T. Belytschko, Continuum Mechanics, December 16, 1998

CHAPTER 3
CONTINUUM MECHANICS

by Ted Belytschko
Northwestern University
Copyright 1996

DRAFT

3.1 INTRODUCTION

Continuum mechanics is an essential building block of nonlinear finite
element analysis, and a mastery of continuum mechanics is essentia for a good
understanding of nonlinear finite elements. This chapter summarizes the
fundamentals of nonlinear continuum mechanics which are needed for a
development of nonlinear finite element methods. It is, however, insufficient for
thoroughly learning continuum mechanics. Instead, it provides a review of the
topics that are particularly relevant to nonlinear finite element analysis. The
content of this chapter is limited to topics that are needed for the remainder of the
book.

Readers who have little or no familiarity with continuum mechanics
should consult texts such as Hodge (1970), Mase and Mase (1992), Fung (1994),
Malvern (1969), or Chandrasekharaiah and Debnath (1994). The first three are
the most elementary. Hodge (1970) is particularly useful for learning indicial
notation and the fundamental topics. Mase and Mase (1992) gives a concise
introduction with notation almost identical to that used here. Fung (1994) is an
interesting book with many discussions of how continuum mechanics is applied.
The text by Malvern (1969) has become a classic in this field for it provides a
very lucid and comprehensive description of the field. Chandrasekharaiah and
Debnath (1994) gives a thorough introduction with an emphasis on tensor
notation. The only topic treated here which is not presented in greater depth in all
of these texts is the topic of objective stress rates, which is only covered in
Malvern. Monographs of a more advanced character are Marsden and Hughes
(1983), Ogden (1984) and Gurtin (). Prager (1961), while an older book, still
provides a useful description of continuum mechanics for the reader with an
intermediate background. The classic treatise on continuum mechanics is
Truesdell and Noll (1965) which discusses the fundamental issues from a very
general viewpoint. The work of Eringen (1962) also provides a comprehensive
description of the topic.

This Chapter begins with a description of deformation and motion,
including some useful equations for characterizing deformation and the time
derivatives of variables. Rigid body motion is described with an emphasis on
rigid body rotation. Rigid body rotation plays a central role in nonlinear
continuum mechanics, and many of the more difficult and complicated aspects of
nonlinear continuum mechanics stem from rigid body rotation. The material
concerning rigid body rotation should be carefully studied.

Next, the concepts of stress and strain in nonlinear continuum mechanics

are described. Stress and strain can be defined in many ways in nonlinear
continuum mechanics. We will confine our attention to the strain and stress
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measures which are most frequently employed in nonlinear finite element
programs. We cover the following kinematic measures in detail: the Green strain
tensor and the rate-of-deformation. The second is actually a measure of strain
rate, but these two are used in the majority of software. The stress measures
treated are: the physical (Cauchy) stress, the nominal stress and the second Piola-
Kirchhoff stress, which we call PK2 for brevity. There are many others, but
frankly even these are too many for most beginning students. The profusion of
stress and strain measures is one of the obstacles to understanding nonlinear
continuum mechanics. Once one understands the field, one realizes that the large
variety of measures adds nothing fundamental, and is perhaps just a manifestation
of academic excess. Nonlinear continuum mechanics could be taught with just
one measure of stress and strain, but additional ones need to be covered so that the
literature and software can be understood.

The conservation equations, which are often called the balance equations,
are derived next. These equations are common to both solid and fluid mechanics.
They consist of the conservation of mass, momentum and energy. The
equilibrium equation is a specia case of the momentum equation which applies
when there are no accelerations in the body. The conservation equations are
derived both in the spatial and the material domains. In a first reading or
introductory course, the derivations can be skipped, but the equations should be
thoroughly known in at least one form.

The Chapter concludes with further study of the role of rotations in large
deformation continuum mechanics. The polar decomposition theorem is derived
and explained. Then objective rates, also caled frame-invariant rates, of the
Cauchy stress tensor are examined. It is shown why rate type congtitutive
equations in large rotation problems require objective rates and severa objective
rates frequently used in nonlinear finite elements are presented. Differences
between objective rates are examined and some examples of the application of
objective rates are illustrated.

3.2 DEFORMATION AND MOTION

3.2.1 Definitions.  Continuum mechanics is concerned with models of solids
and fluids in which the properties and response can be characterized by smooth
functions of spatia variables, with at most a limited number of discontinuities. It
ignores inhomogeneities such as molecular, grain or crystal structures. Features
such as crystal structure sometimes appear in continuum models through the
constitutive equations, and an example of this kind of model will be given in
Chapter 5, but in al cases the response and properties are assumed to be smooth
with a countable number of discontinuities. The objective of continuum
mechanicsisto provide a description to model the macroscopic behavior of fluids,
solids and structures.

Consider abody in an initial state at atime t=0 as shown in Fig. 3.1; the
domain of the body in the initial state is denoted by W, and called the initial
configuration. In describing the motion of the body and deformation, we also
need a configuration to which various equations are referred; this is caled the
reference configuration. Unless we specify otherwise, the initial configuration is
used as the reference configuration. However, other configurations can also be
used as the reference configuration and we will do so in some derivations. The

3-2



T. Belytschko, Continuum Mechanics, December 16, 1998

significance of the reference configuration lies in the fact that motion is defined
with respect to this configuration.

VY, Y f (X1

W

X ~ G

X, X

Fig. 3.1. Deformed (current) and undeformed (initial) configurations of a body.

In many cases, we will also need to specify a configuration which is
considered to be an undeformed configuration. The notion of an "undeformed"
configuration should be viewed as an idealization, since undeformed objects
seldom exist in reality. Most objects previously had a different configuration and
were changed by deformations. a metal pipe was once a stedl ingot, a cellular
telephone housing was once a vat of liquid plastic, an airport runway was once a
truckload of concrete. So the term undeformed configuration is only relative and
designates the configuration with respect to which we measure deformation. In
this Chapter, the undeformed configuration is considered to be the initia
configuration unless we specifically say otherwise, so it is tacitly assumed that in
most cases theinitial, reference, and undeformed configurations are identical .

The current configuration of the body is denoted by W; thiswill often also
be called the deformed configuration. The domain currently occupied by the body
will also be denoted by W. The domain can be one, two or three dimensional; W
then refers to a line, an area, or a volume, respectively. The boundary of the
domain is denoted by G, and corresponds to the two end-points of a segment in
one dimension, a curve in two dimensions, and a surface in three dimensions. The
developments which follow hold for amodel of any dimension from one to three.
The dimension of a model is denoted by ngy, where “SD” denotes space
dimensions.

For a Lagrangian finite element mesh, the initial mesh is a discrete model
of theinitial, undeformed configuration, which is also the reference configuration.
The configurations of the solution meshes are the current, deformed
configurations. In an Eulerian mesh, the correspondence is more difficult to
picture and is deferred until |ater.

3.22 Eulerian and Lagrangian Coordinates. The position vector of a
material point in the reference configuration is given by X, where
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n

X= Xia o gDXiei (3.2.1)
i=1

where X; arethe components of the position vector in the reference configuration
and ej are the unit base vectors of a rectangular Cartesian coordinate system;
indicial notation as described in Section 1.3 has been used in the second
expression and will be used throughout this book. Some authors, such as Malvern
(1969), also define material particles and carefully distinguish between material
points and particles in a continuum. The notion of particles in a continuum is
somewhat confusing, for the concept of particles to most of us is discrete rather
than continuous. Therefore we will refer only to material points of the continuum.

The vector variable X for a given material point does not change with
time; the variables X are called material coordinates or Lagrangian coordinates
and provide labels for material points. Thus if we want to track the function

f(X,t) at agiven material point, we simply track that function at a constant value
of X. The position of a point in the current configuration is given by

n
&P

X=x%6° a g (3.2.2)
i=1

where x; are the components of the position vector in the current configuration.
3.2.3 Motion. Themotion of the body is described by
x =f (X,t) or x =f,(X,1) (3.2.3)

where x = x,g isthe position at timet of the material point X. The coordinates x
give the spatial position of a particle, and are called spatial, or Eulerian
coordinates. The function f(X,t) maps the reference configuration into the
current configuration at timet., and is often called a mapping or map.

When the reference configuration is identical to the initial configuration,
as assumed in this Chapter, the position vector x of any point at time t=0
coincides with the material coordinates, so

X =x(X,0)° f(X,0) or X; = x(X,0)=f,(X,0) (3.2.4)
Thus the mapping f(X,0) isthe identity mapping.

Lines of constantX;, when etched into the material, behave just like a

Lagrangian mesh; when viewed in the deformed configuration, these lines are no
longer Cartesian. Viewed in this way, the material coordinates are often called
convected coordinates. In pure shear for example, they become skewed
coordinates, just like a Lagrangian mesh becomes skewed, see Fig. 1.2. However,
when we view the material coordinates in the reference configuration, they are
invariant with time. In the equations to be developed here, the material
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coordinates are viewed in the reference configuration, so they are treated as a
Cartesian coordinate system. The spatial coordinates, on the other hand, do not
change with time regardless of how they are viewed.

3.24 Eulerian and Lagrangian Descriptions. Two approaches are
used to describe the deformation and response of a continuum. In the first
approach, the independent variables are the material coordinates X and thetime t,
as in Eq. (3.2.3); this description is called a material description or Lagrangian
description. In the second approach, the independent variables are the spatial
coordinates x and thetimet. Thisiscalled aspatial or Eulerian description. The
duality is similar to that in mesh descriptions, but as we have already seenin finite
element formulations, not all aspects of a single formulation are exclusively
Eulerian or Lagrangian; instead some finite element formulations combine
Eulerian and Lagrangian descriptions as needed.

In fluid mechanics, it is often impossible and unnecessary to describe the
motion with respect to a reference configuration. For example, if we consider the
flow around an airfoil, a reference configuration is usually not needed for the
behavior of the fluid is independent of its history. On the other hand, in solids,
the stresses generally depend on the history of deformation and an undeformed
configuration must be specified to define the strain. Because of the history-
dependence of most solids, Lagrangian descriptions are prevalent in solid
mechanics.

In the mathematics and continuum mechanics literature, cf. Marsden and
Hughes (1983), different symbols are often used for the same field when it is
expressed in terms of different independent variables, i.e. when the description is
Eulerian or Lagrangian. In this convention, the function which in an Eulerian
description is f(x,t) is denoted by F(X,t) in a Lagrangian description. The two
functions are related by

F(X.t)=f(f(X,1),1), or F=fof (3.2.5)

This is caled a composition of functions; the notation on the right is frequently
used in the mathematics literature; see for example Spivak(1965, p.11). The
notation for the composition of functions will be used infrequently in this book
because it is unfamiliar to most engineers.

The convention of referring to different functions by different symbolsis
attractive and often adds clarity. However in finite element methods, because of
the need to refer to three or more sets of independent variables, this convention
becomes quite awkward. Therefore in this book, we associate a symbol with a
field, and the specific function is defined by specifying the independent variables.
Thus f(x,t) isthe function which describes the field f for the independent variables
x and t, whereas f(X t) is a different function which describes the same field in
terms of the material coordinates. The independent variables are always indicated
near the beginning of a section or chapter, and if a change of independent
variables is made, the new independent variables are noted.
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3.35 Displacement, Velocity and Acceleration. The displacement of
a material point is given by the difference between its current position and its
original position (see Fig. 3.1), so

u(X,t)=fF(X, - f(X,0=F(X,t)-X, u=f(X;1)- X (3.2.6)

where u(X,t)=ue and we have used Eq. (3.2.4). The displacement is often
written as

u=x- X, U=X- X (3.2.7)

where (3.2.1) has been used in (3.2.6) to replace f(X,t) by x . Equation (3.2.7) is

somewhat ambiguous since it expresses the displacement as the difference of two
variables, x and X, both of which are generally independent variables. The reader
must keep in mind that in expressions such as (3.2.7) the variable x represents the
motion x(X,t)° f(X,t).

The velocity V(X,t) is the rate of change of the position vector for a

material point, i.e. the time derivative with X held constant. Time derivatives
with X held constant are called material time derivatives, or sometimes material
derivatives. Material time derivatives are also called total derivatives. The
velocity can be written in the various forms shown below

_TE(X 1) _fu(X,t)
Cq Tt

In the above, the variable x is replaced by the displacement u in the fourth term
by using (3.2.7) and the fact that X isindependent of time. The symbol D( )/Dt
and the superposed dot always denotes a materia time derivative in this book,
though the latter is often used for ordinary time derivatives when the variable is
only afunction of time.

v(X,t)=u (3.2.8)

The acceleration a(X,t) is the rate of change of velocity of a material
point, or in other words the material time derivative of the velocity, and can be
written in the forms

a(X,t) :E oy = ﬂV(X,t) - ﬂZU(X,t)

Dt qt it

(3.2.9)

The above expression is called the material form of the acceleration.

When the velocity is expressed in terms of the spatial coordinates and the
time, i.e. in an Eulerian description as in v(X,t), the material time derivative is
obtained as follows. The gspatial coordinates in v(x,t) are first expressed as a
function of the material coordinates and time by using (3.2.3), giving v(f (X,t),t).
The material time derivative is then obtained by the chain rule:

3-6



T. Belytschko, Continuum Mechanics, December 16, 1998

Dy :ﬂv' (x.1) +ﬂVI ) .Y = ™ +M Vi (3.2.10)
Dt Tt ; Tt Tt X

where the second equality follows from (3.2.8). The second term on the RHS of
(3.2.10) is the convective term, which is also called the transport term. In
(3.2.10), the first partial derivative on the RHS is taken with the spatial coordinate
fixed. Thisis called the spatial time derivative. It is tacitly assumed throughout
this book that when neither the independent variables nor the fixed variable are
explicitly indicated in a partial derivative with respect to time, then the spatial
coordinate is fixed and we are referring to the spatial time derivative. On the
other hand, when the independent variables are specified as in (3.2.8-9), a partial
derivative can specify a material time derivative. Equation (3.2.10) is written in
tensor notation as

ﬂ:.”—V+v>&|v:.ﬂ—v+v>ﬂgradv (3.2.11)
Dt 1t 1t

The materia time derivative of any variable which is a function of the
gpatial variables x and time t can similarly be obtained by the chain rule. Thus
for a scalar function f(x,t) and a tensor function sj;(x,t), the materia time
derivatives are given by

Df _%f . _1f it

=—+vi—=—+VvNf =— +vgrad f (3.2.12)
Dt ft "fx 1t it
Ds .. ) ) -
S :ﬂs ij +V, ﬂle :ﬂ_S +vN s :E+v>grads (3213a)
Dt qt x, 1t it

where the first term on the RHS of each equation is the spatial time derivative and
the second term is the convective term.

It should be remarked that the complete description of the motion is not
needed to develop the material time derivative in an Eulerian description. In
Eulerian meshes, the motion cannot be defined realistically defined as a function
of the material positions in the initial configuration; see Chapter 7. In that case,
variables such as the velocity can be developed by describing the motion with
respect to areference configuration that coincides with the configuration at afixed
timet.

For this purpose, let the configuration at time fixed time t=t be the

reference configuration and the position vector at that time, denoted by X', bethe
reference coordinates. These reference coordinates are given by

X' =f(X,t) (3.2.13b)

Observe we use an upper case X since we wish to clearly identify it as an
independent variable, and we add the superscript t to indicate that these reference
coordinates are not the position vectors at the initial time. The motion can be
described in terms of these reference coordinates by
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x=f'(x", 1) fort3t (3.2.13¢)

Now the arguments used to develop (3.2.10) can be repeated; noting that
v(x, t)= v(ft (X, 1), t)

Dy _ fvi(x, 1) . Tv(x, t) Tf !
Dt 1t ™% 1t

(3.2.13d)

with t=t . Reference configurations coincident with a configuration other than
the initial configuration will aso be employed in the development of finite
element equations.

3.26 Deformation  Gradient. The description of deformation and the
measure of strain are essential parts of nonlinear continuum mechanics. An
important variable in the characterization of deformation is the deformation
gradient. The deformation gradient is defined by

Ij:ﬂfi oﬂxi or F:EO‘"—XO(NXf)T
ﬂXj ﬂXj > X

(3.2.14)

Note in the above that the first index of F; refers to the component of the
deformation, the second to the partial derivative. The order can be remembered
by noting that the indices appear in the same order in F; asin the expression for

the partial derivative if it is written horizontally as if; /1X; . The operator Ny is

the left gradient with respect to the material coordinates. We will only use the
left gradient in this book, but to maintain consistency with the notation of others
such as Malvern, we follow his convention exactly. Therefore, the transpose of

Nyf appears in the above because of the convention on subscripts: for the left
gradient, the first subscript is the pertains to the gradient, but in F; the gradient is

associated with the second index. The distinction between left and right gradients
is not of importance in this book because we will always use the left gradient, but
we adhere to the convention so that our equations are consistent with the
continuum mechanics literature. In the terminology of mathematics, the

deformation gradient is the Jacobian matrix of the vector function f (X,t).

