The projections of points and lines as above de-
fined are orthogonal. Unless otherwise stated, all projections
will be so understood in what is to follow.

168. 7o find the length of a line joining two points in space.

yA

3”
PI

M

0 A D X
N B
Y c

FiG. 76.

Let P’ (&, o/, #) and P” (2, y”, 2") be the given points.

Let I (= P'’P”) be the required length. Draw P”C and
P'N | to OZ; NA and CD | to OY; NB | to OX. Join N
and C and draw P'M | to NC.

We observe from the figure that L is the hypothenuse of a
right angled triangle whose sides are P’M and P7M.

Hence

— =
L= \/P’\I FPG (O
but PM = NC = NB + BC = (0D — OA)2 + (DC — AN)? =
(" — ) + (" — y/)% and PM = (P"C — P'N)t =
& =)
L=N@ =+ @ = E =@
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Cor. If 2’ =0,y =0,z = 0, then the point P’ coincides
with the origin and

L=Va Ly 7,3

expresses the distance of a point from the origin.

169. Given the length and the directional angles of a line
Joining any point with the origin to find the co-ordinates of the
point.

The Directional angles of a line are the angles which the line
makes with the co-ordinate axes.

Let P (x, y, ), Fig. 75, be any point, then OP = I, will be
its distance from the origin. Let POX, POY, POZ — a, B3, 7,
respectively.

Since OM, ON, OR (=&, y, z) are the projections of OP
on X, Y, Z, respectively, we have

x = L cos «

y=DLeosB + ... Q)
z=Lcosy

for the required co-ordinates.
Cor. Squaring and adding equations (1), we have

@ 4y 4 22 = L2 (cos? « 4 cos? B + cos®y);
but x® 4+ 2 4 22 — 12 Art. 168 3);.
hence cos®u 4 cos? B 4 costy =1 . . . @)

That is, the sum of the squares of the directional cosines of a
space line is equal to unity.

ScHoL. The directional angles of any line, as P'1”, Fig. 76,
are the same as those which the line makes with three lines
drawn through P’ | to X, Y, Z. The projections of P’P” on
three such lines are «” — &/, 3/ — ¥, 2" — &, Art. 168 ; hence

" —a' = Lcos «
¥’ —y =TeosB ¢ ... (3)

2" —z =Lecosy
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EXAMPLES.

Required the length of the lines joining the following
points:

1L (1,2, 9),(—21,1), 4. (0,0,0), (2 0,1).

Ans. V14. Ans. /5.
2. (3, —2,0), (23 1. 5. (0,4,1), (—2, —1, —2).

Ans. /27 Ans.  /38.
3. (0,3,0), (3, —1,0). 6. (1, —2,3), (3,4, 6).

Ans. 5. Ans, T.

7. Find the distance of the point (2, 4, 3) from the origin ;
also the directional cosines of the line.

8. A line makes equal angles with the co-ordinate axes.
What ave its directional cosines ?

9. Two of the directional cosines of a line are V% and }
What is the value of the other ?

10. If (2, o/, #') and (2", y, 2”) are the co-ordinates of the

extremities of a line show that
g s e .7/, +Z/" P _|_'_',//
g Ty

¢
<

are the co-ordinates of its middle point.

THE POLAR SYSTEM.

170. The position of a space point is completely determined
when we know its distance and direction from some fixed point.
For a complete expression of the direction of the point it is
necessary that two angles should be given. The angles
usually taken are

1st, The angle which the line joining the point and the
fixed point makes with a plane passing through the fixed
point ; and 2d, The angle which the projection of the line join-
ing the points on that plane makes with a fixed line in the
plane. ’
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- X

AY

FiG. 77.

Let O be the fixed point and P the point whose position we
wish to determine. Join O and P, and let XOY be any plane
passing through O. Let OX be a given line of the plane
XOY. Draw PB L to XOY and pass the plane PBO through
PB and OP. The intersection OB of this plane with XOY
will be the projection of OP on XOY. The angles POB 9),
BOX (¢) and the distance OP (), when given completely de-
termine the position of P. For the angle ¢ determines the
plane POB, the angle § determines the line OP in that plane,
and the distance » determines the point P on that line.

This method of locating a point is called the PoLar Sys-
TeEM. The angles 6 and ¢ are called VEcTORIAL ANGLES, and
the distance » is called the Rapius Vecror of the point.
The point P, when written (, 6, @), is said to be expressed in
terms of its PoLAr Co-0RDINATES.

It is evident by giving all values from 0 to 360° to 8 and
¢, and all values from 0 to o« to » that every point in space
may be located.

171. Given the polar co-ordinates of a point to find its rec-
tangular co-ordinates.
Draw OY L to OX and in the plane BOX ; draw OZ L to
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OY and OX, and let OX, OY, OZ be the co-ordinate axes.

Draw BA | to OY ; then, Fig. 77,

(OA, AB, BP) = (2, y, #) are the rectangular co-ordinates of P.
From the triangle BOP, we have

#z = r sin 6.
From the triangle ABO, we have
x = OB cos ¢.

But OB = r cos § .. z = 7 cos 0 cos ¢.
From the same triangle we have

y = OB sin ¢,

y = 7 cos 6 sin g.

Henee x = rcos fcos ¢
y=rcosfsing > ... (1)
z = rsin

express the required relationship.

Cor. If P (x, 7, z) be the co-ordinates of any point on a
locus whose rectangular equation is given then equations (1)
are evidently the equations of transformation from a rectangu-
lar system to a polar system, the pole being coincident with the
origin.

Finding the values of r, § and ¢ from (1) in terms of x and
2, we have

r=a +./ + ”'
- 1
6 = tan Vo +J2 { . @
tp=tan‘f—t/ ‘
@ J

for the equations of transformation from a polar system to a
rectangular system, the origin and pole being cotncident.
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EXAMPLES.

Find the polar co-ordinates of the following points:

1 (2,1,1). 3. (10, 2, 8).
2. (V3,1,2V3). 4. (3, —1,4).
Find the rectangular co-ordinates of the following:
5. (5, 30°, 60°). 7. (6, u %) .
3 2
6. (8,7?;,%). 8 (4,271‘,311’).

Find the polar equations of the following surfaces, the pole
and origin being coincident:

9, 2?4y 42 =a’ Ans. r = a.
10. 2z +sx +ty —e=0.
Ans. r = ‘

sin @ 4 s cos 6 cos ¢ + t cos @ sin ¢ '
Find the directional cosines of the lines joining the follow-
ing pairs of points:
1. (1,2, —1), 3,2, 1). 13. (2, — 1, —5), (4, 5, 6).
12. 4, —1,2),(- 13, 2). 14. (0, 2, 0), (3,0, 1).
15. 1If (2, ¥/, #) and (2", y”, #”) be the co-ordinates of two
space points, show that the point

ma’ +naxl  my” +ny  mz 4+ ne
m+n ’ m -+ n ’ m -+ n

divides the line joining them into two parts which bear to
each other the ratio m : n.
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CHAPTER IL

THE PLANE.

172. 7o deduce the equation of the plane.

Let us assume as the basis of the operation the following
property :

If on a perpendicular to a plane two points equidistant from

the plane be taken, then every point in the plane is equidistant
from these two points, and any point not in the plane is un-
equally distant.

z

c

\\

\\

A}

‘\
\
AY
AY
\
\p

>
‘@
oL B N\ A
X
-
///
A M
8
Y
Fic. 78.

Let ABC be any plane.

Draw OR L to ABC, and meeting
it in R. Produce OR until RR' = OR = p. Every point in

the plane is equally distant from O and R’. Let P (x, y,2,)
be any point of the plane ; let ON, MN, MR, the co-ordinates
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of R/ =d, e, f, respectively. Then from Art. 168, (2), we have
VR = (4 — 2)* + (¢ — 9" + (F— )"
From the same article, equ.attion (3), we have
OP2 = 2% +4 32 + 27;
hence, by the assumed property,
@—a)+ =)+ (F—2 =2ty + 2
Simplifying this expression, we have

d:c—l—ey—{—fz:dj’i'e‘z_w. o @

2
for the required equation.

173. 7o find the equation of a plane in terms of the per-
pendicular to it from the origin and the directional cosines of
the perpendicular.

