
IRIX® GSN™

Administrator’s Guide

Document Number 007-3719-003

CONTRIBUTORS
Written by Carlin Otto
Updated by Julie Boney
Edited by Rick Thompson
Illustrated by Chrystie Danzer
Production by Glen Traefald
Engineering contributions by Sean Murphy

COPYRIGHT
© 1999-2001 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government
or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as
specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or
sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, IRIS, IRIX, Octane and Onyx2 are registered trademarks, and SGI, the SGI logo, Origin, Origin 200 Gigachannel, and IRIS
InSight are trademarks of Silicon Graphics Inc. Gigabyte System Network and GSN are trademarks of the HIPPI Networking Forum. UNIX is a
registered trademark in the United States and other countries, licensed exclusively through X/Open Company, Ltd.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

007-3719-003 iii

Record of Revision

Version Description

003 February 2001
This update documents GSN version 2.1.

007-3719-003 v

New Features in This Guide

This rewrite of the IRIX GSN Administrator’s Guide supports the 2.1 release of the SGI
Gigabyte System Network (GSN) product.

This rewrite focuses on the new version of HARP and the new HARP daemon, harpd,
which performs many functions previously performed in the kernel. Substantial changes
have been made to the gsnarp function. GSN startup now uses the harpd.options file
instead of the gsnarp.options file. Included in this rewrite are error messages from
the harpd command and from the HARP driver.

007-3719-003 vii

Contents

List of Figures . . xi

List of Tables . . xiii
Audience . xv
Where to Find More Information xv

Installation Instructions xvii
Hardware Owner’s Guide xvii
Administrator’s Guide xvii
IRIX Administration Documents xviii
Online Man Pages . xviii
World Wide Web-Accessible Documentation xix
Release Notes . . xx
InfoSearch . . xx

Obtaining Updated or Printed Versions of This Document xxi
SGI Product Support . . xxi
Conventions Used in This Guide xxi
Reader Comments . . xxi

1. Overview of IRIX GSN . . 1
SGI GSN Products . . 1

Components of Products. 2
GSN Within IRIX Network Stacks 3
Standards Compliance . 4
GSN Product Names . . 5
Compatibility Issues . . 5

Overview of Protocols. . 6

viii 007-3719-003

Contents

What is GSN? . 7
GSN Terminology . . 7
GSN Overview . . 9
GSN Physical Layer . 9
GSN Virtual Channels. . 10
GSN Micropacket . . 12
GSN Flow Control . . 17
GSN Message . . 18
GSN Admin Micropackets 19

What is ST? . . 24
ST Overview . 24
ST Terminology . 24
ST Operations . . 25
ST Header . . 28
ST Sequences . 30
ST Connection Setup Sequence 30
ST Connection Teardown Sequence 33
ST Data Movement Sequences Including Memory Allocation 34
ST Flow Control Sequences 45
ST Status Sequences . 47
ST Termination Sequence for a Data Movement 48

Example of ST Virtual Connections and GSN Channels 50
GSN Fabrics and Logical Networks 51

Basic Concept #1 . 51
Basic Concept #2 . 52
Basic Concept #3 . 52
Consequences and Examples. 53

Address Resolution for GSN 59
HARP and Broadcast Support 60
HARP Address Resolution 61
Static Address Resolution. 63
Guidelines for Selecting a HARP Server 64
How Address Resolution Works for ST-over-GSN 64

Contents

007-3719-003 ix

IRIX HARP Table . . 64
Static Entries . . 64
Dynamic Entries . . 65

Assignment of Unit Numbers and Network Interfaces to GSN Hardware 65
Assignment of Unit Numbers to Hardware 65
Assignment of Network Interface to Hardware Device 67

Comparison of ST to IP . 68

2. Installing and Configuring IRIX GSN 71
Complete GSN Installation Process 71

Collect Information Before Starting. 73
Configure IP-over-GSN 73
Configure ST-over-GSN 75
Configure the Address Resolution Service. 75

Individual Configuration Tasks 77
Change HARP Lookup Table 77
Configure IRIX GSN Network Interfaces In Real Time 78
Configure IRIX HARP Client 79
Configure IRIX HARP Server 80
Edit harpd.options File 81
Edit hosts File . 83
Edit ifconfig-#.options File 84
Edit master.d/gsn File 87
Edit netif.options File 88
Enable Networking . 89

Building a New Driver Into the Operating System 89
Instruction Set 1 . 90
Instruction Set 2 . 90

List of All Configurable Parameters for IRIX GSN. 91

3. Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN 95
Commands Available for IRIX GSN. 95

x 007-3719-003

Contents

Instructions for Common Procedures 96
Disable or Enable IP/ST Interface 98
Display ULA (MAC) Address 98
Configure the SGI GSN Board for On-board (Internal) Loopback Operation 99
Check Status of Hardware 100
Check Status of GSN Traffic 122
Build New HARP Server Addresses Into Network Interfaces 126
Display Client’s Active HARP Server 126
Display Address Resolution Lookup Table. 127

Installing a Loopback Device 129
Verifying the IRIX GSN Subsystem 130

Verify That the Board Has Been Located by the Software 130
Verify the SGI GSN Hardware 131
Verify an IP-over-GSN Interface 133

Troubleshooting . 136
Troubleshoot SGI GSN Hardware 136
Troubleshoot IP-over-GSN Interfaces 137

4. IRIX GSN Error Messages 141
Overview of the Error Message Listing 141
Error Messages from the harpd Command 142
Error Messages from the HARP Driver 148
Error Messages from the gsncntl Command 152
Error Messages from the gsntest Command 155
Error Messages from the GSN Driver 157

Index . . 181

007-3719-003 xi

List of Figures

Figure i Sources of Additional Information xvi
Figure 1-1 IRIX GSN Modules Within OSI-style Network Protocol Stack . . 4
Figure 1-2 GSN Micropackets from Virtual Channels Interleaved in

Datastream 11
Figure 1-3 GSN Micropacket Control Bits 12
Figure 1-4 GSN Admin Micropacket 16
Figure 1-5 GSN Flow Control 17
Figure 1-6 GSN Message Composed of Header and Data Micropackets . . . 18
Figure 1-7 Dual-port HIPPI-6400-PH Elements 19
Figure 1-8 Hop Count >0 Indicates Forward Admin Micropacket 20
Figure 1-9 Hop Count =0 Indicates Process Admin Micropacket 20
Figure 1-10 Hop Count Example: hop_count = 0 21
Figure 1-11 Hop Count Example: hop_count = 1 21
Figure 1-12 Hop Count Example: hop_count = 2 22
Figure 1-13 ST Operation 25
Figure 1-14 ST Header 29
Figure 1-15 ST Connection Setup Sequence: Identification Parameters Only . . 32
Figure 1-16 ST Connection Setup Sequence: VC Parameters Only 32
Figure 1-17 ST Connection Setup Sequence: Rejection 33
Figure 1-18 ST Connection Teardown Sequence 34
Figure 1-19 Data Handling for ST Data Movements 37
Figure 1-20 ST Data Movement Sequence: Persistent Memory—Put 39
Figure 1-21 ST Data Movement Sequence: Persistent Memory—Get 40
Figure 1-22 ST Data Movement Sequence: Persistent Memory—FetchOp. . . 41
Figure 1-23 Example of FetchOp 42
Figure 1-24 ST Data Movement Sequence: Single-use Memory with Initiator

as Source. 43

xii 007-3719-003

List of Figures

Figure 1-25 ST Data Movement Sequence: Single-use Memory with Initiator
as Destination 44

Figure 1-26 Status Sequence Using Request_State. 47
Figure 1-27 Status Sequence Using S Flag in ST Header 48
Figure 1-28 Termination Sequence 49
Figure 1-29 Example of ST Virtual Connections Using Multiple GSN Virtual

Channels 50
Figure 1-30 Subnet Mask for Examples 53
Figure 1-31 Single-switch GSN Fabric with LISs 55
Figure 1-32 Multiple-switch GSN Fabric with LISs 57
Figure 1-33 LIS Membership That Spans Fabrics 58
Figure 1-34 HARP Registration 62
Figure 2-1 Decision Tree for HARP Configuration Procedures. 76
Figure 3-1 Physical Position of GSN Elements for Different Connection

Scenarios 114
Figure 3-2 Installing a HIPPI-6400 Loopback Connector 129
Figure 3-3 The /usr/etc/netstat -ina Display 134
Figure 4-1 Error Message Format in /var/adm/SYSLOG File 141

007-3719-003 xiii

List of Tables

Table 1-1 GSN Compared to Other Communication Technologies 1
Table 1-2 GSN Bandwidth Calculations 10
Table 1-3 Data Restrictions for Each GSN Virtual Channel 11
Table 1-4 GSN Micropacket Control Bits 13
Table 1-5 Types of GSN Micropackets 14
Table 1-6 GSN Admin Micropacket Commands 22
Table 1-7 ST Operations 26
Table 1-8 Data Movement Sequences 35
Table 1-9 Data Sizes Possible for Data Movements 36
Table 1-10 ST Flow Control Sequence. 46
Table 1-11 ST vs IP 68
Table 2-1 IP Network Interface Operational Parameters 86
Table 2-2 Summary of Configurable Items for IRIX GSN 91
Table 3-1 Utilities for Monitoring and Maintaining IRIX GSN 95
Table 3-2 Common Procedures for Monitoring and Maintaining IRIX GSN . 97
Table 3-3 Status Information for GSN Physical Link 101
Table 3-4 GSN Status Information for Copper-Based XIO Hardware . . .103
Table 3-5 SHAC ASIC Status: Basic Listing104
Table 3-6 SHAC ASIC Status: Verbose Listing 104
Table 3-7 HIPPI-6400-PH Element (Hop) Status 115
Table 3-8 Meaning of “VC hex_value” in Status Screen Displays121
Table 3-9 Local Element’s HIPPI-6400 ADMIN Traffic Status 122

007-3719-003 xv

About This Guide

This document, the IRIX GSN Administrator’s Guide, provides instructions for
configuring, verifying, monitoring, and troubleshooting an SGI Gigabyte System
Network (GSN) connection. This guide does not provide information about system
administration of a GSN fabric. This guide documents IRIX GSN version 2.1 operating
over IRIX 6.5.9f or later.