If we consider an infinitesmal line segment dX in the reference
configuration, then it follows from (3.2.14) that the corresponding line segment

dx inthe current configuration is given by
dx =F>dX or dx; = F;dX; (3.2.15)

In the above expression, the dot could have been omitted between the F and dX ,
since the expression is also valid as a matrix expression. We have retained it to
conform to our conventionof always explicitly indicating contractions in tensor
expressions.
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In two dimensions, the deformation gradient in a rectangular coordinate
system is given by

ey Ty o gx Ixu

F=ePe Wog_oIX Yy (3.2.16)
abe Bo oy Iy
&X, W,a EX v

As can be seen in the above, in writing a second-order tensor in matrix form, we
use the first index for the row number, the second index for the column number.

The determinant of F is denoted by J and called the Jacobian determinant
or the determinant of the deformation gradient

The Jacobian determinant can be used to relate integrals in the current and
reference configurations by

Of dW=f JdWy orin2D: ¢)f(x y)dxdy = O)f(X,Y)JdxdY  (3.2.18)
w W w w

The material derivative of the Jacobian determinant is given by

DJo 52 sdiwo s (3.2.19)
Dt 1%

The derivation of thisformulaisleft as an exercise.

3.2.6 Conditions on Motion. Themapping f (X,t) which describes the
motion and deformation of the body is assumed to satisfy the following
conditions:
1. the function f(X,t) is continuous and continuously differentiable
except on afinite number of sets of measure zero;

2. the function f (X,t) is one-to-one and onto;
3. the Jacobian determinant satisfies the condition J>0.

These conditions ensure that f (X,t) is sufficiently smooth so that compatibility is
satisfied, i.e. so there are no gaps or overlaps in the deformed body. The motion
and its derivatives can be discontinuous or posses dicontinuous derivatives on sets
of measure zero; see Section 1.5, so it is characterized as piecewise continuously
differentiable. Sets of measure zero are points in one dimension, lines in two
dimensions and planes in three dimensions because a point has zero length, aline
has zero area, and a surface has zero volume.

The deformation gradient, i.e. the derivatives of the motion, is generally
discontinuous on interfaces between materials. Discontinuities in the motion
itself characterize phenomena such as a growing crack. We require the number of
discontinuities in a motion and its derivatives to be finite. In fact, in some
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nonlinear problems, it has been found that the solutions posses an infinite number
of discontinuities, see for example James () and Belytschko, et a (1986).
However, these solutions are quite unusual and cannot be treated effectively by
finite element methods, so we will not concern ourselves with these types of
problems.

The second condition in the above list requires that for each point in the
reference configuration W,, there is a unique point in W and vice versa. Thisisa
sufficient and necessary condition for the regularity of F, i.e. that F be invertible.
When the deformation gradient F is regular, the Jacobian determinant J must be

nonzero, since the inverse of F exists if and only if its determinant J* 0. Thus
the second and third conditions are related. We have stated a stronger condition
that J be positive rather than just nonzero, which will be seen in Section 3.5.4 to
follow from mass conservation.

3.27 Rigid Body Rotation and Coordinate Transformations.
Rigid body rotation plays a crucia role in the theory of nonlinear continuum
mechanics. Many of the complexities which permeate the field arise from rigid
body rotation. Furthermore, the decision as to whether linear or nonlinear
software is appropriate for a particular linear material problem hinges on the

magnitude of rigid body rotations. When the rigid body rotations are large
enough to render alinear strain measure invalid, nonlinear software must be used.

A rigid body motion consisting of atranslation x (t) and a rotation about
the origin iswritten as

X(X,t) = R(t) %X + x1(t) X (X, ) = Ry(1) X + xq; (t) (3.2.20)
where R(t) is the rotation tensor, also called a rotation matrix. Because rigid

body rotation preserves length, and noting that dx+ =0 in rigid body motion, we
have

dx i = dX KR >R§><dx dxich; = RydX; RiedX, = X (R Ry JaX,
Since the length must stay unchanged in rigid body motion, it follows that
RT >R =1 (3.2.20b)
and itsinverseis given by its transpose:
R*=R" Ri'=R =R; (3.2.22)

The rotation tensor R is therefore said to be an orthogonal matrix and any

transformation by this matrix, such as x=RX, is called an orthogonal
transformation. Rotation is an example of an orthogoanl transformation.

A rigid body rotation of a Lagrangian mesh of rectangular elements is
shown in Fig. 3.2. As can be seen, in the rigid body rotation, the element edges
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are rotated but the angles between the edges remain right angles. The element
edges are lines of constant X and Y, so when viewed in the deformed
configuration, the material coordinates are rotated when the body is rotated as
shown in Fig. 3.2.

Specific expressions for the rotation matrix can be obtained in various
ways. We aobtain it here by relating the components of the vector in r two
different coordinate systems with orthogonal base vectors e; and ; a two

dimensional example is shown in Fig. 3.3. The components in the rotated
coordinate system are shown in Fig. 3.3. Since the vector r isindependent of the
coordinate system

r=re =re (3.2.22)

s

f (X, 1)

X, X

Fig. 3.2. A rigid body rotation of a Lagrangian mesh showing the material coordinates when
viewed in the reference (initial, undeformed) configuration and the current configuration.
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y y

Fig. 3.3. Nomenclature for rotation transformation in two dimensions.

Taking the scalar product of the above with e; gives

1€ >€; =he; ) ® rid; =fe ®r; = Rjiﬁ, Rji =€; e (3.2.23)

The second equation follows from the orthogonality of the base vectors, (3.2.21).

The above shows that the elements of the rotation matrix are given by the scalar

products of the corresponding base vectors, thus R,=e;>,. So the
transformation formulas for the components of avector are

~ ~ ~ T
fi :R” I‘j ° Ri]rj, rj = Rjiri = F\I’]r, (3224)

where the equation on the right follows from (3.3.20b). In the second term of the
indicial forms of the equations we have put the hat on the component associated
with the hatted coordinates, but later it is often omitted. Note that the hatted index
is always the second index of the rotation matrix; this convention helps in
remembering the form of the transformation egaution. In matrix form the above
arewritten as

r =RT, T=R'r

The above is a matrix expression, as indicated by the absence of dots between the

terms. The column matrices of components r and r differ, but they pertain to
the same tensor. In many works, this distinction is clarified by using different
symbols for matrices and tensors, but the notation we have chosen does not pemit
this distinction.
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Writing out the rotation transformation in two dimensions gives

IU eRg Ry Qi U eexxe ex><eyuru €cos g -sin q i 1, U

Iryfv) &Rz F%,yuryg &0 g g &in q cosqkkrg (3.2.29)

In the above, it can be seen that the subscripts of the rotation matrix correspond to
the vector components which are related by that term; for example, in the

expression for the x component in row 1, the R is the coefficient of the y

component of r. The last form of the transformation in the above is obtained by
evaluating the scalar products from Fig. 3.3 by inspection.

The rotation of avector isobtained by asimilar relation. If the vector w is
obtained by arotation of the vector v, the two are related by

W= R"V, Wi = RJV] (3226)
The first of the above can be written as

W:R>(Vjej):Vj(R>ej):Vjej (3227)
where we have used the fact that the base vectors transform exactly like the
components; this can easily be derived by using (3.2.23). Taking the inner
product of the first and last expressions of the above with the rotated base vector
e gives

w e XN =V (e >e) =vjd; = v (3.2.28)

This shows that the components of the rotated vector w in the rotated coordinate
system are identical to the components of the vector v in the unrotated coordinate
system.

The components of a second order tensor D are transformed between
different coordinate systems by e

D=RDR" D; = RkDyR] (3.2.308)

The inverse of the above is obtained by premultiplying by R, postmultiplying by
R and using the orthogonality of R, (3.2.20b):

D=R'DR D =R,D¢R] (3.2.300)

Note that the above are matrix expressions which relate the components of the
same tensor in two different coordinate systems.

The velocity for a rigid body motion can be obtained by taking the time
derivative of Eq. (3.2.20). Thisgives
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X(X ) =R +x(t)  or % (X, 8)=R;(t)X + x5 (t) (3.2.31)

The structure of rigid body rotation can be clarified by expressing the material
coordinatesin (3.2.31) in terms of the spatia coordinates via (3.2.20), giving

VO X =RORT{X- X; ) +X; (3.2.32)
The tensor
W=R>R" (3.2.33)

is called the angular velocity tensor or angular velocity matrix, Dienes(1979, p
221). It is a skew symmetric tensor, skew symmetric tensors are also called
antisymmetric tensors. To demonstrate the skew symmetry of the angular
velocity tensor, we take the time derivative of (3.2.21) which gives

DI - -
B(RRT)===0® RRT+RRT=0® W=-W' (3.2.34)
Dt

Any skew symmetric tensor can be expressed in terms of the components of a

vector, cakked the axial vector, and the corresponding action of that matrix on a

vector can be replicated by a cross product, so if w if the axial vector of W, then
W=w"r or Wir; = ew i (3.2.34b)

for any r and

: 1 foran even permutationof ijk
&k =i -1for an odd permutationof ijk (3.2.36)
b ooif anyindex is repeated

The tensor g, is called the alternator tensor or permutation symbol.

The relations between the skew symmetric tensor W and its axial vector
w are

Wi =5 &Wik, Wi = gjwy (3.2.35)
which can be obtained by enforcing (3.2.34b) for all r.

In two dimensions, a skew symmetric tensor has a single independent
component and its axial vector is perpendicular to the two dimensional plane of
the model, so

&, of (3.2.373)
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In three dimensions, a skew symmetric tensor has three independent components
and which are related to the three components of its axial vector by (3.2.25)

giving
€0 Wo Wil €0 wy -wpU
e a e
W= & W, 0 W23u e 0 A ( (3.2.37Db).
BW;,; -Ws 048 eW2 -w; OB

[

When Eq. (3.3.32) is expressed in terms of the angular velocity vector, we
have

Vi © X, =Wj(xj - XTj)+VTi .
or vox=w" (x-X7)+Vvy (3.2.38)
=ijWj(Xk' XTk)+Vri

where we have exchanged k and j in the second line and used g =&;,. The

second equation is the well known equation for rigid body motion as given in
dynamicstexts. The first term on the left hand side is velocity due to the rotation

about the point x4 and the second term is the trandational velocity of the point
Xt. Any rigid body velocity can be expressed by (3.2.28).

This concludes the formal discussion of rotation in this Chapter.
However, the topic of rotation will reappear in many other parts of this Chapter
and this book. Rotation, especially when combined with deformation, is
fundamental to nonlinear continuum mechanics, and it should be thoroughly
understood by a student of thisfield.

Cor otational Rate-of-Deformation. As we shall see later, in many cases
it is convenient to rotate the coordinate at each point of the material with the
material. The rate-of-deformation is then expressed in terms of its corotational

components DIJ , Which can be obtained from the global components by (3.2.30).
These components can be obtained directly from the velocity field by

b =1, T %6 o sym ?ﬂy. - (3.2.39)

1]
eTb(J ﬂxlﬂ eﬂxm

—

where v, © v+ are the components of the velocity field in the corotational system.

the corotational system can be obtained from the polar decomposition theorem to
be described later or by other techniques; see section 4.6.

Example 3.1 Rotation and Stretch of Triangular  Element.

Consider the 3-node triangular finite element shown in Fig. 3.4. Let the motion of
the nodes be given by
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x(t)= y()=0
% () = 2(1+ at)cosp—zt (=214 at)sinp—zt (E3.1.1)

t

! y,(t) = (1+bt)cos %

X,(t) =- (1+bt)sin %,

Find the deformation function and the Jacobian determinant as a function of time
and find the values of a(t) and b(t) such that the Jacobian determinant remains

constant.

y
-
w =8
1|— 2 2(1+a)
1<
v '
! XX L— 1+h —»] 1 X

Fig. 3.4. Motion descrived by Eq. (E3.1.1) with theinitia configuration at the |eft and the
deformed configuration at t=1 shown at the right.

In terms of the triangular element coordinates X, , the configuration of a
triangular 3-node, linear displacement element at any time can be written as (see
Appendix A if you are not familiar with triangular coordinates)

X(x,t)= QX () =Xa(t)s + X)X, + X 1K

o (E3.1.2)
Y(X, t) =a ¥ (%, = yat)x, + ya (U)X, +ys(t)x;
|
In theinitial configuration, i.e. at t=0:
X =x(x,0)= + XX, +X
(x,0) = X%, + XX, + XX, €319

Y:y(X,O):Yle+Y2X2 +YX,

Substituting the coordinates of the nodes in the undeformed configuration into the
above, X,=X;=0, X,=2,Y,=Y,=0, Y,=1yields

X=2, Y=x, (E3.1.4)
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In this case, the relations between the triangular coordinates and the material
coordinates can be inverted by inspection to give

X, =3 X, X; = Y (E3.1.5)

Substituting (E3.1.1) and (E3.1.5) into (E3.1.2) gives the following expression for
the motion

x(X,t) = X(1+ at)cos %t - Y(1+bt)sin %t

t t (E3.1.6)
y(X,t)=X(1+ at)sinB2 +Y(1+ bt)cos%
The deformation gradient is given by Eq.(3.2.16):
éx  Ixu € pt . in PLU
X o ?(1+ at)cos > (1+ bt)sin 5 a1
ey fva u (E317)

ya in Pt pt U
& Ty gl+at)sm > (1+Dbt)cos > §
The deformation gradient is afunction of time only and at any time constant in the
element because the displacement in this element is a linear function of the
material coordinates. The determinant of the deformation gradient is given by

J =det(F)=(1+at)(1+ bt)?osz%t +sin2p—2t% (E3.1.8)

When a=b=0 the Jacobian determinant remains constant, J=1. This is a rotation
without deformation. As expected, the Jacobian determinant remains constant
since the volume (or area in two dimensions) of anypart of a body does not
change in a rigid body motion. The second case in which the Jacobian
determinant J remains constant is when b =- a/ (1+at), which corresponds to a
deformation in which the area of the el ement remains constant. Thisisthe type of
deformation is called an isochoric deformation; the deformation of incompressible
materialsisisochoric.

Example 3.2 Consider an element which is rotating at a constant angular
velocity w about the origin. Obtain the accelerations using both the material and
gpatial descriptions. Fine the deformation gradient F and its rate.

The motion for a pure rotation about the origin is obtained from Eq.
(3.2.20) using the rotation matrix in two dimensions (3.2.25):

goswt - sinwtgg X

&inwt  cos wt kﬁ YI\; (E3.2.1)

X(t)=R(H)X b i%:

where we have used g =wt to express the motion is a function of time; w isthe
angular velocity of the body. The velocity is obtained by taking the derivative of
this motion with respect to time, which gives
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| Vil | x e sinwt - coswtgj X
g | y% ‘écoswt - sinwtf} Y%

The acceleration in the material description is obtained by taking time derivatives
of the velocities

(E3.2.2)

1ayi |qu 2ecosvvt sinwt gj X

%ayfvj E & sinwt - cosvvtEi:“Y% (E3.2.3)

To obtain a spatial description for the velocity, the material coordinates X and Yin
(E3.2.2) arefirst expressed in terms of the spatial coordinates x and y by inverting
(E3.2.1):

IV, ésinwt - coswtigcoswt  sinwtdl i)
%vyg “VEmswt - sinwtl sinwt coswtl yh
eO - 100 X W:-yu
81 Oﬁy% x;\;

The material time derivative the velocity field in the spatial description,
Eq.(E3.2.4), is obtained via Eq.(3.2.11):

(E3.2.4)

Bv WV, Ry= 1v,/1td elv,/Mx v, /Tyt v, U
Dt qt IﬂV/ﬂtfv) gﬂv/ﬂx ﬂV/ﬂYUIVg

(E3.2.5)
é0 -wuv,d -V

—0+§N OH”VE; WI v, %

If we then express the velocity field in (E3.2.5) in terms of the spatial coordinates
x and y by Eq.(E3.2.4), we have

1a,0 éD -0 0 -luxg  ,&1 0uxu ,1X £326
1a)™"a of'& oy Wg, “HypT W'E (E32.6)

This is the well known result for the centrifugal acceleration: the acceleration

1
vector points toward the center of rotation and its magnitude is W2(X2 + yz)? .