Let o, B, and y be the directional angles of the perpendicu-
lar OR’(=2p), Fig. 78. Since ON, MN, MR’ (=d, ¢, ) =
the projections of OR’ on the co-ordinate axes, we have (Art.

169, (1))
d=2pcos e
e=2pcosﬂl 0 0o (@)
f=2pcosyJ

Substituting these values in (1), Art. 172, and remembering
that cos? « 4 cos? B + cos?’y = 1, we have

xcose+ycosB+zcosy =p ... (2)

for the required equation. Equation (2) is called the Noraran
Equatrox of the plane.

Since OR' = 2p = Vd? 4 ¢* + £ equations (1) give

d e
T Varars T VEretr
cos 7 = S

NEret
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Substituting these values in (2), we have
d e
Vitetrr T Vearetrrl T
J
sz =p...3)
for the equation of the plane expressed in terms of the co-or-

dinates of a point on the perpendicular to it from the origin
and the perpendicular.

Cor. 1. If p = 0 in (2), we have
xcose fycosB4+zcosy=0...(4)
for the equation of a plane through the origin.
Cor. 2. If « = 90°, cos « = 0, hence
ycos B +zcosy=p ... (5
is the equation of a plane | to the YZ-plane.
If B = 90° we obtain similarly

xeosa +zcosy=p ... (6)
for the equation of a plane L to the XZ-plane.
If y = 90°, then
xzecoso fycosB=p ... (7)
is the equation of a plane L to the XY-plane.
Cor. 3. If « = 90° and B = 90° then

p=—"L_ .. ®)
cos 7

is the equation of a plane L to YZ and XZ, and hence || to
XY.
Similarly, we find

=L ..
Y= os g ®)
=_£ ., o
m CcoS « ()

for the equations of planes | to XZ and YZ respectively.
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Cor. 4. If p =0 in (8), (9), and (10), then

z2=0
y=20 N (L)
=20

are the equations of XY, XZ, and YZ, respectively.

174. 7o find the equation of a plane in terms of its in-
tercepts.

Let, Fig. 78, OA =a, OB =5, OC =¢. Since OR (=p) is
perpendicular to the plane ABC, we have from the right tri-
angles ORA, ORB, and ORC

cose =72

a
cos,6’=—g . (@)
cosy =2 J

c

Substituting these values in the normal equation and
reducing, we have

YL E 1.,
a+b+c 1 @

for the required equation. Kquation (1) is called the Sym-
METRICAL EqQuatrox of the plane.

175. Kvery equation of the first degree between three vari-
ables represents a plane.
The most general equation of the first degree between
three variables is of the forin
Az 4 By+C:=D ... Q)

Dividing both members of this equation by vV A? 4 B2 4 (2,
we have
A B C &
Vit ceo T AL By C
D

i ® )
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Comparing (2) with (3) of Art. 173, we see that the co-
efficients of the variables are the directional cosines of some
line expressed in terms of the co-ordinates of one of its
points, and that the second member measures the distance of
a plane from the origin; hence (2) and therefore (1) is the
equation of a plane.

176. To find the equations of the traces and the values of
the intercepts of a plane given by its equation.

A

><

Y
Fic. 79.

Let ABC be the plane and let its equation be
Ax 4+ By +Cz=D.
1. To find the equations of the traces ADB, BC, AC.
The traces are the intersections of the given plane with

the co-ordinate planes; hence, combining their equations, we
have

Az +By+Ce= D} Az +By=D. Traceon XY (AB)...(1)

z2=10
A”’+By+gz=D}.-.Ax+Cz=D. Traceon XZ (AC). . . (2
3/:

Az + By + gz =D} - By Cz=D. Traceon YZ (BC) ... (3)
x =
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2. To find the intercepts OA, OB, OC.

The points A, B, C are the intersections of the given plane
with the co-ordinate planes taken in pairs; hence, combining
their equations, we have

Az +By +Cz2=D

z2=0
y=20
Az + By+4+Cz=D .
=0 y===0B...®)
B
z=0
Ar 4+ By +Cz=D
€ =0 x=2_00C...®
C
y=0

Cor. If the plane is perpendicular to XZ its Y-inter-
cept = OB = oo; hence, equation (5), B =0. Making B =10
in the general equation, we have

Ar+Cz=D ... (7

But (7) and (2) are the same equations; hence, a perpendic-
ular plane and its trace on the plane to which it is perpendic-
wlar have the same equation.

177. If x cos @« 4 y cos B + z cos y = p be the normal equa-
tion of a plane, then x cos « + ycos 3+ z cos 7y = p L d is the
equation of a parallel plane at the distance d from it.

For the directional cosines of the perpendiculars are the
same; hence, the perpendiculars are coincident; hence, the
planes are parallel. The distance of the planes apart is equal
to the difference of the perpendiculars drawn to them from
the origin; but this difference is p L d — p; i.e., L d. Hence,
the proposition.

Cor. If («/, ¢/, 2') be a point in the plane whose distance
from the origin is p L d; then

+d=acose 4y cosB+7cosy—p... 1)
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is its distance from the parallel plane whose distance from
the origin is p. From equations (a), Art. 174, we have

3

cosa =2 cosB="2,cosy ="2;
a b

hence cos? a 4 cos? B - cos?y = » + il + P = 1.
a? b? c?

These values in (1) give
abe

l: x,_ L’. _F«”_— e — - —
= (w+b + ¢ 1>\/u,262+1;202—|—a%2'~'(2)

for the expression of the distance of a point from a plane
which is given in its symmetrical form.
Let the student show that the expression for d becomes

LA LB/ FCT=D

VAZ + B2 4 C?
when the equation of the plane is given in its general form.
What is the significance of the double sign in (1), 2), and

®3)?

178. To find the equation of a plane which passes through
three given points.

Let («, s #), (", y". 2"), (&, y", %) be the given points.
Since the equation we seek is that of a plane, it must be

Az 4+ By +Cz=D ... (1)
in which A, B, C, D are to be determined by the conditions
imposed.

Sinee the plane is to contain the three given points, the co-
ordinates of each of these must satisfy its equation; hence,
the following equations of condition:

Az’ + By +Cz'=D
A" + By’ 4+ C" =D
Az + By + G =D.

These three equations contain the four unknown quantities

A, B, C, D. If wefind from the equations the values of A,
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B, C in terms of D and the known quantities, and substitute
these values in (1), each term of the resulting equation will
contain D as a factor. Let
A =A'D, B=D1'D, C =CD be the values found.
Substituting in (1), we have
A'Dz 4+ B'Dy + C'Dz = D.
DA+ By+Ce=1...(2)
is the required equation.

179. The preceding discussion has elicited the fact that
every equation of the first degree between three variables
represents a plane surface. It remains to be shown that every
equation between three variables represents a surface of some
kind.

Let z=f(e,y) ... 1)

be any equation between the three variables (x, y, 2). Since
2 and y are independent, we may give them an infinite number
of values. For every pair of values thus assumed there is a
point on the XY plane. These values in (1) give the corre-
sponding value or values of z, which, laid off on the perpen-
dicular erected at the point in the XY plane, will locate one
or more points on the locus of the equation. But the number
of values of z for any assumed pair of values of x and y are
necessarily finite, while the number of pairs of values which
may be given = and y are infinite ; hence (1) must represent
a surface of some kind.
If
z=f( ?/)1 e ®
r=¢ @)

be the equations of two surfaces, then they will represent their
line of intersection if taken simultaneously. For these equa-
tions can only be satisfied at the same time by the co-ordinates
of points common to both. Ilence, in general, two equations
between three variables determine the position of a line in space.
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It z=f(xy)
z=q (x, ¥) AN G))
z=vy(xy)

be the equations of three surfaces, then they will represent
their point or points of intersection when considered as simul-
taneous. Hence, in general, three equations between three
variables determine the positions of space points.

EXAMPLES.
Find the traces and intercepts of the following planes:
1 x—2y+2=6 6. T Y4 F=1
¥+ 573y
3 z x Yy =z
2. Zac—y—l-g_l. 7.5—9—4:1.

N P 2z 3y , 2z
3.9c——g/-r4f,_§. 8. _3__?_}_,5‘_:1
4 22 +3y—4dz=0. g 22, ¥ _3%_4

) 3 4
- —1 , y—= 2 & 3
il & Y —F—2 10 =2 —2=2,
5 T3 y 4
11. The directional cosines of a perpendicular let fall from
] 0y

)
;5’ %, —é; required the equation of the
plane, the length of the perpendicular = 4.

