
XFS® Administrator Guide

007–4273–007

COPYRIGHT
© 2003-2004, 2012–2015 Silicon Graphics International Corp. All rights reserved; provided portions may be copyright in third parties,
as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this
electronic documentation in any manner, in whole or in part, without the prior written permission of SGI.

LIMITED RIGHTS LEGEND
The software described in this document is "commercial computer software" provided with restricted rights (except as to included
open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is
a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined
in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
IRIX, Silicon Graphics, SGI, the SGI logo, and XFS are trademarks or registered trademarks of Silicon Graphics International Corp. or
its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the U.S. and other countries. All other trademarks mentioned herein are the
property of their respective owners.

New Features in This Guide

This revision contains the following:

• Changes related to the behavior of the ibound mount option for enhanced XFS:

– ibound now allocates additional data, such as extended attributes and
directory entries, as well as inodes in the bound area, known as the metadata
region. The remainder of the filesystem is known as the user-extent region.

– There must be at least as many allocation groups (AGs) in the user-extent
region as in the metadata region; for practical purposes, you will normally
want more AGs in the user-extent region.

– A new allocation strategy employed by ibound, which may be adjusted by
using agskip mount option.

– The rotorstep system-tunable parameter no longer applies if you are using
ibound.

– The ibound and inode64 mount options are mutually exclusive; specifying
both will now result in an error.

See:

– "ibound Mount Option for SSD Media" on page 70

– "agskip Mount Option for Allocation Group Specification" on page 69

• Clarifications to:

– "Choosing the Log Type and Size" on page 4

– "Remounting an XFS Filesystem" on page 26

007–4273–007 iii

Record of Revision

Version Description

001 January 2003
First printing, incorporating information for the SGITM ProPackTM v
2.1 for Linux® release

002 May 2003
Incorporates information for the SGI ProPack v 2.2 for Linux release

003 January 2004
Incorporates information for the SGI ProPack v 2.4 for Linux release

004 January 2011
Incorporates information for the SGI InfiniteStorage Software
Platform (ISSP) 2.3 release and XFS & XVM media kit 2.3 for Red
Hat® Enterprise Linux® (RHEL) 6

005 April 2013
Incorporates information for the ISSP 3.0 release

006 October 2014
Incorporates information for the ISSP 3.3 release

007 November 2015
Incorporates information for the ISSP 3.5 release

007–4273–007 v

Contents

About This Guide . xiii

Related Publications . xiii

Obtaining Publications . xiv

Conventions . xv

Reader Comments . xv

1. The XFS® Filesystem 1

2. Planning an XFS Filesystem 3

Choosing the Filesystem Block Size 3

Choosing the Filesystem Directory Block Size 4

Choosing the Log Type and Size 4

Log Type: Internal vs External 5

Log Size . 5

mkfs.xfs Command-Line Options for Logs 7

Choosing Allocation Groups and Stripe Units 7

Repartitioning the Disks . 8

3. Creating XFS Filesystems 11

Making a Filesystem . 11

Procedure to Make a Filesystem 11

mkfs.xfs Using the Defaults 13

mkfs.xfs Specifying Block and Log Size of Internal Log 13

mkfs.xfs for a Logical Volume with a Log Subvolume 14

007–4273–007 vii

Contents

mkfs.xfs for a Directory Block Size Larger than Filesystem Block Size 15

Growing a Filesystem . 15

4. Filesystem Maintenance 17

Filesystem Reorganization . 17

Filesystem Corruption . 17

Checking Filesystem Consistency 18

Overview of the Commands to Check Filesystem Consistency 18

xfs_repair -n Command Line 19

xfs_check Command Line 20

Repairing XFS Filesystem Problems 21

Repairing Inconsistent Filesystems with xfs_repair 21

Common xfs_repair Error Messages 23

xfs_repair Error Messages When Files Are in lost+found 24

What to Do If xfs_repair Cannot Repair a Filesystem 25

Mounting a Filesystem Without Log Recovery 25

Remounting an XFS Filesystem 26

5. Disk Quotas . 27

Overview of Disk Quotas . 27

Enabling Quotas . 29

Enabling Quotas for Users . 29

Enabling Quotas for Groups 29

Enabling Quotas for Projects 30

Setting Quota Limits . 31

Setting Quota Limits for Users 31

Setting Quota Limits for Groups 31

viii 007–4273–007

XFS
®

Administrator Guide

Setting Quota Limits for Projects 32

Displaying Quota Information 33

Administering Quotas . 33

Monitoring Disk Space Usage with Quota Accounting 34

Checking Disk Space Usage . 35

6. Backup and Recovery Procedures 37

Features of xfsdump and xfsrestore 37

Media Layout for xfsdump . 38

Possible xfsdump Layouts . 39

Saving Data with xfsdump . 45

xfsdump Syntax . 45

Specifying Local Media . 46

Specifying a Remote Tape Drive 47

Backing Up to a File . 49

Reusing Tapes . 49

Erasing Used Tapes . 50

About Incremental and Resumed Dumps 50

Performing an Incremental Dump 51

Performing a Resumed Dump 52

Examining xfsdump Archives 53

About xfsrestore . 54

xfsrestore Syntax . 55

Displaying the Contents of the Dump Media with xfsrestore 57

Performing Simple Restores with xfsrestore 58

Restoring Individual Files with xfsrestore 60

Performing Network Restores with xfsrestore 60

007–4273–007 ix

Contents

Performing Interactive Restores with xfsrestore 61

Performing Cumulative Restores with xfsrestore 62

Interrupting xfsrestore . 66

About the housekeeping and orphanage Directories 67

Using xfsdump and xfsrestore to Copy Filesystems 68

7. Enhanced XFS Extensions 69

agskip Mount Option for Allocation Group Specification 69

ibound Mount Option for SSD Media 70

ibound Purpose . 70

ibound Availability, Requirements, and Recommendations 70

How ibound Works . 71

ibound Extent Allocation Policy 71

Determining the SSD Size Required for a Given Number of Inodes 74

Overview of the Configuration Procedure Using ibound 75

When ibound is Ignored . 75

ibound and Kernel Messages 76

Message Indicating a Successful Mount with ibound 76

Message Indicating that the ibound Value is Inappropriate 76

Message Indicating Insufficient User-Extents AGs 77

Message Indicating that the Filesystem Has Grown and ibound is Reinstated . . . 77

Examples of Using ibound 77

Example of Successfully Maximizing SSD Storage of Inodes for an SSD/HDD Filesystem 77

Example Using a Value for ibound that is Too Small 81

Example with Insufficient AGs in the User-Extents Region 82

Appendix A. XFS System-Tunable Kernel Parameters 83

Overview of the XFS System-Tunable Kernel Parameters 83

x 007–4273–007

XFS
®

Administrator Guide

Using Appropriate Parameter Settings 83

Time Unit of Measure . 83

Prefix . 84

Permanently Changing a Parameter 84

Temporarily Changing a Parameter 84

Querying a Current Parameter Setting 85

Parameter Types . 85

Parameters to Set at Initial Configuration 86

inherit_noatim . 86

inherit_nodfrg . 86

inherit_nodump . 87

inherit_nosym . 87

inherit_sync . 87

sgid_inherit . 87

stats_clear . 88

symlink_mode . 88

Mount-Time Parameter for Initial Configuration 88

probe_dmapi . 88

Parameters for Special-Case Performance Tuning 88

probe_limit . 89

rotorstep . 89

syncd_timer . 90

xfs_buf_age . 90

xfs_buf_timer . 90

Mount-Time Parameter for Special-Case Performance Tuning 91

fstrm_timer . 91

Debugging Parameters Restricted to SGI Support 91

error_level . 91

007–4273–007 xi

Contents

panic_mask . 92

Index . 93

xii 007–4273–007

About This Guide

This guide tells you how to plan, create, and maintain XFS® filesystems on a system
running the Linux operating system.

Related Publications
For information about this release, see the following SGI InfiniteStorage Software
Platform (ISSP) README.txt release note.

The following documents contain additional information:

• DMF 6 Administrator Guide

• CXFS 7 Client-Only Guide for SGI InfiniteStorage

• XVM Volume Manager Administrator Guide

• Linux Configuration and Operations Guide

• The user guide and quick start guide for your hardware

• NIS Administrator’s Guide

• Personal System Administration Guide

• Performance Co-Pilot for Linux User’s and Administrator’s Guide

• SGI L1 and L2 Controller Software User’s Guide

007–4273–007 xiii

About This Guide

Obtaining Publications
You can obtain SGI documentation as follows:

• Log in to the SGI Customer Portal at http://support.sgi.com. Click the following:

Support by Product
> productname

> Documentation

If you do not find what you are looking for, click Search Knowledgebase, enter a
document-title keyword, select the category Documentation, and click Search.

• The /docs directory on the ISSP DVD or in the online download page contains
information about the release, such as the following:

– The ISSP release note: /docs/README.txt

– Other release notes: /docs/README_NAME.txt

– A complete list of the packages and their location on the media:
/docs/RPMS.txt

– The packages and their respective licenses: /docs/PACKAGE_LICENSES.txt

• The /docs directory on the SGI XFS & XVM media kit for RHEL CD or in the
online download page contains information about the release, such as the
following :

– The XFS & XVM media kit release note:
/docs/xfs_xvm-VERSION-reademe.txt

– A complete list of the packages and their location on the media:
/docs/xfs_xvm-VERSION-rpms.txt

– The packages and their respective licenses: /docs/PACKAGE_LICENSES.txt

• The ISSP release notes and manuals are provided in the noarch/sgi-isspdocs
RPM and will be installed on the system into the following location:

/usr/share/doc/packages/sgi-issp-VERSION/TITLE

• You can view man pages by typing man title at a command line.

xiv 007–4273–007

XFS
®

Administrator Guide

Note: The external websites referred to in this guide were correct at the time of
publication, but are subject to change.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

007–4273–007 xv

About This Guide

• Send mail to the following address:

SGI
Technical Publications
46600 Landing Parkway
Fremont, CA 94538

SGI values your comments and will respond to them promptly.

xvi 007–4273–007

Chapter 1

The XFS® Filesystem

The XFS® filesystem provides the following major features:

• Full 64-bit file capabilities (files larger than 2 GB)

• Rapid and reliable recovery after system crashes because of journaling technology

• Efficient support of large, sparse files (files with “holes”)

• Integrated, full-function volume manager support

• Extremely high I/O performance that scales well on multiprocessing systems

• User-specified filesystem block sizes ranging from 512 bytes up to a maximum of
the filesystem page size

At least 64 MB of memory is recommended for systems with XFS filesystems.

The maximum size of an XFS filesystem is 264 bytes. The maximum size of an XFS
file is 263-1 bytes.

XFS uses database journaling technology to provide high reliability and rapid
recovery. Recovery after a system crash is completed within a few seconds, without
the use of a filesystem checker such as the fsck command. Recovery time is
independent of filesystem size.

XFS is designed to be a very high performance filesystem. XFS as a filesystem is
capable of delivering near-raw I/O performance. While traditional filesystems suffer
from reduced performance as they grow in size, with XFS there is no performance
penalty.

You can create filesystems with block sizes ranging from 512 bytes to a maximum of
the filesystem page size. The filesystem page size is a kernel compile option and may
be set to 4K on x86_64 systems or to 4K, 8K, or 16K on ia64 systems.

Filesystem extents, which provide for contiguous data within a file, are created
automatically for normal files and may be configured at file creation time using the
fcntl() system call. Extents are multiples of a filesystem block.

Inodes are created as needed by XFS filesystems. You can specify the size of inodes
with the -i size= option to the filesystem creation command, mkfs.xfs. You can
also specify the maximum percentage of the space in a filesystem that can be
occupied by inodes with the -i maxpct= option of the mkfs.xfs command.

007–4273–007 1

1: The XFS® Filesystem

XFS implements fully journaled extended attributes. An extended attribute is a
name/value pair associated with a file. Attributes can be attached to all types of
inodes: regular files, directories, symbolic links, device nodes, and so forth. Attribute
values can contain up to 64 KB of arbitrary binary data.

XFS implements two attribute namespaces:

• A user namespace available to all users, protected by the normal file permissions

• A system namespace, accessible only to privileged users

The system namespace can be used for protected filesystem metadata such as access
control lists (ACLs) and hierarchical storage manager (HSM) file migration status. For
more information see the, attr(1) man page.

To dump XFS filesystems, you must use the command xfsdump(8) (not the dump
command). Restoring from these dumps is done using xfsrestore(8). For more
information about the relationships between xfsdump, xfsrestore on XFS
filesystems, see the man pages and Chapter 6, "Backup and Recovery Procedures".

2 007–4273–007

Chapter 2

Planning an XFS Filesystem

This chapter discusses the following:

• "Choosing the Filesystem Block Size" on page 3

• "Choosing the Filesystem Directory Block Size" on page 4

• "Choosing the Log Type and Size" on page 4

• "Choosing Allocation Groups and Stripe Units" on page 7

• "Repartitioning the Disks" on page 8

Choosing the Filesystem Block Size
XFS lets you choose the logical block size for each filesystem by using the -b size=
option of the mkfs.xfs command. (Physical disk blocks remain 512 bytes.)

For XFS filesystems on disk partitions and logical volumes and for the data
subvolume of filesystems on logical volumes, the block size guidelines are as follows:

• The minimum block size is 512 bytes. Small block sizes increase allocation
overhead which decreases filesystem performance. In general, the recommended
block size for filesystems under 100 MB and for filesystems with many small files
is 512 bytes. The filesystem block size must be a power of two.

• The default block size is 4096 bytes (4 KB). This is the recommended block size for
filesystems over 100 MB.

• The maximum block size is the page size of the kernel, which is 4 KB on x86
systems (both 32-bit and 64-bit) and is configurable on ia64 systems. Because large
block sizes can waste space, in general block sizes should not be larger than 4096
bytes (4 KB).

Block sizes are specified in bytes as follows:

• Decimal (default)

• Octal (prefixed by 0)

• Hexadecimal (prefixed by 0x or 0X)

007–4273–007 3

2: Planning an XFS Filesystem

If the number has the suffix “K” it is multiplied by 1024.

Choosing the Filesystem Directory Block Size
To select a logical block size for the filesystem directory that is greater than the logical
block size of the filesystem, use the -n option of the mkfs.xfs command. This lets
you choose a filesystem block size to match the distribution of data file sizes without
adversely affecting directory operation performance. Using this option could improve
performance for a filesystem with many small files, such as a news or mail filesystem.
In this case, the filesystem logical block size could be small (512 bytes, 1 KB, or 2 KB)
and the logical block size for the filesystem directory could be large (4 KB or 8 KB);
this can improve the performance of directory lookups because the tree storing the
index information has larger blocks and less depth.

You should consider setting a logical block size for a filesystem directory that is
greater than the logical block size for the filesystem if you are supporting an
application that reads directories (with the readdir(3C) or getdents(2) system
calls) many times in relation to how much it creates and removes files. Using a small
filesystem block size saves on disk space and on I/O throughput for the small files.

The data needed to perform a readdir operation is segregated from the index
information. Directory data blocks can be “read-ahead” in a readdir. Performing
read-ahead improves the readdir performance dramatically. Because the data
needed for a readdir operation and index information are separate in a directory
block, the offset in a directory is limited to 32 bits.

Choosing the Log Type and Size
This section discusses the following:

• "Log Type: Internal vs External" on page 5

• "Log Size" on page 5

• "mkfs.xfs Command-Line Options for Logs" on page 7

4 007–4273–007

XFS
®

Administrator Guide

Log Type: Internal vs External

Each XFS filesystem has a log that contains filesystem journaling records. There are
two types of logs:

Log Type Description

Internal Maintains log records in approximately the center of
the disk partition or data subvolume. The chosen
starting point is the allocation group (AG) closest to the
center of the filesystem, rounding up if necessary. For
example, if there are 33 AGs numbered AG0 through
AG32, then the 17th AG (AG16) is chosen; in the case of
32 AGs, AG16 is still chosen due to rounding.

Note: When using the ibound mount option, the
chosen AG will still be the middle of the filesystem, not
the middle of the user-extents region. However, the log
will always exist within the user-extents region. See
"ibound Extent Allocation Policy" on page 71.

External Maintains log records that in a dedicated log
subvolume. You should create an external log in any of
the following circumstances:

• The data and log records should be on different
partitions

• The data and the log subvolume of a logical volume
should be on different partitions or should use
different subvolume configurations

• The log subvolume of a logical volume should be
striped independently from the data subvolume

Log Size

The maximum log size for either an internal log or an external log is 2,136,997,888
bytes (that is, 10 MB less than 2 GB), which equates to 521728 4-KB blocks. In
addition, the size of an internal log cannot be larger than the AG size.