Audience

The audience for this document is network system administrators who are already
familiar with general IRIX networking and system administration. This document
assumes that the reader already knows the information documented in the online, IRIS
InSight-viewable guide IRIX Admin: Networking and Mail, which is shipped with each
copy of IRIX.

Where to Find More Information

Figure i illustrates sources of additional information for the IRIX GSN product and IRIX
networking. Subsequent sections describe each of the illustrated sources.

xvi 007-3719-003

About This Guide

Figure i Sources of Additional Information

Hard Copies

SGI GSN XIO Hardware
Installation Instructions

and
 SGI GSN Hardware

Owner's Guide

CDs (IRIS InSight Books)

Online
MAN (1) MAN (1)

man - print entries from the on-line reference manuals: find manual entries
by keyword

NAME

man [-cdwWtpr] [-M path] [-T macropackage] [section] title ...
man [-M path -k keyword ...
man [-M path -f filename

SYNOPSYS

man locates and prints the titled entries from the on-line reference manuals.
mand also prints summaries of manual entries selected by keyword or by
associated flilename.

DISCRIPTION

If a section is given, only that particular section is searcced for the specified
title. The current list of valid sections are any single digit [0-9], plus the
sections local, public, new, and old, corresponding to the sections l, p, n,
and o, respectively. When a section name of this form is given, the first
character is "mini" to be searched. To find a man page with the mane of one
of these sections, it is necessary to first give a dummy name, such as
"mand junk local". which is unfortunate.

If no section is given, all sections of the on-line reference manuals are
searched and all occurrences of title are printed. The default sections are
searched in this order: ln16823457po

IRIX Admin Manual Set

World Wide Web
http://techpubs.sgi.com/

Optional Hard Copy

IRIX GSN
Administrator's Guide

IRIX GSN Administrator's Guide
SGI GSN Hardware Owner's Guide
IRIX Admin: Networking and Mail

IRIS GSN XIO Board Installation
Instructions for Origin and Onyx2
Platforms

108-0185-001

IRIS GSN XIO Board
User's Guide

007-xxxx-001

SSE-only

InfoSearch
Release Notes
Man Pages

Doc Title line 1
Doc Title line 2
Volume Number
Volume Contents

IRIX GSN
Administrator's Guide

Volume Contents

Doc Title line 1
Doc Title line 2
Volume Number
Volume Contents

IRIX Administration
Selected Reference Pages
Volume Number
Volume Contents

Doc Title line 1
Doc Title line 2
Volume Number
Volume Contents

Doc Title line 1
Doc Title line 2
Volume Number
Volume Contents

IRIX Administration
Selected Reference Pages
Volume Number
Volume Contents

About This Guide

007-3719-003 xvii

Installation Instructions

The SGI GSN XIO Hardware Installation Instructions for SGI Origin Family, SGI-2000-series,
and Silicon Graphics Onyx2 Platforms provides instructions for System Service Engineers
(SSEs) who have been trained by SGI. This document is for the SSE (only).

The SGI Origin 3000 Series Owner’s Guide describes the SGI Origin 3000 server series,
which are servers whose functionality is divided into distinct functional units called
bricks. The servers in the series are the SGI Origin 3200, 3400, and 3800. This guide
describes how to connect a console and how to add or replace PCI cards and storage disk
drives to your server. It also describes how to power on and power off your server and
how to use the L1 and L2 controllers (and controller commands) to monitor and control
your server system.

Hardware Owner’s Guide

The SGI GSN Hardware Owner’s Guide describes the customer interface to the SGI GSN
hardware: the LED behavior, the connectors on the panel plate, and the cable
specifications. A printed copy of this guide is shipped with the SGI GSN hardware /IRIX
GSN software product.

Administrator’s Guide

This document, the IRIX GSN Administrator’s Guide, describes the IRIX GSN software.
Refer to the IRIX GSN Administrator’s Guide to set up, configure, verify, monitor, and
troubleshoot the IRIX GSN connection, including the network interface (for IP and ST),
and suspected hardware problems. IRIX GSN is designed so that you can maintain most
of the components of the system without the help of a trained technician. Hardware
installation/removal is the only part of the IRIX GSN product that requires an SSE.

The administrator’s guide can be viewed by the following methods:

• Use IRIS InSight. The digital format for this document (that is, the installable image)
is included with the IRIX GSN software.

• Use a Web browser to view the HTML version at http://techpubs.sgi.com.

• Order a printed manual from http://techpubs.sgi.com or from the local SGI
sales representative.

xviii 007-3719-003

About This Guide

• Use a Web browser to download PostScript or PDF files from
http://techpubs.sgi.com.

IRIX Administration Documents

The Networking and Mail volume of the IRIX Admin manual set is recommended as a
reference for system administration tasks of logical network interfaces (for example, IP).

This document can be viewed by the following methods:

• Use IRIS InSight. The image is included with IRIX, either preinstalled on the system
disk or available on CD-ROM. You can display this book from a graphics
workstation using the IRIS InSight viewer.

• Use a Web browser to view the HTML version at the SGI Technical Publications
Library on the World Wide Web: http://techpubs.sgi.com.

• Order a printed copy from the local SGI sales representative.

• Use a Web browser to download PostScript or PDF files from
http://techpubs.sgi.com/library.

Online Man Pages

The IRIX GSN software includes a set of IRIX man (manual) pages, formatted in the
standard UNIX man page style. These are installed on the main system disk along with
the IRIX GSN software, and are displayed using the man command. For example, to
display the man page for the gsncntl command, enter the following command at a
shell prompt:

man gsncntl

IRIX GSN includes man pages for the following items: gsn(7m), gsnarp(1m),
gsncntl(1m), gsnsttest(1m), gsntest(1m), harp(7m), harpd(1m), and
harpdump(1m).

Citations in the documentation to these man pages include the name of the command
and the section number in which the command is found. For example, “gsncntl(1)”
refers to the gsncntl command and indicates that it is found in section 1 of the IRIX
reference.

About This Guide

007-3719-003 xix

For additional information about displaying man pages using the man command, see
man(1).

In addition, the apropos command locates man pages based on keywords. For example,
to display a list of man pages that contain information about GSN, enter the following
command at a shell prompt:

apropos gsn

For information about setting up and using apropos, see apropos(1) and
makewhatis(1M).

World Wide Web-Accessible Documentation

SGI maintains a World Wide Web (WWW) page from which you can retrieve manuals in
a variety of formats. For example, you can retrieve the latest versions of many of the
company’s documents, or you can order printed (paper-copy) versions of online
documents.

To view or retrieve the latest version of a document, use your Web browser to open the
following URL:

http://techpubs.sgi.com/

To locate the latest versions of IRIS GSN documents (including this one), make the
following selections:

1. In the Keyword search field, enter gsn

2. In the Look in area, select Title only.

3. Click the Search button.

4. From the list of documents, click on the document that you want to view, download
and print, or purchase in bound printed format.

To order a printed (paper-copy) version of a document, use your Web browser to open
the following URL:

http://techpubs.sgi.com/library/tpl/cgi-bin/order.cgi

xx 007-3719-003

About This Guide

Release Notes

You can view the release notes for a variety of SGI products and software subsystems
using one of two utilities:

relnotes Text-based viewer for online release notes

grelnotes Graphical viewer for online release notes

To see a list of available Release Notes, type the following at a shell prompt:

relnotes

For more information, see the relnotes(1) and grelnotes(1) man pages.

InfoSearch

InfoSearch is a unified system for retrieving and viewing online information, providing
you with quick and easy access to online information available on SGI computers. With
InfoSearch, you can search or browse through release notes, man pages, application help
cards, online books, and other forms of online information.

There are two ways to use InfoSearch:

• The infosearch utility, which runs on IRIX workstations.

• A World Wide Web interface, infosrch.cgi, that you can access through any Web
browser.

An SGI system can be configured as an InfoSearch server so that other workstations on
your network can use it to retrieve information. However, you must have a graphical
workstation in order to use InfoSearch, either with the infosearch command or via a
Web browser.

For basic information about getting started with InfoSearch, see the infosearch(1),
sgindexAdmin(1), booksAdmin(1), and infosrch.cgi(1) man pages.

About This Guide

007-3719-003 xxi

Obtaining Updated or Printed Versions of This Document

To order printed (paper-copy) manuals or to retrieve a newer version of a manual, use
the SGI Web page, as described in “World Wide Web-Accessible Documentation” on
page xix, or contact your sales representative.

SGI Product Support

SGI provides a comprehensive product support and maintenance program for its
products. If you are in North America and would like support for your SGI supported
products, contact the Technical Assistance Center at 1-800-800-4SGI. If you are outside
North America, contact the SGI subsidiary or authorized distributor in your country.

Conventions Used in This Guide

Throughout this guide, the following stylistic conventions are used:

Italicized text
Represents commands, variables, document titles, and filenames.