. XY LA
O T

Required the equations of the plane whose intercepts are
as follows:

12. 1,2 3 4.

the origin on a plane are

13. 2, — 1, 3. 5. —1, —2, —4.

16. What is the equation of the plane, the equations of

whose traces are ¢ — 3y =4 andx + 2 =47
Ans. © — 3y + 2z =4
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17. The co-ordinates of the projection of a point in the
plane * — 3y 4 2z = 2 on the XY plane are (2, 1); required

the distance of the point from the XY plane.
Ans. 3.

Write the equations of the planes which contain the follow-
ing points:

18. (1,2, 3), (— 1,2, —1), (32 0).

19. 4,1,0), (2,0,0), (0,1, 2).

20. (0,2,0), (3,2 1), (—1,0,2).

2l (2,2, 2, 33),(—1, —1, —1).

Find the point of intersection of the planes

2 r4+y—2=4. 23. 2% —y 42 =10.
2 — 3z 4 y=10. x+y—2z2=3
xt+y—z=2. 20 —4y 45z =6.

24 » —y—2=2.
2 —3y 4+ =z=10.
20 —y+4+22=28
Find the distance of the point (2, 1, 3), from each of the
planes
25. .z cos 60° + y cos 60° 4 2z cos 45° = 9.
26. x +3y —z=38.

2. v+ Y4 32=4 28 L_Y 421,
Stk BT TR

29. Tind the equation of the plane which contains the
point (3, 2, 2) and is parallel to the plane x — 2y 4 2 = 6.

Reduce the following equations to their normal and sym-
metrical forms:

30. 20 —3y +2=4. 3L 442y —2=

32. %x+y—iz=6.

33. If s, &, s represent the sides of the triangle formed by
the traces of a plane, and «, b, ¢ represent the intercepts,
show that s? 4 ¢ + §"2= 2 (a® + 0* + ).

o=



236 SOLID ANALYTIC GEOMETRY.

CHAPTER III
THE STRAIGHT LINE.

180. 7o deduce the equations of the straight line.

The straight line in space is determined when ¢wo planes
which intersect in that line are given. (See Art. 179.) The
equations of any two planes, therefore, may be considered as
representing a space line when taken simultaneously. Of the
infinite number of pairs of planes which intersect in and de-
termine a space line, two of its projecting planes — that is,
two planes which pass through the line and are perpendicunlar
to two of the co-ordinate planes — give the simplest equations.
For this reason two of these planes are usually selected.

Z P
PI
0 A X
N
h Xy Ci’/ ’
[ WA V)
B/ 7
________ L:é‘;g__ —M
Bl N

Fia. S0,
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Let PBM be the plane which projects a space line on XZ,
then its equation will be of the form
= sz 4+ a (see Art. 176, Cor.)
in which s = tan ZBP and ¢ = OA.
Let P'B’M’ be the plane which projects the line on YZ,
then its equation will be

y=1tz+ b;
in which ¢ = tan ZB'P’ and 6 = OA’.
But the two planes determine the line; hence

x=s"+“} e
Y= tz —{— b
are the required equations.

Cor. 1. If @ = 0 and & = 0, then

T =8z) 0

y=t2) @

are the equations of a line which pass through the origin.
Cor. 2. If s =0 and ¢ = 0, we have

-4

for the equation of a line | to the Z-axis.

Coxr. 3. Since equations (1) express the relation existing
between the co-ordinates of every point on the space line, if
we eliminate Z from these equations we obtain the immediate
relation existing between « and y for points of the line. But
this relation is evidently the same for all points in the pro-
jecting plane of the line which is L to XY and therefore for
its trace on XY. But the trace is the projection of the line
on XY ; hence, eliminating, we have

sy —te=bs —at ... (4)
for the equation of the projection of the line on XY.

181. We have found, Art. 169, Schol., for the length of a

line joining two points the expression
L=x/1_wl—?//_?/;z//_zl‘

x=a)
y==0)

cos « cos B cos y
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Eliminating L and letting ", 3", 2" (= «, y, 2) be the co-
ordinates of any point on the line, we have

2@ _y—y 2% oo @
cos « cos 3 cos y

for the SymmeTrICcAL EQUAaTION of a straight line.

182. To find where a line given by the equations of its
projections pierces the co-ordinate planes.

Let g 2 ;z _—*_*—((,l } be the equations of the line.

1. To find where the line pierces the X Y-plane.

The equation of the XY-plane is

z=0.

Since the point of intersection is common to both the line

and the plane, its co-ordinates must satisfy their equations.

Hence
x =52+ a
y=tz+9b
z=0
are simultaneous equations. So treating them we find
(a, b, 0)
to be the required point.
2. To find where the line pierces the XZ-plane.
The equation of the XZ-plane is
y=20.
Combining this with the equations of the line, we have

t — sb b
(a tf@_’o’ _7>

for the required point.
3. To find where the line pierces the XZ-plane.
x=s2+
y =tz + b » are simultaneous;
m=0

hence (0, sb — “t’ _ ﬁ)

s 8

is the required point.
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183. 7o find the equations of a line passing through a given
point.

Let («/, 3/, 2) be the given point.

Since the line is straight its equations are

Bl B G
g/=tz+b} @

in which the constants are unknown.

Since it is to pass through the point (', 3,%’) its equations
must be satisfied for the co-ordinates of this point; hence
the equations of condition:

x’=sz’+al )
Y=t +0)

As the three conditions imposed by these four equations
cannot, in general, be fulfilled by a straight line, we must
eliminate one of them. Subtracting the first equation in
group (2) from the first in group (1) and the second in group
(2) from the second in group (1), we have

x—a =s(z—2))

... (8
y—y =t@E—2)) &

for the general equations of a straight line passing through a
point.

184. 7o find the equations of « line passing through two
given points.

Let (@', 3/, #), (2", y”, ) be the given points.

As the line is straight its equations are

T=sEEa) @)
y=tz+0>

in which the constants are to be determined.
As it is to pass through (2, ¥/, #), we must have

m:=sz,'+“} L@
Yy =t 410
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As it is to pass through (", y”, #”), we must have also

x’/ = sz// + a (3)
y// — + A %’ N

As these six equations impose four conditions on the line,
we must eliminate two of them. The conditions of the
proposition, however, require the line to pass through the
two points; hence we must eliminate the other two.

Elimiting ¢ and b from groups (1) and (2), by subtraction,
we have

x—ax =s(z—2)
y—y=tE—2)) - @

Now, eliminating « and & from (2) and (3), we have

¥ —rl=s(@—2)) 5
=y =t )

Eliminating s and ¢ between (4) and (5), we have

(=)

wl _ w/l

/ 7’
Z —Z

x—x =

;o - (6
y—y =LY (c—)

Nz
2

for the required equations.

EXAMPLES.

1 Gi ox=2z+4+1 q .
. Given the line y=dz— 3} required the equation of
the projection on XY. .
Ans. 2 —y=2>5.
2. How are the following lines situated with reference to
the axes ?
x =2 y=0} y=0 x=0 x=3 T==z
n=6? g=il{? x=1}’ z2=0¢{" y=0}’ y=0}'
Find the co-ordinates of the points in which the following
lines pierce the co-ordinate planes:

3 r=3z—1 4 r=—z—1 5 22 4+y=3
Cy=2z+42§y" T y=22z43(" " x—z=1 §"
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6. Given (2, 1, — 2), (3, 0, 2) ; required

(@) The length of the line joining the points.

(b) The equation of the line.

(¢) The points in which the line pierces the co-ordinate
planes. ,

Find the equations of the lines which pass through the

points :

7.(2,1,3), 3, —1,—1). 9.2, —1,0), (3, 0,0).

8.(—-123),(—-10,2). 10. (1, — 1, — 2), (— 1, —2, — 3).
11. The projections of a line on XZ and YZ make angles

of 45° and 30° respectively with the Z-axis, and the line in

space contains the point (1, 2, 3); required the equations of

the line.

r=z—2

Ans. z —
Y= —— — 3+2-

V3 i

12. The vertices of a triangle are (2, 1, 3), (3, 0, — 1),
(— 2, 4, 3); required the equations of its sides.

13. Is the point (2, — 1, 3) on the line which passes through

(—1,32),@,2 —2)?