007–4273–007 5

2: Planning an XFS Filesystem

For most filesystems, SGI recommends the default log size:

• For an internal log, the default log size depends on the filesystem size, filesystem
block size, and filesystem directory block size. The default ranges from 512
filesystem blocks up to the maximum log size.

• For an external log, the default log size is the entire size of the specified log
device, up to the maximum log size. You should create a volume or partition of
the desired size prior to creating the filesystems and then let mkfs determine the
size of the external log.

Note: Although it is possible to explicitly set the size by using by the mkfs
command, it is much less reliable.

For a filesystem with very high transaction activity, SGI recommends using the
maximum log size.

Note the following:

• The larger the log, the more outstanding transactions that XFS can support.

• Using the maximum log size can increase the filesystem mount time after a crash.

• The amount of disk space required for log records is proportional to the
transaction rate and the size of transactions on the filesystem, not the size of the
filesystem. Larger block sizes result in larger transactions.

• Transactions from directory updates (for example, the mkdir and rmdir
commands and the create() and unlink() system calls) cause more log data
to be generated.

• The disk space dedicated to the log does not show up in listings from the df
command, nor can you access it with a filename.

6 007–4273–007

XFS
®

Administrator Guide

mkfs.xfs Command-Line Options for Logs

At the mkfs.xfs command line, include the following options according to the
circumstances:

• Internal log:

– Default size: no special options are required

– Maximum size:

-l size=521728b

• External log, where device is the location of the external log subvolume:

-l logdev=device

For more details, see the mkfs.xfs(8) man page.

Choosing Allocation Groups and Stripe Units
If you are using the ibounḑ mount option available with enhanced XFS, the first set
of AGs (determined by the ibound value) are designated as the metadata region and
the remaining AGs are designated as the user-extents region. SGI recommends that the
metadata region consists of at least 8 AGs. (See "ibound Mount Option for SSD
Media" on page 70).

You can select the number of AGs when you create an XFS filesystem or, alternatively,
you can select the size of an AG. The larger the number of AGs, the more parallelism
can be achieved when allocating blocks and inodes. You should avoid selecting a
very large number of AGs or an AG size that will yield a very large number of AGs;
a large number of AGs causes an unreasonable amount of CPU time to be used when
the filesystem is close to full.

The minimum AG size is 16 MB; the maximum size is just under 4 GB.

The default number of AGs is 8, unless the filesystem is smaller than 128 MB or
larger than 8 GB. When the filesystem is smaller than 128 MB, the default number of
AGs is fewer than 8, since the minimum AG size is 16 MB. In this case, the data
section, by default, will be divided into as many AGs as possible that are at least 16
MB. When the filesystem is larger than 8 GB, but smaller than 64 GB, the default
number of AGs is greater than 8, with each AG approximately 1 GB in size. When the

007–4273–007 7

2: Planning an XFS Filesystem

filesystem is larger than 64 GB, the default number of AGs is still greater than 8, but
the AG size is 4 GB.

XFS lets you select the stripe unit for a RAID device or stripe volume. This ensures
that data allocations, inode allocations, and the internal log will be aligned along
stripe units when the end-of-file is extended and the file size is larger than 512 KB.
You specify stripe units in 512-byte block units or in bytes. See the mkfs.xfs(1M)
man page for information on specifying stripe units.

When you specify a stripe unit, you also specify a stripe width in 512-byte block units
or in bytes. The stripe width must be a multiple of the stripe unit. The stripe width
will be the preferred I/O size returned in the stat() system call. See the
mkfs.xfs(8) man page for information on specifying stripe width.

When used in conjunction with the -b (block size) option of the mkfs.xfs
command, you can use the -d su= and -d sw= options to specify the stripe unit and
stripe width, respectively, in filesystem blocks.

For a RAID device, the default stripe unit is 0, indicating that the feature is disabled.
You should configure the stripe unit and width sizes of RAID devices in order to
avoid unexpected performance anomalies caused by the filesystem doing non-optimal
I/O operations to the RAID unit. For example, if a block write is not aligned on a
RAID stripe unit boundary and is not a full stripe unit, the RAID will be forced to do
a read/modify/write cycle to write the data. This can have a significant performance
impact. By setting the stripe unit size properly, XFS will avoid unaligned accesses.

For a striped volume, the stripe unit that was specified when the volume was created
is provided by default.

Repartitioning the Disks
Many system administrators may find that they want or need to repartition disks
when they switch to XFS filesystems and/or logical volumes. Some of the reasons to
consider repartitioning are:

• Repartitioning can result in a larger pool of free space for all of the formerly
separate filesystems

• If you plan to use logical volumes, you may want to put the XFS log into a small
subvolume. This requires disk repartitioning to create a small partition for the log
subvolume.

8 007–4273–007

XFS
®

Administrator Guide

• If you plan to use logical volumes, you may want to repartition to create disk
partitions of equal size that can be striped or plexed.

007–4273–007 9

Chapter 3

Creating XFS Filesystems

This chapter discusses the following:

• "Making a Filesystem" on page 11

• "Growing a Filesystem" on page 15

!
Caution: When you create a filesystem, all files already on the disk partition or
logical volume are destroyed.

Making a Filesystem
This section discusses the following:

• "Procedure to Make a Filesystem" on page 11

• "mkfs.xfs Using the Defaults" on page 13

• "mkfs.xfs Specifying Block and Log Size of Internal Log" on page 13

• "mkfs.xfs for a Logical Volume with a Log Subvolume" on page 14

• "mkfs.xfs for a Directory Block Size Larger than Filesystem Block Size" on page
15

Procedure to Make a Filesystem

Use the following procedure to make an XFS filesystem:

1. Review Chapter 2, "Planning an XFS Filesystem" to verify that you are ready to
begin this procedure.

2. Identify the device name of the partition or logical volume where you plan to
create the filesystem. This is the value of partition in the examples below. For
simplicity, the examples in this chapter use an example partition name of
/dev/sdc1. (For more information about partitioning, see the parted(8) man
page.)

007–4273–007 11

3: Creating XFS Filesystems

3. If the disk partition is already mounted, unmount it:

umount partition

!
Caution: Any data that is on the disk partition is destroyed.

For example:

umount /dev/sdc1

4. Use the mkfs.xfs(8) command to make the filesystem. See the following
examples:

• "mkfs.xfs Using the Defaults" on page 13

• "mkfs.xfs Specifying Block and Log Size of Internal Log" on page 13

• "mkfs.xfs for a Logical Volume with a Log Subvolume" on page 14

• "mkfs.xfs for a Directory Block Size Larger than Filesystem Block Size" on
page 15

5. Make a mount directory:

mkdir -p mountdir

mountdir is the directory to be mounted. For example:

mkdir -p /mnt/scratch_space

6. Mount the filesystem on the mount directory:

mount partition mountdir

For example:

mount /dev/sdc1 /mnt/scratch_space

7. To configure the system so that the new filesystem is automatically mounted
when the system is booted, add the following line to the file /etc/fstab:

partition mountdir xfs defaults 0 0

For example:

/dev/sdc1 /mnt/scratch_space xfs defaults 0 0

12 007–4273–007

XFS
®

Administrator Guide

Note: Do not run fsck for XFS filesystems listed in /etc/fstab that use XVM
devices (that is, you should set the fsck flag to 0), because XVM devices are not
always available. If an fsck is run on an XFS filesystem when XVM devices are not
available, the system may suspend the system boot sequence and require input from
the administrator. XVM includes a helper service that mounts all filesystems listed in
/etc/fstab that use XVM devices at the time XVM is started during the boot
sequence.

mkfs.xfs Using the Defaults

If you are making a filesystem on a disk partition or on a logical volume that does
not have a log subvolume and want to use the default values for block size and log
size, use the following command to create the new XFS filesystem:

mkfs.xfs partition

The following example shows the command line to create an XFS filesystem using the
defaults and system output:

mkfs.xfs /dev/sdc1

meta-data=/dev/sdc1 isize=256 agcount=18, agsize=1048576 blks

data = bsize=4096 blocks=17921788, imaxpct=25

= sunit=0 swidth=0 blks, unwritten=0
naming =version 2 bsize=4096

log =internal log bsize=4096 blocks=2187, version=1

= sunit=0 blks

realtime =none extsz=65536 blocks=0, rtextents=0

mkfs.xfs Specifying Block and Log Size of Internal Log

If you are making a filesystem on a disk partition or on a logical volume that does
not have a log subvolume and want to specify the block size and log size, use the
following mkfs.xfs command to create the new XFS filesystem:

mkfs.xfs -b size=blocksize -l size=logsize partition

blocksize is the filesystem block size (see "Choosing the Filesystem Block Size" on page
3), logsize is the size of the area dedicated to log records (see "Choosing the Log Type

007–4273–007 13

3: Creating XFS Filesystems

and Size" on page 4), and partition is the device name or logical volume. The default
values are 4-KB blocks and a 1000-block log.

The following example shows the command line used to create an XFS filesystem and
the system output. The filesystem has a 10–MB internal log and a block size of 1 KB
and is on the partition /dev/dsk/dks0d4s7.

mkfs.xfs -b size=1k -l size=10m /dev/sdc1

meta-data=/dev/sdc1 isize=256 agcount=18, agsize=4194304 blks

data = bsize=1024 blocks=71687152, imaxpct=25

= sunit=0 swidth=0 blks, unwritten=0
naming =version 2 bsize=4096

log =internal log bsize=1024 blocks=10240, version=1

= sunit=0 blks

realtime =none extsz=65536 blocks=0, rtextents=0

mkfs.xfs for a Logical Volume with a Log Subvolume

If you are making a filesystem on a logical volume that has a log subvolume (for an
external log), use the following mkfs.xfs command to make the new XFS filesystem:

mkfs.xfs -l logdev=device,size=blocksize partition

For example, to make a filesystem on partition /dev/sdc1, with an external log on
the entire device /dev/sdh, whose size is 65536 filesystem blocks, enter the following:

mkfs.xfs -l logdev=/dev/sdh,size=65536b /dev/sdc1
meta-data=/dev/sdc1 isize=256 agcount=4, agsize=76433916

blks

= sectsz=512 attr=2

data = bsize=4096 blocks=305735663,

imaxpct=5

= sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0

log =/dev/sdh bsize=4096 blocks=65536, version=2

= sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

14 007–4273–007

XFS
®

Administrator Guide

mkfs.xfs for a Directory Block Size Larger than Filesystem Block Size

If you are making a filesystem with a directory block size that is larger than the
filesystem block size, use the following mkfs.xfs command to create the new XFS
filesystem:

mkfs.xfs -b size=blocksize -n size=dirblocksize partition

dirblocksize is the directory block size (see "Choosing the Filesystem Directory Block
Size" on page 4).

For example:

mkfs.xfs -b size=2k -n size=4k /dev/sdc1

meta-data=/dev/sdc1 isize=256 agcount=4,

agsize=152867832 blks

= sectsz=512 attr=2
data = bsize=2048 blocks=611471327,

imaxpct=5

= sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0

log =internal log bsize=2048 blocks=298569, version=2
= sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

Growing a Filesystem
To grow an existing XFS filesystem, increase the available disk space and use the
xfs_growfs(8) command. The filesystem must be mounted to be grown. The
existing contents of the filesystem are undisturbed, and the added space becomes
available for additional file storage.

Growing an XFS filesystem is supported on XVM volumes. You must first grow the
XVM volume before growing the XFS filesystem. For information on XVM volumes,
see the XVM Volume Manager Administrator’s Guide.

The following example grows a filesystem mounted at /mnt:

xfs_growfs /mnt
meta-data=/mnt isize=256 agcount=30, agsize=262144 blks

data = bsize=4096 blocks=7680000, imaxpct=25

= sunit=0 swidth=0 blks, unwritten=0

007–4273–007 15

3: Creating XFS Filesystems

naming =version 2 bsize=4096
log =internal bsize=4096 blocks=1200 version=1

= sunit=0 blks

realtime =none extsz=65536 blocks=0, rtextents=0

data blocks changed from 7680000 to 17921788

16 007–4273–007

Chapter 4

Filesystem Maintenance

The chapter discusses the following:

• "Filesystem Reorganization" on page 17

• "Filesystem Corruption" on page 17

• "Checking Filesystem Consistency" on page 18

• "Repairing XFS Filesystem Problems" on page 21

• "Remounting an XFS Filesystem" on page 26

Filesystem Reorganization
Filesystems can become fragmented over time. When a filesystem is fragmented,
blocks of free space are small and files have many extents. The xfs_fsr command
reorganizes filesystems so that the layout of the extents is improved. This improves
overall performance. See the xfs_fsr(8) man page for more information.

Filesystem Corruption
Most often, a filesystem is corrupted because the system experienced a panic. This
can be caused by system software failure, hardware failure, or human error (for
example, pulling the plug). Another possible source of filesystem corruption is
overlapping partitions.

There is no foolproof way to predict hardware failure. The best way to avoid
hardware failures is to conscientiously follow recommended diagnostic and
maintenance procedures.

Human error is probably the greatest single cause of filesystem corruption. To avoid
problems, follow these rules closely:

• Always shut down the system properly. Do not simply turn off power to the
system. Use a standard system shutdown tool, such as the shutdown(8) command.

• Never remove a filesystem physically (never pull out a hard disk) without first
turning off power.

007–4273–007 17

4: Filesystem Maintenance

• Never physically write-protect a mounted filesystem, unless it is mounted
read-only.

• Do not mount filesystems on dual-hosted disks on two systems simultaneously.

The best way to ensure against data loss is to make regular, careful backups.

In some cases, XFS filesystem corruption, even on the root filesystem, can be repaired
with the command xfs_repair. For more information about xfs_repair(8) see
the man page and "Checking Filesystem Consistency" on page 18

Checking Filesystem Consistency
This section discusses the following:

• "Overview of the Commands to Check Filesystem Consistency" on page 18

• "xfs_repair -n Command Line" on page 19

• "xfs_check Command Line" on page 20

Overview of the Commands to Check Filesystem Consistency

You can use the following commands to check the consistency of a filesystem:

• xfs_repair -n (no-modify mode)

The xfs_repair -n command is optimized to quickly and efficiently check an
XFS filesystem. The xfs_repair -n command checks XFS filesystem consistency
without making any attempt to repair problems, and it performs a more complete
check than xfs_check. However, it performs only limited checking of extended
attributes.

Note: The xfs_repair command without the -n option makes modifications and
should be used with caution; see "Repairing XFS Filesystem Problems" on page 21

• xfs_check

The xfs_check command calls the checking routines of the general-purpose XFS
filesystem debugger xfs_db, which requires more memory and time to check a
filesystem than does xfs_repair -n. You can use xfs_check on filesystems

18 007–4273–007

XFS
®

Administrator Guide

with extended attributes. (For more information about extended attributes, see the
attr(1) man page.)

The filesystem to be checked must have been unmounted cleanly using normal system
administration procedures (the umount command or system shutdown), not as a
result of a crash or system reset. If the filesystem has not been unmounted cleanly,
mount it and unmount it cleanly before running xfs_check or xfs_repair -n.

Unlike fsck, xfs_check and xfs_repair -n are not invoked automatically on
system startup. You should use these commands if you suspect a filesystem
consistency problem.

xfs_repair -n Command Line

!
Caution: If you suspect problems with the root filesystem, you should use a boot disk
or an alternate root to run xfs_repair.

The command line for xfs_repair -n is:

xfs_repair -n device

device is the device file for a disk partition or logical volume that contains an XFS
filesystem, such as /dev/xscsi/pci02.02.0-1/target3/lun0/part1

The following example shows output with no consistency problems found:

xfs_repair -n /dev/xscsi/pci02.02.0-1/target3/lun0/part1
Phase 1 - find and verify superblock...

Phase 2 - using internal log

- scan filesystem freespace and inode maps...

- found root inode chunk

Phase 3 - for each AG...
- scan (but don’t clear) agi unlinked lists...

- process known inodes and perform inode discovery...

- agno = 0

- agno = 1

...
- process newly discovered inodes...

Phase 4 - check for duplicate blocks...

- setting up duplicate extent list...

- check for inodes claiming duplicate blocks...

007–4273–007 19

4: Filesystem Maintenance

- agno = 0
- agno = 1

...

No modify flag set, skipping phase 5

Phase 6 - check inode connectivity...

- traversing filesystem starting at / ...
- traversal finished ...

- traversing all unattached subtrees ...

- traversals finished ...

- moving disconnected inodes to lost+found ...

Phase 7 - verify link counts...

No modify flag set, skipping filesystem flush and exiting.

For information about potential errors, see "Common xfs_repair Error Messages"
on page 23.

For more details, see the xfs_repair(8) man page.

xfs_check Command Line

The command line for xfs_check is:

xfs_check device

device is the disk or volume device for the filesystem.

