
VPro™ for Silicon Graphics®

Octane® Porting Guide

007-4271-001 Version 001

CONTRIBUTORS
Written by Tammy Domeier
Illustrated by Chris Wengelski
Edited by Rick Thompson
Production by Susan Gorski
Cover Design By Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications

© 2000, Silicon Graphics, Inc. All Rights Reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government
or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as
specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Departmentof Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or
sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

Silison Graphics, IRIX, and OpenGL are registered trademarks and SGI, VPro, SE, SSE, MXE, Octane, and the SGI logo are trademarks of Silicon
Graphics, Inc. All other trademarks mentioned are the property of their respetive owners.

007-4271-001 iii

Record of Revision

Version Description

001 April 2000
Original Printing.

007-4271-001 v

Contents

VPro™ for Silicon Graphics® Octane® Porting Guide

Tables . ix
Audience . xi
Related Publications . . xi
Obtaining Publications . xi
Conventions . xii
Reader Comments . . xii

1. Product Overview . . 1
Industry-Leading Transform Performance 1
Hardware-Accelerated Features 2
Customer-Upgradable . 2
Planned Versions of VPro . 3

V6 and V8 . . 3
Next Generation VPro . 3

2. Architectural Overview . . 5
Hardware Features . 5

Graphics Memory Architecture 6
Graphics Memory Usage. 6
Dual-Channel Display . 6
Command FIFO and Context Switching 7
Supported Visuals . 7

vi 007-4271-001

Contents

Rendering Features. . 10
Buffer Management . 10

Color Buffers . . 11
Accumulation Buffers 13
Overlay. . 13
Stencil and Depth Buffers 14
Off-Screen Buffers (Pbuffers) 14
Stereo Support. . 14
Buffer I/O . . 14

Rendering Techniques Support 15
Blending . 15
Texture . . 17
Shading Support . . 19
Anti-Aliasing (AA) and Fog 19
Instrumentation . 19

Geometry . 20
Geometry Fast Paths 20
Host Bandwidth . . 20
State Changes . . 21

Pixel Operations . 22
Buffer Reads and Writes 22
Data Conversions . . 23
Non-Blocking Texture Loads (and Pixel Reads and Draws) 23

Imaging Operations . 23
Convolutions . . 23
YCrCb format . . 23
Other . 23

3. Extensions . . 25
IMPACT Graphics Extensions Supported by VPro 25
 New Extensions Supported by VPro 33
IMPACT Graphics Extensions Not Supported by VPro 40
Other Extensions Not Supported byVPro 40

007-4271-001 ix

Tables

Table 2-1 VPro Blending 15
Table 2-2 Texture Features 18
Table 2-3 Pixel Transfer Speed 22
Table 3-1 IMPACT Graphics Extensions Supported by VPro 25
Table 3-2 New Extensions Supported by VPro 33

007-4271-001 xi

About This Guide

This porting guide describes VPro graphics for Octane2, which is the next-generation
graphics set for Silicon Graphics Octane. It offers high polygon and fill performance,
excellent image quality and advanced features important to 3D modeling and image
processing applications on the desktop. VPro supercedes the SE, SSE, and MXE graphics
sets for the Octane.

Audience

This guide is intended for graphics programmers who use SGI systems. It describes the
architectural features of VPro and how VPro supports new and existing extensions to
OpenGL.

Related Publications

The following documents contain additional information that may be helpful:

• OpenGL Reference Manual

• OpenGL Programming Guide

Obtaining Publications

To obtain SGI documentation, go to the SGI Technical Publications Library:

http://techpubs.sgi.com

xii 007-4271-001

About This Guide

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as commands, files,
routines, path names, signals, messages, and programming language
structures.

variable Italic typeface denotes variable entries and words or concepts being
defined.

user input This bold fixed-space font denotes literal items that the user enters in
interactive sessions. Output is shown in nonbold, fixed-space font.
Also, function names with parentheses following the name—for
example, glPolygonMode()—and arguments to command line
options.

[] Brackets enclose optional portions of a command or directive line.

. . . Ellipses indicate that a preceding element can be repeated.

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number can be found on the back cover.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

About This Guide

007-4271-001 xiii

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043-1351

• Send a fax to the attention of Technical Publications:

+1 650 932 0801

We value your comments and will respond to them promptly.

007-4271-001 1

Chapter 1

1. Product Overview

VPro is the next generation graphics set for Octane. It offers high polygon and fill
performance, excellent image quality, and advanced features important to 3D modeling
and image processing applications on the desktop. VPro highlights include the
following:

• Industry-leading transform performance for the desktop: performance increases
over existing Octane products

• Hardware-accelerated features for enhanced image quality and interactivity

• Customer-upgradable on Octane

• Two versions of VPro: V6 with 32MB of graphics memory, V8 with 128MB of
graphics memory

Industry-Leading Transform Performance

VPro brings dramatically higher performance and many new features to the desktop.
Some of these features are detailed below as they relate to various markets and
industries. For all markets, VPro offers superb transform and fill rate performance for
both textured and non-textured data sets.

• VPro has been optimized to deliver high performance transform and lighting
critical to the CAD and 3D animation markets so that the end user can interact
freely with large, finely tesselated models.

• Industry-leading textured fill-rate performance provides image processing, visual
simulation, and volume visualization applications a new level of interactivity.

For 3D modeling and image processing markets, VPro includes a number of
differentiated features and meets compliance for OpenGL 1.2 certification.

2 007-4271-001

1: Product Overview

For 3D modeling markets, new features include the following:

• Per-pixel (per-fragment) lighting for accurate lighting even with simplified
geometry

• Deep graphics FIFO for better host and graphics load balancing

• Improved graphics context switching, allowing multiple windows to render at high
performance.

Hardware-Accelerated Features

For graphics and visualization-intensive image processing markets, VPro offers a set of
specific hardware-accelerated features. These features enable enhanced performance for
applications and guarantee a high level of image quality and accuracy for the end-user.

• 48-bit RGBA (supported on V8 and Next Generation VPro) for applications like film
compositing and CAD styling that demand high color precision

• Up to 104 MB of texture memory with non-blocking texture download, for fast
handling of very large textures

• 3D textures for very fast rendering of volumetric data sets

• 48-bit texture look-up table for very fast and accurate interaction with
volume-rendered data sets

• 24-bit per component hardware accumulation buffer (128MB version only)

• Dual-channel for a two-screen display out of a single graphics card (128MB version
only)

Customer-Upgradable

VPro is a customer-upgradable add-in board on Octane. The upgrade entails replacing
the current graphics subsystem and installing the latest IRIX maintenance release. A
single VPro occupies the upper left high-speed XIO port in the Octane machine (the card
will physically occupy two XIO slots because of physical dimensions).

Planned Versions of VPro

007-4271-001 3

Planned Versions of VPro

VPro will supercede the current SE, SSE, and MXE graphics sets available today on
Octane and offer significant price-performance advantages. VPro will be available in two
versions: V6 and V8.

V6 and V8

The following are distinguishing features of the V6 and V8 versions:

• V6 includes 32MB of graphics memory (memory shared among framebuffer,
texture, pbuffer, accumulation buffer, etc.).

• V8 includes 128MB of graphics memory.

Next Generation VPro

Next Generation VPro will be a more robust version than V6 and V8:

• improved image processing performance

• improved image copy and image write performance

• support for 12-bit RGBA with 16-bit z

• available with 128MB of graphics memory, and will replace V8

007-4271-001 5

Chapter 2

2. Architectural Overview

The VPro architecture is a departure from the traditional SIMD large-chip-count graphics
systems. VPro consists of only two main chips: Buzz,the transform and rasterizer chip,
and PB&J, the back-end video chip. The chips run at high clock rates and in many ways
are very similar to a RISC type architecture. The VPro architecture does not have the strip
length, context switch, or inter-chip communication drawbacks of traditional SIMD
graphics architectures. Buzz implements the full geometry pipeline, including
transformation, lighting, and clipping, along with the full OpenGL 1.2 imaging pipeline.
Lighting is fully hardware-accelerated for both per-vertex and per-pixel shading.
Texturing features include both 2D and 3D textures, borders, post-texture lookup tables,
and post-texture specular highlights. The full pipeline runs with 12-bit per-component
or greater precision from the geometry stage through rasterization.

This chapter further describes the VPro architecture in two parts:

• hardware features

• rendering features

Hardware Features

This section describes the following features:

• Graphics memory architecture

• Graphics memory usage

• dual-channel display

• command FIFO and context switching

6 007-4271-001

2: Architectural Overview

Graphics Memory Architecture

On VPro, the commands FIFO, framebuffer, textures, pbuffers, scratch buffers, and all
other buffers are allocated out of one large pool of memory. VPro is available in two
memory sizes: a 32MB version called V6 and a 128 version called V8. Off-screen
rendering (pbuffers) and accumulation buffer usage run at full hardware speeds. Copies
between buffers and textures are extremely fast since they are performed on board
without needing a read to the host and then back again to the board.