14. Write the equations of a line which lies in the plane
x—2y+3z=1

Note. — Assume two points in the plane; the line joining
them will be a line of the plane.

15. Find the equation of a line through (1, — 2, 2) which
is parallel to the plane » — y 4 2z = 4.

16. Find the point in which the line Zji_zi_:;io}

pierces the plane 3o + 2y — 2 = 4.
17. Required the equation of the plane which contains the

: x—22—1=0)" r—z—5=0
two lines y_2z_2=0}a11dy_4z+6=0 }
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18. Tind the point of intersection of the planes
r+3y—z=4ao—y+z=22x4+y=3

19. Find the equations of the projecting planes of the line
x—2y+4z=4)
2z +3y—z=0)"
20. Which angles do the following planes cross ?
x—yt+2z=42r+y—32z=22—2y—z=1

185. 7o find the intersection of two lines given by their
equations.

Let

’ I
x=s2+a x=sz+a
+ and 24+ }_

y=tz~4+0 y=1tz+10V
be the given equations. Since the point of intersection is com-
mon to both lines, its co-ordinates must satisfy their equations.
Hence these equations are simultaneous. But we observe that
there are four equations and only tkree unknown quantities ;
hence, in order that these equations may consist (and the lines
intersect), a certain relationship must exist between the con-
stants which enter into them. To find this relationship, we
eliminate > between the first and third, y between the second
and fourth, and # between the two equations which result.
We thus obtain
(s—s)@—V)—@t—1t)(a—d)=0

for the required equation of condition that the two lines shall
intersect. If this condition is satisfied for any pair of as-
sumed lines the lines will intersect, and we obtain the
co-ordinates of this point by treating any three of the four
equations which represent them as simultaneous. So treating
the first, second, and third we obtain

! ’/ ’ ’
(sa —sa tg*j_'g,—i-b,- @ -—ai>

s—¢§ S — s — §

for the co-ordinates of the required point.

NoTe. — We were prepared to expect that our analysis
would lead to some conditional equation, for in assuming the
equations of two space lines it would be an exceptional case
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if we so assumed them that the lines which they represent
intersected. Lines may cross each other under any angle in
space without intersecting. In a plane, however, all lines
except parallel lines must intersect. Hence, no conditional
equation arose in their discussion.

186. To find the angle between two lines, given by their
equations, in terms of functions of the angles which the lines
make with the axes.

x=sz+a) r=sz4+a

Let /—tzibfandj—t~ib’}
be the equations of the two lines. The angle under which
two space lines cross each other is measured by the angle
formed by two lines drawn thxough some point parallel to
their directions.

4
]
i
0 ir C
g B
1}
' i
H ]
i
0 : — X
1 P 1 e
i Vi i /
: A0
| e e
s (e
i v
1 //
s
Y g
FiG. 81.

Let OB and OC be two lines drawn through the origin
parallel to the given lines. Then

z = sz B =3

Yy = tz} i y = t’z}
will be their equations. The angle between these lines is the
angle sought. Let ¢ (= BOC) be this angle.
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Let o, 3, ¥ represent the angles which the line BO makes
with X, Y, Z, respectively; and «”, 7, 7 the angle which
CO makes with the same axes. Take any point P’ (2, #/, 2}
on OB and any point P” («”, y”, ) on CO and join them by
a right line forming the triangle P’OP”.

Let OP' = 1/, OP”= L”, and P'P” = L.

From the triangle P’OP”, we have

L2 4 L7 — 12
Eas = (@)

COosS ¢ = ST

But Art. 168, equation (3) and (2)

7 =a +yt 4 2
L"2 = x//2+ y1/2 + ?JN2,
L — (l‘ _ T)q + (J// ,//)2 + (zll — A/)Z
//2 +JH2+ 1/2+x/2+J/2+ /2_2 (x/ //_}_Z/Iy//_}_z/z//).

Substituting these values in (1), we have

I // + J/J// + z? (‘)>
LLN P

cos ¢ =

But Art. 169, (1)
o = L cose,y =1/ cos B,7 =1/ cos ¢’
// = L// COS al/’ Z/// == IJ” cos B//’ zl/ — L// cos 7//

Substituting in (”), we have

cos ¢ = cos « cos «’ 4 cos B cos B” 4 cos 7’ cos 7’ . (3)
for the required relation.

Cor. If ¢ =90°

cos « cos «’ 4 cos B cos B7 +cosy'cos =0 ... (4)

187. 10 find the angle which two space lines make with each
other in terms of functions of the angles wh ich the projections
of the lines make with the co- ordinate axes.

!
xr = sz x=sz)
)and -

Lev y=tef N y="tz]

be, as in the preceding article, the equations of the lines
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drawn through the origin parallel to the given lines. Since
P (@, y, %), Fig. 81, is a point on the first line, we have

x = sz
.7/, = tz,;
and, Art. 168, L2 =a? 4 /%4 22

Eliminating, we find

sL/ , tL’ , L/

v = e .

=, Y = =—————_ P2 —_—
V14 st V1484 V14242’

and since P” (x”, 3", #’) is a point on the second line, we
have

m// = s’z//
2/// = t,z,,’
and, Art. 168, L2 = 2”2 4 "2 4 /2,
Hence,
1‘” _ S/L// " thII "__ LII

— Y= = =
V1+s% 42t Vit 4t V1psr e
But, Art. 169,

7 4 /

COSU‘,=;E =—;s*:—;700 U‘”=£,;=——'S——_‘—__,
YETET: ' Vigsrger
Yy ¢ v _ Yy ¢
cos B — _ cosﬁ == —
A=~ A +5 4 L Vs 4
cos ' = Z L cos " =2 — !

=

Substituting these values in equation (3), Art. 186, and
reducing, we have
14 s & )
V948 421 4 g2 4 2

for the required expression.

cos ¢ = L
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Cor. 1. If ¢ = 0, the lines are parallel and equation (1)
becomes
1= 14 s’ +t o
V14 st V144
Clearing of fractions and squaring, we have
A48+ A +5+ %) = (1 + s’ )

Performing the operations indieated, transposing and col-

lecting, we have
(s =8+ =)+ (st — s'ty = 0.

But the sum of the squares of these quantities cannot be

equal to zero unless each separately is equal to zero; hence

§=st=tst=5t... ©)

are the conditions for parallelism of space lines. The first
two of these conditions show that if two lines in space are
parallel, then their projections on the co-ordinate planes are
parallel also. The third condition (st’ = §'¢) is a mere conse-
quence of the other two, and may be omitted in stating the
conditions for parallelism.

Cor. 2. If ¢ =90° the lines are perpendicular to each
other, and equation (1) becomes

B 1 4 ss’ ¢t .
irstavitrten
hence 148 +t=0...(@)
is the condition for perpendicularity in space.

188. Since the angle which a line makes with any one of
the co-ordinate axes is the complement of the angle which the
line makes with the co-ordinate plane to which that axis is
perpendicular if we let «, B, v be the complements of «, B, 7',
respectively, we have

q S . t
sin a = sin f = ———

Vit Vigs 8
. 1
siny=———... (1
V14 st 422 @
for the sines of the angles which a space line makes with the
co-ordinate planes.
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TRANSFORMATION OF CO-ORDINATES.

189. To find the equations of transformation from one
system of co-ordinates to a parallel system, the origin being

changed.

<
S
¥
3
N
N
\\
\
N
RS, <3
N\,
N\
\,
\
AN
N
>
>~

Fic. 82.

Let X, Y, Z be the old axes and X/, Y/, Z’ the new.

Let P be any point on the locus CM. Draw PB, A'R,
O’L [ to OZ and meeting XOY in B, R and L. Draw BR
and produce it to A; BR will be || to OY; draw LN | to BR
and LR | to OX. Then (OA, AB, BP) = (x, y, ) are the
old co-ordinates of the point P.

(O'A, A’BY, B'P) = (¢, i, #) are the new co-ordinates of
the point P.

(ON, NL, LO') = (a, b, ¢) are the old co-ordinates of the
new origin O,

From the figure
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OA = ON 4 O’'A’; AB = XNL + A’B, BP = LO' 4+ B'P;
hence r=a+a,y=0+y,z2=c42
are the required equations.

190. 7o find the equations of transformation from a rec-
tangular system in space to an oblique system, the origin being
the same.