To compare the above with the material form of the acceleration (E3.2.3)
we use (E3.2.1) to express the spatial coordinates in (E3.2.6) in terms of the
material coordinates, which gives

Vil ze 1 Ogegoswt -sinwty X zer coswt  sinwt g X
AVE 80 -1H8inwt coswt &Y% & sinwt - coswté% Y%

which agrees with Eq. (E3.2.3).

(E3.2.7)
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The deformation gradient in obtained from its defintion (3.2.14) and
(E3.2.1)

x goswt -sinwtg __; écoswt  sinwty

I::‘H_X:R=35inwt cosvvtﬂ F =Ssinwt costh

(E3.2.8)

Example 3.3 Consider a square 4-node element, with 3 of the nodes fixed as
shown in Fig. 3.5. Find the locus of positions of node 3 which results in a
vanishing Jacobian.

y y

d N

J>0

X
O O —(r“
1 2 X 1 ZY J=0
J<0
Figure 3.5. Original configuration of a square element and the locus of points for which J =0; a
deformed configuration with J <O isalso shown.

The displacement field for the rectangular element with all nodes but node
3 fixed is given by the bilinear field

U, (X,Y) =Ug, XY, u, (X, Y) =ug XY (E3.3.1)

Since this element is a square, an isoparametric mapping is not needed. This
displacement field vanishes along the two shaded edges. The motion is given by

X=X+U, = X+, XY
y=Y+u, =Y +u XY

(E3.3.2)
The deformation gradient is obtained from the above and Eq. (3.2.14):
e i§L+ U, Y U X u
B UyY 1+ Xh (E3.3.3)
The Jacobian determinant is then
J =det(F) =1+us,Y + Uy X (E3.3.4)
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We now examine when the Jacobian determinant will vanish. We need only
consider the Jacobian determinant for material particles in the undeformed

configuration of the element, i.e. the unit square X1[0,1], YT [0,1]. From the Eq.
(E3.3.4), it is apparent that J is minimum when u,, <0 and uy <0. Then the
minimum value of J occurs at X=Y=1, so

J30P 1+UgY +UgX 3 0P L+Ug, +Ug,® O (E3.3.5)

The locus of points aong which J=0 is given by a linear function of the nodal
displacements shown in Fig. 3.5, which also shows one deformed configuration of

the element for which J<0. As can be seen, the Jacobian becomes negative
when node 3 crosses the diagonal of the undeformed element.

Example 3.4. The displacement field around a growing crack is given by

u, =kf (NZ+ 2sin2 6¢05 3
€ 29 2

) (E34.1)
u, =kf (r)g%- Zcoszgzgsing2
r2=(X-ct)’+Y% g =tan }(Y/X) (E3.4.2)

where a,b, c,and k are parameters which would be determined by the solution of
the governing equations. This displacement field corresponds to a crack opening
along the X-axis at a velocity c; the configuration of the body at two times is
shownin Fig. 3.6.

20

Y y
Y, r y
ct, ct,
W, : $| t X
: XX W) W)

Figure 3.6. The initial uncracked configuration and two subsequent configurations for a crack
growing along x-axis.

Find the discontinuity in the displacement aong the line Y=0, X£0. Does
this displacement field conform with the requirements on the motion given in
Section 3.2.7?

The motion is x=X+u,, y=Y+u,. The discontinuity in the displacement

-
field is found by finding the difference in (E3.4.1) forq=p and g =p", which
gives
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q=p P uc=0 u, =kf(r)b (E3.4.3)
so the jumps, or discontinuities, in the displacement are
{uey =0, {u,} =2k (r)b (E3.4.9)

Everywhere el se the displacement field is continuous.

This deformation function meets the criteria given in Section 3.3.6
because the discontinuity occurs along only aline, which is a set of measure zero
in a two dimensional problem. From Fig. 3.6 it can be seen that in this
deformation, the line behind the crack tip splits into two lines. It is also possible
to devise deformations where the line does not separate but a discontinuity occurs
in the tangential displacement field. Both types of deformations are now common
in nonlinear finite element analysis.

3.3 STRAIN MEASURES

In contrast to linear elasticity, many different measures of strain and strain
rate are used in nonlinear continuum mechanics. Only two of these measures are
considered here:

1. the Green (Green-Lagrange) strain E

2. the rate-of-deformation tensor D, also known as the velocity strain or

rate-of-strain.
In the following, these measures are defined and some key properties are given.
Many other measures of strain and strain rate appear in the continuum mechanics
literature; however, the above are the most widely used in finite element methods.
It is sometimes advantageous to use other measures in describing constitutive
eguations as discussed in Chapter 5, and these other strain measures will be
introduced as needed.

A strain measure must vanish in any rigid body motion, and in particular
in rigid body rotation. If a strain measure fails to meet this requirement, this
strain measure will predict the developnet of nonzero strains, and in turn nonzero
stresses, in an initially unstressed body due to rigid body rotation. The key reason
why the usual linear strain displacement equations are abandoned in nonlinear
theory is that they fail this test. This will be shown in Example 3.6. It will be
shown in the following that E and D vanish in rigid body motion. A strain
measure should satisfy other criteria, i.e. it should increase as the deformation
increases, etc. (Hill, ). However, the ability to represent rigid body motion is
crucial and indicates when geometrically nonlinear theory must be used.

3.3.1 Green strain tensor. The Green strain tensor E is defined by

ds®- dS*=2dX xExdX or dxdx - dX,dX; = 2dXE;dX (3.3.1)
so it gives the change in the sguare of the length of the material vector dX.
Recall the vector dX pertains to the undeformed configuration. Therefore, the

Green strain measures the difference of the square of the length of an infinitesimal
segment in the current (deformed) configuration and the reference (undeformed)
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configuration. To evaluate the Green strain tensor, we use (3.2.15) to rewrite the
LHSof (3.3.1) as

db>elx = (dXOF) {F xdX) =dX {FT %) >aX (3.3.2)
The above are clearer in indicial notation

o >elx = dx o = X FdXi = X Rl FedXe = X {F TxF) X
Using the above with (3.3.1) and dX xdX = dX ¥ xdX gives

dX 3T ExdX - dX X >dX - dX x2ExdX =0 (3.3.3)
Factoring out the common terms then yields
dXF - 1 - 2E)>dX =0 (3.3.4)

Since the above must hold for all dX, it follows that

E :%(FT>F- ) o E :—;(Fi{ij- d;) (3.35)

The Green strain tensor can also be expressed in terms of displacement gradients
by

1qq ﬂ ] ﬂuk ﬂuk

=L R0 0)T +K Q)" K
E_Z((qu) +Nyu+(N ) ’qu)' Ejj = zeﬂx ﬂx ‘H)Q X

(3.3.6)
This expression is derived as follows. We first evaluate FT 5 in terms of the

displacements using indicial notation.

_ X X
Re Ry =RFy = ™ X (definition of transpose and Eq. (3.2.14))

a-[uk Tlxk a.[uk 1-[Xk
“EIX I X

(by Eq. (3.2.7))

_&ﬂuk _annuk d -
R O

_Ay Ty Tu Tu,

5
¢ +d; +
e X ﬂx ‘ITX X

Substituting the above into (3.3.5) gives (3.3.6).
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To show that the Green strain vanishes in rigid body motion, we consider
the deformation function for a general rigid body motion described in Eq.

(3.2.20): x =R %X+ xy. The deformation gradient F according to Eq (3.2.14) is
then given by F =R . Using the expression for the Green strain, Eq. (3.3.5). gives

E=4(RTR-1)=3(1-1)=0

where the second equality follows from the orthogonality of the rotation tensor,
Eq.(3.2.21). This demonstrates that the Green strain will vanish in any rigid body
motion, so it meets an important requirement of a strain measure.

3.3.2 Rate-of-deformation. The second measure of strain to be considered
here is the rate-of-deformation D. It is also called the velocity strain and the

stretching tensor. In contrast to the Green strain tensor, it is a rate measure of
strain.

In order to develop an expression for the rate-of-deformation, we first
define the velocity gradient L by

WV T T _
L—ﬁ—(Nv) =(gradv)’ or L=

dv=L>xdx or dv =L;dx;

v,

T (3.3.7)

We have shown several tensor forms of the definition which are frequently seen,
but we will primarily use the first or the indicial form. In the above, the symbol
N or the abbreviation “grad” preceding the function denotes the spatial gradient
of the function, i.e, the derivatives are taken with respect to the spatial
coordinates. The symbol N aways specifies the spatial gradient unless a
different coordinate is appended as a subscript, as in Ny, which denotes the
material gradient.

The velocity gradient tensor can be decomposed into symmetric and skew
symmetric parts by

1 Ty 1 T 1 1
L=S(Lr)e5(e-tT) or =2y + oSy - ) @38
This is a standard decomposition of a second order tensor or square matrix: any
second order tensor can be expressed as the sum of its symmetric and skew
symmetric parts in the above manner; skew symmetry is also known as
antisymmetry.

The rate-of-deformation D is defined as the symmetric part of L, i.e. the

first term on the RHS of (3.3.8) and the spin W is the skew symmetric part of L,
i.e. the second term on the RHS of (3.3.8). Using these definitions, we can write

L=(Nv) =D+wW o L=V, ,=D+W (3.3.9)
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- {v; 0
D:}(HLT) o D _18v , W9 (3.3.10)
2 2eTx, % g
1 - 18y, v, 0
W e L - L or L= - Q—I - — 3311
2( ) W 28M%; X g ( )

The rate-of-deformation is a measure of the rate of change of the square of
the length of infinitessmal materia line segments. The definitionis

hlk (o) = T (o) = 2dxo0xdx ™ dlx (3.3.12)
Tt 1t

The equivalence of (3.3.10) and (3.3.12) is shown as follows. The expression for
the rate-of -deformation is obtained from the above as follows:

2dx>D xdx = %(dx(x, t)>dx (X, t)) =2dx>dv  (using(3.2.8))

= 2dx><%( xdx by chainrule

=2dxx>dx  (using (3.3.7))

= dx><(L +LT +L - LT)>dx
(3.3.13)
= dx>(L +LT)>dx

by antisymmetry of L - LT (3.3.10) follows from the last line in (3.3.13) due to
the arbitrariness of dx .

In the absence of deformation, the spin tensor and angular velocity tensor
are equal, W =W . This is shown as follows. In rigid body motion D=0, so
L =W and by integrating Eq. (3.3.7b) we have

V=W Xx- X;)+v; (3.3.14)

where x+ and v are constants of integration. Comparison with Eq. (3.2.32) then
shows that the spin and angular velocity tensors are identical in rigid body
rotation. When the body undergoes deformation in addition to rotation, the spin
tensor generally differs from the angular velocity tensor. This has important
implications on the character of objective stress rates, which are discussed in
Section 3.7.

3.3.3. Rate-of-deformation in terms of rate of Green strain. The
rate-of -deformation can be related to the rate of the Green strain tensor. To obtain
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this relation, we first obtain the material gradient of the velocity field, defined in
Eq. (3.3.7b), in terms of the spatial gradient by the chain rule:

v _ v X ™MW T

s~ T T X T

T (3.3.15)

The definition of the deformation gradient is now recalled, Eqg. (3.3.10),
Rj =Tx/TX; . Taking the material time derivative of the deformation gradient
gives

v F _ W

F= et _ﬂ_xj (3.3.16)
By the chain rule

& K“ =d; ® Ry Kk =d; ® R;l= '"Xk Fis % (33.17)
Using the above two equations, (3.3.15) can be rewritten as

L=F¥ % L =FRHR;" (3.3.18)

When the deformation gradient is known, this equation can be used to obtain the
rate-of-deformation and the Green strain rate. To obtain a single expression
relating these two measures of strain rate, we note that from (3.3.10) and (3.3.18)
we have

D=3(L+L")=3(FF+F T ¥") (33.19)
Taking the time derivative of the expression for the Green strain, (3.3.5) gives
D . .
_1 —1(eT T
E—EE(F - 1)=3(FTF+F F) (3.3.20)
Premultiplying Eq. (3.3.19) by FTF and postmultiplying by F gives

T
ij = Fik Dk|F|j (3321)

FLoF=4(F F+F F)@ E=FDF o E
where the last equality follows from Eq. (3.3.20). The above can easily be
inverted to yield

D=F " o  Dy=Fi EgF;’ (3.3.22)
As we shall seein Chapter 5, (3.3.22) is an example of a push forward operation,
(3.3.21) of the pullback operation. The two measures are two ways of viewing the
same tensor: the rate of Green strain is expresses in the reference configuration
what the rate-of-deformation expresses in the current configuration. However, the
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properties of the two forms are somewhat different. For instance, in Example 3.7
we shall see that the integral of the Green strain rate in time is path independent,
whereas the integral of the rate-of-deformation is not path independent.

These formulas could be obtained more easily by starting from the
definitions of the Green strain tensor and the rate-of-deformation, Egs. (3.3.1) and
(3.3.9), respectively. However, Eq. (3.3.18), which is very useful, would then be
skipped. Therefore the other derivation isleft as an exercise, Problem 2.

Example 3.5. Strain  Measures in  Combined Stretch and
Rotation. Consider the motion of abody given by
X(X,t) = L+ at)Xcos 5t - (L+bt)Ysin Bt (E3.5.1)
y(X,t) =@+ at)Xsin5t +(1+bt)Ycos5 t (E3.5.2)

where a and b are positive constants. Evaluate the deformation gradient F, the
Green strain E and rate-of-deformation tensor as functions of time and examine
fort=0andt=1.

For convenience, we define
At)° (1+at), B(t)° (L+bt), ccos5t, sO sindt (E3.5.3)
The deformation gradient F is evaluated by Eq.(3.2.10) using (E3.5.1):

Fo 3& %]75_ éAc - Bsy
Jy ‘Hy Bc
gx vl BAs :

(E3.5.4)

The above deformation consists of the simultaneous stretching of the
material lines along the X and Y axes and the rotation of the element. The
deformation gradient is constant in the element at any time, and the other
measures of strain will also be constant at any time. The Green strain tensor is
obtained from (3.3.5), with F given by (E3.5.4), which gives

E—E(FT>F- I) 13éAC AsgéAic -Bsg el Opp
2 2e8r Bs BcHBAs Bcl 1Eb
RpZ ou &l 0P ,€zat+a’t’ 0

=3¢ (E3.5.5)

u
o B2 & 18 23 0 2bt+b%3f

It can be seen that the values of the Green strain tensor correspond to what would
be expected from its definition: the line segments which are in the X and Y

directions are extended by at and bt, respectively, so E;; and E,, are nonzero.
The strain Ej; = Exy is positive when a is positive because the line segment along
the X axis is lengthened. The magnitudes of the components of the Green strain
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correspond to the engineering measures of strain if the quadratic termsin aand b
are negligible. The constants are restricted so that at >- land bt >- 1, for

otherwise the Jacobian of the deformation becomes negative. Whent=0, X=X
and E=0.

For the purpose of evaluating the rate-of-deformation, we first obtain the
velocity, which isthe material time derivative of (E3.5.1):

Vy =(ac- J%AS)X- (bs+g Bc)Y

(E3.5.6)
vy:(as+%Ac)X +(bc- %BS)Y
The velocity gradient is given by (3.3.7b),
L =(K )T—é%x - G0 wAs - bs- whcy E35.7
-0 _gﬂ% 8a5+wAc bc- wBs H (E35.7)

Sinceat t=0, x=X,y=Y,c=1, =0, A=B =1, so the velocity gradientat t=0
isgiven by

u éa 0y ng 1u E35.8
b 1@ D=g v W28 of (E3.5.8)

To determine the time history of the rate-of-deformation, we first evaluate the
time derivative of the deformation tensor and the inverse of the deformation
tensor. Recall that F isgivenin Eqg. (E3.5.4)), from which we obtain

Bc Bsy

eAtc 5As -B;s-ZBcl )
AcH

E3.5.9
eAts+ Ac Byc- %BSH ( )

_1_ 1 g
F =28 s

eBac + Abs’ CS(Ba Ab) ,p0 (E3.5.10)

1
L =F>F A
BeCS(Ba Ab) Bas’ +Ab02A 28 of

The first term on the RHS is the rate-of-deformation since it is the ymmetric part
of the velocity gradient, while the second term is the spin, which is skew

symmetric. Therate-of-deformationat t =1 isgiven by

L 6Ab 0y L ¢hb+ab 0

D=2Bg0 pBaj~T+a+b+abg 0 a+abf

(E3.5.11)

Thus, while in the intermediate stages, the shear velocity-strains are nonzero, in
the configuration at t =1 only the elongational velocity-strains are nonzero. For
comparison, the rate of the Green strainat t =1 isgiven by
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E—éAa Ou_éa+a2 0 u 35 12
@0 B E 0 b+b%H (E35.12)

Example 3.6 An element is rotated by an angleq about the origin. Evaluate
theinfinitesimal strain (often called the linear strain).

