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PREFACE

This book is the first volume of a course in mathematics
designed to present in a consecutive and homogeneous manner
an amount of material generally given in distinet courses under
the various names of algebra, analytic geometry, differential
and integral calculus, and differential equations. The entire
course covers the work usually required of a student in his first
two years in an engineering school, the first volume containing
the work of the first year. In arranging the material, however,
the traditional division of mathematics into distinet subjects is
disregarded, and the principles of each subject are introduced as
needed and the subjects developed together. The objects are to
give the student a better grasp of mathematics as a whole, and
of the interdependence of its various parts, and to accustom him
to use, in later applicatioms, tlle rhethod best adapted to the
problem in hand. At the same time a decided advantage is
gained in the introduction of the principles of analytic geometry
and calculus earlier than is usual. In this way these subjects
are studied longer than is otherwise possible, thus leading to
greater familiarity with their methods and greater freedom and
skill in their application.

In carrying out this plan in detail the subject-matter of this
volume is arranged as follows:

1. An introductory chapter on elimination, including the use
of determinants. This chapter may be postponed or omitted, if a
teacher prefers, without seriously affecting the subsequent work.

2. Graphical representation. Here the student learns the use
of a system of coGrdinates and the definition and plotting of a
funetion.

3. The study of the algebraic polynomial. This includes the
analytic geometry of the straight line, the more important
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v PREFACE

theorems of the theory of equations, and the definition of a
derivative. Simple applications of the calculus to problems
involving tangents, maxima and minima, etc, are given. In this
way a student obtains an introduction to the principles of the
calculus, free from the difficulties of algebraic computation.

4. The study of the algebraic function in general. The knowl-
edge of analytic geometry and calculus is here much extended
by new applications of the principles already learned. Simple
applications of integration are also introduced. The study of the
conics forms part of the work in this place, but other curves are
also used and care is taken to avoid giving the impression that
analytic geometry deals only with conic sections; in fact, the
chapters which deal especially with the conics may be omitted
without affecting the subsequent work.

5. The study of the elementary transcendental functions. Tt
has been thought best to assume the knowledge of elementary
trigonometry, since that subject is often presented for admission
to college, — a_ tendency which should be encouraged. The
chapter discusses the graphs, the differentiation of transcendental
functions, and the solution of transcendental equations.

6. The work closes with chapters on the parametric represen-
tation of curves, polar codrdinates, and curvature. In the first of
these chapters the solution of locus problems, which, from some
standpoints, is.the most important part of analytic geometry,
finds its natural place; for this problem involves, in general,
the expression of the coordinates of a point oh a locus in terms
of an arbitrary parameter, and possibly the elimination of the
parameter.

As compared with the usual first course in analytic geometry,
there will be found in this volume fewer of the properties of the
conic sections, except as they appear in problems set for the
student. On the other hand, a greater variety of curves are
given, and it is believed that greater emphasis is placed on the
essential principles. All work in three dimensions is postponed
to the second year, and is to be taken up in the second volume
in connection with functions of two or more variables, partial
differentiation, and double and triple integration.
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This volume contains the matter usually given in a first course
in differential calculus, with the exception of differentials, series,
indeterminate forms, partial differentiation, envelopes, and some
advanced applications to curves. These subjects will find their
appropriate place in the further development of the course in
the second volune. Integration has been sparingly used as the
inverse operation of differentiation, and without employing the
integral sign. Simple applications to areas and velocities are given.
To do more would require the expenditure of too much time on
the operation of integration, and the introduction of too many
new ideas into one year’s work. The integral, as a limit of a
sum, with its many applications, will form an important part of
the second year’s work. '

In the preparation of the text the needs of a student who
desires to use mathematics as a tool in engineering and scientific
work have been primarily considered, but it is believed that the
course is also adapted to the student who studies mathematics
for its own sake. Abstract discussions are avoided and frequent
applications and illustrations are given. Illustrations, however,
which are beyond the range of a first-year student’s knowledge
of physical science are omitted. The proofs are made as rigorous
as the maturity of the student will admit. It is to be remembered
in this connection that the earlier chapters are to be studied by
students whe have just entered college.

In the preparation of the book the authors have had the advice
and eriticism of the mathematical department of the Massachu-
setts Institute of Technology. In particular, they are indebted
to the head of the department, Professor H. W. Tyler, at whose
invitation the book has been written, and whose suggestions have
been most valuable.

MassacuUSETTS INSTITUTE OF TECHNOLOGY
September, 1907






CONTENTS

CHAPTER I— ELIMINATION

ARTICLE PAGE
1, 2. Determinant notation . . . . . . . . . . . . . . 1
3 Properties of determinants . . . . T LA 6

4. Solution of n linear equations contammrr n unknown quantltles,
when the determinant of the coefficients of the unknown
quantities is not zero .

5. Systems of n linear equations contalmng more than n unknovm
quantities . 302 H e .

6. Systems of n linear equatlons contammg n unknovm quantltles,
when the determinant of the coefficients of the unknown
quantities is zero

. Systems of linear equations in “hlch the number of the equa-
tions is greater than that of the unknown quantities

8. Linear homogeneous equations

9. Eliminants

Problems .

-3

CHAPTER II — GRAPHICAL REPRESENTATION

10. Real number ol I

11. Zero and infinity . .

12. Complex numbers

13. Addition of segments of a 9t1a1ght lme
14-15. Projection .

16. Coordinate axes k

17. Distance between two points
18-19. Collinear points

20. Variable and function .

21. Classes of functions .

22. Functional notation .

1000 30, s A A R e o S
vii

18
21
23



viil CONTENTS

CHAPTER III —THE POLYNOMIAL OF THE FIRST DEGREE

ARTICLE PAGE
23. Graphical representation . . . S AL AR oS i ()
94-96. The general equation of the first degree ol |4 B R <GP
OTISIOpeRk . - 1oy | i D AR R T INERE 0 s 54
98. Angles . . . S A AR [ e R L (55
29. Problems on straxght lmes P S ORI S T e R 58
30-31. Intersection of straight lines . LS 61
32. Distance of a point from a straight llnc AT SN R R16 3
33. Normal equation of a straight line . . . . . . . . . 64
Problems 7, .- . 1oyt Al F T i S SR

CHAPTER 1V — THE POLYNOMIAL OF THE NTH DEGREE

34-36. Graph of the polynomial of the second degree . . . . . . 70
37. Discriminant of the quadratic equation . 73
38. Graph of the polynomial of the nth degree . 74
39. Solution of equations by factoring . T

40-41. Factors and roots R < 78

49-43. Number of roots of an equation . . . . . . . . . . 80

44-45. Conjugate complex roots . . . R T
46. Graphs of products of real linear zmd quadxatlc factors .. 83
AT T0cation [0 E00GS, e il s BANEES SRt SRR T e i 86
48. Descartes’ rule of signs . . . . . . . . .. - .- 87

AOE51HY Rationaliro0bs N1 Rhe i vcammita i e e I EE S 89
52, Irratlonal roots . . . . . . e . oo e e e 92

Problemss = # oSt RN R R AT R - S 94

CHAPTER V —THE DERIVATIVE OF A POLYNOMIAL
53, | Tt = b o N L SRR 2 "L 97
54<4Slopelofiarcurve LRSS BN IE I SRR TR 99
55 M Crentents s =1 of i raiis S N sl RS BT - 100
[ SO I LI AR ke B fial: 5ot o Ta laual omld o o ORR O e 101
57. Derivative . . . STD S e S e O
58. Formulas of differ entxauon BRI a0 o2 o ARl e B8
50~ diangentiineity il a E A SRR SRR 104
60. Sign of the derivative . . . . . . . . . . . . . - 106
61. Maxima and minima . . . . . . . . . . . . . ©. 108
62. The second derivative . . . L e SR 11 L)
63. Newton’s method of solving numerlcal equatlons ST S B
64. Multiple roots of an equation . . . . . . . . . . - 116

Problems..................118



CONTENTS

CHAPTER VI—CERTAIN ALGEBRAIC FUNCTIONS AND

THEIR GRAPHS

ARTICLE

65-66.
67.
68.
69.

CHAPTER VII— CERTAIN CURVES AND THEIR EQUATIONS

Square roots of polynomials .

Functions defined by equations of the second defrree iny .

Functions involving fractions
Special irrational functions
Problems

2. The circle .
5. The ellipse .

. The hyperbola
. The parabola .
. The conic

82.
33. The cissoid

. The strophoid
. Examples

The witch .

Problems

CHAPTER VIII — INTERSECTION OF CURVES

. General principle :
9. fi(z, ) = 0 and fo(z, y) = O
- fi@s ) =0 and f(z, y) =0

< Sz, y)=0and f,(x, y) =0 .
92-93.

(s y) + Kfu(x, )= 0
Problems

1X

PAGE

=Ll
N2
. =128
. 131
. 133

. 161
. 161
. 166
. 168
A7l
S

CHAPTER IX — DIFFERENTIATION OF ALGEBRAIC FUNCTIONS

94.
95.
96.
97.
98.
99.
100.
101.
102.
103.

Theorems on limits

Theorems on derivatives

Formulas

Derivative of u»

Higher derivatives ; 5
Differentiation of implicit 'ngebralc functlons
Tangents

Normals :

Maxima and minima

Point of inflection

ARi78
. 179
. 184
. 185
5 ST
. 188
. 190
. 191
. 192
. 194



X CONTENTS

ARTICLE PAGE
104. Limit of ratio of arc tochord . . . . . . . . . . 195
105. The derivatives o and 4y LU B e o el - TR STy T

ds ds
106. Velocity . . . FE A5 ol IR NSNS SRS R L)
107. Components of velomty P AT o Tm o -t 200
108. Acceleration and force . . . Lales B R e k202
109. Other illustrations of the deruatlve HITAR &8 Mas R 1 0.5
0N Imteprationt - el s S SRR ea R AR e Sl ()6
Broblems# " 2| Heom SIS RSN Eweioh S o RN, S0 ()0

CHAPTER X-—CHANGE OF COORDINATE AXES

111. Introduction . . e 12 T
112-114. Change of origin Wlthout change of dlrectlon of AXES) RIS (7
115. Change of direction of axes without changc of origin . . 221
116. Oblique codrdinates . . . 223
117. Change from rectangular to obhque axes V\’lthout ch‘moe of
origin . 224
118. Degree of the transfonned equatlon 225
Problems 225

CHAPTER XI—THE GENERAL EQUATION OF THE SECOND DEGREE

119. Introduction . 229
120. Removal of the xy-term . 229
121. The equation 4% + By? + 2 Gx + 2 Fy + C 0 231
122. The limiting cases e A . 234
123. The determinant AB — 112 d . 235
124. The discriminant of the general equatlon . 236
125. Classification of curves of the second degree. 237
126-127. Center of a conic . 238
. 128. Directions for handling numerlcal equat]ons 2 240
129. Equation of a conic through five points . . . . . . . 241
1:30-4Obliqueicosrdinates e RREL RS SEES R e S o1 1!
Problems il . 450 SSlie WSSl <L T vt e I R O Y
CHAPTER XII — TANGENT, POLAR, AND DIAMETER FOR CURVES
OF THE SECOND DEGREE
131. Equationofa tangent . . . . . . . . . . . . . 246
132. Definition and equation of a polar . . . . . . . . . 247

133. Fundamental theorem onpolars. . . . . . . . . . 247



ARTICLE

134.
135.
136.
137.
138-140.
141.
142.
143.
144.
145.
146-147.

CONTENTS xi

PAGE

Chord of contact . . 248
Construction of a polar . 249
The harmonic property of polars . 249
Reciprocal polars . : . 251
Definition and equation of a dlameter . 252
Diameter of a parabola . ; . 254
Parabola referred to a diameter and a tangent as axes 255
Diameters of an ellipse and an hyperbola . . 256
Conjugate diameters , . 258
Ellipse and hyperbola refelred to coujugatc dmmetels as axes 259
Properties of conjugate diameters . 260
Problems . 262

CHAPTER XIIT — ELEMENTARY TRANSCENDENTAL FUNCTIONS

148. Definition . 266
149. Graphs of trlgonometrlc functlom : 266
150. Graphs of i inverse trigonometric functions 269
151. Limits of ———Sl;: L and Ly —}cosh : . 270
y
152. Differentiation of trigonometric functions i 272
153. Differentiation of inverse trigonometric functions . 276
154. The exponential and the logarithmic functions . 279
155. The number e . o 280
4 AR
156. Limits of (1 +2)% and &1 283
157-159. Differentiation of exponential and logarithmic functions 284
160. Hyperbolic functions A 288
161. Inverse hyperbolic functions . 291
162. Transcendental equations . 293
Problems 296
CHAPTER X1V — PARAMETRIC REPRESENTATION OF CURVES

163. Definition . 302
164. The straight line . . 302
165. The circle . 303
166. The ellipse . . 303
167. The eycloid . . 305
168. The trochoid . 306
169. The epicycloid . . . 307
170. The hypoeycloid . . 309



Xil

ARTICLE
7RI
372
173.
174.

175-176.

177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.

190.
191-192.
193.
194.
195.
196.
O

CONTENTS

Epitrochoid and hypotrochoid
The involute of the circle .
Time as the arbitrary parameter
The derivatives

Applications to locus prob]ems
Problems

CHAPTER XV — POLAR COORDINATES

The coérdinate system .
The spirals

The conchoid .

The limagon

The ovals of Cassini.
Relation between rectangular and polar cooT dmates
The straight line .

The circle

The conie, the focus bemw the pole

Examples !

Direction of a curve . :

Derivatives with respect to the are’.

Area .

Problems

CHHAPTER XVI—CURVATURE

Definition of eurvature .

Radius of curvature

Coordinates of center of cury ature ;

Evolute and involute

Properties of evolute and 1nvolute o RS
Radius of curvature in parametric reprwentatlon .
Radius of curvature in polar cosrdinates .
Problems

ANSWERS .

INpEX |

PAGE

. 309
. 311
. 313
. 315
. 316
. 323

. 329
. 331
. 334
. 336
. 338
. 341
. 342
. 342
. 343
. 344
. 345
. 347
. 348
. 349

. 353
. 354
. 356
. 357
- 859
. 360
. 861
. 362

. 365
. 881



A COURSE IN MATHEMATICS

CHAPTER I
ELIMINATION

1. Determinant notation. Elimination is the process of obtain-
ing from a certain number of equations containing two or more
unknown quantities one or more equations which do nof contain
all of these quantities. The quantities removed are said to have
been eliminated. The solution of equations is essentially the elim-
ination of all but one of the unknown quantities. The process of
elimination leads to the formation of certain expressions in the
coefficients, for which a special name and a corresponding notation
have been invented. In this chapter we shall consider equaticns of
the first degree, or linear equations. These are equations in which
no term contains more than one unknown quantity, and that in
the first degree.

Ex. 1. ax + by +c, =0,

)]
agx + boy + ¢z = 0.
To eliminate y, multiply the first equation by bs, the second by — b;, and
add. To eliminate «, multiply the first equation by — ap, the second by a,,
and add. There results

(a1bg — ash) x + (c1bz — caby) = 0,

@)
(albg -_ azbl) ¥+ (a162 — agcl) =0
Unless ayby — azh, = 0, equations (2) give at once the solution of (1).
If aybg — ashy = 0, the method used to eliminate y also eliminates x, and the
equations need further discussion, to be given in § 6.
1



2 ELIMINATION

Ex. 2. ax® + b1y + ez + dy = 0,
as® + bay + oz + dg =0, (1)
asx + bsy + csz + dz = 0.

To eliminate y and z, multiply the first equation by (becs — bscz), the second
by — (bics — bsey), the third by (bice — bac1), and add. There results

[a1 (szs - bng) — Qg (blcg — bscl) + asg (b162 — bﬁcl)]a:
+ [dy (bacs — bsce) — da (bics — bscr) + da (bice — bacs)] =0,

or (a1bacs + asbsey + agbice — absca — aghbics — ashacy) @
+ (d1b263 + dgbscy + dsbics — dibsce — dobics — dgbecy) = 0. (2)

To eliminate  and z, multiply the first equation by — (azcs — ascs), the
second by (aics — asc1), the third by — (aicz — aqc1), and add. There results

(a1bacs + asbscy + agbice — arbsez — asbics — agbacr) ¥
+ (aldgcg —+ a2d361 + a3d102 — a1d362 — a2d103 - agdgcl) =0. (3)

To eliminate ¢ and y, multiply the first equation by (asbs — asbs), the second
by — (aibs — asby), the third by (aibs — azb1), and add. There results

(a1bacs + ashsey + agbica — a1bscy — agbics — asbsc1) z
+ (albzda -+ a2b3d1 + agbldg = a1b3d2 == agbldg -— asbgd]_) =0. (4)

Equations (2), (3), and (4) give the solution of (1), unless

a1bgCs + abaCr + asbice — a1bats — agbics — asbacy = 0.

The exceptional case will be considered in § 6.

The binomials which occur in the solution of Ex. 1 are called
determinants of the second order. The symbol

@y bl
a b,

is used to denote the determinant a,b,— a,b,. Then equations (2)
of Ex. 1 may be written

a
a,

a, b
a, b

(e Th
aZ 02

1 bl cl bl
¢, b

2 2

x+ =0, = 0.

2 2 2 2



DETERMINANT NOTATION 3

The polynomials which occur in the solution of Ex. 2 are called
determinants of the third order. The symbol

s
ay by ¢
as by ¢

is used to denote the determinant

@,byey+ @bge, + aghic,— @ bye,— b, — agbye,.

The results of Ex. 2 may then be written

a’l bl c1 dl bl Cl l al bl Gl (1/1 dl cl
a, b, ¢lz+|d, b, ¢, =0, a, b, clytia, d ¢|=0,
as bs 83 dﬂ bs 63 “s bS Cs as d3 c8
aq by e, @i by dy |
a, b, clz+|a, b, dy|=0.
(1 g GERO S
By the work of Ex. 2,
[ I S iy @ e (0
a b c.l=a 2 o= a, ol 1 + a 1 il A
a: b2 cz 1 b3 08 K bs 03 h b2 2

which may be taken as the definition of a determinant of the
third order. :

Similarly a determinant of the fourth order is indicated by the
symbol :

@ b yuos Ny

d, by Ty o,

e Us oSl

g o Uy IS C

and is defined as equal to

bselind. &y ey ) Uil bwite d. |
@, |\ by wia3% d (ng:b3 e, dy|l+a,\b, ¢, d,|—a,lb, ¢ d,
b4 64 dl 1 b4 c4 dl 4 ci d~l bB CS dS




4 ELIMINATION

If now each of these determinants of the third order is expressed
in terms of determinants of the second order, we shall have finally
the determinant of the fourth order expressed as an algebraic
polynomial of twenty-four terms.

2. In general a determinant of the nth order is an algebraic
polynomial involving »* quantities, called elements. The symbol
of the determinant is obtained by writing the elements in a square
of » rows and » columns. If in such a symbol a row and a col-
umn are omitted, there is left the symbol of a determinant of the
next lower order. This new determinant is said to be a minor of
the original determinant, and is said to correspond to the element
which stands at the intersection of the omitted row and column.
We shall now give as definition :

A determinant s equal to the algebraic sum of the products
obtained by multiplying each element of the first column by its
corresponding minor, the signs of the products being alternately
plus and minus.

By repeated application of the same definition to the minors
obtained, we eventually make the value’of the determinant depend
upon determinants of the second order, and thus obtain the poly-
nomial indicated by the original symbol.

Students who desire a more general definition and discussion of
determinants are referred to treatises on the subject. We shall
derive here, as simply as possible, only those properties which are
of use in solving equations. Before doing so, however, we need to
show that the word “column” may be changed to “row” in the
above definition, thus: 4 determinant is also equal to the sum of
the products obtained by multiplying each element of the first row
by the corresponding minor, the signs of: the products being alter-
nately plus and minus.

For a determinant.of the third order the student may verify
that

a, b, ¢ ik

CRARERRNS @ a, ¢ h il
a,2 [)2 02 — al Zz 2 {r, 1044 ],1 2 0] +- cl 2 b‘z
as b3 cs )3 CS { (l3 c3 aa 3
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5

The theorem thus shown to be true for a determinant of the
third order may be proved for one of the fourth order as follows:

R0 e Y A boe, d| |b e d
i 2= b ies o0y € dil+a lb, ¢, d,
aj bz ci dj b, ¢ d, by ¢ d, by ¢, d,
b, ¢, d,
— a,lb, ¢, d, (by definition)
b3 03 dS
b, ¢, d,
== b: c: ds _az{bl 5 ZB TR b3 ds +d1 bs 63}
b4 (/,4 d4 4 4 b4 d4 bl 64
¢, d b, d b, ¢
Feble | ol + 4l )
i, o L b 8 b, ¢,
{8l =l g+l
(as already proved)
b2 Cy dz d.
d ¢, d
= s Qs _
=alle o dl-adas -l o+l g}
b, d b, d b, d
#e Loy al| ol |+l 1}
(15 05 b, ¢ b, ¢
B B R e R A
(by a rearrangement)
Ot Wy (b (0 a, b, d, a, b, ¢,
=41b303d8—bacd3+cla3b3d —d,la;, b c,
|0, ¢, d, a, ¢, d, e B2 a,'b, e

(by definition)

In a similar manner the theorem may be proved successively
for determinants of the fifth, the sixth, and, eventually, any order.
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3. Properties of determinants.

1. A determinant is unchanged in value if the rows and the
colummns arc interchanged in such a manner that the first row
becomes the first column, the second row the second column, and
s0 on.

The student may verify that

1A = G S il
b
a, b, b, 0,
a, by e a, @, Q4
RN s [l el o
a; by e, Cy =G Gy

This proves the theorem for determinants of the second and
the third orders. To prove it for one of the fourth order, proceed
as follows:

Z1 21 Zl‘ gl b, ¢, d, b, ¢, d1 b, ¢ dl Z)l oAl
a,zb: c: d: = a,|b, ¢, dy| — a,|b; ¢, dg|+ a5b, ¢, dy| —a,|d, ¢, d,|;
a, b4 04 d4 b4 04 d4 b4 64 d4 b4 ¢y d4 63 63 d3
0661 6732 61;3 %4 by b, b, by, by b, byby by b, b, b,
cl 02 ca 64 =@, €y €3 Cyf— Ayl & G5 C4 +a,l e ¢ o —a, e, ¢ g
di d: d: d: d,d, d, d, d, d, d, d, d, ndl dy

The expressions on the right of these equations are equal, and
hence the determinants of the fourth order are equal. In the same
manner the theorem may be proved for determinants of higher
order.