1 7
C P
M
X/
AI
SNIAV4 E
-
Y B
Y’
Fia. 83.

Let OX, OY, OZ be the old axes, and OX’, OY’, OZ’ the
new.

Let «, B, 1" be the angles which OX’ makes with OX, OY,
OZ respectively.

Let «”, 87, " be the angles which OY’ makes with OX, OY,
OZ respectively.

Let «”, B, v be the angles which OZ’ makes with OX, OY,
OZ respectively.

Let P be any point on the locus CM. Draw PB and PB’
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| to OZ and OZ/, respectively, and let B and B’ be the points
in which these lines pierce the planes XOY and X'OY'".
Draw B’A’ || to OY’; then

(OA, AB, BP) = (x, y, #) are the old co-ordinates of the
point P.

(OA/, A'B, B'P) = («/, ¥/, #') are the new co-ordinates of the
point P,

From P, B’ and A’ let fall the perpendiculars PA, B’'D, A’L
on the X-axis; then from the figure, we have

OA =0L + LD 4+ DA

But OL, LD and DA are the projections of OA’, A’B’, and
PB’, respectively on the X-axis, and each, therefore, is equal
to the line whose projection it is into the cosine of the angle
which that line makes with the X-axis. (See Art. 169 (1) .)

.. OL =0A’cos o/, LD = A’B’ cos o/, DA = B’P cos ¢

Le, OL = &’ cos ¢/, LD = ' cos «”, DA == 2’ cos «”;
hence, substituting, we have

x =ua'cos ¢ + y cos ¢ + 2 cos o’
Similarly y = 2’ cos 8’ + ¥ cos B” 4 2’ cos B 5 5 o (@)
z=ua'cosy 4 y cosy” 42 cos y"’

Of the nine angles involved in these equations, six only are
independent, for since the old axes are rectangular, we must
have (See Art. 169, equation (2) ).

cos? ¢’ 4 cos? B’ 4 cos?y =1
cos® " + cos? B’ 4+ cos?y” =1 N )
cos?«”’ 4 cos? B 4 cos?y” =1

Cor. 1. If we suppose the new axes to be rectangular also
we must have in addition to equation (2) the following condi-
tional equations: See Art. 186, Cor.
cos «’ cos «”’ 4 cos B cos B + cos y’ cos y” =0
cos «’ cos «” 4 cos B cos B + cos 7’ cos Y =0 RN C))
cos &” cos "’ 4- cos B” cos B + cos 7" cos ' =0

Hence, in this case, only ¢iree of the nine angles involved
in equation (1) are independent.
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THE CONIC SECTIONS.

191.. The Coxic SEctIONS, or, more simply, THE CoxIcs,
are the curves cut from the surface of a right circular cone by
a plane.

We wish to show that every such section is an ellipse, a
parabola, an hyperbola, or one of their limiting cases. Art.
146.

192. To deduce the equation of the conic surfuce.
Z

=

F1G. 81.

Tet CAEA’C be the conic surface, generated by revolving
the element CA about OZ as an axis. Let I’ be any point on
any element as CE; let OC = ¢ and OEC = 6.

Draw DP | to XY-plane and intersecting OZ in D; draw
PK | to OZ, KB | to OY, and join O and K producing it to
meet the base circle in E. )

Then (OB, BK, KP) = (x. %, #) are the co-ordinates of P.

From the similar triangles COE, CDP, we have

DG OC
DC _ 06 _ .
o5 =on — =0 ¢ @)
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But DC =0C — PK = ¢ — z,and DP = OK = \/w2+y2;
hence,

cC— 2z

———— =tan 6;
-\/xZ +y2
ie., (c—=2)= (@ +y")tan?6 . .. (2)

is the required equation.

193. 7o jind the equation of the intersection of a right cir-
cular cone and « plune.

FiG. 85,

Let CALA’ be the cone and X’OY the cutting plane. Let
X'OX, the angle which the cutting plane makes with the
plane of the cone’s base, = ¢.

Let P (x, y, z) be any point on the curve of intersection
BPB. We wish to find the equation of this eurve when
referred to OY, OX’ as axes.

Draw PD | to OY; PL and DK | to OZ; then

(OK, KL, LP) = (x, 7, 2) are the space co-ordinates of P,
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and (OD, DP) = («/, y) are the co-ordinates of P when referred
to OX’, OY.

From the figure KL = DP, PL = KD = ODsing, OK =
0D cos ¢.
ie., y =1y, x=2x'sin ¢, x = 2’ cos ¢.

But these values of a, 7, » must subsist together with the
equation of the conic surface for every point on the curve of
intersection ; hence substituting in (2), Art. 192, reducing and
remembering that sin?¢ = cos? ¢ tan.? ¢, we have, dropping
accents,

y tan 20 + x2cos?q (tan 26 —tan *¢)4-2cxsing —e?=0... (1
¥

for the equation of the intersection.

By giving every value to ¢ from 0 to 90° and to ¢ every
value from 0 to oo, equation (1) can be made to represent every
section cut from a cone by a plane except sections made by
planes that are parallel to the co-ordinate planes.

Cor. 1. Comparing (1) with (1), Art. 138, we find

a = tan.? 0
b —0 )
¢ = cos®q (tan 26 — tan * ¢)

Hence, equation (1) represents an ellipse, a parabola, an
hyperbola or one of their limiting cases according as, Art.
146.

b < 4ac
> =4ac
b2 > 4ac.

Case 1. > ¢. We find this supposition in (2) gives a > 0
and ¢> 0; hence, 4* < 4 ac, ie., the intersection is an
ellipse.

If > @ and ¢ = 0, the equation resulting from introducing
this supposition in (1) can only be satisfied by the point
(0, 0); hence it is the equation of two imaginary lines inter-
secting at the origin.
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If ¢ =0, equation (1) becomes
y*tan?6 4 x*tan 2 0 = ¢?,
that is, the intersection is a cirecle.
Case 2. 6 =¢. This supposition in (2) gives « > 0 and

¢=0..0*=4ac. Hence the intersection is a parabola.
If 6 =¢and e =0. From (1), we have
ytan?60 =0; ie, y =0

which is the equation of the X-axis — a straight line.

If0 = ¢ =90°and ¢ = oo, then the cone becomes a cylinder,
and the cutting plane is perpendicular to its base. The inter-
section is therefore two parallel lines.

Case 3. § < ¢. This supposition makes ¢ > 0, ¢ < 0
6% > 4 ac.  Hence the intersection is an hyperbola.

If 6 < ¢ and ¢ = 0 then (1) becomes

y*tan? 6 = a%cos® g (tan 2 — tan 2 0)
which is the equation of two intersecting lines.

Case 4. Planes || to the co-ordinate planes.

(a) Plane | to XY-plane. Let z — m be the equation of
such a plane. Combining it with the equation of the conic
surface, we have

2y (C=m)?
Tty tan 26 e ®

which is the equation of a circle for all values of .

() Plane | to YZ-plane. Let x = n be the equation of

such a plane. Combining with (2), Art. 192, we have
(c—2)>*=n*+9* tan 240

or yztanzﬂ—z“’+2cz+n“’tan26—c2=0...(4)
which, since * > 4 ac, is the equation of an hyperbola for all
values of n.

(¢) Plane || to XZ-plane. Let y = p be the equation of such
a plane. Combining with (2), Art. 192, we have after reduc-
tion

Z*tan®f — 224202 4 p2tan26 — 2 =0 . . . ®)
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which, since 42> 4 ac, is the equation of an hyperbola for all
values of p2

Hence, in all possible positions of the cutting plane, the
intersection is an ellipse, a parabola, an hyperbola, or one of
their limiting cases.

Nork. — Equations (3), (4), (5) of case 4 are the equa-
tions of the projections of the curves of intersection on the
planes to which they are parallel. But the projection of any
plane curve on a parallel plane is a curve equal to the given
curve; hence the conclusions of case 4 are true for the
curves themselves.

194. We have defined the conies, Art. 191, as the curves
cut from the surface of a right circular cone by a plane, and
assuming this definition we have found and discussed their
general equation, Art. 193.

A conie, however, may be otherwise defined as the locus
generated by « point so moving in a plane that the ratio of its
distance from a fixed point and a fixed line is always constant.

195. 7o deduce the general equation of « conie.

Y
P
D 1
|
|
1
i
(0] L X
F16. 86.

