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Abstract

Current graphics hardware can render objects using simple procedural shaders in
real-time. However, detailed, high-quality shaders will continue to stress the resources
of hardware for some time to come. Shaders written for film production and software
renderers may stretch to thousands of lines. The difficulty of rendering efficiently is
compounded when there is not just one, but a scene full of shaded objects, surpassing the
capability of any hardware to render. This problem has many similarities to the
rendering of large models, a problem that has inspired extensive research in geometric
level-of-detail and geometric simplification. We introduce an analogous process for
shading, shader simplification. Starting from an initial detailed shader, shader
simplification produces a new shader with extra level-of-detail parameters that control
the shader execution. The resulting level-of-detail shader, can automatically adjust its
rendered appearance based on measures of distance, size, or importance as well as
physical limits such as rendering time budget or texture usage.

CR categories and subject descriptors: I.3.3 [Computer Graphics]: Picture/Image
generation — Display algorithms; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism — Color, shading, shadowing, and texture.

Keywords: Interactive Rendering, Rendering Systems, Hardware Systems, Procedural
Shading, Languages, Multi-Pass Rendering, Level-of-Detail, Simplification, Computer
Games, Reflectance & Shading Models.

Introduction

Procedural shading is a powerful technique, first explored for software rendering in
work by Cook and Perlin [10, 35], and popularized by the RenderMan Shading language
[20]. A shader is a simple procedure written in a special purpose high-level language that
controls some aspect of the appearance of an object to which it is applied. The term shader
is used generically to refer to procedures that compute surface color, attenuation of light
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through a volume (as with fog), light color and direction, fine changes to the surface
position, or transformation of control points or vertices.

Recent graphics hardware can render simple procedural shaders in real-time [4, 5, 31, 33,
34, 36]. Shaders that exceed the hardware’s abilities for rendering of a single object must
be rendered using multiple passes through the graphics pipeline. The resulting
multi-pass shaders can achieve real-time performance, but many complex shaders in a
single scene can easily overwhelm any graphics hardware. Even for shaders that execute
in a single rendering pass, the number of textures or combiner stages used can affect
overall performance [31].

Consider a realistic shader for a leather chair. Features of this shader may include an
overall leather texture or bump map, a couple of measured BRDFs (bidirectional
reflectance distribution functions) for worn and unworn areas on the seat, bumps for the
stitching, with dust collected in the crevices, scuff marks, changes in color due to
variations in the leather, and potentially even more. Such a shader can provide a
satisfying interactive rendering of the seat for detailed examination, but is overkill as you
move away to see the rest of the room and all the other, buildings, trees and pedestrians
using shaders of similar complexity. Figure 1 does not have all the features described, but
with a bump map and measured leather BRDF it still exceeds current single pass
rendering capabilities.

Figure 1 LOD shader upholstering a Le Corbusier chair.

In this paper, we introduce level-of-detail shaders (LOD shaders) to solve the problem of
providing both interactive performance and convincing detailed shading of many
objects in a scene. A level-of-detail shader automatically adjusts the shading complexity
based on one or more input parameters, providing only the detail appropriate for the
current viewing conditions and resource limits. We present a general framework for
creating a level-of-detail shader from a detailed source shader which could be used for
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automatic LOD shader generation. Finally, we provide details and results from our
building-block based level-of-detail shader tools, where the general framework for
shader simplification has been manually applied to building-block functions used for
writing complex shaders.

Background

This work is directly inspired by the body of research on geometric simplification.
Specifically, many of our shader simplification operations are modeled after operations
from the topology-preserving geometric level-of-detail literature. Schroeder and Turk
both performed early work in automatic mesh simplification using a series of local
operations, each resulting in a smaller total polygon count for the entire model [39, 41].
Hoppe used the collapse of an edge to a single vertex as the basic local simplification
operation. He also introduced progressive meshes, where all simplified versions of a
model are stored in a form that can reconstructed to any level at run-time [24]. These
ideas have had a large influence on more recent polygonal simplification work ([16, 22,
25] and many others).