Graphics Memory Usage

The VPro drawable buffers, having a maximum addressable area of 4K x 4K, allows very
large pbuffer and imaging operations. The number of pbuffers is dependent on the size
of the buffer (up to the maximum of 4K x 4K), the depth of the buffer, and the available
free graphics memory. Any on-board memory that is not directly used for drawable
buffers can be used for auxiliary buffers, pbuffers (fully hardware-accelerated), and
textures.

Memory usage for on-screen buffers can be calculated by multiplying the screen size in
pixels by either 10 or 18 bytes per pixel (actual framebuffer at either 8 or 16 bytes per
pixel), plus another 12 bytes per pixel if H/W accelerated accumulation buffers are
configured.

Using xsetmon, you can configure the graphics memory to allocate and query memory
for optimal application configurations. You can evaluate tradeoffs such as pbuffers
against textures, and the like.

Dual-Channel Display

The large addressable framebuffer also enables a high-resolution, dual-channel display
option. The left and right channels, positioned side-by-side in a single logical screen,
allow windows to be dragged between displays (or rendering into a single viewport that
covers both displays). The optional hardware adaptor card provides two digital or
analog outputs. The SGI 1600SW (with an adaptor) is compatible with this dual-channel
option, allowing completely digital throughput to the monitor.

Hardware Features

007-4271-001 7

Command FIFO and Context Switching

VPro’s deep command FIFO allows applications to optimize load balancing between the
host and graphics processors. The VPro architecture is also designed for very fast context
switching. Commands are sent to a deep command FIFO, which contains approximately
one millisecond of commands. The FIFO can hold multiple command streams; so, a
context switch does not have to wait for the FIFO to drain. The trade-off for fast context
switches is a maximum latency of the size of the FIFO. This latency is only apparent to
operations that require a round trip to the graphics, such as glReadPixels.

State is also shadowed on the host. The state shadow has an additional benefit that
redundant state changes are eliminated on the host and state queries are extremely fast.

Supported Visuals

Using xsetmon,you can configure the framebuffer to be either 16-byte or 8-byte . The
memory is allocated at X startup time. The visuals that are advertised by the X server are
dependent on the initial size of the framebuffer. Pbuffer visuals are available in all
standard formats. Visuals that are too deep for an 8-byte framebuffer (for example.
double-buffered RGBA + depth) will not be available if the X Server is started with a
8-byte framebuffer. Likewise, if the server is not started with a hardware accumulation
buffer, all accumulation operations will be done in software.

8 007-4271-001

2: Architectural Overview

8-Byte Visuals:
visual x bf lv rg d st r g b a ax dp st accum buffs ms
 id dep cl sp sz l ci b ro sz sz sz sz bf th cl r g b a ns b

0x20 8 pc . 8 . c 24
0x21 8 pc . 8 . c y 24
0x23 8 pc y 8 1 c
0x24 8 pc . 8 1 c
0x25 8 pc . 8 . r y . 8 24
0x26 8 pc . 8 . r y . 8 . . 8 . 24
0x27 8 pc . 8 . r y . 8 . . 8 . 24 8
0x28 8 pc . 8 . c y y 24
0x29 8 pc . 8 . c y y 24 8
0x2a 8 pc . 8 . r y y 8 24
0x2b 8 pc . 8 . r y y 8 . . 8
0x2c 12 pc . 12 . c 24
0x2d 12 pc . 12 . c 24 8
0x2e 12 pc . 12 . c y 24
0x2f 12 pc . 12 . c y 24 8
0x30 12 pc . 12 . c y y
0x31 12 pc . 12 . r y . 12 24
0x32 12 pc . 12 . r y y 12
0x33 12 pc . 12 . r . . 12 . . 12 . 24
0x34 12 pc . 12 . r . . 12 . . 12 . 24 8
0x35 12 pc . 12 . r y . 12 . . 12
0x36 12 tc . 16 . r y . 4 4 4 4 . 24 . 16 16 16 16 . .
0x37 12 tc . 16 . r y . 4 4 4 4 . 24 8 16 16 16 16 . .
0x38 12 tc . 16 . r y y 4 4 4 4 . . . 16 16 16 16 . .
0x39 15 tc . 16 . r y . 5 5 5 1 . 24 . 16 16 16 16 . .
0x3a 15 tc . 16 . r y . 5 5 5 1 . 24 8 16 16 16 16 . .
0x3b 15 tc . 16 . r y y 5 5 5 1 . . . 16 16 16 16 . .
0x3c 24 tc . 32 . r . . 8 8 8 8 . 24 . 16 16 16 16 . .
0x3d 24 tc . 32 . r . . 8 8 8 8 . 24 8 16 16 16 16 . .
0x3e 24 tc . 32 . r y . 8 8 8 8 . . . 16 16 16 16 . .

 id dep cl xp bs lv rg d st rb gb bb ab ax dp st ar ag ab aa ms,b

0x40 30 tc . 32 . r . . 10 10 10 2 . 24 . 16 16 16 16 . .
0x41 30 tc . 32 . r . . 10 10 10 2 . 24 8 16 16 16 16 . .
0x42 30 tc . 32 . r y . 10 10 10 2 . . . 16 16 16 16 . .
0x43 30 tc . 48 . r . . 12 12 12 12 . . . 16 16 16 16 . .
0x44 30 tc . 48 . r . . 12 12 12 12 . 16 . 16 16 16 16 . .
1

Hardware Features

007-4271-001 9

16-Byte Visuals:

visual x bf lv rg d st r g b a ax dp st accum buffs ms
 id dep cl sp sz l ci b ro sz sz sz sz bf th cl r g b a ns b

0x20 8 pc . 8 . c 24
0x21 8 pc . 8 . c y 24
0x23 8 pc y 8 1 c
0x24 8 pc . 8 1 c
0x25 8 pc . 8 . r y . 8 24
0x26 8 pc . 8 . r y . 8 . . 8 . 24
0x27 8 pc . 8 . r y . 8 . . 8 . 24 8
0x28 8 pc . 8 . c y y 24
0x29 8 pc . 8 . c y y 24 8
0x2a 8 pc . 8 . r y y 8 24
0x2b 8 pc . 8 . r y y 8 . . 8 . 24
0x2c 12 pc . 12 . c 24
0x2d 12 pc . 12 . c 24 8
0x2e 12 pc . 12 . c y 24
0x2f 12 pc . 12 . c y 24 8
0x30 12 pc . 12 . c y y 24
0x31 12 pc . 12 . c y y 24 8
0x32 12 pc . 12 . r y . 12 24
0x33 12 pc . 12 . r y y 12 24
0x34 12 pc . 12 . r . . 12 . . 12 . 24
0x35 12 pc . 12 . r . . 12 . . 12 . 24 8
0x36 12 pc . 12 . r y . 12 . . 12 . 24
0x37 12 pc . 12 . r y . 12 . . 12 . 24 8
0x38 12 tc . 16 . r y . 4 4 4 4 . 24 . 16 16 16 16 . .
0x39 12 tc . 16 . r y . 4 4 4 4 . 24 8 16 16 16 16 . .
0x3a 12 tc . 16 . r y y 4 4 4 4 . 24 . 16 16 16 16 . .
0x3b 12 tc . 16 . r y y 4 4 4 4 . 24 8 16 16 16 16 . .
0x3c 15 tc . 16 . r y . 5 5 5 1 . 24 . 16 16 16 16 . .
0x3d 15 tc . 16 . r y . 5 5 5 1 . 24 8 16 16 16 16 . .
0x3e 15 tc . 16 . r y y 5 5 5 1 . 24 . 16 16 16 16 . .

1 RGBA12 visuals with Z are only available on Next generation VPro.

10 007-4271-001

2: Architectural Overview

 id dep cl xp bs lv rg d st rb gb bb ab ax dp st ar ag ab aa ms,b

0x3f 15 tc . 16 . r y y 5 5 5 1 . 24 8 16 16 16 16 . .
0x40 24 tc . 32 . r . . 8 8 8 8 . 24 . 16 16 16 16 . .
0x41 24 tc . 32 . r . . 8 8 8 8 . 24 8 16 16 16 16 . .
0x42 24 tc . 32 . r y . 8 8 8 8 . 24 . 16 16 16 16 . .
0x43 24 tc . 32 . r y . 8 8 8 8 . 24 8 16 16 16 16 . .
0x45 30 tc . 32 . r . . 10 10 10 2 . 24 . 16 16 16 16 . .
0x46 30 tc . 32 . r . . 10 10 10 2 . 24 8 16 16 16 16 . .
0x47 30 tc . 32 . r y . 10 10 10 2 . 24 . 16 16 16 16 . .
0x48 30 tc . 32 . r y . 10 10 10 2 . 24 8 16 16 16 16 . .
0x49 30 tc . 48 . r . . 12 12 12 12 . . . 16 16 16 16 . .
0x4a 30 tc . 48 . r . . 12 12 12 12 . 16 . 16 16 16 16 . .
0x4b 30 tc . 48 . r y . 12 12 12 12 . . . 16 16 16 16 . .
0x4c 30 tc . 48 . r y . 12 12 12 12 . 16 . 16 16 16 16 . .
2

Rendering Features

This section describes the following topics:

• Buffer management

• Rendering techniques support

• Geometry

• Pixel operations

• Imaging operations

Buffer Management

All OpenGL buffers are allocated out of the same on-board memory pool. The number
and size of buffers that are available is dependent on the amount of memory on-board

2 RGBA12 visuals with Z are only available on Next Generation VPro.

Rendering Features

007-4271-001 11

(32MB or 128MB), the screen resolution, and the video modes. The maximum possible
size for any drawable buffer is 4K x 4K.