For a pure rotation, the motion is given by (3.2.20), x =R xX, where the
translation has been dropped and R isgiven in Eq.(3.2.25), so

P X(_&0sq -sinqui Xip 1Ul gosq- 1 -sing (g Xy £36.1
1yp Bing cosq §Y) tup Esing cosq- 1§ V) (E36.4)

In the definition of the linear strain tensor, the spatial coordinates with respect to
which the derivatives are taken are not specified. We take them with respect to
the material coordinates (the result is the same if we choose the spatial
coordinates). Theinfinitesimal strains are then given by

u
e - o, =cosq-1, e

X ﬂx y

Thus, if g is large, the extensiona strains do not vanish. Therefore, the linear
strain tensor cannot be used for large deformation problems, i.e. in geometrically
nonlinear problems.

T, My (E362)

:E:cos -1, 2e,=—2+—L=
1 a5 Yoy X

A question that often arises is how large the rotations can be before a
nonlinear analysis is required. The previous example provides some guidance to
this choice. The magnitude of the strains predicted in (E3.6.2) are an indication of
the error due to the small strain assumption. To get a better handle on this error,

we expand cosq inaTaylor's series and substitute into (E3.6.2), which gives

2 2

_ 1.9 4 q
e, =cosq- 1=1- 1 +O(q ) 1» - 3 (3.3.23)

This shows that the error in the linear strain is second order in the rotation. The
adequacy of alinear analysis then hinges on how large an error can be tolerated
and the magnitudes of the strains of interest. If the strains of interest are of order

102, and 1% error is acceptable (it almost always is) then the rotations can be of

order 102, since the error due to the small strain assumption is of order 10, If
the strains of interest are smaller, the acceptable rotations are smaller: for strains

of order 10™*, the rotations should be of order 10°% for 1% error. These
guidelines assume that the equilibrium solution is stable, i.e. that buckling is not
possible. When buckling is possible, measures which can properly account for
large deformations should be used or a stability analysis as described in Chapter 6
should be performed.
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Fig. 3.7. An element which is sheared, followed by an extension in the y-direction and then
subjected to deformations so that it is returned to itsinitial configuration.

Example 3.7 An element is deformed through the stages shown in Fig. 3.7.
The deformations between these stages are linear functions of time. Evaluate the

rate-of-deformation tensor D in each of these stages and obtain the time integral
of the rate-of-deformation for the complete cycle of deformation ending in the
undeformed configuration.

Each stage of the deformation is assumed to occur over a unit time

interval, so for stage n, t=n-1. Thetime scaling is irrelevant to the results, and
we adopt this particular scaling to simplify the algebra. The results would be
identical with any other scaling. The deformation function that takes state 1 to
state 2 is

X(X,t)=X+aty, y(Xt)=Y 0£t£1 (E3.7.1)

To determine the rateof-deformation, we will use Eq. (3.3.18), L =F> 'sowe
first have to determine F,F and F' . These are

g aty -~ O ay 4, &l -aty
F=x . F=x - F=x - E3.7.2
o 18 7o o T TR 1§ (£5.7:2
The velocity gradient and rate of deformation are then given by (3.3.10):
o O aggl -aty O Ay €0 ay
L=Fx 1:,\ ;A = A . D:!' L+LT =17 -(E3.7.3
o o 14 of Do) i o7

Thus the rate-of-deformation is a pure shear, for both elongational components
vanish. The Green strain is obtained by Eq. (3.3.5), its rate by taking the time
derivative

0 atyu . _,&0 auq

d E_Ega 2a%tH

b 200 (E3.7.4)

E=3(FF-1)=1

The Green strain and its rate include an elongational component, E,, which is
absent in the rate-of-deformation tensor. This component is small when the
constant a, and hence the magnitude of the shear, is small.
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For the subsequent stages of deformation, we only give the motion, the
deformation gradient, its inverse and rate and the rate-of-deformation and Green
strain tensors.

configuration 2 to configuration 3

x(X,t)=X+aY, y(X,t)=(L+bt)Y, 1£f£2, t=t-1 (E3.7.53)
8 aunw & 0o ., , é+bt -ay

F—g) 1+btf F—go N F —mg 0 14 (E3.7.5b)
- o 0o € 0y

- -1 1 % S :l T - 1 2 S

L=F*F'=rhg 4 D 3(L+L) H& (E3.7.50)

E=3(FF- 1)=4g 2 B 9 U (Esrsg)
o7 - 8a az+bt(bt+2) = 28 2b(bt+)f T

configuration 3 to configuration 4:
x(X,t)=X+a(l- t)Y, y(X,t)=(1+b)Y, 2£i£3 t=t-2 (E3.7.69)

oAl @ -y, dvb a1

F=& 1408 F 8 of © "™&o 1 W (E3.7.6b)

v -1_ 1 éo -ay _1 1 eo -ay
L=FF'=he o4 D=3(L+L7)= Woga of (E376)
configuration 4 to configuration 5:
x(X,t)=X, y(X,t)=(1+b- bt)y, 3£t£4, t=t-3 (E3.7.79)
0 o - & 0y +b- bt 0y
F=& U@ 00 g o & o (E3.7.7h)
@ 1+b- bty g0 - bH g O 14
@O 0y
L=F¥" 1+§btg, by D=t (E3.7.7¢)

The Green strain in configuration 5 vanishes, since at f =4 the deformation
gradient is the unit tensor, F =1 . The time integral of the rate-of-deformation is
given by
D(t)dt = €0 u+§0 0 q+ , €0 _al‘i|+e;0 0 u
POE=2g o & ne+b)i ™78 a of & -in(1+b)t

(E3.7.839)
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O 1y
ab

Thus the integral of the rate-of-deformation over a cycle ending in the
initial configuration does not vanish. In other words, while the final configuration
in this problem is the undeformed configuration so that a measure of strain should
vanish, the integral of the rate-of-deformation is nonzero. This has significant
repercussions on the range of applicability of hypoelastic formulations to be
described in Sections 5? and 5?. It also means that the integral of the rate-of
deformation is not a good measure of total strain. It should be noted the integral
over the cycle is close enough to zero for engineering purposes whenever a or b
aresmall. The error in the strain is second order in the deformation, which means
it is negligible as long as the strains are of order 10-2. The integral of the Green
strain rate, on the other hand, will vanish in this cycle, since it is the time
derivative of the Green strain E, which vanishesin the final undeformed stete.

3.4 STRESS MEASURES

34.1 Déefinitions of Stresses. In nonlinear problems, various stress
measures can be defined. We will consider three measures of stress:

1. the Cauchy stress s,

2. the nominal stresstensor P;

3. the second Piola-Kirchhoff (PK2) stresstensor S.

The definitions of the first three stress tensors are given in Box 3.1.
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Box 3.1
Definition of Stress M easures
n
n, of
F1laf
dg—" p- df
W, W
reference current
configuration configuration
Cauchy stress: n>s dG=df = tdG (34.1)
Nomina stress: ny XPdG =df =tydG, (34.2
2nd Piola-Kirchhoff stress: ng>SdG =F 1xdf =F 1%,dG (3.4.3)
df =tdG =t,dG, (3.4.9)

The expression for the traction in terms of the Cauchy stress, Eq. (3.4.1),
is called Cauchy’s law or sometimes the Cauchy hypothesis. It involves the
normal to the current surface and the traction (force/unit area) on the current
surface. For this reason, the Cauchy stress is often called the physical stress or
true stress. For example, the trace of the Cauchy stress, trace(s) =- pl , gives the
true pressure p commonly used in fluid mechanics. The traces of the stress
measures P and S do not give the true pressure because they are referred to the
undeformed area. We will use the convention that the normal components of the
Cauchy stress are positive in tension. The Cauchy stress tensor is symmetric, i.e.

s =s, which we shall see follows from the conservation of angular momentum.

The definition of the nominal stress P is similar to that of the Cauchy
stress except that it is expressed in terms of the area and normal of the reference
surface, i.e. the underformed surface. It will be shown in Section 3.6.3 that the
nominal stressis not symmetric. The transpose of the nominal stressis called the
first Piola-Kirchhoff stress. (The nomenclature used by different authors for
nominal stress and first Piola-Kirchhoff stressis contradictory; Truesdell and Noll
(1965), Ogden (1984), Marsden and Hughes (1983) use the definition given here,
Malvern (1969) cals P the first Piola-Kirchhoff stress) Since P is not
symmetric, it is important to note that in the definition given in Eq. (3.4.2), the
normal isto the left of the tensor P.
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The second Piola-Kirchhoff stressis defined by Eq. (3.4.3). It differsfrom

P in that the force is shifted by F'*. This shift has a definite purpose: it makes
the second Piola-Kirchhoff stress symmetric and as we shall see, conjugate to the
rate of the Green strain in the sense of power. This stress measure is widely used
for path-independent materials such as rubber. We will use the abbreviations PK1
and PK2 stress for the first and second Piola-Kirchhoff stress, respectively.

3.4.2 Transformation Between Stresses. The different stress tensors are
interrelated by functions of the deformation. The relations between the stresses
are given in Box 3.2. These relations can be obtained by using Egs. (1-3) along

with Nanson’ srelation (p.169, Malvern(1969)) which relates the current normal to
the reference normal by

ndG= JnyxF 1dG, ndG=Jn{ F; 'dG, (3.4.5)

Note that the nought is placed wherever it is convenient: “0” and “€’ have
invariant meaning in this book and can appear as subscripts or superscripts!

To illustrate how the transformations between different stress measures are
obtained, we will develop an expression for the nominal stress in terms of the
Cauchy stress. To begin, we equate df written in terms of the Cauchy stress and
the nominal stress, Egs. (3.4.2) and (3.4.3), giving

df =n>sdG= ny PdG, (3.4.6)

Substituting the expression for normal n given by Nanson’srelation, (3.4.5) into
(3.4.6) gives

Ing xF 1sdG, =nyPdG, (3.4.7)

Since the above holds for all ng, it follows that

1 ; 1%
P=JFs or B =JR’'s, or F}-=Jﬂ—)>(<l'(skj (3.4.83)

J=F%® or Js; =FR; (3.4.80)

It can be seen immediately from (3.4.8a) that P! PT, i.e. the nomina stress
tensor is not symmetric. The balance of angular momentum, which gives the

Cauchy stress tensor to be symmetric, s =s Tis expressed as

FP=P ' (34.9)

The nominal stress can be related to the PK2 stress by multiplying Eg.
(3.4.3) by F giving

df =F x{ng )G, = F{S" g )dGy =F 8" ndG, (3.4.10)
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The above is somewhat confusing in tensor notation, so it is rewritten below in
indicial notation

df = Fi(S)dG = Ry Gy (3411

The force df in the above is now written in terms of the nominal stress using
(34.2):

df =nyPdG, =P xydG = FS' ,dG (3.4.12)

where the last equality is Eq. (3.4.10) repeated. Since the above holdsfor al ng,
we have

P=SXFT or P” = SkF|-([j- = Sijk (3413)
Taking the inverse transformation of (3.4.8a) and substituting into (3.4.13) gives
s=J'PSF o s =R SR (3.4.143)

The above relation can be inverted to express the PK2 stress in terms of the
Cauchy stress:

S=F bsF T o §=IRSsR ' (3.4.14b)

The above relations between the PK2 stress and the Cauchy stress, like
(3.4.8), depend only on the deformation gradient F and the Jacobian determinant
J=det(F). Thus, if the deformation is known, the state of stress can always be
expressed in terms of either the Cauchy stress s , the nominal stress P or the PK2
stress S. It can be seen from (3.4.14b) that if the Cauchy stressis symmetric, then

Sisalso symmetric: S=S'. The inverse relationships to (3.4.8) and (3.4.14) are
easily obtained by matrix manipulations.

34.3. Corotational Stress and  Rate-of-Deformation. In some
elements, particularly structural elements such as beams and shells, it is
convenient to use the Cauchy stress and rate-of-deformation in corotational form,
in which al components are expressed in a coordinate system that rotates with the

material. The corotational Cauchy stress, denoted by s , isaso called the rotated-
stress tensor (Dill p. 245). We will defer the details of how the rotation and the
rotation matrix R is obtained until we consider specific elements in Chapters 4
and 9. For the present, we assume that we can somehow find a coordinate system
that rotates with the material.

The corotational components of the Cauchy stress and the corotational

rate-of-deformation are obtained by the standard transformation rule for second
order tensors, EQ.(3.2.30):

s=RT&R or s;=RisyR, (3.4.153)
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D=RTDR or D; =R{DyR; (3.4.15h)

The corotational Cauchy stress tensor is the same tensor as the Cauchy stress, but
it is expressed in terms of components in a coordinate system that rotates with the
material. Strictly speaking, from a theoretical viewpoint, a tensor is independent
of the coordinate system in which its components are expressed. However, such a
fundamentasl view can get quite confusing in an introductory text, so we will
superpose hats on the tensor whenever we are referring to its corotational
components. The corotational rate-of-deformation is similarly related to the rate-
of-deformation.

By expressing these tensors in a coordinate system that rotates with the
material, it is easier to deal with structural elements and anisotropic materials.
The corotational stress is sometimes called the unrotated stress, which seems like
a contradictory name: the difference arises as to whether you consider the hatted
coordinate system to be moving with the material (or element) or whether you
consider it to be a fixed independent entity. Both viewpoints are valid and the
choice is just a matter of preference. We prefer the corotationa viewpoint
because it is easier to picture, see Example 4.2.

Box 3.2
Transformations of Stresses
Cauchy Stress | Nominal Stress 2nd Piola Corotational
S P Kirchhoff Cauchy
Stress S Str%ss
S J¥Fp JFsF" R R
P JF 1 S’ JU e RT
S IF s T P T Ju eyt
S RT xs R J PR J U s

Note: dx=F>xdX =R>UJ>dX indeformation,
U isthe strectch tensor, see Sec.5?
dx =R xdX = R>dX in rotation

Example 3.8 Consider the deformation given in Example 3.2, Eqg. (E3.2.1).
Let the Cauchy stressin the initial state be given by

&% od
s(t=0=€X U (E3.8.1)
e Sy

Consider the stress to be frozen into the material, so as the body rotates, the initial
stress rotates also, as shown in Fig. 3.8.
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Figure 3.8. Prestressed body rotated by 90°.

This corresponds to the behavior of an initial state of stress in a rotating solid,
which will be explored further in Section 3.6 Evaluate the PK2 stress, the
nominal stress and the corotational stress in the initial configuration and the

configuration at t =p/2w .

Intheinitial state, F =1, so

. &2 o
S=P=s=s=¢€X U (E3.8.2)
é Sy(

In the deformed configuration at t = % , the deformation gradient is given by
. €osp/2 -sinp/2y_é0 -1y
&inp/2 cosp/2H B OH

Since the stress is considered frozen in the material, the stress state in the rotated
configuration is given by

J=det(F) =1 (E3.8.3)

&9 oU
€0 s,0

(E3.8.5)
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Note that the nominal stressis not symmetric. The 2nd Piola-Kirchhoff stress can
be expressed in terms of the nominal stress P by Box 3.2 asfollows:

. 60 sl0 -1y &2 00
S=PF =4 o o 0HTan SO
gsy, OHL OH 8O s,f

Since the mapping in this caseisapure rotation, R= F, sowhen t=£, s =S.

(E3.8.6)

This example used the notion that an initial state of stress can be
considered in a solid is frozen into the material and rotates with the solid. It
showed that in a pure rotation, the PK2 stress is unchanged; thus the PK2 stress
behaves as if it were frozen into the material. This can also be explained by
noting that the material coordinates rotate with the material and the components
of the PK2 stress are related to the orientation of the material coordiantes. Thus

in the previous example, the component S,, which is associated with X-
components, corresponds to thes ,, components of physical stress in the fina
configuration and the components sq; in the initial configuration. The

corotational components of the Cauchy stress s are aso unchanged by the
rotation of the material, and in the absence of deformation equal the components
of the PK2 stress. If the motion were not a pure rotation, the corotational Cauchy
stress components would differ from the components of the PK2 stressin the fina
configuration.