Initial capitalization
Identifies proper names for protocol entities. The initial capital letter
distinguishes the word from generic use of the term. For example, GSN
Message, refers to the item described and labeled in the ANSI standard,
as opposed to message, which can refer to any communication that has
a clear beginning and an ending.

Courier font Represents text that appears on a terminal.

Glossary term Indicates that the term is explained in the Glossary.

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number can be found on the back cover.)

xxii 007-3719-003

About This Guide

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043-1351

• Send a fax to the attention of "Technical Publications" at +1 650 932 0801.

We value your comments and will respond to them promptly.

007-3719-003 1

Chapter 1

1. Overview of IRIX GSN

This chapter provides an overview of IRIX GSN version 2.1.

Gigabyte System Network (GSN) is a full-duplex, error-free, flow-controlled
communications protocol that simultaneously provides a full gigabyte (8 gigabits) of
data transfer in each direction (6.4 gigabits of data plus 1.6 gigabits for control and
HIPPI-6400 protocol information). Table 1-1 compares theoretical GSN data rates to the
theoretical rates of other communications protocols.

SGI GSN Products

The following sections describe the SGI GSN products:

• “Components of Products”

• “GSN Within IRIX Network Stacks”

• “Standards Compliance”

Table 1-1 GSN Compared to Other Communication Technologies

Protocol BAUD Rate Peak User Payload Ratea

a. Peak rate is the rate required for hardware’s direct-memory-access (DMA) when hardware has small input
queue.

Sustained User
Payload Rate

GSN (copper) 500 MBaud on 20 lines 6.4 gigabits/sec.b

b. All rates are decimal not digital (that is, they are base-ten, not base-two); for example, giga is 1,000,000,000.

6.365 gigabits/sec.

Gigabit Ethernet 1256 MBaud on one line 1.0 gigabit/sec. 0.924 gigabits/sec.

ATM OC12c
over SONET

622 MBaud on line 0.622 gigabits/sec. 0.541 gigabits/sec.

2 007-3719-003

1: Overview of IRIX GSN

• “GSN Product Names”

• “Compatibility Issues”

Components of Products

The GSN products offered by SGI consist of multiple components that implement the
following protocols:

• SGI GSN hardware: copper-based Gigabyte System Network (GSN, also known as
HIPPI-6400 or SuperHIPPI) hardware for use in XIO slots.

• IP-over-GSN driver (gsn#) included in IRIX GSN. This component is the interface
between the GSN hardware and the Internet Protocol (IP) with its associated
transport-layer protocols: TCP, UDP, ICMP, and so on. Requires IRIX 6.5.9m or 6.5.9f
or later.

• ST-over-GSN driver (gsn#) included in IRIX GSN. This component interfaces the
GSN hardware to the Scheduled Transfer Protocol (ST). Requires IRIX 6.5.9f or later.

• HARP (HIPPI Address Resolution Protocol) driver included in IRIX GSN. This
component provides Internet-to-GSN hardware mapping service and interfaces to
the HARP daemon. Requires IRIX 6.5.9m or 6.5.9f or later.

• Address resolution protocol server (harpd daemon) and client functionality
shipped with IRIX GSN. The dynamic HARP component handles HIPPI-6400
clients. IRIX HARP also supports static table lookup for handling HIPPI systems
that do not support HARP.

• IRIX sockets-based application programming interface (API) to the IP network stack
(driver) for use by customers who want to develop or port applications to
send/receive data through the IP-over-GSN subsystem. Available with IRIX 6.5.9m
or 6.5.9f and subsequent versions.

• IRIX sockets-based application programming interface (API) to the ST network
stack (driver) for use by customers who want to develop or port applications to
send/receive data through the ST-over-GSN subsystem. Available with IRIX 6.5.9f
and subsequent versions.

SGI GSN Products

007-3719-003 3

GSN Within IRIX Network Stacks

The SGI GSN hardware and IRIX GSN software support the following network stacks
(illustrated in Figure 1-1):

• IP-over-GSN: applications that use the standard IRIX interface (BSD sockets) to
send/receive data using the IP suite of protocols.

• ST-over-GSN: applications that use the IRIX GSN product’s Scheduled Transfer (ST)
programmatic interface to send/receive data over GSN. Applications that use this
interface include the IRIX utilities shipped with the IRIX GSN product and
customer-developed ST applications.

• ARP for HIPPI/GSN (HARP): automatically resolves physical-layer HIPPI-6400
ULA addresses to and from network-layer addresses (IP and ST).

Note: Each gsn# network interface services two main protocols: ST and IP. The INET
address that the customer assigns to an instance of gsn# is shared by the ST-over-GSN
and IP-over-GSN stacks. Some of the upper-layer address processing (for example,
routing) that is performed on the address applies to both IP and ST traffic.

4 007-3719-003

1: Overview of IRIX GSN

Figure 1-1 IRIX GSN Modules Within OSI-style Network Protocol Stack

Standards Compliance

IRIX GSN complies with the following industry standards:

• GSN (also called HIPPI-6400 or SuperHIPPI)

– Information Technology - High-performance Parallel Interface - 6400 Mbit/s Physical
Layer (HIPPI-6400-PH), ISO/IEC 11518-10, NCITS (ANSI) standard.

– Information Technology - High-performance Parallel Interface - 6400 Mbit/s Switch
Control (HIPPI-6400-SC), T11.1, Project 1231-D, Rev. 2.5, August 1998, working
draft for NCITS (ANSI). Only those functions that apply to GSN endpoints.

• ST-over-GSN

– Information Technology - Scheduled Transfer Protocol (ST), T11.1, Project 1245-D,
Rev. 2.6, December 1998, working draft for NCITS (ANSI).

GSN Firmware (running on the hardware)

GSN Hardware

GSN Hardware Driver

gsnarp gsntest

HARP

IP-over-GSN Network
Interface Driver

Scheduled Transfer

(running in the host)

Applications

Socketsuser space

kernel space

(if_gsn)

customer-developed

rlogin ftp

customer-developed

ping

TCP

soc_type=datagram, stream, raw

INET address

soc_type=sequenced-packet-stream

UDP

IP

ICMP

application layer (7)

session layer (5)

transport layer (4)

network layer (3)

data link layer (2)

physical layer (1)

KEY:bold type identifies GSN modules

harpd

SGI GSN Products

007-3719-003 5

• IP-over-GSN

– RFC 2067, IP over HIPPI

– Other standard internet protocols provided with IRIX (IP versions 4 and 6, NFS
versions 2 and 3, TCP, UDP, ICMP, and so on.)

• IRIX HARP

– RFC 2835, IP and ARP over HIPPI-6400, December 1998

To obtain copies of the GSN and ST documents, see the Web site
http://www.hippi.org, or contact the American National Standards Institute
(ANSI) at 11 West 42nd Street, New York, New York 10036, telephone: 212-642-4900.
For RFCs, see the Web site http://info.internet.isi.edu/in-notes/rfc.

GSN Product Names

The following strings are used to identify the GSN product:

• Name for software image: gsn
(for example, versions gsn or showprods gsn)

• Hardware inventory name for each adapter:
GSN 1-Port adapter and GSN 2-Port adapter

• Name for each logical IP or ST network interface: gsn#
(for example, ifconfig gsn0 up)

Compatibility Issues

IRIX GSN 2.1 requires IRIX 6.5.9m for TCP/UDP and 6.5.9f for full TCP/UDP/STP
support. Use the versions command to verify the version of IRIX that is currently
running on the system. The version number (indicated by the -n option) must be equal
to or greater than the version shown in the following example:

% versions -n eoe
I eoe 1275719131 IRIX Execution Environment, 6.5.9m

6 007-3719-003

1: Overview of IRIX GSN

The SGI GSN hardware requires the system’s HUB ASICs to be version 5. Use this
command to verify the version of the HUB on each Node board:

% hinv -v | grep HUB
HUB in Module #/Slot 1: Revision 5 Speed 97.50 Mhz (enabled)
HUB in Module #/Slot 2: Revision 5 Speed 97.50 Mhz (enabled)
HUB in Module #/Slot 3: Revision 5 Speed 97.50 Mhz (enabled)
HUB in Module #/Slot 4: Revision 5 Speed 97.50 Mhz (enabled)

Overview of Protocols

The following sections provide an overview of the protocols that make up and
interoperate with IRIX GSN. Figure 1-1 illustrates the GSN protocol stacks.

• “What is GSN?”

• “What is ST?”

• “Address Resolution for GSN”

• “How Address Resolution Works for ST-over-GSN”

What is GSN?

007-3719-003 7

What is GSN?

Gigabyte System Network (GSN) is a set of ANSI standards (listed in “Standards
Compliance” on page 4) that defines physical and data link layers for a very high-speed
communications protocol. The GSN protocol is also known by two other names:
HIPPI-6400 and SuperHIPPI. Throughout this document, the term GSN is used for this
entire set of protocols, except when referring to an item from a specific ANSI standard,
in which case the term from the ANSI document’s title is used (for example,
HIPPI-6400-PH micropacket).

GSN Terminology

The following terms have specific meanings when used within the context of GSN:

Physical link
One section of HIPPI-6400-PH cable (copper or fiber-optic) that connects
two HIPPI-6400-PH elements. Each element can be either a switch or an
endpoint. Each physical link is a full-duplex link composed of two
simplex links; each simplex link carries data in only one direction; the
two streams of data in the full-duplex link flow in opposite directions.
The path (virtual connection) between an original point of transmission
(the originating source) and a final point for reception (the final
destination) can involve numerous physical links.

Element
Any component of a HIPPI-6400 fabric or system that is able to receive,
process, and send HIPPI-6400 Admin micropackets in a manner that
conforms with the HIPPI-6400 standard. Each HIPPI-6400 element
contains both a source and a destination. For example, the SuMAC chip
in an SGI GSN product is a GSN element.

