
Practical Cryptography

Niels Ferguson

Bruce Schneier

Wiley Publishing, Inc.

Executive Publisher: Robert Ipsen
Executive Editor: Carol A. Long
Editorial Manager: Kathryn A. Malm
Managing Editor: Fred Bernardi

This book is printed on acid-free paper.

Copyright c© 2003 by Niels Ferguson and Bruce Schneier. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United
States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256,
(317) 572-3447, fax (317) 572-4447, E-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their
best efforts in preparing this book, they make no representations or warranties with
respect to the accuracy or completeness of the contents of this book and specifically
disclaim any implied warranties of merchantability or fitness for a particular purpose. No
warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable for your situation. You
should consult with a professional where appropriate. Neither the publisher nor author
shall be liable for any loss of profit or any other commercial damages, including but not
limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or
registered trademarks of Wiley Publishing, Inc., in the United States and other countries,
and may not be used without written permission. All other trademarks are the property
of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

ISBN: 0-471-22894-X (C)
ISBN: 0-471-22357-3 (P)

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Chapter 11

Primes

The following two chapters explain public-key cryptographic systems; un-
fortunately, this requires quite a bit of mathematics. It is always tempting
to dispense with the understanding and only present the formulas and equa-
tions, but we feel very strongly that this is a dangerous thing to do. To
use a tool, you must understand the properties of that tool. This is easy
with something like a hash function. We have an “ideal” model of a hash
function, and we require that the actual hash function behave like the ideal
model. This is not so easy to do with public-key systems because there
are no “ideal” models to work with. In practice, you have to deal with the
mathematical properties of the public-key systems, and to do that safely
you must understand these properties. There is no shortcut here; you must
understand the mathematics. It’s not that difficult; the only background
knowledge required is high school math. More specifically: the type of math
the authors were taught in high school.

This chapter is about prime numbers. Prime numbers play an important role
in mathematics, but we are interested in them because the most important
public-key crypto systems are based on prime numbers.

185

186 11. Primes

11.1 Divisibility and Primes

A number a is a divisor of b (notation a | b, pronounced “a divides b”) if you
can divide b by a without leaving a remainder. For example, 7 is a divisor of
35 so we write 7 |35. We call a number a prime number if it has exactly two
divisors, namely 1 and itself. For example, 13 is a prime; the two divisors
are 1 and 13. The first few primes are easy to find: 2, 3, 5, 7, 11, 13,
Any integer greater than 1 that is not prime is called a composite. The
number 1 is neither prime nor composite.

We will use the proper mathematical notation and terminology in the chap-
ters ahead. This will make it much easier to read other texts on this subject.
The notation might look difficult and complicated at first, but this part of
mathematics is really easy.

Here is a simple lemma about divisibility:

Lemma 1. If a | b and b | c then a | c.

Proof. If a | b, then there is an integer s such that as = b. (After all, b is
divisible by a so it must be a multiple of a.) And if b | c then there is an
integer t such that bt = c. But this implies that c = bt = (as)t = a(st) and
therefore a is a divisor of c. (To follow this argument, just verify that each
of the equal signs is correct. The conclusion is that the first item c must be
equal to the last item a(st).)

The lemma is a statement of fact. The proof argues why the lemma is true.
The little square box signals the end of the proof. Mathematicians love to
use lots of symbols.1 This is a very simple lemma, and the proof should be
easy to follow, as long as you remember what the notation a | b means.

Prime numbers have been studied by mathematicians throughout the ages.
Even today, if you want to generate all primes below one million, you should
use an algorithm developed just over 2000 years ago by Eratosthenes, a friend
of Archimedes. (Eratosthenes was also the first person to accurately measure
the diameter of the earth. A mere 1700 years later Columbus allegedly used

1Using symbols has advantages and disadvantages. We’ll use whatever we think is most
appropriate for this book.

11.1. Divisibility and Primes 187

a much smaller—and wrong—estimate for the size of the earth when he
planned to sail to India by going due west.) Euclid, another great Greek
mathematician, gave a beautiful proof that showed there are an infinite
number of primes. This is such a beautiful proof that we’ll include it here.
Reading through it will help you reacquaint yourself with the math.

Before we start with the real proof we will give a simple lemma.

Lemma 2. Let n be a positive number greater than 1. Let d be the smallest
divisor of n that is greater than 1. Then d is prime.

Proof. First of all, we have to check that d is well defined. (If there is a
number n which has no smallest divisor, then d is not properly defined and
the lemma is nonsensical.) We know that n is a divisor of n, and n > 1,
so there is at least one divisor of n that is greater than 1. Therefore, there
must also be a smallest divisor greater than 1.

To prove that d is prime we use a standard mathematician’s trick called
reductio ad absurdum or proof by contradiction. To prove a statement X we
first assume that X is not true, and show that this assumption leads to a
contradiction. If assuming that X is not true leads to a contradiction, then
obviously X must be true.

In our case we will assume that d is not a prime. If d is not a prime, it has
a divisor e such that 1 < e < d. But we know from Lemma 1 that if e | d
and d | n then e | n, so e is a divisor of n and is smaller than d. But this is
a contradiction, because d was defined as the smallest divisor of n. Because
a contradiction cannot be true, our assumption must be false, and therefore
d must be prime.

Don’t worry if you find this type of proof a bit confusing; it takes some
getting used to.

We can now prove that there are an infinite number of primes.

Theorem 3 (Euclid). There are an infinite number of primes.

Proof. We again assume the opposite of what we try to prove. Here we
assume that the number of primes is finite, and therefore that the list of
primes is finite. Let’s call them p1, p2, p3, . . . , pk, where k is the number of

188 11. Primes

primes. We define the number n := p1p2p3 · · · pk + 1, which is the product
of all our primes plus one.

Consider the smallest divisor greater than 1 of n; we’ll call it d again. Now
d is prime (by Lemma 2) and d | n. But none of the primes in our finite list
of primes is a divisor of n. After all, they are all divisors of n− 1, so if you
divide n by one of the pi’s in the list you are always left with a remainder of
1. So d is a prime and it is not in the list. But this is a contradiction, as the
list is defined to contain all the primes. Thus, assuming that the number
of primes is finite leads to a contradiction. We are left to conclude that the
number of primes is infinite.

This is basically the proof that Euclid gave over 2000 years ago.

There are many more results on the distribution of primes, but interestingly
enough there is no easy formula for the number of primes in a specific in-
terval. Primes seem to occur fairly randomly. There are even very simple
conjectures which have never been proven. For example, the Goldbach con-
jecture is that every even number greater than 2 is the sum of two primes.
This is easy to verify with a computer for relatively small even numbers, but
mathematicians still don’t know whether it is true for all even numbers.

The fundamental theorem of arithmetic is also useful to know: any integer
greater than 1 can be written in exactly one way as the product of primes
(if you disregard the order in which you write the primes). For example,
15 = 3 ·5; 255 = 3 ·5 ·17; and 60 = 2 ·2 ·3 ·5. We won’t try to prove this here.
Check any textbook on number theory if you want to know the details.

11.2 Generating Small Primes

Sometimes it is useful to have a list of small primes, so here is the Sieve
of Eratosthenes, which is still the best algorithm to generate small primes
with.

function SmallPrimeList
input: n Limit on primes to generate. Must satisfy 2 ≤ n ≤ 220.
output: P List of all primes ≤ n.

Limit the size of n. If n is too large we run out of memory.

