TUBE SPECIFICATIONS
TUBE TEST SPECIFICATIONS
TUBE TEST METHOD SPECIFICATIONS

Continuous Wave Magnetron

2M167B-M15C(SP6-D)

All the specification sheet except outline drawing in the tube specification must comply with these spec. No. 8062107 TS, 8062107 TTS, 8062107 TTMS for 2M167B-M15C(SP6-D).

We, the undersigned, approve these specifications as specified herein.

Firm Name

by Julian Fudim

Date 12/7/89

<table>
<thead>
<tr>
<th>Compiled</th>
<th>7:00</th>
<th>Approved</th>
<th>7:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>Date</td>
<td></td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>Sheet</td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Issued</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>10/12/89</td>
<td></td>
<td>Sym</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Revision</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>
Matsushita 2M167B is a forced air-cooling packaged type magnetron with high efficiency ceramic permanent magnets, designed especially for domestic microwave ovens.

The magnetron, which operates at a fixed frequency of 2455 MHz, delivers an r-f output power of 900 W into a matched load at an efficiency of approximately 73%.

Cooling direction is transverse. The construction meets I.E.C. safety standard (pub. 335-25) with sufficient clearance and creepage distance.
GENERAL DATA

Electrical
Filament: Thoriated tungsten coil, directly heated by a.c. (50 Hz or 60 Hz) or d.c.
Filament voltage .. 3.3 V
Filament current at Ef = 3.3 V and eb = 0 KV 10 A
Cold filament resistance 49 m ohm
Preheating time ... 0 sec. Min.
Filament potential Negative with respect to ground
Frequency ... 2455 MHz

Mechanical
Outside dimensions .. See Fig. 1
Electrode connection .. FASTON Tabs (Note 1)
Mounting position (Note 2) Any
R-F output (Note 3) ... Probe
R-F coupler (Note 4) .. See Fig. 2
Filter circuit (Note 5) Integrated in the tube
Net weight .. Approx. 0.9 Kgs.

Forced-air cooling
Cooling direction .. Transverse
Cooling performance See Fig. 3 and 4

Magnetic field
Magnets .. magnets, packaged
Influence of nearby ferromagnetic material Any piece of ferromagnetic material should be kept away from magnets installed in the magnetron.

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament voltage</td>
<td>2.8</td>
<td>3.75</td>
<td>V</td>
</tr>
<tr>
<td>preheating time</td>
<td>0</td>
<td>--</td>
<td>sec.</td>
</tr>
<tr>
<td>Peak anode voltage in operation</td>
<td>--</td>
<td>4.5</td>
<td>KV</td>
</tr>
<tr>
<td>Mean anode current</td>
<td>--</td>
<td>350</td>
<td>mA dc</td>
</tr>
<tr>
<td>Peak anode current</td>
<td>--</td>
<td>1.2</td>
<td>A</td>
</tr>
<tr>
<td>Mean anode input power</td>
<td>--</td>
<td>1.4</td>
<td>KW</td>
</tr>
<tr>
<td>Load V.S.W.R. (Note 6)</td>
<td>--</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Breakdown voltage at Ef = 0 V</td>
<td>--</td>
<td>10</td>
<td>KV peak</td>
</tr>
<tr>
<td>Anode temperature at the point indicated on the OUTLINE DRAWING (Note 7)</td>
<td>--</td>
<td>240</td>
<td>℃</td>
</tr>
<tr>
<td>Ambient temperature for storage</td>
<td>--</td>
<td>-30</td>
<td>+60 ℃</td>
</tr>
</tbody>
</table>

Issued: 12/19/88
TYPICAL CHARACTERISTICS:

Measured under matched load conditions (V.S.W.R. = 1.1 : 1) and unfiltered single phase full-wave rectification for anode supply.

Frequency .. 2455 MHz
Filament voltage (Note 8) 3.3 V
Preheating time 3 sec.
Peak anode voltage 4.1 kV
Mean anode current 300 mA dc
Mean output power into matched load 900 W
Efficiency ... 73 %
Oven output power (Note 9) 720 W
Quantity of forced-air cooling 1000 l/min.
Performance chart See Fig. 5
Rieke diagram See Fig. 6

Notes:

1. These tabs can be attached to FASTON receptacle No. 250 series.

2. The mounting plate is provided with four M5 bolts (ISO). When coupling, use is made of appropriate nuts.

3. The r-f output terminal can be coupled either to an oven cavity directly or to a rectangular waveguide.

4. It may be coupled to an R22 waveguide.

5. The filter circuit of the tube is housed in a shield box to suppress microwave radiation and to protect from high voltage.

6. The load condition in which instantaneous V.S.W.R. is 4 : 1 through 10 : 1 may be allowed only if the dwell time in that short.