VPro does not have a native GLfloat data format for pixel data. Float data that is read or
written to the color buffer, depth buffer, stencil buffer, and accumulation buffer is
converted on the host. For best performance, do not read or write pixel data as float but
use any of the other GL data types, such as [unsigned] integer or [unsigned] long.
Performance for pixel read and write operations is best for 32-bit RGBA formats.

VPro supports the following OpenGL buffers:

• Color buffers

• Stencil and depth buffers

• Accumulation buffer

• Overlay buffer

• Off-screen rendering buffer (pbuffer)

Color Buffers

VPro supports bitmap, CI, L, LA, RGB, RGBA, ABGR, BGRA, and YCrCB (through the
subsample and YCrCb_format specification) in hardware. All color buffers are either
single-, double-, or quad-buffered (stereo). The resolution and number of buffers is
dependent on the amount of graphics memory. A 32MB system will not be able to do
RGBA16 quad buffering.

The following formats are supported 3:

Data Formats:

UNSIGNED_BYTE_3_3_2
UNSIGNED_BYTE_2_3_3_REV
UNSIGNED_BYTE_5_6_5
UNSIGNED_BYTE_5_6_5_REV
UNSIGNED_SHORT_4_4_4_4
UNSIGNED_SHORT_4_4_4_4_REV
UNSIGNED_SHORT_5_5_5_1
UNSIGNED_SHORT_1_5_5_5_REV

3 _REV denotes the ordering of components will be reversed.

12 007-4271-001

2: Architectural Overview

UNSIGNED_INT_8_8_8_8
UNSIGNED_INT_8_8_8_8_REV
UNSIGNED_INT_10_10_10_2
UNSIGNED_INT_10_10_10_2_REV

Framebuffer Formats:

R84, G84,B84, A84,
L85

I8
LA8
R3_G3_B25

B2_G3_R35

R5_G6_B55

B5_G6_R55

RGB85

RGBA4
ABGR4
ARGB4
BGRA4
A1_RGB5
A1_BGR5
BGR5_A1
RGBA8
ABGR8
ARGB8
BGRA8
YCrCb_444(byte or ubyte)6

YCrCb_422 (byte or ubyte)6

R164, G164, B164, A164

R324, G324, B324, A324

L165

I16
LA16
RGB325

RGBA324

4 Single components are still expanded to RGBA. The other components are set to 0 and alpha is always
set to 0xff for packed and 0xfff for full mode.

5 Alpha is set to 0xff for packed or 0xfff for full.

6 For the YCrCb formats, VPro does the proper sampling; that is, replicate or zero-fill.

Rendering Features

007-4271-001 13

ABGR324

RGB165

RGB10_A2
A2_BGR10
BGR10_A2
A2_RGB10
RGBA12
ABGR12
RGBA16
ABGR16
YCrCb_422 (short or ushort)7

L8, I8
CI8
L16, I16
CI12, CI16
L32
LA8
LA16
LA32
Bitmap
CI8
CI16
CI32

Accumulation Buffers

The OpenGL accumulation buffer is fully hardware-accelerated if the X server is
configured to advertise hardware-accelerated accumulations buffers. VPro also supports
an accumulation buffer within a pbuffer. Using setmon or xsetmon, you need to do
configuration before X server startup time for either software accumulation or shallow
hardware accumulation. The software accumulation buffer supports 16-bit precision per
component RGBA and the hardware accumulation buffer can support 24-bit precision
per component RGBA.

Overlay

There is one single-buffered 8-bit overlay buffer.

7 For the YCrCb formats, VPro does the proper sampling; that is, replicate or zero-fill.

14 007-4271-001

2: Architectural Overview

Stencil and Depth Buffers

There is one Z/stencil buffer_per_color_buffer_ for supported formats. The stencil and
depth buffers are packed into one 4-byte value on reads and writes. Hence, requesting
stencil does not add an additional memory hit over requesting only depth. However,
since the stencil planes cannot be cleared using the hardware fast clear mode, it should
not be requested as part of the visual unless it is going to be used. When using stencil and
depth buffers, it is fastest to clear them both simultaneously.

The depth buffer is in eye space instead of the traditional screen space. Depth is
calculated before the projection matrix, not afterwards. This allows greater precision in
the depth buffer as the space is no longer non-linear due to the perspective divide. Depth
buffer readback must be converted from eye space to screen space. Applications need to
ensure that the depth buffer is cleared when changing the depth range and other depth
buffer state operations.

Off-Screen Buffers (Pbuffers)

Off-screen rendering areas are known as pbuffers. Pbuffers support all main buffer
configurations including color (resolution and format), depth, stencil, and accumulation.

Pbuffers are allocated and destroyed through the fbconfig set of commands which
become part of the GLX spec as of GLX 1.3. Based upon the video format loaded, buffer
allocations are done statically when the X Server activates. Since pbuffers are allocated
out of the on-board memory, pbuffer allocation can fail when graphics memory is
depleted. This can happen if there are too many pbuffers, deep or wide main buffers
(such as for dual-channel mode) or too many textures defined. VPro supports pbuffers
as single-buffered entities only.

Stereo Support

Two modes of stereo are supported: SGI full screen and quad-buffered.

Buffer I/O

Moving data between buffers is very fast since the buffer-to-buffer copy happens entirely
on-board. No round trip to the host is required. Moving data between any buffer (color,
depth, stencil, and accumulation) and texture objects is also very fast. Copying data from
graphics memory to the host will run at a slower rate. Buffer copies can be accomplished
by using the MakeCurrentRead GLX extension.

Rendering Features

007-4271-001 15

To optimize performance, use the native VPro formats to read and write data. Use this
guideline to ensure that the host does not have to convert the data. The host must convert
the data when reading and writing in GLfloat format or reading in GLint format.

Rendering Techniques Support

VPro has many advanced rendering features that provide support for high-quality
imaging. There is support for the full OpenGL 1.2 pipeline in addition to many
extensions. All paths through the pipeline are 12-bit per-component paths, including
blending, texturing, and lighting. Per-pixel shading is supported as well as the Specular
after Texture extension.

Blending

All OpenGL 1.2 blending modes are supported to take incoming RGBA fragments and
blend them into the existing framebuffer. Table 2-1 describes VPro blending.

Table 2-1 VPro Blending

Token Attribute Value

Blend Op source factor ZERO
ONE
DST_COLOR
ONE_MINUS_DST_COLOR
SRC_ALPHA
ONE_MINUS_SRC_ALPHA
DST_ALPHA
ONE_MINUS_DST_ALPHA
SRC_ALPHA_SATURATE
CONSTANT_COLOR_EXT
ONE_MINUS_CONSTANT_COLOR_EXT
CONSTANT_ALPHA_EXT
ONE_MINUS_CONSTANT_ALPHA_EXT

destination factor ZERO
ONE
SRC_COLOR
ONE_MINUS_SRC_COLOR
SRC_ALPHA
ONE_MINUS_SRC_ALPHA

16 007-4271-001

2: Architectural Overview

DST_ALPHA
ONE_MINUS_DST_ALPHA
CONSTANT_COLOR_EXT
ONE_MINUS_CONSTANT_COLOR_EXT
CONSTANT_ALPHA_EXT
ONE_MINUS_CONSTANT_ALPHA_EXT

blend equation FUNC_ADD_EXT
MIN_EXT
MAX_EXT
ALPHA_MIN_SGIX
ALPHA_MAX_SGIX
LOGIC_OP
FUNC_SUBTRACT_EXT
FUNC_REVERSE_SUBTRACT_EXT

constant red [11:0]
constant green [11:0]
constant blue [11:0]
constant alpha [11:0]

Logic Op logicop CLEAR
AND
AND_REVERSE
COPY
AND_INVERTED
NOOP
XOR
OR
NOR
EQUIV
INVERT
OR_REVERSE
COPY_INVERTED
OR_INVERTED
NAND
SET

Table 2-1 VPro Blending (continued)

Token Attribute Value

Rendering Features

007-4271-001 17

Of interest is a new blend extension, SGIX_BLEND_ALPHA_MINMAX, which is similar
to the EXT_BLEND_MINMAX extension but uses the minmax comparison result of only
the alpha channel to choose all the color components.

Texture

Texture memory is shared with the on-board framebuffer SDRAM. Since the texture
memory size is not constant it is important to use the texture proxy mechanisms to find
the maximum texture size.

The following internal texture formats are supported:

ALPHA4
ALPHA8
ALPHA12
ALPHA16
LUMINANCE4
LUMINANCE8
LUMINANCE12
LUMINANCE16
LUMINANCE4_ALPHA4
LUMINANCE6_ALPHA2
LUMINANCE8_ALPHA8
LUMINANCE12_ALPHA4
LUMINANCE12_ALPHA12
LUMINANCE16_ALPHA16
INTENSITY4
INTENSITY8
INTENSITY12
INTENSITY16
R3_G3_B2
RGB4
RGB5
RGB8
RGB10
RGB12
RGB16
RGBA2
RGBA4
RGB5_A1
RGBA8

18 007-4271-001

2: Architectural Overview

RGB10_A2
RGBA12
RGBA16

Table 2-2 summarizes the VPro texture features:

The following qualifications apply:

• As textures and other buffers are all resident in the same memory space, the system
performs a copy-by-reference when appropriate. Oversubscribing texture memory
will cause textures to swap to the host. Copy-by-reference may not be implemented
at launch.