Tt follows from this theorem that any property which is true of
the rows is also true of the columns, and vice versa. The following
theorems are stated for both rows and columns, but are proved for
the rows only.
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2. If two consecutive rows (or columns) of a determinant are
interchanged, the sign of the determinant s changed.

The student may verify that

/A L R L b,|.

b

a, b, a, b
Ol Ly T o s 02‘ Mol RO GY
ty b, ¢|=—|a, b, 011’ & 0,050, =— |, by ¢
a by ¢ a; by ¢ a, b ¢ a, b ¢

The theorem is then proved for determinants of the second and
the third orders. To prove it for a determinant of the fourth order,
consider :

a'l 21 cl Zl al 21 cl (gl

a S, e, Qg 05 Cz. Oy

a: (e G5 g et i ms kA

@ Uy WA

By definition,

a b e d
lai b: c; dl b, ¢, d, by e, d, by ¢ dy by e, d,
a, b, ¢ (l,2 = a,|b, ¢ dy|— a,|by ¢, dy| + a5|D, ¢, dy| — ,|b, ¢, dy|;
Hl; bz Ci d:: b4 Cy d4 ‘64 G d4 b4 s d4 bS Cs d3
lpih Ve = dlal
a: b, ¢ d, by €5 dy b ¢ d, by e, d, b o, d,
\u; b: CZ dz =% b2 Cy dz % bz Cy dz t+a bs Cs d8 % b3 Cs d3 1
e b, c, d, byopd, b, ¢, d, b, ¢, d,
1774 74 64 4 i

Comparing these two expressions, it will be noticed that the
minors which multiply «, and a, (the elements of the unchanged
rows) differ in the two expressions by the interchange of two con-
secutive rows, and that the minors which multiply «, and «; (the
elements of the interchanged rows) are the same in the two expres-
sions but are preceded by opposite signs. It is evident on reflection
that these laws always hold; and hence, if the theorem is true
for determinants of any order, it is true for determinants of the
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next higher order. The theorem is known to be true for determi-
nants of the third order; hence it is universally true.

3. A determinant s equal to the algebraic sum of the products
obtained by multiplying each element of any row (or colummn) by its
corresponding minor, the sign of each product being plus or minus
according as the sum of the number of the row and the number of
the column in which the element stands s cven or odd.

For the Zth row may be made the first row of a new determi-
nant by £ — 1 interchanges of two consecutive rows. By theorem 2,
if % is odd, the new determinant is equal to the original one; and
if % is even, the new determinant is equal to minus the original one.
The new determinant may now be expressed by definition as the
algebraic sum of the elements of its first row multiplied by their
minors, which are the same as those of the Zth row of the original .
determinant. Hence the original determinant is equal to the alge-
braic sum of the elements of its Ath row multiplied by their minors,
the products being alternately plus and minus when % is odd, and
alternately minus and plus when % is even. From this the law of
signs as given in the theorem at once follows.

a b1 C1 d1
(17 b2 Co d2
as ba c3 dg
ay b4 Cyq d4

a b ¢ dy
ag by ¢y dy
az by ¢ dg
az by c3 d3

ag by ¢y dy
a; by ¢ b
az by c2 dp
ag by c3 ds

ay by ¢ dg
az by ¢y do
ag by cy dy
ag bz c3 ds

'bl C1 d1 ap € dl ay b1 d1 ay bl Cy
=—asby cp do| + bs|as co do| —cslag by do|+ dy|ag by cg|.
|bs cg dg ag cz ds ag bg ds as bs cg

When a determinant is thus expressed it is said to be expanded
according to the elements of the Ath row. We shall call the
coefficient of an element the quantity which multiplies it in
the éxpansion.

Then the coefficient of an element is plus or minus the corre-
sponding minor according as the nwinber of the row added to the
number- of the column is even or odd.
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The coefficient of @, shall be denoted by A, that of b, by B,
and so on. Then

g boe,
a, b, ¢,|=0a,d,+a,d,+ad,
a3 b3 03

=b,B, + b,B,+ b,B,
=¢,C, + ¢,C, + ¢,C,
=a,4,+ b B+ ¢, C,
=a,4,+ b,B,+ ¢,C,
= a,A, 22 b, B, + ¢, C,.

4. If any two rows (or columns) of a determinant are inter-
changed, the sign of the determinant is changed.

For suppose the determinant is expanded as in theorem 3, and
that two rows other than that used in the expansion be inter-
changed. A similar interchange takes place in the minors of the
expansion. Hence, if the theorem is true for each of the minors,
it is true for the determinant. In other words, if the theorem is
true for determinants of any order, it is true for those of the next
higher order. But the theorem is certainly true for determinants
of the second order. Hence it is always true.

. 0. If two rows (or columns) of a determinant arve the same, the
determinant is equal to zero.

Let a determinant with two rows the same be expanded accord-
ing to the elements of some other row. Each minor of the expan-
sion has two rows the same. Hence, if the theorem is true for
determinants of any order, it is true for determinants of the next
higher order. But the theorem is certainly true for determinants
of the second order, for

(i )
ai bi' =ab, —ab =0,

Hence it is universally true.



10 ELIMINATION

6. The sum of the products obtained by multiplying the elements
of any row (or column) by the coeficients of the corresponding elc—
ments of some other row (or column) s zero.

Consider, for example,

a, b, ¢ d
a, b, ¢, d
a: b: c: d: =a,4,+ 1)232 +¢,C,+ d,D,.
a; b, ¢, d

S

4 4 4

If we replace a,, b,, ¢,, d,, on the right-hand side of this equation
by a,, b,, c,, d,, the same substitution must be made on the left-
hand side. Then we have

a b ¢ 31

a C .

a: b: c: d: =ad,+bB,+ ¢, 0+ 4D,
a, b, ¢, d,

But the determinant is zero, by theorem 5; therefore
A+ 0,B,+ ¢,C,+ d.D, = 0.
It is evident that the proof is general and establishes the

theorem.

7. If each element of any row (or column) is multiplied by the
same quantity, the determinant is multiplied by the same quantity.

This follows at once from theorem 3. For example,

@, bl kc1 d1

a, b, ke, d

a: b: ]gc: d: = ke, C,+ ke,C, + ke, Cy + ke, C,
Gl o e,

=k [¢,C+ ¢,Co+ ¢, Cy+ 6404]

al bl cl dl
=W a, b, Cq dz X

a, by ¢, d

a, b, ¢ d,
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8. If each of the elements of any row (or column) is tncreased
by the same multiple of the corresponding element of any other
row (or column), the value of the determinant is unchanged.

We wish to show, for example, that

al Zl cl gl
a ¢
e )
a, b, ¢ d,
a, bi+kd, ¢ d
@ bt kd, ¢, d, @)
@y b+ kdy, ¢, d,
a, b+kd, ¢, d,

Tet the coefficients of the elements in the second column of
(1) be B, B,, By, B,. Tt is evident that these are also the coeffi-
cients of the elements of the second column of (2). Hence (2)is

(by+ i) By + (by+ kdy) By + (b + hedy) By+ (b, + kd,) B,,
which equals
b,B,+ b,B,+ b,B,+ b B, + k(d,B,+ d,B,+ d,B,+ d,B,).

The coefficient of % in this equation is zero, by theorem 6, and
the remaining terms equal the determinant (1). Hence (2) = (1).

It is evident that the proof is general. The following are special
cases: If k=1, the elements of one row or column are added to
the corresponding elements of another row or column; if A =—1,
the elements of one row or column are subtracted from those of
another row or column. :

This theorem is often used in simplifying determinants.
1 -2 1 2
3 -5 3 5

3 8 gt @)
Rt S

Ex. 1. Consider

If the elements of the second column are added to those of the fourth column,
this becomes

i d gl g
ST .
U Ry @
§- g gty
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If twice the elements of the first column are added to those of the second
column, (2) becomes

®

o = o =
— O -t D
DO QO OO =
|
(=N S Y]

If the elements of the first column are subtracted from those of the third
column, (3) becomes

*)

CO =t OO =t
OO
oo
(=3 SN}

Expressing (4) as the sum of the product of the elements of the first row
.and their coefficients, it becomes

1 0 0
0 4 —2(; 3
1 -1 0
Y148 B
and this is equal to & ol=-— 2.
a3 Ll
Ex. 2. Consider |z; 1 1.
Tz Y2 1

)
By successive subtraction of the elements of one row from those of another
we have

G TR B z—2 yY—un O T —x ¥y —y1 O
zy 9 L=l = N =21 —@ y—y2 O
T2 Y2 2 Y2 1 Z2 Y2 1l

, the last transformation being made by
theorem 3.

_{x —-T Y -
Ty — T2 Y1 — Y2

4. Solution of n linear equations containing n unknown quan-
tities, when the determinant of the coefficients of the unknown
quantities is not zero. We are now prepared to show that the
method used in § 1 to solve equations with two or three unknown
quantities can be so generalized as to apply to any system of
equations of the first degree in which the number of equations is
equal to the number of the unknown quantities. For convenience
we will take the case of four equations, but the student will readily
see that the method is perfectly general.
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Consider the equations

ax+by+er+dwte =0, (1)
ax + by +cz+dw+e, =0, (2)
ax + by + ez + dw + e, =0, (3)
ax+by+ez+dw+e,=0. 4)

Let the determinant of the coefficients of the unknown quan-
tities z, ¥, 2, w be denoted by D, so that

-
ix)
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-
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and let A4, denote the coefficient of a,, B, the coefficient of 5,, and
so on. We assume D = 0. '

If now we multiply (1) by 4,, (2) by 4,, (3) by 4,, (4) by 4,,
and add the results, we have, by theorems 3 and 6, § 3,

Dx+e A +eA,+eA,+eAd,=0. (5)
Similarly, by using B,, B,, B,, I3, as multipliers, we have
Dy+eB +e,B,+eB,+eB,=0; (6)
by using C,, C,, C,, C, as multipliers, we have
Dz+¢,Ci+ ¢,C,+ ¢,C;+ ¢,C, = 0; (7)
and by using D, D,, D,, D, as multipliers, we have
Dw+e D+ e,D,+ e, D+ e D, = 0. (8)
Now it is clear that any values of z, y, 2, w which satisfy (1),
(2), (3), (4) satisfy also (5), (6), (7), (8). Conversely, any values
which satisty (5), (6), (7), (8) satisty also (1), (2), (3), (4). For if
we multiply (5) by a, (6) by b, (7) by ¢,, (8) by d,, and add, we
obtain (1). Similarly (2), (3), (4) can be obtained from (5), (6),

(7), (8). Hence (1), (2), (3), (4) and (5), (6), (7), (8) are equivalent
equations.
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e A, +e,d,+ e, A, 4 e, 4,

Now

e, B, +e,B,+ ¢, B, + e, =

6,0+ 6,0+ e, Cy+ ¢,Cy=

and
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Hence we may state the following important theorem :

Any system of n linear equations containing n unknown quan-
lities has one and only one solution when the determinant formed
by the cocfficients of the unknown quantities is not zero.

This solution may be written down at once, for each unknown
quantity is equal to minus a fraction, of which the denominator is
the determinant of the coefficients and the numerator is a similar
determinant formed by replacing the coefficients of that unknown
quantity by the absolute terms.

IR A 3z +5y—4=0,
20 -3y+7=0.
A b 3 —4
Ll T Y S
BN B v 19 LT oy
2 -3 2 -8
Ex. 2. 22 —-3y+ 2-—-1=0,
4x+b5y—224+2=0,
r—2y+3z2—3=0.
E 2 1 2 -1 1
2 5 —2 4 03 S0
-8 -2 3 1 -8 3
- — =0, = =10
¢ TR N IR AT 2
4 5 —2 4 5 —2
1 -2 3 1 -2 3
2 -8 -1
4 b 2
1 -2 -3
z=—r — =1
2 -3 1
4 5 —2
1 -2 3 ‘

5. Systems of n linear equations containing more than n un-
known quantities. When in a set of linear equations the number
of equations is less than the number of unknown quantities, the
equations have usually an infinite number of solutions, but may
have none. The general method of procedure in solving them is to
pick out a number of the unknown quantities equal to the number
of the equations and having the determinant of their coefficients
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not zero. These are solved by the method of § 4. We then have
these unknown quantities expressed in terms of the others.

Ex. 1. 2¢+8y+ z+4=0,
r—2y+32+2=0.

If we choose  and y for the unknown quantities, we have
a2 Sy
D)= ‘ T l =—1.

Then, solving as in § 4, we have
.

z+4 )
= SIS S B IS
= 2 LI R i

il =59

2 z+4

1 3242| 5
¥ 2 [T

==

and since z may be given any value whatever, the equations have an infinite
number of solutions.

Ex. 2. 224+383y+ 2+4=0,
22 +3y+224+3=0.

If we choose to solve for ¢ and ¥, we have

2 3
D:l2 =0

But if we choose to solve for y and 2z, we have

B G
p=|3 3|=s

T »

The solutions are y=—3%z—3§,
=l

It is possible that no selection of the unknown quantities will
lead to a determinant of the coefficients which is not zero. In this
case the equations may have no solution. The discussion is too
complex for this book, but the student will probably have no diffi-
culty with the cases likely to occur in practice.
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Ex. 3. 2z +3y+2+4=0,
20 +3y+2+4+3=0.

The determinant of any pair of unknown equations is zero. By subtracting
the second equation from the first we have 1= 0, showing the equations to be
contradictory.

6. Systems of n linear equations containing n unknown quan-
tities, when the determinant of the coefficients of the unknown
quantities is zero. Consider again equations (1), (2), (3), (4) of
§ 4, but with the assumption that D = 0. We may proceed exactly
as in § 4, but equations (5), (6), (7), (8) do not now contain the
unknown quantities. In fact, these equations are, in general, con-
tradictory, and consequently equations (1), (2), (3), (4) have, in
general, no solution.

Ex. 1. zT—y+ z2+4+8=0,
22 +y+3z+1=0,
r+2y+22+4=0.

11 =1 1
Here D=2 IESIF=10"
1 2 2|

Lliminating ¥ and z by the method of §4, we have 0z — 24 = 0, which is
absurd. Hence the equations have no solution.

It is, of course, possible that when D =0 each of the other
determinants in (5), (6), (7), (8) is also zero. Each of these equa-
tions is then simply 0 = 0, and gives no direct information about
the solutions of (1), (2), (3), (4). As a matter of fact, in this case,
(1), (2), (3), (4) have, in general, an infinite number of solutions,
but may, under special conditions, have no solutions.

The general discussion is too complex to be given here. We
shall simply state the following theorem :

A set of linear equations containing n unknown quantities has,
in general, no solution when the determinant of the coefficients of
the unknown quantities is zero, but may, under certain conditions,
have an infinite number of solutions.
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In practice, one of the n equations may be temporarily set aside,
and the other » —1 equations, which contain #» unknown quan-
tities, may be examined by the method of § 5. If these equations
can be solved, the solution can be tested in the equation which
has been set aside.

Ex. 2. 20— 3y+ z—1=0,
r— 2y+32+4=0,
Te—11y4+6z+1=0.

If the method of § 4 is used, the result is 0 = 0. Solving the first two equa-
tions for x and y, we have
r="Tz+ 14,
Y= 5z + 9,

and these results are found on trial to satisfy the last of the given equations.
Since z may have any value, the equations have an infinite number of solutions.

7. Systems of linear equations in which the number of the
equations is greater than that of the unknown quantities. If
there are more equations of the first degree than there are unknown
quantities, there will be, in general, no values of the unknown
quantities which satisfy all equations. There may be such values,
however, when certain relations exist among the coefficients of
the equations. To obtain these relations we may pick out a num-
ber of equations equal to the number of the unknown quantities
and solve them. If the solution is substituted in the remaining
equations, there will result certain expressions in the coefficients
which must be zero if the equations are to be satisfied.

The most important case is that in which there are n + 1 equa-
tions containing » unknown quantities. For example, consider

ax+by+ecz+d =0,
a,z+ by +cz+d, =0,
ax+ by +ecz+d, =0,
ax+by+ecz+d,=0.
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o Lo
The solution of the first three equations, if |a, b, ¢,/ = 0, is (§4)
Ay I
dl bl cl bl cl dl
% d2 b2 02 b2 62 d2
e x dy by ¢ Sl by, ¢ d :
al bl cl al bl cl
(1/2 b2 C‘.’. a2 b2 02
as Z)3 03 a3 b5 3
i Gl AN
s A [ ey R
y=__ aa (23 63‘= a3 63 d37,
& 1 Cll 24 bl %
a2 b‘.’ 62 i a2 b‘_’ 02
a; b G| ag by ¢
al bl dl
aZ b2 d2
“rpe a, b, d, 2
al bl cl
aZ b2 02
aS b3 63

Substituting these values in the first member of the last equa-
tion, we have

e il a6 d (1l A A RHIEe)
—a,b, ¢, d,|+0b,|a, ¢, dj—ec,la, b, d,|+d,|a, b, ¢,
(i RS a, ¢ d, ais U d a, by ¢
al bl cl :
a2 b2 CZ
aS ba cs
which, by theorem 3, § 3, is the same as
N o
a‘l b2 c? d2=
g bs Cs ds‘
Wbt e e el
SR
i b s
as Z}S cS
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Hence, in order that the last equation may be satisfied, we must
have

a, b ¢, d
@, bz Ca dz =0
a8 bs 68 d3
iy B Soasl)]

Extending this to any number of variables, we have the theorem :

In order that a system of n+1 linear equations containing n
unknown quantities shall have a solution, it is necessary that the
determinant formed from the coefficients of the unknown quantities
and the absolute terms shall be zero.

Wil x4+ y+ z2—2=0,
2+ y— z+3=0,
z—2y—32z+4=0,
bx—8y—42+1=0.

1 1 1 -2

2 1 -1 3
Here Ife B0 0 4=01

5 1

-3 —4

showing that if the first three equations have a solution it will satisfy the fourth
equation, In fact, the solutionisz=1,y=—2,2=3.

It should be noted that the converse of the theorem stated is
not necessarily true. All that has been proved is that ¢f » of the
equations have a solution, that solution satisfies the (n + 1)st equa-
tion when the determinant is zero. But the determinant may be
zero when the equations are contradictory.

Ex. 2. 20 -8y + z+1=0,
20 —3y+5624+2=0,
2z — 83y —6z—3=0,
22 — 83y +2z2—8=0.

2 -3 1 1

Dl el ol
Here INER e NS =0,

2 -3 2 -8

but any three of the equations may be seen to be contradictory by the method
of §6.
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8. Linear homogeneous equations. An equation is homoge-
neous with respeet to the unknown quantities when the sum of
the exponents of the unknown quantities is the same in each term.
In particular an equation of the first degree is homogeneous when
each of the terms contains one of the unknown quantities; for
example, '

a.z, + a,z,+ ax,+ a,x, = 0,

where z,, z,, z,, z, are the unknown quantities.

This equation is, of course, satistied by placing #, =0, z,= 0,
z, =0, z, = 0, but in practice this solution is generally unimportant.
In such equations, in fact, it is usually the ratios of the unknown
quantities which are important ; for if each unknown quantity is
multiplied by the same number, the equation is unaltered. In fact,
if we place

8|8
It
&
I
Il
=

Ly
— =z,
di

N
]

the homogeneous equation just written becomes the non-homogene-
ous equation

az+ay+az+a,=0.

In this manner a set of homogeneous equations containing n
unknown quantities may be reduced to a set of non-homogeneous
equations containing 7 — 1 unknown quantities by dividing each
equation by one of the unknown quantities. The methods of the
previous articles may then be used. But this method of proced-
ure is open to the objection that the unknown quantity by which
the equations are divided ‘may possibly be zero when the division
is invalid. Tt is better, therefore, to handle the homogeneous equa-
tions as they stand, slightly modifying the methods used for non-
homogeneous equations in a manner which will be clear from the
examples.

Ex. 1. Q1T + Ao + agrs + @424 =0,
bixy + bazy + bsxs + byxy =0, 1)

€11 + CaX2 + €3T3 + c4y = 0.
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We will handle this by the method of § 4, in that we temporarily look upon
21, 3, T3 as the unknown quantities. We have, in the first place,

a, az das dgly G2 Qg
by by bglxy + | by by B3| =0,
€1 C2 C3 C4Ty Cg C3
a; az as Ay A4y ag
bl bg b3 o + b1 b41‘.4 b3 = 0,
€1 C2 C3 €1 C4%s C3
ay dag as G Az Q44
bl b2 bs X3 bl b2 b4(t4 = 0,
C; C3 C3 €1 Co C4l4
which may be written as
a, ag dg ds a3 Q4
b1 b2 b3 ) + bz b3 b4 T4 = O, (2)
€3 C2 C3 Coa C3 C4
ay ag ag a; asz Qa4
by by bglwg —|by by bijxs= 0, (3)
€1 €2 C3 €1 C3 ¢4
ay Gz das ap dg ay
by by bzxz+|by by by|we=0. @
€y C2 C3 C1 Co C4

From these follow :

dg Q3 a4 ay dz Q4| |0y Az A4 a, az ag
Ty:Xo Xzixyg=|by by byl :— bl b3 by|: be b; . —_ b1 bg b3 . (5)
Cz C3 C4 €1 C3 C4f [C1 C2 C4 €1 ¢ C3

The result (5) holds even when one or more, but not all, of the determinants
involved are equal to zero. Then the COX‘I‘G%pODdlI]" unknown quantmes are
equal to zero. For example, if

a az ay4 a; Qg a4
bl b3 b4 = 0, bl b2 b4 =
€1 C3 C4 €1 C2 G4

and the other determinants in (5) are not zero, (3) and (4) show that x; = 0 and
xg = 0, while (2) shows that the ratio of z; and z4 are correctly given by (5).