7. In an abnormal operation, the maximum allowable temperature for anode is 280 °C, provided that the dwell time the maximum temperature does not exceed 2 hours per operation nor 25 hours in total.

8. Filament voltage is measured at the terminals marked "F" and "FA" on the outline drawing. For measurement a moving iron type voltmeter shall be used.

"BE CAREFUL!! IT IS HIGH VOLTAGE".

9. Measurement is made in a typical oven with 2 liter water load as specified in paragraph 7.2.4 of JIS C-9250 (microwave ovens).
SOME NOTES ON DESIGN AND OPERATING CONDITIONS

Power supply circuit for microwave oven.

In actual oven, magnetron should be operated on an L-C stabilized power supply. In home-use microwave ovens, generally, half-wave voltage doubler L-C stabilized power supply circuit is used because of its economical advantages (see Fig. 1). In this circuit, high inductance transformer is used; it is essential to design the inductance as low as possible for preventing the appearance of high transient voltage (surge voltage). Also filament transformer should be wound on the primary side of the H.T. transformer.

![Diagram of power supply circuit]

Fig. 1 Half-wave voltage doubler L-C stabilized power supply circuit.

Cold start operation

Preheating of filament for a few seconds is desirable for reliable operation. If the magnetron is operated under the cold start conditions (without preheating), a surge absorber shall be installed so as to protect the diode from a transient voltage (surge voltage) which is sometimes produced in the transformer. To minimize the possible transient voltage, the connection for the filament terminals F and FA to the transformer taps shall be set up in such a way that the mean anode current of the magnetron decreases and anode voltage increases.
Fig. 2 R.F. coupler Unit in inch (mm)

The flange mates with Japanese standard BRJ-2.
Fig. 3 ANODE DISSIPATION vs. ANODE TEMPERATURE

Air flow = 0.5 (m^3/min)

0.75 (m^3/min)

1.0 (m^3/min)

1.25 (m^3/min)

1.5 (m^3/min)

Anode temperature rise (°C)

Anode dissipation (W)
Fig. 4 AIR FLOW vs. STATIC PRESSURE DROP
Fig. 6 Rieke Diagram

Anode supply: Unfiltered single-phase full-wave rectification
Filament voltage: 2.3 V
Mean anode current: 300 mA
Reference plane: Antenna

P_0: Mean output power.
Δf: Deviation from nominal frequency.
d: Distance of voltage standing wave minimum from reference plane toward load.

Matched load condition
Peak anode voltage: 4.1 kV
Mean output power: 900 W
Frequency: 2.455 MHz

Reference Plane
Dimensions of filter case for R.S.

Clearance = 15.5 minimum

Creepage = 17.5 minimum

Unit in mm (inch)

15.5 MIN (0.61)
15.5 MIN (0.61)
16 MIN (0.63)
16 MIN (0.63)
37.1 (1.46)

Capacitor

Magnet

Stem

Yoke
TUBE TEST SPECIFICATION

Continuous Wave Magnetron

2 M 1 6 7 B
2M167B Test Specifications

<table>
<thead>
<tr>
<th>Item (Note 1)</th>
<th>Symbol</th>
<th>Test Conditions (Remark 1)</th>
<th>Limit</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ef</td>
<td>tk</td>
<td>Ib</td>
</tr>
<tr>
<td>*Filament current</td>
<td>If</td>
<td>3.3</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>Peak anode voltage (Note 5)</td>
<td>em</td>
<td>3.3</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>Mean output power (Note 5)</td>
<td>Pol</td>
<td>3.3</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>Frequency</td>
<td>f</td>
<td>3.3</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>*Stability-moding</td>
<td>ST</td>
<td>3.3</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>*Pulling figure</td>
<td>fpl</td>
<td>3.3</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>Emission stability</td>
<td>Ef m</td>
<td>adj</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>Breakdown voltage</td>
<td>BVaf</td>
<td>0</td>
<td>E=7.1</td>
<td>KV</td>
</tr>
<tr>
<td>Cold start voltage transient</td>
<td>Vs</td>
<td>(Note 2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>*Spurious radiation</td>
<td></td>
<td>(Note 3)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>*Microwave radiation (Note 4)</td>
<td></td>
<td>3.3</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>*Outline dimensions</td>
<td>Remark 2</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Remark 1. Test Conditions

a) Anode supply: Unfiltered single-phase full-wave rectification.

b) The specified RF coupler (see Fig. 2) or an equivalent is used.

c) Forced air cooling (air flow: about 1000 l/min.)

Remark 2.

All the outline dimensions shall comply with the outline drawing.
Note 1. Classification of Factory Tests

The test items are classified into following three levels.

a) Production test: (non marked items)
 This test is intended to check if the production process is carried out in accordance with the specified process. The test shall be conducted on such items in which possibility of some deviation is predicted by a process change.

b) Design test: (asterisked items)
 This test is intended to check if the tube is manufactured in accordance with the standard design. The test shall be conducted on such item as in not influenced if the standard design is properly maintained by ordinary production process.

c) Type approval test
 This test is intended for determining if the standard design complies with the given specifications. The test may be omitted if there is no substantial change in the design.