The nominal stress at t =1 is more difficult to interpret physically. This
stress is kind of an expatriate, living partialy in the current configuration and
partialy in the reference configuration. For this reason, it is often described as a
two-point tensor, with aleg in each configuration, the reference configuration and
the current configuration. The left leg is associated with the normal in the
reference configuration, the right leg with a force on a surface element in the
current configuration, as seen from in its defintion, Eq. (3.4.2). For this reason

and the lack of symmetry of the nominal stress P, it is seldom used in constitutive
equations. Its attractiveness lies in the simplicity of the momentum and finite

element equations when expressed in terms of P.

Example 3.9 Uniaxial Stress.

2z /Y,y VA Y y

37

< L

~ lo "3 XX - / >

Figure 3.9. Undeformed and current configurations of abody in auniaxia state of stress.
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Consider a bar in a state of uniaxial stress as shown in Fig. 3.9. Relate the
nomina stress and the PK2 stress to the uniaxial Cauchy stress. The initia
dimensions (the dimensions of the bar in the reference configuration) arel,, a, and
b,, and the current dimensions arel, a so

b

a
X=—X, y=—Y, z=—Z (E3.9.1)
Lo g by
Therefore
@x/IX XTIy IIzZu éfiy 0 0Ovu
F=8y/IX fy/1Y fy/1z0=€ 0 ga o010 (E3.9.2)
E/TX TZTY TZ/7zH E0 0 b/byl
ab/
J =det(F) = (E3.9.3)
(F) 3bolo
&,/ 0 0
Fl=6 o a/a 0 U (E3.9.4)

§0 0 bybl

The state of stressis uniaxial with the x-component the only nonzero component,
SO

&, 0 ol
s=g0 0 0 (E395)
€0 0 of
Evaluating P as given by Box 3.2 using Egs. (E3.9.3-E3.9.5) then gives
) 0 0 ks, 0 O ebs, o qu
a0 U5 U aaghy (
P= €0 g/a 0 UOD 0 QU=4 0 0 05 (E39.6)
agbolo a B g - .
g0 0 khy/olEO 0 OH 6 0 0 Oy
é a
Thus the only nonzero component of the nominal stressis
Pu = b Sy = aF (E3.9.7)
ab, A

where the last equality is based on the formulas for the cross-sectional area, A=ab
and A, = a,hy; Eq. (E3.9.7) agrees with Eq. (2.2.7). Thus, in a state of uniaxial

stress, Bj;corresponds to the engineering stress.
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The relationship between the PK2 stress and Cauchy stress for a uniaxial
state of stress is obtained by using Egs. (E3.9.3-E3.9.5) with Eq. (3.4.14), which
gives

_lo&s,0

S = 78 A b (E3.9.8)

where the quantity in the parenthesis can be recognized as the nominal stress. It
can be seen from the above that it is difficult to ascribe a physical meaning to the
PK2 stress. This, as will be seen in Chapter 5, influences the selection of stress
measures for plasticity theories, since yield functions must be described in terms
of physical stresses. Because of the nonphysical nature of the nominal and PK2
stresses, it is awkward to formulate plasticity in terms of these stresses.

3.5 CONSERVATION EQUATIONS

351 Conservation Laws. One group of the fundamental equations of
continuum mechanics arises from the conservation laws. These equations must
aways be satisfied by physical systems. Four conservation laws relevant to
thermomechanical systems are considered here:

1. conservation of mass

2. conservation of linear momentum, often called conservation of

momentum

3. conservation of energy

4. conservation of angular momentum
The conservation laws are also known as balance laws, e.g. the conservation of
energy is often called the balance of energy.

The conservation laws are usualy expressed as partia differential
eguations (PDEs). These PDEs are derived by applying the conservation laws to
a domain of the body, which leads to an integra equation. The following
relationship is used to extract the PDEs from the integral equation:

if f(x,t) isC*and Of (x,t)dW= 0 for any subdomain W of W
W

andtime t1[0,f], then
f(x,t) =0 in W for t1 [0,f] (3.5.1)

In the following, W is an arbitrary subdomain of the body under consideration.
Prior to deriving the balance equations, several theorems useful for this purpose
are derived.

352 Gausss Theorem. In the derivation of the governing equations,
Gauss's theorem is frequently used. This theorem relates integrals of different
dimensions:. it can be used to relate a contour integral to an area integral or a
surface integral to a volume integral.  The one dimensional form of Gauss's
theorem is the fundamental theorem of calculus, which we used in Chapter 2.
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Gauss's theorem states that when f(x) is a piecewise continuously
diffrentiable, i.e. C1 function, then

(‘)m dw= ¢ (x)n;dG  or ONf (x)dW= ¢f (x)ndG (3.5.2a)
w G w G

N ﬂf (X)d —_ 0 K _ 2

Oy Mb = F ()’dGy  or SR F(X)aWp = &f (X)nodG(3:5.20)
W, I G Wo €}

As seen in the above, Gauss's theorem applies to integrals in both the current and
reference configurations.

The above theorem holds for a tensor of any order; for example if f(x) is
replaced by atensor of first order, then

99 (X)dW: @i (x)nidG or dﬂ)g(x)dW: (‘j’] )g(X)dG (35.3)
W 1% G W G

which is often known as the divergence theorem. The theorem also holds for
gradients of the vector field:

W ﬂXJ' G W G

and to tensors of arbitrary order.

If the function f (x) isnot continuously differentiable, i.e. if its derivatives
are discontinuous along a finite number of lines in two dimensions or on surfaces
in three dimensions, then W must be subdivided into subdomains so that the
function is C1 within each subdomain. Discontinuities in the derivatives of the
function will then occur only on the interfaces between the subdomains. Gauss's
theorem is applied to each of the subdomains, and summing the results yields the
following counterparts of (3.5.2) and (3.5.3):

(‘):TT—de: OfndG+ ¢f fn;)dG (‘)ﬂ—g‘dW:(‘};nidG+ gan)dG (35.4)
wio G G L

w G G

where G, is the set of al interfaces between these subdomains and {f) and
{n>g} arethe jumps defined by

(fy=fA- £B (3.5.59)

(og) =(ain) =g/ + gPn® =(g"- of 0" =(a®- o) (3.5.5b)
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where A and B are a pair of subdomains which border on the interface G;;;, nA

and nB are the outward normals for the two subdomains and fA and fB are the
function values at the points adjacent to the interface in subdomains A and B,
respectively. All theformsin (3.5.5b) are equivalent and make use of the fact that
on the interface, nA =-nB. The first of the formulas is the easiest to remember
because of its symmetry with respect to A and B.

353 Material Time Derivative of an Integral and Reynold’s
Transport  Theorem. The materia time derivative of an integral is the rate of
change of an integral on a material domain. A material domain moves with the
material, so that the material points on the boundary remain on the boundary and
no flux occurs across the boundaries. A material domain is analogous to a
Lagrangian mesh; a Lagrangian element or group of Lagrangian elementsisanice
example of amaterial domain. The various forms for material time derivatives of
integrals are called Reynold;s transport theorem, which is employed in the
development of conservation laws.

The material time derivative of an integral is defined by

D Of dW= lim = §f(x,t +DOAW, - §f(x,t)dWy,) (3.5.6)
Dt oo Dt
W V\4 +Dt \Nt

where W, isthe spatial domain at time t and W, ., the spatial domain occupied

by the same material pointsat time t +Dt. The notation on the left hand sideis a
little confusing because it appears to refer to asingle spatial domain. However, in
this notation, which is standard, the material derivative on the integral implies that
the domain refers to a material domain. We now transform both integrals on the
right hand side to the reference domain using (3.2.18) and change the independent
variables to the material coordinates, which gives

D . N RPN N
av?f dw= gr(goa(vgf (X,t +Dt)J(X t +Dt)dW0-\A?f(X,t)J(X,t)dWo) (35.7)

The functionisnow f (f (X,t),t)° f of , but we adhere to our convention that the
symbol represents the field and leave the symbol unchanged.

Since the domain of integration is now independent of time, we can pull
the limit operation inside the integral and take the limit, which yields

R ~ — ~ jl
- Sf d w?ﬂt (f(X,1)I(X,1))aw, (3.5.9)

The partial derivative with respect to time in the integrand is a material time
derivative since the independent space variables are the materia coordinates. We
next use the product rule for derivatives on the above:

0 W= o o 0
Dt V(f dW:W?ﬁ (F(X)I(X,1))dwg _\A?g‘ﬂt J+f i AW
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Bearing in mind that the partial time derivatives are material time derivatives
because the independent variables are the material coordinates and time, we can
use (3.2.19) to obtain

DEt & dw= oaqTf(ﬂf,t) 1+ 1111); —dW (35.12)
2
Wo

We can now transform the RHS integral to the current domain using (3.2.18) and
change the independent variables to an Eulerian description, which gives

D GDf (X, t) Vi
= V(v)f (x,t)dW= & & o fﬂx Ede (3.5.11)

where the partial time derivative has been changed to a material time derivative
because of the change of independent variables; the material time derivative
symbol has been changed with the change of independent variables, since

Df (x,t)/ Dt ° §f(X,t)/1t asindicated in (3.2.8).

An dternate form of Reynold’s transport theorem can be obtained by
using the definition of the material time derivative, Eq. (3.2.12) in (3.5.11). This
gives

ﬂV.

' dw 3.5.13
@ @ v (35.3)
which can be written in tensor form as
E ~ dW—‘ﬂ—f+div(vf))dV\4 (3.5.149)
Dt o) chj it A

Equation (3.5.14) can be put into another form by using Gauss's theorem on the
second term of the RHS, which gives

D . Jf N D . Jf N

Bt Of dw= %dw+ ovindG or Bt Of dw= dW+ fvondG  (3.5.15)
W G W w G

where the product fv is assumed to be clin w. Reynold' s transport theorem,

which in the above has been given for a scalar, applies to a tensor of any order.

Thus to apply it to afirst order tensor (vector) gy, replace f by gy in Eq. (3.5.14),

which gives

D . g, T(vig)o
— dw= + -adw 3.5.16
Dt V?k %_‘ﬂt % 5 ( )
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3.5.5Mass  Conservation. The mass m(W) of amaterial domain W is given
by

m(W) = ¢y (X, t)aw (35.17)

w

where r(X,t) is the density. Mass conservation requires that the mass of a
material subdomain be constant, since no material flows through the boundaries
of a material subdomain and we are not considering mass to energy conversion.
Therefore, according to the principle of mass conservation, the material time

derivative of m(W) vanishes, i.e.

[[))—rtn :EDt & dw=0 (35.18)
W

Applying Reynold’ s theorem, Eq. (3.5.11), to the above yields

c‘gdl +r div(v)QdVV: 0 (35.19)
W Dt ]

Since the above holds for any subdomain W, it follows from Eq.(3.5.1) that
D . D ,
= by div(v)=0 or —r+rvii =0 or r+rv; =0 (3.5.20)
Dt Dt ’ ‘

The above is the equation of mass conservation, often called the continuity
equation. Itisafirst order partial differential equation.

Several special forms of the mass conservation equation are of interest.
When a materia is incompressible, the material time derivative of the density
vanishes, and it can be seen from equation (3.5.20) that the mass conservation
equation becomes:

div(v)=0 v;; =0 (3.5.21)

In other words, mass conservation requires the divergence of the velocity field of
an incompressible material to vanish.

If the definition of a material time derivative, (3.2.12) is invoked in
(3.5.20), then the continuity equation can be written in the form

%"'r,ivi Vi :ﬂ—rﬁ(rvi),i =0 (3.5.22)

Thisis called the conservative form of the mass conservation equation. It is often

preferred in computational fluid dynamics because discretizations of the above
form are thouught to more accurately enforce mass conservation.
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For Lagrangian descriptions, the rate form of the mass conservation
equation, Eg. (3.5.18), can be integrated in time to obtain an algebraic equation
for the density. Integrating EQ. (3.5.18) in time gives

O dWE constant = ¢y odWy (3.5.23)
w W

Transforming the left hand integral in the above to the reference domain by
(3.2.18) gives

drd- ro)dw, =0 (3.5.24)
Wo

Then invoking the smoothness of the integrand and Eq. (3.5.1) gives the following
eguation for mass conservation

r (X,t)J(X,t)=r o(X) or rd=ro (3.5.25)

We have explicitly indicated the independent variables on the left to emphasize
that this equation only holds for material points; the fact that the independent
variables must be the material coordinates in these equations follows from the fact
that the integrand and domain of integration in (3.5.24) must be expressed for a
material coordinate and material subdomain, respectively.

As a consequence of the integrability of the mass conservation equation in
Lagrangian descriptions, the algebraic equation (3.5.25) are used to enforce mass
conservation in Lagrangian meshes. In Eulerian meshes, the algebraic form of
mass conservation, EQ. (3.5.25), cannot be used, and mass conservation is
imposed by the partial differentia equation, (3.5.20) or (3.5.22), i.e. the
continuity equation.

35,5 Conservation of Linear Momentum. The equation emanating
from the principle of momentum conservation is akey egquation in nonlinear finite
element procedures. Momentum conservation is a statement of Newton’s second
law of motion, which relates the forces acting on a body to its acceleration. We

consider an arbitrary subdomain of the body W with boundary G. The body is
subjected to body forces r b and to surface tractionst, where b is aforce per unit
massandt isaforce per unit area. The total force on the body is given by

f(t) = ¢y b(x,t)dW+ c3(x, t)dG (3.5.26)
W G
The linear momentum of the body is given by
p(t)= ¢y v(x,t)dw (3.5.27)
w

where rv isthe linear momentum per unit volume.
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Newton’'s second law of motion for a continuum states that the material
time derivative of the linear momentum equals the net force. Using (3.5.26) and
(3.5.27), thisgives

Dp _ D s _ s \

ot fp 50 vdW= cy bdW+ (3dG (3.5.28)
W W G

We now convert the first and third integralsin the above to obtain a single domain

integral so Eg. (3.5.1) can be applied. Reynold's Transport Theorem applied to
the first integral in the above gives

B O vdws d%t(rV)+ diV(V)rV)sz or %‘t’ +v %rt +r div(v))dw (3.5.29)
W

W W

where the second equality is obtained by using the product rule of derivatives for
the first term of the integrand and rearranging terms.

The term multiplying the velocity in the RHS of the above can be
recognized as the continuity equation, which vanishes, giving

D - _. D
o O vdw= ¢y g{dw (3.5.30)
W w

To convert the last term in Eqg. (3.5.28) to a domain integral, we invoke Cauchy’s
relation and Gauss's theorem in sequence, giving

N e N _ Tsijj
AdG= Qs dG= QN>sdW or  §;dG= s dG—OWdW (3.5.31)
G G w G G w

Note that since the normal is to the left on the boundary integral, the divergenceis
to the left and contracts with the first index on the stress tensor. When the
divergence operator acts on the first index of the stress tensor it is called the left
divergence operator and is placed to the left of operand. When it acts on the
second index, it is placed to the right and call the right divergence. Since the
Cauchy stress is symmetric, the left and right divergence operators have the same
effect. However, in contrast to linear continuum mechanics, in nonlinear
continuum mechanics it is important to become accustomed to placing the
divergence operator where it belongs because some stress tensors, such as the
nominal stress, are not symmetric. When the stress is not symmetric, the left and
right divergence operators lead to different results. When Gauss's theorem is
used, the divergence on the stress tensor is on the same side as the normal in
Cauchy’s relation. In this book we will use the convention that the normal and
divergence are always placed on the | eft.

Substituting (3.5.30) and (3.5.31) into (3.5.28) gives

‘r%t’-rb-ﬂbs)dwzo (35.32)
w
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Therefore, if the integrand is C1, since (3.5.32) holds for an arbitrary domain,
applying (3.5.1) yields

~ . Dv. Ts i
% Nxs +rb° divs +rb or th':ﬂ—X;Hh (3.5.33)

This is caled the momentum equation or the equation of motion; it is aso called
the balance of linear momentum equation. The LHS term represents the change
in momentum, since it is a product of the acceleration and the density; it is also
called the inertial term. The first term on the RHS is the net resultant internal
force per unit volume due to divergence of the stressfield.