If all the determinants in (5) are zero, the values of the unknowns are not
thereby determined. In this case, two of the equations (1) should be solved for
two of the unknown quantities in terms of the others, and the results tested for
the last equations.
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1t should be noted that contradictory equations cannot occur. The student
should compare the contradictory equations
2z —3y+4=0,
2x—3y—2=0,
with the homogeneous equations
221 — 323 +4 23=0,
21 —3xg — 223 =0.

By subtracting one equation from the other we have
6 Tz = O,
whence 23=0 and x;: 02 =3:2.

Ex. 2. The four equations

1Ty + Ase + agT3 + agry =0,
b1xy + baxa + bsxs + baxs =0,
c1%1 + Ca%z + C3%3 + 4y = 0,
dyxy + dotg + dgxs + dyzs = 0,

have, of course, the common solutions, &, = 0, #z = 0, 23 =0, 4 = 0. In order
that they may also be satisfied by the same ratios of the unknown quantities, it
is necessary that
ay Az Az Q4
by by b; by
€1 C2 C3 C4
dy dp d; dy

=0

The proof is as in § 7. The condition is also sufficient, for the proof of § 7
shows that if three of the equations have a solution, that will also be a solution
of the fourth equation ; and, as just noted, three homogeneous equations always
have a solution.

9. Eliminants. The result of eliminating all the unknown
quantities from two or more equations is an equation the left-
- hand member of which is called the eliminant; or resultant, of
the given equations. The following cases are important:

1. n + 1 non-homogeneous linear equations with n unknown
“quantities. To eliminate the unknown quantities, we may solve
n of the equations and substitute the solutions in the remaining
equation. The work and the result are as in § 7; that is,

The eliminant of n 41 non-homogencous equations with n un-
known quantities is equal to the determinant of the coefficients and
the absolute terms.
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2. n homogeneous linear equations with # unknown quantities.
To eliminate the unknown quantities, we may solve n —1 equa-
tions for their ratios and substitute the results in the remaining
equation. The work and the result are as in § 8; that is,

The eliminant of n homogeneous equations with n unknown quan-
tities is equal to the determinant of the coefficients.

3. Two equations containing one unknown quantity. Let it be
required to eliminate = between the equations
ar+bx+c, =0, ’ (1)
a, '+ b+ ¢y = 0. 2y

If we multiply each equation by =, we have
a0+ bx*+ecx=0, (3)
and a2’ + b* + cr = 0. 4)

These four equations may now be considered as linear in the
three unknown quantities 43, 2% and #. Elimination gives, by 1,

[ERN
-

R OO

=0. ()

i

-
-

(o W) s s
2
S o8 .S

a
a
b
a, b

2

)

[t

It is clear that if equations (1) and (2) have a common solution,
equation (5) must be true. Conversely, it may be shown that if (5)
is true, (1) and (2) must have a common solution ; but this proof is
too long to be given here.

The method used in the above problem may be used for
equations of any degree and is known as Sylvester’s method of
elimination. It consists in multiplying the given equations by
successive powers of x until we have one more equation than we
have powers of z. The eliminant is then found as in 1.

The method may also be used to eliminate one of the unknown
quantities from two equations containing two unknown quantities.
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PROBLEMS

PROBLEMS

Find the value of each of the following determinants :

1 4 B (SIS0 ll T Y 1|
A EH0 7.3 2 0L 11, {1 2 -1}
< Ix 1\. 1 0] ek 2]
% 11 g |0 @ b
3,|z l .la 0 el TR )
z? 1 b c O 160051 31
4 10 e AN P | ¥
* 110 4f R g‘ . TSR0 -1
5 1 = 9. | b fl.
s . [
|2 3l " f I 0 ay b1 61'
ili 20 w3 1 1 1 13 0 ag b2 62[
6. 12 3 1f. 10. |a b C ¢ Clay bl (] 0}'
43 Je a9 ,az b2 2 laz bz Co Ol
Prove the following relations :
4 2 1 1 -2 -3 1 2 3|
14. |13 4 2[:0. 175 =2 1 31=12 1 3I
5 6 3 SRR AR L
5 4 1]
1513 2. "1ji=0 TR, JEI Seslihengl
g A 18. |22 32 22 =a:yzia: ¥zl
28 Y3 28 22y a2
a 00 b 0 % o
O @ ON 010 b
16. |z ¥ 1 z w|=(ad — bc)% (Al
¢c 0 0 d 0 y z|=@-y)y—2)(z—2)
(1) S (USROS |e2 y2 22
7 1o e T D)
20 ag bg 0 0 !a1 b1 Cy dl
] 0 C1 d1 ‘(12 b2 Ca d2
0 0 Cg dg|
il 4 -3 t')l 5 0 2 1
21 0 6 —8 —1! (1 -6 -3 4
|2 -3 4 2]_ 3 8 4 -3
Bl e e TR e o
a; + d1 bl (3] ay b]_ Cy | ‘dl b1 (2]
22. ag+d2 b2 Co| = | QA2 bg (‘2\+ dz bz Ca e
as+ds by cs| |az bs ¢z (ds bs s
@ 8a; Sas ag O |
[ 1) 3 a) 3 as Qs 81 2 az 9 4 g
23 () 2(11 as 0 0 |=ao ‘)al 1 gs
0 Qg 2(11 as 0 go 2, .)a2
0 0 ap 2a; az | ! %o HZ G 4G

2
= ap{ata? — 6 ayn02as + 4 acas + 4 alas — 3 afad).
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Solve the following equations :

o I—a 2 3
24. '45”93 l:o. RMis| 3 Pl i8I
ek 5 8—x
Write the following equations in their expanded forms:
0 y 1 24y 2 7l
26. 2 -3 =10} 28 5 1l 2 1_O
il (5 4y 11 ¥ 13 25— 3| s
T -
MLl | 1 i
1 0 1 1|_
R G = 29 [t k |_,
0 0 0 1 h b—g|™
a—x h g
30. h b—x f -3 7
g /AR CEN
Solve the following equations :
3l. 42— 5y + 6=0, 317. 101—3y+12z—5=0,
Az —9y +11=0. dx— y 4 6z—-3=0,
bz—2y+ 3z =0.
32. T+ 2y — z2+3=0, 38.m+y+z=a,
20~ y -5=0, y+z+w=>,
@ +22—-8=0. z+w+z=c
w+r+y=d.
1%L
33. 5 i 4 39. 102, + 425 + 625 = 0,
) SRS 3214+ x4 223 =0.
_+__=
PRI s 40. =z + 52y +8x5=0,
1+1=4_ 33}1-}-3332-}- Lei="10:
20 &
41. 221+ 422+ 23 =0,
34. 224+ 4y+3z-2=0, S8 F 08k = 0.
T — 5y+ z+1=0, 42. 2(1}1+ Zg — Hxg + 3}4:0,
3+ 10y +5z—5=0. 3@1—2:52—4::3—2904:0,
1+ T+ 223 — x4=0.
5. 2=
3 g (Y5, e 0’ 43. 221—-3232-}-2233—3.’1:4:0,

be+2y+32+6=0,

20+3y—2z+2=0. 421 + 525+ 45 — 624 =0,

32 — Tag — 223 + 824 = 0.

36. z+y+92-7=0, 44. Tz — bxo+ 85— 4z, =0,
bx—y+92—-6=0, 31+ 2% — big + 92, =0,
3z —y+32—-2=0. 621 — 1625 + 2125 — 3524 = 0.



PROBLEMS 2

Find whether or not the equations in each of the following examples have

a common solution:

45. 22— y+ 3=0,
3z+ y— 1=0,
3x—4y+10=0.

46. bz —2y +7=0,
3z — y+6=0,
r+3y—1=0.

49. For what values of a are the
following equations consistent ?

z+a%y+ a =0,
ac+ y +az2=0,
a2x + . ay + 1 =0.

50. Eliminate z from the equations

y+3x+1=0,
22y —4y+2=0.

51, Eliminate z from the equations

2 +2y +3=0,
zy +4x4+1=0.

52. Kliminate =z and z from the
equations

y+yz —xr+2+2=0,

y—2r+y+2+2=0,
z4+3z2~—2 =10N

47, z— 2y+ 8z2—-1=0,
22+ y— 2z+4+1=0,
z— By+ 22+42=0,
z—19y +222—-4=0.

48. z -2y +1=0,

y—2z+4+2=0,
z—2x+3=0,
z+y+2=0.,

53. Find the condition that
ax? + br 4 c=0,
and BE=pI"

have a common root.

54. Show that the condition that
ax? 4+ br 4+ c= 0,

and fgde=ll
have a common root is
astbmse
b ¢c a/ =0.
c a b

55. Show that if
@z + by + ¢ =0,
asx + boy + c2 =0,
asx + bgy + ¢c3 =0,
have a common solution, there can
always be found three numbers I, k,
m such that
a1l + azk + agm = 0,
bll + bgk + b;m = 0,
eyl + ¢k + e3m = 0.



CHAPTER II
GRAPHICAL REPRESENTATION

10. Real number. The science of mathematics deals with vari-
ous kinds of numbers, each of which has arisen through the desire
to perform, without restriction, some one of the fundamental oper-
ations. The simplest numbers are the positive integers, or whole
numbers. If one restricts himself to the use of these, he may add
or multiply together any two of them without obtaining a new
kind of number ; but he may not divide one number by another not
exactly contained in it, nor subtract a larger number from a smaller.
In order that division may always be performed, the common frac-
tions, which are the quotients of one integer divided by another,
are necessary. In order that subtraction may always be possible,
the idea of a megative number must be introduced. The integers
and fractions, both positive and negative, together form the class
of rational numbers. On these numbers the operations of addition,
subtraction, multiplication, and division may always be performed
without leading to a new kind of number.

The operation of evolution, however, leads to two new kinds of
numbers, — the irrational, exemplified by V2 ; and the complex, of
which V— 2 is an example. The complex numbers will be noticed
in § 12; we shall here speak only of the irrational numbers. An
wrrational number is defined as one which cannot be expressed
exactly as an integer or a common fraction, but which may be so-
expressed approximately to any required degree of accuracy. The
simplest examples are the roots of rational numbers; for example,
V7 may be approximately expressed as 384, 28481, ete., but can-
not be expressed exactly. There are also irrational numbers which
are not the roots of numbers and cannot be expressed by means of
radical signs. A familiar example is the number 7= = 3.14159 . - -.
An irrational number may be either positive or negative. The

28
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rational and the irrational numbers together form the class of real
numbers.

A rigorous investigation of the nature and properties of these
numbers, especially of the irrational numbers, is too advanced for
this book. An elementary discussion, however, is given in any
course in algebra, and is here assumed as known.

The real numbers may be represented graphically on a number
scale, constructed as follows: 3

! 5 ; 0 M

On any straight line assume a —f—————— -
fixed point O as the zero point, or
origin, and lay off positive numbers
in one direction and negative numbers in the other. If the line
is horizontal, as in fig. 1, it is usual, but not necessary, to lay off
the positive numbers to the right of O and the negative numbers
to the left. Then any point M on the scale represents a real
number, namely, the number which measures the distance of A1
from O; positive if 2 is to the right of O, and negative if 27 is
to the left of 0. Conversely, any real number is represented by.
one and only one real point on the scale.

11. Zero and infinity. There are two mathematical concepts
usually included in the number series, for which special rules of
operation are needed. These are zero, represented by the symbol 0,
and infinity, represented by the symbol cc.

Zero arises in the first place by subtracting a quantity from an
equal quantity; thus, e —a =0. It signifies in this sense the
absence of quantity — nothing. It cannot, then, either operate
upon a quantity or be operated upon; for all operations imply
the existence of the quantities concerned. Literally, then, the

Fic. 1

: 0 «a . g .
expressions a X 0, —, o’ are meaningless. However, it is possible
@
to put into these symbols conventional meanings, as follows:
. i s,
Take the three expressions ar, =, —» and consider what hap-
O

pens when z is taken smaller and smaller, constantly nearer to
zero but never equal to it. It requires only elementary arith-

. 2
metic to see that ex and = may each be made as small as we
T
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please by taking x sufficiently small, while 2 becomes indefinitely
3

great as x decreases, and may be made larger than any quantity
we may choose to name. We may express the first two results
concisely by the formulas

QRET S
a

ax0=0,

We can express.the last result in a formula, however, only by
introducing the concept infinity. When the value of a quantity
is indefinite, but the quantity is increasing or decreasing in such
a way that its numerical value is greater than any assigned quan-
tity, however great, it is said to become infinite. It is then denoted
by the symbol oo, called infinity. We can accordingly express our

third result by the formula

a
— = co,

which means that when the denominator of a fraction decreases, be-
coming constantly nearer to zero, the value of the fraction increases
and becomes greater than any quantity which can be named.

The symbols a 7

a X oo, = ==
o] a

are also literally meaningless. We can, however, give a conven-

‘ ! K a x L

tional meaning to them by writing ax, —» —; and studying the
49

effect of increasing # indefinitely. FElementary arithmetic leads
to the results expressed by the formulas

a X oo = o, =.().

a o8]
— = 0.
a

[o/s]
: g 0 o

Two other forms also occur in practice, namely, 0 and —- These
(ve]

arise when we have a fraction — in which the numerator and

the denominator either approachyzero’together or increase indefi-
nitely together. The value of the fraction cannot be determined
unless we know a law to govern # and y. These fractions are
consequently called indeterminate forms, and will be considered
later in the course.
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Neither zero nor infinity can be said to have an intrinsic alge-
braic sign. In some cases a quantity may increase in value,
remaining always positive. It is then said to be 4 «. At other
times it may increase numerically, remaining always negative.
It is then said to be — . Often, however, the quantity is indefi-
nitely great in such a way that the sign is ambiguous. An
example is tan 90°. If an acute angle is made nearer and nearer
to 90°, its tangent increases indefinitely, remaining positive. But
if an obtuse angle is made nearer and nearer to 90° its tan-
gent increases indefinitely, remaining negative. Hence we say
tan 90° = co0, and no algebraic sign can be attached to it.

Similar considerations hold for the sign of zero.

12. Complex numbers. If one restricts himself to the use of
the real numbers, named in § 10, it is impossible to perform the
operation of evolution without exception; for the even root of a
negative number is not a real number. It is therefore necessary,
if the generality of all algebraic operations is to be maintained, to
introduce a new kind of number, called a complex number. These
numbers will be used very little in this volume, and the following
résumé of the matter usually contained in algebra is sufficient for
our present purposes. A further discussion will be given in the
second volume.

The dmaginary unit is V—1, and is denoted by ¢. Then

@ =

By multiplying this equation successively by ¢, we find

e el e R R R L 59

and, in general,

,ilk=1’ ,L‘4L'+I=,L" 7:4k+2=_1’ 7:4k+3_____,L',

where £ is zero or any integer.

If 4 is any real number, the product bi is called a pure imagi-
nary number. The square root of any negative number is pure
imaginary ; thus,

Voi1=vVivZi=2i V=5=V5vV_1=1iVi.
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If @ and b are any two real numbers, the combination @ + b
is called a complex imaginary number, or, more simply, a complex
number. A complex number reduces to a pure imaginary number
when « =0, and to a real number when 6 =0. If « =0 and b =0,
the complex number a + b7 = 0; and conversely, if a + i = 0,
then ¢ = 0 and b = 0.

All operations with complex numbers are carried out by using
the ordinary laws of algebra and replacing all powers of 4 by their
values just determined.

Ex.l. V_8xV_2=iV3xiv2=iVe=—V0.

3+\/—4_3+2ix2+2i_6+10i+4i2_2+10i_1+5\/—1
o L 2 D D R R i 2 S S C L 4

Ex. 2.

Two complex numbers such as a 4+ 6¢ and a — b2, where ¢ and b
have the same values in each, are called conjugate complex numbers.
Their product is a real number ; thus,

(a + bi) (@ — bi) = a* + V2.

It is clear that the complex numbers have no place on the num-
ber scale of § 10. , :

13. Addition of segments of a straight line. Consider any
straight line connecting two points 4 and B. In elementary
geometry only the position and the length of the line are consid-
ered, and consequently it is immaterial whether the line be called
AB or BA; but in the work to follow it is often important to con-
sider the direction of the line as well. Accordingly, if the direction
of the line is considered as from 4 to B, it is called 45 ; but if
the direction is considered from B to 4, it is called BA. Tt will

be seen later that the distinction

7% i & between AB and BA is the same

9 as that between +a and —a in
algebra.

Consider now two segments 4B and BC on the same straight
line, the point B being the end of the first segment and the begin-
ning of the second. The segment AC' is called the sum of A5 and
B(C, and is expressed by the equation

AB + BC = AC. (1)
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This is clearly true if the points are in the position of fig. 2, but
it is equally true when the points are in the position of fig. 3.
Here the line BC, being opposite in
direction to 4B, cancels part of it, ~} P z
leaving AC. Fie. 3

If, in the last figure, the point C
is moved toward 4, the sum AC becomes smaller, until finally
when € coincides with 4 we have

AB+BA=0, or BA=—AB. )

If the point C is at the left of A, as in fig. 4, we still have

AB + BC=AC, where AC =— C4 by (2).
It is evident that this addition
& P 5 is analogous to algebraic addition,
Bond and that this sum may be an arith-

metical difference.
From (1) we may obtain by transposition a formula for sub-
traction, namely,

BC=AC—A4B. 3)

This is universally true since (1) is universally true.

This result is particularly important when applied to segments
of the number scale of § 10. For if « is any number corresponding
to the point M, we may always place x = 01/, since both z and OM
are positive when M is at the right of 0, and both z and O are
negative when f is at the left of 0. Now let A7, and M, be any
two points, and let », =03, and x,= OM, Then

MM, =O0M,—OM, = x,— x,.
On the other hand,
MM, = OM,— OM, = »,— x, = — M, M,
It is clear that the segment M M, is positive when 1, is at the

right of 21, and is negative when M, is at the left of M,

Hence, the length and the sign of any segment of the number
scale is found by subtracting the valve of the x corresponding to
the beginning of the segment from the value of the x corresponding
to the end of the seqment.
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14. Projection. Let 4B and MN (figs. 5, 6) be any two straight
lines in the same plane, the positive directions of which are respec-
tively AB and MN. From 4 and B draw straight lines perpendicu-
lar to MV, intersecting it at points 4’and B’ respectively. Then A'B’

B
1
1
|
|

Fic. 6

is the projection of AB on MN, and is positive if it has the direction
MN (fig. 5), and is negative if it has the direction N/ (fig. 6).

Denote the angle between MV and 4B by ¢, and draw AC par-
allel to MN. Then in both cases, by trigonometry,

AC =AD cos ¢.
But AC =A4'B, and therefore
A'B' = AB cos ¢.

Hence, to find the projection of one straight line wpon @ second,
maltiply the length of the first by the cosine of the angle between the
positive directions of the two lines.

Ex. It is customary in mechanics to represent a force by a straight line,
the length and the direction of which denote respectively the magnitude and the

direction of the force. Then the component of the force in any direction is the
projection upon that direction of the line which represents the force.

>
=

| S

pd
u
P

Fic. 8

In particular, let F and F,, represented respectively by AB and AC (figs.
7, 8), be two forces acting at A along the same line, and let MN be a line
which makes an angle ¢ with 4B.
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The respective components of F; and F, are represented by A’B and 47",
and the resultant component is represented by A’B 4+ A°C".

But A’B’=F, cos ¢, and A’C’= F; cos ¢ ; hence, by substitution, the resultant
component is Fy cos ¢ + Fp cos¢. It is to be noted that in fig. 8 F, and F, have
opposite signs.

15. The projection of a broken line upon a straight line is defined
as the algebraic sum of the projections of its segments.

Let ABCDE (fig. 9) be a broken line, MV a straight line in the
same plane, and 4 E the straight line
joining the ends of the broken line.

Draw A4, BB, CC', DD', and ‘41
EE' perpendicular to MN; then ':, :
A'B, B'C', C'D', D'E', and 4'E' 4 B

are the respective projections on ¢
MN of AB, BC, CD, DE, and AFE. Fic. 9
But AB+BC+CD+DE=AF. (by §13)

Hence, the projection of a broken line upon a straight line is
equal to the projection of the straight line joining its extremities.
Ex. If ABCDE (fig. 9) represents a polygon of forces, we have the result:

the component of the resultant in any direction is the sum of the components
of the forces in that direction.

16. Cobrdinate axes. Let X'.X and ¥'J be two number scales
at right angles to each other, with their zero points coincident at O,

I‘Y as in fig. 10.
. Let P be any point in the
3 plane, and through 2P draw
7 straight lines perpendicular to
; (AL ) A R T ;ub - 'X’X an.d AGTE respectively,
intersecting them at Al and V.
i) If now, as in § 13, we place
_1\; P z=0M, and y=0ON, it is
= clear that to any point P there
Vi corresponds one and only one
F16.10 pair of numbers = and ¥, and

to any pair of numbers corresponds one and only one point P.
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If a point P is given, # and y may be found by drawing the two
perpendiculars M and NP as above, or by drawing only one per-
pendicular as MP. Then MP = ON =y and OM = .

On the other hand, if # and y are given, the point P may be
located by finding the points M and NV corresponding to the num-
bers z and y on the two number scales, and drawing perpendiculars
to A'X and Y'Y respectively through M and N. These perpen-
diculars intersect at the required point P. Or, as is often more
convenient, a point M corresponding to x may be located on its
number scale, and a perpendicular to X’.X may be drawn through
M, and on this perpendicular the value of y laid off. In fig. 10,
for example, M corresponding to x may be found on the scale .Y'X,
and on the perpendicular to X'X at M, MP may be laid off equal
to y. When the point is located in either of these ways it is said
to be plotted. It is evident that plotting is most conveniently per-
formed when the paper is ruled in squares, as in fig. 10.

These numbers z and y are called respectively the abscissa and
the ordinate of the point, and together they are called its coordi-
nates. It is to be noted that the abscissa and the ordinate, as
defined, are respectively equal to the distances from Y'Y and X'X
to the point, the direction as well as the magnitude of the distances
being taken into account. Instead of designating a point by writing
x=a and y =—1b, it is customary to write P(a, — b), the abscissa
always being written first in the parenthesis and separated from
the ordinate by a comma. X'X and Y'Y are called the axes of
coordinates, but are often referred to as the axes of = and y
respectively.