11.2. Generating Small Primes 189

assert 2 ≤ n ≤ 220

Initialize a list of flags all set to one.
(b2, b3, . . . , bn) ← (1, 1, . . . , 1)
i ← 2
while i2 ≤ n do

We have found a prime i. Mark all multiples of i composite.
for j ∈ 2i, 3i, 4i, . . . , bn/ici do

bj ← 0
od
Look for the next prime in our list. It can be shown that this loop

never results in the condition i > n, which would access a
nonexistent bi.

repeat
i ← i + 1

until bi = 1
od
All our primes are now marked with a one. Collect them in a list.
P ← []
for k ∈ 2, 3, 4, . . . , n do

if bk = 1 then
P ← P ‖ k

fi
od
return P

The algorithm is based on a simple idea. Any composite number c is divisible
by a prime that is smaller than c. We keep a list of flags, one for each of the
numbers up to n. Each flag indicates whether the corresponding number
could be prime. Initially all numbers are marked as potential primes by
setting the flag to 1. We start with i being the first prime 2. Of course,
none of the multiples of i can be prime so we mark 2i, 3i, 4i, etc. as being
composite by setting their flag to 0. We then increment i until we have
another candidate prime. Now this candidate is not divisible by any smaller
prime, or it would have been marked as a composite already. So the new
i must be the next prime. We keep marking the composite numbers and
finding the next prime until i2 > n.

190 11. Primes

It is clear that no prime will ever be marked as a composite, since we only
mark a number as a composite when we know a factor of it. (The loop that
marks them as composite loops over 2i, 3i, Each of these terms has a
factor i and therefore cannot be prime.)

Why can we stop when i2 > n? Well, suppose a number k is composite,
and let p be its smallest divisor greater than 1. We already know that p
is prime (see Lemma 2). Let q := k/p. We now have p ≤ q; otherwise, q
would be a divisor of k smaller than p, which contradicts the definition of p.
The crucial observation is that p ≤

√
k, because if p were larger than

√
k we

would have k = p · q >
√

k · q ≥
√

k · p >
√

k ·
√

k = k. This last inequality
would show that k > k which is an obvious fallacy. So p ≤

√
k.

We have shown that any composite k is divisible by a prime ≤
√

k. So any
composite ≤ n is divisible by a prime ≤ √

n. When i2 > n then i >
√

n.
But we have already marked the multiples of all the primes less than i as
composite in the list, so every composite < n has already been marked as
such. The numbers in the list that are still marked as primes are really
prime.

The final part of the algorithm simply collects them in a list to be returned.

There are several optimizations you can make to this algorithm, but we have
left them out to make things simpler. Properly implemented, this algorithm
is very fast.

You might wonder why we need the small primes. It turns out that small
primes are useful to generate large primes with, something we will get to
soon.

11.3 Computations Modulo a Prime

The main reason why primes are so useful in cryptography is that you can
compute modulo a prime.

Let p be a prime. When we compute modulo a prime we only use the
numbers 0, 1, . . . , p− 1. The basic rule for computations modulo a prime is
to do the computations using the numbers as integers, just as you normally
would, but every time you get a result r you take it modulo p. Taking a

11.3. Computations Modulo a Prime 191

modulo is easy: just divide the result r by p, throw away the quotient, and
keep the remainder as the answer. For example, if you take 25 modulo 7 you
divide 25 by 7, which gives us a quotient of 3 with a remainder of 4. The
remainder is the answer, so (25 mod 7) = 4. The notation (a mod b) is used
to denote an explicit modulo operation, but as modulo computations are
used very often, and mathematicians are rather lazy, there are several other
notations in general use as well. Often the entire equation will be written
without any modulo operations, and then (mod p) will be added at the end
of the equation to remind you that the whole thing is to be taken modulo p.
When the situation is clear from the context even this is left out, and you
have to remember the modulo yourself.

You don’t need to write parentheses around a modulo computation. We
could just as well have written a mod b, but as the modulo operator looks
very much like normal text this can be a bit confusing for people who are
not used to it. To avoid confusion we tend to put (a mod b) in parentheses.

One word of warning: Any integer taken modulo p is always in the range
0, . . . , p − 1, even if the original integer is negative. Some programming
languages have the (for mathematicians very irritating) property that they
allow negative results from a modulo operation. If you want to take −1
modulo p, then the answer is p− 1. More generally: to compute (a mod p),
find integers q and r such that a = qp + r and 0 ≤ r < p. The value of
(a mod p) is defined to be r. If you fill in a = −1 then you find that q = −1
and r = p− 1.

11.3.1 Addition and Subtraction

Addition modulo p is easy. Just add the two numbers, and subtract p if
the result is greater than or equal to p. As both inputs are in the range
0, . . . , p−1, the sum cannot exceed 2p−1, so you have to subtract p at most
once to get the result back in the proper range.

Subtraction is similar to addition. Subtract the numbers, and add p if the
result is negative.

These rules only work when the two inputs are both modulo p numbers
already. If they are outside the range, you have to do a full reduction
modulo p.

192 11. Primes

It takes a while to get used to modulo computations. You get equations like
5 + 3 = 1 (mod 7). This looks odd at first. You know that 5 plus 3 is not
1. But while 5 + 3 = 8 is true in the integer numbers, working modulo 7 we
have 8 mod 7 = 1, so 5 + 3 = 1 (mod 7).

We use modulo arithmetic in real life quite often without realizing it. When
computing the time of day, we take the hours modulo 12 (or modulo 24). A
bus schedule might state that the bus leaves at 55 minutes past the hour and
takes 15 minutes. To find out when the bus arrives, we compute 55+15 = 10
(mod 60), and determine it arrives at 10 minutes past the hour. For now
we will restrict ourselves to computing modulo a prime, but you can do
computations modulo any number you like.

11.3.2 Multiplication

Multiplication is, as always, more work than addition. To compute (ab mod
p) you first compute ab as an integer, and then take the result modulo p.
Now ab can be as large as (p− 1)2 = p2− 2p + 1. Here you have to perform
a long division to find (q, r) such that ab = qp + r and 0 ≤ r < p. Throw
away the q; the r is the answer.

Let’s give you an example: Let p = 5. When we compute 3 · 4 (mod p) the
result is 2. After all, 3 · 4 = 12, and (12 mod 5) = 2. So we get 3 · 4 = 2
(mod p).

11.3.3 Groups and Finite Fields

Mathematicians call the set of numbers modulo a prime p a finite field, and
often refer to it as the “mod p” field, or simply “mod p.” Here are some
useful reminders about computations in a mod p field:

• You can always add or subtract any multiple of p from your numbers
without changing the result.

• All results are always in the range 0, 1, . . . , p− 1.

11.3. Computations Modulo a Prime 193

• You can think of it as doing your entire computation in the integers and
only taking the modulo at the very last moment. So all the algebraic
rules you learned about the integers (such as a(b + c) = ab + ac) still
apply.

The finite field of the integers modulo p is referred to using different notations
in different books. We will use the notation Zp to refer to the finite field
modulo p. In other texts you might see GF(p) or even Z/pZ.

We also have to introduce the concept of a group—another mathematical
term, but a simple one. A group is simply a set of numbers together with
an operation, such as addition or multiplication.2 The numbers in Zp form
a group together with addition. You can add any two numbers and get a
third number in the group. If you want to use multiplication in a group you
cannot use the 0. (This has to do with the fact that multiplying by 0 is not
very interesting, and that you cannot divide by 0.) However, the numbers
1, . . . , p−1 together with multiplication modulo p form a group. This group
is called the multiplicative group modulo p, and is written in various ways; we
will use the notation Z∗p. A finite field consists of two groups: the addition
group and the multiplication group. In the case of Zp the finite field consists
of the addition group, defined by addition modulo p, and the multiplication
group Z∗p.

A group can contain a subgroup. A subgroup consists of some of the elements
of the full group. If you apply the group operation to two elements of the
subgroup, you again get an element of the subgroup. That sounds compli-
cated, so here is an example. The numbers modulo 8 together with addition
(modulo 8) form a group. The numbers { 0, 2, 4, 6 } form a subgroup. You
can add any two of these numbers modulo 8 and get another element of
the subgroup. The same goes for multiplicative groups. The multiplicative
subgroup modulo 7 consists of the numbers 1, . . . , 6, and the operation is
multiplication modulo 7. The set { 1, 6 } forms a subgroup, as does the set
{ 1, 2, 4 }. You can check that if you multiply any two elements from the
same subgroup modulo 7, you get another element from that subgroup.