This form of the momentum equation is applicable to both Lagrangian and
Eulerian descriptions. In a Lagrangian description, the dependent variables are
assumed to be functions of the Lagrangian coordinates X and time t, so the
momentum equation is

(X, 1) (ﬂt 9 =divs(f 1 (x,t).t) +r (X,1)b(X 1) (35.34)

Note that the stress must be expressed as a function of the Eulerian coordinates

through the motion f (X ,t) so that the spatial divergence of the stress field can
be evaluated; the total derivative of the velocity with respect to time in (3.5.33)
becomes a partia derivative with respect to time when the independent variables
are changed from the Eulerian coordinates x to the Lagrangian coordinates X .

In an Eulerian description, the material derivative of the velocity iswritten
out by (3.29) and al variables are considered functions of the Eulerian
coordinates. Equation (3.5.33) becomes

r(x, t)gg% +(v(x,t) >grad)v(x,t)g: divs(x,t) +r (x,t)b(x,t) (3.5.35)

or &t by, vg—ﬁﬂh
%ﬂt Vi T,

As can be seen from the above, when the independent variables are all explicitly
written out the equations are quite awkward, so we will usually drop the
independent variables. The independent variables are specified wherever the
dependent variables are first defined, when they first appear in a section or
chapter, or when they are changed. So if the independent variables are not clear,
the reader should look back to where the independent variables were last
specified.

In computational fluid dynamics, the momentum equation is sometimes
used without the changes made by Egs. (3.5.13-3.5.30). Theresulting equation is

D(rv)_ 1(rv)
Dt It

+v>grad(rv)=divs +r b (3.5.36)
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This is called the conservative form of the momentum equation with considered
rv as one of the unknowns. Treating the equation in this form leads to better
observance of momentum conservation.

35.7 Equilibrium  Equation. In many problems, the loads are applied
slowly and the inertial forces are very small and can be neglected. In that case,
the acceleration in the momentum equation (3.5.35) can be dropped and we have

- Ts i
Nxs +rb=0 or W{'HQ:O (3.5.37)
J

The above equation is called the equilibrium equation. Problems to which the
equilibrium equation is applicable are often called static problems. The
equilibrium equation should be carefully distinguished from the momentum
equation: equilibrium processes are static and do not include acceleration. The
momentum and equilibrium equations are tensor equations, and the tensor forms
(3.5.33) and (3.5.37) represent ngy scalar equations.

3.5.8 Reynold's Theorem for a Density-Weighted Integrand.
Equation (3.5.30) is a special case of a genera result: the material time derivative
of an integral in which the integrand is a product of the density and the function f
isgiven by

D N — N\ Rf
= O faw= ¢ Sdw (3.5.39)
w w

This holds for atensor of any order and is a consequence of Reynold's theorem
and mass conservation; thus, it can be called another form of Reynold's theorem.
It can be verified by repeating the steps in Egs. (3.5.29) to (3.5.30) with a tensor
of any order.

359 Conservation of Angular Momentum. The conservation of
angular momentum provides additional equations which govern the stress tensors.
The integral form of the conservation of angular momentum is obtained by taking
the cross-product of each term in the corresponding linear momentum principle
with the position vector x, giving

2 O rvdW= (¢ rbdW+ (x tdG (3.5.39)
w w G

We will leave the derivation of the conditions which follow from (3.5.39) as an
exercise and only state them:

s=s' o S,;=S. (3.5.40)

In other words, conservation of angular momentum requires that the Cauchy
stress be a symmetric tensor. Therefore, the Cauchy stress tensor represents 3
distinct dependent variables in two-dimensional problems, 6 in three-dimensional
problems. The conservation of angular momentum does not result in any
additional partia differential equations when the Cauchy stressis used.
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3.5.10 Conservation of Energy. We consider thermomechanical
processes where the only sources of energy are mechanical work and heat. The
principle of conservation of energy, i.e. the energy balance principle, states that
the rate of change of total energy is equal to the work done by the body forces and
surface tractions plus the heat energy delivered to the body by the heat flux and
other sources of heat. The internal energy per unit volume is denoted by

r w™where w'™is the internal energy per unit mass. The heat flux per unit area

is denoted by a vector q, in units of power per area and the heat source per unit
volume is denoted by rs. The conservation of energy then requires that the rate
of change of the total energy in the body, which includes both internal energy and
kinetic energy, equal the power of the applied forces and the energy added to the
body by heat conduction and any heat sources.

The rate of change of the total energy in the body is given by

pt=pmaphn pM=D ywaw P"=5 Frvwvdaw (3541
w w
where P'™denotes the rate of change of internal energy and P N the rate of

change of the kinetic energy. The rate of the work by the body forces in the
domain and the tractions on the surface is

P &= ¢y r bdw+ (yxdG= (yirbdws+ ¢yitidG (3.5.42)
W G w G

The power supplied by heat sources sand the heat flux g is

p heat _ (\),de_ d,pqu: (‘j‘SdW— df\qidG (3.5.43)
W G w G

where the sign of the heat flux term is negative since positive heat flow is out of
the body.

The statement of the conservation of energy iswritten

plot =p &4 pheat (3.5.44)

i.e. the rate of change of the total energy in the body (consisting of the internal
and kinetic energies) is equal to the rate of work by the external forces and rate of
work provided by heat flux and energy sources. Thisis known as the first law of
thermodynamics. The disposition of the internal work depends on the material. In
an elastic material, it is stored as elastic internal energy and fully recoverable
upon unloading. In an elastic-plastic material, some of it is converted to heat,
whereas some of the energy is irretrievably dissipated in changes of the internal
structure of the material.

Substituting Egs. (3.5.41) to (3.5.43) into (3.5.44) gives the full statement
of the conservation of energy

3-48

48



T. Belytschko, Continuum Mechanics, December 16, 1998

%drwim+%rv>«/)}|w=(‘y><r bdW+ ¢y xdG+(y sdW (n>gdG (3.5.45)
w W G W G

We will now derive the equation which emerges from the above integral statement
using the same procedure as before: we use Reynolds' s theorem to bring the total
derivative inside the integral and convert all surface integrals to domain integrals.
Using Reynold’s Theorem, (3.5.38) on the first integral in Eq. (3.5.45) gives

1jc(rw”“+1rv><v)dW— " D""m +3r 6’:’ ﬂdW

Dw'
d =B *trv t)dW

We will use commas in the following to denote spatial derivatives. Applying
Cauchy’s law (3.4.1) and Gauss's theorem (3.5.12) to the traction boundary
integrals on the RHS of (3.5.45) yields:

(3.5.46)

O/ *dG= (y’s wdG= dv,s ji),j dWE dv, iSji TS i, j)dW
G G w

dDJ,s +Wis j; +Vis JIj)dW using (3.3.9)

dD . )dW symmetry of s and

jiS ji VIS i j skew symmetry of W

= (JD:s +(Rxs ) ) dw (3.5.47)
w

Inserting these results into (3.5.44) or (3.5.45), application of Gauss's theorem to
the heat flux integral and rearrangement of terms yields

d Q‘("T D:s +Nxq- rs+v>(r - N>s - rb))dW:O (3.5.48)
W

The last term in the integral can be recognized as the momentum equation, Eq.
(3.5.33), so it vanishes. Then invoking the arbitrariness of the domain gives:

DwiNt
Dt

r =D:s-Nxq+rs (3.5.49)

When the heat flux and heat sources vanish, i.e. in a purely mechanical
process, the energy equation becomes

r

DWw™ _ e
V\[I)t —D.S—S.D—Sijqj' (3550)
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The above defines the rate of internal energy or internal power in terms of the
measures of stress and strain. It shows that the internal power is given by the
contraction of the rate-of-deformation and the Cauchy stress. We therefore say
that the rate-of-deformation and the Cauchy stress are conjugate in power. Aswe
shall see, conjugacy in power is helpful in the development of weak forms:
measures of stress and strain rate which are conjugate in power can be used to
construct principles of virtual work or power, which are the weak forms for finite
element approximations of the momentum equation. Variables which are
conjugate in power are also said to be conjugate in work or energy, but we will
use the phrase conjugate in power because it is more accurate.

The rate of change of the internal energy of the system is obtained by
integrating (3.5.50) over the domain of the body, which gives

int . int . . . ﬂV'
D\[/)Vt -0 D\[')Vlt dW= P:s dW= QDy;s j;dW= O'ﬂ_xl-s jdW (3551
W W w w7

where the last expression follows from the symmetry of the Cauchy stress tensor.

The conservation equations are summarized in Box 3.3 in both tensor and
indicia form. The equations are written without specifying the independent
variables; they can be expressed in terms of either the spatial coordinates or the
material coordinates, and as we shall see later, they can be written in terms of
other coordinate systems which are neither fixed in space nor coincident with
material points. The equations are not expressed in conservative form because
this does not seem to be as useful in solid mechanics as it is in fluid mechanics.
The reasons for this are not explored in the literature, but it appears to be related
to the mauch smaller changes in density which occur in solid mechanics
problems.

Box 3.3
Conservation Equations

Eulerian description

Mass
EH‘ div(v)=0 or E+rvii =0 or r+rv,;=0 (B3.3.1)
Dt Dt ’ ’
Linear Motion
Dv _ & . DV _ ﬂs ji
r S5 =Nxs +rb° divs +rb or rvt'_ﬂ—xjﬂq (B3.3.2)
Angular Momentum
s=s' o s;=s; (B3.3.3)
Energy
Dwint -
" =Dt =D:s-Nxg+rs (B3.3.49)

Lagrangian Description
Mass
r (X, t)JI(X,t)=r o(X) or rd=rp (B3.3.5)
Linear Momentum
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VX0 _ i (xt) _ I

0 Ny P+rgh or e ‘W”Oh (B3.3.6)
Angular Momentum
FxP=P' X' FikPq = PkFig = FikPy (B3.3.7)
g=g' (B3.3.8)
Energy
. W (X, 1) q
roWInt: rouﬂt—’t)zFT:P' Nx>q+r 0S (8339)

3511 System Equations. The number of dependent variables depends on
the number of space dimensions in the model. If we denote the number of space
dimensions by ng, then for a purely mechanical problem, the following
unknowns occur in the equations for a purely mechanical process (a process
without heat transfer, so the energy equation is not used):

r, the density 1 unknown
v, the velocity Ngp unknowns
S, the stresses Ns=Ngp* (Ngp+1)/2 unknowns

In counting the number of unknowns attributed to the stress tensor, we have
exploited its symmetry, which results from the conservation of angular
momentum. The combination of the mass conservation (1 equation), and the
momentum conservation (nNgy equations) gives a total of ngy+1 equations. Thus
we are left with ng extra unknowns. These are provided by the constitutive
equations, which relate the stresses to a measure of deformation. This equation
introduces ng additional unknowns, the components of the symmetric rate-of-
deformation tensor. However, these unknowns can immediately be expressed in
terms of the velocities by Eq. (3.3.10), so they need not be counted as additional
unknowns.

The displacements are not counted as unknowns. The displacements are
considered secondary dependent variables since they can be obtained by
integrating the velocities in time using Eq. (3.2.8) at any materia point. The
displacements are considered secondary dependent variables, just like the position
vectors. This choice of dependent variables is a matter of preference. We could
just as easily have chosen the displacement as a primary dependent variable and
the velocity as a secondary dependent variable.

3.6. LAGRANGIAN CONSERVATION EQUATIONS

3.6.1 Introduction and Definitions. For solid mechanics applications, it
is instructive to directly develop the conservation equations in terms of the
Lagrangian measures of stress and strain in the reference configuration. In the
continuum mechanics literature such formulations are called Lagrangian, whereas
in the finite element literature these formulations are called total Lagrangian
formulations. For atotal Lagrangian formulation, a Lagrangian mesh is aways
used. The conservation equations in a Lagrangian framework are fundamentally
identical to those which have just been developed, they are just expressed in terms
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of different variables. In fact, as we shall show, they can be obtained by the
transformations in Box 3.2 and the chain rule. This Section can be skipped in a
first reading. It isincluded here because much of the finite element literature for
nonlinear mechanics employs total Lagrangian formulations, so it is essential for a
serious student of the field.

The independent variables in the total Lagrangian formulation are the
Lagrangian (material) coordinates X and the time t. The major dependent

variables are the initial density ry(X,t) the displacement u(X,t) and the

Lagrangian measures of stress and strain. We will use the nominal stress P(X,t)
as the measure of stress. This leads to a momentum equation which is strikingly
similar to the momentum equation in the Eulerian description, Eq. (3.5.33), soitis
easy to remember. The deformation will be described by the deformation gradient

F(X,t). The pair P and F is not especially useful for constructing constitutive
eguations, since F does not vanish in rigid body motion and P is not symmetric.
Therefore constitutive equations are usually formulated in terms of the of the PK2
stress S and the Green strain E. However, keep in mind that relations between S
and E can easily be transformed to relations between P and E or F by use of the
relationsin Boxes 3.2.

The applied loads are defined on the reference configuration. The traction
to is defined in Eqg. (3.4.2); tg is in units of force per unit initial area. As
mentioned in Chapter 1, we place the noughts, which indicate that the variables
pertain to the reference configuration, either as subscripts or superscripts,
whichever is convenient. The body force is denoted by b, which is in units of
force per unit mass; the body force per initial unit volume is given by r gb, which
is equivalent to the force per unit current volume r b. This equivalence is shown
in the following

df =r bdWs= r bJdW, =1 gbdW, (3.6.1)

where the second equality follows from the conservation of mass, Eq. (3.5.25).
Many authors, including Malvern(1969) use different symbols for the body forces
in the two formulations; but this is not necessary with our convention of
associating symbols with fields.

The conservation of mass has aready been developed in a form that
applies to the total Lagrangian formulation, Eq.(3.5.25). Therefore we develop
only the conservation of momentum and energy.

3.6.2 Conservation of Linear Momentum. InaLagrangian description,

the linear momentum of a body is given in terms of an integral over the reference
configuration by

Po(t) = ¥ oV(X, )Wy (3.6.2)
Wo

The total force on the body is given by integrating the body forces over the
reference domain and the traction over the reference boundaries:

3-52

52



T. Belytschko, Continuum Mechanics, December 16, 1998

fot)= &y X, DAV + (F(X. G (363)

Wo G

Newton’s second law then gives

d
=2=fo (3.6.4)

Substituting (3.6.2) and (3.6.3) into the above gives

& VAW = ¢ bWyt (¥, dG (3.6.5)
Wo Wo G

On the LHS, the material derivative can be taken inside the integral because the
reference domain is constant in time, so

. L V(X t
4 oy ovawg = C;OM‘”{—)olw0 (3.6.6)
Wo Wo

Using Cauchy’slaw ( 3.4.2) and Gauss' theorem in sequence gives

otOdQJ = O’IOXPdCé = de >PdV\6 or

G Go Wo
<0 g~ _ 20 _ IR
€} G Wo

Note that in tensor notation, the left gradient appears in the domain integral
because the nominal stress is defined with the norma on the left side. The
definition of the material gradient, which is distinguished with the subscript X,
should be clear from the indicial expression. The index on the material coordinate
is the same as the first index on the nominal stress: the order isimportant because
the nominal stressis not symmetric.

Substituting (3.6.6) and (3.6.7) into (3.6.5) gives

L& (Xt .06
Ogl’o T =T Ob' NX >P5dWO =0 (368)
Wo

which, because of the arbitrariness of W gives

V(Xt) _ v (Xt) _ TR
O—ﬂ Sﬂt ):NX>P+ rob or ro%—wlj”oh (3.6.9)

Comparing the above with the momentum equation in the Eulerian description,
Eq.(3.5.33), we can see that they are quite similar: in the Lagrangian form of the
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momentum equation the Cauchy stress is replaced by the nominal stress and the
density is replaced by the density in the reference configuration.

The above form of the momentum equation can also be obtained directly
by transforming all of the termsin Eq.(3.5.33) using the chain rule and Box 3.2.
Actually, thisis somewhat difficult, particularly for the gradient term. Using the
transformation from Box 3.2 and the chain rule gives

TS —ﬂg%-lﬁk%(;_ T (.1 s TR _ -1 T 1R
™ X _Hdﬂ_Xj(J ij)""] Fik % =J e T, (3.6.10)

In the above we have used the definition of the deformation gradient F, Eq.
(3.2.14) and ‘H(J'lek)/‘ﬂxj =0,(see Ogden(1984)). Thus (3.5.33) becomes

rM:J-lﬁ%Hq (3.6.11)
qt Xk ﬂXj

By the chain rule, the first term on the RHS is J'l‘ﬂPki/‘ﬂXk. Multiplying the
equation by J and using mass conservation, r J=r , then gives Eq. (3.6.9).