Let us assume the definition of Art. 194 as the basis of the
operation. Let F be the fixed point and OY the fixed line.
Let P be the generating point in any position of its path.
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Draw FO | to OY, and take OY and OX as co-ordinate axes.
Draw PL || to OY, PD | to OY, and join P and F. Let OF

=p,

By definition ]}‘;f) = e = a constant.
From triangle FPL, FP? = F12 + PL?; . . . (1)

but FI? = (OL — OF)? = (z — p)% LP? = 3?; and FP?2 =
e DP? = 222,
These values in (1) give
¢t = (z—p)+y
or, after reduction,
Y+A—-Aat—2px+p2=0...(2
for the required equation.
Cor. Comparing (2) with (1), Art. 138, we find
a=10=0and ¢ = (1 — ¢,
hence ' —dac=—4(1—e)=4(*—-1)...(3)
Case 1. The fixed point not on the fized line; i.e., p not
zero.
If e <1,2* <4ac; hence equation (2) is the equation of
an ellipse.
If e =1, 6* = 4 ac; hence equation (2) is the equation of a
parabola. '
If €>1,0*> 4 ac; hence equation (2) is the equation of
an hyperbola.
Case 2. The fized point is on the fixed line, i.e., p = 0.
In this case (2) becomes
4+A—e)at=0... 4
If e < 1, equation (4) represents two imaginary lines inter-
secting at origin.
If e =1, equation (4) represents one straight line (the
X-axis).
If e > 1, equation (4) represents two straight lines inter-
secting at the origin.
Hence, equation (2) represents the conics or one of their lim-
iting cases.
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GENERAL EXAMPLES.
1. Find the point of intersection of the lines

m:‘.%:—}—l} x=z-42 ){
y=382z+2§" y=4z41
and the cosine of the angle between them.
s
Am.@ﬁJﬁcmm=Q§
2. Required the equation of the line which passes through
1, — 2, 3) and is parallel to

r=2z+1 rx=2z—5
y—2 = } Ans. A R

3. What is the angle between the lines
xf+2=2 w—2z+3=0}?
y=2—1§" y—z=2 :
Ans. @ = 90°.
4. What is the distance of the point ( — 3, 2, — 1) from

the line
x+32+1=01,
y=42+3 -

5. A line makes equal angles with the co-ordinate axes;
required the angles which it makes with the co-ordinate
planes.

6. The equation of a surface is 2* + y* + 2 =22 —4y—
6 = — 2; what does the equation become when the surface is
referred to a parallel system of axes, the origin being at
1,23)? Ans. 2 + y* 4 22 = 16.

7. Given the line © +2z=2
y—z=1

the line on XY and the point on which the line pierces the
co-ordinate planes. Ans. inpart, 2y 4+ =4

8. Required the distance cut off on the Z and Y axes by

the projections of the line : i g % — i on YZ.

<)

} , required the projection of

6

~r
~

Ans.

=
roleo |



Lo
($)}
=1
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9. How are the following pair of lines related ?
x=2z+4+2 rx=2z—1
y=—z—4 y=—z+42
10. What are the equations of the line which passes through
the origin and the point of intersection of the lines
c=2z+4+1 x==z-+2 0 x=3z)
3/=3z—|—2}’y=4z—|-1 ] = y=>z)"
11. What is the distance of the point (3. 2, — 4) from the
origin? What angle does this line make with its projection
on XY ?
12. A straight line makes an angle of 60° with the X-axis
and an angle of 45° with the Y-axis; what angle does it make
with the Z-axis ? Ans. 60°.

13. What are the cosines of the angles which the lines

. P Y= 10} make with the co-ordinate axes ?
y=—2-42
14. A line passes through the point (1, 2, 3) and makes

V2

: : 1
angles with X, Y, Z whose cosines are R 95 9> respect-

ively ; required

() the equation of the line,

(b) the equation of the plane | to the line at the point,

(¢) to show that the projections of the line are | to the
traces of the plane.

15. The directional cosines of two lines are % , —é s é and

V2 1 1 \yhat is the cosine of the angle which th
5 75 5 at is the cosine o e angle whic ey
make with each other ? -
()
Ans. Cos ¢ = 35‘“5 V2,

16. The projecting planes of a line are x =32 — 1 and
x =2y -+ 2. What is the equation of the plane which pro-
jects the line on YZ ? Ans. 83z — 2y = 3.
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17. The projections of a line on XZ and YZ each form with
the Z-axis an angle of 45°; required the equation of the line
which passes through (2, 1, 4) parallel to the line.

Vi x—2=2—4 01‘m=z—2
T y—1l=z—4§" T y=2z-—3§"

18. TFind the equation of the line which contains the point

— 2y —
(3, 2, 1) and meets the line gyc _ ; z_ 3 I gt right angles.
] . x=s2+4+2 ] r=2z+2) ,
19. leenthehnesy=3z__1 andy=3z+1},re-

quired
(@) the value of s in order that the lines may be parallel;
(b) the value of s in order that the lines may be perpen-
dicular;
(¢) the value of s in order that the lines may intersect.

9 D)
20. The directional cosines of a line are %, %, g; required
the sines of the angles which the line makes with the co-ordi-
nate planes.

21. Find the equations of the line which passes through

= =4
the origin and is perpendicular to the two lines ; _ gz i ;}
r=z2-+1 Ans. *x =3z
andy=2z } y= — 225"

92. Find the angle included between the two planes
Az + By + Cz =D and A’z 4+ By + Cz=D"
Ans. cos' ___,M)B igg_______ .
VAL B24 0 VAL B24C?
23. If two planes are parallel show that the coefficients of
the variables in their equations are proportional.

24. Find the condition for perpendicularity of the two

planes given in Example 22. v
Ans. AA’ 4 BB + CC' =0.
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CHAPTER 1V.

A DISCUSSION OF THE SURFACES OF THE
SECOND ORDER.

By A. L. Nelson, M.A., Professor of Mathematics in Washing-
ton and Lee University, Va.

Every equation involving three variables represents a sur-
face. If the equation be of the first degree the surface will
be a plane. If the equation be of a higher degree the surface
will be curved. It is proposed in this chapter to determine
the nature of the surfaces represented by equations of the
second degree involving three variables. The most general
form of the equation of the second degree is Az? -} By? + Cz?
+ Dxy + Exz + Fyz + Ga +Hy + 1z 4+ K =0...(1) where
the coeficients A, B, C, etc., may be of either sign and of any
magnitude. Let us suppose the co-ordinate axes to be rectan-
gular. The form of equation (1) may be simplified by a
transformation of axes. Let us turn the axes without chan-
ging the origin.

The formule of transformation arve (Art. 190)

2 =a'cos ¢ + 3y cos «” 4 2 cos o
y=x'cos B + g cos B’ 4 2’ cos B

z=2acosy 4 y cosy” 4 2 cos 7
Substituting these values, equation (1) becomes

Alwl2 + B/y’2 + C,zl2 + Dlm/yl + Elxlzl + ]F/IJIZI + GI:L.I + Hly/
+T7+K=0... ().
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Since the original axes were supposed rectangular the nine
angles «’ 3"y’ etc., are connected by the three relations

cos? «’ 4 cos® B’ - cos?y’ = 1.
cos? o 4 cos? 8”7 + cos?y’ = 1.
cos? «"” 4 cos? B 4 cos?y” = 1.

If we take the new axes also rectangular, which is desir-
able, the nine angles will be connected by the three additional
relations

cos &’ cos «” 4 cos B’ cos B” + cos ' cos ¥’ = 0.
cos «’ cos «””’ 4- cos B’ cos B 4 cos y’ cos 7" = 0.
cos «’’ cos «"’ + cos B” cos B 4+ cos 7" cos 7" = 0.

This will leave three of the nine angles to be assumed arbi-
trarily. Let us give to them such values as to render the co-
efficients D', E', and F’ each equal to zero in equation (2).

The general equation will thus be reduced to the form

Ae? + By? 4+ 02" 4+ G2 +Hy + 1% + K =0,
or, omitting accents,
Az* 4+ By 4+ C2+ Ge + Hy + 12+ K=0...(@3)

In order to make a further reduction in the form of the
equation let us endeavor to move the origin without changing
the direction of the axes. The formula® of transformation
will be (Art. 189)

r=a+a,y=0+4+y,z=0c+72.
Equation (3) will become
Af@+ 2 +B O04+y)?+Cle+2)2+G (a+2) +
H@+y)+1(+2)+K=0

Developing, omitting accents, and placing Aa? 4+ Bd? 4 Ce?
+ Ga + Hb 4 Ie 4+ K = L, the equation takes the form
A + By +C2+ 2Aa+G)e + (2B +H) y + (2Ce +1)z

+L=0.