We use subgroups to speed up certain cryptographic operations. They can
also be used to attack systems, which is why you need to know about them.

2There are a couple of further requirements, but they are all met by the groups we will
be talking about.

194 11. Primes

So far we’ve only talked about addition, subtraction, and multiplication
modulo a prime. To fully define a multiplicative group you also need the
inverse operation of multiplication: division. It turns out that you can
define division on the numbers modulo p. The simple definition is that a/b
(mod p) is a number c such that c · b = a (mod p). You cannot divide by
zero, but it turns out that the division a/b (mod p) is always well defined
as long as b 6= 0.

So how do you compute the quotient of two numbers modulo p? This is
more complicated and it will take a few pages to explain. We first have to
go back more than 2000 years to Euclid again, and to his algorithm for the
GCD.

11.3.4 The GCD Algorithm

Another high-school math refresher course: The greatest common divisor
(or GCD) of two numbers a and b is the largest k such that k | a and k | b.
In other words, gcd(a, b) is the largest number that divides both a and b.

Euclid gave an algorithm for computing the GCD of two numbers which is
still in use today, thousands of years later. For a detailed discussion of this
algorithm see Knuth [55].

function GCD
input: a Positive integer.

b Positive integer.
output: k The greatest common divisor of a and b.

assert a ≥ 0 ∧ b ≥ 0
while a 6= 0 do

(a, b) ← (b mod a, a)
od
return b

Why would this work? The first observation is that the assignment does not
change the set of common divisors of a and b. After all, (b mod a) is just
b− sa for some integer s. Any number k that divides both a and b will also
divide both a and (b mod a). (The converse is also true.) And when a = 0,
then b is a common divisor of a and b, and b is obviously the largest such

11.3. Computations Modulo a Prime 195

common divisor. You can check for yourself that the loop must terminate
because a and b keep getting smaller and smaller until they reach zero.

Let’s compute the GCD of 21 and 30 as an example. We start with (a, b) =
(21, 30). In the first iteration we compute (30 mod 21) = 9, so we get
(a, b) = (9, 21). In the next iteration we compute (21 mod 9) = 3, so we
get (a, b) = (3, 9). In the final iteration we compute (9 mod 3) = 0 and get
(a, b) = (0, 3). The algorithm will return 3, which is indeed the greatest
common divisor of 21 and 30.

The GCD has a cousin: the LCM or least common multiple. The LCM of a
and b is the smallest number that is both a multiple of a and a multiple of
b. For example, lcm(6, 8) = 24. The GCD and LCM are tightly related by
the equation

lcm(a, b) =
ab

gcd(a, b)

which we won’t prove here but just state as a fact.

11.3.5 The Extended Euclidean Algorithm

This still does not help us to compute division modulo p. For that we
need what is called the extended Euclidean algorithm. The idea is that
while computing gcd(a, b) we can also find two integers u and v such that
gcd(a, b) = ua + vb. This will allow us to compute a/b (mod p).

function extendedGCD
input: a Positive integer argument.

b Positive integer argument.
output: k The greatest common divisor of a and b.

(u, v) Integers such that ua + vb = k.
assert a ≥ 0 ∧ b ≥ 0
(c, d) ← (a, b)
(uc, vc, ud, vd) ← (1, 0, 0, 1)
while c 6= 0 do

Invariant: uca + vcb = c ∧ uda + vdb = d
q ← bd/cc
(c, d) ← (d− qc, c)

196 11. Primes

(uc, vc, ud, vd) ← (ud − quc, vd − qvc, uc, vc)
od
return d, (ud, vd)

This algorithm is very much like the GCD algorithm. We introduce new
variables c and d instead of using a and b because we need to refer to the
original a and b in our invariant. If you only look at c and d, this is exactly
the GCD algorithm. (We’ve rewritten the d mod c formula slightly, but this
gives the same result.) We have added four variables that maintain the given
invariant; for each value of c or d that we generate, we keep track of how to
express that value as a linear combination of a and b. For the initialization
this is easy, as c is initialized to a and d to b. When we modify c and d in
the loop it is not terribly difficult to update the u and v variables.

Why bother with the extended Euclidean algorithm? Well, suppose we want
to compute 1/b mod p where 1 ≤ b < p. We use the extended Euclidean
algorithm to compute extendedGCD(b, p). Now, we know that the GCD
of b and p is 1, because p is prime and it therefore has no other suitable
divisors. But the extendedGCD function also provides two numbers u
and v such that ub + vp = gcd(b, p) = 1. In other words, ub = 1 − vp
or ub = 1 (mod p). This is the same as saying that u = 1/b (mod p), the
inverse of b modulo p. The division a/b can now be computed by multiplying
a by u, so we get a/b = au (mod p), and this last formula is something that
we know how to compute.

The extended Euclidean algorithm allows us to compute an inverse modulo
a prime, which in turn allows us to compute a division modulo p. Together
with the addition, subtraction, and multiplication modulo p, this allows us
to compute all four elementary operations in the finite field modulo p.

Note that u could be negative, so it is probably a good idea to reduce u
modulo p before using it as the inverse of b.

If you look carefully at the extendedGCD algorithm, you’ll see that if you
only want u as output, you can leave out the vc and vd variables, as they do
not affect the computation of u. This slightly reduces the amount of work
needed to compute a division modulo p.

11.4. Large Primes 197

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

Figure 11.1: Addition and multiplication modulo 2

11.3.6 Working Modulo 2

An interesting special case is computation modulo 2. After all, 2 is a prime,
so we should be able to compute modulo it. If you’ve done any programming
this might look familiar to you. The addition and multiplication tables mod-
ulo 2 are shown in figure 11.1. Addition modulo 2 is exactly the exclusive-or
(xor) function you find in programming languages. Multiplication is just
a simple and operation. In the field modulo 2 there is only one inversion
possible (1/1 = 1) so division is the same operation as multiplication. It
shouldn’t surprise you that the field Z2 is an important tool to analyze
certain algorithms used by computers.

11.4 Large Primes

Several cryptographic primitives use very large primes, and we’re talking
about many hundreds of digits here. Don’t worry, you won’t have to compute
with these primes by hand. That’s what the computer is for.

To do any computations at all with numbers this large, you need a multi-
precision library. You cannot use floating-point numbers, because they do
not have several hundred digits of precision. You cannot use normal inte-
gers, because in most programming languages they are limited to a dozen
digits or so. Few programming languages provide native support for ar-
bitrary precision integers. Writing routines to perform computations with
large integers is fascinating. For a good overview, see Knuth [55, section
4.3]. However, implementing a multiprecision library is far more work than
you might expect. Not only do you have to get the right answer, but you
always strive to compute it as quickly as possible. There are quite a number
of special situations you have to deal with carefully. Save your time for

198 11. Primes

more important things, and download one of the many free libraries from
the Internet, or use a language like Python that has built-in large integer
support.

For public-key cryptography, the primes we want to generate are 2000–4000
bits long. The basic method of generating a prime that large is surprisingly
simple: take a random number and check whether it is prime. There are
very good algorithms to determine whether a large number is prime or not.
There are also very many primes. In the neighborhood of a number n,
approximately one in every lnn numbers is prime. (The natural logarithm
of n, or lnn for short, is one of the standard functions on any scientific
calculator. To give you an idea of how slowly the logarithm grows when
applied to large inputs: the natural logarithm of 2k is slightly less than
0.7 · k.) A number that is 2000 bits long falls between 21999 and 22000.
In that range about one in every 1386 of the numbers is prime. And this
includes a lot of numbers that are trivially composite, such as the even
numbers.