Source
The transmitting element located at one end of a physical link. An
upper-layer entity (host, network-layer interface, or program) that uses
the GSN subsystem is sometimes loosely referred to as the source.
However, it is more correct to call these software entities upper-layer
protocols (that is, source ULPs). An “originating source” refers to the
element that first transmitted a micropacket; an element that is
retransmitting the micropacket (for example, a switch) is simply a
source.

8 007-3719-003

1: Overview of IRIX GSN

Destination
The receiving element located at the other end of a physical link. An
upper-layer entity (host, network-layer interface, or program) that
receives communications through the GSN subsystem is sometimes
loosely referred to as the destination. However, it is more correct to call
these software entities upper-layer protocols (that is, destination ULPs).
A “final destination” refers to the element that is the ultimate receiver
for a micropacket; an element that receives, then retransmits a
micropacket (for example, a switch) is simply a destination.

Endpoint
A final destination or an originating source of GSN traffic. An endpoint
may have only one GSN port. A single system may have many
endpoints (for example, an Origin module with two SGI GSN products
has two endpoints).

Switch
A node that is located along the route between two endpoints. GSN
traffic passes through the switch on its way to a destination endpoint. A
switch must have at least two, and usually has more, GSN ports.

Fabric
All the HIPPI nodes (switches, endpoint devices, extenders) that are
physically interconnected and communicate using the same
physical-layer protocol.
One GSN fabric can be logically divided into multiple upper-layer
address spaces (that is, networks). For example, a single GSN fabric can
support multiple IP networks. And, conversely, one logical network can
include members from multiple HIPPI fabrics.

Hop count
A number used in HIPPI-6400 Admin micropackets to specify the
number of elements through which the micropacket should be
forwarded. Each time a micropacket exits an element, the hop count is
decremented by one. See “GSN Admin Micropackets” on page 19 for
further details.

What is GSN?

007-3719-003 9

GSN Overview

The GSN protocol provides 6.4 gigabits of user data per second from source to
destination (in each direction) over either copper-based or fiber-optics-based physical
media.1 The protocol is point-to-point, full-duplex, and flow-controlled. It uses small
fixed-size micropackets (illustrated in Figure 1-4 and Figure 1-6) and up to four
interleaved logical datastreams (channels) per point-to-point connection.

GSN Physical Layer

Each physical link is composed of two simplex links that connect two HIPPI-6400
elements; data flows in only one direction on each simplex link. Both simplex links are
required for a connection because control information for each datastream travels in the
reverse direction (that is, along the other simplex link of the connection). This design
provides a full-duplex connection between two endpoints.

The GSN data rate is stated as 6.4 gigabits of user data per second on each simplex link;
however, each link physically carries a total of 8 gigabits (1 gigabyte) of data (user and
control) every second. The following items describe the GSN bandwidth:

• At the physical layer (that is, on the wire), GSN uses a dual-edged 250-million-cycle
-per-second clock, which results in 500 million transmission events per second. Said
another way, GSN operates at 500 MBaud.

• For each baud, GSN transmits 16 bits of user data and 4 bits of control data that is
encoded with 4b/5b. This means that 20% of the total bandwidth is overhead for
the encoding, and, of the remaining bandwidth, 20% is overhead for the HIPPI-6400
protocol. This results in user bandwidth of 6.4 gigabits or 6400 megabits per second.

• The available bandwidth for user data is 6400 megabits/second, which is
6.4 gigabits or 0.8 gigabytes of per second in each direction.

1 For SGI GSN release 1.0, only the copper-based medium is supported.

10 007-3719-003

1: Overview of IRIX GSN

Table 1-2 summarizes the mathematical calculations:

GSN Virtual Channels

Each simplex link can carry up to four logical datastreams (virtual channels). These
virtual channels are allocated for control traffic, low latency traffic, and bulk traffic to
avoid the latency/blocking issues that occur when only a single channel is attempting to
handle both bulk and interactive traffic.

Table 1-2 GSN Bandwidth Calculations

Item Bandwidth Calculation Details

Total physical signal carrying capacity 10 GBaud 20 simultaneous signals multiplied by 500
MBaud, which is 10 billion signals per
second in each direction.

Bandwidth available for protocols 8.0 Gbits/s Rate in row above, minus bandwidth used
by 4b/5b encoding.

Bandwidth available for users (that is,
layers above the HIPPI-6400 layer)

6.4 Gbits/s Rate in row above, minus amount used by
GSN control information. GSN control = 4
of the 20 bits (20% of 8 Gbits).

What is GSN?

007-3719-003 11

Each virtual channel is commonly implemented as a queue; micropackets are selected
alternately from the active queues and placed onto the physical link in an interleaved
fashion, as illustrated in Figure 1-2. Not all four channels need to be active on every
connection. All the micropackets belonging to a single GSN Message always travel
through the same channel, even when the message traverses switches along its way to
the final destination. The restrictions for the data that can be carried on each channel are
described in Table 1-3.

Figure 1-2 GSN Micropackets from Virtual Channels Interleaved in Datastream

Table 1-3 Data Restrictions for Each GSN Virtual Channel

Virtual
Channel Description

0 Carries GSN Messages that do not exceed 68 micropackets of TYPE data (about
2176 bytes of upper-layer data). For ST-over-GSN traffic, ST data channel 0 maps to
this GSN channel; all ST control operations (for example, Request_To_Send and
Clear_To_Send) travel on this virtual channel.

1 Carries GSN Messages that do not exceed 4100 micropackets of TYPE data (about
128 Kbytes of upper-layer data) and Admin micropackets in which the COMMAND
field specifies a request or a command (that is, not a response). IP-over-GSN traffic is
carried on this VC. For ST-over-GSN traffic, ST data channel 1 maps to this GSN
channel.

2 Carries GSN Messages that do not exceed 4100 micropackets of TYPE data (about
128 Kbytes of upper-layer data) and Admin micropackets in which the COMMAND
field specifies a response. For ST-over-GSN traffic, ST data channel 2 maps to this GSN
channel.

3 Carries GSN Messages that do not exceed 134,217,728 micropackets that are of TYPE
data (about 4 Gbytes of upper-layer data). This channel requires that the final
destination endpoint agree to accept this Message via a flow-controlled protocol such
as Scheduled Transfer. For ST-over-GSN traffic, ST data channel 3 maps to this GSN
channel.

Ch 1:
upkt 1

Ch 1:
upkt 2

Ch 1:
upkt 3

Ch 3:
upkt 2

Ch 2:
upkt 2

Ch 2:
upkt 1

Ch 3:
upkt 1

Datastream
on GSN link

Micropackets from different virtual channels (Ch #)

12 007-3719-003

1: Overview of IRIX GSN

GSN Micropacket

The micropacket is the basic protocol data unit for GSN. Each GSN micropacket is
32-bytes of data accompanied by 8 bytes (64 bits) of control information. The TYPE field
within the control bits indicates the format and purpose of the micropacket’s 32 bytes of
data. The VC field determines which virtual channel carries the micropacket. Some of the
control bits that accompany a 32-byte chunk of data refer to that chunk of data (for
example, the VC and TYPE fields), and some bits refer to the datastream traveling in the
opposite direction on the other physical link (for example, the credits in the CR field that
allow the reader/receiver of the control bits to transmit more data for its own
datastream). Figure 1-3 illustrates the control bits and Table 1-4 describes them. Table 1-5
summarizes the different TYPEs of GSN micropackets.

Figure 1-3 GSN Micropacket Control Bits

Micropacket data
(32 bytes)

LCRC

ECRC

TSEQRSEQ

TYPEVC VCR CR byte 1

byte 7

byte 5

byte 3

byte 0

bit 0 15

byte 6

byte 4

byte 2

T
ai

l

E
rr

or

direction of
datastream

Control bits
(64 bits)

What is GSN?

007-3719-003 13

Table 1-4 GSN Micropacket Control Bits

Name of
Field

Number of
Bits in
Field Description

Applies to
Data in
Which Link

VC 2 Virtual channel selector for this micropacket (binary values):
00=channel_0; 01=channel_1; 10=channel_2; 11=channel_3

This one

TYPE 4 Type of micropacket: see Table 1-5 This one

T 1 Tail:
0=more micropackets follow to complete this GSN Message;
1=this is the last micropacket for this Message.

This one

E 1 Error:
0=this GSN Message is OK so far;
1=an unrecoverable error was detected for this Message.

This one

VCR 2 Virtual channel for which the credits (in CR field) apply. Other

CR 6 Credits: number of credits the source (that is, the receiver of
these control bits) can add to the data transfer on the virtual
channel indicated in the VCR field. (See “GSN Flow Control”
for further explanation.)

Other

RSEQ 8 Reception sequence number:
Acknowledgment for the highest-received sequence number
(TSEQ) for data micropackets on the other link.

Other

TSEQ 8 Transmission sequence number:
The sequence number associated with this micropacket.

This one

ECRC 16 End-to-end checksum. Checksum for all data bytes of the
GSN Message, up to and including, the bytes in this
micropacket. This checksum is verified by the final
destination.

This one

LCRC 16 Link checksum. Checksum for the 32 bytes of data and the
first 48 bits of control information in this micropacket. This
checksum is verified by each GSN element at the end of a
link.