Many shader simplifications involve generating textures to stand in for one or more
other shading operations. Guenter, Knoblock and Ruf replaced static sequences of
shading operations with pre-generated textures [19]. Heidrich has analyzed texture sizes
and sampling rates necessary for accurate evaluation of shaders into texture [32]. In a
related vein, texture-impostor based simplification techniques replace geometry with
pre-rendered textures, either for indoor scenes as has been done by Aliaga [2] or outdoor
scenes as by Shade et al. [40].

We also draw on the body of BRDF approximation methods. Like shading functions,
BRDFs are positive everywhere. Fournier used singular value decomposition (SVD) to fit
a BRDF to sums of products of functions of light direction and view direction for use in
radiosity [13]. Kautz and McCool presented a similar method for real-time BRDF
rendering, computing functions of view, light, or other bases as textures using either SVD
or a simpler normalized integration method [27]. McCool, Ang and Ahmad’s
homomorphic factorization uses only products of 2D texture lookups, fit using
least-squares [29]. In a related area, Ramamoorthi and Hanrahan used a common set of
spherical harmonic basis textures for reconstructing irradiance environment maps [37].

This work is also directly derived from efforts to antialias shaders. The primary form of
antialiasing provided in the RenderMan shading language is a manual transformation of
the shader, relying on the shader-writer’s knowledge to effectively remove
high-frequency components of the shader or smooth the sharp transitions from an if, by
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instead using a smoothstep (cubic spline interpolation between two values) or
filterstep (smoothstep across the current sample width) [11]. Perlin describes
automatic use of blending where if is used in the shading code [11]. Heidrich and his
collaborators also did automatic antialiasing, using affine arithmetic to compute the
shading results and estimate the frequency and error in the results [23].

Finally, there have been several researchers who have done more ambitious shader
transformations. Goldman described multiple versions of a fur shader used in several
movies, though switches between realfur and fakefur were only done between shots [18].
Kajiya was the first to pose the problem of converting large-scale surface characteristics
to a bump map or BRDF representation [26]. Along this line, Fournier used nonlinear
optimization to fit a bump map to a sum of several standard Phong peaks [12]. Cabral,
Max and Springmeyer addressed the conversion from bump map to BRDF through a
numerical integration pre-process [7], and Becker and Max solved it for conversion from
RenderMan-based displacement maps to bump maps and then to a BRDF representation
[6]. More recently, Apodaca and Gritz manually created a hierarchy of filtered
level-of-detail textures [3], while Kautz approached the problem in reverse, creating
bump maps to statistically match a chosen fractal micro-facet BRDF [28].

This work is set within the context of recent advances in interactive shading languages,
motivating the need for shaders that can transition smoothly from high quality to fast
rendering. The first such system by Rhoades et al. was a relatively low-level language for
the Pixel-Planes 5 machine at UNC [38]. This was followed by Olano and collaborators
with a full interactive shading language on UNC’s PixelFlow system [33]. Peercy and
coworkers at SGI created a shading language that runs using multiple OpenGL
Rendering passes [34]. The work presented here uses their OpenGL Shader ISL language
as the format for both input shaders and LOD shader results.

There are many emerging options for assembler-level interfaces to hardware accelerated
shading, including offerings by NVIDIA and ATI as well as a shading interface within
DirectX [4, 5, 30, 31]. The shading group at Stanford, led by Kekoa Proudfoot and Bill
Mark, created another high-level real-time shading language that can be compiled into
either multiple rendering passes or a single pass using NVIDIA or ATI hardware
extensions [36]. A group at 3DLabs, led by Randi Rost, is also spearheading an effort to
create a high-level shading language for OpenGL version 2.0.
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Using LOD Shaders

Using a single LOD shader that encapsulates the progression of levels of detail provides
many of the advantages for simplified shaders that progressive meshes provide for
geometry. The following directly echos the points from Hoppe’s original progressive
mesh paper [24].

• Shader simplification: The LOD shader can be generated automatically from an initial
complex shader using automatic tools (though as in the early days of mesh
simplification, these tools are not yet as automatic as we would like).

• LOD approximation: Like a progressive mesh, an LOD shader contains all levels of
detail. Thus it can include the shader equivalent of Hoppe’s geomorphs to smoothly
transition from one level to the next.