Note 2. Cold Start Voltage Transient (Surge voltage)

Surge voltage specified herein is defined by the transient voltage which takes place during the period 0.5 through 2.0 seconds after the oven is switched on. This test is carried out on the customer's oven without surge absorber.

(OVEN MODEL: ________)

Note 3. Spurious Radiation

This test is carried out on the customer's oven, MODEL:

The magnetron to be delivered to the customer shall be such that the oven meets the Federal Communication Commission's requirements, stated in Part 18 of the Rules of Regulations.

Note 4. Microwave Radiation

In the frequency range of 2450 ± 50 MHz, the power density of microwave radiation shall not exceed 1.0 mW/cm² at a distance of 5 cm from the tube in any direction.

Note 5. The eRM should be measured at 25°C and within 30 seconds after supply of the filament and anode voltage. See the conversion Table 5-1.
Conversion Table S-1

Correction Factor of Peak Anode Voltage (ebm) and Mean output Power (Po) Versus Ambient Temperature.

\[
\text{ebm (or Po) measured at Ta °C} \times \frac{\text{Correction factor at Ta °C}}{} = \text{ebm (or Po) at 25 °C}
\]
TUBE TEST METHOD SPECIFICATION

Continuous Wave Magnetron

2 M 1 6 7 B
T-1. Filament Current (If)

Preheat the filament for the stated time (tk) before measuring the filament current and then read the value with a moving type ammeter.

T-2. Peak Anode Voltage (ebm)

After the stated preheating time of the filament (tk), the anode voltage is applied and adjusted so that it provides the stated anode current. If the measuring time (t) is specified, following conditions must be satisfied:

The measurement shall be carried out after the magnets reached to the ambient temperature (Ta). And the peak anode voltage shall be measured within the output time of the tube. When the ambient temperature range is stated, the tube shall be measured within the stated range and shall be judged by the specifications. When the ambient temperature is stated at 25°C by using the conversion table and shall be judged by specifications at 25°C. The readings of the meters are allowed to be provided that the room temperature is also recorded at the same time.

T-3. Mean output power (Po1)

The tube is operated under the stated conditions. Measure the mean output power with direct measuring method, indirect measuring method or identical measuring equipment, by connecting the tube (including the RF coupler) to the load which satisfies the stated conditions. The Po1 reading shall be carried out simultaneously with the reading of peak anode voltage in T-2.

T-4. Frequency (f)

The tube is operated under the stated conditions. After the frequency is stabilized, measurement is made by a frequency meter which is calibrated at the accuracy of 0.5 percent or better.

T-5. Stability ---- Moding

The tube is operated under the stated conditions. With the V.S.W.R. maintained at the stated level, the phase angle of load standing wave is adjusted to give maximum output power of the tube. The moding is evidenced by observing the marked change in anode current, oscillating frequency or output power.

T-6. Pulling Figure (fpl)

The tube is operated under the stated conditions. The pulling figure is measured as the difference between the maximum and minimum frequencies when varying the phase of the load standing wave, thoroughly keeping the V.S.W.R. constant. If it is difficult to keep the V.S.W.R. constant, adjust the minimum V.S.W.R. through all phase angles above the stated value.

Issued 12/19/88
Revision
Date
T-7. Emission Stability (Efm)

The tube is operated under the stated conditions. Decrease the filament voltage, then measure the filament voltage at which the moding starts (Efm). This procedure to decrease the filament voltage shall be made within 5 seconds.

T-8. Breakdown Voltage (BVaf)

The tube is placed in an ordinary air atmosphere when the relative humidity is held at 85 percent or below. With the stated voltage between the anode and filament, the insulation or breakdown voltage between electrodes are measured. When applying this voltage, increase the voltage gradually from zero to the stated value. The tube is acceptable when the indication of breakdown takes place up to three times of above procedure.

T-9. Cold Start Voltage Transient (Surge voltage)

The tube is operated in actual oven without surge absorber. Anode and filament voltage should be supplied simultaneously. Surge voltage is measured on storage oscilloscope during the period 0.5 to 2 seconds after the oven is switched on.

Measuring equipment

| oven used | Customer's typical oven |
| voltage divider | Resistance type potential divider (2000 MΩ, 1/1000) or an equivalent device |

T-10. Spurious radiation

In accordance with the FCC standard.

T-11. Microwave Radiation

The tube is operated under the stated conditions. The power density of radiation is measured with Electromagnetic leakage monitor (Narda Model 8100). Measurements shall be made at a distance of 5 cm from the tube in any direction.