This one

14 007-3719-003

1: Overview of IRIX GSN

Most of the GSN micropacket TYPEs are related to control and management of the GSN
link. Only three TYPEs of micropackets are passed to the upper layers: Admin, Header,
and Data micropackets. The Admin micropacket (illustrated in Figure 1-4) is used by
upper-layer GSN administrative programs to manage and configure a GSN fabric; hence,
the Admin micropacket is defined by the Switch Control ANSI standard
(HIPPI-6400-SC). The Header and Data micropackets are used to create GSN Messages
(illustrated in Figure 1-6) that carry user-level data.

Table 1-5 Types of GSN Micropackets

Type
(Name)

Type
(Hexadecimal) Description of the Micropacket

Supported by
IRIX GSN
Hardware?

Reset 2 Causes the receiving HIPPI-6400-PH device to
reset the local link (that is, the physical link
between this sender and the device at the other
end of the physical link).

Y

Reset_Ack 3 Acknowledges that the Reset micropacket was
received and that the HIPPI-6400-PH link reset
was completed.

Y

Initialize 4 Causes the receiving HIPPI-6400 device to
reinitialize.

Y

Initialize_Ack 5 Acknowledges that the Initialize micropacket
was received and that the HIPPI-6400-PH
initialization procedure was completed.

Y

Reserved 6 Not applicable (NA) NA

Null 7 Contains no data in the 32-byte data area; there
may be valid information in the Control Bits.
This type is transmitted only when there is
nothing else to transmit; it keeps the physical
link active/alive.

Y

Data 8 Contains data for a GSN (HIPPI-6400) Message
(illustrated in Figure 1-6).

Y

Header 9 Contains the header information for a GSN
(HIPPI-6400) Message (illustrated in Figure 1-6).

Y

What is GSN?

007-3719-003 15

One of the functions for the Admin micropacket is to allow each switch on a GSN fabric
to discover the fabric’s physical configuration and each endpoint to discover the
universal LAN MAC address (ULA) that its switch has assigned to it. This functionality
is not available on every GSN product; however, when it is implemented, this is how it
works.

• For an endpoint, upon starting, it transmits an Admin micropacket that asks the
device at the other end of the link to identify its function (for example, is it an
endpoint or a switch). If the device is a switch, the endpoint asks for an assigned
ULA; if the device is another endpoint, the local endpoint uses its locally assigned
ULA (which might be stored in the hardware’s PROM).

• For a switch, upon starting, it transmits Admin micropackets that ask for other
devices’ functions (for example, is it a switch or an endpoint). The switch sends one
such request to each hop (successive hardware device) down each of its links until
an endpoint is reached. Upon discovery of each endpoint or a switch, it uses Admin
micropackets to exchange ULA information with that device. As it receives
responses from these Admin requests, the switch constructs a map (spanning tree)
of its fabric. Once this map has been constructed, a micropacket destined for a
known endpoint (that is, any endpoint discovered within that fabric) can be
delivered.

Credit-only A Contains only valid credits (VCR and CR fields
of Control Bits) that allow the transmitter to send
more data. The micropacket contains no data in
the 32-byte data area. This type is transmitted
only when there are no Admin, Header, or Data
micropackets awaiting transmission.

Y

Reserved B-E NA NA

Admin F Used for administering GSN switches and
endpoints. Format for Admin micropacket is
defined by the HIPPI-6400-SC standard. A
number of functions (commands) are supported,
including: ping another GSN device, request
ULA of a remote GSN device, and set up
broadcast capability for a GSN fabric.

Y

Table 1-5 (continued) Types of GSN Micropackets

Type
(Name)

Type
(Hexadecimal) Description of the Micropacket

Supported by
IRIX GSN
Hardware?

16 007-3719-003

1: Overview of IRIX GSN

Note: This fabric discovery scheme does not solve the problem of how each endpoint
comes to know the ULA for the other endpoints with which it wants to communicate.
That problem can be solved by an upper-layer address resolution mechanism (for
example, HARP or another network-layer address resolution mechanism). For details,
see “Address Resolution for GSN.”

Figure 1-4 GSN Admin Micropacket

Admin Data Bytes

Src. Admin. Element Address

Dest. Admin. Element Address

Status/Return Hop Src. Admin. Element Register

Dest. Admin. Element RegisterKeybyte 0

byte 28

byte 3

byte 31

Hop Count

Command

8 bits

32 bits

Commands include:
ping remote element (device)
discover remote element's function (is it a switch or an endpoint?)
clear (reset) remote element's HIPPI-6400-SC state information
request remote element's ULA
read remote element's administrative register
request a list of ULAs for all connected elements
set remote element's HIPPI-6400-SC address

What is GSN?

007-3719-003 17

GSN Flow Control

A GSN destination (receiving) endpoint controls the flow of micropackets by
periodically releasing credits to the source.2 Each credit represents memory at the
destination for one GSN micropacket. Each credit gives the source permission to send
one additional micropacket on a specific channel. The destination gives credits to the
source in the control bits (CR and VCR bits) that accompany the destination’s own
micropackets. Note that the credits travel in the opposite direction from the data, as
illustrated in Figure 1-5, and can accompany micropackets traveling on any of the GSN
virtual channels for the connection.

Figure 1-5 GSN Flow Control

2 Flow control is a mechanism for preventing data loss that is caused by a source transmitting data
faster than the destination can process it. Without flow control, the destination drops incoming data
when it does not have memory available (free) in which to store the data.

E
n

d
p

o
in

t
A

E
n

d
p

o
in

t
B

GSN
micropacket

GSN
micropacket

GSN
micropacket

GSN
micropacket

Datastream_2 on a different GSN channel

Datastream_1 on GSN channel 2

Credits for
Datastream_1
piggybacking
on channel 2

GSN
micropacket

GSN
micropacket

GSN
micropacket

GSN
micropacket

18 007-3719-003

1: Overview of IRIX GSN

GSN Message

The GSN Message is the basic data transfer unit between source and final destination
endpoints. Each Message is composed of one initial Header micropacket followed by
zero or more Data micropackets (illustrated in Figure 1-6). The micropackets of a
Message are sequentially ordered and all travel over the same virtual channel using the
same originating source (S_ULA value) and final destination (D_ULA value). The last
micropacket in a Message has a bit set (the TAIL flag) to indicate that the Message is
complete. Figure 1-6 illustrates a complete GSN Message.

Figure 1-6 GSN Message Composed of Header and Data Micropackets

When the GSN Header micropacket is carrying an IP datagram (EtherType=0x0800), the
8 bytes of payload in the Header micropacket are the first 8 bytes of the IP header. (Note
that the 8 bytes immediately preceding the Payload are an 802.2 SNAP header.) When the
GSN Header micropacket is carrying an ST transfer (EtherType=0x8181), the payload
bytes in the Header micropacket are the initial 8 bytes of the ST Header.

Last Data Micropacket

Control bits

One Message

Upper-layer data bits (see Figure 1-3)

32 Bytes
Header bits

32 Bytes

Final destination ULA
byte 0byte 0 byte 3byte 3

byte 31byte 31

Source ULA

Message length

DSAP

Org EtherType

Payload
(first 8 bytes of upper-layer data)

SSAP Control Org

Payload
(up to 32 valid

user-data bytes)

T
Header Micropacket Data Micropacket

What is GSN?

007-3719-003 19

GSN Admin Micropackets

Every HIPPI element is capable of processing GSN (HIPPI-6400-SC) Admin
micropackets. These micropackets configure elements, discover the fabric topology, and
maintain the elements of a GSN fabric. The TYPE field of the control bits (illustrated in
Figure 1-3) indicates that a micropacket is of the Admin type. Admin micropackets have
the format illustrated in Figure 1-4.

Most HIPPI-6400 elements have two ports: one leading toward the fabric and the other
leading toward the host/core. For example, a link end element (such as the SuMAC
ASIC) has one port connected to a physical link/the fabric and the other port connected
to additional GSN logic (which may be another local element) on an adapter board.
Notice that a GSN system may contain more than one element; this fact is important in
understanding the processing of Admin micropackets.

An Admin micropacket can enter an element through either port, as illustrated in
Figure 1-7. Each Admin micropacket is either processed and responded to or forwarded
to the next element through the element’s other port, as illustrated in Figure 1-7. A
response to an Admin micropacket always exits the element through the same port by
which the original Admin micropacket arrived.

Figure 1-7 Dual-port HIPPI-6400-PH Elements

Element ABC

Leading
to
host/core

Admin arrives from "host" direction:

Admin arrives from "fabric" direction:

Leading
to
fabric

Admin X

Element ABC

Leading
to
host/core

path for response
if processed

path for response
if processed

Leading
to
fabric

path if forwarded

Port_1

Port_1
"other port"

Port_2

Port_2
"other port"

path if forwarded
Admin X

20 007-3719-003

1: Overview of IRIX GSN

The hop count field in the Admin micropacket determines when the Admin packet is
acted upon/processed. The count indicates the number of elements (hops) through
which the Admin micropacket is propagated/forwarded before it is processed. As long
as the hop count is greater than zero, the receiving element decrements the hop count by
one and transmits the Admin micropacket out the element’s other port (which leads to
another element), as illustrated in Figure 1-8. When the count is zero, the receiving
element processes the micropacket and responds, as illustrated in Figure 1-9. Figure 1-10
through Figure 1-12 show examples of various hop count values and the manner in
which hop count determines which element acts on and responds to the micropacket.

Table 1-6 lists the administrative commands that are available with Admin micropackets.

Figure 1-8 Hop Count >0 Indicates Forward Admin Micropacket

Figure 1-9 Hop Count =0 Indicates Process Admin Micropacket

Element ABC

Admin_X
hop_count=2

Admin_X
hop_count=1

Port through
which Admin
arrived

"other" port

Element ABC

Admin_X
hop_count=0

Admin_X_
response

Port through
which Admin
arrived

"other" port

What is GSN?