If no consistency problems were found, xfs_check returns without displaying any
output, as shown in the following example:

xfs_check /dev/xscsi/pci02.02.0-1/target3/lun0/part1

#

If a problem is reported, use xfs_repair -n to obtain more information. See
"xfs_repair -n Command Line" on page 19.

For more information, see the xfs_check(8) man page.

20 007–4273–007

XFS
®

Administrator Guide

Repairing XFS Filesystem Problems
The xfs_repair command without the -n option checks XFS filesystem consistency
and sometimes repairs problems that are found. This section discusses the following:

• "Repairing Inconsistent Filesystems with xfs_repair" on page 21

• "Common xfs_repair Error Messages" on page 23

• "xfs_repair Error Messages When Files Are in lost+found" on page 24

• "What to Do If xfs_repair Cannot Repair a Filesystem" on page 25

• "Mounting a Filesystem Without Log Recovery" on page 25

Repairing Inconsistent Filesystems with xfs_repair

!
Caution: To avoid filesystem damage when using xfs_repair without the -n
option, you must ensure that the storage hardware, including RAID and interconnect
hardware, are not experiencing any problems.

If you suspect problems with the root filesystem, you should use a boot disk or an
alternate boot disk to run xfs_repair.

The xfs_repair (without the -n option) checks XFS filesystem consistency and, if
problems are detected, also corrects them if possible. The filesystem to be checked
and repaired must have been unmounted cleanly using normal system administration
procedures (the umount command or system shutdown), not as a result of a crash or
system reset. If the filesystem has not been unmounted cleanly, mount it and
unmount it cleanly before running xfs_repair.

The command line for xfs_repair when you want it to repair any inconsistencies it
finds is:

xfs_repair device

device is the disk or volume device for the filesystem. It must not be mounted.

007–4273–007 21

4: Filesystem Maintenance

The following example shows the output you see from running xfs_repair on a
clean filesystem:

xfs_repair /dev/xscsi/pci02.02.0-1/target3/lun0/part1

Phase 1 - find and verify superblock...

Phase 2 - using internal log

- zero log...

- scan filesystem freespace and inode maps...

- found root inode chunk
Phase 3 - for each AG...

- scan and clear agi unlinked lists...

- process known inodes and perform inode discovery...

- agno = 0

- agno = 1
...

- process newly discovered inodes...

Phase 4 - check for duplicate blocks...

- setting up duplicate extent list...

- clear lost+found (if it exists) ...
- check for inodes claiming duplicate blocks...

- agno = 0

- agno = 1

...

Phase 5 - rebuild AG headers and trees...

- reset superblock...
Phase 6 - check inode connectivity...

- resetting contents of realtime bitmap and summary inodes

- ensuring existence of lost+found directory

- traversing filesystem starting at / ...

- traversal finished ...
- traversing all unattached subtrees ...

- traversals finished ...

- moving disconnected inodes to lost+found ...

Phase 7 - verify and correct link counts...

done

22 007–4273–007

XFS
®

Administrator Guide

Common xfs_repair Error Messages

Some common error messages from xfs_repair and the repairs that it performs are
the following:

disconnected inode 242002, moving to lost+found

xfs_repair found an inode that is in use, but is not connected to
the filesystem. The inode is moved to the filesystem’s lost+found
directory. Its name is its inode number (in this example, 242002). If
the disconnected inode is a directory, the directory’s subtree is
preserved—all of its child inodes are automatically moved with it, so
the entire directory subtree moves to lost+found.

imap claims in-use inode 2444941 is free, correcting imap

The inode allocation map in the filesystem behaves as if inode
2444941(in this example) is free, but the inode itself looks like it is
still in use. xfs_repair corrects the inode map to say that the inode
is in use.

entry references free inode 2444940 in shortform directory
2444922 junking entry "fb" in directory inode 2444922

A directory entry points to an inode (in this example, 2444940) that
xfs_repair has determined is actually free. xfs_repair junks the
directory entry. The term shortform means a small directory. In larger
directories, the entry deletion is usually a two-pass process. In this
case, the second part of the message reads something like marking
bad entry, marking entry to be deleted, or will clear
entry.

resetting inode 241996 nlinks from 5 to 3

xfs_repair detected a mismatch between the number of directory
entries pointing to the inode (in this example, 241996) and the
number of links recorded in the inode. It corrected the number (from
5 to 3 in this case).

cleared inode 2444926

There was something wrong with the inode that was not correctable,
so xfs_repair turned it into a zero-length free inode. This usually
happens because the inode claims blocks that are used by something
else or the inode itself is badly corrupted. Typically, the cleared

007–4273–007 23

4: Filesystem Maintenance

inode message is preceded by one or more messages indicating why
the inode must be cleared.

xfs_repair Error Messages When Files Are in lost+found

If xfs_repair has put files and directories in a filesystem’s lost+found directory
and you do not remove them, the next time you run xfs_repair it temporarily
disconnects the inodes for those files and directories. They are reconnected before
xfs_repair terminates. As a result of the disconnected inodes in lost+found, you
see output like this:

Phase 1 - find and verify superblock...

Phase 2 - zero log...

- scan filesystem freespace and inode maps...

- found root inode chunk

Phase 3 - for each AG...
- scan and clear agi unlinked lists...

- process known inodes and perform inode discovery...

- agno = 0

- agno = 1

...
- process newly discovered inodes...

Phase 4 - check for duplicate blocks...

- setting up duplicate extent list...

- clear lost+found (if it exists) ...

- clearing existing ‘‘lost+found’’ inode

- deleting existing ‘‘lost+found’’ entry
- check for inodes claiming duplicate blocks...

- agno = 0

imap claims in-use inode 242000 is free, correcting imap

- agno = 1

- agno = 2
...

Phase 5 - rebuild AG headers and trees...

- reset superblock counters...

Phase 6 - check inode connectivity...

- ensuring existence of lost+found directory

- traversing filesystem starting at / ...
- traversal finished ...

- traversing all unattached subtrees ...

24 007–4273–007

XFS
®

Administrator Guide

- traversals finished ...
- moving disconnected inodes to lost+found ...

disconnected inode 242000, moving to lost+found

Phase 7 - verify and correct link counts...

done

In this example, inode 242000 was an inode that was moved to lost+found during
a previous xfs_repair run. This run of xfs_repair found that the filesystem is
consistent. If the lost+found directory had been empty, in phase 4 only the
messages about clearing and deleting the lost+found directory would have
appeared. The imap claims and disconnected inode messages appear (one pair
of messages per inode) if there are inodes in the lost+found directory.

What to Do If xfs_repair Cannot Repair a Filesystem

If xfs_repair fails to repair the filesystem successfully, try giving the same
xfs_repair command twice more; xfs_repair may be able to make more repairs
on successive runs. If xfs_repair fails to fix the consistency problems in three tries,
your next step depends upon where it failed:

• If xfs_repair failed in phase 1, you must restore lost files from backups.

• If xfs_repair failed in phase 2 or later, you may be able to restore files from the
disk by backing up and restoring the files on the filesystem.

If xfs_repair failed in phase 2 or later, follow these steps:

1. Mount the filesystem read-only using mount -r.

2. Make a filesystem backup with xfsdump.

3. Use mkfs.xfs to a make new filesystem on the same disk partition or logical
volume.

4. Restore the files from the backup with xfsrestore.

See Chapter 6, "Backup and Recovery Procedures" for information about xfsdump
and xfsrestore.

Mounting a Filesystem Without Log Recovery

If a filesystem is damaged to the extent that you are unable to mount the filesystem
successfully in the standard fashion, you may be able to recover some of its data by

007–4273–007 25

4: Filesystem Maintenance

mounting the filesystem with the -o norecover option of the mount command.
This option mounts the filesystem without running log recovery. You must mount the
filesystem as read-only when you use this option.

Remounting an XFS Filesystem
The -o remount option to the mount(8) command does not do a full initialization of
all mount options; it ignores some options (such as for quotas) and may implement
only a subset of options. Therefore, the best practice is to first unmount the filesystem
with the umount(8) command and then mount it again with the mount command
(without the remount option).

The -o remount option is acceptable only with the following mount options:

Option Description

ro Read only

rw Read-write

barrier Barrier on

nobarrier Barrier off

swalloc Stripe allocation on

noalign Stripe allocation off

For more information, see the mount(8) command.

26 007–4273–007

Chapter 5

Disk Quotas

This chapter discusses the following:

• "Overview of Disk Quotas" on page 27

• "Enabling Quotas" on page 29

• "Setting Quota Limits" on page 31

• "Displaying Quota Information" on page 33

• "Administering Quotas" on page 33

• "Monitoring Disk Space Usage with Quota Accounting" on page 34

• "Checking Disk Space Usage" on page 35

For more information, see the xfs_quota(8) man pages.

Overview of Disk Quotas
If your system is constantly short of disk space and you cannot increase the amount
of available space, you an use disk quotas to manage your existing space.

Disk quotas let you limit the amount of space a user can occupy and the number of
files (inodes) each user can own. You can implement hard or soft limits; hard limits
are enforced by the system, soft limits merely remind the user to trim disk usage.
Disk usage limits are not enforced for root.

With soft limits, whenever a user logs in with a usage greater than the assigned soft
limit, that user is warned (by the login command). When the user exceeds the soft
limit, the timer is enabled. Any time the quota drops below the soft limits, the timer
is disabled. If the timer is enabled longer than a time period set by the system
administrator, the particular limit that has been exceeded is treated as if the hard limit
has been reached, and no more disk space is allocated to the user. The only way to
reset this condition is to reduce usage below the quota. Only root may set the time
limits, and this is done on a per-filesystem basis.

You can impose limits on some users and not others, some filesystems and not others,
and on total disk usage per user, or total number of files. There is no limit to the
number of accounts and there is little performance penalty for large numbers of users.

007–4273–007 27

5: Disk Quotas

You can also impose limits according to user ID, group ID, or project ID. You can
associate a directory in the filesystem hierarchy with a project ID by including it in
the /etc/projects file. (You can use /etc/projid to map each project name to
its number.) With project quotas in effect, such a directory and all files and directories
below it can be subjected to a quota, meaning that the aggregate resource used
thereunder is limited. For more information, see the xfs_quota(8) man page.

Note: Group quotas and project quotas are mutually exclusive per filesystem because
XFS records either the project ID or the group ID of a file in the same physical
location; how the number is interpreted depends upon whether project or group
quotas are in force.

Disk quotas can be used to do disk usage accounting. Disk usage accounting
monitors disk usage, but does not enforce disk usage limits. See "Monitoring Disk
Space Usage with Quota Accounting" on page 34 for more information.

You must first turn on disk quotas on a filesystem, then you can set quotas on that
filesystem for individual users and for projects or groups.

For more details about disk quotas, see the quotas(4) man page.

28 007–4273–007

XFS
®

Administrator Guide

Enabling Quotas
This section discusses the following:

• "Enabling Quotas for Users" on page 29

• "Enabling Quotas for Groups" on page 29

• "Enabling Quotas for Projects" on page 30

Enabling Quotas for Users

You can enable quotas for users in these ways:

• To turn on disk quotas automatically for users on a non-root filesystem, include
the option quota in the /etc/fstab entry, for example:

/dev/foo / xfs rw,quota 0 0

• To turn on disk quotas manually for users on a non-root filesystem, mount the
filesystem with this command:

mount -o quota fsname rootdir

fsname is the device name of the filesystem, rootdir is the directory where the
filesystem is mounted.

• To turn on disk quotas for users on the root filesystem, you must pass the quota
mount options into the kernel at boot time through the Linux rootflags boot
option. The following example adds the rootflags=quota option to the append
line in elilo.conf:

append="root=/dev/xscsi/pci00.01.0-1/tsrget0/lun0/part3 rootflags=quota"

Enabling Quotas for Groups

You can enable quotas for groups in these ways:

• To turn on disk quotas automatically for groups on a non-root filesystem, include
the option gquota in the /etc/fstab entry, for example:

/dev/foo / xfs rw,gquota 0 0

007–4273–007 29

5: Disk Quotas

• To turn on disk quotas manually for groups on a non-root filesystem, mount the
filesystem with this command:

mount -o gquota fsname rootdir

fsname is the device name of the filesystem, rootdir is the directory where the
filesystem is mounted.

• To turn on disk quotas for groups on the root filesystem, you must pass the quota
mount options into the kernel at boot time through the Linux rootflags boot
option. The following example adds the rootflags=gquota option to the
append line in elilo.conf:

append="root=/dev/xscsi/pci00.01.0-1/tsrget0/lun0/part3 rootflags=gquota"

Enabling Quotas for Projects

Note: Group and project quotas are mutually exclusive per filesystem.

You can enable quotas for projects in these ways:

• To turn on disk quotas automatically for projects on a non-root filesystem, include
the option prjquota in the /etc/fstab entry, for example:

/dev/foo / xfs rw,prjquota 0 0

• To turn on disk quotas manually for projects on a non-root filesystem, mount the
filesystem with this command:

mount -o prjquota fsname rootdir

fsname is the device name of the filesystem, rootdir is the directory where the
filesystem is mounted.

• To turn on disk quotas for projects on the root filesystem, you must pass the quota
mount options into the kernel at boot time through the Linux rootflags boot
option. The following example adds the rootflags=prjquota option to the
append line in elilo.conf:

append="root=/dev/xscsi/pci00.01.0-1/tsrget0/lun0/part3 rootflags=prjquota"

30 007–4273–007

XFS
®

Administrator Guide

Setting Quota Limits
After enabling quotas, you can set limits for users, groups, or projects:

• "Setting Quota Limits for Users" on page 31

• "Setting Quota Limits for Groups" on page 31

• "Setting Quota Limits for Projects" on page 32

Note: Group and project quotas are mutually exclusive per filesystem.

Setting Quota Limits for Users

After completing "Enabling Quotas for Users" on page 29, do the following to specify
quota limits for a user:

xfs_quota -x -c ’limit -u bsoft=N bhard=N user’ rootdir

where:

• N is a soft or hard limit for disk usage in blocks of the specified unit: k (kilobytes),
m (megabytes), g (gigabytes), or t (terabytes)

• user is a user name or numeric user ID

• rootdir is the mount point of the XFS filesystem.

For example, to set limits for user userA on /mnt/myxfs using a soft limit of 5
Mbytes and a hard limit of 6 Mbytes:

xfs_quota -x -c ’limit -u bsoft=5m bhard=6m userA’ /mnt/myxfs

Setting Quota Limits for Groups

After completing "Enabling Quotas for Groups" on page 29, setting disk quota limits
for groups is similar to setting limits for users (as described in "Setting Quota Limits
for Users" on page 31), but uses the -g option and the group name or ID.

To specify quota limits for a group:

xfs_quota -x -c ’limit -g bsoft=N bhard=N group’ rootdir

007–4273–007 31

5: Disk Quotas

where:

• N is a soft or hard limit for disk usage in blocks of the specified unit: k (kilobytes),
m (megabytes), g (gigabytes), or t (terabytes)

• group is a group name or numeric group ID

• rootdir is the mount point of the XFS filesystem.

For example, to set limits for group groupA on /mnt/myxfs using a soft limit of 5
Mbytes and a hard limit of 6 Mbytes:

xfs_quota -x -c ’limit -g bsoft=5m bhard=6m groupA’ /mnt/myxfs

Setting Quota Limits for Projects

After completing "Enabling Quotas for Projects" on page 30, setting limits for projects
is similar to setting limits for groups (as described in "Setting Quota Limits for
Groups" on page 31), but uses the -p option and the project name or ID.

Note: Group and project quotas are mutually exclusive per filesystem.

To specify quota limits for a project:

xfs_quota -x -c ’limit -p bsoft=N bhard=N project’ rootdir

where:

• N is a soft or hard limit for disk usage in blocks of the specified unit: k (kilobytes),
m (megabytes), g (gigabytes), or t (terabytes)

• project is a project name or numeric group ID

• rootdir is the mount point of the XFS filesystem.

For example, to set limits for project projectA on /mnt/myxfs using a soft limit of
5 Mbytes and a hard limit of 6 Mbytes:

xfs_quota -x -c ’limit -p bsoft=5m bhard=6m projectA’ /mnt/myxfs

For more information about projects, see the xfs_quota(8) man page.

32 007–4273–007

XFS
®

Administrator Guide

Displaying Quota Information
Some commands that display information about disk quotas are as follows:

• To display a report that shows whether disk quotas are on or off for each
filesystem:

xfs_quota -x -c state

• To see filesystem quota information for a specific filesystem:

xfs_quota -x -c report rootdir

For example, to see quota information for the /mnt/myxfs filesystem:

xfs_quota -x -c report /mnt/myxfs

• To get information about group disk quotas for each filesystem:

xfs_quota -x -c ’report -g’

Administering Quotas
If the filesystem being dumped contains quotas, xfsdump will use xfs_quota(8) to
store the quotas in the following files in the root of the filesystem to be dumped:

xfsdump_quotas User quotas

xfsdump_quotas_group Group quotas

These files will then be included in the dump. These files will appear only for those
quotas that are enabled on the filesystem being dumped. Upon restoration, you can
use xfs_quota to reactivate the quotas for the filesystem.