Generating a large prime looks something like this:

function generateLargePrime
input: l Lower bound of range in which prime should lie.

u Upper bound of range in which prime should lie.
output: p A random prime in the interval l, . . . , u

Check for a sensible range.
assert 2 < l ≤ u

Compute maximum number of attempts
r ← 100(blog2 uc+ 1)
repeat

r ← r − 1
assert r > 0
Choose n randomly in the right interval
n ∈R l, . . . , u

Continue trying until we find a prime.
until isPrime(n)
return n

11.4. Large Primes 199

We use the operator ∈R to indicate a random selection from a set. Of course,
this requires some output from the prng.

The algorithm is relatively straightforward. We first check that we get a
sensible interval. The cases l ≤ 2 and l ≥ u are not useful and lead to
problems. Note the boundary condition: the case l = 2 is not allowed.3

Next we compute how many attempts we are going to make to find a prime.
There are intervals that do not contain a prime. For example, the interval
90, . . . , 96 is prime-free. A proper program should never hang, independent
of its inputs, so we limit the number of tries and generate a failure if we
exceed this number. How many times should we try? As stated before,
in the neighborhood of u about one in every 0.7 log2 u numbers is prime.
(The function log2 is the logarithm to the base 2. The simplest definition
is that log2(x) := lnx/ ln 2. The number log2 u is difficult to compute but
blog2 uc + 1 is much easier; it is the number of bits necessary to represent
u as a binary number. So if u is an integer that is 2017 bits long, then
blog2 uc + 1 = 2017. The factor 100 ensures that it is extremely unlikely
that we will not find a prime. For large enough intervals, the probability
of a failure due to bad luck is less than 2−128, so we can ignore this risk.
At the same time, this limit does ensure that the generateLargePrime
function will terminate. We’ve been a bit sloppy in our use of an assertion
to generate the failure; a proper implementation would generate an error
with explanations of what went wrong.

The main loop is simple. After the check that limits the number of tries, we
choose a random number and check whether it is prime using the isPrime
function. We will define this function shortly.

Make sure that the number n you choose is uniformly randomly in the range
l, . . . , u. Also make sure that the range is not too small if you want your
prime to be a secret. If the attacker knows the interval you use, and there
are fewer than 2128 primes in that interval, the attacker could potentially
try them all.

If you wish, you can make sure the random number you generate is odd
by setting the least significant bit just after you generate a candidate n.

3The Rabin-Miller algorithm we use below does not work well when it gets 2 as an
argument. That’s okay, we already know that 2 is prime so we don’t have to generate it
here.

200 11. Primes

As 2 is not in your interval, this will not affect the probability distribution
of primes you are choosing, and it will halve the number of attempts you
have to make. But this is only safe if u is odd, otherwise setting the least
significant bit might bump n just outside the allowed range.

The isPrime function is a two-step filter. The first phase is a simple test
where we try to divide n by all the small primes. This will quickly weed
out the great majority of numbers which are composite and divisible by a
small prime. If we find no divisors, we employ a heavyweight test called the
Rabin-Miller test.

function isPrime
input: n Integer ≥ 3.
output: b Boolean whether n is prime.

assert n ≥ 3
for p ∈ { all primes ≤ 1000 } do

if p is a divisor of n then
return p = n

fi
od
return Rabin-Miller(n)

If you are lazy and don’t want to generate the small primes, you can cheat
a bit. Instead of trying all the primes, you can try 2 and all odd numbers
3, 5, 7, . . . , 999, in that order. This sequence contains all the primes below
1000, but it also contains a lot of useless composite numbers. The order
is important to ensure that a small composite number like 9 is properly
detected as being composite. The bound of 1000 is arbitrary, and can be
chosen for optimal performance.

All that remains to explain is the mysterious Rabin-Miller test that does
the hard work.

11.4.1 Primality Testing

It turns out to be remarkably easy to test whether a number is prime. At
least, it is remarkably easy compared to factoring a number and finding its
prime divisors. These easy tests are not perfect. They are all probabilistic.

11.4. Large Primes 201

There is a certain chance they give the wrong answer. By repeatedly running
the same test we can reduce the probability of error to an acceptable level.

The primality test of choice is the Rabin-Miller test. The mathematical
basis for this test is well beyond the scope of this book, although the outline
is fairly simple. The purpose of this test is to determine whether an odd
integer n is prime. We choose a random value a less than n, called the
basis, and check a certain property of a modulo n that always hold when n
is prime. However, you can prove that when n is not a prime, this property
holds for at most 25% of all possible basis values. By repeating this test for
different random values of a, you build your confidence in the final result.
If n is a prime, it will always test as a prime. If n is not a prime, then at
least 75% of the possible values for a will show so, and the chance that n
will pass multiple tests can be made as small as you want. We limit the
probability of a false result to 2−128 to achieve our required security level.

Here is how it goes:

function Rabin-Miller
input: n An odd number ≥ 3.
output: b Boolean indicating whether n is prime or not.

assert n ≥ 3 ∧ n mod 2 = 1
First we compute (s, t) such that s is odd and 2ts = n− 1.
(s, t) ← (n− 1, 0)
while s mod 2 = 0 do

(s, t) ← (s/2, t + 1)
od
We keep track of the probability of a false result in k. The probability

is at most 2−k. We loop until the probability of a false result is
small enough.

k ← 0
while k < 128 do

Choose a random a such that 2 ≤ a ≤ n− 1.
a ∈R 2, . . . , n− 1
The expensive operation: a modular exponentiation.
v ← as mod n

When v = 1, the number n passes the test for basis a.
if v 6= 1 then

202 11. Primes

The sequence v, v2, . . . , v2t
must finish on the value 1, and the

last value not equal to 1 must be n− 1 if n is a prime.
i ← 0
while v 6= n− 1 do

if i = t− 1 then
return false

else
(v, i) ← (v2 mod n, i + 1)

fi
od

fi
When we get to this point, n has passed the primality test for the

basis a. We have therefore reduced the probability of a false
result by a factor of 22, so we can add 2 to k.

k ← k + 2
od
return true

This algorithm only works for an odd n greater or equal to 3, so we test that
first. The isPrime function should only call this function with a suitable
argument, but each function is responsible for checking its own inputs and
outputs. You never know how the software will be changed in future.

The basic idea behind the test is known as Fermat’s little theorem.4 For
any prime n and for all 1 ≤ a < n, the relation an−1 mod n = 1 holds.
To fully understand the reasons for this requires more math than we will
explain here. A simple test (also called the Fermat primality test) verifies
this relation for a number of randomly chosen a values. Unfortunately,
there are some obnoxious numbers called the Carmichael numbers. These
are composite but they pass the Fermat test for (almost) all basis a.

The Rabin-Miller test is a variation of the Fermat test. First we write n− 1
as 2ts, where s is an odd number. If you want to compute an−1 you can
first compute as and then square the result t times to get as·2t

= an−1. Now
if as = 1 (mod n) then repeated squaring will not change the result so we

4There are several theorems named after Fermat. Fermat’s last Theorem is the most
famous one, involving the equation an + bn = cn and a proof too small to fit in the margin
of the page.

11.4. Large Primes 203

have an−1 = 1 (mod n). If as 6= 1 (mod n), then we look at the numbers
as, as·2, as·22

, as·23
, . . . , as·2t

(all modulo n, of course). If n is a prime, then we
know that the last number must be 1. If n is a prime, then the only numbers
that satisfy x2 = 1 (mod n) are 1 and n− 1.5 So if n is prime, then one of
the numbers in the sequence must be n− 1, or we could never have the last
number be equal to 1. This is really all the Rabin-Miller test checks. If any
choice of a demonstrates that n is composite, we return immediately. If n
continues to test as a prime, we repeat the test for different a values until
the probability that we have generated a wrong answer and claimed that a
composite number is actually prime is less than 2−128.