007-3719-003 21

Figure 1-10 Hop Count Example: hop_count = 0

Figure 1-11 Hop Count Example: hop_count = 1

Admin_X
hop_count=0

Host/Core

Admin_X
response

Element 1: Link End Element
(e.g., local SuMAC)

Admin Processor

A remote element
(e.g., LInk end on switch)

Admin from host/core element
to local link-end element

Physical link

"o
th

er
"

po
rt

Admin_X
hop_count=1

Host/Core

Element 1: Link End Element
(e.g., local SuMAC)

Link End
a remote element
(e.g., on switch)

Admin from host/core element
to first remote element on fabric

Physical
link

"o
th

er
"

po
rt

Element 2:

Admin Processor

Admin_X_
response

Admin_X
hop_count=0

22 007-3719-003

1: Overview of IRIX GSN

Figure 1-12 Hop Count Example: hop_count = 2

Table 1-6 GSN Admin Micropacket Commands

Admin Command Description

Required (R) or
Optional (O) for
Switches and
Endpoints

Ping Are you there? O

*_response Yes I am here (and functioning). R

Set_element_address Here is your “element address”. O

*_response Status (for example, I have started using the
assigned address).

O

Reset Initialize yourself O

Exchange_element_
function

I am a <switch/endpoint> element.

What are you?

R

*_response I am a <switch/endpoint> element. R

Admin_X
hop_count=2

Host/Core

Element 1: Link End Element
(e.g., local SuMAC)

Link End
a remote element
(e.g., on switch)

Admin from host/core element
to remote host/core element

Physical
link"o

th
er

"
po

rt Element 2:

Link End Element
(e.g., a SuMAC on
an endpoint)

Element 2:

Admin Processor

hop_count=1
Admin_X

Admin_X
hop_count=0 Admin_X

Response

What is GSN?

007-3719-003 23

ULA_request Assign me a ULA. R

*_response Here is your ULA. R for switches

Read_register Give me the data from this Admin register. O

*_response Here is the data you requested. O

Write_register Put this data into this Admin register. O

*_response Status (for example, the data has been
written).

O

Invalid_command I received an invalid/unrecognized/
unsupported Admin micropacket.

R

ULA_list_request Give me a list of all the ULAs connected to
you.

O

*_response Here is the list. R for switches

Port_remap For all traffic containing the specified ULA,
change the route (output port) to a specified
(new) port ID.

O

*_response Status. R for switches

Port_map_request Give me the port ID that I must use to
contact the specified ULA.

O

*_response Here is the port ID. R for switches

Table 1-6 (continued) GSN Admin Micropacket Commands

Admin Command Description

Required (R) or
Optional (O) for
Switches and
Endpoints

24 007-3719-003

1: Overview of IRIX GSN

What is ST?

Scheduled Transfer (ST) is an upper-layer protocol that can be implemented to operate
over a number of physical-layer subsystems, including GSN, ATM, FDDI, and Ethernet.
This section describes the main characteristics of the ST protocol. For the sake of
introduction and ease of understanding, many of the less important functional details of
ST are not covered in this description. Refer to the ANSI standard (listed in the section
“Overview of Protocols”) for complete details.

ST Overview

The most salient feature of ST is that it prepares both endpoints for the data movement
before any data is transmitted. The first step in the preparation is to create a condition
(state) called a virtual connection or VC (described in “ST Connection Setup Sequence”).
The second step is a handshake that allocates memory for the data movement and
exposes this memory to the other endpoint (described in “ST Data Movement Sequences
Including Memory Allocation”). There are two kinds of the memory-allocation
handshake: one provides memory that is used once (described in “Single-use Memory
Data Movements”); the other provides memory that is used many times until released
(described in “Persistent Memory Data Movements”). The two endpoints exchange ST
control operations to accomplish these prearrangements. Only after these
prearrangements are complete can the first data movement begin; the data movement is
performed with ST data operations.

ST Terminology

The following terms have specific meanings within the context of ST:

operation The ST protocol data unit. It is composed of a 40-byte header and
variable-length data ranging from 0 bits to 4 gigabits (illustrated in
Figure 1-13). Each ST operation is transmitted as one GSN Message, as
illustrated in Figure 1-13.

sequence A series of operations that occur in a specific order and accomplish an
ST protocol task.

initiator The ST endpoint that sends the first operation within an ST sequence.
The endpoint that acts as initiator during one sequence (for example, the
connection setup) can act as the responder in a subsequent sequence (for
example, the data movement).

What is ST?

007-3719-003 25

responder The other (not the initiator) ST endpoint participating in an ST sequence.

slot Memory at an ST destination that is reserved for holding one incoming
ST Header.

ST Operations

The Operation is the basic protocol data unit for ST. Each ST Operation is carried within
a single GSN Message, composed of two or more HIPPI-6400 micropackets, as illustrated
in Figure 1-13.

Figure 1-13 ST Operation

ST operations (listed in Table 1-7) are commonly grouped into the following categories:

• Connection management operations: used to set up and tear down a VC

• Control operations: used to manage a VC (for example, status or flow control)

• Data operation: used to transmit ST payload (upper-layer data) and/or data
checksum during data movement sequences

GSN Header
micropacket

GSN Data
micropacket

ST Header
(40 bytes)

GSN Data
micropacket

T=tail; last micropacket of MessageT

GSN Message 1 ST Operation = 1 GSN Message

ST Payload
(not present in all operations)

ST protocol data unit (i.e., ST operation)

GSN protocol
bytes

ST protocol
bytes

Other bytes

GSN protocol bytes

26 007-3719-003

1: Overview of IRIX GSN

Table 1-7 ST Operations

Name of Operation Acronym Category

Sequence in
Which
Operation is
Used Description

Request_Connection RC connection
management

Setup Requests that a VC be created. Issued by any
endpoint. First operation of setup sequence.

Connection_Answer CA connection
management

Setup Response to RC. Accepts (creates VC) or
rejects the RC. Second (and last) operation of
setup sequence.

Request_Disconnect RD connection
management

Teardown Indicates that sender (initiator) is tearing
down the VC. Issued by either endpoint of
VC. First operation of teardown sequence.

Disconnect_Answer DA connection
management

Teardown Response to RD. Indicates that the sender
(responder) is tearing down the VC. Second
operation of teardown sequence.

Disconnect_Complete DC connection
management

Teardown Response to DA. Indicates sender (initiator)
has finished tearing down VC. Third (and
last) operation of teardown sequence.

Request_Memory_Region RMR control Data
Movement_
Persistent

Requests that responder expose memory.
First operation of persistent memory
sequence.

Memory_Region_Available MRA control Data
Movement_
Persistent

Response to RMR. Exposes responder’s
memory to initiator.

Get GET control Data
Movement_
Persistent

Issuer (initiator) is destination for the data
movement. Exposes initiator’s memory to
receive the requested data. Data comes from
source’s exposed persistent memory region.
RMR/MRA handshake must have occurred.

FetchOp FETCHOP control Data
Movement_
Persistent

Issuer (initiator) is destination for the data
movement. Exposes initiator’s memory to
receive the requested data. Data comes from
source’s exposed persistent memory region.
RMR/MRA handshake must have occurred.

What is ST?

007-3719-003 27

FetchOp_Complete FC control Data
Movement_
Persistent

Response to FETCHOP.

Request_To_Send RTS control Data
Movement_
Single-use

Issued by source (=initiator for write or
=responder for read). Indicates issuer is
ready to transmit data; asks responder to
expose single-use memory. First operation of
write sequence.

Request_To_Receive RTR control Data
Movement_
Single-use

First operation for a read sequence. Indicates
issuer is ready to receive data. Issuer becomes
the initiator of the read sequence.

Clear_To_Send CTS control Data
Movement_
Single-use

Response to RTS. Gives source permission to
transmit one block of data. Exposes
single-use memory for that data.

Data DATA data Data
Movement

Carries ST payload and/or checksum; used
in every data movement sequence. Sent by
data source, which can be either initiator or
responder within the data movement
sequence.

Request_Answer RA control Data
Movement

Response to an RTS, RTR, RMR, GET, or
FETCHOP. Accepts, rejects, or pauses the
request to which it is responding.

Request_State RS control Status Requests VC status information. Issued by
either endpoint.

Request_State_Response RSR control Status Communicates VC state information.
Response to either an RC operation or a
DATA operation in which the Send_state flag
(within the ST Header) is set.

Table 1-7 (continued) ST Operations

Name of Operation Acronym Category

Sequence in
Which
Operation is
Used Description

28 007-3719-003

1: Overview of IRIX GSN

ST Header

The ST Header (illustrated in Figure 1-14) carries the information that implements the ST
protocol features. Some of the parameters that are communicated within the ST Header
are:

• Type of operation (listed in Table 1-7)

• Data channel through which this operation travels, which, for ST-over-GSN, maps
directly to GSN virtual channels (summarized in Table 1-3)

• Number of memory spaces (slots for holding ST Headers) that are currently
available at each endpoint for this data channel (that is, VC)

• Port values for initiator and responder within each VC

• Key values for initiator and responder within each VC

• Length of the data to be moved from one endpoint to the other

• Block number for use in tracking progress, managing flow control and resource
allocation, and performing striping within a data movement

• Memory address (buffer index and offset) to use for the data movement

• Checksum for the operation

• Identification numbers for tracking and sequencing operations: DATA operations,
FETCHOP operations, GET operations, and REQUEST_STATE_RESPONSE
operations within each VC

End END control Abort Data
Movement

Terminates an in-progress data movement
(read/write transfer or a persistent memory
region) by causing the allocated memory to
be released; leaves VC open. Issued by either
endpoint.