36.3 Conservation of Angular Momentum. The balance equations for
angular momentum will not be rederived in the total Lagrangian framework. We
will use the consequence of angular momentum balance in Eq. (3.5.40) in
conjunction with the stress transformations in Box 3.2 to derive the consequences
for the Lagrangian measures of stress. Substituting the transformation expression
from Box 3.2 into (3.5.40) gives

=t >43)T (3.6.12)

Multiplying both sides of the above by J and taking the transpose inside the
parenthesis then gives

FxP=PT <7 FikPyj = PkFig = FikPy (3.6.13)

The above equations are nontrivial only when it j. Thus the above gives one
nontrivial equation in two dimensions, three nontrivial equations in three
dimensions. So, while the nominal stress is not symmetric, the number of
conditions imposed by angular momentum balance equals the number of
symmetry conditions on the Cauchy stress, Eq. (3.5.40). In two dimensions, the
angular momentum equation is

F11P12 + F12P2p = Fo1P11 + FpoPoy (3.6.14)

These conditions are usually imposed directly on the constitutive equation, as will
be seen in Chapter 5.
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For the PK 2 stress, the conditions emanating from conservation of angular
momentum can be obtained by expressing P in terms of S in Eg. (3.6.13), (the
same equations are obtained if s is replaced by S in the symmetry conditions
(3.5.40)), which gives

F>xSxF =F 8" xF' (3.6.15)
Since F must be a regular (nonsingular) matrix, its inverse exists and we can

T
premultiply by F L and postmultiply by F To (F' 1) the above to obtain

s=s' (3.6.16)

So the conservation of angular momentum requires the PK2 stress to be
symmetric.

3.64 Conservation of Energy in Lagrangian Description. The
counterpart of Eqg. (3.5.45) in the reference configuration can be written as

E% Grow™+5rovv)dw, =
Wo
O/ obdWo + () %dGy + (¥ 05MWo- (o8 dG
Wo 5 Wo S

(3.6.17)

The heat flux in a total Lagrangian formulation is defined as energy per unit
reference area and therefore is denoted by q to distinguish it from the heat flux
per unit current area g, which are related by

a=JF' g (3.6.17b)
The above follows from Nanson's law (3.4.5) and the equivalence
OrgdG= (g 9dG,
G €}
Substituting (3.4.5) for n into the above gives (3.6.17b).

The interna energy per unit initia volume in the above is related to the
internal energy per unit current volumein (3.5.45) asfollows

oW dw, =r w™J  dWe rw™dw (3.6.18)

where the last step follows from the mass conservation equation (3.5.9). On the
LHS, the time derivative can be taken inside the integral since the domain is
fixed, giving
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ﬂvvi”t(X,t)H v(X, 1)

d t,
d— dI‘OV\fn r0V>V dWo— d 0 ﬂt 0 ﬂ

Wo Wo

)dW, (3.6.19)

The second term on the RHS can be modified as follows by using Eq. (3.4.2) and
Gauss's theorem

O 100G = ¢yt dG = ¢yvin’R; dG

> ? ® (3.6.20)
&V, 1R: O =
= ‘_1]_ . = A | p. )
V(Vz X( Ry JaWo W?S_‘”Xi Py +V; g 56
aF TR 6 T
g'nt R+ ,”)gv ~dW, = 0?%:P+(Nxxp)w—dwo

Wo

Gauss' s theorem on the fourth term of the LHS and some manipulation gives
& int F - X t A O

()groﬂw— - ﬂ—t:P+Nx>q- ros+groj—) Ny P - rong/+dv\/0 =
a

(3.6.21)
The term inside the parenthesis of the integrand is the total Lagrangian form of

the momentum equation, (3.6.30), so it vanishes. Then because of the
arbitrariness of the domain, the integrand vanishes, giving

[ int _ ﬂWmt ~
oW =Ty ‘Ht =F":P-N x g +r S (3.6.22)

In the absence of heat conduction or heat sources, the above gives
row™=F;R =F:P=P:F (3.6.23)

This is the Lagrangian counterpart of Eq. (3.5.50). It shows that the nominal
stress is conjugate in power to the material time derivative of the deformation
gradient.

These energy conservation equations could also be obtained directly from
Eq. (3.5.50) by transformations. Thisismost easily doneinindicia notation.

rhjsij=r %sij by definition of D and symmetry of stress s
j

= MMs.J by chain rule

X Mx
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=r Ek%s ; by definition of F, Eq. (3.2.10) (3.6.24)

j
=r F.k RiJ 1= rOFikPki by Box 3.2 and mass conservation

3.6.5 Power in terms of PK2 stress. The stress transformations in Box
3.2 can also be used to express the internal energy in terms of the PK2 stress.

i:T s po Ekpki = FikS(r Fr-lr by Box 3.2
= Rl RSk =(FT #):s by symmetry of S (3.6.25)

:(}/Z(FT F +FToF )+ (FToF - FT >F)):S decomposing
tensor into symmetric and antisymmetric parts

=Y FTF+ FTF) :S since contraction of symmetric and
antisymmetric tensors vanishes

Then, using the time derivative of E as defined in Eq.(3.3.20) gives
row™=E:S=SE =E;§ (3.6.26)

This shows that the rate of the Green strain tensor is conjugate in power (or
energy) to the PK2 stress.

Thus we have identified three stress and strain rate measures which are
conjugate in the sense of power. These conjugate measures are listed in Box 3.4
along with the corresponding expressions for the power. Box 3.4 also includes a
fourth conjugate pair, the corotational Cauchy stress and corotational rate-of-
deformation. Its equivalence to the power in terms of the unrotated Cauchy stress
and rate-of-deformation is easily demonstrated by (3.4.15) and thhe orthgonality
of the rotation matrix.

Conjugate stress and strain rate measures are useful in developing weak
forms of the momentum equation, i.e. the principles of virtual work and power.
The conjugate pairs presented here just scratch the surface: many other conjugate
pairs have been developed in continuum mechanics, {Ogden(1984), Hill()}.
However, those presented here are the most frequently used in nonlinear finite
element methods.

Box 3.4

Stress-deformation (strain) rate pairs conjugate in power

Cauchy stress/rate-of deformation: rw™ =Dis =s:D= DijSj
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Nominal stress/rate of deformation gradient: row'™=F:P' =P:F' =F

i P

0
PK2 stress/rate of Green strain: row'™ =E:S=S:E = Eij S

A

Corotational Cauchy stress/rate-of-deformation: rw'™ =D:s=§:D = |5ij i

3.7 POLAR DECOMPOSITION AND FRAME-INVARIANCE

In this Section, the role of rigid body rotation is explored. First, atheorem
known as the polar decomposition theorem is presented. This theorem enables the
rigid body rotation to be obtained for any deformation. Next, we consider the
effect of rigid body rotations on constitutive equations. We show that for the
Cauchy stress, a modification of the time derivatives is needed to formulate rate
constitutive equations. This is known as a frame-invariant or objective rate of
stress. Three frame-invariant rates are presented: the Jaumann rate, the Truesdell
rate and the Green-Naghdi rate. Some startling differences in hypoelastic
constitutive equations with these various rates are then demonstrated.

3.71 Polar Decomposition Theorem. A fundamental theorem which
elucidates the role of rotation in large deformation problems is the polar
decomposition theorem. In continuum mechanics, this theorem states that any
deformation gradient tensor F can be multiplicatively decomposed into the
product of an orthogonal matrix R and a symmetric tensor U, called the right
stretch tensor (the adjective right is often omitted):

™

F=RxU or Fij_ﬂx
]

= RkUyj where (3.7.1)

RI=RT ad u=UT (3.7.2)
Rewriting the above with Eq. (3.2.15) gives
dx = R>U xdX (3.7.3)

The above shows that any motion of a body consists of a deformation, which is
represented by the symmetric mapping U, and arigid body rotation R; R can be
recognized as a rigid-body rotation because all proper orthogonal transformations
are rotations. Rigid body translation does not appear in this equation because dx
and dX are differential line segments in the current and reference configurations,
respectively, and the differential line segments are not affected by trandation. If
Eq. (3.7.3) were integrated to obtain the deformation function, x =f (X,t), then
the rigid body translation would appear as a constant of integration. In a
trandation, F =1, and dx=dX.

The polar decomposition theorem is proven in the following. To simplify

the proof, we treat the tensors as matrices. Premultiplying both sides of Eq.
(3.7.1) by itstranspose gives
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FT > =(RU)"(RU)=U'RTRU=UTU=UU (3.7.4)

where (3.7.2) is used to obtain the third and fourth equalities. The last term isthe
square of the U matrix. It follows that

u=(F" >4=)y i (3.7.5)

The fractional power of a matrix is defined in terms of its spectra
representation, see e.g. Chandrasekharaiah and Debnath (1994, p96). It is
computed by first transforming the matrix to its principal coordinates, where the
matrix becomes a diagonal matrix with the eigenvalues on the diagonal. The
fractional power is then applied to al of the diagonal terms, and the matrix is
transformed back. This is illustrated in the following examples. The matrix

FT s is positive definite, so al of its eigenvalues are positive. Consequently the
matrix U isawaysreal.

The rotation part of the deformation, R, can then be found by applying Eq.
(3.7.1), which gives

R=FxJ?! (3.7.6)

The existence of the inverse of U follows from the fact that all of its eigenvalues
are always positive, since the right hand side of Eq. (3.7.5) is aways a positive
matrix.

The matrix U is closely related to an engineering definition of strain. Its
principal values represent the elongations of line segments in the principal
directions of U. Therefore, many researchers have found this tensor to be

appealing for developing constitutive equations. The tensor U- | is called the
Biot strain tensor.

A deformation can aso be decomposed in terms of aleft stretch tensor and
arotation according to

F=VxR (3.7.7)

Thisform of the polar decomposition is used less frequently and we only noteit in
passing here. It will play arole in discussions of material symmetry for elastic
materials at finite strain. The polar decomposition theorem, which is usually
applied to the deformation tensor, applies to any invertible square matrix: any
square matrix can be multiplicatively decomposed into a rotation matrix and a
symmetric matrix, see Chandrasekharaiah and Debnath (1994, p97).

It is emphasized that the rotations of different line segments at the same
point depend on the orientation of the line segment. In athree dimensional body,
only three line segments are rotated exactly by R(Xt) a any point X. These are
the line segments corresponding to the principal directions of the stretch tensor U.
It can be shown that these are aso the principal directions of the Green strain
tensor. The rotations of line segments which are oriented in directions other than
the principal directions of E are not given by R.
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Example 3.10 Consider the motion of atriangular element in which the nodal
coordinates x,(t) and y (t) aregiven by

X(t)=a+2at  y(t) =2at
Xo(t) =2at Yo(t) =2a- 2at (E3.10.1)
Xg( 1) = 3at ya(t) =0

Find the rigid body rotation and the stretch tensors by the polar decomposition
theorem at t=1.0 and at t=0.5.

The motion of atriangular domain can most easily be expressed by using
the shape functions for triangular elements, i.e. the area coordinates. In terms of
the triangular coordinates, the motion is given by

x(x,t) = Xq(t)Xg +Xo( 1) X0 +X5(t) X5 (E3.10.2)

y(X,t) = ya( )% +Yo( )% +Y5(t)X3 (E3.10.3)

where x, are the triangular, or area, coordinates; see Appendix A; the material
coordinates appear implicitly in the RHS of the above through the relationship
between the area coordinates and the coordinates at time t=0. To extract those
relationships we write the above at time t=0, which gives

X(X,0) = X= XgXq + XoXp + Xg =axg (E3.10.4)

yY(X,0) = Y = Yjx; + Yo%, +Y3%g = 28X, (E3.10.5)

In this case, the relations between the triangular coordinates are particularly
simple because most of the nodal coordinates vanish in the initial configuration,
so the relations devel oped above could be obtained by inspection.

Using Eg. (E3.10.5) to express the triangular coordinates in terms of the
material coordinates, Eq (E3.10.1) can be written
X(X,1) = 3ax, + 2ax, + 3axs

5 E3.10.6
:3x+Y+3a§-i<-19:3a-X ( )
a 2ag@ 2
Y X,1) =2axq + 0xo + 0x3

E3.10.7
=2X ( )

The deformation gradient is then obtained by evaluating the derivatives of the
above motion using Eq. (3.2.16)
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elx  Axy 05
= T2 O (E3.10.8)
Yy e o f
efx qyu
The stretch tensor U isthen evaluated by Eq. (3.7.5):
7 O \1/2 7 0 ~
u=(FTpY28 0wt e 0u (E3.10.9)

& o025 &0 05

In this case the U matrix is diagonal, so the principal values are smply the
diagonal terms. The positive square roots are chosen in evaluating the square root
of the matrix because the principal stretches must be positive; otherwise the
Jacobian determinant would be negative since according to Eg. (3.7.1),
J =det(R)det(U) and det(R)=1, so det(U)<0 implies J<0. The rotation
matrix R isthen given by Eq. (3.7.6):

-1:€;O -0.5l‘:|§'05 Ol‘:l:éj -1L‘:I
& O HEO 2H & Of

Comparing the above rotation matrix R and Eq. (3.2.25), it can be seen that the
rotation is a counterclockwise 90 degree rotation. This is also readily apparent
from Fig. 3.9. The deformation consists of an elongation of the line segment
between nodes 1 and 3, i.e. dX, by afactor of 2, (see U141 in Eq. (E3.10.9)) and a
contraction of the line segment between nodes 3 and 2, i.e. dY, by afactor of 0.5,
(see U, inEq. (E3.10.9)), followed by atrandation of 3a in the x-direction and a
90 degree rotation. Since the original line segments along the x and y directions
correspond to the principal directions, or eigenvectors, of U, the rotations of these
Iihne segments correspond to the rotation of the body in the polar decomposition
theorem.

R=FU (E3.10.10)

The configuration at t=0.5 is given by evaluating Eq. (E3.10.1) at that time,
giving:

X(X,OS) = 2ax1 + axo +1. 53)(3

" E3.10.11a
=2al+at +1.5a§- X YO, i50405x- 025y " )
a 2a a 2ag
Y X,0.5) = ax, +ax, +0x,
E3.10.11b
:al<+al:X+0.5Y ( )

The deformation gradient F is then given by

297X ﬂ\ .

F:% U @5 -025
fy IyU"e1 o5 f
erx qyu

(E3.10.12)
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and the stretch tensor U is given by Eq. (3.7.6):

v 6125 03752 40032 02343

=T
U=(FF) 80,375 031254  &.2343 0.5076H

(E3.10.13)

The last matrix in the above is obtained by finding the eigenvalues | ; of F'F,
taking their positive square roots, and placing them on a diagona matrix called

H :diag(\/l_ \/E) The matrix H transformed back to the global components

by U=ATHA whereA isthe matrix whose columns are the eigenvectors of FTF.
These matrices are:

609436 03310 U

A= %15 0 ¢ E3.10.14
~%03310 -09436] i (E3.10.14)

H_‘?l
=% o o01810§

The rotation matrix R isthen found by

., 5 -0.25,610032 023431 406247 -0.7809

R=FU "81 05 H&0.2343 05076 ~ &07809 0.6247 H
(E3.10.15)

Example 3.11 Consider the deformation for which the deformation gradient is
_&-as ac- g

~ &+ac as+cf (E3.11.1)
C=c0sqQ, S=sinq

F

where a is a constant. Find the stretch tensor and the rotation matrix when azg ,
_p
q=s3.