• The hardware supports texture borders for all dimensioned textures. Be aware that
the default border color is (0,0,0,0), and the edge texels get interpolated with the
border if wrap mode is not REPEAT. The CLAMP_TO_EDGE_SGIS can be used to
ensure that the border texels are never accessed.

• Post texture lighting is supported to allow lighting highlights to be applied after
texturing. For more information, see the EXT_SEPARATE_SPECULAR_COLOR
extension in “New Extensions Supported by VPro” on page 33.

• Trilinear filtering is fully hardware-accelerated.

• All textures (including 3D textures) are perspective-correct.

• Mipmapping is not supported with 3D textures. Applications which supply a
mipmap pyramid and request a *_MIPMAP_* mode will automatically use
NEAREST or LINEAR, regardless of what minification was requested. Any
mipmap filtering will be ignored for 3D textures.

• 24-bit textures are not supported.

Table 2-2 Texture Features

Feature Specifications

Texture types 1D, 2D, 3D, including borders
Filtering point, bilinear, trilinear
Texture lookup tables 12-bit RGBA post-interpolation tables
Max texture dimension (s or t) 32K (up to board memory size)

Rendering Features

007-4271-001 19

• The multi-texture extension is not supported, though the same effect can be
accomplished through the accumulation buffer, blending, or a number of other
techniques.

• Asynchronous texture download will exist through use of the SGIX_ASYNC
extension. This feature will only be available on the 128MB Next Generation VPro..
Learn more about this feature in subsection “Pixel Operations” on page 22 and
section “New Extensions Supported by VPro” on page 33.

Shading Support

Both Gouraud (per-vertex) and Phong shading (per-fragment) are supported in
hardware. One single per-fragment light and eight per-vertex lights are supported in
hardware. The per-fragment light and the per-vertex lights can be enabled
simultaneously allowing a total of nine hardware-accelerated lights in a scene. A single
light of each type is fastest. Each additional per-vertex light added will incrementally
decrease performance. As with all of VPro, shading is done with 12-bit per-component
resolution. Two-sided lighting, local lighting, local viewer, and the other standard
OpenGL 1.2 lighting properties, are all implemented in hardware.

Use the rescale normal OpenGL 1.2 extension instead of NORMALIZE when introducing
a scale into the model view matrix. Rescale normal is fully hardware-accelerated in the
case where normalized normals are used with a scale in the model view matrix.

Shading is perspective-correct.

Anti-Aliasing (AA) and Fog

Point, line, and polygon AA is supported in hardware for both RGBA and CI visuals.
Non-AA lines and points are supported in hardware up to a width of 10 with a very small
incremental performance decrease for each additional width increment. AA points and
lines are supported to a width of 2.0; AA widths above 2.0 will be clamped to 2.0. AA
lines are hardware-accelerated, although the end caps will be French-cut, not AA.
Full-scene AA will be supported using multi-pass to the hardware accumulation buffer.

Instrumentation

Instrumentation is not yet implemented but will be supported in the future.

20 007-4271-001

2: Architectural Overview

Geometry

Unlike previous graphics systems from SGI, VPro does not have a full geometry engine.
Instead, there is a simple transform engine that runs at a very high clock rate. The
transform engine performs well even for short strip lengths with even better rates for
triangle strips of length 4 or greater.

Geometry Fast Paths

Texturing and user clip planes both use a shared hardware texturing resource. VPro
supports six user clip planes. There are three hardware clip planes that are implemented
using the texturing hardware. The remaining three of the total six are implemented in
software. Each texture dimension that is enabled moves a hardware-accelerated user clip
plane to software. For example, there is only a single hardware-accelerated user clip
plane when 2D texturing is enabled.

Fast Path

• Points, lines, triangles in strips for display lists and vertex arrays Gouraud, Phong
shading, depth, stencil, and accumulation buffer operations

• Alpha Blending and alpha functions (fill hit with blending)

• Enable texturing has little performance impact (textured versus non-textured fill)

• The rescale normal extension is fully implemented in hardware. Use it where
possible instead of NORMALIZE. (glnormalize versus rescale_normal with respect
to geometry rates)

• Short normals are accelerated.

• 2 lights, one Gouraud, and one Phong, 4 infinite lights, 2 double-sided lights

Host Bandwidth

Geometry rates are bounded primarily by the host-to-graphics download rate, although
textured geometry can become fill-limited. VPro is efficient with short strips (4 to 5
triangles), although long strips are better since they help to reduce the amount of data
downloaded. There are three methods of sending data to the VPro board: immediate
mode, display lists, and vertex arrays. All geometry is pushed to the graphics board from
the CPU while textures and pixels are transferred using a DMA engine.

Rendering Features

007-4271-001 21

Immediate-mode rendering pushes each vertex and associated vertex data to the
graphics pipe through a function call. This is the slowest method to send data to the pipe.
Display lists can pack all data into one list and send it to the pipe more efficiently.
Geometry calls within an VPro display list are optimized on the host for more efficient
rendering. Adding mode changes or other state manipulation commands to a display list
will not affect the performance of the entire display list. This is a change from previous
hardware, where certain commands in the display list would be a performance penalty.
Additionally, system memory is used to hold all display lists. This ensures that display
list performance does not vary with the number or size of display lists.

Vertex arrays also offer an efficient way to send data to the graphics pipe. Packed vertex
arrays are fully hardware-accelerated, though slightly slower than display lists.
Optimizations are implemented for the commonly used packed vertex arrays and for
some of the common separate arrays. The separate arrays will always be slower than the
packed arrays due to cache effects. Likewise, the glDrawElements() and
glArrayElement() calls will be slower than the corresponding non- gl*Element() calls.

The following array formats are explicitly tuned:

V3F
N3F_V3F
N3S_V3F
V3F_N3F
C3F_V3F
T2F_V3F

State Changes

Much of the VPro state is shadowed on the host. The OpenGL libraries will be able to
determine if a state change actually changes hardware state without a need to flush the
pipe and query the hardware. The state shadowing allows glGet* operations that occur
outside of a glBegin/End pair, the equivalent set operations, and glEnables and
glDisables to be very efficient for applications that do a lot of state manipulation. Matrix
manipulations are also shadowed.

Color, Normal, and TexCoord calls are not shadowed, nor are the push and pop attribute
calls. The glPushAttrib() and glPopAttrib() calls will be costly compared to a single state
change. If possible, applications should carefully monitor and control their own state
instead of pushing and popping attributes.

22 007-4271-001

2: Architectural Overview

Pixel Operations

This section describes the following topics:

• buffer reads and writes

• data conversions

• non-blocking texture loads (and pixel reads and draws)

Buffer Reads and Writes

Buffer-to-buffer copies are fast as all buffers reside in on-board memory. This includes
copies to and from pbuffers and textures. Pixel and texture data is transferred to the host
by a DMA engine. There is hardware on-board to convert from an internal pixel format
to an external pixel format; so, the format that is read or written is not important. When
working with YCrCb and color conversions, the color matrix path will introduce a slight
performance penalty.

Depth and stencil are stored in an internal floating-point format and packed together.
Reading and writing depth and stencil buffers will be slower than the other buffers due
to float conversions.

Pixel transfer speed will depend on the data types. The number of bytes transferred per
pixel is shown in Table 2-3.

Table 2-3 Pixel Transfer Speed

Data Type Number of Bytes Transferred

CI8, L8 1Byte
CI12, L16, LA8, RGBA4, RGB5_A1 2Bytes
RGB8 3Bytes
LA16, RGBA8, RGBA10_A2,
Z24_S8

4Bytes

RGBA12 6Bytes
RGBA16 8Bytes

Rendering Features

007-4271-001 23

Data Conversions

Data type conversions are done to any float format and readback of integer formats.
ARGB and BGRA short and integer are host-converted unless they are one of the packed
formats (for example, 10/10/10/2).

Non-Blocking Texture Loads (and Pixel Reads and Draws)

VPro supports the GL_SGIX_async and GL_SGIX_async_pixel set of extensions,
which allow non-blocking texture and pixel reads and writes. This means that other
graphics operations can proceed immediately after a texture load request. You must
properly synchronize commands to guarantee that texture data is resident in the
graphics memory before rendering of data using that texture begins.

Imaging Operations

The VPro imaging pipeline is a full OpenGL 1.2 pipeline, including the ARB imaging
package. It can be used for 2D image processing operations using glDrawPixels,
glReadPixels, glCopyPixels, glTexImage, and gl GetTexImage. The VPro pixel
path implements the full OpenGL 1.2 imaging pipeline.

Convolutions

7 x 7 convolutions will be done in hardware while larger convolutions require multi-pass
rendering and will go slower. At some convolution sizes, the hardware speed is slower
than a software convolve. The cutoff may be as low as 7 x 7 and is dependent on both
kernel size and pixel depth.