Note: The xfsdump_quotas file will probably require modification to change the
filesystem or UIDs if the filesystem has been restored to a different partition or system.

To create quota reports, do the following:

• To create a file that lists the current quota limits of all the filesystems for users,
enter this command as superuser:

xfs_quota -x -c ’report -f quotafile’

007–4273–007 33

5: Disk Quotas

• To create a file that lists the current quota limits of all the filesystems for groups,
enter this command as superuser:

xfs_quota -x -c ’report -g -f quotafile’

Monitoring Disk Space Usage with Quota Accounting
The disk quotas system can be used to monitor disk space usage without enforcing
disk usage limits. Disk quota accounting can be enabled by user or by group.

Use the following commands to turn on disk usage accounting without enforcement,
stop disk usage accounting, and report disk space usage:

• To turn on disk usage accounting automatically on a filesystem for user quotas,
include the option qnoenforce in the /etc/fstab entry:

/dev/foo / xfs rw,qnoenforce 0 0

• To turn on disk usage accounting automatically on a filesystem for group quotas,
include the option gqnoenforce in the /etc/fstab entry:

/dev/foo / xfs rw,

gqnoenforce 0 0

• To turn on disk usage accounting manually for user quotas on a non-root
filesystem, when mounting the filesystem:

mount -o qnoenforce fsname rootdir

fsname is the device name of the filesystem, rootdir is the directory where the
filesystem is mounted.

• To turn on disk usage accounting manually on a non-root filesystem for group
quotas when mounting the filesystem:

mount -o gqnoenforce fsname rootdir

34 007–4273–007

XFS
®

Administrator Guide

• To turn on disk usage accounting manually on the root filesystem for user quotas,
execute the following commands. The quotaon command turns on disk
accounting with enforcement, and the quotaoff -o command turns off the
enforcement:

quotaon -v /

quotaoff -v -o enforce /

reboot

• To turn on disk usage accounting manually on the root filesystem (/) for group
quotas:

quotaon -v -o gquota /
quotaoff -v -o gqenforce /

reboot

• To stop disk usage accounting on a filesystem for user quotas:

quotaoff fsname

• To stop disk usage accounting on a filesystem for group quotas:

quotaoff -o gquota fsname

• To get information about disk usage, use the commands described in "Checking
Disk Space Usage" on page 35.

Checking Disk Space Usage
The quota command reports the amount of disk usage per user, per group, or per
project on a filesystem, as well as additional information about the disk quotas. You
must turn on quotas to use this feature, even if you are not going to enforce quota
limits. For instructions on monitoring disk space usage without enforcing disk usage
limits see "Monitoring Disk Space Usage with Quota Accounting" on page 34.

For information on the output of the quota command, see "Displaying Quota
Information" on page 33.

007–4273–007 35

Chapter 6

Backup and Recovery Procedures

This section discusses the following:

• "Features of xfsdump and xfsrestore" on page 37

• "Media Layout for xfsdump" on page 38

• "Possible xfsdump Layouts" on page 39

• "Saving Data with xfsdump" on page 45

• "Examining xfsdump Archives" on page 53

• "About xfsrestore" on page 54

• "Using xfsdump and xfsrestore to Copy Filesystems" on page 68

For more information, see the xfsdump(8) and xfsrestore(8) man pages.

Features of xfsdump and xfsrestore

The xfsdump and xfsrestore utilities fully support XFS filesystems. With
xfsdump and xfsrestore, you can back up and restore data using local or remote
drives. You can back up filesystems, directories, and individual files, and then restore
them independently of how they were backed up. xfsdump also allows you to back
up “live” (mounted, in-use) filesystems.

With xfsdump and xfsrestore, you can recover from intentional or accidental
interruptions—this means you can interrupt a dump or restore at any time, and then
resume it whenever desired. xfsdump and xfsrestore support incremental
dumps, and multiple dumps can be placed on a single media object.

xfsdump and xfsrestore support the following:

• XFS features including 64-bit inode numbers, file lengths, and holes

• Multiple media types (disk and various kinds of tape)

007–4273–007 37

6: Backup and Recovery Procedures

• File types:

Regular
Directory
Symbolic link
Block and character special
FIFO
socket

xfsdump and xfsrestore retain hard links. xfsdump does not affect the state of
the filesystem being dumped (for example, access times are retained). xfsrestore
detects and bypasses media errors and recovers rapidly after encountering them.
xfsdump does not cross mount points, local or remote.

xfsdump optionally prompts for additional media when the end of the current media
is reached. Operator estimates of media capacity are not required and xfsdump also
supports automated backups. xfsdump maintains an extensive online inventory of all
dumps performed. Inventory contents can be viewed through various filters to
quickly locate specific dump information. xfsrestore supports interactive
operation, allowing selection of individual files or directories for recovery. It also
permits selection from among backups performed at different times when multiple
dumps are available. Dump contents may also be viewed noninteractively.

Note: If you are using disk quotas on XFS filesystems, see Chapter 5, "Disk Quotas".

Media Layout for xfsdump

The following section introduces some terminology and then describes the way
xfsdump formats data on the storage media for use by xfsrestore.

While xfsdump and xfsrestore are often used with tape media, the utilities
actually support multiple kinds of media, so in the following discussions, the term
media object is used to refer to the media in a generic fashion. The term dump refers to
the result of a single use of the xfsdump command to output data files to the selected
media objects. An instance of the use of xfsdump is referred to as a dump session.

The dump session sends a single dump stream to the media objects. The dump stream
may contain as little as a single file or as much as an entire filesystem. The dump
stream is composed of dump objects, which are:

• One or more data segments

38 007–4273–007

XFS
®

Administrator Guide

• An optional dump inventory

• A stream terminator

The data segment contains the actual data, the dump inventory contains a list of the
dump objects in the dump, and the stream terminator marks the end of the dump
stream. When a dump stream is composed of multiple dump objects, each object is
contained in a media file. Some output devices, for example standard output, do not
support the concept of media files—the dump stream is only the data.

Possible xfsdump Layouts
The simplest dump, for example the dump of a small amount of data to a single tape,
produces a data segment and a stream terminator as the only dump objects. If the
optional inventory object is added, you have a dump like that illustrated in Figure
6-1. (In the data layout diagrams in this section, the optional inventory object is
always included.)

Data

Inventory

Terminator

Media files

Figure 6-1 Single Dump on Single Media Object

007–4273–007 39

6: Backup and Recovery Procedures

You can also dump data streams that are larger than a single media object. The data
stream can be broken between any two media files including data segment boundaries.
(The inventory is never broken into segments.) In addition, if you specify multiple
drives, the dump is automatically broken into multiple streams. The xfsdump utility
prompts for a new media object when the end of the current media object is reached.

Figure 6-2 illustrates the data layout of a single dump session that requires two media
objects on each of two devices.

40 007–4273–007

XFS
®

Administrator Guide

Data segment

Inventory

Terminator

Data segment

Data segment

Data segment

Media object 1

Media object 2

Figure 6-2 Single Dump on Multiple Media Objects

007–4273–007 41

6: Backup and Recovery Procedures

The xfsdump utility also accommodates multiple dumps on a single media object.
When dumping to tape, for example, the tape is automatically advanced past the
existing dump sessions and the existing stream terminator is erased. The new dump
data is then written, followed by the new stream terminator. (For drives that do not
permit termination to operate in this way, other means are used to achieve the same
effective result.)

Figure 6-3 illustrates the layout of media files for two dumps on a single media object.

Figure 6-4 illustrates a case in which multiple dumps use multiple media objects. If
media files already exist on the additional media objects, the xfsdump utility finds the
existing stream terminator, erases it, and begins writing the new dump data stream.

42 007–4273–007

XFS
®

Administrator Guide

Inventory

Terminator

Inventory

Data segment

Data segment

Data segment

Data segment

First dum
p

S
econd dum

p

Former

terminator

location

Figure 6-3 Multiple Dumps on Single Media Object

007–4273–007 43

6: Backup and Recovery Procedures

Inventory

Data segment

Data segment

Data segment

Inventory

Terminator

Data segment

Data segment

Data segment

First dum
p

M
edia object 1

M
edia object 2

S
econd dum

p

Former

terminator

location

Figure 6-4 Multiple Dumps on Multiple Media Objects

44 007–4273–007

XFS
®

Administrator Guide

Saving Data with xfsdump

This section discusses the following:

• "xfsdump Syntax" on page 45

• "Specifying Local Media" on page 46

• "Specifying a Remote Tape Drive" on page 47

• "Backing Up to a File" on page 49

• "Reusing Tapes" on page 49

• "Erasing Used Tapes" on page 50

• "About Incremental and Resumed Dumps" on page 50

• "Performing an Incremental Dump" on page 51

• "Performing a Resumed Dump" on page 52

xfsdump Syntax

You must be the superuser to use xfsdump. To display a summary of xfsdump
syntax, use the -h option:

xfsdump -h
xfsdump: version X.X
xfsdump: usage: xfsdump [-b <blocksize> (with minimal rmt option)]

[-c <media change alert program>]

[-f <destination> ...]

[-h (help)]
[-l <level>]

[-m <force usage of minimal rmt>]

[-o <overwrite tape >]

[-p <seconds between progress reports>]

[-s <subtree> ...]

[-v <verbosity {silent, verbose, trace}>]
[-A (don’t dump extended file attributes)]

[-B <base dump session id>]

[-E (pre-erase media)]

[-F (don’t prompt)]

[-I (display dump inventory)]

007–4273–007 45

6: Backup and Recovery Procedures

[-J (inhibit inventory update)]
[-L <session label>]

[-M <media label> ...]

[-O <options file>]

[-R (resume)]

[-T (don’t timeout dialogs)]
[-Y <I/O buffer ring length>]

[- (stdout)]

[<source (mntpnt|device)>]

Specifying Local Media

You can use xfsdump to back up data to various media. For example, you can dump
data to a tape or hard disk. The drive containing the media object may be connected
to the local system or accessible over the network.

Following is an example of a level–0 dump to a local tape drive.

Note: The dump level does not need to be specified for a level–0 dump. For a
discussion of dump levels, see "About Incremental and Resumed Dumps" on page 50.

xfsdump -f /dev/tape -L testers_11_21_94 -M test_1 /disk2

xfsdump: version 2.0 - type ^C for status and control

xfsdump: level 0 dump of cumulus:/disk2
xfsdump: dump date: Wed Oct 25 16:19:13 1995

xfsdump: session id: d2a6123b-b21d-1001-8938-08006906dc5c

xfsdump: session label: ‘‘testers_11_21_94’’

xfsdump: ino map phase 1: skipping (no subtrees specified)

xfsdump: ino map phase 2: constructing initial dump list
xfsdump: ino map phase 3: skipping (no pruning necessary)

xfsdump: ino map phase 4: skipping (size estimated in phase 2)

xfsdump: ino map phase 5: skipping (only one dump stream)

xfsdump: ino map construction complete

xfsdump: preparing drive
xfsdump: creating dump session media file 0 (media 0, file 0)

xfsdump: dumping ino map

xfsdump: dumping directories

xfsdump: dumping non-directory files

xfsdump: ending media file

xfsdump: media file size 16777216 bytes

46 007–4273–007

XFS
®

Administrator Guide

xfsdump: dumping session inventory
xfsdump: beginning inventory media file

xfsdump: media file 1 (media 0, file 1)

xfsdump: ending inventory media file

xfsdump: inventory media file size 4194304 bytes

xfsdump: writing stream terminator
xfsdump: beginning media stream terminator

xfsdump: media file 2 (media 0, file 2)

xfsdump: ending media stream terminator

xfsdump: media stream terminator size 2097152 bytes

xfsdump: I/O metrics: 3 by 2MB ring; 14/22 (64%) records streamed; 145889B/s

xfsdump: dump complete: 141 seconds elapsed

In this case, a session label (-L option) and a media label (-M option) are supplied,
and the entire filesystem is dumped. Since no verbosity option is supplied, the default
of verbose is used, resulting in the detailed screen output. The dump inventory is
updated with the record of this backup because the -J option is not specified.

Following is an example of a backup of a subdirectory of a filesystem. In the
following example, the verbosity is set to silent, and the dump inventory is not
updated (-J option):

xfsdump -f /dev/tape -v silent -J -s people/fred /usr

The subdirectory backed up (/usr/people/fred) was specified relative to the
filesystem, so the specification did not include the name of the filesystem (in this case,
/usr). Because /usr may be a very large filesystem and the -v silent option was
used, this could take a long time during which there would be no screen output.

Specifying a Remote Tape Drive

To back up data to a remote tape drive, use the standard remote system syntax,
specifying the system (by hostname if supported by a name server or IP address if
not) followed by a colon (:), then the pathname of the special file.

Note: For remote backups, use the variable block size tape device if the device
supports variable block size operation; otherwise, use the fixed block size device. For
more information, see intro(7) .

007–4273–007 47

6: Backup and Recovery Procedures

The following example shows a subtree backup to a remote tape device:

xfsdump -f magnolia:/dev/tape -L mag_10-95 -s engr /disk2
xfsdump: version 2.0 - type ^C for status and control

xfsdump: level 0 dump of cumulus:/disk2

xfsdump: dump date: Wed Oct 25 16:27:39 1995

xfsdump: session id: d2a6124b-b21d-1001-8938-08006906dc5c

xfsdump: session label: ‘‘mag_10-95’’

xfsdump: ino map phase 1: parsing subtree selections
xfsdump: ino map phase 2: constructing initial dump list

xfsdump: ino map phase 3: pruning unneeded subtrees

xfsdump: ino map phase 4: estimating dump size

xfsdump: ino map phase 5: skipping (only one dump stream)

xfsdump: ino map construction complete
xfsdump: preparing drive

xfsdump: positioned at media file 0: dump 0, stream 0

xfsdump: positioned at media file 1: dump 0, stream 0

xfsdump: positioned at media file 2: dump 0, stream 0

xfsdump: stream terminator found
xfsdump: creating dump session media file 0 (media 0, file 2)

xfsdump: dumping ino map

xfsdump: dumping directories

xfsdump: dumping non-directory files

xfsdump: ending media file

xfsdump: media file size 6291456 bytes
xfsdump: dumping session inventory

xfsdump: beginning inventory media file

xfsdump: media file 1 (media 0, file 3)

xfsdump: ending inventory media file

xfsdump: inventory media file size 4194304 bytes
xfsdump: writing stream terminator

xfsdump: beginning media stream terminator

xfsdump: media file 2 (media 0, file 4)

xfsdump: ending media stream terminator

xfsdump: media stream terminator size 2097152 bytes
xfsdump: I/O metrics: 3 by 2MB ring; 12/22 (55%) records streamed; 99864B/s

xfsdump: dump complete: 149 seconds elapsed

In this case, /disk2/engr is backed up to the variable block size tape device on the
remote system magnolia. Existing dumps on the tape mounted on magnolia were
skipped before recording the new data.

48 007–4273–007

XFS
®

Administrator Guide

Note: The superuser account on the local system must be able to rsh to the remote
system without a password. For more information, see hosts.equiv(4) .

Backing Up to a File

You can back up data to a file instead of a device. In the following example, a file
(Makefile) and a directory (Source) are backed up to a dump file
(monday_backup) in /usr/tmp on the local system:

xfsdump -f /usr/tmp/monday_backup -v silent -J -s \

people/fred/Makefile -s people/fred/Source /usr

You may also dump to a file on a remote system, but the file must be in the remote
system’s /dev directory. For example, the following command backs up the
/usr/people/fred subdirectory on the local system to the regular
file /dev/fred_mon_12-2 on the remote system theduke:

xfsdump -f theduke:/dev/fred_mon_12-2 -s people/fred /usr

Alternatively, you could dump to any remote file if that file is on an NFS-mounted
filesystem. In any case, permission settings on the remote system must allow you to
write to the file.

For information on using the standard input and standard output capabilities of
xfsdump and xfsrestore to pipe data between filesystems or across the network,
see "Using xfsdump and xfsrestore to Copy Filesystems" on page 68.

Reusing Tapes

When you use a new tape as the media object of a dump session, xfsdump begins
writing dump data at the beginning of the tape without prompting. If the tape
already has dump data on it, xfsdump begins writing data after the last dump
stream, again without prompting.