End_Ack EA control Abort Data
Movement

Response to END. Indicates responder has
aborted the associated data movement.

Table 1-7 (continued) ST Operations

Name of Operation Acronym Category

Sequence in
Which
Operation is
Used Description

What is ST?

007-3719-003 29

The following are some of the endpoint behaviors that can be controlled by the
operation’s ST Header:

• Whether or not the destination for a data movement supports reception of
out-of-order Blocks

• Whether or not the operation’s ST Header should be delivered to the destination’s
upper-layer protocol (ULP)

• Whether or not the destination ULP should be interrupted when this operation
arrives

• Request status information from the endpoint receiving this ST Header

• Inform initiator that responder is rejecting a request

• Pause the transmission during a data movement

Figure 1-14 ST Header

Op + Flags (below)

D_id S_id

D_Port S_Port

D_Key

Op and Flags Fields

Param

Bufx

Offset

Sync

B_num

I_Bufx

I_Offsetbyte 36 byte 39

carried in HIPPI-6400
Header micropacket

carried in first HIPPI-6400
Data micropacket for GSN Message

T
 (

S
T

 H
ea

de
r

no
t

de
liv

er
ed

 to
 U

LP
)

In
er

ru
pt

 U
LP

S
en

d_
st

at
e

O
ut

_o
f_

or
de

r
B

lo
ck

s

La
st

 S
T

U
 o

f B
lo

ck

R
ej

ec
t

byte 0

bit 0

bit 0 15

31

byte 3

byte 7

Data
channel

ULP = upper-layer protocol

Operation_code
(see Table 1-7) Function

30 007-3719-003

1: Overview of IRIX GSN

ST Sequences

ST defines sequences of operations for accomplishing various tasks, including the
following:

• To open a connection between two endpoints and negotiate the parameters
associated with the virtual connection. (See “ST Connection Setup Sequence.”)

• To perform a data movement including the handshake that allocates memory at the
destination. (See “ST Data Movement Sequences Including Memory Allocation.”)

• To control the data flow during the data movement, thus enabling full-rate,
non-congested data flow between the endpoints. (See “ST Flow Control
Sequences.”)

• To tear down a connection. (See “ST Connection Teardown Sequence.”)

Each ST sequence allows the two endpoints to exchange a set of control parameters and
information. The parameters are carried in the ST Header (illustrated in Figure 1-14).
Each type of operation uses the Header fields differently and exchanges a different set of
parameters.

ST Connection Setup Sequence

Before any ST data can be exchanged, a Virtual Connection (VC) must be set up between
the initiator and the responder. Upon successful completion of this exchange, each
endpoint will have stored a set of parameters associated with the VC and will have set
aside some resources for exclusive use by this VC. Three of the stored parameters are
used (as a tuplet) for identifying/validating operations that arrive to the VC. The
verification tuplet consists of: the remote endpoint’s ST port number, the local endpoint’s
ST port number, and the key value that the local endpoint has assigned to this VC.
Figure 1-15 illustrates how these identification parameters are set up.

Note: The initiator for the connection setup sequence is the endpoint that sends the first
control operation for the sequence (that is, the Request_Connection).

The connection setup sequence consists of two control operations: a Request_Connection
sent by the initiator, followed by a Connection_Answer sent by the responder).
Figure 1-15 and Figure 1-16 illustrate different subsets of the information exchanged in

What is ST?

007-3719-003 31

one successful connection setup sequence. Figure 1-17 illustrates a connection setup
sequence in which the responder refuses to create the VC.

The ST connection setup sequence negotiates and sets the following parameters and
resources that remain in effect for the duration of the VC:

• I_Port and R_Port
ST port value on which endpoint (initiator and responder) wants to receive all
communication associated with this VC.

• I_Key and R_Key
Locally unique identification number (key) for use in verifying and identifying this
VC. Each endpoint gives the other endpoint a key, which the other simply echoes
back in each communication; the key means nothing to the remote end and is only
“unique” at the endpoint where it was assigned.

• I_Bufsize and R_Bufsize
Size of the buffers used by each endpoint for data it receives on this VC.

• I_Slots and R_Slots
Initial number of “slots” available at each endpoint. Each slot indicates memory
that has been set aside for storing ST headers that are received on this VC. Each slot
normally consists of one 40-byte data structure.

• CTS_req
Number of Clear_to_Sends that the source would like to have outstanding
(available) at all times during the data movement.

• I_MaxSTU and R_MaxSTU
Maximum size STU that each endpoint is willing to receive. The other endpoint
must respect this size when transmitting on this VC.

• EtherType
Identity of the protocol being encapsulated (carried) within the ST Messages on this
VC. For example, for IP datagrams, the EtherType is 0x0800; when the ST Messages
carry user data that is not enclosed in any additional protocol, the EtherType is
0x0000. The initiator specifies this parameter.

32 007-3719-003

1: Overview of IRIX GSN

Figure 1-15 ST Connection Setup Sequence: Identification Parameters Only

Figure 1-16 ST Connection Setup Sequence: VC Parameters Only

Tuplet for Verifying
Incoming Operations
other_Port (I_Port)
my_Port (R_Port)
my_Key (R_Key)

Tuplet for Verifying
Incoming Operations
other_Port (R_Port)
my_Port (I_Port)
my_Key (I_Key)

ST Initiator Endpoint ST Responder Endpoint

(see Figure 1-16 for other parameters)

Echoes initiator's Port and Key

provides responder's Port (R_Port)

provides responder's Key (R_Key)

Provides initiator's Port (I_Port);
provides initiator's Key (I_Key);
uses well-known Port for R_Port(See Figure 1-16 for other parameters)

Caches information.
Assigns Port + Key for responder;
allocates resources

Either side can initiate a data
movement sequence.Assigns Port + Key for initiator;

allocates resources for connection

Connection_Answer

Request_Connection

Caches information.

ST Initiator Endpoint ST Responder Endpoint

(see Figure 1-15 for identification

 parameters)

Provides responder's Bufsize,

MaxSTU, and number of Slots.

Provides initiator's Bufsize, MaxSTU,
and number of Slots; identifies EtherType.
(See Figure 1-15 for identification parameters) Caches information.

Allocates resources.

Either side can initiate a data
movement sequence

Connection_Answer

Request_Connection

Caches information.

What is ST?

007-3719-003 33

Figure 1-17 ST Connection Setup Sequence: Rejection

ST Connection Teardown Sequence

When an endpoint no longer wants a VC, it initiates the connection teardown sequence
illustrated in Figure 1-18. This sequence is not used to terminate data movements. (See
“ST Termination Sequence for a Data Movement”.)

ST Initiator Endpoint ST Responder Endpoint

(see Figure 1-15 for identification

parameters)

R flag is set to reject the request.

Provides initiator's Bufsize, MaxSTU,
and number of Slots;identifies EtherType.
(See Figure 1-15 for identification parameters) For some reason, endpoint

cannot or does not want
to create this VC.

Connection_Answer

Request_Connection

34 007-3719-003

1: Overview of IRIX GSN

Figure 1-18 ST Connection Teardown Sequence

ST Data Movement Sequences Including Memory Allocation

This section describes ST data movement sequences. Each ST data movement sends
upper-layer (user) data from one endpoint (the source) to one other endpoint (that is, one
final destination). The entire data transfer is controlled by the VC parameters negotiated
during one ST connection setup procedure (described in “ST Connection Setup
Sequence”) or renegotiated during the data movement. The setup sequence must be
completed before any data movement sequence is initiated.

The data movement sequences consist of two to five operations, exchanged between the
VC’s two endpoints (the memory-allocation handshake), followed by one or more data
operations. There are five different data movement sequences, as summarized in
Table 1-8. The initiator controls which sequence is used, depending on the type of
memory it wants to have allocated, the type of functionality it desires for the data
movement, and the role it wants to assume in the transfer.

ST Initiator Endpoint ST Responder Endpoint

Uses R_Port, R_Key, I_Port and I_Key

to identify connection being torn down.

Uses I_Port, I_Key, R_Port, and R_Key
to identify connection to be torn down.

Uses R_Port, R_Key, I_Port, and I_Key
to identify connection being torn down.

Verifies existence/validity of
connection.

Tears down most of connection.

Tears down connection completely.

Either side can initiate the
teardown sequence.

Verifies existence/validity of
connection.

Tears down connection.

Disconnect_Answer

Request_Disconnect

Request_Complete

What is ST?

007-3719-003 35

The memory-allocation handshakes allow either of the following types of memory to be
allocated for receipt of the data:

• Persistent memory: a region of memory that is used over and over for the transfers
that occur within that virtual connection, as described in “Persistent Memory Data
Movements”

• Single-use memory: a region of memory that is written once, then released, as
described in “Single-use Memory Data Movements”

Table 1-8 summarizes the five data movement sequences and indicates where each
sequence is illustrated:

Note: Within a data movement sequence, the initiator is the endpoint that sends the first
control operation for the sequence (for example, Request_to_Send or
Request_Memory_Region), regardless of whether it operates as the data transmitter
(source) or receiver (destination).

Table 1-9 summarizes the data size ranges for each type of data movement. As illustrated
in Figure 1-19, the data is first chunked into one or more Blocks; the maximum size for a
Block is negotiated during the memory allocation handshake. Each Block is divided into
one or more scheduled transfer units (STU; the data for one data operation); the
maximum size for the STU was negotiated during the connection setup sequence. Any
ST data movement that is larger than the VC’s maximum STU size requires multiple data
operations. Each STU (that is, each data operation) is transmitted as one GSN Message.