17. Distance between two points. Let F(x, y,) and F(z,, ¥,)
be two points, and at first assume that £ is parallel to one of
the coordinate axes, as OX (fig. 11). Then y, =y, Now MM,
the projection of BEE on OX, is evidently equal to RE. But

Y MM,=x,—z (§13). Hence
I BE=a,—a, (1)
1;"1 X 1;:1 < In like manner, if @, =z, RE is parallel
2l B to 0Y, and

Fie. 11 RE =y,~ ¥, (2)
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If z,+ x, and y, + y,, & is not parallel to either axis. Let
the points be situated as in fig. 12, and through B, and I} draw
straight lines parallel respectively to OX and OY. They will meet
at a point I, the coordinates of which are readily seen to be

(%, ). By (1) and (2),

RE=x,—x, EE=y,— Yy,

o,

But in the right triangle RRE,

RE=VEE'+RE,

Fic. 12

whence, by substitution, we have

RE =V(t,— )+ (y, — y,)" 3)

It is to be noted that there is an ambiguity of algebraic sign on
account of the radical sign. But since RZ is parallel to neither
coordinate axis, the only two directions in the plane the positive
directions of which have been chosen, we are at liberty to choose
either direction of RE as the positive direction, the other becoming
the negative.

It is also to be noted that formulas (1) and (2) are particular
cases of the more general formula (3).

Ex. Find the cobrdinates of a point equally distant from the three points
Py(1, 2), Py(— 1, —2), and Py(2, — ).
Let P (z, y) be the required point. Then
PP =R Pand  Po P = PsPs
But PiP=V(z—1)24 (y — 2)3
PP=V( + 1) + (y + 23,
PP =V -7+ (v + o)

W Ve-12+ @ -2 =VE+12+F+27
Ve+12+@+22=Ve-22+(y+5)

whence, by solution, = § and y =— 4. Therefore the required point is

3 =%
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18. Collinear points. ILet P (z, ) be a point on the straight line
determined by E (z,, y,) and I} (z,, ¥,), so situated that P = [ (RL).
There are three cases to consider according to the position of
the point P. If P is between the points 7; and 7} (fig. 13), the

Y Y

X

[

7

0

A

[}
]
i
1
0| M, 1M,

Fic. 13 Fic. 14

segments BP and RF have the same direction, and RP < RE;
accordingly / is a positive number less than unity. If P is beyond
B from F (fig. 14), BP and LE still have the same direction, but
PP > RE; therefore ! is a positive number greater than unity.
Finally, if 7 is beyond £, from F (fig. 15),
L Pand BI, have opposite directions, and
! is a negative number, its numerical value
ranging all the way from 0 to co.

In the first case P is called a point of
internal division, and in the last two cases
it is called a point of external division. -

In all three figures draw KA, PJI,
and LM, perpendicular to OX. In each
figure OM = OM,+ M, M ; and since FP =I(RE), M,M=1(M, D),
by geometry.

"<1
9

RSN

o

(-
o

E [P TTEp Y
©

/ M O

Fic. 15

. OM=O0M,+ (ML),
whence, by substitution,
Tl U (i) (1)
By drawing lines perpendicular to OY we cam prove, in the

same  way,
Y=+ -5 )
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In particular, if P bisects the line 7, I = 1, and these formulas

become
; Ao SRR

2 2

Ex. 1. Find the cotrdinates of a point 2 of the distance from P;(2, 8) to
Py (3, —3).
If the required point is P (x, y),

x=2+§(3—2):2%,
y=38+3(—-3-38) =%
Ex. 2. Prove analytically that the straight line dividing two sides of a tri-
angle in the same ratio is parallel to the third side.

Let one side of the triangle coincide with OX, one vertex being at O. Then
the vertices of the triangle are O (0, 0), A (x;, 0),

B(zs, y2) (fig. 16). Let CD divide the sides OB Y
and AB so that OC = 1(OB) and AD = l(4B). B

If the cotrdinates of ' are denoted by (z3, ¥3)
and those of D by (xi, %), then, by the above c 7
formulas,

x3 = lxg ys = lys
(4 ) 0 A X

and zy =2 + L(x2 — T1), Y4 = lya.

Since y3 = ¥4, CD is parallel to OA. Fic. 16

19. Let us now see what happens as different real values are
assigned to /. When /=0, P coincides with Z; (fig. 17). As I
' increases in value, the

point P moves along the
line toward Z till, when

{ =1,it ceincides with £.

As the value of 7 con-
tinues to increase, the

X point P continues to move
along the line away from
BroiiT I} and in the same direc-

tion as before.

If negative values are assigned to /, in ascending order of numer-
ical magnitude, the point P moves along the line, away from B, in
the opposite direction from £,

-®</<(
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It follows that
2+ l(z,—x,) and y,+(y,—y,)

may be made to represent the codrdinates of any point of the
straight line determined by the points £ and E by assigning the
appropriate value to [/, the range of values for each segment of
the line being indicated in fig. 17.

Ex. Consider the straight line -determined by the two points Py(— 1, — 4)
and Py(5, 6). Any other point P on this line has the cotrdinates

r=—14+061, y=—44+101L

When [ <0, it is clear that x < —1, y < — 4; hence P lies at the left
of P;. When 0<I<1, it is clear that —1<2x <5, —4 <y <6; hence P
lies between P; and P;. When I >1, it is clear that x> 5, ¥y > 6; hence
P lies at the right of Ps.

20. Variable and function. A quantity which remains un-
changed throughout a given problem or discussion is called a
constant. A quantity which changes its value in the course of
a problem or discussion is called a wariable. If two quantities
are so related that when the value of one is given the value of
the other is determined, the second quantity is called a function
of the first. When the two quantities are variables the first is
called the independent wvariable, and the function is sometimes
called the dependent variable. As a matter of fact, when two
related quantities occur in a problem it is usually a matter of
choice which is called the independent variable and which the
function. Thus, the area of a ecircle and its radius are two
related quantities such that if one is given the other is deter-
mined. We can say that the area is a function of the radius,
and likewise that the radius is a function of the area.

The relation between the independent variable and the function
can be graphically represented by the use of rectangular codrdi-
nates. For, if we represent the independent variable by x and the
corresponding value of the function by 7,  and y will determine
a point in the plane, and a number of such points will outline a
curve indicating the correspondence of values of variable and
function. This curve is called the graph of the function.
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Ex. 1. An important use of the graph of a function is in statistical work.
The following table shows the price of standard steel rails per ton in the
respective years:

1895 . . . . . . $24.33 LODOM & S sod g o 0 1§32 20
TS et B e et 0] OO w5 S 02788
LSO Tad it = iniby LON1807 5 IR S s (i v 50 g M28.00
IBOSRLS o Era tl b g T 62 LGOS TR =Y oy et e s 1o 28500
F809x i ams iy nape s ya28 )10 LODARE ot R e 8 28 06

If we plot the years as abscissas, calling 1895 the first year, 1896 the second
year, etc., and plot the price of rails as ordinates, making one unit of ordinates
correspond to ten dollars, we shall locate the points Py, Py, . . ., Pioin fig. 18. In
order to study the variation in price, we join these points in succession by straight

.
E
E B LRI
B n ¢/
N—V
0 X
Fic. 18

lines. The resulting broken line serves merely to guide the eye from point to
point, and no point of it except the vertices has any other meaning. It is to
be noted that there is no law connecting the price of rails with the year.
Also the nature of the function is such that it is defined only for isolated
values of z.

Ex. 2. Asasecond example we take the law that the postage on each ounce or
fraction of an ounce of first-class mail matter is two cents. The postage is then a
known function of the weight. Denoting each it
ounce of weight by one unit of z, and each two Yy
cents of postage by one unit of y, we have the
series of straight lines (fig. 19) parallel to the
axis of z, representing corresponding values of
weight and postage. Here the function is defined
by United States law for all positive values of z,
but it cannot be expressed in elementary mathe-
matical symbols. A peculiarity of the graph is
the series of breaks. The lines are not connected,
but all points of each line represent correspond-
ing values of z and y. Fie. 19

0 X
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Ex. 8. As a third example, differing in type from each of the preceding, let
us take the following. While it is known that there is some physical law con-
necting the pressure of saturated steam with its temperature, so that to every
temperature there is some corresponding pressure, this law has not yet been
formulated mathematically. Nevertheless, knowing some corresponding values

of temperature and pressure, we can construct
a curve that is of considerable value. In the
o table * below, the temperatures are in degrees
Centigrade and the pressures are in millimeters

of mercury.

/
I TE]\IPERATURE PRESSURE
100 760
/ 105 906
/ 110 1074.7
115 1268.7
/ 120 1490.5
125 1743.3
/ 180 2029.8
135 2353.7
1 140 2717.9
/ 145 3126.1
/ 150 3581.9

Let 100 represent the zero point of tempera-
/ ture, and let each unit of = represent 5 degrees
of temperature ; also let each unit of y represent
100 millimeters of pressure of mercury, and locate
the points representing the corresponding values
of temperature and pressure given in the above
table. Through the points thus.located draw a
smooth curve (fig. 20) i.e. one which has no sudden
changes of direction. While only the eleven points
located are exact, all other points are approxi-
mately accurate, and the curve may be used for
approximate computation as follows : Assume any
temperature, and, laying it off as an abscissa,
measure the corresponding ordinate of the curve.
While not exact, it will, nevertheless, give an approximate value of the corre-
sponding pressure. Similarly, a pressure may be assumed and the corresponding
temperature determined. It may be added that the more closely together the
tabulated values are taken, the better the approximation from the curve, but
the curve can never be exact at all points.

Fic. 20

* From C. H. Peabody’s ‘ Steam Tables,” computed for sea level at a latitude of
45 degrees. I
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Ex. 4. Asa final example, we will take the law of Boyle and Mariotte for per-
fect gases, namely, at a constant temperature the volume of a definite quantity
of gas is inversely proportional to its
pressure. It follows that if we repre-
sent the pressure by x and the corre-

]7

sponding volume by y, then y =_I‘f'

Le

z
where k is a constant and ¢ and y are \
positive variables. A curve (fig. 21) in
the first quadrant, the coordinates
of every point of which satisfy this
equation, represents the comparative
changes in pressure and volume, show-
ing that as the pressure increases by a
certain amount the volume is decreased
more or less, according to the amount X
of pressure previously exerted. £

This example differs from the pre- Fic. 21

ceding in that the law of the function
is fully known and can be expressed in a mathematical formula. Consequently,
we may find as many points on the curve as we please, and may therefore con-
struct the curve to any required degree of accuracy.

1. Classes of functions. We shall consider in this book only
those functions of one variable which can be expressed by means
of elementary mathematical symbols. The simplest kind of such
functions is the algebraic polynomial, expressed by

age* + ax" '+ -+, x4+ a,

where all the exponents are positive integers and the coefficients
Ay, @y, + -+, @, _,, a, are real or complex numbers or zero. The
number n is the degree of the polynomial. These functions are
discussed in Chaps. IIT and IV,

The quotient of two algebraic polynomials is a rational algebraic

Jraction, expressed by

aZ" + axz" "t 4. +a,_,2+a,
g™ + by -+ b, + b,

Examples of functions of this kind are discussed in Chap. VL
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If a function requires for its expression the use of radical signs
combined with algebraic polynomials, it is an example of an irra-
tional algebraic function ; for example,

N x3+\/1_f 5

x2

Examples of such functions are found in Chap. VI.

The general definition of an algebraic function is given in
Chap. IX, and examples of non-algebraic, or ¢ranscendental fumnc-
tions, are given in Chap. XTIIL

22. Functional notation. When y is a function of z it is cus-
tomary to express this by the notation

y =7 (@)

Then the particular value of the function obtained by giving = a
definite value a is written f(a). For example, if

J(@)y=a*+322+1,
then J(2)=2°43-2"4+1=21,
S(0)=0"+30*+1=1,
F=3)=(= 3+ 3(= 3¢ +1=1,
Sl@)y=a*+ 3o+ 1.

If more than one function occurs in a problem, one may be
expressed as f(z), another as F(z), another as ¢(z), and so on. It
is also often convenient in practice to represent different functions

by the symbols f(z), f.(%), fs(x), ete.
It () is any function, and we place

y=r(»),

we may, as already noted, construct a curve which is the graph of
the function. The relation between this curve and the equation
y =f (%) is such that all points the coirdinates of which satisfy the
equation lie on the curve; and conversely, if a point lies on the
curve, its codrdinates satisfy the equation.
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The curve is said to be represented by the equation, and the equa-
tion is called the equation of the curve. The curve is also called
the locus of the equation. Its use is twofold,— on the one hand,
we may study a funetion by means of the appearance and the
properties of the curve, and, on the other hand, we may study the
geometric properties of a curve by means of its equation. Both
methods will be illustrated in the following pages.

PROBLEMS

1. Find the perimeter of the triangle the vertices of which are (2, 3),
(-3,3), (1, 1).

2. Prove that the triangle the vertices of which are (—4, — 8), (2, 1),
(— b, b) is isosceles. \

3. Prove that (6, 2), (—2, —4), (5, —5), (—1, 8) are points of a circle the
center of which is (2, —1). What is its radius ?

4. Prove that the quadrilateral of which the vertices are (2, 2), (4, 5),
(-1, 4), (— 3, 1) is a parallelogram.

5. Find a point equidistant from the points (~ 3, 4), (5, 3), and (2, 0).

6. Find the center of a circle passing through the points (0, 0), (— 3, 3),
and (5, 4).

7. Find a point on the axis of z which is equidistant from (0, 4) and
(-3, —3).

8. A point is equally distant from the points (1, 1) and (— 2, 3), and its
distance from OY is twice its distance from OX. Find its codrdinates.

9. Find the points which are 4 units distant from (2, 3) and 5 units distant
from the axis of y.

10. A point of the straight line joining the points (— 4, — 2) and (4, — 6)
divides it into segments which are in the ratio 3: 5. What are its cobrdinates ?
11. Find the coérdinates of a point P on the straight line determined by
SRRSO g
Py (2, — 1) and Py(— 4, 5), when 1 =Z.
l( ’ ) 2( ’ )’ PP, 3
12. On the straight line determined by the points Py (2, 4) and Py(—1, — 3)
find the point three fourths of the distance from P; to P-.

13. If P(x, y) is a point on the straight line determined by P (z;, ¥3) and
PiPu. |
Py (x2, ¥2), such that ITIP: = l:’ prove

¥ Lixg + lxy il bys + byy |

= — =

h+1; L+l
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14. The middle point of a certain line is (1, 2) and one end is the point
(— 3, 5). Find the codrdinates of the other end.

15. To what point must the line drawn from (1, —1) to (— 4, 5) be extended
in the same direction that its length may be trebled ?

16. One end of a line is at (2, — 5) and a point one fourth of the distance
to the other end is (— 1, 4). Find the codrdinates of the other end of the line.

17. Find the points of trisection of the line joining P; (0, 3) and Py (6, — 38).
18. Find the lengths of the medians of the triangle (2, 1), (0, — 8), (— 4, 0).

19. Given the three points A(— 3, 3), B(3, 1), and C(6, 0) upon a straight
line. Find a fourth point D such that a2 =— @
DC BC

20. Given four points Py, Ps, Ps, Ps. Find the point halfway between Py
and Pg, then the point one third of the distance from this point to Ps, and
finally the point one fourth of the distance from this point to P,. Show that
the order in which the points are taken does not affect the result.

21. Prove analytically that if in any triangle a median is drawn from the
vertex to the base, the sum of the squares of the other two sides is equal to
twice the square of half the base plus twice the square of the median.

22. Prove analytically that the straight line drawn between two sides of a
triangle so as to cut off the same proportional parts measured from their com-
mon vertex is the same proportional part of the third side.

23. Prove analytically that if two medians of a triangle ‘are equal the tri-
angle is isosceles.

24. Prove analytically that in any right triangle the straight line drawn
from the vertex to the middle point of the hypotenuse is equal to one half the
hypotenuse.

25. Prove analytically that the lines joining the middle points of the opposite
sides of a quadrilateral bisect each other.

26. Show that the sum of the squares on the four sides of any quadrilateral
is equal to the sum of the squares on the diagonals, together with four times the
square on the line joining the middle points of the diagonals.

27. Prove analytically that the diagonals of a parallelogram bisect each
other.

28. Prove analytically that the line joining the middle points of the non-
parallel sides of a trapezoid is one half the sum of the parallel sides.

29. 0ABC is a trapezoid of which the parallel sides 04 and CB are per-
pendicular to OC. D is the middle point of AB. DProve analytically that
OD = CD.
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30. The following table gives the price of a bushel of wheat in the New
York market from 1890 to 1904. Construct the graph.

1890
1891
1892
1893
1894

.983
1.094
.908
L7139
.611

1895
1896
1897
1898
1899

.669
781
L9564
952
794

1900
1901
1902
1903
1904

.804
.803
.836
8563
1.107

31. The following table shows hourly barometric readings at a United States

weather bureau station.

Construct the graph.

[SVI S

Q@ =1 D T

A.M.

28.85
28.87
28.90
28.92
28.94
28.97
28.98
29.02

9
10
Al
12

1

ALM.

M
P.M.

29.04
29.05
29.05
29.05
29.05
29.06
29.08
29.10

29.13
29.18
29.21
29.24
29.25
29.29
29.29
29.29

32. The following table shows the number of inches of rainfall in Boston
during the years 1880-1891. Construct the graph.

1880
1881
1882
1883
1884
1885

38.89
49.22
48.42
35.566
53.86

T 44, 07

1886
1887
1888
1889
1890
1891

46.47
41.91
60.27
54.79
50.21
49.63

33. The following is a portion of a railway time-table, - The letters indicate
stations, and the adjacent number gives the distance from A to each of the other
stations, The second and the third columns give the times at which two trains
running in opposite directions leave each of the stations. Make a graph showing
the motion of each train and thus determine the time and place of their passing.

A

B 21
C 44
D 64
E 84

10.45 am.

11.50

2.00

1.30
12.56
12.11 p.M.
11.30 a.Mm.

F 99

G 126
I 151
T3
K 200

1.06 p.u.

2.59

4.15

10.48
9.53
8.66
7.48
7.00 A.M,
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34. The following table shows the amount of $1.00 put at interest at 4%,
compounded annually. Construct the graph.

5 yr. 1.217 30 yr. 3.242
10 1.480 35 3.946
15 1.801 40 4.801
20 | 2.191 45 5.841
25 2.666 50 - 7.116

35. Make a graph showing the relation between the side and the area of a
square,

36. Make a graph showing the relation between the radius and the area
of a circle.

37. Make a graph showing the relation between the radius and the volume
of a sphere,

38. The space s through which a body falls from rest in ¢ seconds is given
by the formula s = } g#2. Assuming g = 32, construct the graph.

39. The velocity acquired by a body thrown towards the earth’s surface
with a velocity v, is given at the end of ¢ seconds by the formula v = Vo + gt.
Construct the graph.

40. Two particles of mass m; and mg at a distance d from each other attract
each other with a force F, given by the formula
myme
@
Assuming m; = 5 and mp = 20, construct the graph of F.

F=

41. Ohm’s law for an electric current is

Electromotive force

Current = ————M ",
Resistance

Assuming the electromotive force to be constant, plot the curve showing the
relation between the resistance and the current.

42. If f(z) = 2 — 322 + Tz — 1, find £(3), £(0), F(a), f(a + h).
43. It f(z) = «® + 1, show that £(2) — 4£(1) = £(0).

44. If f(x) = o* + 222 + 3, prove that f(— ) = f(x).

45. If f(x) = «® + 323 — T2, prove that f(— ) = — f(z).

46. If f(x) = 22 — a2, prove that f (a) = f(— a).

47. If fi (x) = 2% + a2, and f (z) = 2z, prove that f; (a) — afs(a) = 0.

48. if flx)y= <x —%) <x2 - l) (ac3 - %) , prove that f (a) = —f G)

x2



49.

50.

51,

52.

53.

54,
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A (G= ~—-,pr0ve that f(a) - f(—a)=1.
28 + 2 1
If f(z) = QM#, prove that f(z) = f(:;)

If £ (z) = 3 /zz‘+ ! find £@), £(0), F(— 3),f(a),f(é>.

If f(z) = |z, prove that (x + 1)f(z) =f(x + 1).

If f1(x) =\/§ + \/ga and fp(z) = \/% = \/%, prove that

1@))2 = [fo@)]= [f1(0)]*

If f(z) = 1, prove that f{f(x)] = z.



CHAPTER III
THE POLYNOMIAL OF THE FIRST DEGREE

23. Graphical representation. An algebraic polynomial of the
first degree is of the form mz + b, where m and b are numbers,
which may be positive or negative, integral or fractional, rational
or irrational. We shall restrict the values of m and &, however, to
real numbers. In particular cases b may be zero, when the poly-
nomial becomes the monomial mz.

To obtain the graph of the polynomial, we write

y=me+ D, (1)

and proceed as in the examples of the previous chapter. We assign
to # any number of values assumed at pleasure, say z,, z,, z,, z,,

ete.; compute the
Y g corresponding values

of ¥, namely,

Y, =mz,+ b,
K R, Y, = mx,+ b,
Yy = m;+ b,
y, =mx,+ b,

@)

5

B,

. §: and plot the points
= 0 B(ey ) B(@s 95
= R, B (%5 Ys)s E(z, y,)
(fig. 22). We then
Fic. 22 draw the straight

lines BB, BE, B,

each connecting two successive points, and shall prove that these
lines form one and the same straight line. For that purpose draw

50 .




THE STRAIGHT LINE 51
through each point lines parallel to the coordinate axes, forming
the triangles shown in fig. 22. Then, by §13,

-0 I o D) 4 = | ol > = - 1
LR, =ur,—2, LR =z—z, LR =zx—z,

-

. < (3)
BL=y,—y, RBIL=y—y, B E=y—y,.

By subtracting each equation in (2) from the one below it, we
have
Yo— Y= m(z,— 7)),
Ys— Yo = M (L;— T,),
Yo— Yy = m(r,— ),
Yamo Y g Ys— Y, AT
Ly— 2, Xy— a,  L,— @
BB SRR BE

3 —_—— e

Rk, = Bl LR,

whence

=m; 4)

or, by (3),

Hence the triangles of the figure are similar, and the angles
R,BR, R.EER, REE are equal. Therefore the line EREE is a
straight line.