007–4273–007 49

6: Backup and Recovery Procedures

If, however, the tape contains data that is not from a dump session, xfsdump
prompts you before continuing:

xfsdump -f /dev/tape /test

xfsdump: version X.X - type ^C for status and control

xfsdump: dump date: Fri Dec 2 11:25:19 1994

xfsdump: level 0 dump

xfsdump: session id: d23cc072-b21d-1001-8f97-080069068eeb

xfsdump: preparing tape drive
xfsdump: this tape contains data that is not part of an XFS dump

xfsdump: do you want to overwrite this tape?

type y to overwrite, n to change tapes or abort (y/n):

You must answer y if you want to continue with the dump session, or n to quit. If
you answer y, the dump session resumes and the tape is overwritten. If you do not
respond to the prompt, the session eventually times out.

Note: This means that an automatic backup, for example one initiated by a crontab
entry, will not succeed unless you specified the -F option with the xfsdump
command, which forces it to overwrite the tape rather than prompt for approval.

Erasing Used Tapes

Erase preexisting data on tapes with the mt erase command. Make sure the tape is
not write-protected. For example, to prepare a used tape in the local default tape
drive, enter:

mt -f /dev/tape erase

!
Caution: This erases all data on the tape, including any dump sessions

The tape can now be used by xfsdump without prompting for approval.

About Incremental and Resumed Dumps

Incremental dumps are a way of backing up less data at a time but still preserving
current versions of all your backed-up files, directories, and so on. Incremental
backups are organized numerically by levels from 0 through 9. A level-0 dump

50 007–4273–007

XFS
®

Administrator Guide

always backs up the complete filesystem. A dump level of any other number backs
up all files that have changed since a dump with a lower dump level number.

For example, if you perform a level–2 backup on a filesystem one day and your next
dump is a level–3 backup, only those files that have changed since the level–2 backup
are dumped with the level–3 backup. In this case, the level–2 backup is called the base
dump for the level–3 backup. The base dump is the most recent backup of that
filesystem with a lower dump level number.

Resumed dumps work in much the same way. When a dump is resumed after it has
been interrupted, the remaining files that had been scheduled to be backed up during
the interrupted dump session are backed up, and any files that changed during the
interruption are also backed up.

Note: You must restore an interrupted dump as if it is an incremental dump
(see"Performing Cumulative Restores with xfsrestore" on page 62).

Performing an Incremental Dump

In the following example, a level-0 dump is the first backup written to a new tape:

xfsdump -f /dev/tape -l 0 -M Jun_94 -L week_1 -v silent /usr

A week later, a level–1 dump of the filesystem is performed on the same tape:

xfsdump -f /dev/tape -l 1 -L week_2 /usr

The tape is forwarded past the existing dump data and the new data from the level 1
dump is written after it. (Note that it is not necessary to specify the media label for
each successive dump on a media object.)

A week later, a level 2 dump is taken and so on, for the four weeks of a month in this
example, the fourth week being a level 3 dump (up to nine dump levels are
supported):

xfsdump -f /dev/tape -l 2 -L week_3 /usr

For information on the proper procedure for restoring incremental dumps,
see"Performing Cumulative Restores with xfsrestore" on page 62.

007–4273–007 51

6: Backup and Recovery Procedures

Performing a Resumed Dump

You can interrupt a dump session and resume it later. To interrupt a dump session,
type the interrupt character (typically <CTRL-C>). You receive a list of options that
allow you to interrupt the session, change verbosity level, or resume the session.

In the following example, xfsdump is interrupted after dumping approximately 37%
of a filesystem:

xfsdump -f /dev/tape -M march95 -L week_1 -v silent /disk2

========================= status and control dialog ==========================

status at 16:49:16: 378/910 files dumped, 37.8% complete, 32 seconds elapsed

please select one of the following operations
1: interrupt this session

2: change verbosity

3: display metrics

4: other controls

5: continue (default) (timeout in 60 sec)
-> 1

please confirm

1: interrupt this session

2: continue (default) (timeout in 60 sec)

-> 1

interrupt request accepted
--------------------------------- end dialog ---------------------------------

xfsdump: initiating session interrupt

xfsdump: dump interrupted prior to ino 1053172 offset 0

You can later continue the dump by including the-R option and a different session
label:

xfsdump -f /dev/tape -R -L week_1.contd -v silent /disk2p

Any files that were not backed up before the interruption, and any file changes that
were made during the interruption, are backed up after the dump is resumed.

Note: Use of the -R option requires that the dump was made with a dump inventory
taken, that is, the -J option was not used with xfsdump.

52 007–4273–007

XFS
®

Administrator Guide

Examining xfsdump Archives
This section describes how to use the xfsdump command to view an xfsdump
inventory.

The xfsdump inventory is maintained in the directory /var/xfsdump created by
xfsdump. You can view the dump inventory at any time with the xfsdump -I
command. With no other arguments, xfsdump -I displays the entire dump
inventory. (The xfsdump -I command does not require root privileges.)

The following output presents a section of a dump inventory:

xfsdump -I | more

file system 0:

fs id: d23cb450-b21d-1001-8f97-080069068eeb

session 0:

mount point: magnolia.abc.xyz.com:/test
device: magnolia.abc.xyz.com:/dev/rdsk/dks0d3s2

time: Mon Nov 28 11:44:04 1994

session label: ""

session id: d23cbf44-b21d-1001-8f97-080069068eeb

level: 0
resumed: NO

subtree: NO

streams: 1

stream 0:

pathname: /dev/tape
start: ino 4121 offset 0

end: ino 0 offset 0

interrupted: YES

media files: 2

media file 0:

mfile index: 0
---more---

The dump inventory records are presented sequentially and are indented to illustrate
the hierarchical order of the dump information.

You can view a subset of the dump inventory by specifying the level of depth (1, 2, or
3) that you want to view. For example, specifying depth=2 filters out a lot of the
specific dump information, as you can see by comparing the previous output with the
following:

007–4273–007 53

6: Backup and Recovery Procedures

xfsdump -I depth=2
file system 0:

fs id: d23cb450-b21d-1001-8f97-080069068eeb

session 0:

mount point: magnolia.abc.xyz.com:/test

device: magnolia.abc.xyz.com:/dev/rdsk/dks0d3s2
time: Mon Nov 28 11:44:04 1994

session label: ""

session id: d23cbf44-b21d-1001-8f97-080069068eeb

level: 0

resumed: NO

subtree: NO
streams: 1

session 1:

mount point: magnolia.abc.xyz.com:/test

device: magnolia.abc.xyz.com:/dev/rdsk/dks0d3s2

...

You can also view a filesystem-specific inventory by specifying the filesystem mount
point with the mnt option. The following output shows an example of a dump
inventory display in which the depth is set to 1, and only a single filesystem is
displayed:

xfsdump -I depth=1,mnt=magnolia.abc.xyz.com:/test

filesystem 0:

fs id: d23cb450-b21d-1001-8f97-080069068eeb

You can also look at a list of contents on the dump media itself by using the-t option
with xfsrestore. See "Displaying the Contents of the Dump Media with
xfsrestore" on page 57.

About xfsrestore

This section discusses the following:

• "xfsrestore Syntax" on page 55

• "Displaying the Contents of the Dump Media with xfsrestore" on page 57

• "Performing Simple Restores with xfsrestore" on page 58

• "Restoring Individual Files with xfsrestore" on page 60

54 007–4273–007

XFS
®

Administrator Guide

• "Performing Network Restores with xfsrestore" on page 60

• "Performing Interactive Restores with xfsrestore" on page 61

• "Performing Cumulative Restores with xfsrestore" on page 62

• "Interrupting xfsrestore" on page 66

• "About the housekeeping and orphanage Directories" on page 67

For more information, see the xfsrestore(8) man page.

xfsrestore Syntax

You can use the xfsrestore command to view and extract data from the dump data
created by xfsdump.

You can get a summary of xfsrestore syntax with the --h option:

xfsrestore -h

xfsrestore: version X.X
xfsrestore: usage: xfsrestore [-a <alt. workspace dir> ...]

[-e (don’t overwrite existing files)]

[-f <source> ...]

[-h (help)]

[-i (interactive)]
[-n <file> (restore only if newer than)]

[-o (restore owner/group even if not root)]

[-p <seconds between progress reports>]

[-r (cumulative restore)]

[-s <subtree> ...]
[-t (contents only)]

[-v <verbosity {silent, verbose, trace}>]

[-A (don’t restore extended file attributes)]

[-C (check tape record checksums)]

[-D (restore DMAPI event settings)]

[-E (don’t overwrite if changed)]
[-F (don’t prompt)]

[-I (display dump inventory)]

[-J (inhibit inventory update)]

[-L <session label>]

[-N (timestamp messages)]
[-O <options file>]

007–4273–007 55

6: Backup and Recovery Procedures

[-P (pin down I/O buffers)]
[-Q (force interrupted session completion)]

[-R (resume)]

[-S <session id>]

[-T (don’t timeout dialogs)]

[-U (unload media when change needed)]
[-V (show subsystem in messages)]

[-W (show verbosity in messages)]

[-X <excluded subtree> ...]

[-Y <I/O buffer ring length>]

[-Z (miniroot restrictions)]

[- (stdin)]
[<destination>]

Use xfsrestore to restore data backed up with xfsdump. You can restore files,
subdirectories, and filesystems regardless of the way they were backed up. For
example, if you back up an entire filesystem in a single dump, you can select
individual files and subdirectories from within that filesystem to restore.

You can use xfsrestore interactively or noninteractively. With interactive mode,
you can peruse the filesystem or files backed up, selecting those you want to restore.
In noninteractive operation, a single command line can restore selected files and
subdirectories, or an entire filesystem. You can restore data to its original filesystem
location or any other location in an XFS filesystem.

By using successive invocations of xfsrestore, you can restore incremental dumps
on a base dump. This restores data in the same sequence it was dumped.

56 007–4273–007

XFS
®

Administrator Guide

Displaying the Contents of the Dump Media with xfsrestore

To list the contents of the dump tape currently in the local tape drive, type:

xfsrestore -f /dev/tape -t -v silent | more
xfsrestore: dump session found

xfsrestore: session label: "week_1"

xfsrestore: session id: d23cbcb4-b21d-1001-8f97-080069068eeb

xfsrestore: no media label

xfsrestore: media id: d23cbcb5-b21d-1001-8f97-080069068eeb

do you want to select this dump? (y/n): y
selected

one

A/five

people/fred/TOC

people/fred/ch3.doc
people/fred/ch3TOC.doc

people/fred/questions

A/four

people/fred/script_0

people/fred/script_1
people/fred/script_2

people/fred/script_3

people/fred/sub1/TOC

people/fred/sub1/ch3.doc

people/fred/sub1/ch3TOC.doc

people/fred/sub1/questions
people/fred/sub1/script_0

people/fred/sub1/script_1

people/fred/sub1/script_2

people/fred/sub1/script_3

people/fred/sub1/xdump1.doc
people/fred/sub1/xdump1.doc.backup

people/fred/sub1/xfsdump.doc

people/fred/sub1/xfsdump.doc.auto

people/fred/sub1/sub2/TOC

---more---

007–4273–007 57

6: Backup and Recovery Procedures

Performing Simple Restores with xfsrestore

A simple restore is a non-cumulative restore (for information on restoring incremental
dumps, refer to "Performing Cumulative Restores with xfsrestore" on page 62).
An example of a simple, noninteractive use of xfsrestore is:

xfsrestore -f /dev/tape /disk2

xfsrestore: version 2.0 - type ^C for status and control

xfsrestore: searching media for dump

xfsrestore: preparing drive

xfsrestore: examining media file 0

=========================== dump selection dialog ============================

the following dump has been found on drive 0

hostname: cumulus

mount point: /disk2

volume: /dev/rdsk/dks0d2s0

session time: Wed Oct 25 16:59:00 1995

level: 0
session label: ‘‘tape1’’

media label: ‘‘media1’’

file system id: d2a602fc-b21d-1001-8938-08006906dc5c

session id: d2a61284-b21d-1001-8938-08006906dc5c

media id: d2a61285-b21d-1001-8938-08006906dc5c

restore this dump?

1: skip

2: restore (default)

-> 2

this dump selected for restoral

--------------------------------- end dialog ---------------------------------

xfsrestore: using online session inventory

xfsrestore: searching media for directory dump
xfsrestore: reading directories

xfsrestore: directory post-processing

xfsrestore: restoring non-directory files

xfsrestore: I/O metrics: 3 by 2MB ring; 9/13 (69%) records streamed; 204600B/s

xfsrestore: restore complete: 104 seconds elapsed

58 007–4273–007

XFS
®

Administrator Guide

In this case, xfsrestore went to the first dump on the tape and asked if this was
the dump to restore. If you had entered 1 for “skip,” xfsrestore would have
proceeded to the next dump on the tape (if there was one) and asked if this was the
dump you wanted to restore.

You can request a specific dump if you used xfsdump with a session label. For
example:

xfsrestore -f /dev/tape -L Wed_11_23 /usr

xfsrestore: version X.X - type ^C for status and control

xfsrestore: preparing tape drive
xfsrestore: dump session found

xfsrestore: advancing tape to next media file

xfsrestore: dump session found

xfsrestore: restore of level 0 dump of magnolia.abc.xyz.com:/usr created Wed Nov 23 11:17:54 1994

xfsrestore: beginning media file
xfsrestore: reading ino map

xfsrestore: initializing the map tree

xfsrestore: reading the directory hierarchy

xfsrestore: restoring non-directory files

xfsrestore: ending media file
xfsrestore: restoring directory attributes

xfsrestore: restore complete: 200 seconds elapsed

In this way you recover a dump with a single command line and do not have to
answer y or n to the prompts asking you if the dump session found is the correct
one. To be even more exact, use the -S option and specify the unique session ID of
the particular dump session:

xfsrestore -f /dev/tape -S \ d23cbf47-b21d-1001-8f97-080069068eeb /usr2/tmp

xfsrestore: version X.X - type ^C for status and control
xfsrestore: preparing tape drive

xfsrestore: dump session found

xfsrestore: advancing tape to next media file

xfsrestore: advancing tape to next media file

xfsrestore: dump session found
xfsrestore: restore of level 0 dump of magnolia.abc.xyz.com:/test resumed Mon Nov 28 11:50:41 1994

xfsrestore: beginning media file

xfsrestore: media file 0 (media 0, file 2)

xfsrestore: reading ino map

xfsrestore: initializing the map tree

xfsrestore: reading the directory hierarchy

007–4273–007 59

6: Backup and Recovery Procedures

xfsrestore: restoring non-directory files
xfsrestore: ending media file

xfsrestore: restoring directory attributes

xfsrestore: restore complete: 229 seconds elapsed

You can find the session ID by viewing the dump inventory (see "Examining xfsdump
Archives" on page 53). Session labels might be duplicated, but session IDs never are.

Restoring Individual Files with xfsrestore

On the xfsrestore command line, you can specify an individual file or subdirectory
to restore. In this example, the file people/fred/notes is restored and placed in the
/usr/tmp directory (that is, the file is restored in /usr/tmp/people/fred/notes):

xfsrestore -f /dev/tape -L week_1 -s people/fred/notes /usr/tmp

You can also restore a file “in place” that is, restore it directly to where it came from
in the original backup.

Note: However, if you do not use the -e, -E, or -n option, you will overwrite any
existing files of the same name.

In the following example, the subdirectory people/fred is restored in the
destination /usr, which overwrites any files and subdirectories in
/usr/people/fred with the data on the dump tape:

xfsrestore -f /dev/tape -L week_1 -s people/fred /usr

Performing Network Restores with xfsrestore

You can use standard network references to specify devices and files on the network.
For example, to use the tape drive on a network host named magnolia as the source
for a restore, you can use the following command:

xfsrestore -f magnolia:/dev/tape -L 120694u2 /usr2

xfsrestore: version X.X - type ^C for status and control

xfsrestore: preparing tape drive
xfsrestore: dump session found

xfsrestore: advancing tape to next media file

xfsrestore: dump session found

60 007–4273–007

XFS
®

Administrator Guide

xfsrestore: restore of level 0 dump of magnolia.abc.xyz.com:/usr2 created Tue Dec 6 10:55:17 1994
xfsrestore: beginning media file

xfsrestore: media file 0 (media 0, file 1)

xfsrestore: reading ino map

xfsrestore: initializing the map tree

xfsrestore: reading the directory hierarchy
xfsrestore: restoring non-directory files

xfsrestore: ending media file

xfsrestore: restoring directory attributes

xfsrestore: restore complete: 203 seconds elapsed

In this case, the dump data is extracted from the tape on magnolia, and the
destination is the directory /usr2 on the local system. For an example of using the
standard input option of xfsrestore, see "Using xfsdump and xfsrestore to
Copy Filesystems" on page 68.