• Progressive transmission and compression: The representation of a shader is much
smaller than that of a mesh. Even relatively complex RenderMan shaders are
typically only a few thousand lines of code. Shaders for real-time are seldom more
complex than several tens of lines of code. Yet a scene with thousands of LOD
shaders may still benefit by first storing and sending the simplest levels followed by
transmission of the more complex levels.

• Selective Refinement: Selective refinement for meshes refers to simplifying some
portions of the mesh more than others based on current viewing conditions,
encompassing both variation across the object and a guided decision on which of
the stored simplifications to apply. For an LOD shader these aspects are treated
independently. Current hardware does not realize any benefit from shading
variations across a single object, but a single LOD shader will present a high quality
appearance on some surfaces while using a lower quality for others, based on
distance, viewing angle or other factors. The LOD shader may also apply certain
simplifications and not others based on pressure from hardware resource limits. For
example, if available texture memory is low, texture-reducing simplification steps
may be applied in one part of the shader while leaving more computation-heavy
portions of the shader to be rendered at full detail.

Many of these points depend on the storage of an LOD shader. Starting from a complex
shader we create a series of simplification operations to produce the most simplified
shader, represented as another shader in the source shading language. This combined
shader includes all of the levels within a single shading function with additional level
con-trol parameters. This provides several practical advantages as the LOD shader is
indistinguishable, beyond its additional parameters, from a non-LOD shader. Since
OpenGL Shader (and most other shading systems) set shader parameters by name, with
default values for unset parameters, LOD shaders are easily interchanged with other
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shaders. For example, this can allow easy drop in replacement of the covering on a car
seat, from a simple stand-in to a non-LOD vinyl shader, an LOD leather shader, or an
LOD fabric shader.

The set of level-control parameters are the one aspect that distinguishes the interface to
an LOD shader from other shaders. For interchangeable use the parameter set should be
agreed upon by both the application and shader simplifier. These parameters are used
within the LOD shader to switch and blend between different levels as well as to define
the ranges where each level is valid. As with geometric level-of-detail, parameter choices
may include distance to the object, approximate screen size of the rendered object,
importance of the object, or available time budget. For shading, we may also add budgets
for hardware resource limits such as texture memory availability. Many of these
parameters could instead be collected into a single aggregate parameter, or controlled
through an optimization function as done by Funkhouser and Sequin [15]. All examples
in this paper use a single parameter set using a distance metric.

Simplification Framework

Shader simplification creates an LOD shader from an arbitrary source shader. We
describe the simplification process in terms of four stages. First, identify candidate blocks
of shader code. Second, produce a set of simplified versions of the candidate blocks.
Third, associate level parameters with the simplified blocks, and finally assemble the
result into an LOD shader. These stages can be repeated to achieve further simplification,
where two or more simplified blocks can be combined into a single larger candidate
block for another simplification run.

Finding Candidate Blocks

The first step toward creating an LOD shader is identifying blocks of shader code that are
candidates for simplification. These are like edges for edge-collapse based polygonal
simplification. Finding the set of candidate blocks in a shader is slightly more
complicated than finding the set of edges in a model, but can be done with a static
analysis of the original shader code.

A static analysis is one done before actual execution; it only has access to what can be
inferred from the source code itself. In particular, results for conditionals and loops
involving compile-time constants are known (uniform in ISL parlance), but not ones that
might change at run-time (parameter in ISL). As a result, choosing a static analysis
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restricts simplification possibilities to what can be done within a basic block, without
crossing a run-time loop or conditional, as shown in Example 1.

Example 1 Candidate Blocks. a) a single basic block that could be simplified. b) blocks split
by a conditional — will not be merged together

FB=diffuse();
FB*=texture(“tex”);

a) basic block

FB=diffuse();
if (time<10)
FB*=texture(“tex”);

b) split blocks

Each block within the shader has some variables that are input to the computations
within the block and others that are results computed by the block. Expressions within
the block form a dependence graph with operations represented as nodes in the graph
and variables as edges linking operation to operation. This graph can be partitioned into
subgraphs where each subgraph computes one block output or intermediate result.
These subgraphs are the candidate blocks for simplification. Any basic block can be
partitioned in many ways, and the choice of block partitioning is somewhat analogous
to choosing edges for mesh simplification.