Again, let us take on this line any other point, such as P,
which has not been used in constructing the graph, and draw
Rl and R E parallel to OX and OY respectively. Then, since
the triangles PR, E and ER.F are similar,

IE _ RE.
B8 TRy

Y Y 138 Yo U bl ohs : (by (4))

s s —. B

that is,

Therefore Y = mxy—ma,+ y,,"
whence, by substituting the value of y, given in (2),
Yy = maxy+ D.

Hence the cobrdinates of P satisfy the equation (1).
We have now shown that all points the codrdinates of which
satisfy equation (1) lie on a straight line, and that any point on
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the line has coordinates which satisfy (1). We have accordingly
proved the following proposition: 7%e equation y = mz + b always
represents a straight line.

24, The general equation of the first degree. The equation

Az +By+ C=0,

where 4, B, and C' may be any numbers or zero, except that
A and B cannot be zero at the same time, is called the general
equation of the first degree. We shall prove: The general equa-
tion of the first degree with real coefficients always represents a
straight line.

1. Suppose 4 == 0 and B =+ 0. If any value of x is assumed,
the value of y is determined. Therefore y is a function of z,
which may be expressed by solving the equation for y; thus,

This equation is of the form y =mx + 0, and therefore repre-
sents a straight line by § 23.
2. Suppose A =0, B+ 0. The equation is then
C

By+C=0, or g

All points the codrdinates of which satisfy this equation lie
on a straight line parallel to OX at a distance —% units from it;

and, conversely, any point on this line has codrdinates which
satisfy the equation. Hence the equation represents this line.
3. Suppose 4 + 0, B=0. The equation is then

C
A C=0 === T
x4+ P OX TR %

and represents a straight line parallel to OY at a distance —g
units from it.

Therefore the equation 4z + By + C =0 always represents a
straight line.
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25. In order to plot a straight line it is, in general, convenient
to find the points L and K (fig. 23), in which it cuts OX and O Y
respectively. 1f the coordinates of L are (a, 0) and those of A are
(0, D), these cobrdinates will satisfy the equation 4z + By+ C'= 0.
By substitution we find

a:——-g) b-_—‘-—-—q. /
A B

The quantities ¢ and b, which K (0,0)
are equal in magnitude and /
sign to OL and OK respectively, T(@,0) |0 X
are called the wntercepts of the /

straight line. It is evident that
the b found here is the same as
in y=mx+ b :

If ¢=0, ie. if the equation is dx + By=0, then « =0 and
b =0, and the straight line passes through the origin. To plot
the line, we must find by trial the codrdinates of another point
which satisfy the equation, plot this point, and draw a straight
line through it and the origin.

Fic. 23

Ex. 1. Plot the line 83z — 5y + 12 =0. Placing ¥y =0, we find a =— 4.
Placing € =0, we find b =22. We lay off OL =— 4, OK =23, and draw a
straight line through L and K.

Ex. 2. Plot the line 3z — 5y =0. Here a =0 and b= 0. If we place z =1,
we find ¥ = 2. The line is drawn through (0, 0) and (1, £).

26. Any straight line may be represented by an equation of the
Jirst degree.

The proof consists in showing that the coefficients 4, B, C,
in the general equation of the first degree, may be so chosen that
the equation may represent any straight line given in advance:
Let (x, %,) and (x,, y,) be any two points on a given straight
line. The cobrdinates of these points will satisfy
provided 4, B, € have such values that

‘Az, + By, + C =0,
Az,+ By,+ C =9
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Solving these equations for the ratios of 4, B, ¢, we have (by § 8)

B W

A:B:C=
Ly Yy

Y 1‘:_
o B

Tl
T2 vl

; 2)

It these values .are used in (1), that equation represents a
straight line which has two points in common with the given
line, and therefore coincides with it throughout. Hence the
theorem is proved.

The result of substituting from (2) in (1) is

ol
2 y, 1|=0,
z, Yy 1

which is the equation of a line through two given points.

7. Slope. Let E(x, y,) and B (z,, y,) (figs. 24, 25) be two
points upon a straight line. If we imagine that a point moves
along the line from A to F, the change in z caused by this
motion is measured in magnitude and sign by x,— z,, and the

~

\
/

Fic. 24 -Fi1a. 25

change in y is measured by y,— 7, We define the slope of the
straight line as the ratio of the change in y to the change in z as
a point moves along the line, and shall denote it by the letter .
We have then, by definition,

Yo Uy
AiUR==R= o
Ly— &y
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It appears from equations (4) (§ 23) that the letter m in the
equation y = maz + b has the meaning just defined. It follows that
if the equation of a straight line is in the form Az + By + C = 0,
its slope may be found by solving the cquation for y and taking the
coefficient of x, thus,

A g 4
y=—"x——> whence m=——-
b/ B b

A geometric interpretation of the slope is readily given. For if
we draw through P a line parallel to OX, and through E a line
parallel to OY, and call & the point in which these two lines inter-
sect, then z,—z, =R R, and y, —y, = IF); and hence m = %

1

It is clear from the figures, as well as from equations (4) (§ 23),
that the value of m is independent of the two points £ and B
and depends only on the given line. We may therefore choose B
and I} (as in figs. 24 and 25) so that KR is positive. There are
then two essentially different cases, according as the line runs up
or down toward the right hand. In the former case RZ and m
are positive (fig. 24); in the latter case RJ) and m are negative
(fig. 25). We may state this as follows:

The slope of a straight line is positive when an inerease in x
causes an inerease in y, and is negative when an increase in
causes a decrease in Y.

When the line is parallel to OX, y, = y,, and consequently m = 0,
as explained in §11. If the line is parallel to OY, x, = 2,, and
therefore m = o in the sense of §11.

28. Angles. The slope of a straight line enables us to solve
many problems relating to angles, some of which we take up in
this article. :

1. The angle between the axis of x and a known line. Let a
known line cut the axis of z at the point Z. Then there are four
angles formed. To avoid ambiguity, we shall agree to select that
one of the four which is above the axis of  and to the right of



56 THE POLYNOMIAL OF THE FIRST DEGREE

the line, and to consider ZX as the initial line of this angle. We
shall denote this angle by ¢. Then if we take 2 any point on

V4 Y
I)

_ LA
/OI M M OL\ <

Fic. 26 Fic. 27

the terminal line of ¢ and drop the perpendicular M2, we have,
in the two cases represented by figs. 26 and 27,

MP

t. = .
an ¢ T

But % is equal to the slope of the line. Therefore
4

tan ¢ = m.

If the straight line is parallel to OY, ¢ = 90° and tan ¢ = .
It the line is parallel to O.X, no angle ¢ is formed ; but since 7 = 0,
we may say tan ¢ = 0, whence ¢ = 0° or 180°.

2. Parallel lines. If two lines are parallel, they make equal
angles with OX, and hence their slopes are equal. 1t follows that
two equations which differ only in the absolute term, such as

Ar+By+C, =0
and Ae+ By +C, =0,

represent parallel lines.
More generally, two straight lines,

Ax+By+C =0
and Agx + By + C,=0,

4, B,

M E B 3"

are parallel if
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3. Perpendicular lines. Let ABand CD (fig. 28) be two lines inter-
secting at right angles. Through 2 draw PR parallel to OX and
let RPD=¢, and RPB = ¢, Then tan¢,=m, and tan ¢,= m,,
where m, and m, are the slopes

¥
of the lines. But by hypothesis, B\
¢, = ¢,+ 90°, 2
whence ¢,
1 ¢
tan ¢, = — cot ¢, =— , 7 ¥
tan ¢, it
which is the same as A =
0
1 c/
mz = e—
m,
That is: Two straight lines Fit. 28 ¥

are * perpendicular when the
slope of one is minus the reciprocal of the slope of the other. This
theorem may be otherwise expressed by saying that two lines are
perpendicular when the product of their slopes is minus unity.

It follows that two straight lines whose equations are of the type

Ar+By+ C,=0
and Br—Ady+ C,=0

are. perpendicular.

4. Angle between two lines. Let AB and CD (fig. 29) inter-
sect at the point P, making the angle BPD, which we shall
call B. Draw the line PR
parallel to” OXX and place
RPB=¢, and RPD = ¢,.
Then

:8 = qbz_ 4)1’
and hence
tan B = tan (¢.— )

__ tan¢,—tan ¢,
Fic. 29 1+ tan ¢, tan ¢,
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But tan ¢,=m, and tan ¢, = m,, where m, is the slope of CD
and m, is the slope of AB. Therefore

Mmy— m
tan 8= —2—-21L-
i 1+ mm,
1f ¢, is always taken greater than ¢,, tan 8 will be positive or
negative according as 8 is acute or obtuse.
29. Problems on straight lines. We shall solve in this article
certain important problems which depend on the equation

y =mx + b.

The essential problem is, in every case, to determine m and b so
that the line will fulfill certain conditions. Since two quantities
are to be determined, two conditions are necessary and sufficient ;
hence, in general, one and only one straight line can be found to
satisfy two given conditions. '

1. To find the equation of a straight line which has a known
slope and passes through a known point. Let m, be the known
slope and P (z,, ,) be the known point. The equation of the line
will be of the form y =m,z+ b, where b, however, is unknown.
But the line containsg the point P,. Therefore

yy=mz,+ b,
whence b=y, —mz,
The required equation is, therefore,

) Y =M+ Y — maZ
or, more symmetrically,
y—y=m(z—2,).

Ex. Find the equation of a straight line with the slope — £ passing through
the point (5, 7).

First method. We have y=—3%x+0b;
then T=—%(5)+D,
whence b= 3l

Therefore the required equation is
Y == %.’C + ’3’1‘,
or, finally, 2z +38y —31=0.
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Second method. By substituting in the formula we have

y-T=—}@-9),
whence 2z + 3y — 31 =0, as before.

2. To find the equation of a straight line passing through a
known point and parallel to a known line.

The slope of the required line is the same as that of the given .
line, which can be found by § 27. Hence the problem is the same
as the preceding.

Ex. Find the equation of a straight line passing through (— 2, 3) and parallel
to3x —5y+6=0.

First method. The slope of the given line is 2. Therefore the required line is

y——3=g(z+2), or 3z —by+21=0.

Second method. As explained in § 28, 2, we know that the required equation
is of the form
3z —by+C=0,

where C is unknown. Since the line passes through (— 2, 3),
3(—=2)—-563)+C=0,
whence C = 21. Therefore the required equation is

3z — by +21=0.

3. To find the equation of a straight line passing through a
known point and perpendicular to a known line.

The slope of the required line may be found from the slope of
the given line, as in § 28, 3. The problem is then the same as
problem 1.

Ex. 1. Find a straight line through (5, 3) perpendicular to 72 + 9y + 1=0.
First method. The slope of the given line'is — 7. Therefore the slope of the
required line is §. By problem 1, the required line is
y—38=9%@x—-5), or 9z ~Ty—24=0.

Second method. As shown in § 28, 3, we know that the equation of the
required line is of the form 9x — 7y + C = 0. Substituting (5, 3), we find
C = — 24. Henee the required line is 9z — Ty — 24 = 0.
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Ex. 2. Find the equation of the perpendicular bisector of the line joining (0, 5)
and (5, — 11). The point midway between the given points is (3, — 8), by § 18.
The slope of the line joining the given pointsis — 1%, by § 27, Hence the required
line passes through (§, — 8), with the slope %.. Its equation is

y+383=P@x—3%), or 10z —-382y—121=0.
4. To find the equation of a straight line through two.knouwn
pornts.

This problem has already been solved in § 26, and the result
given in the form

R
z ¥y 1)=0,
Ly Y
which is the same as |~ —“1 ¥ 7% g, (Ex. 2, § 3)

L _xz Y il
Or, by § 27, the slope of the required line is
Yommda

Ly— L,

Hence, by problem 1, the equation of the required line is

i Y=Y

Ex. Find a straight line through (1, 2) and (— 3, 5).
By the formula,

y—2= 53_21(90—1), or 3z+4y—11=0.

5. To find the condition that three known points should lie on
the same straight line. 1f the three points are (z, ¥,), (2, ¥,),
and (z,, ¥,), the condition that they should lie on the same straight
line is

z ¥y 1
Ly Yo 1:0;
Z, Yy 1

as is evident from 4.
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30. Intersection of straight lines.

Let Az+By+C =0

and Az +By+C,=0 @)
be the equations of two straight lines. It is required to find their
point of intersection. Since the codrdinates of any point on one
of the lines satisfy the equation of that line, the codrdinates of a
point on both lines must satisfy both equations simultaneously.
Hence the coordinates of the point of intersection of the lines is
found by solving the two equations.
There are three cases.

Al Bl

1. 3 B,

+0.

The solutions are then

Oy Ao ]Al C,
SRR el
EREREET B 4, B,
3% 3 e B

The two straight lines intersect in the corresponding point.

2. jl B,l = 0, but at least one of the determinants,
2 1’2
©h, 15, 4, ¢
€.\ B, gl AL O

not equal to zero.

The equations are then contradictory and the straight lines do
not intersect. In fact, §28 shows that the straight lines are
parallel.

This case may be brought into connection with case 1 as
follows: In case 1 suppose that 4, B,— A,B, is very small, but
not zero. The values of z and y are then very large, assuming
that the numerators are not small, and the point of intersection
is then very remote.
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Let now the lines be changed in such a manner that 4, B,— 4,8,
approaches zero. The values of « and y increase indefinitely, the
point of intersection recedes indefinitely, and the lines approach
parallelism.

zity B
4, B,

Cl B 1
VR

. -0 [ Gl_
g = =0yt =

2

The equations are then not independent but represent the same
straight line.

In this case the attempt to use the solutions as given in 1
leads to the indeterminate form § (§ 11).

31. If the three straight lines

dx+By+C =0, (1)
A+ By + C,= 0, (2)
Az + By + C,= 0, (3)

pass through the same point, the three equations have a common
solution, and therefore

il 5
4, B,
AB Bﬂ

1

= 0. 4)

Also, if the three straight lines are parallel, the determinant (4)
is zero. For if (1), (2), and (3) are parallel, 4,B,—4,B =0,
4,B,—A,B, =0, A,B,— 4 B, =0, and therefore

4, B, C

4, B, C,=0

Az B 6,

ARSI O
Conversely, if A BESCHI=10F

A8

the lines (1), (2), and (3) either pass through the same point or are
parallel. For, by § 7, if two of the lines intersect, the codrdinates
of the point of intersection satisfy the other.
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32. Distance of a point from a straight line.
Take the equation of any straight line, written in the form
y—me—b=0, (1)
and consider the polynomial
y—mzx—b, (2)
which stands upon the left-hand side. We may substitute in (2)

the cobrdinates (z,, 7,) of any point E, and thus obtain a value
of (2) which is zero when £ lies

on the line (1), but not other- S >
wise. We wish now to obtain y
the meaning of 3 B
y,— mx;— b K

: L/’( ’
when B is not on (1). For that ——= 0 i X
purpose, let LK (fig. 30) be the
line (1), and let ME, the ordinate Fic. 30

of B, cut LK in Q. Then the
abscissa of @ is z, and its ordinate is 2/Q. From (1)

MQ = ma,+ .
Hence y,— ma,—b=y,— (mz,+b)
= MP—MQ=QF.

It is clear that y, — ma, — b is a positive quantity when (z,, 7,)
lies above the line LK, and is a negative quantity when (x,, ,) lies
below LK. It is also evident from the triangle £QZR, and from
a like triangle in other cases, that the length of R is numeric-
ally equal to BQ cos ¢. But tan ¢ =m, and hence

1
CcOS @ = — =
+V1+ m?
We have, then, BR= y—ma,— b

+V1+m?
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We may, if we wish, always choose the + sign in the denomi-
nator. Then R is positive when F, is above y =mx+ b, and
negative when £ is below.

If the equation of the straight line is in the form

Ar+ By+ C=0,

TSl ﬁ and b =— I—C" Therefore

Aw,+ By, + C =B (y,— ma,— D),

Aw,+ By, + C
and BR=—"11-_"71__—.
; ! VAL B

It appears, then, that the polynomial 4z, + By, + € and the per-
pendicular RR are positive for all points on one side of the line
Adr+DBy+C =0, and negative for all points on the other side.
To determine which side of the line corresponds to the positive
sign, it is most convenient to test some one point, preferably the
origin.

33. Normal equation of a straight line. Let LXK (fig. 31) be any
straight line and let OD be the nermal (or perpendicular) drawn
from the origin. Let the length of OD be p and let the angle
XOD be a. Take P any point on LK. The projection of OP on
OD is equal to the sum of the
projections of OM and MP (§15).

Jut the projection of OF on OD
is p, since ODP is a right angle.
The projection of OM on OD is
x cosa (§14), and that of P is

¢ Ycos (x—90°)= ysina. Hence

p=acosa+ ysina,

Fic. 81 or zcosa+ ysina—p=0.

This equation, being true for the codrdinates of any point on
LK and for those of no other point, is the equation of LA. It is
called the normal equation of a straight line.
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Since sin’a + cos*a = 1, it follows from § 32 that
x, cos@ + y, sina — p
is numerically equal to the distance of («;, y,) from
zcosa+ ysina— p=0.
It is sometimes desirable to change an equation
Ac+DBy+C=0
into x cosa+ y sina— p=0.

For that purpose it is enough to notice that since any value of
(z, y) which satisties one equation must satisfy the other, the one
is a multiple of the other. Hence

A=1Fkcosa, B=ksna, C=—kp,

where £ is an unknown factor. But from these last equations we

have
A2 B =k

Therefore cosa = —; ;
+V A+ B
sin @ =
== =
+VA 4 B
—C

Pl = 7
P Vit B

Since p is to be positive, the sign of the radical must be oppo-
site to that of C. .

PROBLEMS
Plot the graphs of the following equations :

1. bz —3y+10=0. 3.z 4+3y—7=0. 5.82+4+56y=0.

2. 4z +6y+12=0. 4. 22 -9y =0. 6. 42 +7=0.
7. :)Z/-—*S:O.

8. Two numbers are to be found such that one half of one plus one third
of the other is equal to unity. Show how one number may be graphically
found when the other is known.
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9. A plane figure is in the form of a square, 8 ft. on one side, surmounted
by a triangle constructed on one of its sides as a base. Express the area of the
above figure in terms of the altitude of the triangle, and plot the graph of the
function.

10. Express the number of inches in any length as a function of the number
of centimeters, and express the same as a graph.

11. A uniform elastic string of length  is subjected to a stretching force f.
If I’ is the new length, I’ = I(1 4 mf), where m is a constant. Plot the graph,
showing the relation between I’ and f.

12. If ¢ represents the boiling point in degrees Centigrade at a height % in
meters above sea level, then approximately & = 295 (100 — ¢). Plot the graph.

13. The pressure on a square unit of horizontal surface immersed in a liquid
is equal to the weight of the column of liquid above it. Express the pressure at
a depth z below the surface of a body of water, the density of the water being
taken as unity. Express also the pressure z units below the surface of a body
of water over which is a body of oil of density .9 and of depth 8 units. Plot
the graphs.

14. A road starts at an elevation of 100 ft. above sea level and has a uniform
up grade of 15 per cent; i.e. it rises 15 ft. in every 100 ft. of horizontal length.
Express the distance above sea level on the road as a function of the horizontal
distance from the point of departure, and construct the graph.

15. A tank of water contains 100 gal. A tap is opened, causing the water
to flow out at a uniform rate of 2 gal. per minute. Express the amount of
water in the tank as a function of the time, and construct the graph.

16. Find the equation of the straight line of which the slope is 7 and the
intercept on OY is — 3.

17. Find the equation of the straight line passing through the point (0, — 3)
and making an angle of 135° with O.X,

18. Find the equation of a straight line making an angle of 60° with O and
cutting off an intercept — 5 on OY.

19. A straight line making a zero intercept on OY makes an angle of 120°
with OX. Find its equation.

20. A straight line making a zero angle with OX cuts OY at a point 5 units
from the origin. Find its equation.

21. Find the acute angle between the lines 22 — 83y +5=0 and 2+ 2y +2=0.

22. Find the acute angle between the lines 2z + 3y —6=0 and 2z +y+1=0.

23. Find the acute angle between the lines 4z +y —2=0 and 32+ 5y +8=0.

24. Show that 2& + 14y — 17 = 0 bisects one of the angles between the lines
8x+6y—11=0and3x —4y -+ 3 =0.

25. Find the equation of the straight line through the point (— 4, 5) parallel
to the line bz — 4y +1=0.
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26. Find the equation of the straight line through (3, —1) parallel to the line
r—y=28.

27. Find the equation of the straight line through the point (2, — 11) per-
pendicular to the line 92z — 8y + 6 = 0.

28. Find the equation of the straight line through the origin perpendicular
to the line 6 + 65y— 3 = 0.

29. Find the equation of the straight line through the points (— 2, — 3)
and (0, 4).

30. Find the equation of the straight line through the points (2, — 1)
and (3, 2).

31. Find the equation of the straight line through the points (—1, 3)
and (— 1, b).

32. Find the angle between the straight lines drawn from the origin to the

points of trisection of that part of the line 6z + 4y = 24 which is included
between the codrdinate axes.

33. Find the equation of the perpendicular bisector of the line joining
(— 3, b) and (— 4, 1).

34. A straight line is perpendicular to the line joining the points (— 4, — 2)
and (2, — 6) at a point one third of the distance from the first to the second
point. What is its equation ?

35. Find the equation of the straight line through (3, 5) parallel to the
straight line joining (2, 5) and (— 5, — 2).

36. Find the equation of the straight line parallel to the line 2z — 3y + 5 =10
and bisecting the straight line joining (— 1, 2) and (4, 5).

37. Find the equation of the straight line perpendicular to 3z — 6y = 9 and
bisecting that portion of it which is included between the cotrdinate axes.