Performing Interactive Restores with xfsrestore

Use the -i option of xfsrestore to perform interactive file restoration. With
interactive restoration, you can use the commands ls, pwd, and cd to peruse the
filesystem, and the add and delete commands to create a list of files and
subdirectories you want to restore. Then you can enter the extract command to
restore the files, or quit to exit the interactive restore session without restoring files.
(The use of wildcards is not allowed with these commands.)

Note: Interactive restore is not allowed when the xfsrestore source is standard
input (stdin).

The following screen output shows an example of a simple interactive restoration.

xfsrestore -f /dev/tape -i -v silent .
xfsrestore: dump session found

xfsrestore: no session label

xfsrestore: session id: d23cbeda-b21d-1001-8f97-080069068eeb

xfsrestore: no media label

xfsrestore: media id: d23cbedb-b21d-1001-8f97-080069068eeb

do you want to select this dump? (y/n): y
selected

--- interactive subtree selection dialog ---

007–4273–007 61

6: Backup and Recovery Procedures

the following commands are available:

pwd

ls [{ <name>, ".." }]

cd [{ <name>, ".." }]

add [<name>]
delete [<name>]

extract

quit

help

-> ls

4122 people/
4130 two

4126 A/

4121 one

-> add two

-> cd people
-> ls

4124 fred/

-> add fred

-> ls

* 4124 fred/

-> extract

---------------- end dialog ----------------

In the interactive restore session above, the subdirectory people/fred and the file
two were restored relative to the current working directory (“.”). An asterisk (*) in
your ls output indicates your selections.

Performing Cumulative Restores with xfsrestore

Cumulative restores sequentially restore incremental dumps to re-create filesystems
and are also used to restore interrupted dumps. To perform a cumulative restore of a
filesystem, begin with the media object that contains the base-level dump and recover
it first, then recover the incremental dump with the next higher dump level number,
then the next, and so on. Use the -r option to inform xfsrestore that you are
performing a cumulative recovery.

62 007–4273–007

XFS
®

Administrator Guide

In the following example, the level–0 base dump and succeeding higher-level dumps
are on /dev/tape. First the level-0 dump is restored, then each higher-level dump
in succession:

/usr/tmp/xfsrestore -f /dev/tape -r -v silent .

=========================== dump selection dialog ============================

the following dump has been found on drive 0

hostname: cumulus

mount point: /disk2

volume: /dev/rdsk/dks0d2s0

session time: Wed Oct 25 14:37:47 1995
level: 0

session label: "week_1"

media label: "Jun_94"

file system id: d2a602fc-b21d-1001-8938-08006906dc5c

session id: d2a60b26-b21d-1001-8938-08006906dc5c
media id: d2a60b27-b21d-1001-8938-08006906dc5c

restore this dump?

1: skip

2: restore (default)

-> Enter
this dump selected for restoral

--------------------------------- end dialog ---------------------------------

#

Next, enter the same command again. The program goes to the next dump and again
you select the default:

xfsrestore -f /dev/tape -r -v silent .

=========================== dump selection dialog ============================

the following dump has been found on drive 0

hostname: cumulus

mount point: /disk2

007–4273–007 63

6: Backup and Recovery Procedures

volume: /dev/rdsk/dks0d2s0
session time: Wed Oct 25 14:40:54 1995

level: 1

session label: "week_2"

media label: "Jun_94"

file system id: d2a602fc-b21d-1001-8938-08006906dc5c
session id: d2a60b2b-b21d-1001-8938-08006906dc5c

media id: d2a60b27-b21d-1001-8938-08006906dc5c

restore this dump?

1: skip

2: restore (default)
-> Enter

this dump selected for restoral

--------------------------------- end dialog ---------------------------------

#

You then repeat this process until you have recovered the entire sequence of
incremental dumps. The full and latest copy of the filesystem will then have been
restored. In this case, it is restored relative to “.”, that is, in the directory you are in
when the sequence of xfsrestore commands is issued.

Restore an interrupted dump just as if it were an incremental dump. Use the -r
option to inform xfsrestore that you are performing an incremental restore, and
answer y and n appropriately to select the proper “increments” to restore (see
"Performing Cumulative Restores with xfsrestore" on page 62).

Note: If you try to restore an interrupted dump as if it were a non-interrupted,
non-incremental dump, the portion of the dump that occurred before the interruption
is restored, but not the remainder of the dump. You can determine if a dump is an
interrupted dump by looking in the online inventory.

64 007–4273–007

XFS
®

Administrator Guide

Following is an example of a dump inventory showing an interrupted dump session
(the crucial fields are in bold type):

xfsdump -I depth=3,mobjlabel=AugTape,mnt=indy4.xyz.com:/usr

file system 0:

fs id: d23cb450-b21d-1001-8f97-080069068eeb

session 0:

mount point: indy4.xyz.com.com:/usr

device: indy4.xyz.com.com:/dev/rdsk/dks0d3s2
time: Tue Dec 6 15:01:26 1994

session label: "180894usr"

session id: d23cc0c3-b21d-1001-8f97-080069068eeb

level: 0

resumed: NO
subtree: NO

streams: 1

stream 0:

pathname: /dev/tape

start: ino 4121 offset 0
end: ino 0 offset 0

interrupted: YES

media files: 2

session 1:

mount point: indy4.xyz.com.com:/usr

device: indy4.xyz.com.com:/dev/rdsk/dks0d3s2
time: Tue Dec 6 15:48:37 1994

session label: "Resumed180894usr"

session id: d23cc0cc-b21d-1001-8f97-080069068eeb

level: 0

resumed: YES
subtree: NO

streams: 1

stream 0:

pathname: /dev/tape

start: ino 4121 offset 0
end: ino 0 offset 0

interrupted: NO

media files: 2

...

007–4273–007 65

6: Backup and Recovery Procedures

From this it can be determined that session 0 was interrupted and then resumed and
completed in session 1.

To restore the interrupted dump session in the example above, use the following
sequence of commands:

xfsrestore -f /dev/tape -r -L 180894usr .

xfsrestore -f /dev/tape -r -L Resumed180894usr .

This restores the entire /usr backup relative to the current directory. (You should
remove the housekeeping directory from the destination directory when you are
finished.)

Interrupting xfsrestore

In a manner similar to xfsdump interruptions, you can interrupt an xfsrestore
session. This allows you to interrupt a restore session and then resume it later. To
interrupt a restore session, type the interrupt character (typically <CTRL-C>). You
receive a list of options, which include interrupting the session or continuing.

xfsrestore -f /dev/tape -v silent /disk2

=========================== dump selection dialog ============================

the following dump has been found on drive 0

hostname: cumulus

mount point: /disk2
volume: /dev/rdsk/dks0d2s0

session time: Wed Oct 25 17:20:16 1995

level: 0

session label: "week1"

media label: "newtape"
file system id: d2a602fc-b21d-1001-8938-08006906dc5c

session id: d2a6129e-b21d-1001-8938-08006906dc5c

media id: d2a6129f-b21d-1001-8938-08006906dc5c

restore this dump?

1: skip
2: restore (default)

-> 2

66 007–4273–007

XFS
®

Administrator Guide

this dump selected for restoral

--------------------------------- end dialog ---------------------------------

========================= status and control dialog ==========================

status at 17:23:52: 131/910 files restored, 14.4% complete, 42 seconds elapsed

please select one of the following operations

1: interrupt this session

2: change verbosity
3: display metrics

4: other controls

5: continue (default) (timeout in 60 sec)

-> 1

please confirm

1: interrupt this session

2: continue (default) (timeout in 60 sec)

-> 1

interrupt request accepted

--------------------------------- end dialog ---------------------------------

xfsrestore: initiating session interrupt

Resume the xfsrestore session with the --R option:

xfsrestore -f /dev/tape -R -v silent /disk2

Data recovery continues from the point of the interruption.

About the housekeeping and orphanage Directories

The xfsrestore utility can create two subdirectories in the destination called
housekeeping and orphanage:

• housekeeping is a temporary directory used during cumulative recovery to pass
information from one invocation of xfsrestore to the next. It must not be

007–4273–007 67

6: Backup and Recovery Procedures

removed during the process of performing the cumulative recovery but should be
removed after the cumulative recovery is completed.

• orphanage is created if a file or subdirectory is restored that is not referenced in
the filesystem structure of the dump. For example, if you dump a very active
filesystem, it is possible for new files to be in the non-directory portion of the
dump, yet none of the directories dumped reference that file. A warning message
is displayed, and the file is placed in the orphanage directory, named with its
original inode number and generation count (for example, 123479.14).

Using xfsdump and xfsrestore to Copy Filesystems
You can use xfsdump and xfsrestore to pipe data across filesystems or across the
network with a single command line. By piping xfsdump standard output to
xfsrestore standard input you create an exact copy of a filesystem.

For example, to make a copy of /usr/people/fred in the /usr2 directory, enter:

xfsdump -J -s people/fred - /usr | xfsrestore - /usr2

To copy /usr/people/fred to the network host magnolia’s /usr/tmp directory:

xfsdump -J -s people/fred - /usr | rsh magnolia \

xfsrestore - /usr/tmp

This creates the directory /usr/tmp/people/fred on magnolia.

Note: The superuser account on the local system must be able to rsh to the remote
system without a password. For more information, see hosts.equiv(4).

68 007–4273–007

Chapter 7

Enhanced XFS Extensions

This chapter discusses the following enhanced XFS extensions:

• "agskip Mount Option for Allocation Group Specification" on page 69

• "ibound Mount Option for SSD Media" on page 70

agskip Mount Option for Allocation Group Specification
The agskip mount option influences the allocation group (AG) selected as a starting
point for the allocation of user data for a file. It has the opposite effect of the
rotorstep system tunable parameter (see "rotorstep" on page 89).

Using agskip=agskipvalue causes the start of user data for a file to be placed in the
AG initialAG+agskipvalue, where initialAG is the AG used for the previously created
new file; when using the ibound mount option, this AG will always be within the
user-extents region (see "ibound Mount Option for SSD Media" on page 70).

For example, agskip=3 means the start of user data for each new file thereafter will
be allocated three AGs away from the AG used for the most recently created file.

Use the following formula to determine an appropriate agskipvalue:

(number_of AGs / number_of_concats) + 1 = agskipvalue

For example, if you have six AGs and two concats, you would use a value of 4:

(6/2) + 1 = 4

Note: The agskip mount option disables the rotorstep system tunable parameter.

007–4273–007 69

7: Enhanced XFS Extensions

ibound Mount Option for SSD Media
This section discusses the following:

• "ibound Purpose" on page 70

• "ibound Availability, Requirements, and Recommendations" on page 70

• "How ibound Works" on page 71

• "ibound Extent Allocation Policy" on page 71

• "Determining the SSD Size Required for a Given Number of Inodes" on page 74

• "Overview of the Configuration Procedure Using ibound" on page 75

• "When ibound is Ignored" on page 75

• "ibound and Kernel Messages" on page 76

• "Examples of Using ibound" on page 77

ibound Purpose

The purpose of the ibound mount option is to specify the location of the metadata
region, which contains metadata operations for extended attributes, directory entries,
and inodes. The remainder of the filesystem is known as the user-extents region.

If you first create a filesystem on a volume that concatenates a slice of solid-state
drive (SSD) media with rotating hard-disk drive (HDD) media, you can then use the
ibound mount option to restrict metadata to the SSD media at the beginning of that
filesystem. The result will be operations that take place on media with the
appropriate characteristics:

• Small latency-sensitive metadata operations in the metadata region on fast SSD
media

• Large bandwidth-demanding and capacity-intensive user data operations in the
user-extents region on HDD media

ibound Availability, Requirements, and Recommendations

The ibound mount option is available for enhanced XFS filesystems of any size.
There must be at least as many AGs in the user-extents region as in the metadata

70 007–4273–007

XFS
®

Administrator Guide

region (for practical purposes, you will normally want more AGs in the user-extents
region). If this requirement is not met, the option is ignored. See "When ibound is
Ignored" on page 75.

There should be at least 8 AGs in the metadata region on the SSD. For example, to
create 8 AGs, you would set the AG size using the mkfs.xfs agsize option so that
it is 1/8 the size of the SSD.

Note: The configuration rules for filesystems using ibound may result in an XFS
filesystem with thousands of AGs. With this many AGs, XFS will consume more CPU
resources searching for free space in a nearly full filesystem. For best performance,
ensure that the filesystem is less than ~90% full as reported by the df(1) command.

To maximize performance of the filesystem with an SSD drive, you should use an
external log. You can use a partition of the SSD media or separate HDD media.

How ibound Works

The ibound mount option specifies the highest physical disk block address where
metadata should be stored.

Note: The argument you supply to ibound is the address of the physical disk block,
not the filesystem block.

This value is then rounded up to the end of the AG that holds the specified block.
Ideally, the address that you specify will be at the end of the AG, and that AG will
consist of SSD disk. The resulting region, from the beginning of the first AG (that is,
block 0 of AG0) through end of the AG that contains the specified physical address, is
the metadata region. The remainder of the filesystem is the user-extents region.

ibound Extent Allocation Policy

When using ibound, space allocation is made in separate regions according to data
type:

• Metadata is allocated to an AG within the metadata region

• User data for a file is allocated to AGs within the user-extents region

007–4273–007 71

7: Enhanced XFS Extensions

XFS will use as many AGs within the user-extents region as required to contain the
user data for a file. By default, it will start the user-data allocation at a specific AG, if
that AG is available. If the desired AG has become too full or fragmented, the next
AG will be used in order, wrapping around to the first AG in the user-extents region.

The specific AG that XFS selects for the beginning of user data for a file is calculated
based upon the AG used for the corresponding inodes:

• For inodes located in AG0 (the first AG in the metadata region), XFS will attempt
to begin to allocate space starting in the first AG of the user-extents region

• For inodes allocated in successive AGs within the metadata region, XFS will
attempt to begin to allocate space in proportionally indexed AGs within the
user-extents region

For example, Figure 7-1 shows a conceptual diagram using a value of
ibound=15022944, which is located in AG7 (for best performance, the value should
represent the final physical block in the AG). This designates that the metadata region
is AG0 through AG7.

AG8

Metadata region

AG31

User-extents region

AG0 AG7

Block
0

Block
1

Block
15022944

SSD HDD

Figure 7-1 ibound Value Specifying the End of the Metadata Region

Note: The metadata region always consists of complete AGs. If you specify a value
that is not the final block, the metadata region end-point will be rounded up to the
final block of the AG.

In this case, the filesystem has 8 AGs in the metadata region (AG0–AG7) and 24 AGs
in the user-extents region (AG8–AG31). For each AG within the metadata region,

72 007–4273–007

XFS
®

Administrator Guide

Table 7-1 shows the default selection preference for the corresponding user-extents
region. Figure 7-2 represents this graphically.

Table 7-1 Default Proportional Indexing of AGs in the User-Extents Region

Metadata Region User-Extents Region

AG Containing the Inode
Preferred AG Where User Data

Allocation Begins

AG0 AG8

AG1 AG11

AG2 AG14

AG3 AG17

AG4 AG20

AG5 AG23

AG6 AG26

AG7 AG29

Metadata region User-extents region

0 20 29289 10 11 12 272625242313 14 15 16 17 18 19 22217654321 8 3130

Figure 7-2 Mapping Metadata-Region AGs to the Beginning User-Extents Region AGs

For example, using the above situation, suppose the inode for file myfile is located
in AG1. XFS would therefore by default prefer to start allocating user-extents for the
file in AG11; however, if AG11 is busy, XFS will start allocation of space at AG12,
allocating space in as many AGs as necessary. When XFS reaches the end of the

007–4273–007 73

7: Enhanced XFS Extensions

user-extent region at AG31, it will wrap around to the beginning of the user-extent
region at AG8.

To override the default ibound extent allocation policy, see "agskip Mount Option
for Allocation Group Specification" on page 69.

Note: If agskip is specified, its value is used instead of the default proportional
indexing. For example, if you specified agskip=2 for the above situation, the start of
user data for the first new file written will be in AG8 because it is the first AG in the
user-extents area and the start of user data for the second new file written will be in
AG10.

Determining the SSD Size Required for a Given Number of Inodes

To determine the required SSD size, multiply the number of inodes by the inode size
and add some overhead space for other metadata, such as file names and extended
attributes:

(number_of_inodes X inode_size) + overhead = SSD_size

The size of other metadata is highly variable and depends heavily upon how the
filesystem is used. If there are large extended attributes in the filesystem or if there
are long filenames, more overhead space will be required.

Questions to consider:

• What is the typical size of a filename? Include in the overhead the average
filename length times the number of inodes.

• What is the typical size of a directory name? Include in the overhead the average
directory name length times the number of directories.

• What percentage of the inodes will be directories? Include in the overhead 4096
bytes for each directory with a minimum of 32 bytes times the total number of
inodes.

• What is the size and number of extended attributes? Include in the overhead the
number of extended attributes times the average extended-attribute size.