Simplifications

Each of the candidate blocks described above computes one result based on a set of
inputs. The simplification operations on this block perform a local substitution of a
simpler form in place of the original, producing equivalent output while keeping the
form of the total shader the same. Simplifications that are not lossy are handled by the
shading compiler optimization [19, 33, 34, 36].

Simplifications are chosen by matching a set of heuristic rules. While logically separate,
the selection of simplification rules and partitioning of the basic block can be done at the
same time using a tool like iburg [14]. Iburg is a compiler tool designed for use in code
generation. Given a piece of code represented as an expression tree, it finds the least cost
cover by a set of rules through a bottom-up dynamic programming algorithm.
007-4555-001 7
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Finding simplification rule costs for use by iburg requires analysis of input textures as
well as the shader itself, and application of a rule may require generating a new derived
texture as part of the LOD shader generation pre-process.

We classify these rule-based substitutions into one of the following four forms:

Remove: A candidate block that does not contribute enough anymore, or that consists of
only high-frequency elements above the Nyquist frequency is replaced by a constant.
This effectively removes the effect of portions of the shader that are no longer significant,
as shown in Figure 2 and Figure 3.

Figure 2 Removal of Operations as Contributions become Imperceptible. Top row, left to
right: Close-up of torus mapped with detail dust and scratch textures, with dust
and scratches removed, with specular mask removed. Bottom row, left to right:
image sequence of the wood applied to a cone with each removal displayed at its
expected switching distance.
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Figure 3 Band-limited Perlin Noise Texture, noise at a distance, and noise replaced with
average value

Collapse: A candidate block consisting of several operations may be merged into a single
new operation. For example, a coarse texture and a rotated and repeated detail texture
can be combined into a single merged texture of a new size, as shown in Figure 4.

Figure 4 Collapsing Two Texture Operations into a Single Texture. Left to right, the two
initial textures, the two textures transformed and overlaid, the collapsed texture
result, and an example of the collapsed texture in use as dust and scratch wood
detail.

Substitute: A candidate block identified as implementing a known shading method may
be replaced by a simpler method with similar appearance. For example, a bump map can
be replaced by a gloss map to modulate the highlight intensity, or a simple texture map,
as shown in Figure 5. A texture indexed by the surface normal is probably part of a
lighting model, and depending on the contents of the texture, may be replaced by the
built-in diffuse lighting model. Similarly, a texture indexed by the half angle vector
(norm(V +L) for view vector V and light vector L) is a candidate for replacement by one
or more applications of the built-in Phong specular model. A texture can be replaced by
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a smaller low-pass filtered version of the texture and a constant representing the
removed high-frequency terms.

Figure 5 Replacing a Bump Map with a Texture. Left to right, the original bump map, the
bump texture at full scale, and the bump map and texture at the expected
switching distance.

Approximate: Approximation rules treat the candidate block as a general function to be
approximated. They can theoretically be applied to any block, though not always as
effectively as the application-specific rules.

While a variety of function approximation methods are possible, we have focused on
ones developed for BRDF approximation [27, 29]. As these methods are texture-based,
they are most useful when total texture usage is not the limiting factor. Two issues
prevent our approximation rules from being more generally useful, though we believe
they are aspects of the approximations we chose to explore and not all applicable
function approximation methods.

First, these approximations are based on a factorization into products or sums of
products of functions of two variables that can be stored in a texture. In the right
coordinate system, BRDFs are well suited to this factorization, usually requiring only one
or two terms. Automatic simplification calls for automatic determination of a coordinate
system. Arbitrary shading expressions can also be poorly suited to such a factorization
in any coordinate system, allowing no acceptable approximation by the homomorphic
factorization method, or needing so many SVD terms as to become more expensive than
the original expression.

Second, the least squares or singular value decomposition problems are stated in terms
of matrices with a number of rows and columns equal to the total number of texels in
each approximating texture. Computing these textures rapidly scales to gigabytes, even
for modest component texture sizes. Worse, we want to speculatively compute the
approximations to evaluate their fitness. The original application to BRDFs limited the
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component texture sizes to 32x32 or 64x64 resulting in computations with 1024x1024 to
4096x4096 matrices.