38. What is the equation of a straight line the intercepts of which on the
axes of x and y are 2 and — 5 respectively ?

39. What is the equation of the straight line the intercepts of which on the
axes of z and y are — 4 and — 7 respectively ? [

40. In the triangle A4 (—2, —2), B(, —3), C(0, —17), a straight line is
drawn bisecting the adjacent sides ABand BC. Prove that it is parallel to AC
and half as long,

41. Find the equation of a straight line through (4, §) and the point of

intersection of the lines 3z —4y —2=0 and 12z — 15y — 8 = 0.

42. Find the equation of the straight line passing through the point of inter-
section of x —2y —6=0and 2z — 3y — 8 =0 and parallel to 3z —2y +2=0.

43. Find the equation of the straight line through the point of intersection
of 6z —2y —11=0and 4z — 6y — 5= 0 and perpendicularto 4z — y + 1 =0.
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44. Find the equation of the straight line joining the point of intersection
of the lines 2z —y +56=0and z+ ¥ +1=0 and the pomt of intersection of
the linesex —y —7T=0and 2z +y — 5=0. .

45. Determine the value of m so that the line y = ma + 3 shall pass through
the point of intersection of the linesy =2z 4 1and y = x + 5.

46. Find the vertices and the angles of the triangle formed by the lines
r=0,z—y+2=0,and 2z 4+ 3y — 21 =0.

4%7. Find the distance of (3, 5) from the line y =4 2 — 8. On which side of
the line i5 the point ?

48. How far distant from the line 22 + 8y + 8 = 0 is the point (7, — 4), and
on which side of the line is it ?
Y=1

49. Find the distance from the point (b, — a) to the line g +3=

50. The base of a triangle is the straight line joining the points (— 1, 8) and
(5, —1). How far is the third vertex (6, — 2) from the base ?

51. The vertex of a triangle is the point (6, — 2) and the base is the straight
line joining (— 3, 2) and (4, 3). Find the lengths of the base and the altitude.

52. Find the distance between the two parallel lines 4z 4 3y — 10 = 0 and
4r+3y—8=0.

53. A straight line is 7 units distant from the origin and its normal makes
an angle of 30° with OX. What is its equation ?

54. The normal to a straight line which is 5 units distant from the origin
makes the acute angle tan-11 with OX. What is the equation of the line ?

55. A straight line 4 units distant from the origin makes an angle of 45°
with OX. What is its equation ? :

56. The normal to a straight line makes an angle tan—13 with OX. The
line passes through the origin. What is its equation ?

57. The normal to a straight line makes an angle of 90° with OX. The
line is 7 units distant from the origin. What is its equation ?

58. Find a point on the line 4z + 3y = 12 equidistant from the points
(—1, —2) and (1, 4).

59. Find the equation of the perpendicular bisector of the base of an
isosceles triangle having its vertices at the points (3, 2), (—2, —3), and
2, —5).

60. A point is equally distant from (2, 1) and (— 4, 3), and the slope of the
straight line joining it to the origin is 2. Where is the point ?

61. A point is 7 units distant from the origin, and the slope of the straight
line joining it to the origin is 3. What are its codrdinates ?

62. Perpendiculars are let fall from the point (5, 0) upon the sides of the
triangle the vertices of which are at the points (4, 3), (— 4, 3), and (0, — 5).
Show that the feet of the three perpendiculars lie on a straight line.
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63. Find a point on the line x + 2y — 3 = 0, the distance of which from the
axis of z equals its distance from the axis of y.

64. One diagonal of a parallelogram joins the points (4, — 2) and (— 4, — 4).
One end of the other diagonal is (1, 2). Find its equation and length.

65. Find the equations of the straight lines through the point (— 2, 0)
making an angle tan—!2 with the line 32 + 4y + 6= 0.

66. Find the equations of the straight lines through (2, 2) making an angle
of 45° with the line 3z — 2y = 0.

67. Find the equations of the straight lines through the point (2, 1) making
an angle tan-1} with the line 2z —y — 3= 0.

68. Derive the equation of the straight line making the intercepts a and b
on the axes of x and y respectively.

69. Prove analytically that the locus of points equally distant from two
points is the perpendicular bisector of the straight line joining them.

70. Prove analytically that the medians of a triangle meet in a point.

71. Prove analytically that the perpendicular bisectors of the sides of a tri-
angle meet in a point.

72. Prove analytically that the perpendiculars from the vertices of a tri-
angle to the opposite sides meet in a point.

73. Prove analytically that the perpendiculars from any two vertices of a
triangle to the median from the third vertex are equal.

74. Prove analytically that the straight lines joining the middle points of
the adjacent sides of any quadrilateral form a parallelogram.

75. Prove analytically that the straight lines drawn from a vertex of a paral-
lelogram to the middle points of the opposite sides trisect a diagonal.
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34. Graph of the polynomial of the second degree.

The polynomial of the second degree is au?+ bz +c. Its
graph may be plotted by equating it t6 y and proceeding as in
§§ 20 and 23.

] Ex. 1. 2242z 4 2.
Place y =22+ 22 + 2 and assume integral
values of . The corresponding values of z and

y are given in the following table :

z|y |
of 2 —-1(1
1 5 —2( 2
2|10 -3 5
3117 — 4110
426 —5|17

As in § 20, we plot these points (fig. 32), and
are then to draw a smooth curve through them.

But we notice that these points are nearer
together in some places than in others. It follows
that in some parts the curve would be more
accurate than in others. To obviate this diffi-
culty we assume such fractional values of z
as will locate points between the more widely
separated points already plotted.

We thus form the table :

x Yy X Yy
, = 1.5 7.3 XSt e
0| 1 = 2.5(13.3 —4.5/13.8
3.5(21.3 — 55218
—2.5| 3.3

Fic. 32

Plotting these points also, and drawing the curve, we have (fig. 32) the graph of
the given polynomial, 22 + 2 + 2. The graph lies entirely above the axis of z,
and recedes constantly from it as @ increases numerically, since the polynomial
is positive for all values of ¢, and increases in value as x increases.

70
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Ex. 2. 22242 —0.
Place y =222 +  — 6 and assume integral values of z.
Hence the table :

x| ¥ z |y
o[- PR Y
1/—-3 -2 0
2| 4 -3 9
3 15
On plotting these points (fig. 33) we see that i
is desirable to assume fractional values of z.
Hence the table:
z |y z y
1.5 0 —3.3] 125
231 6.9 —-3.7| 17.7.
2.6 10.1 — b5|—6
—1.5—3 - 3|=6.1 . x
—2.5| 4 - T|=57 o
In obtaining this new set of points we have
assumed — .5, —.3, —.7 as values for x, with the
aim of locating as closely as possible the turning
point, or vertex, as it will be called, of the curve.
Plotting these points also, we draw the curve (fig. 33). Fic. 83

It is especially to be noted that the curve cuts the
axis of  when £ = — 2 and when z = 1.5. But these two valuesof z, since they
make 222 + x — 6 equal to zero, are the roots of the equation 222 + ¢ — 6 = 0,
As the graph of the polynomial in Ex. 1 did not intersect the axis of z, we
conclude that the equation formed by placing it equal to zero has no real roots.
Solving that equation we find that, in fact, the roots are — 14V —1.

35. Let us now consider the general polynomial of the second
degree, az®+ bx+ ¢, of which the two polynomials just plotted
are special cases.

It we place y = a.®+ bz + ¢, we can write

=l b c

= | s e
4 i i a]

| V'—4ac b\
S *4‘az‘+(“+:.—a> ]
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g FY- sl . 0 — 4ac
The expression in brackets is the constant, — ———, plus
a
r 0\ P e
a function of =, <.c+ o which is always positive except for
b o T
& =— -—> when it is zero.
2a

At first we shall regard @ as positive. It follows that y has its
least value when & = — %z Therefore the lowest point, the vertex,

V¥ —4ac

b
1 g ill be { - —, —
of the curve will be < e s

>- As values greater and

: [} 3¢ :
less than —g, are assigned to «, x+ ;— increases numerically,
a 2a
y increases, and the corresponding point of the curve rises in

the plane. Moreover, if z is assigned the values — Zi + k& and
a

b A .
— 5 — K, k'being any assumed constant value, the corresponding
@ :

4

. values of y are the same. Hence the curve is symmetrical with

respect to the straight line z = — Eb—, which line passes through
a

Z G

the vertex of the curve parallel to the axis of #.
If @ is negative, it can be proved in the same way that the curve

has an axis of symmetry, z =— Ciry which passes through its
a

vertex, which is in this case the highest point of the curve.

36. Now that we have proved that the graphs of all quadratic
polynomials in z are alike, having a vertex and an axis of sym-
metry passing through it,'we can plot them more easily than was
possible before, as is shown by the two following examples.

Y Ex. 1. 422—4x +1.
y=4r2—4dzxt+1l=4@@—2x+ })=4(@— )

Therefore the vertex of the graph is (}, 0), and the
axis of symmetry is the line x = . Beginning with
the value I, we assign to x values greater and less
than I, thereby locating points on both sides of the
axis of symmetry, and plot the graph which is repre-
sented in fig. 34. ‘

We see that the equation 422 — 42 + 1= 0 has two
equal real roots, the graph being tangent (§37) to the

Fic. 34 axis of x at the point x = 1.
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Ex. 2. —2x2+ 3z. Y
]
y=—222+ 3
=—2@2—32) > : ¥
- 1
=—2[@—3)?— %]
N
Therefore the vertex of the graph is (3, §) and ['J,'
the axis of symmetry is the line = . The graph
is represented in fig. 35. We see that it crosses
the axis of z at two different points. Hence the
equation — 222 +3x =0 has two unequal real
roots, which are found to be 0 and 3. ¥ic. 35

37. Discriminant of the quadratic equation. Turning now to

L in the equation
4d?

P¥—4ac b \?
y—“[‘Tcﬁ—+<”+z—a>]

of § 35, we have three cases to consider.

1. If 1*— 4 ac > 0, the vertex of the graph is below the axis of
2 when a > 0, and above the axis of # when ¢ < 0, and accord-
ingly the graph intersects the axis of x in two points.

2. If ¥*— 4 ac = 0, the vertex of the graph is on the axis of z,
and hence the graph intersects the axis of x in a single point.

3. If t*— 4 ac < 0, the vertex of the graph is above the axis
of # when a > 0, and below the axis of # when a <0, and the
graph does not intersects the axis of » at all.

Now let us suppose that different values are assigned to the
constants a, b, and ¢, in such a way as to make *—+4 ac decrease,
beginning with a positive value. Then the vertex of the graph
rises or falls in the plane until, when »*— 4 ac = 0, it lies on the
axis of . At the same time, the’points in which the graph inter-
sects the axis of « have been approaching each other, and finally
coincide, when the graph is said to be tangent to the axis of .

Recalling that the abscissas of the points of the graph on the
axis of z are the real roots of the equation formed by placing the
expression equal to zero, we can tabulate the following results.

the constant —
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1. It ¥*— 4 ac > 0, the graph of az’+ bz + ¢ intersects the axis
of z at two points, and the equation ax*+ bz + ¢ = 0 has two real
roots, which are unequal.

2. If ¥*— 4 ac =0, the graph of as’+ bz + ¢ is tangent to the
axis of z, and the equation ax’+ bz 4 ¢=0 has two real roots,
which are equal.

3. If ¥—4ac<0, the graph of az’+ bz + ¢ is entirely on one
side of the axis of #, and the equation az*+ bz + ¢= 0 has only
imaginary roots.

The expression &*— 4 ac is called the discriminant of the quad-
ratic equation, as its sign indicates the nature of the roots of the

equation.
y 38. Graph of the polynomial of the nth degree.
Let the polynomial be

a+ a7 '+ a4 o4, e+ a,.

In general this polynomial contains n + 1 terms.
If any term is lacking, we may consider that its
coefficient, has become zero.
We will begin by plotting the graphs of some
1___y special numerical cases.

10t lo b i

Place y = 23 and assume values of z. Hence the table:

a7 v T Y
0 0 1.5 3.4
1 1 — 15— 3.4
2 8 2.3 12.2
-1 |[—-1 — 23— 12.2
-2 |- 8 2.7 19.7
.5 1 - 2.7|=19.7

Fic. 36 N e ST

Drawing a smooth curve through these points, we have the curve of fig. 36.
It is called a cubical parabola.
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B2t [t Y
Place y = ¢ and assume values of z. Hence the table: i
z Y z Yy
0 0 1187/ e ¢
1 1 1.9(13.0
! 2 |16 — o) sl
g 1 - T 19
-2 16 — .8 4
sl St | — 9| o7
fiEl M2 —1.1( 1.5
.8 4 —13] 2.9
9 T —15| 6.1
161 S L5) —1.7| 84
1:31 2.9 —1.9]13.0
1.5| 6.1
The curve is represented in fig. 37.
¥
o 1 X
Ex. 3. 5.
Place y = x% and assume values of z. L
Hence the table:
z Y z | v
SR 18| 18.9
1 1 1.9, 24.8
2 32 - |- .2
o X 2ol =l =l =
-2 |—-32 12— 25
2 —13|— 5.4
-9 .6 —1.6{—10.5
1.2 2.5 —1.7|—142
1.4 5.4 —1.8{—18.9
1.6| 10.5 —~ 19| —24.8
1147 )| g
The curve is represented in fig. 38.
In each of the three examples above, the curve crossed

the axis of x at the origin, and the corresponding equation
Fic. 38 had the root zero.
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Y Ex. 4 &3 —222+3x— 6.
Place y=a3—222+ 3z —6 and assume values of uz.
Hence the table:
x|y z Yy
o|— 6 15— 2.6
11— 4 2.5 4.6
2 0 2.7 7.2
3i 12 —1.5|—18.4
1 —1i—12 - 1.7[—21.8
= X —2|—28
The curve is represented in fig. 39.
This curve crosses the axis of z at
the point # =2, and hence the equation Y
23 — 222+ 3x — 6 =0 has 2 for a real root.
Its other roots are imaginary, i.e. £V — 3.
Ex. 5. 4234422 — 9x — 0.
r Y 3 2y — 9
Fic. 89 : Place y =4x3 + 422 — 9z — 9 and assume
values of . Hence the table:
L ]
z Y z Y
0{— 9 1.5 0
1(—10 1.3 |—5.2
2| 21 AT 1619
=9 0 — .b|—4.0
_ol_ 7 —15| 0
—-1.3 3 p
41\0 4 X
This curve is represented in fig. 40. It crosses the axis of
z at three points, — when z = 1.5, when z = — 1.5, and when
z =—1. Hence + 1.5 and — 1 are real roots of the equation
423+ 422 — 92 —9=0. 4
Without discussing any more numerical examples
we can see that, in general, the abscissas of the points
Fic. 40

on the axis of z of the graph of the polynomial
a@+ a '+ a i+, 2+ a,

are real roots of the equation

p n—1 n—2 3 I
ag+ axt tapt P, 4w, =0,
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Conversely, the real roots of the equation
@+ ax '+ a4t a, o+ a,=0
are the abscissas of the points at which the graph of
a2+ a2 '+ a4 -+, 2+ a,

intersects the axis of «, for they make y = 0.

Moreover, if the graph of the polynomial does not intersect
the axis of , the corresponding equation has no real roots; and
conversely, if the equation has no real roots, the graph of the
polynomial does not intersect the axis of x.

39. Solution of equations by factoring. Let f(x) be a poly-
nomial which can be separated into factors f,(x), fy(), f5(2), - - -5
each of which is necessarily of lower degree than f(z). Then the
equation y

f(x)=0 ()

may be written in the form
fl("c) 'fz("“)) 'fs(“(;) =0 (2)

It is evident that any value of » which makes one of the fac-
tors f,(z), fo(x), fy(#), - - - zero, satisfies equation (2), and hence
equation (1), ie. is a root of equation (1). But such a value of z
is evidently a root of some one of the equations

Ji@x)= e Jo(2)=0, Ja@)=0,

Conversely, any root of equation (1) must satisfy equation (2),
and hence must make some one of the factors f,(2), f,(), f5(«), - -
zero; for if no one of these factors is zero, their product cannot be
zero. Hence the solution of the equation f(x)= 0 is reduced to
the solution of the separate equations

fl(‘t) =0, f2(‘l’) =0, fa(‘r) =0,

In applying this method it is usually desirable to have no fac-
tor of higher degree than the second; but there is no advantage
in carrying the factoring any further, as any quadratic equation
can be readily solved.
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Ex. 1. Solve the equation z3 = 8.

By transposition, »—8=0;
whence, by factoring, (*—2)(@2+2x+4)=0.
S 2—2=0 or 2242x44=0;

whence r=2 or —1+4 \/—_3.

Since the original equation Imght have been written x = \/- we see that the
three values of z which have been found are each a cube root of 8 In fact,
every number has three cube roots, which may be found by solving the equation
formed by placing x3 equal to the number.

Ex. 2. Solve the equation x¢ 4+ 9 = 0.
This equation may be written
(xt + 622 + 9) 622=10;
whence, by factoring, (x2 + Vo + 3) (x% — Ve + 3)=0.
% x2+\/6m+3:0, or 22—V6z+3=0;
—V6+VvV_6 i ‘fﬁi‘/:—ﬁ.
2 2

whence ® ==

It is to be noted that every number has four fourth roots, which may be found
by a method similar to that suggested above for finding its three cube roots.

40. Factors and roots. It follows immediately from the pre-
ceding article that ¢f © — » is a factor of f(z), then v is a root of
the equation f(z)= 0.

Conversely, if » is a root of the equation f(r)=0, then the
polynomial f(x) is divisible by © — 7.

Let fl@y=aup"+ax'+.--+a,_x+a,
and let 7 be a root of f(x)= 0. Then
Sry=ar+ar+. .. +a,_r+a,=0.
- f(@) =1 () =1 ()
; ((['Own + alxn—l—’— L + (1"_1«13 + an)
—(agFap a7+ a,)

— (70(‘1?n_ ,rn)+ arl((E”_]—' )<Il—!)+ 10 + a’n—l P — 7,).

As f(x) is expressed as a series of terms each of which, being

the difference of the same positive integral powers of z and 7, is
divisible by @ — 7, it follows that f(z) is divisible by z — 7.
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Ex. By inspection — 1 is a root of the equation

2t + 234+ 2224+ 8x4+1=0. (1)

Hence z + 1 is a factor of the left-hand member of the equation, which may

accordingly be written
x+1)@+2x41)=0. (2)

Additional roots of equation (1) may now be found by solving the equation
8 + 22z + 1 = 0 by methods given in §§ 52 and 63.

It is to be noted that the solution of the original equation has been simplified
by making it depend upon the solution of a depressed equation, i.e. one of degree
lower than the degree of the original equation.

41. By means of the second theorem we can form an equation
which shall have any given quantities, r,, 7,, - - -, 7, as roots. For
it 7, r, --- are the roots of the equation, its left-hand member
must contain the factors x —#, £ —r,, - - -, the right-hand mem-
ber being zero. Therefore the equation

("v—7"1)("3_7'2)"'(£_7'n)=0

has the required quantities as roots. Moreover, this equation can
have no other roots, since any other value of z will make no fac-
tor equal to zero, and hence the product will not be zero. There-
fore the required equation is b

(== =rng)e o (.1:—r")=6.

Ex. 1. Form the equation having as roots 2 +3V —1,2 -3V -1, — %
The required equation is
@—2-3V_1l)@x-2+3V-_1)@=+3H=0,
or [(z—2)2+9][8z +1] =0,
or 323 — 1122 4+35x +13=0.

This method of forming an equation suggests a method of factor-
ing a quadratic expression. For if 7 and r, are the roots of the
quadratic equation ax’+ bz + ¢ =0, then ax’+ bz + ¢ is divisible
by # —r, and  — r,; and hence

ar+br+c=a(x—r)(@—r,).
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Ex. 2. Factor 62 4+ x — 1.

The roots of the e]quation 6224+ 2 —1=0are — } and }.

62t —1=6(x+4) (-3
=2@+%)-3@—-P
=@R2z+1)Bz—1).

Ex. 3. Factor4ax2+ 4z — 2.
il i\/—

The roots of the equation 422 + 4x — 2 = 0 are —————
_1+\/§><x_ —1—\/5)

2 2

=2z +1—V3)(2z +1+V3).

.'.4x‘~'+4x—2=4(x—

Ex. 4. Factor x2 + 4z + 6.
The roots of the equation 22 + 42 + 6 =0are —2 4V — 2,

a4+ 06=(@+2-V_2(@+2+V—2).

42. Number of roots of an equation. The fundamental propo-
sition concerning the roots of an equation is that every equation
Jormed by placing a polynomial equal to zero has at least one root.
The proof of this proposition, however, depends upon methods
too advanced to be used here. We shall therefore assume it as
proved, and proceed to prove, as a consequence of it, that every
equation of the nth degree has n roots, and only n roots.

Let the given equation

at + a2 ', x4 a,=0
be denoted by S(x)=0. (1)

Since this equation must have at least one root, let », be that
root. Then f(z) is divisible by # — 7 (§ 40) and therefore

F @)= —=r)fi(), @)
Ji(x) being the other factor, and necessarily of degree n — 1.
Equation (1) can now be written

(z=r)/i(®)=0, ; 3)
and any root of Ji(@)=0 : 4)
is a root of f(z)=0 (§ 39).
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But equation (4) must have at least one root; and if we let r,
be that root, and reason as before, we may write

Si(@) = (@ — 1) [,(%), ®)

Jo(#) being of degree n — 2.
By substitution in (2) we shall have

JS@=@—r)@—1)f 2()- (6)

After separating n linear factors in this way, the last quotient
will be a, Therefore we shall have

f(./‘) = ay(x — 7'1) o= B (=1, (7)

the polynomial being expressed as the product of » linear factors.
Then the equation f(x)= 0 may be written

ag(e—7r)(e—7r,) - (x—r)=0, (8)

whence it is seen to have « roots (§ 39), ie. 7, 7, -+ -, 7.

It can have no other roots; for if we let # have any value other
than 7, 7,-- -, or 7, no factor of the first member of (8) is zero,
and hence the product in the first member is not equal to zero.
Therefore the equation of the nth degree has =, and no more
than #, roots, and the polynomial of the nth degree can always
be separated into n linear factors. In general, however, it is not
possible to determine these factors where n > 4.