74 007–4273–007

XFS
®

Administrator Guide

Overview of the Configuration Procedure Using ibound

To use ibound, do the following:

1. Configure the filesystem so that the metadata area to be effectively described by
ibound is on very fast disk that is at the beginning of the volume. SSD media is
ideal.

2. Use an external XFS log on very fast disk. SSD media is ideal.

3. Set the AG size using the mkfs.xfs agsize option so that it is 1/8 the size of
the SSD (meaning that 8 AGs can span the SSD).

4. Mount the filesystem using the -o ibound=physicalblock option, where
physicalblock is the physical disk block at the end of AG7. This will establish the
metadata region as the physical disk blocks within AG0 through AG7.

Note: If you specify a block that is not at the end of the AG, the value will be
rounded up to the end of the AG that contains the specified value.

5. Verify that the mount was successful by examining the XFS kernel messages.

When ibound is Ignored

If there are more AGs in the metadata region than in the user-extents region, then the
ibound option will be ignored. In this case, one of the following will occur:

• If the filesystem size permits more than 232 inodes, then inode32 behavior will be
used. Inodes will be limited to 32 bits of significance. Data and inodes may be
separated, and may be placed anywhere within the filesystem.

• If the filesystem size does not permit 232 inodes, then inode64 behavior will be used.
The inode count will be limited by the number of inodes that the filesystem can
hold (the default inode size is 256 bytes.) Metadata and user data may be
allocated anywhere within the filesystem, without regard to disk type. You can
explicitly impose this behavior with the inode64 mount option if you do not
specify the ibound option.

Note: The ibound and inode64 mount options are mutually exclusive. If you
issue both options, an error will be logged.

007–4273–007 75

7: Enhanced XFS Extensions

ibound and Kernel Messages

This section discusses the following:

• "Message Indicating a Successful Mount with ibound" on page 76

• "Message Indicating that the ibound Value is Inappropriate" on page 76

• "Message Indicating Insufficient User-Extents AGs" on page 77

• "Message Indicating that the Filesystem Has Grown and ibound is Reinstated" on
page 77

Message Indicating a Successful Mount with ibound

When the ibound mount option is used successfully, the XFS kernel module will log
an INFO message, indicating the maximum possible inode identification number that
results given the effective metadata region. ().

Note: This number is the inode identification number, not the count of inodes.

For example:

XFS: filesystem filesystem_name maximum new inode number is new_inode_ID_number

The new_inode_ID_number value may be used by SGI Support during troubleshooting
to verify that inodes are in the correct area of the filesystem. This new maximum
inode identification number is not reflected in the xvm show output and is not the
same as the value that you specify for the ibound mount option.

Message Indicating that the ibound Value is Inappropriate

If the ibound value that you specify points to a block that does not allow for a
sufficient number of inodes, the XFS kernel module will log a WARN message to
indicate that it will instead use an appropriate value. For example:

XFS: filesystem filesystem_name ibound is too small, using new_inode_ID_number

76 007–4273–007

XFS
®

Administrator Guide

Message Indicating Insufficient User-Extents AGs

If there are insufficient AGs in the user-extents area, the XFS kernel module will log a
WARN message, indicating that it is reverting to either inode32 or inode64 behavior, as
appropriate for the filesystem size. For example:

XFS: filesystem filesystem_name ibound is too small, using inode32|inode64

See "When ibound is Ignored" on page 75.

Message Indicating that the Filesystem Has Grown and ibound is Reinstated

If the filesystem grows so that there are sufficient AGs in the user-extents area, then
ibound will be reinstated and the following message will be logged:

XFS: filesystem filesystem_name maximum new inode number is new_inode_ID_number

Examples of Using ibound

This section discusses the following:

• "Example of Successfully Maximizing SSD Storage of Inodes for an SSD/HDD
Filesystem" on page 77

• "Example Using a Value for ibound that is Too Small" on page 81

• "Example with Insufficient AGs in the User-Extents Region" on page 82

Example of Successfully Maximizing SSD Storage of Inodes for an SSD/HDD Filesystem

This example describes how to create an XVM volume using both SSD and HDD so
that the SSD is used for storing as many inodes as possible. The volume is
constructed so that the first 8 allocation groups (AGs) and external log are placed on
the SSD. The external log is the maximum size of 1 GiB. The remainder of the volume
is a two-disk stripe.

007–4273–007 77

7: Enhanced XFS Extensions

1. Partition the SSD disk and HDD disks similarly, using a GPT label and primary
partition that starts at MB 34:

• SSD disk sdb:

cxfsxe4:~ # parted /dev/sdb

GNU Parted 2.3

Using /dev/sdb

Welcome to GNU Parted! Type ’help’ to view a list of commands.

(parted) mklabel gpt

Warning: The existing disk label on /dev/sdb will be destroyed and all data on
this disk will be lost. Do you want to continue?

Yes/No? yes

(parted) unit s

(parted) mkpart primary xfs 34 -34

Warning: The resulting partition is not properly aligned for best performance.
Ignore/Cancel? ignore

(parted) quit

Information: You may need to update /etc/fstab.

• HDD disks sdc and sdd:

cxfsxe4:~ # parted /dev/sdc

GNU Parted 2.3

Using /dev/sdc

Welcome to GNU Parted! Type ’help’ to view a list of commands.
(parted) mklabel gpt

Warning: The existing disk label on /dev/sdc will be destroyed and all data on

this disk will be lost. Do you want to continue?

Yes/No? yes

(parted) unit s
(parted) mkpart primary xfs 34 -34

Warning: The resulting partition is not properly aligned for best performance.

Ignore/Cancel? ignore

(parted) quit

Information: You may need to update /etc/fstab.

cxfsxe4:~ # parted /dev/sdd

GNU Parted 2.3

Using /dev/sdd

Welcome to GNU Parted! Type ’help’ to view a list of commands.

(parted) mklabel gpt

78 007–4273–007

XFS
®

Administrator Guide

Warning: The existing disk label on /dev/sdd will be destroyed and all data on
this disk will be lost. Do you want to continue?

Yes/No? yes

(parted) unit s

(parted) mkpart primary xfs 34 -34

Warning: The resulting partition is not properly aligned for best performance.
Ignore/Cancel? ignore

(parted) quit

Information: You may need to update /etc/fstab.

2. Use the xvm command to show the unlabeled devices:

cxfsxe4:~ # xvm

xvm:local> show unlabeled

unlabeled/dev/pm/ATA-HDT722525DLA380---VDS41LT8CAA9RH * *

unlabeled/dev/pm/ATA-INTEL_SSDSA2M080---CVPO006500CD080BGN * *
unlabeled/dev/pm/ATA-ST3500631NS---9QG4F29A * *

unlabeled/dev/pm/ATA-ST3500841AS---3PM1TSNN * *

3. Assign the disks to XVM by using the xvm label command:

xvm:local> label -name ssd0 unlabeled/dev/pm/ATA-INTEL_SSDSA2M080---CVPO006500CD080BGN

ssd0

xvm:local> label -name disk0 unlabeled/dev/pm/ATA-ST3500631NS---9QG4F29A

disk0
xvm:local> label -name disk1 unlabeled/dev/pm/ATA-ST3500841AS---3PM1TSNN

disk1

4. Construct a volume named hybridvol with a data subvolume that is a
concatenation of SSD and HDD media and an external log subvolume:

xvm:local> slice -length 262144 phys/ssd0

</dev/lxvm/ssd0s0> slice/ssd0s0
xvm:local> slice -start 262144 phys/ssd0

</dev/lxvm/ssd0s1> slice/ssd0s1

xvm:local> slice -all phys/disk0

</dev/lxvm/disk0s0> slice/disk0s0

xvm:local> slice -all phys/disk1

</dev/lxvm/disk1s0> slice/disk1s0
xvm:local> subvolume -volname ssdlog -type log slice/ssd0s0

</dev/lxvm/ssdlog,log> subvol/ssdlog/log

007–4273–007 79

7: Enhanced XFS Extensions

xvm:local> stripe -volname diskstripe -vename diskstripe slice/disk0s0 slice/disk1s0
</dev/lxvm/diskstripe> stripe/diskstripe

xvm:local> concat -volname hybridvol -vename hybridconcat slice/ssd0s1 stripe/diskstripe

</dev/lxvm/hybridvol> concat/hybridconcat

xvm:local> attach subvol/ssdlog/log vol/hybridvol

vol/hybridvol
xvm:local> delete -all vol/ssdlog

xvm:local> delete -all vol/diskstripe

xvm:local> show -top vol/hybridvol

vol/hybridvol 0 online,accessible

subvol/hybridvol/data 2109536416 online,accessible

concat/hybridconcat 2109536416 online,accessible
slice/ssd0s1 156022944 online,accessible

stripe/diskstripe 1953513472 online,accessible

slice/disk0s0 976756768 online,accessible

slice/disk0s0 976756768 online,accessible

slice/disk1s0 976756768 online,accessible
subvol/hybridvol/log 262144 online,accessible

slice/ssd0s0

xvm:local> quit

The above shows that the SSD slice is 156022944 sectors.

For more information about the xvm commands shown, see XVM Volume Manager
Administrator Guide or the xvm(8) man page.

5. Determine the appropriate AG sector size for the SSD slice to be supplied to
the mkfs.xfs(8) command, which must be a multiple of 8 (because there are

eight sectors in a filesystem block):

a. Divide the size of slice/ssd0s1 (which is 156022944) by the number of
allocation groups (8 in this case) and truncate the result to an integer value
(resulting in 19502868).

b. Divide the result of step 5a by 8 (eight sectors per block) and truncate the
result to an integer (resulting in 2437858).

c. Multiply the result of step 5b by 8, resulting in 19502864. This is the
agsize value to be used in step 6 and step 7.

80 007–4273–007

XFS
®

Administrator Guide

6. Make the filesystem, specifying the largest disk address (sector) allowed to be
used for storing an inode (19502864 in this case, as determined in step 5c) for
the agsize value:

cxfsxe4:~ # mkfs.xfs -f -d agsize=19502864s -l logdev=/dev/lxvm/hybridvol_log -l size=128m /dev/lxvm/hybridvol

warning: unable to probe device topology for device /dev/lxvm/hybridvol

meta-data=/dev/lxvm/hybridvol isize=256 agcount=109, agsize=2437858 blks

= sectsz=512 attr=2, projid32bit=0

data = bsize=4096 blocks=263692052, imaxpct=25

= sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0

log =/dev/lxvm/hybridvol_log bsize=4096 blocks=32768, version=2

= sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

7. Mount the filesystem, supplying the size of slice/ssd0s1 (which is
156022944) for the ibound mount option:

cxfsxe4:~ # mount -o ibound=156022944,logdev=/dev/lxvm/hybridvol_log /dev/lxvm/hybridvol /mnt

8. Display the kernel messages to verify that the filesystem was correctly mounted
with the ibound option, as described in "Message Indicating a Successful Mount
with ibound" on page 76. For example:

cxfsxe4:~ # dmesg | grep XFS

XFS (xvm-46): XFS: filesystem xvm-46 maximum new inode number is 508767775

XFS (xvm-46): Mounting Filesystem
XFS (xvm-46): Ending clean mount

(In the case of error messages, see "ibound and Kernel Messages" on page 76.)

Example Using a Value for ibound that is Too Small

If you use a value for ibound that is smaller than the size of the first AG, the
filesystem will determine an appropriate value to use instead. To illustrate this,
carrying on from the example in "Example of Successfully Maximizing SSD Storage of
Inodes for an SSD/HDD Filesystem":

1. Unmount the filesystem:

cxfsxe4:~ # umount /mnt

007–4273–007 81

7: Enhanced XFS Extensions

2. Mount the filesystem with an ibound value that is obviously too small, such as 1:

cxfsxe4:~ # mount -o ibound=1,logdev=/dev/lxvm/hybridvol_log /dev/lxvm/hybridvol /mnt

3. Display the kernel messages to determine if the filesystem was correctly mounted
with the ibound option. In this case, the output shows that the improper value
specified in the previous step is overridden with an appropriate value:

cxfsxe4:~ # dmesg | grep XFS

XFS (xvm-46): XFS: filesystem xvm-46 ibound is too small, using 19502856

XFS (xvm-46): XFS: filesystem xvm-46 maximum new inode number is 39005727

XFS (xvm-46): Mounting Filesystem

XFS (xvm-46): Ending clean mount

Example with Insufficient AGs in the User-Extents Region

If there are more AGs in the metadata region than in the user-extents region, the
ibound option will be ignored. To illustrate this, carrying on from the previous
example that has an AG count of 109:

1. Unmount the filesystem:

cxfsxe4:~ # umount /mnt

2. Mount the filesystem with an ibound value that specifies a block within AG55
(which would result in 54 AGs in the metadata region and 55 AGs in the
user-extents region, given a total of 109 AGs):

cxfsxe4:~ # mount -o ibound=1072657520,logdev=/dev/lxvm/hybridvol_log /dev/lxvm/hybridvol /mnt

3. Display the kernel messages to determine if the filesystem was correctly mounted
with the ibound option. In this case, the output shows that the ibound option
has been ignored, and inode32 behavior will be used instead:

cxfsxe4:~ # dmesg | grep XFS

XFS (xvm-46): filesystem xvm-46 ibound is too small, using inode32

XFS (xvm-46): Mounting Filesystem

XFS (xvm-46): Ending clean mount

82 007–4273–007

Appendix A

XFS System-Tunable Kernel Parameters

This appendix discusses the following:

• "Overview of the XFS System-Tunable Kernel Parameters" on page 83

• "Parameter Types" on page 85

Overview of the XFS System-Tunable Kernel Parameters
This section discusses the following:

• "Using Appropriate Parameter Settings" on page 83

• "Time Unit of Measure" on page 83

• "Prefix" on page 84

• "Permanently Changing a Parameter" on page 84

• "Temporarily Changing a Parameter" on page 84

• "Querying a Current Parameter Setting" on page 85

Using Appropriate Parameter Settings

All XFS parameters are dynamic. Before changing any parameter, you should
understand the ramifications of doing so on your system. You should change
debugging parameters only at the recommendation of SGI Support.

The values of these parameters vary in different releases of the product. When
upgrading the product, consult SGI Support to determine whether any changes made
to the parameters in this chapter should be carried forward. Setting these parameters
incorrectly may render the system unstable or otherwise unusable.

Time Unit of Measure

Times are measured in centisecs (100ths of a second).

007–4273–007 83

A: XFS System-Tunable Kernel Parameters

Prefix

Each of the parameters uses a prefix of fs.xfs. For example, the full name of the
stats_clear parameter is fs.xfs.stats_clear.

Permanently Changing a Parameter

To ensure that a parameter is set upon reboot, modify or create a line like the
following in the /etc/modprobe.d/sgi-xfs.conf file or equivalent:

install xfs /sbin/modprobe --ignore-install xfs; echo value > /proc/sys/fs/xfs/systune

where:

• value is the value you want to set

• systune is the parameter name

For example, to permanently set the rotorstep parameter to 255:

install xfs /sbin/modprobe --ignore-install xfs; echo 255 >/proc/sys/fs/xfs/rotorstep

The change will take effect upon reboot.

Note: This is the recommended method to permanently set an XFS system tunable
parameter. Setting the parameter in the /etc/sysctl.conf file is not recommended
because the file may be parsed at boot time before the xfs module is loaded.

Temporarily Changing a Parameter

For a temporary change to a dynamic parameter, use the Linux sysctl(8) command
as follows:

sysctl -w "fs.xfs.systune=value"

where:

• systune is the parameter name

• value is the value you want to set for the parameter

Note: Do not use spaces around the = character.

84 007–4273–007

XFS
®

Administrator Guide

For example, to temporarily set the rotorstep parameter (which has the fs.xfs
prefix) to 255, enter the following:

sysctl fs.xfs.rotorstep=255

fs.xfs.rotorstep = 255

Querying a Current Parameter Setting

To query the current setting of a parameter, use the Linux sysctl(8) command:

sysctl fs.xfs.systune

where:

• systune is the parameter name

For example, to query the current setting of the rotorstep parameter (which has the
fs.xfs prefix):

sysctl fs.xfs.rotorstep

rotorstep = 255

Parameter Types
This section discusses the following:

• "Parameters to Set at Initial Configuration" on page 86

• "Mount-Time Parameter for Initial Configuration" on page 88

• "Parameters for Special-Case Performance Tuning" on page 88

• "Mount-Time Parameter for Special-Case Performance Tuning" on page 91

• "Debugging Parameters Restricted to SGI Support" on page 91

007–4273–007 85

A: XFS System-Tunable Kernel Parameters

Parameters to Set at Initial Configuration

Most of the dynamic parameters in this section affect the behavior of all mounted XFS
filesystems, therefore you should set them at initial configuration and you should
change them only to follow the desired site policy:

• "inherit_noatim" on page 86

• "inherit_nodfrg" on page 86

• "inherit_nodump" on page 87

• "inherit_nosym" on page 87

• "inherit_sync" on page 87

• "sgid_inherit" on page 87

• "stats_clear" on page 88

• "symlink_mode" on page 88

inherit_noatim

Specifies whether the noatim flag set by the xfs_io(8) chattr command will be
inherited by files in a given directory.