YCrCb format

There is no direct support for YCrCb format. However, VPro supports the subsample and
resample extensions in hardware.

Other

 VPro supports pixel textures (1D, 2D, and 3D) and a hardware accumulation buffer.

007-4271-001 25

Chapter 3

3. Extensions

This chapter describes VPro’s support of extensions in the following manner:

• IMPACT graphics extensions supported by VPro

• new extensions supported by VPro

• IMPACT graphics extensions not supported by VPro

• other extensions not supported by VPro

Note: SGI has filed for patent protection for the extensions described in this chapter.

IMPACT Graphics Extensions Supported by VPro

Table 3-1 describes the IMPACT extensions supported by VPro.

Table 3-1 IMPACT Graphics Extensions Supported by VPro

Extension Description

EXT abgr EXT_ABGR extends the list of host-memory color formats. Specifically, it provides a reverse-order
alternative to image format RGBA. The ABGR component order matches the cpack Iris GL format
on big-endian machines.

EXT blend color Blending capability is extended by defining a constant color that can be included in blending
equations. A typical usage is blending two RGB images. Without the constant blend factor, one
image must have an alpha channel with each pixel set to the desired blend factor.

EXT blend logic op A single additional blending equation is specified using the interface defined by
EXT_BLEND_MINMAX. This equation is a simple logical combination of the source and destination
colors, where the specific logical operation is as specified by LogicOp. While only the XOR
operation may find wide application, the generality of full logical operations is allowed.

26 007-4271-001

3: Extensions

EXT blend minmax Blending capability is extended by respecifying the entire blend equation. While this document
defines only two new equations, the BlendEquationEXT procedure that it defines will be used by
subsequent extensions to define additional blending equations.

 The two new equations defined by this extension produce the minimum (or maximum) color
components of the source and destination colors. Taking the maximum is useful for applications
such as maximum projection in medical imaging.

EXT blend subtract Two additional blending equations are specified using the interface defined by
EXT_BLEND_MINMAX. These equations are similar to the default blending equation but produce the
difference of its left and right hand sides rather than the sum. Image differences are useful in many
image processing applications.

SGI color matrix This extension adds a 4 x 4 matrix stack to the pixel transfer path. The matrix operates on RGBA
pixel groups, using the equation

 C’ = MC
 where

 |R|
C = |G|
 |B|
 |A|

and M is the 4 x 4 matrix on the top of the color matrix stack. After the matrix multiplication, each
resulting color component is scaled and biased by a programmed amount. Color matrix
multiplication follows convolution (and the scaling and biasing that are associated with
convolution.) The color matrix can be used to reassign and duplicate color components. It can also
be used to implement simple color space conversions.

SGI color table This extension defines a new RGBA-format color lookup mechanism. It does not replace the color
lookups defined by the GL specification but rather provides additional lookup capabilities with
different operations. The key difference is that the new lookup tables are treated as 1-dimensional
images with internal formats like texture images and convolution filter images. From this follows
the fact that the new tables can operate on a subset of the components of passing pixel groups. For
example, a table with internal format ALPHA modifies only the A component of each pixel group.
The table leaves the R, G, and B components unmodified.

If EXT_COPY_TEXTURE is implemented, this extension also defines methods to initialize the color
lookup tables from the framebuffer in addition to the standard memory source mechanisms.

Table 3-1 (continued) IMPACT Graphics Extensions Supported by VPro

Extension Description

IMPACT Graphics Extensions Supported by VPro

007-4271-001 27

EXT convolution This extension defines 1- and 2-dimensional convolution operations at a fixed location in the pixel
transfer process. Thus, pixel drawing, reading, and copying, as well as texture image definition, are
all candidates for convolution. The convolution kernels are themselves treated as 1- and
2-dimensional images, which can be loaded from application memory or from the framebuffer.

This extension is designed to accommodate 3D convolution, but the API is left for a future
extension.

EXT copy texture This extension defines methods to load texture images directly from the framebuffer. Methods are
defined for both complete and partial replacement of a texture image. Because it is not possible to
define an entire 3D texture using a 2D framebuffer image, 3D textures are supported only for partial
replacement.

SGIS detail texture This extension introduces texture magnification filters that blend between the level 0 image and a
separately defined detail image. The detail image represents the characteristics of the high frequency
subband image above the band-limited level 0 image. The detail image is typically a rectangular
portion of the subband image which is modified so that it can be repeated without discontinuities
along its edges. Detail blending can be enabled for all color channels, for the alpha channel only, or
for the red, green, and blue channels only. It is available only for 2D textures. .

SGIX fbconfig This extension introduces a new way to describe the capabilities of a GLX drawable (that is, to
describe the depth of color buffer components and the type and size of ancillary buffers), removes
the similarity requirement when making a context current to a drawable, and supports RGBA
rendering to 1- and 2-component windows and GLX pixmaps.

EXT histogram This extension defines pixel operations that count occurrences of specific color component values
(histogram) and that track the minimum and maximum color component values (minmax). An
optional mode allows pixel data to be discarded after the histogram and/or minmax operations are
completed. Otherwise, the pixel data continue on to the next operation unaffected.

EXT import context This extension allows multiple X clients to share an indirect rendering context.

It also provides additional convenience procedures to get the current Display* bound to a context
as well as other context information.

SGI make current read The association of the current context with a drawable is extended to allow separate write and read
drawables. This paves the way for allowing preprocessing of image data in an off-screen window,
which is then read into the visible window for final display. Similarly, it sets the framework for
direct transfer of video to the GL by treating the video as a special kind of read drawable (readable).

Table 3-1 (continued) IMPACT Graphics Extensions Supported by VPro

Extension Description

28 007-4271-001

3: Extensions

EXT packed pixels This extension provides support for packed pixels in host memory. A packed pixel is represented
entirely by one unsigned byte, one unsigned short, or one unsigned integer. The fields with the
packed pixel are not proper machine types, but the pixel as a whole is. Thus, the pixel storage
modes, including PACK_SKIP_PIXELS, PACK_ROW_LENGTH, PACK_SKIP_ROWS,
PACK_IMAGE_HEIGHT_EXT, PACK_SKIP_IMAGES_EXT, PACK_SWAP_BYTES,
PACK_ALIGNMENT, and their unpacking counterparts all work correctly with packed pixels.

SGIX pbuffer This extension defines pixel buffers (GLXPbuffers or pbuffer, for short). GLXPbuffers are
additional non-visible rendering buffers for an OpenGL renderer. GLXPbuffers are equivalent to
GLXPixmaps with the following exceptions:

-There is no associated X pixmap. Also, since a GLXPbuffer is a GLX resource, it may not be
possible to render to it using X or an X extension other than GLX.

-The format of the color buffers and the type and size of any associated ancillary buffers for a
GLXPbuffer can only be described with a GLXFBConfig ; an X Visual cannot be used.

-It is possible to create a GLXPbuffer whose contents may be asynchronously lost at any time.

-GLXPbuffers can be rendered to using either direct or indirect rendering contexts.

-The allocation of a GLXPbuffer can fail if there are insufficient resources (that is, all the pbuffer
memory has been allocated and the implementation does not virtualize pbuffer memory.)

The intent of the pbuffer semantics is to enable implementations to allocate pbuffers in non-visible
framebuffer memory. These pbuffers are intended to be static resources in that a program will
typically allocate them only once rather than as a part of its rendering loop. However, they should
be deallocated when the program is no longer using them (for example, if the program is iconified).
The framebuffer resources that are associated with a pbuffer are also static and are deallocated only
when the pbuffer is destroyed, or, in the case of a unpreserved pbuffer, as a result of X server activity
that changes its framebuffer requirements.

The geometry rasterization and pixel pipeline convert-to-fragment stages each produce fragments.
The fragments are processed by a unified per-fragment pipeline that begins with the application of
the texture to the fragment color. Because the pixel pipeline shares the per-fragment processing with
the geometry pipeline, the fragments produced by the pixel pipeline must have the same fields as
the ones produced by the geometry pipeline. When pixel groups are being converted to fragments,
the parts of the fragment that are not derived from the pixel groups are taken from the associated
values in the current raster position.

A fragment consists of x and y window coordinates and their associated color value, depth value,
and texture coordinates. In the 1.1 OpenGL specification, when the pixel group is RGBA, the
fragment color is always derived from the pixel group, and the depth value and texture coordinates
always come from the raster position.

Table 3-1 (continued) IMPACT Graphics Extensions Supported by VPro

Extension Description

IMPACT Graphics Extensions Supported by VPro

007-4271-001 29

SGIX pixel texture This extension provides a way to specify how the texture coordinates of the fragments can be
derived from RGBA pixel groups. When this option is enabled, the source of the fragment color
value when the pixel group is RGBA can be specified to come from either the raster position or the
pixel group.

Deriving the fragment texture coordinates from the pixel group effectively converts a color image
into a texture coordinate image. The multidimensional texture-mapping lookup logic also makes
this extension useful for implementing multidimensional color lookups. Multidimensional color
lookups can be used to implement very accurate color space conversions.