It is to be noted that the roots may all be different, or some of
them may occur more than once. In the latter case the equation
is said to have multiple roots. ’

43. If now the left-hand member of equation (8) of § 42 is
expanded, the equation appears in the original form

e+ a "'+ +a,_x+a, =0,

and it is evident that
[

SR (o) £t (i o (1

a

and that (R =) (=) (m )= @)

[
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Equations (1) and (2) express respectively the following theorems:

1. The sum of the roots of an equation with their signs changed
ts the coefficient of =" divided by that of z".

2. The product of the roots of an equation with their signs
changed is the constant term divided by the coefficient of .

Other theorems of this type are given in works on the theory
of equations, but only these two have been stated here, since they
are of special service in finding the remaining root of an equation
after all the others have been determined.

Ex. 1. Three roots of _t._llgequation 2zt 4+ T3+ 822+ 2x —4 =0 are — 2,
—-1- \/—_1, and — 14V — 1. Find the fourth root.

The sum of all the roots is — 7, and the sum of the three roots known is — 4.
Therefore the fourth root is — 7 — (— 4), or .

Ex. 2. Two roots of the equation 36x® —7x 4+ 1=0are } and — }. Find
the third root.

The sum of the two roots known is — }, and the sum of all the roots is 0,
since the coefficient of x2 is 0; therefore the third root is 0 — (— 1), or }.

Or the product of the roots known is — &, and the product of all the roots
is — % ; therefore the third root is (— 4lg) = (— ), or }.

44. Conjugate complex roots. Nothing was said in §42 as
to the nature of the roots #», 7, -, .. But if the coefficients
@y, @y, -+ +y @, are all real, and if @ 4 b7 is one of the roots, then
@ — bi is also a root.

For if a + bi is a root of f(z)=0, then f(a + )= 0. When
S (o + bi) is expanded the terms can be separated into two sets,
— those containing « alone or involving only even powers of b7
as a factor, and those involving only odd powers of 67 as a factor.
By § 12 the terms of the first set are all real and their sum may
be denoted by 4; and the terms of the second set contain 7 to the
first power as a factor, and their sum may be denoted by Bi (B,

of course, being real). Then f(a + b7) = 0 may be written
A+ Bi=0,

whence (§ 12), 4 =0 and B = 0.
If, in the above, we replace bi by — bg, it is evident that the
terms in the first set are not affected, as they involve only even



GRAPHS OF PRODUCTS 83

powers of b7 as a factor, and those in the second set, involving
only odd powers of b as a factor, are changed in algebraic sign
only. Therefore we have f[a + (—bi)]=A—Bi. But we have
seen that 4 =0 and B =0; therefore f[u+ (—)]=0. Since
Sla + (= bi)]= f(a— b3), however, it follows that f(a« —bi)= 0,
and @ — bi is a root of the given equation f(z)= 0.

This fact is usually stated by saying that complex roots occur
in pairs.

It follows that an equation of even degree may not have any
real roots, and that an equation of odd degree must have an odd
number of real roots, and thus at least one real root.

45. It was proved in § 42 that every polynomial is equivalent
to the product of = linear factors, ie.

az—r)@—r)--- (2—1),
where 7, 7, - - -, 7, are the roots of the corresponding equation.
Now if any one of these roots is.complex, there will be a corre-
sponding conjugate complex root. Let a + bi and « — b¢ be two
such roots. Then the corresponding factors are (z — a — b7) and
(#— a + bi), which combine into (z—a)*+ V?, a real quadratic
factor.

Therefore every polynomial with real coefficients is equivalent
to the product of real linear and quadratic factors.

46. Graphs of products of real linear and quadratic factors.

1. All the factors linear and none repeated, as
ay(x—r)(E—1)" - (x—1).
Placing y equal to this expression, we have
Yy=ay@—r)(z—1r,)---(r—r).

It is evident that the graph intersects the axis of z at n dis-
tinct points for which # = », » = SR = andl ab¥n o other
points, as no other values of 2 make y zero. Now let the quan-
tities »,, 7,, - -+, r, be arranged in the order of their magnitude,
7, being the least. Then if at first 2 < r, all the factors are nega-
tive; and if # changes so that », < x < r,, the first factor becomes
positive while all the others remain negative. Therefore y changes
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sign when « changes from being less than 7 to being greater
than 7, and the curve crosses the axis of « at the point z = r,.

Again, if 2 changes so that ‘at first », <z <7, and then
r, < & < 7, the second factor changes sign from minus to plus,
the others retaining their original signs. Hence y again changes
sign, and the curve crosses the axis of # again at the point z = r,.

Continuing in this manner, we can show that the curve crosses
the axis of # n times as it is traced from left to right. .

2. All the factors linear, some being repeated, as, for example

ao(‘v = 711) ("’3 = ,,.2)2 (x TR 7'3)8;
the corresponding equation being
LY =ayx—r)(r— 7'2)2 (x— 7'3)3‘

If the #’s are arranged in ascending order of magnitude, it may
be proved, as in the previous case, that the graph crosses the axis
of z at the points z =, and z = r;, but not at the point = = 7,.
For if at first », < 2 < r, and then r, < 2 < r,, it is seen that no
factor changes sign. But since y = 0 when « = r,, the graph has
a point on the axis of x when z =r,; in fact, it is tangent to the
axis of . And it can be proved in general that, if a linear factor
occurs an even number of times, the graph does not cross the axis
of x at the corresponding point.

3. Some of the factors quadratic, as, for example,

g (2 — 1) (2= 1y)* [(# — @)* + V7],
the corresponding equation being
Yy=uq (x o7 Tl) (m S 7'2)2 [(x 37 a)2 sha bg]'

The only new type of factor is (x — a)®+ %, and this is positive
for all values of . Hence there is no new point to be discussed
in regard to the intersection of the graph with the axis of «.

In general, the graph has as many points on the axis of z as
the polynomial has different linear factors; it does not cross the axis
at any point corresponding to a factor occurring an even number
of times; and it crosses the axis of x at any point corresponding
to a factor occurring an odd number of times.
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Ex. I y=.5(x+2)(x+.5)(x—2).

1. Ifz=—20r —.50r2,y=0,
and there are three points of the
curve on the axis of z.

2. If @ < — 2, all three factors are
negative; therefore y < 0, and the
corresponding part of the curve lies
below the axisofz. If —2<z< —.5,
the first factor is positive and the
other two are negative; therefore
y > 0, and the corresponding part of
the curve lies above the axis of z.
If —.5 <z <2, the first two factors
are positive and the third is nega-
tive ; therefore y < 0, and the corre-
sponding part of the curve lies
below the axis of z. Finally, if
z > 2, all the factors are positive ;
therefore y >0, and the correspond-
ing part of the curve lies above the
axis of z.

3. Assuming values of z and
finding the corresponding values
of y, we plot the curve, as repre-
sented in fig. 41.
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EX. 2. y=.5(+2.5)@&—1)2

1. If z=—2.5 or 1, y= 0, and there
are two points of the curve on the
axis of z.

2. If #<—2.5, the first factor is
negative and the second factor is posi-
tive; therefore y <0, and the -corre-
sponding part of the curve lies below
the axis of . If —2.5<x <1, both
factors are positive; therefore y > 0,
and the corresponding part of the curve
lies above the axis of x. Finally, if
z >1, we have the same result as when
—2.5<x <1, and the curve does not
cross the axis of x at the point z =1,
but is tangent to it.

3. Assuming values of z, and finding
the corresponding values of y, we plot
the curve as represented in fig, 42.
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Y Ex. 3. y=.5(@ +3)
(@2 — 2.5z + 3.5).

1. If z=—38, y =0, and this
curve has but one point on the
axis of z.

2. If x < — 3, the first factor is
negative and the second factor is
positive, as it always is, since it is
equivalent to (x — 1.25)2 + 1.9375;
therefore y <0, and the corre-
sponding part of the curve is
below the axis of z. If 2> — 8,
the first factor is positive; there-
fore y > 0, and the corresponding
part of the curve is above the
axis of z.
| 3. Assuming values of z, and
) finding the corresponding values
0 1 of y, we plot the curve as repre-
sented in fig. 43.

z=-3

47. Location of roots.
From the work of the last
article it is evident that the
real roots of the equation f(z)=0 determine points on the axis
of z at which the graph of f(x) crosses or touches that axis.
Moreover, if x, and =z, (x, < x,) are two values of z, such that
S (z)) and f(x,) are of opposite algebraic sign, the graph is on one
side of the axis when z =, and on the other side when z = z,.
Therefore (§ 56) it must have crossed the axis an odd number of
times between the points =z and z=x, Of course it may
have touched the axis at any number of intermediate points.
Since a point of crossing corresponds to an odd number of roots
of an equation, and a point of touching corresponds to an even
number of roots, it follows that the equation f(z) =0 has an odd
number of real roots between x, and z,.

The above gives a ready means of locating the real roots of
an equation in the form f(z) =0, for we have only to find two
values of z, as #; and z,, for which f(z) has different signs. We
then know that the equation has an odd number of real roots
between these values, and the nearer together z, and x,, the more

FiG. 43
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nearly do we know the values of the intermediate roots. In locat-
ing the roots in this manner it is not necessary to construct the
corresponding graph, though it may be helpful.

48. Descartes’ rule of signs. When in a polynomial a term
with one sign is immediately followed by one with the opposite
sign, there is said to be a variation of sign. For example, in the
polynomial 3 #* + 2 x® — 3 2% + « — 2 there are three variations.

The variations of sign in the left-hand member of an equation
are often of value in locating the real roots of the equation,.for
the number of positive roots of the equation f (x) = 0 cannot exceed
the number of variations of sign in its left-hand member. This
rule is known as Descartes rule of signs.

For example, the equation 3 #* + 2 #* — 3 #* 4+« — 2 = 0 cannot
have more than three positive roots, as there are three variations
of sign in its left-hand member.

To determine the greatest possible number of negative roots,
replace # by —«/. The roots of the resulting equation will be
those of the original equation with their signs changed. Accord-
ingly the original equation can have no more negative roots than
this new equation has positive roots.

If, in the equation 32* 4 2ux*—32*+ £ —2 =0, » is replaced
by — &/, the new equation is 32 — 24— 32— 2" —2=0. As
this equation cannot have more than one positive root, the original
equation cannot have more than one negative root.

Sometimes, by Descartes’ rule, we can prove that an equation
has imaginary roots. For example, the equation 3 2*+4 «* 4 2 =10
can have no positive root, and not more than one negative root.
Being of odd degree, it has at least one real root (§ 44); therefore
it has one negative root and two imaginary roots.

In order to prove Descartes’ rule we will first prove that ¢f any
polynomial f(x)is multiplied by x — r, where r is « positive quan-
tity, the product has at least one more variation than has f(x).

Assuming the first term of f(x)to be positive, we will inclose
all the terms preceding the first minus sign in a parenthesis. In
a second parenthesis we will inclose all the terms with a minus
sign before a positive sign occurs again, and so on. Suppose,
then, that the first minus sign appears in the term containing
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2%, the next plus sign occurs in the term containing "~/ etc.,
and that all the terms after that containing z"~™ have the same
sign as that term. We can now write

J@=(@x+ -+ uk__l.r,"‘k“)

—((Lk‘l’ﬂ—k + 4 al—l‘”n_H_l)
+(a@ ) —
:l’:((tmx“—nl + -+ a’n)’ (1)

where all the terms within each parenthesis are of the same sign,
ie. plus. Therefore each parenthesis marks a variation.

To multiply f(x) by  —» we shall multiply first by z, then by
—r, and add the partial products.

The result is an equation of the following form :

(x—nrf@)=(@x L. Y= L. 2
+(bluc""l+l:|:...>_....
(b, v e, (2)

where 0, =a, + ra,_,, b,=a,+ ra,_,, etc., and accordingly are
positive.

The signs before each parenthesis of (2) are the same as in (1),
but the signs within the parenthesis are not necessarily all plus.
But however the signs may occur within any parenthesis, there
is at least one variation between the first term of one parenthesis
and the first term of the following parenthesis. Hence, if we con-
sider the parentheses only, the number of variations in the prod-
uct is not less than the number of variations in f(x).

But, in addition, we have the last term of the product,ie. F a7,
the sign of which differs from the sign of the first term in the
last parenthesis. Hence there is at least one more variation in
(z—7) f(x) than in f(x), as we set out to prove.

Now the equation having the roots »,, r,, - - -, 7, is (§ 41)

@—r)@x—r,) --(x—7r)=0.

In expanding the left-hand member every time we multiply
by a factor corresponding to a positive root, we add at least one
variation of sign. Hence the number of positive roots cannot
exceed the number of variations, as stated in Descartes’ rule.
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49. Rational roots. The real roots of any equation are either
rational or irrational (§ 10), and the rational roots must be
either integral or fractional. We will now derive methods of
finding the rational roots, beginning with the integral roots.

An easy method of determining the integral roots depends upon
the following theorem : If the equation is written in the form

" + a2+t a,_r+a,=0, (1)

where all the coefficients are integers, any integral root r must be
« fuctor of a,.

It has been proved in § 40 that the left-hand member of (1) is
divisible by @ — 7. Since the coefficient of # is unity, and all the
coefficients in the dividend are integers, all the coefficients in the
quotient are integers. But the last coefficient in the quotient
multiplied by » must be a,, since there is no remainder. Hence
the theorem is proved.

Accordingly, to find the integral roots of any equation with
integral coefficients, we have merely to try the integral factors of
@,. When an integral root has been found, we depress the degree
of the equation as in § 40, and apply the process to the new
equation. In this way all the integral roots may be found. In
case no integral factor of «, proves to be a root, it follows that
the equation ecan have no integral root.

Ex. Find the integral roots of the equation
4t — 423 — 2622424+ 6=0.

The integral roots of this equation must be factors of 6, so that we have to
try +1, + 2, + 3, + 6. By trial it is found that — 2 is a root, and the degree
of the equation is depressed by dividing the left-hand member by z + 2, the
depressed equation being 423 — 1222 — = + 3 = 0. The only possible values of
integral roots of this equation are + 1, + 3, and 3 is found to be a root. Dividing
the left-hand member by  — 3, we have, as the depressed equation, 4 22— 1= 0,
the roots of which are 4+ }.

Therefore the roots of the original equation are — 2, 3, + }.

While all the integral roots of an equation may be found by
this method, it is evident that it fails for fractional roots, as there
is no way of determining what fractions ought to be tried. This
difficulty is obviated by the two theorems in the next article.
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50. If a, is unity and «ll the other cocflicients are integers,
the equation cannot have a rational fraction in its lowest terms
as a Toot. '

Let the equation be
Q}"l + a/l'%ﬁ-l._*_ a2xﬂ-2 + 1y + a’n-lm + a’n =0)

and, if possible, let the rational fraction L, \hich is in its lowest
terms, be a root. Then 4

n n—1 p n-2
<}2>+a1<£> +a2<‘£> +.'.+“n—l<£>+ a,n=0,
q q g q

Multiply through by ¢"~', and transpose to the second member
all terms but the first. Then

s n—1 7 =2 e O A = 2P n -1
Yo alp o a‘.“.p q an—lpq anq 2
n

By hypothesis p and ¢ have no common factor, and therefore %

is a rational fraction in its lowest terms, while the right-hand
member of the equation is an integral expression. But two such

. D ] i
expressions cannot be equal, and hence %, the rational fraction

in its lowest terms, cannot be a root of the equation.
Moreover, every equation in the form
-1 -2 e
ar* + ax" a7 4o Fa, izt a, =0,

i which a, is not unity, can be transformed into an equation with
tntegral coefficients in which the coefficient of the highest power of
the unknown quantity shall be unity.

For, dividing through by «,, we have

T WL gl 5 a, , a, ;
— o e — = oo — =
x+aom +a0x Grio 08 R a x+ao 0. (1)
.‘L"
If « is a root, of this equation, let » = o m being an integer, and

substitute in (1). Then

m/n (ll 15’"_] ag JJI"_2

ol
S @ 107 %" Sl (2)

A, m @,

=il n—2 .+

n A £
mt - a,m o m
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Multiplying (2) by =", we have

o fn~1 @y 2\ ,.m-2
adr=—m ) —=m? ) -
@, dy

/ ¢
o (Elc’;—;l m"—1> 2+ ((E,j m"> =10 (3)

We can now determine m by inspection in such a way that
all the coefficients of (3) shall be integers. The roots of this new
equation are m times the roots of the original equation.

Ex. Transform equation 123 + 1622 — 52 — 3 =0 to an equation having
integral coefficients, the coefficient of the highest power of z being unity.
Dividing by 12, we have

PN ST
»+ 3 Yz —1=0.

Multiplying the roots of this equation by an integer m, we insert in each
term a power of m such that the sum of its exponent and that of z’ shall be
equal to the degree of the equation, thus obtaining

x8 + (3 m)a? — (P mHx’ — (Fm?) =0.

For % m to be an integer, m must equal 3 k where k is an integer. Then 4% m?
becomes %5 (9 k2), and this is an integer only when k = 21; i.e.m = 61, ! being
an integer. Finally, ] m3, or } (61)3, is an integer if { =1, the least value of m
being the one desired.

Therefore we let m = 6, and our required equation is

x84 8x2 — 162" — 64 =0,

the roots of which are six times the roots of the original equation.
The roots of this equation are found by the method of § 49 to be — 2, 3,
and — 9. Ience the roots of the original equation are — %, }, and — §.

We are thus in a position to determine the rational fractional
roots of any equation with rational coefficients.

51. We now see that to find all the rational roots of any equa-
tion, we first find all its integral roots and then all its fractional
roots, as indicated in the following example.
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Ex. Find all the rational roots of the equation
2t — 522 — 222 -T2+ 30=0. 1)

By Descartes’ rule of signs this equation cannot have more than two posi-
tive roots, and not more than two negative roots. If any of the roots are inte-
gral, they will be among the factors of 80, i.e. +1, + 2, + 3, 45, + 6, + 10,
+ 15, £+ 30. By trial we find + 2 to be a root, and the depressed equation is

203 — 22 — 42— 15=0. (2)
By trial we find that this new equation has no integral roots, no factor of 15
being a root. Accordingly we proceed to find fractional roots.

Dividing equation (2) through by 2 and then multiplying the roots by m, we
have % — (Fm)x'? — (2m2)a’ — (L md) = 0. 3)
To make the coefficients of (3) integral we take m = 2, and the equation becomes

83— — 8% — 60 =0. (4)
By trial we find an integral root of this equation to be 5, and the depressed

equation is
22+ 42 +12=0, (5)

the roots of which are — 2 4 2 vV_2.

Therefore the three roots of the transformed equation (4) are 5
—24+2vV_2 2, and the roots of the first depressed equation (2) are § a,nd
— 14+ vV —2, so that the roots of the given equation are 2, 3, and — 1 + vV —

It is to be noted that in this example, after having found all the la.tlonal
roots, we were able to find the remaining roots also, since the last depressed
equation was of no higher degree than the second.

52. Irrational roots. It should be borne in mind that rational
roots occur only for special values or systems of values of the
coefficients. Hence, after removing the rational roots, if any, by
the previous methods, we have, in general, to determine irrational
roots in order to have all the real roots of the equation. But
from the definition of an irrational quantity (§ 10) it is evident
that we cannot find an irrational root exactly. We may, however,
find an approximate value to any required degree of accuracy.
There are various methods of approximation, one of which imme-
diately follows. A more rapid method is given in § 63.*

* A method of solving algebraic equations, known as Horner’s method, is found
in most treatises on the theory of equations. It is convenient in arrangement of
work and speedy in the hands of an expert. It may therefore be recommended to
one who has often to solve equations. On the other hand, the methods of §§ 52, 63 of
this book have two advantages. They may be applied to other than algebraic equa-

tions (see § 162), and depend upon prineiples which, if once mastered, are not easily
forgotten,
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Let the given equation be f(x)= 0, and the graph of the left-
hand member be as in fig. 44, where OM =z, and OM, = z,.
Then M,I, = f(z,) and M,E, = f(2,), and since f(z,) and f(z,) are
of opposite sign, the curve crosses the axis of z between M, and
M,, and there is at least one %
real root of f(2)=0 between
z, and z, (§ 47).

Not only does the curve cross
the axis of # at some point be-
tween M, and M, but it is
evident from fig. 44 that the
straight line I,F, also intersects
the axis of 2 at some point
between M, and MM, as M, 1f
the points M, and M, are near
together, ie. if z, and z, differ
only by a small amount, the curve in most cases differs only slightly
from the straight line P P,. Hence, if we replace the curve by
the straight line, the abscissa of the point at which P P, intersects
the axis of # will be approximately the root of the equation.

If OM, is denoted by z,, it is evident (fig. 44) that there is a
root of f(x)= 0 between z, and z,, a smaller interval than that
between z, and #,, in which the root was first located.

v If, however, the graph of f(x) had
been as in fig. 45, the root would
have been between z, and z; an
interval smaller, of course, than that

Fic. 44

F,
\ between xz, and z,.
i If f(«,) has the same sign as f(z,),
! we have the first case (fig. 44); and
| . .
! M M, if f(r,) has the same sign as f(x,),
M, 0 N ! we have the second case (fig. 45).
e N In the first case, repeating the proc-
3 P, : . ) e
NGRS ess, using z, in place of z,, we can

find an x, between which and z,
the root must lie; and in the second case, using x, in place of x,,
we can find an z, between which and #, the root must lie.
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Moreover, it is evident that the successive values of , ie. iy
Z,, @, - -+, found in this way are each nearer to the true value of
the root of f(z) =0 than the one preceding.

Ex. Find the root of the equation 28 + 2z — 17 = 0 between 2 and 3.

Here ) = 2 and z; = 3 ; also f(2) = — 5 and f(8) = 16. The equation of the
straight line determined by the points (2, — 5) and (3, 16) is (§ 29)

%5 —ilg
vb=

(x — 2).

Its intercept on OX, found by letting y = 0, is 2.2 +, and f(2.2) = — 1.952.