In order now to give definite values to the quantities a, b,
and ¢, which were entirely arbitrary, let us assume

G 81 I

¢ = — —— 0T

a = — =
2A7 DI 20
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2Aa+G=0,2Bb+H=0,2C4+1=0 . .. )]

If these values of a, b, and ¢ be finite, the general equation

reduces to the form
Az? + By2 4+ C224+L =0 . . . [A],
a form which will be set aside for further examination.

It may be remarked that equations (4) are of the first
degree, and will give only one value to each of the quantities
@, b, and ¢, and there is therefore only one position for the
new origin, .

If, however, either 4, B, or (' be zero, then a, b, or ¢ will
become infinite, and the origin will be removed to an infinite
distance. This.must be avoided.

Let us suppose A = 0, while B and C are finite. We may
then assume 2Bb 4+ H = 0, and 2 Ce + I = 0, but we cannot
assume 2 Aa + G = 0.

Having assumed the values of & and ¢ as indicated, let us
assume the entire constant term equal tozero. This will give

Bb2+062—[—Ga+H6+Ic—|—K=O,
_ B4+ Cr4HI 4+ Ie+ K
G
and the general equation will be reduced to the form

By +C22 4G =0 . . . (B),

a second form set aside for examination.

We must observe that this last proposed transformation
will also fail when G = 0, that is, when the first power of ,
as well as the second power of @, is wanting in the general
equation.

And without making the second transformation we have a
third form for examination, viz. :

Byt C+ Hy +Te + K =0 . .. ©)
Lastly, two of the terms involving the second powers of

the variables may be wanting, and the equation (1) then
becomes

or a =

Cz2+(}x+IIy+Iz+I§=O (D)
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It is apparent, therefore, that every equation of the second
degree involving three variables can be reduced to one or
another of the four forms

Az? + By +C2* 4+ L =0 ... (A)
By 4+ C2+ G =0 ... (B)

By +C24+Hy4+ 1z 4+K=0. .. ©)
Ca*+Ge+Hy 4+ 124+ K=0... (D)

We will examine each of these forms in order, beginning
with the first form :

A + By +C2+L=0...(A)

This equation admits of several varieties of form according
to the signs of the coeflicients.

1. A, B,and C positive, and L negative in the first member.
" 2. A, B, C, and L positive.

3. Two of the coefficients as A and B positive, ¢ and L
negative.

4. Two of the coefficients as A and B positive, C negative,
and L positive.

No other cases will occur.

Case 1. Ax? + By? 4+ C* =1,
in which form all of the coefficients are positive.

In order to determine the nature of the surface represented -
by this equation, let it be intersected by systems of planes
parallel respectively to the co-ordinate planes. The equations
of these intersecting planes willbex = a, y = b, # = ¢. Com-
bining the equations of these planes with that of the surface,
we find the equations of the projections on the co-ordinate
planes of the curves of intersection.

When z = q, By’ + Cx* =1L — Aa? an ellipse.
“ooy =1, Ax* 4+ C? = L, — Bp? an ellipse.
% g=@ Ax? + By? = L — C¢? an ellipse.
Thus we see that the sections parallel to each of the co-
ordinate planes are ellipses.
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The section made by the plane # —a is real when

L—Aa®?>0o0ra< L I—J, and imaginary in the contrar
A ¥ Y

case.
The section made by the plane ¥ =10 1is real when

b< L \/lBJ-, and imaginary when b > \/]I—j .
The section made by the plane z=¢ is real when

e < 4 \/—%, and imaginary whene L > \/(IJ—:

Thus we see that the surface is enclosed within a rectangu-
lar parallelopiped whose dimensions are

2\/%, 2\/%—&11(1 2\/—1(;—

When a=£\/7];—orb=:g %Orc:i\/% the

sections become points.
When o =0, =0, and ¢ = 0, we find the sections made
by the co-ordinate planes
By? + C22 = L.
Az? + Cx2 = 1.
Ax® 4+ By = L.

Fia. A.
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These are called the principal sections of the surface. The
principal sections are larger ellipses than the sections parallel
to them, as is indicated by the magnitude of the absolute
term.

The surface is called the Ellipsoid.

It may be generated by the motion of an ellipse of variable
dimensions whose centre remains on a fixed line, and whose
plane remains always perpendicular to that line, and whose
semi-axes are the ordinates of two ellipses which have the
same transverse axis, but unequal conjugate axes placed at
right angles to each other. The axes of the principal sections
are called the axes of the ellipsoid.

1f we represent the semi-axes of the ellipsoid by a, 8, and
¢, we shall have

L N \/—LT
=\/"L b=/, e =\/ 2
¢ \/ A7 \/ B’°~Ve
and the equation of the surface
Az? 4 By? + C2? = L becomes
22 ' 22
wtEra=he
b 4 a’ty? + @’ = aih

These are the forms in which the equation of the ellipsoid

is usually given.
If we suppose B = A, then b = «, and the equation becomes

12 + y2 22 -1
9 Ty T
a? &
and the surface is the Ellipsoid of Revolution about the axis

of Z.
If A =B =C,then a =& = ¢, and the equation becomes

x? + y* 4 2% = a? and the surface is a sphere.

/ T
If T = 0, the axes 2\/%,2 -%, 2\/F

reduce to zero, and the ellipsoid becomes a point.
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Case 2. If L be negative in the second member, the equa-
tion Ax? 4 By®? 4 C2? = — L will represent an imaginary
surface, and there will be no geometrical locus.

Hence the varieties of the ellipsoid are

(1) The ellipsoid proper with three unequal axes.

(2) The ellipsoid of revolution with two equal axes.

(8) The sphere.

(4) The point.

(5) The imaginary surface.

Cask 3. In this case the equation takes the form

Az’ 4+ By* — C2 =1,
in which A, B, C, and L are essentially positive.

Cutting the surface by planes as before, the sections will be,
when o =a, By? — C2? =L — Aa? a hyperbola, having its

transverse axis parallel to the Y-axis when o < | \/ % , but
parallel to the Z-axis when a > 4+ \/% . And when ¢ = L

\/.%_, the intersection becomes two straight lines whose pro-

jections on the plane of YZ pass through the origin.
When y = b, Ax? — C2? = L — Bb?% a hyperbola, with simi-
lar conditions as above.
When z =¢, Ax?+ BJ = L + C¢% an ellipse real for all
values of ¢.
Since the elliptical sections are all real, the surface is con-
tinuous, or it consists of a single sheet.
The principal sections are found by making successively
a = 0, which gives By? — Cz? = L a hyperbola.
b = 0 13 @ Ax? — (22 = 13
e=), & “  Ax? 4 By = L, an ellipse.

The surface is called the elliptical hyperboloid of one sheet.

The equation may be reduced to the form
x‘i y2 zQ 1

b? c?
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This surface may be generated by an ellipse of variable
dimensions whose centre remains constantly on the Z-axis,
and whose plane is perpendicular to that axis, and whose
semi-axes are the ordinates of two hyperbolas having the
same conjugate axis coinciding with the Z-axis, but having
different transverse axes placed at right angles to each other.

F1G. B.

If we suppose A = B, then will « =0, and the equation of
the surface becomes

the hyperboloid of revolution of one sheet.

If A =B = C, we have 2? 4 3> — 2? = d?, the equilateral
hyperboloid of revolution of one sheet.

If L = 0, the equation represents a right cone having an
elliptical base; and if A = B this base becomes a circle.
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Hence we have the following varieties of the Ayperboloid
of one sheet.

1. The hyperboloid proper, with three unequal axes.

2. The hyperboloid of revolution.

3. The equilateral hyperboloid of revolution.

4. The cone.

CasE 4. Ax® + By? — Cz?= — L, where A, B, C, and L
are essentially positive.

Intersecting the surface as before we have, when z = a,
By? — C2? = — L. — Aa? a hyperbola having its transverse
axis parallel to the axis of Z.