Deriving texture coordinates from the pixel groups in the pixel pipeline introduces a problem with
the lambda parameter in the texture mapping equations. When texture coordinates are being taken
from the texture coordinates of the current raster position, the texture coordinate values do not
change from pixel to pixel, and the equation for calculating lambda always produces zero. Enabling
SGIX_PIXEL_TEXTURE introduces changes in the texture coordinates from pixel to pixel. These
changes are not necessarily meaningful for texture lookups. This problem is addressed by
specifying that lambda is always set to zero when SGIX_PIXEL_TEXTURE is enabled.

EXT polygon offset The depth values of fragments generated by rendering polygons are displaced by an amount that
is proportional to the maximum absolute value of the depth slope of the polygon, measured and
applied in window coordinates. This displacement allows lines (or points) and polygons in the
same plane to be rendered without interaction; the lines are rendered either completely in front of
or behind the polygons (depending on the sign of the offset factor). It also allows multiple coplanar
polygons to be rendered without interaction if different offset factors are used for each polygon.
Applications include rendering hidden-line images, rendering solids with highlighted edges, and
applying decals to surfaces.

EXT subtexture This extension allows a contiguous portion of an already existing texture image to be redefined
without affecting the remaining portion of the image or any of the other state that describe the
texture. No provision is made to query a subregion of a texture.

Semantics for null image pointers are defined for glTexImage1D, glTexImage2D, and
glTexImage3DEXT. Null image pointers can be used by applications to effectively support texture
arrays whose dimensions are not a power of 2.

SGIX swap barrier This extension provides the capability to synchronize the buffer swaps of different swap groups.

A swap group is bound to a _swap_barrier_. The buffer swaps of each swap group using that
barrier will wait until every swap group using that barrier is ready to swap (where readiness is
defined under extensions SGI swap control and SGIX swap group), after which time all buffer
swaps of all groups using that barrier will take place concurrently.

SGI swap control This extension extends the set of conditions that must be met before a buffer swap can take place.
This extension allows an application to specify a minimum period of color buffer swaps, measured
in video frame periods.

Table 3-1 (continued) IMPACT Graphics Extensions Supported by VPro

Extension Description

30 007-4271-001

3: Extensions

SGIX swap group This extension, like SGI swap control, extends the set of conditions that must be met before a buffer
swap can take place. This extension provides the capability to synchronize the buffer swaps of a
group of GLX drawables. A swap group is created, and drawables are added as members to the
swap group. Buffer swaps to members of the swap group will then take place concurrently.

EXT texture The original intention of this extension was simply to support various numeric resolutions of color
components in texture images. While it accomplishes this, it also accomplishes a larger task, that of
formalizing the notion of an internal format for images that corresponds to the external format that
already exists for image data in host memory. This notion of an internal image format will be used
extensively in later extensions, especially those concerned with pixel manipulation.

The idea of an internal format is simple: rather than treating a retained image as having 1, 2, 3, or 4
components, treat it as though it has a specific format, such as LUMINANCE_ALPHA or just
ALPHA. Then define the semantics of the use of internal images with these formats in a consistent
way. Because texture mapping is already defined in GL, the semantics for internal-format images
were chosen to match those of the 1-, 2-, 3- and 4-component internal images that already exist. The
new semantics are a superset of the old ones. As such, this extension adds capabilities to the GL as
well as allowing internal resolutions to be specified.

This extension also defines a robust method for applications to determine what combinations of
texture dimensions and resolutions are supported by an implementation. It also introduces a new
texture environment: REPLACE_EXT.

EXT texture 3D This extension defines 3-dimensional texture mapping. In order to define a 3D texture image
conveniently, this extension also defines the in-memory formats for 3D images and adds pixel
storage modes to support them.

One important application of 3D textures is volume rendering.

SGIS texture border
clamp

The base OpenGL provides clamping such that the texture coordinates are limited to exactly the
range [0,1]. When a texture coordinate is clamped using this algorithm, the texture sampling filter
straddles the edge of the texture image, taking 1/2 its sample values from within the texture image
and the other 1/2 from the texture border. It is sometimes desirable for a texture to be clamped to
the border color rather than to an average of the border and edge colors.

This extension defines an additional texture clamping algorithm, CLAMP_TO_BORDER_SGIS. It
clamps texture coordinates at all mipmap levels such that NEAREST and LINEAR filters return the
color of the border texels. When used with FILTER4 filters, the filter operation of
CLAMP_TO_BORDER_SGIS is defined but does not result in a nice clamp-to-border color.

Table 3-1 (continued) IMPACT Graphics Extensions Supported by VPro

Extension Description

IMPACT Graphics Extensions Supported by VPro

007-4271-001 31

SGI texture color table This extension adds a color lookup table to the texture mechanism. The table is applied to the
filtered result of a texture lookup before that result is used in the texture environment equations.

The definition and application of the texture color table are similar to those of the color tables
defined in SGI_COLOR_TABLE, though it is not necessary for that extension to be implemented.

Texture color tables can be used to expand luminance or intensity textures to full RGBA and also to
linearize the results of color space conversions implemented by multidimensional texture table
lookup.

SGIS texture lod This extension imposes two constraints related to the texture level of detail parameter LOD, which
is represented by the Greek character lambda in the GL specification. One constraint clamps LOD
to a specified floating point range. The other limits the selection of mipmap image arrays to a subset
of the arrays that would otherwise be considered.

Together these constraints allow a large texture to be loaded and used initially at low resolution and
to have its resolution raised gradually as more resolution is desired or available. Image array
specification is necessarily integral rather than continuous. By providing separate, continuous
clamping of the LOD parameter, it is possible to avoid popping artifacts when higher resolution
images are provided.

Note: Because the shape of the mipmap array is always determined by the dimensions of the level
0 array, this array must be loaded for mipmapping to be active. If the level 0 array is specified with
a null image pointer, however, no actual data transfer will take place. A sufficiently tuned
implementation might not even allocate space for a level 0 array so specified until true image data
is presented.

EXT texture object This extension introduces named texture objects. The only way to name a texture in GL 1.0 is by
defining it as a single display list. Because display lists cannot be edited, these objects are static. Yet,
it is important to be able to change the images and parameters of a texture.

SGI transparent pixel

EXT vertex array This extension adds the ability to specify multiple geometric primitives with very few subroutine
calls. Instead of calling an OpenGL procedure to pass each individual vertex, normal, or color;
separate arrays of vertexes, normals, and colors are pre-specified and are used to define a sequence
of primitives (all of the same type) when a single call is made to glDrawArraysEXT. A stride
mechanism is provided so that an application can choose to keep all vertex data staggered in a
single array or sparsely in separate arrays. Single-array storage may optimize performance on some
implementations.

This extension also supports the rendering of individual array elements, each specified as an index
into the enabled arrays.

Table 3-1 (continued) IMPACT Graphics Extensions Supported by VPro

Extension Description

32 007-4271-001

3: Extensions

SGI video sync This extension provides a means for synchronization with the video frame rate of a monitor. (In the
case of an interlaced monitor, this is typically the rate of displaying both the even and odd fields of
a frame.) The kernel maintains a video sync counter for each physical hardware pipe in a system;
the counter is incremented upon the completion of the display of each full frame of video data. An
OpenGL context always corresponds to a pipe. When an OpenGL process has a current context, it
can put itself to sleep until the counter of that pipe reaches a desired value. The process can also
query the value of the counter. The counter is an unsigned 32-bit integer.

The counter runs as long as the graphics subsystem is running; it is initialized by the
/usr/gfx/gfxinit command. However, a process can query or sleep on the counter only when
a direct context is current. An error code will be returned if you attempt to use this extension (and
associated functions) with an indirect context.

EXT visual info This extension allows you to request a particular X visual type to be associated with a GLX visual
and to query the X visual type underlying a GLX visual.

 In addition, this extension provides a means to request a visual with a transparent pixel and to
query whether a visual supports a transparent pixel value and to query its value. Note that the
notions of level and transparent pixels are orthogonal, as both layer 1 and layer 0 visuals may or
may not have a transparent pixel values.

Table 3-1 (continued) IMPACT Graphics Extensions Supported by VPro

Extension Description

New Extensions Supported by VPro

007-4271-001 33

 New Extensions Supported by VPro

Table 3-2 describes the new extensions supported by VPro.

Table 3-2 New Extensions Supported by VPro

Extension Description

SGIX async This extension provides a framework for asynchronous OpenGL commands. It also provides
commands allowing a program to wait for the completion of asynchronous commands.

Asynchronous commands have two properties:

- Asynchronous commands are non-blocking. For example, an asynchronous glReadPixels
command returns control to the program immediately rather than blocking further program
execution until the command completes. This property allows the program to issue other OpenGL
commands in parallel with the execution of commands that normally block.

- Asynchronous commands may complete out-of-order with respect to other OpenGL commands.
For example, an asynchronous glTexImage command may complete after subsequent OpenGL
commands issued by the program rather than maintaining the normal serial order of the OpenGL
command stream. This property allows the graphics accelerator to execute asynchronous
commands in parallel with the normal command stream; for instance, the accelerator can use a
secondary path to transfer data from or to the host without doing any dependency checking.