Since f(2.2) has the same sign as f(2), the second straight line is determined
by the points (2.2, —1.952) and (3, 16). Its intercept on OX is 2.28 +,and
f(2.28) = — 0.587648. :

Since f(2.28) and f(2.2) have the same sign, the third straight line is
determined by the points (2.28, — 0.587648) and (3, 16). Its intercept on
0X is 2.8 4, and f(2.8) =— 0.233. The fourth straight line is determined
by the points (2.3, — 0.233) and (3,16). Its intercept on OX is 2.31 +, and
f(2.31) = — 0.053609. The fifth straight line is determined by (2.31, —0.053609)
and (3, 16). Its intercept on OX is 2.812.

llence the irrational root of a3 + 2 — 17 = 0, accurate to two places of
decimals, is 2.31.

By continuing this process we can find any desired number of decimal places
of the root. It is to be noted that we are obliged to find one more decimal place
than the number of decimal places to which the root is to be accurate. The
approximation is more rapid if the first decimal place is found by the method
of §47.

PROBLEMS

Plot the graphs of the following quadratic expressions, in each case locating
the vertex of the graph and determining the nature of the roots of the corre-
. sponding equation :

1. 242 482 — 2. 4, — 322 + 52.
2. 922 -3z — 2. 5., —9x2 4122 —1.
3. 422 + 4z + 3. 6. 42— 42— 1.

7. For what values of a are the roots of az? + 3z +7=0equal? What are
the roots ?

. il
8. Prove that the roots of (cx + VZ;—L> — 8ax = 0 are equal for all values
of @ and ¢, and find them, :

9. Prove that there is no real value of m for which the roots of
22 4 (mx 4 3)2 — 16 = 0 are equal.
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For what values of k are the roots of the following quadratic equations (1)
equal ? (2) real and unequal ? (3) imaginary ?

10. 222+ 3z + 2=k 11 224+ 2—-k)x+1=0.
12. (k +1)a? + (k — )z + (k + 1) = 0.

Plot the graphs of the following polynomials:

13. 28 —ax. (@>0.) 19. 23 — 122 + 3.

14, #8 — 4224+ 2+ 1. 20. 22t 4+ 23— 422 — 10z — 4.
15, 28 — 3224 1. 21, 424+ 1228 4 T2 — 282 — G.
16. 3 + 22 4 22 + b. 22. 324 — 1023 — 52 4 2.

17, 28 — 22 4+ 2 — 4. 23. xt 4+ 623 + 1022,

18. 23 + 6z — 6. 24, 226 4+ 224 —Tad —8x2 — 4.

Find all the roots of the following equations:

25. 8a3 =27. 28. 5x8 4 2722 =228 — bzt
26. 826 — 6323 — 8 =0. 29. 2z —a)t —(3x + a)*=0.
27. 26 — 523 + 122 =223 4 3z, 30. zt—2(a2+1)22+ (a2 —1)2=0.

Form the equations having the following values for their roots :

31. 0, 2, §. 32. a4+ Vb, a—Vb, —a.
33.0,0,2a 4+ b, +V2bh

34. Form a quadratic equation with real coefficients having 2 4 3 for one

of its roots.

Factor the following quadratic expressions:

35. 422+ 8x —1T. 38. 22+ 2ax — a + al.
36. 422+ 122 + 11. 39. a2x2 + 2 abx — a.
37. 4a%2 4+ 2azx + 1. 40. a2x2 4 2abx + b + b2

If r, and 7, are the roots of the equation 22 + px + ¢ = 0, find the values of
the following expressions in terms of p and g without solving the equation :

1 1 1 1k T T
2 2 3 3 e - fain "oy SR
41. r2+rl. 42. r} 4] 43. 7‘1+ 5 44. 1‘12+7‘3 45. ,’.2+,r1

If 7y, 74, s arve the roots of the equation z3 + pa? + gz + r = 0, find the val-
ues of the following expressions in terms of the coefticients without solving the
equation :

46. (r] + ri + rd) + 2(rire + rors + r3r1) + 3rarers.
) 1 1 1
2 ¥ , 2 —_— —_— —
47. rlrors + rirsry + ririre. 48. e + = + e

49. Show that if a + Vb is a root of an equation with rational coefficients,
then a — Vb is also a root.
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Plot the graphs of the following expressions, and find all the roots of the
corresponding equations:

50

51.

52
53
54
55

Find all the roots of the following equations:

@) (@ —2)(—4). 56.

(@ —2)(x —4) 2z +3). 57.
(=4 @z +1)3Bz +5). 58.
(@4 3) (@ —1)2. 59.
. @z —1)(x—3)2 60.
. @—2) 2z + 32 61.

Cr+5)(x2+2x +3).
(x—5) 222+ 3z + 2).
(* +2)(x — 3)(x — 2)2
(& —2)(x + 2) (x% + 2).
(*—2)2(222+ 22 +1).
(x+1)(2x —1)(Ba2+ 22+ 3).

823 — 2822 + 30x — 9=0.
1223 — 4422 4+ b + 7= 0.
323 + 1022 + 10 — 12 = 0.
33 4+10224+2x—8=0.

4t + 823 +3x2—-22—-1=0.

62, 23 —422— 22 +5=0. 67.
63. 28 —82%44=0. 68.
64. 323 —T22—8x +20=0. 69.
65. 428 — 8x2 — 352 + 75 =0. 70.
66. 23 + 422442+ 3=0. 71.
72. 6xt— 1128 — 3722 4+ 36 + 36 = 0.

73. 32t — 1723+ 4122 — 532 +30=0.

74, 204 —9x3 —9x2 4+ 572 — 20 =0.

75. 18xt — 2723 41022 4120 — 8 =0.

76. 16x* + 1623 — 7222 — 20 + 25 = 0.
77. xp — 2t — 423 — 422+ 152 + 18 =0.
78. 45 +122% + 1123 + 522 — 3x — 2 =0.
79. 1225 + 442 — 5523 — 9522 4 63x — 9 = 0.

80.

25 — Hat — 1323 + 1322+ b2 —2 = 0.

Determine by Descartes’ rule of signs the nature of the roots of the follow-
ing equations:

81
82
83

a3+ 5x—-—T=0. 84.
23422 4+3=0. 85.
L34+ 222 4+ 5=0. 86.

3zt + 423 +424+3=0.
4 x2—x—-6=0,
2t —4224+1=0.

Find the real roots of the following equations, accurate to two decimal places:

87
88

.23+ 8x—7=0. 89.
.23+ +565=0. 90.

¢ —-12x+7=0.
¥t —-3224+3=0.

91, #3—22—-624+1=0.



CHAPTER V
THE DERIVATIVE OF A POLYNOMIAL

53. Limits. A4 wvariable is said to approach a constant as «
limit, when, under the law which governs the change of value of
the variable, the difference between the variable and the constant
becomes and remains less than any quantity which can be named,
no matter how small.

If the variable is independent, it may be made to approach a
limit by assigning to it arbitrarily a succession of values follow-
ing some known law. Thus, if z is given in succession the values

r—1
L =
"£2—74’ x3_§"‘.’ ‘l:”_ 21)
and so on indefinitely, it approaches 1 as a limit. For we may

make z differ from 1 by as little as we please by taking n suffi-
ciently great ; and for all larger

Z, =

[E

4

v 7 S
values of » the difference be- ¢ i jo ot 38 1
2 4 x Ta x, X
tween z and 1 is still smaller. 5 ToPR e
Fic. 46

This may be made evident

graphically by marking off on a number scale the successive values

of z (fig. 46), when it will be seen that the difference between =z

and 1 soon becomes and remains too minute to be represented.
Similarly, if we assign to « the succession of values

1
A= e = % TY 1 NS e e T
xl—ﬂ" "2“’_%{) ‘rs—}h AL “"‘T'n—( 1) '7l+].,
« approaches 0 as a limit (fig. 47).
1 1_1 1 ! 4
g I 3 R 1 e 1 {
L e 2 e z,
Fic. 47

If the variable is not independent but is a function of x, the

values which it assumes as it approaches a limit depend upon
. 97
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the values arbitrarily assigned to x. For example, let y = f(«),
and let = be given a set of values

T R M SR 5 o o

1’ 95 i hB oF

approaching a limit @. ILet the corresponding values of y be

Yoo Yoo Yas Yoo * 05 Ynoo o0
Then if there exists a number 4, such that the difference between
y and 4 becomes and remains less than any assigned quantity, y
is said to approach 4 as a limit

Y 3
;| as x approaches « in the man-
7 e ner indicated. This may be seen
1
————————————— =\ - . el .
Yy A graphically in fig. 48, where the
7 ARl B values of x approaching a are
I 1 . .
A seen on the axis of abscissas and
| 3 1) o
s NS the values of gpploach‘lng A
b e o are seen on the axis of ordinates.
[} L) . .
i -y The curve of the function is con-
| 1 (ot = 4
! | y = J
5 R P 7 tinually nearer to the line y = A.
In the most common cases, the

S b limit of the function depends only

upon the limit @ of. the inde-
pendent variable and not upon the particular succession of values
that  assumes in approaching a. This is clearly the case if the
graph of the function is as drawn in fig. 48.

Ex. 1. Consider the function
_ 2243z — 4
i x—1 i

and let z approach 1 by passing through the succession of values
z=11, z=101, z=1001, z=1.0001,
Then y takes in succession the values
y=51, y=5.01, y=5001, y=5.0001

1t appears as if ¥ were approaching the limit 5. To verify this, we placex=1+h,
where % is not zero. By substituting and dividing by % we find y =5 + A
From this it appears that ¥ can be made as near 5 as we please by taking %
sufficiently small, and that for smaller values of %, y is still nearer 5. Hence 5

is the limit of y as x approaches 1. Moreover, it appears that this limit is inde-
pendent of the succession of values which 2 assumes in approaching 1.
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Ex. 2. Consider y = as x approaches zero.

&,
1-V1i—=z

Give z in succession the values .1, .01, .001, 0001, .... Then y takes the
values 1.9487, 1.9950, 1.9995, 1.9999, ..., suggesting the limit 2.

by e T
In fact, by multiplying both terms of ———— by 14+V1—2z we find
1-VvVi-z

y =14 V1—g for all values of = except zero.

Hence it appears that ¥ approaches 2 as x approaches 0.

We shall use the symbol =to mean “approaches as a limit.”
Then the expressions

Lmz=a
and AES]
have the same significance.

The expression Lim f(x) =4
r=a

is read “the limit of f(x), as « approaches a, is 4.”

54. Slope of a curve. By means of the conception of a limit
we may extend the definition of “slope,” given in § 27 for a
straight line, so that it may be
applied to any curve. For let I
and £ be any two points upon a,
curve (fig. 49). If I} and I are
connected by a straight line, the

slope of this line is it sl L

2 1
and E are close enough together, / i X

the straight line RF will differ
only a little from the arc of the
curve, and its slope may be taken
as approximately the slope of the curve at the point £, Now this
approximation is closer, the nearer the point E is to /. Hence we
are led naturally to the following definition:

Fic. 49

The slope of a curve at a point B (r,, y,) 1s the limit approached
. Yo=Y
by the tios
Vi Jraction o=
second point B, on the curve, and where the limit is taken as E
moves toward F, along the curve.

where x, and y, are the codrdinates of a
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Ex. 1. Consider the curve y =2 and the poiut (5, 25) upon it, and let
3),=5, Y= 25.

We take in succession various values for z; and y, corresponding to points
on the curve which are nearer and nearer to (ty, ¥1), and arrange our results in
a table as follows :

(2] Y2 Tg — Xy Y — 1 L doct
Lg — Ty
6 36 1 11 11
5.1 26.01 31l 1.01 10.1
5.01 25,1001 01 .1001 10.01
5.001 25.010001 .001 .010001 10.0001

The arithmetical work suggests the limit 10. To verify this, place @z = 5 + .
Then y3 = 25 4+ 102 + A% Consequently Zg L] Zl
2 — X1
Zg ?;1 approaches 10. Hence the slope of the curve

2 — %

y = 22 at the point (5, 25) is 10.

=10 + h, and as z3 approaches

x1, h approaches 0 and

Ex. 2. Find the slope of the curve y = % at the point (3, 1).
We have here =3, y1= 1.
1
We place To=34+h = e
p 2 y Ye Stk
—h Y2—41 i
Then 3 —x1="%h —_ = and = — .
R R TR T To—2,  9+3h

As P; approaches P; along the curve, h approaches 0, and the limit of

i 2T 4 ; hence the slope of the curve at the point (3, }) is — J.
Ty — X1 9 :

In a similar manner we may find the slope of any curve the
equation of which is not too complicated ; but when the equation
is complicated there is need of a more powerful method for find-

ing the limit of %3—:%1 This method is furnished by the opera-
2 1
tion known as differentiation, the first principles of which are
explained in the following articles.
55. Increment. When a variable changes its value the quan-
tity which is added to its first value to obtain its last value

is called its increment. Thus if # changes from 5 to 5, its

~
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inerement is }. If it changes from 5 to 4%, the increment
is — 1. So, in general, if = changes from ., to z,, the increment
is x,—x,. It is customary to denote an increment by the

symbol A (Greek delta), so that
Arx=x,—x, and z,=z+Ax

If y is a function of #, any increment added to z will cause
a corresponding increment of y. Thus, let y =f(x), and let =
change from «z, to z,, Then y changes from y, to y,, where

¥, =S(z) and y, =f(.Z'2).

Hence By = [f(ry) — [ (x,)-
But, as shown above, 1z, =2+ Az,
so that - Ay = f(x, 4 Ax)— f(x,).

56. Continuity. A function y is called a continuous function
of @ variable x when the increment of y approaches zero as the
increment of x approaches zero.

It is clear that a continuous function cannot change its value
by a sudden jump, since we can make the change in the function
as small as we please by taking the increment of x sufficiently
small. As a consequence of Y
this, if a continuous function
has a value 4 when z=a, v=B
and a value B when z=10, it y=cf-—--— BRI
will assume any value C, lying ;-4 : i
between A and B, for at least E E
one value of x between « ] :
and b (fig. 50). e, Bl

f 4 K P Fia. 50

In particular, if f(a) is posi-
tive and f(b) is negative, f(z) =0 for at least one value of »
between @ and .

An algebraic polynomial is a continuous funection, but we shall
omit the proof. The postage function (§20) is an example of a
funetion which is discontinuous at certain points. Other examples
are found in §§ 149, 154.
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When Az and Ay approach zero together it usually happens

that 27/ approaches a limit. In this case y is said to have a
%

derivative, defined in the next article.

57. Derivative. When y is a continuous function of  the deriva-
twve of y with respect to x Us the limit of the ratio of the increment
of y to the increment of x, as the increment of x approaches zero.

The derivative is expressed by the symbol %y_ 5 or, if ¥ is expressed
e
by f(z), the derivative may be expressed by f/(x).
Thus, if y = f(z),

dr azzo Az A:c 0 Ax

The process of finding the derivative is called differentiation,
and in carrying out the process we are said to differentiate y with
respect to .

The process of differentiation involves, according to the defini-
tion, the following four steps:

1. The assumption of an increment of .

2. The computation of the corresponding increment of .

3. The division of the increment of ¥ by the increment of .

4. The determination of the limit approached by this quotient
as the increment of x approaches zero.

Ex. 1. Find the derivative of y = z3.
(1) Assume Ax = h.
(2) Compute Ay = (x + &) — z8 = 322k + 3ah? + A8

®) 1<1nd%~= 322 4 Sah 4+ A2
x
(4) The limit is evidently 322. Hence g— = Skl
x
Ex. 2. Find the derivative of ;10

(1) Place y = % and assume Ax = h.

1 1 h
2) Compilte A= E—an= e Reaefis Lo
(2) p it A
@ Fnd¥-__1 |
Ax x2 + xh

JE L i 3 @8y il
(4) The limit is clearly — Rl and therefore kg
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It appears that the operations of finding the derivative of f(«)
are exactly those which are used in finding the slope of the curve
y=/[(x). Hence the derivative is a function which gives the slope
of the curve at each point of it.

58. Formulas of differentiation. The obtaining of a derivative
by carrying out the operations of the last article is too tedious
for practical use. It is more convenient to use the definition to
obtain general formulas which may be used for certain classes of
functions. In this article we shall derive all formulas necessary
to differentiate a polynomial.

d(ax" 5 Srirue;
1. (T—) = nax""', where n is a positive integer and « any
z
constant.
Let y = ar’.

(1) Assume Az=~h.

(2) Then Ay =a(z+ b)) — ax”
n(n—1)

o)

i

= a<7w’"‘h -+ A h"> 2

(3) %’;’ = a<n,;j‘—l+ 7}_@‘;_1)_.1;&_2]1 S ]l‘n—1>'
(4) Taking the limit, we have Z—?[ = g
77

d(ax)
dz

This is a special case of the preceding formula, n being here
equal to 1. The student may prove it directly.

2. = a, where a is a constant.

de 2
S el 0, where ¢ is a constant.
dr

Since ¢ is a constant, Ac is always 0, no matter what the

Ac 1 oo
value of 2. Hence S 0, and consequently the limit — = 0.
£ ar
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4. The derivative of a polynomial is found by adding the
derivatives of the terms in order.
Let y=ax'+ax .+, o+ a,
(1) Assume Awx=h.
(2) Then
AJ/ =, (‘l; S h)“ oI5 ([‘I(JJ + h‘)ﬂ—l i b (('n——l("c o h) o a,
= [a0£"+ “1xﬂ_1+ g + a’n—l'l"+ (l’n]
= hnag '+ n—1)az" "+ +a,_]
2
+ ’—;— [n(n—1)ap"*+m—1)(n—2)a,z"*+---+a,_,]
+ -+ M,
Ay -1 —2
3) L=nax" ' +(n—1)ax"*+.. - Fa,_
0

h
5 () B

(4) Taking the limit, we have

dz

i_J =nag" (=1 Fa,
dx d
Ex. Find the derivative of

f(@) =625 —Bat + 523 —Tx2+8x— 2.

Applying formulas 1, 2, or 3 to each term in order, we have

f(x)=380xt — 1223 + 1522 — 142 + 8.

59. Tangent line. A ftangent to a curve is the straight line
approached as a limit by a secant line as two points of intersection
of the secant and the curve are made to approach coincidence.

It is immaterial in what manner the two points of intersection
are made to approach coincidence. In § 37 this was done by
considering the curve as moved in the plane. In § 88 the secant
is considered as moving parallel to itself until it becomes a
tangent. In this article we are especially interested in determin-
ing a tangent at a known point of the curve. ILet us call this
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point B, and a second point on the curve . Then if a secant is
drawn through B and Z of a curve (fig. 51), and the point I is
made to move along the curve toward I}, which T
is kept fixed in position, the secant will turn on P
I as a pivot, and will approach as a limit the 3
tangent £,7. The point I is called the point of
contact of the tangent. p2
From the definition it follows that the slope
of the tangent is the same as the slope of the
curve at the point of contact; for the slope of the tangent is
evidently the limit of the slope of the secant, and this limit
is the slope of the curve, by § 54.
The equation of the tangent is readily written by means of
§ 29, when the point of contact is known. For, let (z,, y,) be the

Fic. 51

d dy
point of contact, and let < ?/> denote the value of —= Y when z = ot
dz), di

d:
and y =y,. Then (z,, 7,) is a point on the tangent and (di) is
its slope. Therefore its equation is ;

o) o

The equation of the tangent may also be written in terms of
the abscissa of the point of contact. Let a be the abscissa of the
point of contact of a tangent to a curve y =f(), and let f'(x)
represent as usual the derivative of f(x). Then the ordinate of
the point of contact is f(«) and the slope of the tangent is f'(«),
in accordance with § 22. Hence the equation of the tangent is

y—f (@) ==/ ). @

Ex. 1. Find the equation of the tangent to the curve y =z at the point

(z1, ¥1) on it.
Using formula (1), we have

y —y1 =3z (x —21).

But since (24, ¥1) is on the curve, we have y; = z. Therefore the equation
can be written

2

vy =38uiz — 23>
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T Ex. 2. Find the equation of the tangent to
y=22+ 3z
at the point the abscissa of which is 2.
B We will use equation (2). Then
fx) =22 + 3z,
f@)y=2x+ 8.
4 x f@=1,  re="1

Therefore the equation is
Fic. 52 :

y—10=T@x—-2), or y=Tx—4.
It PT (fig. 52) is a tangent line and ¢ the angle it makes with
dy
de’

60. Sign of the derivative. A function of 2 is called an
increasing function when an inecrease in 2 causes an increase in
the function. A function of = is v
called a decreasing function when
an increase in x causes a decrease
in the function. The graph of a
function runs up toward the right
hand when the function is increas-
ing, and runs down toward the
right hand when the function is
decreasing. Thus 2*—xz— 6 (fig. 53)
1s decreasing when z < I, and in-
creasing when x > 1.

The sign of the derivative enables
us to determine whether a func-
tion is increasing or decreasing
in accordance with the following
theorem :

0X, its slope equals tan ¢, by § 28. Hence tan ¢ =

When the derivative of a func-
tion is positive the function s in-
creasing ; when the derivative 1s
negative the function is decreasing. Fic. 53

To prove this, consider y=f(r), and let us suppose that
dy . " 3 Y . g - i A
% s positive. Then, since Y s the limit of =7, it follows that 2
dux dx Az Ax
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is positive for sufficiently small values of Aw; that is, if Az is
assumed positive, Ay is also positive, and the function is increas-

! . .
ing. Similarly, if Eﬁ is negative, Ay and Az have opposite signs
for sufficiently small values of Az, and the function is decreasing
by definition.

Ex.l. f y=a2~2— 6,:% =2z — 1, which is negative when x<} and
XL

positive when 2>1. Hence the function is decreasing when z <} and increas-
ing when >}, as is shown in fig. 53.

R X~ 20K y:i(:c3—3x2—9:c+27), Y
dy p
d;:sgx?— jz—-%=3@+1)E-3).

Now g‘-‘z is positive when z < — 1,

negative when — 1< < 3, and positive
when z > 3. Hence the function is
increasing when z <—1, decreasing
when z is between —1 and 3, and
increasing when z > 3 (fig. 54).

It remains to examine the

cases in which ‘-?J = 0. Refer-
dx

ring to the two examples just
given, we see that in each the
values of # which make the
derivative zero separate those for which the function is increasing
from those for which the function is decreasing. The points on
the graph which correspond to these zero values of the derivative
can be described as turning points.

Likewise, whenever f’(x) is a continuous function of z, t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>