Range of values:

• 0 prevents inheritance

• 1 causes the noatim

flag to be inherited

inherit_nodfrg

Specifies whether the nodfrg flag set by the xfs_io(8) chattr command will be
inherited by files in a given directory.

Range of values:

• 0 prevents inheritance

• 1 causes the nodfrg flag to be inherited

86 007–4273–007

XFS
®

Administrator Guide

inherit_nodump

Specifies whether the nodump flag set by the xfs_io(8) chattr command will be
inherited by files in a given directory.

Range of values:

• 0 prevents inheritance

• 1 causes the nodump flag to be inherited

inherit_nosym

Specifies whether the nosymlinks flag set by the xfs_io(8) chattr command will
be inherited by files in a given directory.

Range of values:

• 0 prevents inheritance

• 1 causes the nosymlinks flag to be inherited

inherit_sync

Specifies whether the sync flag set by the xfs_io(8) chattr command will be
inherited by files in a given directory.

Range of values:

• 0 prevents inheritance

• 1 causes the sync flag to be inherited

sgid_inherit

Controls the action taken for a file created in a set group ID (SGID) directory if the
group ID of the new file does not match the effective group ID or one of the
supplementary group IDs of the parent directory.

Range of values:

• 0 does not clear the S_ISGID bit

• 1 clears the S_ISGID bit

007–4273–007 87

A: XFS System-Tunable Kernel Parameters

stats_clear

Specifies whether or not the accumulated XFS statistics in the /proc/fs/xfs/stat
file are cleared

Range of values:

• 0 does not change the file

• 1 resets the statistics in the file to 0

symlink_mode

Controls the permissions set for symbolic links.

Range of values:

• 0 creates symbolic links with mode 0777 (default)

• 1 specifies that the umask value is used

Mount-Time Parameter for Initial Configuration

The parameter in this section affects the behavior of all mounted XFS filesystems,
therefore you should it at initial configuration and you should change it only to
follow the desired site policy. Changes to this parameter takes effect at mount time.

probe_dmapi

Determines whether or not XFS attempts to load the xfs_dmapi module and enable
the dmi/dmapi/xdsm mount option when mounting a filesystem.

Range of values:

• 0 does not load the module or enable the mount option

• 1 loads the module and enable the mount option

Parameters for Special-Case Performance Tuning

The default values for the following dynamic parameters are optimal for most
workload, and you should take extra caution when changing them for performance
tuning:

88 007–4273–007

XFS
®

Administrator Guide

• "probe_limit" on page 89

• "rotorstep" on page 89

• "syncd_timer" on page 90

• "xfs_buf_age" on page 90

• "xfs_buf_timer" on page 90

probe_limit

Note: The probe_limit parameter is part of enhanced XFS.

Specifies the maximum number of pages that XFS will cluster together when probing,
in order to optimize the conversion of delayed allocation or unwritten extents into
real extents.

Range of values:

• Default: 4096 (0x1000)

• Minimum: 0

• Maximum: 2097151 (0x1fffff)

rotorstep

In inode32 allocation mode, determines how many files the allocator attempts to
allocate before moving to the next allocation group. The intent is to control the rate at
which the allocator moves between allocation groups when allocating extents for new
files.

Range of values:

• Default: 1

• Minimum: 1

• Maximum: 255

See also:

• "agskip Mount Option for Allocation Group Specification" on page 69

007–4273–007 89

A: XFS System-Tunable Kernel Parameters

• "ibound Mount Option for SSD Media" on page 70

syncd_timer

Specifies the interval (in centiseconds) at which the xfssyncd thread flushes
metadata such as log activity out to disk does some processing on unlinked inodes.

Range of values:

• Default: 3000

• Minimum: 100

• Maximum: 720000

xfs_buf_age

Specifies the age (in centiseconds) at which xfsbufd flushes dirty metadata buffers
to disk.

Range of values:

• Default: 1500

• Minimum: 100

• Maximum: 720000

xfs_buf_timer

Specifies the interval (in centiseconds) at which xfsbufd scans the dirty metadata
buffers list.

Range of values:

• Default: 100

• Minimum: 50

• Maximum: 3000

90 007–4273–007

XFS
®

Administrator Guide

Mount-Time Parameter for Special-Case Performance Tuning

The default value for the following parameter is optimal for most workload, and you
should take extra caution when changing it for performance tuning. Changes to this
parameter takes effect at mount time.

fstrm_timer

Specifies the filestream timer, which is the required time interval (in centiseconds)
between file creates in a directory to maintain a stream of files.

Range of values:

• Default: 3000

• Minimum: 1

• Maximum: 360000

Debugging Parameters Restricted to SGI Support

!
Caution: Do not change these parameters unless instructed to do so by SGI Support.

This section discusses debugging parameters that should be changed at the
recommendation of SGI Support:

• "error_level" on page 91

• "panic_mask" on page 92

error_level

Specifies the reporting volume when internal errors occur, such as the number of
detailed messages and backtraces for filesystem shutdowns. XFS macros use the
following threshold values:

XFS_ERRLEVEL_OFF is 0
XFS_ERRLEVEL_LOW is 3
XFS_ERRLEVEL_HIGH is 5

Range of values:

007–4273–007 91

A: XFS System-Tunable Kernel Parameters

• Default: 3

• Minimum: 0 (turns off error reporting)

• Maximum: 11

panic_mask

Specifies a bitmask that causes certain error conditions to call BUG(). The value is the
AND value of the following tags representing errors that should cause panics:

XFS_NO_PTAG 0

XFS_PTAG_IFLUSH 0x00000001

XFS_PTAG_LOGRES 0x00000002

XFS_PTAG_AILDELETE 0x00000004

XFS_PTAG_ERROR_REPORT 0x00000008
XFS_PTAG_SHUTDOWN_CORRUPT 0x00000010

XFS_PTAG_SHUTDOWN_IOERROR 0x00000020

XFS_PTAG_SHUTDOWN_LOGERROR 0x00000040

Range of values:

• Default: 0

• Minimum: 0

• Maximum: 255

92 007–4273–007

Index

64–bit file capabilities, 1

A

access control lists (ACLs), 2
accounting, 34
agsize, 75, 71
agskip, 69
allocation group specification, 69
allocation groups, 7
archives, 53
attr, 2
attributes, 2

B

backup and restore, 2
backup procedures, 37
backups, 18
bandwidth operations and SSD, 70
barrier mount option and remount, 26
block size

filesystem directory, 4
planning, 3

block sizes, 1

C

capacity-intensive operations and SSD, 70
consistency of filesystems, 18
copying files with xfsdump and xfsrestore, 68
corruption of filesystems, 17
crash recovery, 1
create(), 6

creating filesystems, 11
cumulative restores, 62

D

data segments, 39
database journaling, 1
disk partitioning, 8
disk quotas

See quotas, 27
dual-hosted disks, 18
dump, 2
dump inventory, 39
dump layouts, 39
dump session, 38
dump stream, 38
dump, incremental, 50
dump, resumed, 50

E

Enhanced XFS extension, 69
agskip mount option, 69
ibound mount option for SSD media, 70

erasing tape data, 50
error_level, 91
/etc/fstab, 34
/etc/fstab file, 29
/etc/modprobe.d/sgi-xfs.conf, 84
extended attributes, 2
extent allocation policy, 71
extents, 1
external filesystem log, 5

007–4273–007 93

Index

F

fcntl system call, 1
features, 1
filestream timer, 91
filesystem log, 4
filesystem repair, 21
fs_quota –p, 32
fsck, 1, 19
fstab file, 12
fstrm_timer, 91

G

gqnoenforce, 34
gquota mount option, 29
group quotas

See "quotas", 31
growing filesystems, 15

H

hard limits, 27
hard-disk drive and ibound, 70
hardware requirements, 3
HDD media and ibound, 70
hierarchical storage manager (HSM), 2
housekeeping directory, 67

I

I/O performance, 1
ibound mount option

examples, 77
kernel messages, 76
overview, 70

inconsistent filesystems, 21
incremental dumps, 50
inherit_noatim, 86

inherit_nodfrg, 86
inherit_nodump, 87
inherit_nosym, 87
inherit_sync, 86, 87
inode number, 76
inode32 vs inode64 behavior, 75
inodes, 1, 23
internal filesystem log, 5
inventory of a dump, 53

J

journaling, 1

L

latency-sensitive operations and SSD, 70
log recovery, 25
log size, 5
log type, 5
logdev, 7
logs and mkfs.xfs options, 7
lost+found, 24
lost+found directory, 23

M

maintenance of filesystems, 17
making a filesystem, 11
maximum filesystem size, 1
maximum inode number, 76
media file, 39
media layout, 38
media object, 38
memory recommendation, 1
metadata region, 70
mkdir, 6
mkfs.xfs -n, 4

94 007–4273–007

XFS
®

Administrator Guide

mkfs.xfs command, 14
mkfs.xfs –b, 3, 13, 15
mkfs.xfs –l, 14
mkfs.xfs –p, 12
monitoring disk space usage, 34
mount —o norecover, 26
mounting a filesystem, 12
mounting without log recovery, 25
mt erase, 50
multiprocessing systems, 1

N

namespaces, 2
network restores, 60
noalign mount option and remount, 26
nobarrier mount option and remount, 26

O

orphanage directory, 67

P

panic, 17
panic_mask, 92
partitioning, 8
performance, 1
physical write protection, 18
power-off, 18
prerequisite hardware, 3
prjquota mount option, 30
probe_dmapi, 88
probe_limit, 89
project quotas

See "quotas", 32

Q

qnoenforce, 34
quotaoff, 35
quotaon, 35
quotas, 27

administering, 33
disk space usage monitoring and , 34
displaying, 33
enabling for groups, 29
enabling for projects, 30
enabling for users, 29
hard limits, 27
limits for groups, 31
limits for projects, 32
limits for users, 31
mutually exclusive group and project quotas, 31
soft limits, 27

R

RAID and stripe unit, 8
readdr, 4
recovery, 1
recovery procedures, 37
remote tape drive, 47
remount, 26
reorganization of filesystems, 17
repair problems, 25
repartitioning, 8
resumed dumps, 50
reusing tapes, 49
rmdir, 6
ro mount option and remount, 26
rootflags boot option, 29
rotorstep, 69, 89
rw mount option and remount, 26

007–4273–007 95

Index

S

sgid_inherit, 87
shutdown, 17
site-configurable system tunable kernel

parameters, 83
size of filesystem, 1
soft limits, 27
solid-state drive, 70
solid-state drive and ibound, 70
sparse files, 1
SSD media and ibound, 70
stats_clear, 88
stream terminator, 39
stripe units, 7, 8
striped volume and stripe unit, 8
swalloc mount option and remount, 26
symlink_mode, 88
syncd_timer, 90
sysctl, 84
system namespace, 2
system panic, 17
system tunable kernel parameters

appropriate settings, 83
debugging parameters restricted to SGI

Support, 91
error_level, 91
fstrm_timer, 91
inherit_noatim, 86
inherit_nodfrg, 86
inherit_nodump, 87
inherit_nosym, 87
inherit_sync, 86, 87
mount-time parameter for initial

configuration, 88
mount-time parameter for special-case

performance tuning, 91
panic_mask, 92
parameters for special-case performance

tuning, 88
parameters set at initial configuration, 86
permanent changes, 84

probe_dmapi, 88
probe_limit, 89
queries, 85
rotorstep, 89
sgid_inherit, 87
stats_clear, 88
symlink_mode, 88
syncd_timer, 90
temporary changes, 84
xfs_buf_timer, 90
xfsbufd_centisecs, 90

T

tape data, erasing, 50
tapes, reusing, 49
transaction activity and log size, 6
transaction rate and log size, 6

U

umount, 12
unlink(), 6
unmounting a disk partition, 12
user namespace, 2
user quotas

See "quotas", 31
user-extents region, 70

V

volume manager, 1

X

xfs_buf_timer, 90
xfs_check, 19, 20

96 007–4273–007

XFS
®

Administrator Guide

xfs_check command, 18
xfs_fsr, 17
xfs_growfs, 15
xfs_quota, 31
xfs_quota command, 33
xfs_quota –g, 32
xfs_repair, 21
xfs_repair –n, 18, 19
xfs_repair error messages, 23
xfsbufd_centisecs, 90

xfsdump, 2, 37
xfsdump archives, 53
xfsdump utility

local media, 46
xfsdump_quotas file, 33
xfsdump_quotas_group file, 33
xfsrestore, 2, 37, 54, 70
xfsrestore syntax, 55

007–4273–007 97

	New Features in This Guide
	Table of Contents
	About This Guide
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. The XFS (R) Filesystem
	2. Planning an XFS Filesystem
	Choosing the Filesystem Block Size
	Choosing the Filesystem Directory Block Size
	Choosing the Log Type and Size
	Log Type: Internal vs External
	Log Size
	mkfs.xfs Command-Line Options for Logs

	Choosing Allocation Groups and Stripe Units
	Repartitioning the Disks

	3. Creating XFS Filesystems
	Making a Filesystem
	Procedure to Make a Filesystem
	mkfs.xfs Using the Defaults
	mkfs.xfs Specifying Block and Log Size of Internal Log
	mkfs.xfs for a Logical Volume with a Log Subvolume
	mkfs.xfs for a Directory Block Size Larger than Filesystem Block Size

	Growing a Filesystem

	4. Filesystem Maintenance
	Filesystem Reorganization
	Filesystem Corruption
	Checking Filesystem Consistency
	Overview of the Commands to Check Filesystem Consistency
	xfs_repair -n Command Line
	xfs_check Command Line

	Repairing XFS Filesystem Problems
	Repairing Inconsistent Filesystems with xfs_repair
	Common xfs_repair Error Messages
	xfs_repair Error Messages When Files Are in lost+found
	What to Do If xfs_repair Cannot Repair a Filesystem
	Mounting a Filesystem Without Log Recovery

	Remounting an XFS Filesystem

	5. Disk Quotas
	Overview of Disk Quotas
	Enabling Quotas
	Enabling Quotas for Users
	Enabling Quotas for Groups
	Enabling Quotas for Projects

	Setting Quota Limits
	Setting Quota Limits for Users
	Setting Quota Limits for Groups
	Setting Quota Limits for Projects

	Displaying Quota Information
	Administering Quotas
	Monitoring Disk Space Usage with Quota Accounting
	Checking Disk Space Usage

	6. Backup and Recovery Procedures
	Features of xfsdump and xfsrestore
	Media Layout for xfsdump
	Possible xfsdump Layouts
	Saving Data with xfsdump
	xfsdump Syntax
	Specifying Local Media
	Specifying a Remote Tape Drive
	Backing Up to a File
	Reusing Tapes
	Erasing Used Tapes
	About Incremental and Resumed Dumps
	Performing an Incremental Dump
	Performing a Resumed Dump

	Examining xfsdump Archives
	About xfsrestore
	xfsrestore Syntax
	Displaying the Contents of the Dump Media with xfsrestore
	Performing Simple Restores with xfsrestore
	Restoring Individual Files with xfsrestore
	Performing Network Restores with xfsrestore
	Performing Interactive Restores with xfsrestore
	Performing Cumulative Restores with xfsrestore
	Interrupting xfsrestore
	About the housekeeping and orphanage Directories

	Using xfsdump and xfsrestore to Copy Filesystems

	7. Enhanced XFS Extensions
	agskip Mount Option for Allocation Group Specification
	ibound Mount Option for SSD Media
	ibound Purpose
	ibound Availability ,Requirements, and Recommendations
	How ibound Works
	ibound Extent Allocation Policy
	Determining the SSD Size Required for a Given Number of Inodes
	Overview of the Configuration Procedure Using ibound
	When ibound is Ignored
	ibound and Kernel Messages
	Examples of Using ibound

	A. XFS System-T unable Kernel Parameters
	Overview of the XFS System-T unable Kernel Parameters
	Using Appropriate Parameter Settings
	Time Unit of Measure
	Prefix
	Permanently Changing a Parameter
	Temporarily Changing a Parameter
	Querying a Current Parameter Setting

	Parameter Types
	Parameters to Set at Initial Configuration
	Mount-Time Parameter for Initial Configuration
	Parameters for Special-Case Performance Tuning
	Mount-Time Parameter for Special-Case Performance Tuning
	Debugging Parameters Restricted to SGI Support

	Index