If you apply this test to a random number, the probability of failure of this
test is much, much smaller than the bound we use. For almost all composite
numbers n, almost all basis values will show that n is composite. You will
find a lot of libraries that depend on this and perform the test for only 5 or
10 bases or so. This idea is fine, though we would have to investigate how
many attempts are needed to reach an error level of 2−128 or less. But it only
holds as long as you apply the isPrime test to randomly chosen numbers.
Later on we will encounter situations where we apply the primality test to
numbers that we received from someone else. These might be maliciously
chosen, so the isPrime function must achieve a 2−128 error bound all by
itself.

Doing the full 64 Rabin-Miller tests is necessary when we receive the number
to be tested from someone else. It is overkill when we try to generate a prime
randomly. But when generating a prime, you spend most of your time
rejecting composite numbers. (Almost all composite numbers are rejected
by the very first Rabin-Miller test that you do.) As you might have to try
hundreds of numbers before you find a prime, doing 64 tests on the final
prime is only marginally slower than doing 10 of them.

In an earlier version of this chapter, the Rabin-Miller routine had a second
argument that could be used to select the maximum error probability. But
it was a perfect example of a needless option, so we removed it. Always
doing a good test to a 2−128 bound is simpler, and much less likely to be
improperly used.

5It is easy to check that (n− 1)2 = 1 (mod n).

204 11. Primes

There is still a chance of 2−128 that our isPrime function will give you the
wrong answer. To give you an idea of how small this chance actually is, the
chance that you will be killed by a meteorite while you read this sentence is
far larger. Still alive? Okay, so don’t worry about it.

11.4.2 Evaluating Powers

The Rabin-Miller test spends most of its time computing as mod n. You
cannot compute as first and then take it modulo n. No computer in the
world has enough memory to even store as, much less the computing power
to compute it; both a and s can be thousands of bits long. But we only
need as mod n; we can apply the mod n to all the intermediate results,
which stops the numbers from growing too large.

There are several ways of computing as mod n, but here is a simple descrip-
tion. To compute as mod n use the following rules:

• If s = 0 the answer is 1.

• If s > 0 and s is even, then first compute y := as/2 mod n using these
very same rules. The answer is given by as mod n = y2 mod n.

• If s > 0 and s is odd, then first compute y := a(s−1)/2 mod n using
these very same rules. The answer is given by as mod n = a·y2 mod n.

This is a recursive formulation of the so-called binary algorithm. If you look
at the operations performed, it builds up the desired exponent bit by bit
from the most significant part of the exponent down to the least significant
part. It is also possible to convert this from a recursive algorithm to a loop.

How many multiplications are required to compute as mod n? Let k be the
number of bits of s; i.e., 2k−1 ≤ s < 2k. Then this algorithm requires at
most 2k multiplications modulo n. This is not too bad. If we are testing a
2000-bit number for primality, then s will also be about 2000 bits long and
we only need 4000 multiplications. That is still a lot of work, but certainly
within the capabilities of most desktop computers.

Many public-key cryptographic systems make use of modular exponenti-
ations like this. Any good multiprecision library will have an optimized

11.4. Large Primes 205

routine for evaluating modular exponentiations. A special type of multipli-
cation called Montgomery multiplication is well suited for this task. There
are also ways of computing as using fewer multiplications [10, Ch. 4]. Each
of these tricks can save 10%–30% of the time it takes to compute a modular
exponentiation, so used in combination they can be important.

Straightforward implementations of modular exponentiation are often vul-
nerable to timing attacks. See section 16.3 for details and possible remedies.

Chapter 12

Diffie-Hellman

For the presentation of public-key cryptography we’re going to follow the
historical path. Public-key cryptography was really started by Whitfield
Diffie and Martin Hellman when they published their “New Directions in
Cryptography” article in 1976 [22].

So far in this book we’ve only talked about encryption and authentication
with shared secret keys. But where do we get those shared secret keys from?
If you have 10 friends you want to communicate with, you can meet them
all and exchange a secret key with each of these friends for future use. But
like all keys, these keys should be refreshed regularly, so then you have to
meet and exchange keys all over again. A total of 45 keys are needed for a
group of 10 friends. But as the group gets larger, the number of keys grows
quadratically. For 100 people all communicating with each other, you need
4950 keys. This quickly becomes unmanageable.

Diffie and Hellman posed the question of whether it would be possible to
do this more efficiently. Suppose you have an encryption algorithm where
the encryption and decryption keys are different. You can publish your
encryption key and keep your decryption key secret. Anyone can now send
you an encrypted message, and only you can decrypt it. This would solve
the problem of having to distribute so many different keys.

Diffie and Hellman posed the question, but they could only provide a partial

207

208 12. Diffie-Hellman

answer. Their partial solution is today known as the Diffie-Hellman key
exchange protocol, often shortened to DH protocol [22].

The DH protocol is a really nifty idea. It turns out that two people commu-
nicating over an insecure line can agree on a secret key in such a way that
both of them receive the same key without divulging it to someone who is
listening in on their conversation.

12.1 Groups

If you’ve read the last chapter, it won’t surprise you that primes are involved.
For the rest of this chapter, p is a large prime. Think of p as being 2000 to
4000 bits long. Most of our computations in this chapter will be modulo p—
in many places we will not specify this again explicitly. The DH protocol uses
Z∗p, the multiplicative group modulo p that we discussed in section 11.3.3.

Choose any g in the group and consider the numbers 1, g, g2, g3, . . . , all
modulo p, of course. This is an infinite sequence of numbers, but there is
only a finite set of numbers in Z∗p. (Remember, Z∗p is the numbers 1, . . . , p−1
together with the operation of multiplication modulo p.) At some point the
numbers must start to repeat. Let us assume this happens at gi = gj with
i < j. As we can do divisions modulo p, we can divide each side by gi and
get 1 = gj−i. In other words, there is a number q := j − i such that gq = 1
(mod p). We call the smallest positive value q for which gq = 1 (mod p) the
order of g. (Unfortunately, there is quite a bit of terminology associated
with this stuff. We feel it is better to use the standard terminology than
to invent our own words; otherwise readers will be confused later on when
they read other books.)

If we keep on multiplying gs we can reach the numbers 1, g, g2, . . . , gq−1.
After that, the sequence repeats as gq = 1. We say that g is a generator and
that it generates the set 1, g, g2, . . . , gq−1. The number of elements that can
be written as a power of g is exactly q, the order of g.

One property of multiplication modulo p is that there is at least one g that
generates the entire group. That is, there is at least one g value for which
q = p− 1. So instead of thinking of Z∗p as the numbers 1, . . . , p− 1, we can

12.1. Groups 209

also think of them as 1, g, g2, . . . , gp−2. A g that generates the whole group
is called a primitive element of the group.

Other values of g can generate smaller sets. Observe that if we multiply two
numbers from the set generated by g, then we get another power of g, and
therefore another element from the set. If you go through all the math, it
turns out that the set generated by g is another group. That is, you can
multiply and divide in this group just as you can in the large group modulo
p. These smaller groups are called subgroups (see section 11.3.3). They will
be important in various attacks.

There is one last thing to explain. For any element g, the order of g is a
divisor of p − 1. This isn’t too hard to see. Choose g to be a primitive
element. Let h be any other element. As g generates the whole group,
there is an x such that h = gx. Now consider the elements generated by
h. These are 1, h, h2, h3, . . . which are equal to 1, gx, g2x, g3x, (All our
computations are still modulo p, of course.) The order of h is the smallest
q at which hq = 1, which is the same as saying that it is the smallest q such
that gxq = 1. For any t, gt = 1 is the same as saying t = 0 (mod p − 1).
So q is the smallest q such that xq = 0 (mod p − 1). This happens when
q = (p− 1)/ gcd(x, p− 1). So q is obviously a factor of p− 1.