Programs that issue asynchronous commands must also be able to determine when the commands
have completed. The completion status may be needed so that results can be retrieved (for example,
the image data from a glReadPixels command) or so that dependent commands can be issued
(for example. drawing commands that use texture data downloaded by an earlier asynchronous
command). This extension provides fine-grain control over asynchronous commands by
introducing a mechanism for determining the status of individual commands.

Each invocation of an asynchronous command is associated with an integer called a marker. A
program specifies a marker before it issues an asynchronous command. The program may later
issue a command to query if any asynchronous commands have completed. The query commands
return a marker to identify the command that completed. This extension provides both blocking
and non-blocking query commands.

SGIX async pixel This extension introduces a new asynchronous mode for texture download, pixel download, and
pixel readback commands. It allows programs to transfer textures or images between the host and
the graphics accelerator in parallel with the execution of other graphics commands (possibly taking
advantage of a secondary path to the graphics accelerator). It also allows programs to issue
non-blocking pixel readback commands that return immediately after they are issued so that the
program can issue other commands while the readback takes place.

This extension does not define any asynchronous commands. See GL_SGIX_async_pixel
documenatation for the asynchronous pixel commands.

34 007-4271-001

3: Extensions

SGIX blend alpha
minmax

Two additional blending equations are specified using the interface defined by
GL_EXT_blend_minmax. These equations are similar to the MIN_EXT and MAX_EXT blending
equations, but the outcome for all four-color components is determined by a comparison of just the
alpha component’s source and destination values. These equations are useful in image processing
and advanced shading algorithms.

EXT color subtable This extension allows a portion of a color table to be redefined. If GL_EXT_copy_texture is
implemented, this extension also defines a method to load a portion of a color lookup table from the
framebuffer.

EXT compiled vertex
array

This extension defines an interface which allows static vertex array data to be cached or
pre-compiled for more efficient rendering. This is useful for implementations which can cache the
transformed results of array data for reuse by several glDrawArrays, glArrayElement, or
glDrawElements commands. It is also useful for implementations which can transfer array data
to fast memory for more efficient processing.

For example, rendering an M x N mesh of quadrilaterals can be accomplished by setting up vertex
arrays containing all of the vertexes in the mesh and issuing M glDrawElements commands, each
of which operate on 2 * N vertexes. Each glDrawElements command after the first will share N
vertexes with the preceding glDrawElements command. If the vertex array data is locked while
the glDrawElements commands are executed, then OpenGL may be able to transform each of
these shared vertexes just once.

SGIX compressed
textures

This extension defines new host and internal formats for the storage of compressed images. The
formats utilize a variant of color cell compression, in which 4 x 4 pixel blocks are represented by
two-color values and a 2-bit index per pixel. Two additional values are interpolated between the
two explicitly stored values, and each pixel’s index selects one of these four values. For RGB and
RGBA images, two RGB colors and a single index per pixel are used to store the R, G, and B
channels. For RGBA and LUMINANCE_ALPHA formats, the alpha channel is encoded
independently using two alpha values and an index per pixel.

SGIX decimation This extension adds a decimation operation to the pixel transfer path. Decimation occurs after
convolution and prior to the post-convolution color table.

The operation is controlled by two positive integer parameters, stepx and stepy, that specify the
decimation step size in the x and y directions, respectively. During a pixel transfer, the decimation
operation passes only those pixels which are at a position (i*stepx, j*stepy), for integers (i, j) relative
to the bottom left corner of the image that is being transferred. All other pixels are discarded.
Decimation is applied to the image that results from convolution, which may differ in size from the
source image if convolution is enabled.
By default, stepx and stepy are both 1.

EXT draw range elements

Table 3-2 (continued) New Extensions Supported by VPro

Extension Description

New Extensions Supported by VPro

007-4271-001 35

SGIX fragment lighting This extension adds a new lighting stage to the OpenGL pipeline. This stage occurs during
fragment processing after the texture environment has been applied and before fog has been
applied. The extension provides a mechanism for computing per-pixel lighting. Fragment lighting
applies to fragments generated by all primitives including pixel images. This extension does not
eliminate vertex lighting but can be used to complement it. For example, the diffuse contribution
can be evaluated at each vertex, and the specular contribution can be evaluated at each fragment
with the results summed together to generate the final result.

Table 3-2 (continued) New Extensions Supported by VPro

Extension Description

Ct

TexEnv

Cf

Clamp

FragmentColorMaterial

Cf'

{Am, Em, Dm, Sm, Nm, ...}

LightEnv

Nf Lf Hf Ff

FragmentLight

Clamp

Material

Cl

Clamp

Cf''

Fog

36 007-4271-001

3: Extensions

SGIX texture color mask This extension implements the same functionality for texture updates that glColorMask
implements for color buffer updates. Masks for updating textures with indexed internal formats
(the analog for glIndexMask) should be supported by a separate extension.

The extension allows an application to update a subset of components in an existing texture. The
masks are applied after all pixel transfer operations have been performed, immediately prior to
writing the texel value into texture memory. They apply to all texture updates.

SGIS texture edge clamp This extension defines a new texture clamping algorithm. The base OpenGL provides clamping
such that the texture coordinates are limited to exactly the range [0,1]. When a texture coordinate is
clamped using this algorithm, the texture sampling filter straddles the edge of the texture image.
The filter takes 1/2 its sample values from within the texture image and the other 1/2 from the
texture border. It is sometimes desirable to clamp a texture without requiring a border and without
using the constant border color.

The new texture clamping algorithm, CLAMP_TO_EDGE_SGIS, clamps texture coordinates at all
mipmap levels such that the texture filter never samples a border texel. When used with a
NEAREST or a LINEAR filter, the color returned when clamping is derived only from texels at the
edge of the texture image. When used with FILTER4 filters, the filter operations of
CLAMP_TO_EDGE_SGIS are defined but do not result in a nice clamp-to-edge color.

CLAMP_TO_EDGE_SGIS is supported by 1-, 2-, and 3-dimensional textures only.

SGIX texture env add A new texture environment function ADD is supported with the following equation:

Cv = Cf + CcCt + Cb

A new function may be specified by calling glTexEnv with GL_ADD token. New parameter Cb
(bias) may be specified by calling glTexEnv with TEXTURE_ENV_BIAS_SGIX token.

SGIX texture lod bias This extension modifies the calculation of texture level of detail parameter LOD, which is
represented by the Greek character lambda in the GL specification. The LOD equation assumes that
a 2n x 2m x 2l texture is band-limited at 2(n-1), 2(m-1), 2(l-1). Often a texture is oversampled or filtered such
that the texture is band-limited at lower frequencies in one or more dimensions. The result is that
texture-mapped primitives appear excessively blurry. This extension provides biases for n, m, and
l in the LOD calculation to compensate for under- or over-sampled texture images. Mipmapped
textures can be made to appear sharper or blurrier by supplying a negative or positive bias,
respectively.

Examples of textures which can benefit from this LOD control include the following:

-video-capture images which are filtered differently horizontally and vertically

-a texture which appears blurry because it is mapped with a nonuniform scale, such as a road
texture which is repeated hundreds of times in one dimension and only once in the other

-textures which had to be magnified to a power of 2 for mipmapping

Table 3-2 (continued) New Extensions Supported by VPro

Extension Description

New Extensions Supported by VPro

007-4271-001 37

SGIX texture scale bias This extension adds scale, bias, and clamp to [0, 1] operations to the texture pipeline. These
operations are applied to the filtered result of a texture lookup before that result is used in the
texture environment equations and before the texture color lookup table of
GL_SGI_texture_color_table, if that extension exists. These operations are distinct from the
scale, bias, and clamp operations that appear in the GL_SGI_color_table extension, which are
used to define a color lookup table.

Scale and bias operations on texels can be used to better utilize the color resolution of a particular
texture internal format (see EXT texture).

SGIX_subsample Many video image formats and compression techniques utilize various component subsamplings.
So, it is necessary to provide a mechanism to specify the up- and down-sampling of components as
pixel data is drawn from and read back to the client. Though subsampled components are normally
associated with the video color space, YCrCb, use of subsampling in OpenGL does not imply a
specific color space.

This extension defines new pixel storage modes that are used in the conversion of image data to and
from component subsampled formats on the client side. The extension defines a new pixel storage
mode to specify these sampling patterns. There are three valid values:

SAMPLING_UNIFORM_SGIX
SAMPLING_422_SGIX
SAMPLING_4224_SGIX

When pixel data is received from the client and an unpacking upsampling mode other than
SAMPLING_UNIFORM_SGIX is specified, the up-sampling is performed by one of two methods:
RESAMPLE_REPLICATE_SGIX or RESAMPLE_ZERO_FILL_SGIX. Replicate and zero-fill are
provided to give the application greatest performance and control over the filtering process.

Similarly, when pixel data is read back to the client and a packing down-sampling mode other than
SAMPLING_UNIFORM_SGIX is specified, down-sampling is performed. If either replicate or
zero-fill is specified, then the down-sampling is performed by simple component decimation.

EXT bgr, EXT bgra EXT_BGRA extends the list of host-memory color formats. Specifically, it provides formats which
match the memory layout of Windows DIBs so that applications can use the same data in both
Windows API calls and OpenGL pixel API calls.