Level Parameters

Selection of simplified verses unsimplified blocks is based on one or several level
parameters. For example, switching from a band-limited noise texture to a constant value
should happen when the changes in the noise texture are no longer visible, as shown in
Figure 3. That point can be approximated based either on the distance or screen size of
the object. The same transition can also be triggered by a lack of available rendering time,
or a lack of available texture memory to store the noise texture.

To manage these different level parameters, we can associate a range for each parameter
with each simplified block. Using the noise example above, a constant should be used
instead of the noise texture whenever the available texture memory is less than the size
of the texture, or there is not enough time to render another texture, or the expected
mapping to screen pixels will blur the band-limited noise away.

Assemble

Given the simplified blocks and level parameter ranges, it is straightforward to assemble
them with appropriate conditionals into an LOD shader. Rendering-metric level
parameters, like distance or screen coverage, are shared by all blocks in the shader, each
emitting a statement of the following form:

if(distance < low_threshold)
do_simplified_block
else if(distance < high_threshold)
do_transition_block
else
do_original_block

For resource-accounting level parameters (for example. available time or texture
memory) the blocks are prioritized, and comparisons are emitted for the total consumed
by this block and all higher priority blocks.
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Results

We have described a general theory of shader simplification. Our current results are a
modest start within this framework. Specifically, we have produced a set of LOD-aware
building block functions for shader construction. This style of shader writing is similar
to Abram and Whitted’s graphical building-block shader system [1]. Example
building-blocks include bump map, a BRDF model, Fresnel reflectance, or noise or
turbulence textures with a lookup as used by Hart [21].

Our LOD blocks were created by manually following the steps described in our
simplification framework: identify candidate blocks within a building block function,
apply one of the simplification rules described in “Simplifications” on page 7, associate
it with a range of an aggregate level parameter, and create conditional blocks for the
original code, transition code and simplified code, as shown in Figure 6. Despite the
manual simplification, we call this semi-automatic because any shaders written using the
building blocks, either knowing about level-of-detail or not, become LOD shaders by
switching to the LOD building blocks.

Figure 6 Car Paint LOD Shader Using LOD Versions of OpenGL Shader’s
microfacetBRDF and hdrFresnel Building Block Functions

Table 1-Table 4 show LOD shader timing in frames per second for several sample LOD
shaders. Each shader demonstrates several transitions of specific LOD simplification
operations. The Wood shader used in these tests first removes an overlay scratch texture,
then removes a specular masking operation, creating three levels-of-detail. Figure 2
shows the removal LOD sequence. The Plastic shader demonstrates the collapse
simplification by taking two textures, each applied with its own transformation, and
merging these two separate texture passes in a third texture. This resultant texture is then
used to shade the object in a single texture for lower levels-of-detail as shown in Figure 4
and Figure 7. The Leather shader demonstrates the replace simplification in the first
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level-of-detail by replacing a true bump map with a simple texture. The second level in
the Leather removes the texture with a simple constant color. Results of this operation
sequence are seen in Figure 8.

Figure 7 Plastic Shader and Cloth Model

Figure 8 Two Replace Simplifications in a Bumpy Leather Shader
007-4555-001 13
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Table 1 Result times for test LOD shaders on the 1772 triangle chair model performed on
an Silicon Graphics Octane MXE. Each table entry includes frames-per-second for
a small window size, and a large window size with 4x the rendered pixels.

Shader Level 1 Level 2 Level 3

Plastic
(Collapse)

36.4, 27.6 44.5, 34.4 —,—

Wood
(Remove)

18.4, 11.6 18.9, 11.9 19.1, 64.3

Leather
(Replace)

25.4, 14.1 43.7, 25.3 79.8, 64.3

Table 2 Result times for test LOD shaders on a 3280 triangle draped cloth model consisting
of 40 length-82 triangle strips, performed on an Silicon Graphics Octane MXE.
Each table entry includes frames-per-second for a small window size, and a large
window size with 4x the rendered pixels.