Here’s a simple example. Let’s choose p = 7. If we choose g = 3 then g is a
generator because 1, g, g2, . . . , g6 = 1, 3, 2, 6, 4, 5. (Again, all computations
modulo p.) The element h = 2 generates the subgroup 1, h, h2 = 1, 2, 4
because h3 = 23 mod 7 = 1. The element h = 6 generates the subgroup 1, 6.
These subgroups have sizes 3 and 2 respectively, which are both divisors of
p− 1.

This also explains parts of the Fermat test we talked about in section 11.4.1.
Fermat’s test is based on the fact that for any a we have ap−1 = 1. This is
easy to check. Let g be a generator of Z∗p, and let x be such that gx = a.
As g is a generator of the whole group, there is always such an x. But now
ap−1 = gx(p−1) = (gp−1)x = 1x = 1.

210 12. Diffie-Hellman

Alice Bob
x ∈R Z∗p

gx

−−−−−−−−−−−−→
y ∈R Z∗p

gy

←−−−−−−−−−−−−
k ← (gy)x k ← (gx)y

Figure 12.1: The original Diffie-Hellman protocol.

12.2 Basic DH

For the original DH protocol, we first choose a large prime p, and a primitive
element g which generates the whole group Z∗p. Both p and g are public
constants in this protocol, and we assume that all parties, including the
attackers, know them. The protocol is shown in figure 12.1. This is one
of the usual ways in which we write cryptographic protocols. There are
two parties involved: Alice and Bob. Time progresses from the top to the
bottom. First Alice chooses a random x in Z∗p, which is the same as choosing
a random number in 1, . . . , p−1. She computes gx mod p and sends the result
to Bob. Bob in turn chooses a random y in Z∗p. He computes gy mod p and
sends the result to Alice. The final result k is defined as gxy. Alice can
compute this by raising the gy she got from Bob to the power x that she
knows. (High-school math: (gy)x = gxy.) Similarly, Bob can compute k as
(gx)y. They both end up with the same value k which they can use as a
secret key.

But what about an attacker? The attacker gets to see gx and gy, but not
x or y. The problem of computing gxy given gx and gy is known as the
Diffie-Hellman problem, or DH problem for short. As long as p and g are
chosen correctly, there is no efficient algorithm to compute this—at least,
there is none that we know of. The best method known is to first compute x
from gx, after which the attacker can compute k as (gy)x just like Alice did.
In the real numbers, computing x from gx is called the logarithm function,
which you find on any scientific calculator. In the finite field Z∗p, it is called

12.3. Man in the Middle 211

a discrete logarithm, and in general the problem of computing x from gx in
a finite group is known as the discrete logarithm problem, or DL problem.

The original DH protocol can be used in many ways. We’ve written it as
an exchange of messages between two parties. Another way of using it is
to let everybody choose a random x, and publish gx (mod p) in the digital
equivalent of a phone book. If Alice now wants to communicate with Bob
securely, she gets gy from the phone book, and using her x, computes gxy.
Bob can similarly compute gxy without any interaction with Alice. This
makes the system usable in settings such as e-mail where there is no direct
interaction.

12.3 Man in the Middle

The one thing that DH does not protect against is the man in the middle.
Look back at the protocol. Alice knows she is communicating with some-
body, but she does not know whom she is communicating with. Eve can sit
in the middle of the protocol and pretend to be Bob when speaking to Alice,
and pretend to be Alice when speaking to Bob. This is shown in figure 12.2.
To Alice, this protocol looks just like the original DH protocol. There is no
way in which Alice can detect she is talking to Eve, not Bob. The same
holds for Bob. Eve can keep up these pretenses for as long as she likes. Sup-
pose Alice and Bob start to communicate using the secret key they think
they have set up. All Eve needs to do is forward all the communications
between Alice and Bob. Of course, Eve has to decrypt all the data she gets
from Alice that was encrypted with key k, and then encrypt it again with
key k′ to send to Bob. She has to do the same with the traffic in the other
direction, but that is not a lot of work.

With a digital phone book this attack is harder. As long as the publisher
of the book verifies the identity of everybody when they send in their gx,
Alice knows she is using Bob’s gx. We’ll discuss other solutions when we
talk about digital signatures and PKIs later on in this book.

There is one setting where the man-in-the-middle attack can be addressed
without further infrastructure. If the key k is used to encrypt a phone
conversation (or a video link), Alice can talk to Bob and recognize him by

212 12. Diffie-Hellman

Alice Eve Bob
x ∈R Z∗p

gx

−−−−→
v ∈R Z∗p

gv

−−−−→
y ∈R Z∗p

gy

←−−−−
w ∈R Z∗p

gw

←−−−−
k ← (gw)x k ← (gx)w

k′ ← (gy)v k′ ← (gv)y

Figure 12.2: Diffie-Hellman protocol with a man in the middle.

his voice. Let h be a hash function of some sort. If Bob reads the first few
digits of h(k) to Alice, then Alice can verify that Bob is using the same key
as she is. Alice can read the next few digits of h(k) to Bob to allow Bob
to do the same verification. This works, but only in situations where you
can tie knowledge of the key k to the actual person on the other side. In
most computer communications, this solution is not possible. And if Eve
ever succeeds in building a speech synthesizer that can emulate Bob, it all
falls apart. Finally, the biggest problem with this solution is that it requires
discipline from the users. But users regularly ignore security procedures.

12.4 Pitfalls

Implementing the DH protocol can be a bit tricky. For example, if Eve
intercepts the communications and replaces both gx and gy with the number
1, then both Alice and Bob will end up with k = 1. The result is a key
negotiation protocol that looks as if it completed successfully, except that

12.4. Pitfalls 213

Eve knows the resulting key. That is bad, and we will have to prevent this
attack in some way.

A second problem is if the generator g is not a primitive element of Z∗p but
rather generates only a small subgroup. Maybe g has an order of one million.
In that case the set

{
1, g, g2, . . . , gq−1

}
only contains a million elements.

As k is in this set, Eve can easily search for the correct key. Obviously, one
of the requirements is that g must have a high order. But who chooses p
and g? All users are using the same values, so most of them get these values
from someone else. To be safe, they have to verify that p and g are chosen
properly. Alice and Bob should each check that p is prime, and that g is a
primitive element modulo p.

The subgroups modulo p form a separate problem. Eve’s attack of replacing
gx with the number 1 is easy to counter by having Bob check for this. But
Eve could also replace gx with the number h, where h has a small order.
The key that Bob derives now comes from the small set generated by h, and
Eve can try all possible values to find k. (Of course, Eve can play the same
attack against Alice.) What both Alice and Bob have to do is verify that
the numbers they receive do not generate small subgroups.

Let’s have a look at the subgroups. Working modulo a prime, all (multi-
plicative) subgroups can be generated from a single element. The entire
group Z∗p consists of the elements 1, . . . , p− 1 for a total of p− 1 elements.
Each subgroup is of the form 1, h, h2, h3, . . . , hq−1 for some h and where q is
the order of h. As we discussed earlier, it turns out that q must be a divisor
of p− 1. In other words: the size of any subgroup is a divisor of p− 1. The
converse also holds: for any divisor d of p − 1 there is a single subgroup
of size d. If we don’t want any small subgroups, then we must avoid small
divisors of p− 1.

This is a problem. If p is a large prime, then p − 1 is always even, and
therefore divisible by 2. Thus there is a subgroup with two elements; it
consists of the elements 1 and p − 1. But apart from this subgroup that is
always present, we could avoid other small subgroups by insisting that p−1
has no other small factors.