Table 3-2 (continued) New Extensions Supported by VPro

Extension Description

38 007-4271-001

3: Extensions

EXT separate specular
color

This extension adds a second color to rasterization when lighting is enabled. Its purpose is to
produce textured objects with specular highlights, which are the color of the lights. It applies only
to RGBA lighting.

The two colors are computed at the vertexes. They are both clamped, flat-shaded, clipped, and
converted to fixed point just like the current RGBA color. Rasterization interpolates both colors to
fragments. If texture is enabled, the first (or primary) color is the input to the texture environment;
the fragment color is the sum of the second color and the color resulting from texture application.
If texture is not enabled, the fragment color is the sum of the two colors.

A new control to glLightModel*, LIGHT_MODEL_COLOR_CONTROL_EXT, manages the values
of the two colors. The new control can have one of two values: SINGLE_COLOR_EXT, a
compatibility mode, or SEPARATE_SPECULAR_COLOR_EXT, the object of this extension. In
single color mode, the primary color is the current final color and the secondary color is 0.0. In
separate specular mode, the primary color is the sum of the ambient, diffuse, and emissive terms of
final color and the secondary color is the specular term.

There is much concern that this extension may not be compatible with the future direction of
OpenGL with regards to better lighting and shading models. Until those impacts are resolved, give
this serious consideration before using this extension (allowing the user to specify a second input
color).

HP convolution border
modes

This extension provides some additional border modes for the EXT_CONVOLUTION extension.

SGIX flush raster This extensions provides a way to ensure that all raster operations currently in the pipeline will be
completed before the next raster operation begins. We define a raster operation as an operation that
involves the rasterization stage of the OpenGL pipeline. The implementation is free to decide what
constitutes flushing the raster subsystem.

The motivation is to allow accurate instrumentation by including this call before stopping
rasterization measurements. There are cases where glFinish() is used, but glFlushRaster() would
suffice; so, this extension is deliberately kept independent of the instruments extension.

SGIS fog func This extension allows you to define an application-specific fog blend-factor function. The function
is defined by the set of the control points and should be monotonic. A value pair represents each
control point: the eye-space distance value and corresponding value of the fog blending factor. The
minimum number of control points is one. The maximum number is implementation-dependent.

Table 3-2 (continued) New Extensions Supported by VPro

Extension Description

New Extensions Supported by VPro

007-4271-001 39

SGIX fog offset This extension allows you to make objects look brighter in the foggy environment.
FOG_OFFSET_VALUE_SGIX parameter specifies point coordinates in eye space, an offset amount
toward viewpoint. Once fog offset is specified and enabled using the FOG_OFFSET_SGIX
parameter, it is subtracted from the depth value (to make objects closer to the viewer) right before
fog calculation. As a result, objects look less foggy.

This extension specifies that the fragment lighting vectors; including the view vector, light vectors,
half-angle vectors, and spotlight direction vectors; be transformed into either eye space, object
space or tangent space on a per-vertex basis. The default is eye space.

SGIX instruments This extension allows the gathering and return of performance measurements from within the
graphics pipeline by adding instrumentation.

There are two reasons to do this. The first is as a part of some type of fixed-frame-rate load
management scheme. If we know that the pipeline is stalled or struggling to process the amount of
data we have given it so far, we can reduce the level of detail of the remaining objects in the current
frame or the next frame, or we can adjust the framebuffer resolution for the next frame if we have
a video-zoom capability available. We can call this type of instrumentation load monitoring.

The second is for performance tuning and debugging of an application. It might tell us how many
triangles were culled or clipped before being rasterized. We can call this simply tuning.

Load monitoring requires that the instrumentation and the access of the measurements be efficient;
otherwise, the instrumentation itself will reduce performance more than any load management
scheme could hope to offset. Tuning does not have the same requirements.

The proposed extension adds a call to set up a measurements return buffer similar to
glFeedbackBuffer but with an asynchrounous behavior to prevent filling the pipeline with NOPs
while waiting for the data to be returned.

Note that although the extension has been specified without any particular instruments, defining
either a device-dependent or device-independent instrument should be as simple as introducing an
extension consisting primarily of a new enumerant to identify the instrument.

SGIX list priority This extension provides a mechanism for specifying the relative importance of display lists. This
information can be used by an OpenGL implementation to guide the placement of display list data
in a storage hierarchy.

SGIS sharpen texture This extension introduces texture magnification filters that sharpen the resulting image by
extrapolating from the level 1 image to the level 0 image. Sharpening can be enabled for all color
channels, for the alpha channel only, or for the red, green, and blue channels only.

Table 3-2 (continued) New Extensions Supported by VPro

Extension Description

40 007-4271-001

3: Extensions

IMPACT Graphics Extensions Not Supported by VPro

The following are IMPACT graphics extensions not supported by VPro:

SGIX impact pixel texture
SGIX texture multi buffer
SGIS texture select

Other Extensions Not Supported byVPro

The following are other extensions not supported by VPro:

EXT visual rating
SGIX clipmap
SGIX cube map
SGIX texture phase
SGIX color range
SGIX complex polar
SGIX FFT
SGIX fbconfig types
SGIS filter4 parameters
SGIS multisample

EXT rescale normal When normal rescaling is enabled, a new operation is added to the transformation of the normal
vector into eye coordinates. The normal vector is rescaled after it is multiplied by the inverse model
view matrix and before it is normalized.

The rescale factor is chosen so that in many cases normal vectors with unit length in object
coordinates will not need to be normalized as they are transformed into eye coordinates.

SGIX texture coordinate
clamp

This extension provides a mechanism to specify the maximum texture coordinate clamping values.
Standard OpenGL always clamps the upper bound to 1.0 when the wrap mode is set to CLAMP.
This mechanism can be used to guarantee that non-existent texel data will not be accessed when the
texture image has dimensions that are not a power of 2.

Table 3-2 (continued) New Extensions Supported by VPro

Extension Description

Other Extensions Not Supported byVPro

007-4271-001 41

SGIS texture filter4
EXT multitexture
SGIX light texture
SGIX cylinder texgen
SGIX line texgen
SGIS point line texgen
EXT misc attribute
SGI transparent pixel
IBM vertex array set
SGIX swap readiness
SGIX sync swap
SGIX shadow
SGIX shadow ambient
SGIX interlace
SGIX async histogram
SGIX convolution accuracy
SGIX calligraphic fragment
EXT clip volume hint
EXT cmyka
SGIX color matrix accuracy
SGIX color table index mode
EXT cull vertex
SGIX cushion
SGIX datapipe
SGIX ffd
SGIX framezoom
SGIS generate mipmap
HP image transform
EXT index array formats
EXT index func
EXT index material
PGI misc hints
INTEL parallel arrays
WIN phong shading
SGIX pixel texture bits
SGIX pixel tiles
IBM rasterpos clip
SGIX scene marker
WIN specular fog
SGIX sprite
SGIX subdiv patch

42 007-4271-001

3: Extensions

SGIX tag sample buffer
SGIX texture anisotropic mip
SGIX vertex array object
HP texture lighting
INTEL texture scissor
SUN transparent index
EXT vertex callback
PGI vertex hints
SGIX wait group
SGIX depth texture
SGIX dct
SGIX dvc
SGIX image compression
SGIX mpeg
SGIX mpeg1
SGIX mpeg2
SGIX nurbs eval
EXT nurbs tessellator
EXT object space tess
SGIX reference plane
SGIX pixel texture lod
SGIS texture4D
SGIS point parameters
SGIX video source glx
SGIX video resize glx
SGIX dmbuffer
EXT paletted texture
EXT index texture

007-4075-001 45

A

AA, 19
accumulation buffers, 13
anti-aliasing, 19

B

bandwidth, 20
blending, 15
buffer I/O, 14
buffers

accumulation, 13
buffer management, 10
color, 11
I/O, 14
off-screen, 14
OpenGL buffers, 11
overlay, 13
pbuffer, 14
reads, 22
writes, 22

Buzz, 5

C

color buffers, 11
command FIFO, 7
context switching, 7
convolutions, 23

D

data type conversions, 23
dual-channel display, 6

E

extensions
IMPACT, 25
new, 33
not supported, 40
overview, 25

F

fast path, 20
features

hardware, 5
hardware-accelerated, 2
rendering, 10, 15
texture, 18
VPro, 1

G

geometry, 20
geometry fast path, 20
Gouraud shading, 19

H

hardware features, 5
hardware-accelerated feature, 2
host bandwidth, 20

I

imaging pipeline, 23
instrumentation, 19

46 007-4075-001

O

OCTANE, 1, 3
off-screen buffers, 14
overlay buffers, 13

P

PB&J, 5
pbuffers, 14
Phong shading, 19
pixel operations, 22
pixel textures, 23
pixel transfer speed, 22
product overview, 1

R

rasterizer chip, 5
rendering techniques, 15

S

shading, 19
state changes, 21
stereo, 14

T

Texture, 17
texture loads, 23
texturing, 20
transform chip, 5

U

user clip planes, 20

V

video chip, 5
visuals, 7
VPro, 1
VPro architecture, 5

X

xsetmon, 6, 7

Y

YCrCb format, 23