For the particular values given

él -1 425 1
F=,2 . C=F ¥=4 . (E3.11.2)
g1 54 81 1254
The eigenvalues and corresponding eigenvectors of C are
1,=025  y/=5[1 -]
1,=225  y; =51 1 (E3.11.3)
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The diagonal form of C, diag(C), consists of these eigenvalues and the square
root of diag(C) is obtained by taking the positive square roots of these
eigenvalues

; )
ogP diag(C") =47 3y (E3.11.4)
u

(@]
o
o
c/

diag(C) =

P R
CDCSZ»
Nl w
L

IN|

The U matrix is then obtained by transforming diag(C) back to the x-y coordinate
system

L 61 Ly 00y gl -1y

& 1
Te1 1 3R 16

— : 12 T _
U=Yxdiag(C  )x/ = B of

(E3.11.5)

1
2

The rotation matrix is obtained by Eq. (3.7.6):

65 -1W,e2 -1y &0 -1

R=FU'=4 = -
1 s{&1 24 & of

(E3.11.6)

3.72 Objective Rates in Constitutive Equations. To explain why
objective rates are needed for the Cauchy stress tensor, we consider the rod shown
in Fig. 3.10. Suppose the ssimplest example of arate constitutive equation is used,
known as a hypoelastic law, where the stress rate is linearly related to the rate-of -
deformation:

ﬁ :C"kIDkI or
Dt

Ds _
Dt

y X,y

C:D (3.7.8)

N\
\J

63

3-63



T. Belytschko, Continuum Mechanics, December 16, 1998

Fig. 3.10. Rotation of abar under initial stress showing the change of Cauchy stress which occurs
without any deformation.

The question posed here is: are the above valid constitutive equations?

The answer is negative, and can be explained as follows. Consider a solid,
such as the bar in Fig. 3.10, which is stressed in its initial configuration with

S, =S. Now assume that the bar rotates as shown at constant length, so thereis

no deformation, i.e. D=0. Recall that in rigid body motion a state of initial stress
(or prestress) is frozen in the body in a solid, i.e. since the deformation does not
change in arigid body rotation, the stress as viewed by an observer riding with the
body should not change. Therefore the Cauchy stress expressed in a fixed
coordinate system will change during the rotation, so the material derivative of the
stress must be nonzero. However, in a pure rigid body rotation, the right hand
side of Eq. (3.7.8) will vanish throughout the motion, for we have aready shown
that the rate-of-deformation vanishes in rigid body motion. Therefore, something
must be missing in Eqg. (3.7.8).

The situation explained in the previous paragraph is not just hypothetical;
it is representative of what happens in real situations and simulations. A body
may be in a state of stress due to thermal stresses or prestressing; an example is
the stress in prestressed reinforcement bars. Large rotations of an element may
occur due to actual rigid body motions of the body, as in a space vehicle or a
moving car, or large local large rotations, as in a buckling beam. The rotation
need not be as large as 90 degrees for the same effect; we have chosen 90 degrees
to simplify the numbers.

The missing factor in Eq. (3.7.8) isthat it does not account for the rotation
of the material. The material rotation can be accounted for correctly be using an
objective rate of the stress tensor; it is also called aframe-invariant rate. We will
consider three objective rates, the Jaumann rate, the Truesdell rate and the Green-
Nagdi rate. All of these are used in current finite element software. There are
many other objective rates, some of which will be discussed in Chapter 9.

3.7.3 Jaumann rate. The Jaumann rate of the Cauchy stressis given by

kg Ds T N Ds;;
= E- W XS - S AWV or SiE\U :TI:J- \N|k5kj - SikV\‘;jr (379)

n NII

where W is the spin tensor given by Eq. (3.3.11). The superscript here
designates an objective rate; the Jaumann rate is designated by the subsequent
superscript “J”. One appropriate hypoel astic constitutive equation is given by

S N = CJ :D or Si’;IJ :Ci\j]kl Dk| (3710)
The materia rate for the Cauchy stress tensor, i.e. the correct equation
corresponding to (3.7.8), isthen

D ~
Fst:SNJ+W>s+stT:CJ;D+W>s+s AT (3.7.11)
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where the first equality is just a rearrangement of Eq. (3.7.9) and the second
equality follows from (3.7.10). We see in the above that the objective rate is a
function of material response. The material derivative of the Cauchy stress then
depends on two parts. the rate of change due to materia response, which is
reflected in the objective rate, and the change of stress due to rotation, which
corresponds to the last two termsin Eq. (3.7.11).

Truesdell Rate. The Truesdell rate and Green-Naghdi rates are given in Box
3.5. The Green-Naghdi rate differs from the Jaunmann rate only in using a
different measure of the rotation of the material. In the Green-Nagdi rate, the
angular velocity defined in EqQ. (3.2.23b) is used.

Box 3.5 Objective Rates

Jaumann rate
N Ds N Ds
’\U:E-WKS-SANT SiE\U— Dt Wkskj ikV\G—
Truesdell rate (3.2.23)
NT :§+div(v)s ~Los- s’
Ds:: . v
Nt PSij v v
S” = L4 kSij- lSkj-Sik—J
Dt X Xk M
Green-Naghdi rate (3.2.24)
G Ds R _ DS
S —E- Wss - s M/ Sij —F IkSkj |k\/\{-qr
., _v_ M
W—R>R y L—_X—D+W LI] —1_[_)(I—D”‘|'V\‘J

]

The relationship between the Truesdell rate and the Jaumann rate can be examined
by replacing the velocity gradient in Eq. (3.7.23) by its symmetric and
antisymmetric parts, i.e. Eq. (3.3.9):

sNT = DF? +div(v)s - (D+W)>s - s XD+W)" (3.7.12)

A comparison of Egs. (3.7.9) and (3.7.12) then shows that the Truesdell rate
includes the same spin-related terms as the Jaumann rate, but also includes
additional terms which depend on the rate of deformation. To examine the
relationship further, we consider a rigid body rotation for the Truesdell rate and
find that

@ D
T :Ff-wxs s (3.7.13)

when D=0,
Comparison of the above with Eg. (3.7.9) shows that the Truesdell rate is
equivalent to the Jaumann rate in the absence of deformation, i.e. in arigid body
rotation. However, when the Jaumann rate is used in a constitutive equation, it
will give a different material rate of stress unless the constitutive equation is
changed appropriately. Thusif we write the constitutive equation in the form
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s\ =c":D (3.7.14)

then the material response tensor C" will differ from the material response tensor
associated with the Jaumann rate form of the material law in Eq. (3.7.11). For this
reason, whenever the material response matrix can refer to different rates, we will
often add the superscripts to specify which objective rate is used by the material
law. The hypoelastic relations (3.7.11) and (3.7.14) represent the same material

response if the material response tensors C' and C’ arerelated asfollows:

s" =c’:p=(c" +c*):D (3.7.15)
where from (3.7.12)

C® :D=(divv)s- D>s- sXD' =(trD)s- D> - sxD" (3.7.16)
The componentsof C° are given by

Ciw =S jdi - dies i - Sadij (3.7.17)

With these relations, the hypoel astic relations can be modified for a Truesdell rate
to match the behavior of a constitutive egaution expressed in terms of the
Jaumann rate. The correspondence to the Green-Naghdi rate depends on the
difference between the angular velocity and the spin and is more difficult to adjust
for.

Example 3.12 Consider a body rotating in the x-y plane about the origin with
an angular velocity w ; the original configuration is prestressed as shown in Fig.
3.11. The motion is rigid body rotation and the related tensors are given in
Example 3.2. Evaluate the material time derivative of the Cauchy stress using the
Jaumann rate and integrate it to obtain the Cauchy stress as a function of time.

y y

original current
configuration gyfiguration
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Figure 3.11. Rotation of a prestressed element with no deformation.

From Example 3.2, Eq. (E3.2.8) we note that
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Fer= Y Fonf® T prft 9 (E31212)
& ci &c -l &s cff o

where s=sinwt, c =cos wt. The spin is evaluated in terms of the velocity gradient
L , whichisgiven for this case by Eq. (3.3.18) and then using (E3.12.14a) :

L=portowg S ORGS0 -l
- ~"8Bc -stEs & o

Wzl(L-LT)zwéo " (E3.12.1b)
2 & oH o

The material time derivative based on the Jaumann rate is then given by
specializing (3.7.9) to the case when there is no deformation:

% =Wss +s AW T (E3.12.1.0)

(D=0, since there is no deformation; this is easily verified by noting that the
symmetric part of L vanishes). We now change the material time derivative to an
ordinary derivative since the stress is constant in space and write out the matrices
in (E3.12.1¢):

ds _ @ -LigSy Syl 65y Syl 60 1¢

A

— =w : +a A ’ E3.12.2
dt &l O%W SyH &xy Syglvg'l oH ( )

é-25 S-Syl
& _ywe TN X Y (E3.12.3)
dt gx' Sy sty u

It can be seen that the the material time derivative of the Cauchy stress is
symmetric. We now write out the three scalar ordinary differential equations in

three unknowns, s ,,s y,ands ,, corresponding to (E3.12.3) (the fourth scalar
equation of the above tensor equation is omitted because of symmetry):

ds
=-2ws E3.12.4a)

m Yy ( )
oy 2w E3.12.4b
— S . .

m Xy ( )
ds
—2=wls,-sy) (E3.12.4)

Theinitial conditions are
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s,(0)=sy, s,(0=0, s,/(0)=0 (E3.12.5)

It can be shown that the solution to the above differential equationsis

&? sl
s=sye 0 (E3.12.6)
ecs su

We only verify the solution for s ,(t):

ds, __o d(coszwt)

0 .
=s =s ,w(- 2coswtsinwt) =- 2ws
dt X dt X ( )

Xy (E3.12.7)

where the last step follows from the solution for s Xy(t) asgivenin Eq. (E3.12.7);
comparing with (E3.14.4a) we see that the differential equation is satisfied.

Examining Eq. (E3.12.6) we can see that the solution corresponds to a

constant state of the corotational stress s , 1.e. if we let the corotational stress be
given by

£ 0 N
"_%x Ol}J
S=¢ U
e0 00

then the Cauchy stress components in the global coordinate system are given by

(e3.12.6) by s =R 6 R according to Box 3.2 with (E3.12.1a) gives the result
(E3.12.6).

We |leave as an exercise to show that when all of the initia stresses are nonzero,
then the solution to Egs. (E3.12.4) is

=& Sy syke st (E3.128)
= Co ok 12
& clhsy syLCJE—s ct

Thus in rigid body rotation, the Jaumann rate changes the Cauchy stress so that
the corotational stressis constant. Therefore, the Jaumann rate is often called the
corotational rate of the Cauchy stress. Since the Truesdell and Green-Naghdi
rates are identical to the Jaumann rate in rigid body rotation, they also correspond
to the corotational Cauchy stressin rigid body rotation.

Example 3.13 Consider an element in shear as shown in Fig. 3.12. Find the

shear stress using the Jaumann, Truesdell and Green-Naghdi rates for a
hypoelastic, isotropic material.
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Figure 3.12.

The motion of the element is given by

X=Xty E3.13.1
The deformation gradient is given by Eqg. (3.2.16), so
g to - & Iy 46 -ty
F=x S F=x . F =4 - E3.13.2
¥ "o o o 1§ (3132

The velocity gradient is given by Eq. (E3.12.1), and the rate-of-deformation and
spin are its symmetric and skew symmetric parts so

_é0 1y 160 1y W_1é0 1y
“# o T 261 OH 281 OH

The hypoelastic, isotropic constitutive equation in terms of the Jaumann rate is
given by

L =FF 1 (E3.13.3)

s=(1 'traceD)l +2nfD+W>s +5 W (E3.13.4)

We have placed the superscripts on the material constants to distinguish the
material constants which are used with different objective rates. Writing out the
matrices in the above gives

Sy Syl L@ 1o
&, S,u0 & off

] o ) (E3.13.5)
160 1(es Sxyu+1esx S xyud -10
+_I\ A 7 _’\ A 7
281 oS, syl 26, s,i& of
S0
Sx=Sy, Sy=-Sy, éxy:m3+%(sy-sx) (E3.13.6)

The solution to the above differential equationsis
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Sx=-Sy= n (1- cost), S, =m'sint (E3.13.7)

xy
For the Truesdell rate, the constitutive equation is
s=1"trD+2m D+L> +s>L' - (trr D)s (E3.13.8)
Thisgives
&y SyU_ €0 1o
&, s,0 & of
€0 1065 S,yU €S, S, U0 Oy
+a 16 T+ é 18 X
© os,y s, &y Syt of
where we have used the results trace D =0, see Eq. (E3.13.3). The differential
equations for the stresses are

(E3.13.9)

S,=28,, S$,=0, s, =m+s, (E3.13.10)
and the solution is
s,=mt’, s,=0 sy=mt (E3.13.12)

To obtain the solution for the Cauchy stress by means of the Green-Nagdhi rate,
we need to find the rotation matrix R by the polar decomposition theorem. To

obtain the rotation, we diagonalize F'F

a t o - 2+t2+tJ4+12
ZQ 1+t2§ eigenvalues |, = (E3.13.12)

2
The closed form solution by hand is quite involved and we recommend a
computer solution. A closed form solution has been given by Dienes (1979):

F'F

Sx=-Sy= 4n?(cos 2blIncosb +bsin 2b - sin? b), (E3.13.13)

Sy =2nf cos 2b(2b - 2tan 2bincosh - tan b), tanb = % (E.13.14)

Theresults are shownin Fig. 3.13.
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71

Figure 3.13. Comparison of Objective Stress Rates

Explanation of Objective Rates. One underlying characteristic of
objective rates can be gleaned from the previous example: an objective rate of the
Cauchy stress instantaneously coincides with the rate of a stress field whose
material rate already accounts for rotation correctly. Therefore, if we take a stress
measure which rotates with the material, such as the corotational stress or the PK2
stress, and add the additional terms in its rate, then we can obtain an objective
stressrate. Thisis not the most general framework for developing objective rates.
A general framework is provided by using objectivity in the sense that the stress
rate should be invariant for observers who are rotating with respect to each other.
A derivation based on these principles may be found in Malvern (1969) and
Truesdell and Noll (?7?7??).
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To illustrate the first approach, we develop an objective rate from the
corotational Cauchy stress s . Its material rateis given by

s D(RTsR T
Ds _ ( ):DR sR+RT 2 R+RTs R (3.7.18)
Dt Dt Dt Dt

where the first equality follows from the stress transformation in Box 3.2 and the
second equality is based on the derivative of a product. If we now consider the
corotational coordinate system coincident with the reference coordinates but
rotating with aspin W then

R=1 DFF: =W =W (3.7.19)

Inserting the above into Eq. (3.7.18), it follows that at the instant that the
corotational coordinate system coincides with the global system, the rate of the
Cauchy stressin rigid body rotation is given by

DS _\wTe+ 28 4w (3.7.20)
Dt Dt

The RHS of this expression can be seen to be identical to the correction terms in
the expression for the Jaumann rate. For this reason, the Jaumann rate is often
called the corotational rate of the Cauchy stress.

The Truesdell rate is derived similarly by considering the time derivative
of the PK2 stress when the reference coordinates instantaneously coincide with
the spatial coordinates. However, to simplify the derivation, we reverse the
expressions and extract the rate corresponding to the Truesdell rate.

Readers familiar with fluid mechanics may wonder why frame-invariant
rates are rarely discussed in introductory courses in fluids, since the Cauchy stress
is widely used in fluid mechanics. The reason for this lies in the structure of
constitutive equations which are used in fluid mechanics and in introductory fluid
courses. For a Newtonian fluid, for example, s =2nD - pl, where m s the

viscosity and D isthe deviatoric part of the rate-of-deformation tensor. A major
difference between this constitutive equation for a Newtonian fluid and the
hypoelastic law (3.7.14) can be seen immediately: the hypoelastic law gives the
stress rate, whereas in the Newtonian consititutive equation gives the stress. The
stress transforms in a rigid body rotation exactly like the tensors on the RHS of
the equation, so this constitutive equation behaves properly in a rigid body
rotation. In other words, the Newtonian fluid is objective or frame-invariant.
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Exercise ??. Consider the same rigid body rotation as in Example ??>. Find the
Truesdell stress and the Green-Naghdi stress rates and compare to the Jaumann
stressrate.

Starting from Egs. (3.3.4) and (3.3.12), show that

20dx>D xdx = 2dxF T EF dx
and hencethat Eqg. (3.3.22) holds.

Using the transformation law for a second order tensor, show that R = R.

Using the statement of the conservation of momentum in the Lagrangian
description in theinitial configuration, show that it implies

Extend Example 3.3 by finding the conditions at which the Jacobian
becomes negative at the Gauss quadrature points for 2 2 quadrature when the

initial element is rectangular with dimension a” b. Repeat for one-point
guadrature, with the quadrature point at the center of the element.

Kinematic Jump Condition. The kinematic jump conditions are derived from the
restriction that displacement remains continuous across a moving singular surface.
The surface is called singular because ???. Consider a singular surface in one
dimension.

t
XS
X1
X
X
Figure 3.?

Its material description is given by

X =Xg(t)
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We consider a narrow band about the singular surface defined by
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