214 12. Diffie-Hellman

12.5 Safe Primes

One solution is to use a safe prime for p. A safe prime is a (large enough)
prime p of the form 2q + 1 where q is also prime. The multiplicative group
Z∗p now has the following subgroups:

• The trivial subgroup consisting only of the number 1.

• The subgroup of size 2, consisting of 1 and p− 1.

• The subgroup of size q.

• The full group of size 2q.

The first two are trivial to avoid. The third is the group we want to use.
The full group has one remaining problem. Consider the set of all numbers
modulo p that can be written as a square of some other number (modulo
p, of course). It turns out that exactly half the numbers in 1, . . . , p− 1 are
squares, and the other half are non-squares. Any generator of the entire
group is a non-square. (If it were a square, then raising it to some power
could never generate a non-square, so it does not generate the whole group.)

There is a mathematical function called the Legendre symbol that deter-
mines whether a number modulo p is a square or not, without ever needing
to find the root. There are efficient algorithms for computing the Legendre
symbol. So if g is a non-square and you send out gx, then any observer, such
as Eve, can immediately determine whether x is even or odd. If x is even,
then gx is a square. If x is odd, then gx is a non-square. As Eve can deter-
mine the square-ness of a number using the Legendre symbol function, she
can determine whether x is odd or even. This is exceptional behavior; Eve
cannot learn the value x, except for the least significant bit. The solution
to avoid this problem is to use only the squares modulo p. This is exactly
the subgroup of order q. Another nice property is that q is prime, so there
are no further subgroups we have to worry about.

Here is how to use a safe prime. Choose (p, q) such that p = 2q + 1 and
both p and q are prime. (You can use the isPrime function to do this on a
trial-and-error basis.) Choose a random number α in the range 2, . . . , p− 2
and set g = α2 (mod p). Check that g 6= 1 and g 6= p − 1. (If g is one

12.6. Using a Smaller Subgroup 215

of these forbidden values, choose another α and try again.) The resulting
parameter set (p, q, g) is suitable for use in the Diffie-Hellman protocol.

Every time Alice (or Bob) receives a value that is supposed to be a power of
g, she (or he) must check that the value received is indeed in the subgroup
generated by g. When you use a safe prime as described above, you can use
the Legendre symbol function to check for proper subgroup membership.
There is also a simpler but slower method. A number r is a square if and
only if rq = 1 (mod p). You also want to forbid the value 1, as its use always
leads to problems. So the full test is: r 6= 1 ∧ rq mod p = 1.

12.6 Using a Smaller Subgroup

The disadvantage of using the safe prime approach is that it is inefficient. If
the prime p is n bits long, then q is n−1 bits long and so all exponents are n−
1 bits long. The average exponentiation will take about 3n/2 multiplications
of numbers modulo p. For large primes p, this is quite a lot of work.

The standard solution is to use a smaller subgroup. Here is how that is done.
We start by choosing q as a 256-bit prime. (In other words: 2255 < q < 2256).
Next we find a (much) larger prime p such that p = Nq+1 for some arbitrary
value N . To do this, we choose N randomly in the suitable range, compute
p as Nq + 1, and check whether p is prime. As p must be odd, it is easy to
see that N must be even. The prime p will be thousands of bits long.

Next we have to find an element of order q. We do that in a similar fashion
to the safe prime case. Choose a random α in Z∗p and set g := αN . Now
verify that g 6= 1 and gq = 1. (The case g = p− 1 is covered by the second
test, as q is odd.) If g is not satisfactory, choose a different α and try again.
The resulting parameter set (p, q, g) is suitable for use in the Diffie-Hellman
protocol.

When we use this smaller subgroup, the values that Alice and Bob will
exchange are all in the subgroup generated by g. But Eve could interfere
and substitute a completely different value. Therefore, every time Alice or
Bob receives a value that is supposed to be in the subgroup generated by g,
they should check that it actually is. This check is the same as in the safe
prime case. A number r is in the proper subgroup if r 6= 1 ∧ rq mod p = 1.

216 12. Diffie-Hellman

Of course, they should also check that r is not outside the set of modulo-p
numbers, so the full check becomes 1 < r < p ∧ rq = 1.

For all numbers r in the subgroup generated by g we have that rq = 1. So
if you ever need to raise number r to a power e, you only have to compute
re mod q, which can be considerably less work if e is much larger than q.

How much more efficient is the subgroup case? The large prime p is at
least 2000 bits long. In the safe-prime situation, computing a general gx

takes about 3000 multiplications. In our subgroup case, gx takes about 384
multiplies because x can be reduced modulo q and is therefore only 256 bits
long. This is a savings of a factor of nearly eight. When p grows larger, the
savings increase further. This is the reason that subgroups are widely used.

12.7 The Size of p

Choosing the right sizes for the parameters of a DH system is difficult. Up to
now, we have been using the requirement that an attacker has to spend 2128

steps to attack the system. That was an easy target for all the symmetric key
primitives. Public-key operations like the DH system are far more expensive
to start with, and the computational cost grows much more quickly with the
desired security level.

If we keep to our requirement of forcing the attacker to use 2128 steps to
attack the system, the prime p should be about 6800 bits long. In practical
systems today that will be a real problem from a performance point of view.

There is a big difference between key sizes for symmetric primitives and
key sizes for public-key primitives like DH. Never, ever fall into the trap of
comparing a symmetric key size (such as 128 or 256 bits) to the size of a
public key that can be thousands of bits. The public-key sizes are always
much larger than the symmetric key sizes.1

The public-key operations are far slower than encryption and authentication
functions we presented earlier. In most systems, the symmetric-key oper-
ations are insignificant, whereas the public-key operations can have a real

1This holds for the public-key schemes we discuss in this book. Other public-key
schemes, such as those based on elliptic curves, can have completely different key size
parameters.

12.7. The Size of p 217

effect on performance. We must therefore look much more closely at the
performance aspects of public-key operations.

Symmetric key sizes are typically fixed in a system. Once you design your
system to use a particular block cipher and hash function, you also fix the
key size. That means that the symmetric key size is fixed for the life of
the system. Public-key sizes, on the other hand, are almost always variable.
This makes it much easier to change the key size. We set out to design a
system that will be used for 30 years, and the data must be kept secure for
20 years after it was first processed. The symmetric key size must be chosen
large enough to protect the data up to 50 years from now. But the variable-
sized public keys only have to protect the data for the next 20 years. After
all, all keys have a limited lifetime. A public key might be valid for one
year, and should protect data for 20 more years. This means that the public
key only needs to protect data 21 years, rather than the 50 years needed
for symmetric keys. Each year you generate a new public key, and you can
choose larger public keys as progress in computing technology requires.

The best estimates of how large your prime p needs to be can be found in
[63]. A prime of 2048 bits can be expected to secure data until around 2022;
3072 bits is secure until 2038; and 4096 bits until 2050. The 6800 bits we
mentioned above are derived from the same formulas used in [63]. That is
the size of p if you want to force the attacker to perform 2128 steps in an
attack.

Be very careful with these types of predictions. There is some reasonable
basis for these numbers, but predicting the future is always dangerous. We
might be able to make some sensible predictions about key sizes for the
next 10 years, but making predictions about what things will be like 50
years from now is really rather silly. Just compare the current state of the
art in computers and cryptography with the situation 50 years ago. The
predictions in [63] are by far the best estimates we have, but don’t put too
much faith in them.

So what are we to do? As cryptographic designers, we have to choose a key
size which will be secure for at least the next 20 years. Obviously 2048 bits
is a lower bound. Larger is better, but larger keys have a significant extra
cost. In the face of so much uncertainty, we would like to be conservative.
So here is our advice: use 2048 bits as an absolute minimum. (And don’t

218 12. Diffie-Hellman

forget that as time passes this minimum will grow.) If at all possible from a
performance point of view, use 4096 bits, or as close to 4096 bits as you can
afford. Furthermore, make absolutely sure that your system can handle sizes
up to 8192 bits. This will save the day if there are unexpected developments
in attacking public-key systems. Improvements in cryptanalysis will most
likely lead to attacks on the smaller key sizes. Switching to a very much
larger key size can be done while the system is in the field. It will cost some
performance, but the basic operation of the system will be preserved. This
is far better than losing all security and having to reengineer the system,
which is what you would have to do if the system cannot use larger keys.