When y =8, Az? — C2* = — L —B#%. A hyperbola hav-
ing its transverse axis parallel to the axis of Z.

When z = ¢, Ax? 4- By* = — L 4- C¢? an ellipse real when

c> L \/%., and imaginary when ¢ < L \/% Since the

sections between the limits z = L \ /% are imaginary, but

real beyond those limits, it follows that there are two distinct
sheets entirely separated from each other.

The surface is called the hyperboloid of two sheets.

The principal sections are found by making successively

a = 0, which gives By* — C2? = — 1, a hyperbola with its
transverse axis parallel to the Z-axis.

b = 0, which gives Ax? — 022 = — 1., a hyperbola with its
transverse axis parallel to the Z-axis.

¢ =0, which gives Aa* 4 By? = — L, an imaginary ellipse.

The semi-axes of the first section are \/]Ig‘_ and \/%

Those of the second section are \/ L and \/ L . And those

of the imaginary section are \/ (—1) and \/_ ( )

The distances 2 \ / T’ 2 \/% ,and 2 \/(I)' are called the axes
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FiG. C.

of the surface. Representing the semi-axes by a, b, and e,
the equation of the surface may be reduced to the form

2 2 .2

A
a? H* @
If we suppose A — B, then « =0, and the equation re-
duces to

x? + 2 _ il
e - b
a? c?

the Lyperboloid of recolution of two shects.
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If A =B = C, the equation becomes
a4t — = — g}

which represents the surface generated by the revolution of
an equilateral hyperbola about its transverse axis.

Finally, if L = 0, the surface becomes a cone having an
elliptical base, and the base becomes a circle when A — B.

We have, therefore, the following varieties of the hyper-
boloid of two sheets :

1. The hyperboloid proper having three unequal axes.

2. The hyperboloid of revolution.

3. The equilateral hyperboloid of revolution.

4. The eone.

We will now examine the second form,
By +C*4+Ga=0... (B)

Three cases apparently different present themselves for
examination.

(1). B and C positive and G negative in the first mem-
ber.

(2). B, C, and G positive.

(3). B positive and C and G negative.

Case 1. The equation may be written

By* 4 C2% = G

in which B, C, and G are essentially positive.

Let the surface be intersected as usual by planes parallel
respectively to the co-ordinate planes.

When 2 = «, By? 4 C2? = Ga, an ellipse real when a > 0,
and imaginary when « < (.

When y =10, C2* = Gx — Bl a parabola with its axis
parallel to the axis of X,

When 2z =¢, By? = Go — Ce* a parabola with its axis
parallel to the axis of X.

The principal sections are found by making ¢ = 0,5 = 0,
and ¢ = 0.

When @ = 0. By? 4 Cz% = 0, a point, the origin.

When b =0, C2* = Gz, a parabola with its vertex at the
origin.
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When ¢, = 0, By? = Gz, a parabola with vertex at the origin.

Sinee every positive value of = gives a real section, and
every negative value of x an imaginary section, the surface
consists of a single sheet extending indefinitely and eontin-
uously in the direction of positive abscissas, but having no
points in the opposite direction from the origin.

The surface is called the elliptical paraboloid. It may be
generated by the motion of an ellipse of variable dimensions
whose centre remains constantly on the same straight line,
and whose plane continues perpendicular to that line, and
whose semi-axes are the ordinates of two parabolas having a
common transverse axis and the same vertex, but different
parameters placed with their planes perpendicular to each
other.

B

\=<

BI
FiG. D.

Cask 2. If we suppose G to be positive in the first member
so that the equation will take the form

By? 4 C2* = — Ga,
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the sections perpendicular to the X-axis will become imaginary
when z > 0, and real when < 0.

In other respects the results are similar to those deduced in
case 1.

Thus the equation will represent a surface of the same form
as in case 1, but turned in the opposite direction from the
co-ordinate plane of YZ.

If B = C, the surface becomes the paraboloid of revolution.

Case 3. By?* — C2* = Ga.

Intersect the surface by planes as before.

When @ = a, By* — C2? = Ga, a hyperbola with transverse
axis in the direction of the Y-axis when o > 0, and in the
direction of the Z-axis when ¢ < 0.

‘When y = b, C22 = — Gx + B0 a parabola having its axis
in the direction of the X-axis and extending to the left.

When z = ¢, By? = Ga + C¢? a parabola hzu'ring its axis in
the direction of the X-axis and extending to the right.

Since every value of x, either positive or negative, gives a
real section, the surface consists of a single sheet extending
indefinitely to the right and left of the plane of YZ. This
surface is called the Iyperbolic Paraboloid. 'To find its prinei-
pal sections make «, y, and # alternately equal to zero.

When z = 0, By* = C2?% two straight lines.
When y = 0, C2? = — Ga, a parabola with axis to the left.
When z = 0, By* = Ga, a parabola with axis to the right.

The hyperbolic paraboloid admits of no variety.

Now taking up form (C), By? 4 C2? - Hy 4+ Iz 4 K =0,
we see that it is the equation of a cylinder whose elements
are perpendicular to the plane of YZ, and whose base in the
plane of YZ will be an ellipse or hyperbola according to
the signs of B and C.

The fourth form (D), Cz* 4 G2 + Hy + Iz 4 K = 0 repre-
sents a eylinder having its bases in the planes XZ and YZ
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FiGg. E.

parabolas, and having its right-lined elements parallel to the
plane XY and to each other, but oblique to the axesof X and Y.

The preceding discussion shows that every equation of the
second degree between ‘three variables represents one or an-
other of the following surfaces:

1. The ellipsoid with its varieties, viz.; the ellipsoid
proper, the ellipsoid of revolution, the sphere, the point,
and the imaginary surface.
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2. The hyperboloid of one or two sheets, with their
varieties, viz.: the hyperboloid proper of one or two sheets,
the hyperboloid of revolution of one or two sheets, the
equilateral hyperboloid of revolution of one or two sheets,
the cone with an elliptical or circular base.

3. The paraboloid, either elliptical or hyperbolic, with the
variety, the paraboloid of revolution.

4. The cylinder, having its base either an ellipse, hyper-
bola, or parabola.

Surfaces of Revolution. — The general equation of surfaces
of revolution may be deduced by a direct method, as follows:

.,

.,
e,
.......

FiG. F.

Let the Z-axis be the axis of revolution, and let the equa-
tion of AB, the generating curve in the plane of XZ, be
G =%

Let P be the point in this curve which generates the circle
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PQR, and let » be the radius of the ecircle. We will have
=% 4 ¢

The value of #* may also be expressed in terms of z from
the equation of the generatrix in the plane of XZ as follows :

7 = CP" = 0D = fo.
Equating these two values of » we have
2t + = fx

as the general equation of surfaces of revolution.

It will be observed that the second value of # is the value
of 2% in the equation of the generatrix. Hence, to find the
equation of the surface of revolution we have only to substi-
tute 2* 4- 7% of the surface for #? in the generatrix.

Surface of a Sphere. — Equation of generatrix z? + 22 = R.?
Hence the equation of the surface of the sphere is

2?4 2 4- 27 = R2
Ellipsoid of Revolution. —

Generatrix =
a
2 2 2

Surface i ol -+ i?- = 1l

Similarly, the equation of the hyperboloid of revolution is
2ty 2y
a? e ’
Paraboloid of Revolution. —
a* = 4 pz, the generatrix.
x* 4 y* = 4 pz, the surface of revolution.
Cone of revolution. z = ma 4 B the generatrix,

o x=%"8 o _(E=8"

m m?

2
Hence x4 = =8

m*

or m? (2 4+ %) = (= — B)%
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EXAMPLES.

1. What is the locus in space of 422+ 94>2=236? Of
922 — 16" =144? Of 2 + 92 =122 Of 3> + 22 =22 Of
y?4+8ax =07

2. Determine the nature of the surfaces x? 4yt -4 2% = 25,
T+ 9% —4272 =170

3. TFind the equation of the surface of revolution about the
axis of Z whose generatrix is 2 =3z + 5

4. Find the equation of the cone of revolution whose inter-
section with the plane of XY isa? 4+ y? = 9, and whose vertex
is (0, 0, 5.)

5. Determine thie surfaces represented by

x? 442 + 92 = 36.
x4 9 — 922 = 36.
a4+ 49y =922 — 36.
424927 =36x.
49t — 922 = 36
922 — 494 =36z
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