Shader Level 1 Level 2 Level 3

Plastic
(Collapse)

52.9, 33.8 68.2, 42.1 —,—

Wood
(Remove)

20.7, 9.2 23.0, 10.0 25.2, 10.7

Leather
(Replace)

30.7, 12.3 55.2, 22.8 140.9, 80.3
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An overview of the performance results shows much what we would expect — that less
detailed shaders result in faster overall rendering. However, as the different results
indicate, the shading operations are not purely fill-limited, and rendering nearly 4x fewer
pixels in certain cases results in only a modest performance improvement. As certain
passes occur, the object’s geometry is also re-rendered, yielding a coupling between type
of rendering passes constructed for a particular shader and that shader’s level-of-detail.
This implies that LOD shaders can accomplish only part of the task, and should also be
accompanied by geometric simplification.

Table 3 Result times for test LOD shaders on the 1772 triangle chair model performed on
an Silicon Graphics® O2®. Each table entry includes frames-per-second for a small
window size, and a large window size with 4x the rendered pixels.

Shader Level 1 Level 2 Level 3

Plastic
(Collapse)

9.2, 11.2 11.8, 14.0 —,—

Wood
(Remove)

3.6, 5.3 4.1, 5.8 4.5, 6.5

Leather
(Replace)

6.4, 8.8 14.7, 18.7 27.7, 35.7

Table 4 Result times for test LOD shaders on the 3280 triangle draped cloth model
performed on an Silicon Graphics O2. Each table entry includes frames-per-second
for a small window size, and a large window size with 4x the rendered pixels.

Shader Level 1 Level 2 Level 3

Plastic
(Collapse)

13.6, 15.9 18.2, 20.4 —,—

Wood
(Remove)

4.9, 6.9 5.4, 7.6 6.0, 8.5

Leather
(Replace)

8.1, 10.3 19.8, 23.9 40.3, 52.3
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Conclusions and Future Work

We have presented LOD shaders: procedural shaders that automatically adjust their level
of shading detail for interactive rendering. We also presented a general framework for
shader simplification — the process of creating LOD shaders from an ordinary shader.
This framework is sufficiently general to serve as a guide for manual shader
simplification or as a basis for automatic simplification. Finally, we presented our results
for semi-automatic shader simplification using manually generated shading function
building blocks for SGI’s OpenGL Shader. These LOD shader building blocks implement
the same functions as building blocks already provided with OpenGL Shader, but with
added level-of-detail parameters to control aspects of their shading complexity.

In the future, we would like to create tools for fully automatic shader simplification. Our
current simplification framework also only considers a static analysis of the shader for
simplification. Following the lead of texture-based simplification researchers like Aliaga
and Shade et al., we could generate new textures on the fly warping them for use over
several frames or updating when they become too different [2, 40].

Logically, it should be possible to generalize our remove, collapse and substitution rules
into a more widely applicable approximation rule form. Other function fitting methods
should be tried to make the approximation rules more useful.

Since rendering with LOD shaders will usually be accompanied by geometric
level-of-detail, they should be more closely linked. Cohen et al. Garland and Heckbert
and others have shown that geometric simplification can be affected by appearance [8,
17]. Shader simplification should also be affected by geometric level-of-detail (that is,
whether per-vertex Phong shading is a good substitute for a texture-based illumination
depends on how the object is tessellated).

Finally, we provide no guarantees on the fidelity of our simplifications. Many geometric
simplification algorithms have been successful without providing exact error metrics or
bounds. However, algorithms such as simplification envelopes by Cohen et al. provide
hard bounds on the amount of error introduced by a simplification [9], guarantees that
are important for some users. Further investigation is necessary to bound the error
introduced by shader simplification.
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Download and Use It!

OpenGL Shader, a powerful appearance-modeling tool for developers, is free for the
downloading. It can be accessed at the following URL:

http://www.sgi.com/software/shader

You can also find more documentation and resources from this webpage.

®2002, Silicon Graphics, Inc. All rights reserved. Silicon Graphics, SGI, Octane, O2, and OpenGL are registered
trademarks and OpenGL Shader is a trademark of Silicon Graphics, Inc.
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