Some applications require data to be kept secret for much longer than 20
years. In these cases you need to use the larger keys now.

12.8 Practical Rules

Here are our practical rules for setting up a subgroup that you can use for
the DH protocol.

Choose q as a 256-bit prime. (There are collision-style attacks on the ex-
ponent in DH, so all our exponents should be 256 bits long to force the
attacker to use at least 2128 operations.) Choose p as a large prime of the
form Nq + 1 for some integer N . (See section 12.7 for a discussion of how
large p should be. Computing the corresponding range for N is trivial.)
Choose a random g such that g 6= 1 and gq = 1. (The easy way to do this is
to choose a random α, set g = αN , and check g for suitability. Try another
α if g fails the criteria.)

Any party receiving the subgroup description (p, q, g) should verify that:

• Both p and q are prime, q is 256 bits long, and p is sufficiently large.
(Don’t trust keys that are too small.)

• q is a divisor of (p− 1).

• g 6= 1 and gq = 1.

12.8. Practical Rules 219

Alice Bob
known: (p, q, g) known: (p, q, g)
check (p, q, g) parameters check (p, q, g) parameters
x ∈R { 1, . . . , q − 1 }

X := gx

−−−−−−−−−→
1 ?

< X
?
< p , Xq ?= 1

y ∈R { 1, . . . , q − 1 }
Y := gy

←−−−−−−−−−
1 ?

< Y
?
< p , Y q ?= 1

k ← (Y)x k ← (X)y

Figure 12.3: Diffie-Hellman in a subgroup.

This should be done even if the description is provided by a trusted source.
You would be amazed at how often systems fail in some interesting way,
especially when they are under attack. Checking a set (p, q, g) takes a little
time, but in most systems the same subgroup is used for a long time, so
these checks need only be performed once.

Any time a party receives a number r that is supposed to be in the subgroup,
it should be verified that 1 < r < p and rq = 1. Note that r = 1 is not
allowed.

Using these rules, we get the version of the Diffie-Hellman protocol shown
in figure 12.3. Both parties start by checking the group parameters. Each
of them only has to do this once at start-up, not every time they run a DH
protocol. (They should do it after every reboot or reinitialization, however,
because the parameters could have changed.)

The rest of the protocol is very much the same as the original DH protocol
in figure 12.1. Alice and Bob now use the subgroup, so the two exponents
x and y are in the range 1, . . . , q − 1. Both Alice and Bob check that the
number they receive is in the proper subgroup to avoid any small-subgroup
attacks by Eve.

220 12. Diffie-Hellman

The notation that we use for the checks is a relational operator (such as =
or <) with a question mark above it. This means that Alice (or Bob) should
check that the relation holds. If it does, then everything is all right. If the
relation is not correct, then Alice has to assume that she is under attack.
The standard behavior is to stop the execution of the protocol, not send
any other messages, and destroy all protocol-specific data. For example, in
this protocol Alice should destroy x and Y if the last set of checks fails. See
section 14.5.5 for a detailed discussion of how to handle these failures.

This protocol describes a secure variant of DH, but it should not be used
in exactly this form. The result k has to be hashed before it is used by the
rest of the system. See section 15.6 for a more detailed discussion.

12.9 What Could Go Wrong

Very few books or articles talk about the importance of checking that the
numbers you receive are in the correct subgroup. Niels first found this
problem in the Internet Key Exchange (IKE) protocol of IPsec [41]. Some
of the IKE protocols include a DH exchange. As IKE has to operate in the
real world, it has to deal with lost messages. So IKE specifies that if Bob
receives no answer, he should resend his last message. IKE does not specify
how Alice should process the message that Bob sent again. And it is easy
for Alice to make a serious mistake.

For simplicity, let us suppose Alice and Bob use the DH protocol in the
subgroup illustrated in figure 12.3 without checking that X and Y are proper
values. Furthermore, after this exchange Alice starts using the new key k to
send an encrypted and authenticated message to Bob which contains some
further protocol data. (This is a very usual situation, and similar situations
can occur in IKE.)

Here is the dangerous behavior by Alice: when she receives a resend of the
second message containing Y , she simply recomputes the key k and sends the
appropriate reply to Bob. Sounds entirely harmless, right? But the attacker
Eve can now start to play games. Let d be a small divisor of (p − 1). Eve
can replace Y by an element of order d. Alice’s key k is now limited to
d possible values, and is completely determined by Y and (x mod d). Eve

12.9. What Could Go Wrong 221

tries all possible values for (x mod d), computes the key k that Alice would
have gotten, and tries to decrypt the next message that Alice sends. If Eve
guesses (x mod d) correctly, this message will decrypt properly, and Eve has
learned (x mod d).

But what if p− 1 contains a number of small factors (d1, d2, . . . , dk)? Then
Eve can run this attack repeatedly for each of these factors and learn
(x mod d1), . . . , (x mod dk). Using the general form of the Chinese Re-
mainder Theorem (see section 13.2) she can combine this knowledge to
(x mod d1d2d3 · · · dk). So if the product of all small divisors of p − 1 is
large, Eve can get a significant amount of information about x. As x is
supposed to be secret, this is always a bad development. In this particular
case, Eve can finish by forwarding the original Y to Alice and letting Alice
and Bob complete the protocol. But Eve has collected enough information
about x that she can now find the key k that Alice and Bob use.

To be quite clear: this is not an attack on IKE. It is an attack on an
implementation of IKE that is allowed by the standard. Still, in our opinion
the protocol should include enough information for a competent programmer
to create a secure implementation. Leaving this type of information out is
dangerous, as somebody somewhere will implement it the wrong way.

Eve has to be lucky that p− 1 has enough small divisors. We are designing
against an adversary that can perform 2128 steps of computing. This allows
Eve to take advantage of all divisors of p− 1 up to about 2128 or so. We’ve
never seen a good analysis of the probabilities of how much information Eve
could get, but a quick estimate indicates that on average Eve will be able to
get about 128 bits of information about x from the factors smaller than 2128.
She can then attack the unknown part of x using a collision-style attack,
and as x is only 256 bits long, this leads to a real attack. At least, it would
if we didn’t check that X and Y were in the proper subgroup.

The attack becomes even easier if Eve was the person selecting the subgroup
(p, q, g). She may have put the small divisors into p − 1 herself when she
selected p in the first place. Or maybe she sat on the committee that recom-
mended certain parameters for a standard. This isn’t as crazy as it seems.
The U.S. government, in the form of NIST, helpfully provides primes that
can be used with DSA, a signature scheme that uses subgroups like this.
Other parts of that same U.S. government (e.g., NSA, CIA, FBI) have a

222 12. Diffie-Hellman

vested interest in being able to break into private communications. We cer-
tainly don’t want to imply that these primes are bad, but it is something
that you would want to check before you use them. This is easy to do; in
fact, NIST published an algorithm for choosing parameters that does not
insert additional small factors, and you can check whether the algorithm
was indeed followed. But few people ever do.

In the end, the simplest solution is to check that every value you receive is in
the proper subgroup. All other ways of stopping small subgroup attacks are
much more complicated. You could try to detect the small factors of p− 1
directly, but that is way too complicated. You could require the person who
generated the parameter set to provide the factorization of p − 1, but that
adds lots of complexity to the whole system. Verifying that the received
values are in the right subgroup is a bit of work, but it is by far the simplest
and most robust solution.