Table 1-8 Data Movement Sequences

Persistent Memory Single-use Memory

Initiator wants to be source Figure 1-20 Figure 1-24

Initiator wants to be destination Figure 1-21 and Figure 1-22 Figure 1-25

36 007-3719-003

1: Overview of IRIX GSN

The flow-control mechanism for user data (described in “ST Flow Control Sequences”)
operates at the Block level.

Table 1-9 Data Sizes Possible for Data Movements

Data Movement Type

Minimum Length
Data Movement
Sequence

Maximum Length for Data
Movement Sequence

Single-use Memory: Write 1 byte 264 minus 1 byte or
unlimited

Single-use Memory: Read 1 byte 264 minus 1 byte or
unlimited

Persistent Memory: each Put 1 byte 248 minus 1 byte or VC’s
max_STU (one Block)

Persistent Memory: each Get 1 byte 216 minus 1 byte or VC’s
max_STU (one Block)

Persistent Memory: each FetchOp 8 bytes 8 bytes (one Block)

What is ST?

007-3719-003 37

Figure 1-19 Data Handling for ST Data Movements

GSN Header
micropacket

GSN Data
micropacket

GSN Message

Chunk of data
(one Block)

Another chunk

GSN Data
micropacket
T

A set of user data destined for one endpoint (ie, ST Port)

This is only Block
(one STU)
for PUT, GET,
and FETCHOP
operations.

GSN protocol bytes

GSN protocol
bytes

ST protocol
bytes

Upper layer
bytes

can be smaller
than max_Block

can be smaller
than max_Block

Another chunk

Data for ST Movement

ST Blocks
All blocks are same size except,
possibly, first and last. The
max_Block size is negotiated by
RTS/CTS handshake.
Absolute block size in bytes:
 256 < max_Block < 2
Within each Block, data is passed
to recipient in correct order.
When function is negotiated, Blocks
can be out of order.

One ST Data Operation = one STU

Each STU = 1 GSN Message

Credits are not issued for ST header
bytes because Header bytes are not
placed in the memory allocated
at the destination endpoint.

ST STUs
Max_STU size is established
during VC setup sequence (RC/CA).
Negotiated maximum STU size is:
 < recipient endpoint's Bufsize, and
 < maximum allowed on the ST
 data channel (see Table 1-3).

ST STU

ST Header
(40 bytes)

ST Payload
(< size of max_STU)

data datadata for STU

Final chunk

48

38 007-3719-003

1: Overview of IRIX GSN

Persistent Memory Data Movements

The persistent memory sequences consist of a few control operations (the
memory-allocation handshake) followed by any number of Put, Get, and/or FetchOp
sequences. The persistent memory handshake allocates one or more memory regions at
the responding endpoint. These regions are then used multiple times; each buffer within
each region is used over and over during the life of the virtual connection. When
properly used, this method provides permanent, low-latency delivery, in which an
unlimited number of transfers can be performed with no intervening overhead. There is
an important caveat: the low latency on this type of data transfer depends on the speed
at which the memory can be made available for the next use. This type of transfer works
best for small (or fixed-size) data and for applications for which the transmission rate is
well understood, so that the memory can be sized in a manner that allows it to be
recycled within an acceptable period of time. It is the responsibility of the upper-layer
applications to manage flow control and prevent precipitous overwriting of the memory
region.

Once a persistent memory region has been allocated at the responder endpoint, the
initiator can move data in or out of it in three manners:

• Put sequence (illustrated in Figure 1-20)
One data operation (STU) that writes any portion of or the entire persistent memory
region at the responder. This sequence can be repeated over and over with no
intervening operations.

• Get sequence (illustrated in Figure 1-21)
A GET control operation to expose memory at the initiator for receiving the
requested data, followed by any number of data operations. Each data operation
moves a portion or all of the data from the responder’s allocated memory into the
initiator’s memory. Multiple GETs can be outstanding (occurring) simultaneously to
different or shared portions of the persistent memory region.

• FetchOp sequence (illustrated in Figure 1-22 and Figure 1-23)
A FETCHOP control operation to expose memory at the initiator for receiving the
retrieved data and to specify the desired function (increment, decrement, or clear).
Then, a single data operation (one STU) that moves one 64-bit Block of data from
the responder’s memory into the initiator’s memory. When the data arrives
successfully at the initiator, the initiator issues a completion control message, at
which point the responder performs the specified function on its own copy of the
data. If the completion does not arrive within a timeout period, the responder
retransmits the data. Note that, unlike PUT and GET, this data movement sequence
is atomic.

What is ST?

007-3719-003 39

A persistent memory region is terminated (released) with an End operation, as described
in “ST Termination Sequence for a Data Movement.”

Figure 1-20 ST Data Movement Sequence: Persistent Memory—Put

ST Initiator Endpoint ST Responder Endpoint

Pauses or rejects request.

Exposes size and location of responder's

persistent memory region.

One STU = Block

Allocates memory for reception.

ST Connection Setup Sequence
has been completed.

Request_Answer or

Memory_Region_Available

Request_Memory_Region

Data

waits for permission.

Verifies existence/validity of
connection.

Caches memory information.

Verifies existence/validity of
connection. Stores data in
persistent memory region.

Verifies existence/validity of
connection.

Either side can initiate the handshake.

Initiator can do Put, Get, FetchOp,
and/or End Sequences.

Tuplet for Verifying
Incoming Operations
other_Port (R_Port)
my_Port (I_Port)
my_Key (I_Key)

Tuplet for Verifying
Incoming Operations
other_Port (I_Port)
my_Port (R_Port)
my_Key (R_Key)

M
em

or
y

A
llo

ca
tio

n
H

an
ds

ha
ke

40 007-3719-003

1: Overview of IRIX GSN

Figure 1-21 ST Data Movement Sequence: Persistent Memory—Get

ST Initiator Endpoint ST Responder Endpoint

Pauses or rejects request.

Pauses or rejects request.

Exposes size and location of responder's

persistent memory region.

One STU = one Block

Exposes initiator's memory for
receiving data. Specifies address
in responder's persistent memory
from which to retrieve data.

Allocates memory for reception.

Transmits from persistent
memory region.

ST Connection Setup Sequence
has been completed.

Request_Answer or

Request_Answer or

Data

Memory_Region_Available

Request_Memory_Region

Get

Verifies existence/validity of
connection.

Caches memory information.

Verifies existence/validity of
connection.

Verifies existence/validity of
connection. Stores data in
exposed memory.

Verifies existence/validity of
connection.

Either side can initiate the handshake.

Initiator can do Put, Get, FetchOp,
and/or End Sequences.

Tuplet for Verifying
Incoming Operations
other_Port (R_Port)
my_Port (I_Port)
my_Key (I_Key)

Tuplet for Verifying
Incoming Operations
other_Port (I_Port)
my_Port (R_Port)
my_Key (R_Key)

M
em

or
y

A
llo

ca
tio

n
H

an
ds

ha
ke

What is ST?

007-3719-003 41

Figure 1-22 ST Data Movement Sequence: Persistent Memory—FetchOp

ST Initiator Endpoint ST Responder Endpoint

Pauses or rejects request.

Pauses or rejects request.

Exposes size and location of responder's

persistent memory region.

64-bits = one STU = one Block

Exposes initiator's memory for
receiving data. Specifies address
in responder's persistent memory
from which to retrieve data.

Allocates memory for reception.

Transmits from persistent
memory region.

ST Connection Setup Sequence
has been completed.

Request_Answer or

Request_Answer or

Data

Memory_Region_Available

Request_Memory_Region

FetchOp

FetchOp_Complete

Verifies existence/validity of
connection.

Caches memory information.

Verifies existence/validity of
connection.

Verifies existence/validity of
connection. Performs function

on data. Stores data into
exposed memory.

Verifies existence/validity of
connection.

Either side can initiate the handshake.

Initiator can do Put, Get, FetchOp,
and/or End Sequences.

Tuplet for Verifying
Incoming Operations
other_Port (R_Port)
my_Port (I_Port)
my_Key (I_Key)

Tuplet for Verifying
Incoming Operations
other_Port (I_Port)
my_Port (R_Port)
my_Key (R_Key)

M
em

or
y

A
llo

ca
tio

n
H

an
ds

ha
ke

42 007-3719-003

1: Overview of IRIX GSN

Figure 1-23 Example of FetchOp

Single-use Memory Data Movements

The single-use memory movement sequence consists of a few control operations (the
memory-allocation handshake) that allocate memory at the destination endpoint,
followed by one or more data operations for a specified amount of data. The data transfer
uses the destination’s allocated memory once; each buffer is used only once during the
life of the transfer. This method allows high-bandwidth delivery after an initial delay for
the allocation of resources: the transfer provides for a limited number of back-to-back
writes or reads with no intervening overhead. This method is efficient for large,
variable-length data.

ST Initiator Endpoint ST Responder Endpoint

function = fetch and increment

Waits for timeout period.
Retries if completion does
not arrive.

Performs function.

Data

Data

FetchOp

5

null

FetchOp_Complete

Persistent Memory at responder
has been exposed.

Value in
initiator's memory.

Value in
responder's memory.

5

6

5

5

5

What is ST?

007-3719-003 43

A data transfer can be aborted (terminated before all the data has been transferred) with
an End operation, as described in “ST Termination Sequence for a Data Movement.”

Figure 1-24 illustrates the data transfer sequence used when the initiator is the data
source. Figure 1-25 illustrates the sequence used when the initiator is the data
destination. Each illustration includes the memory allocation handshake.

Figure 1-24 ST Data Movement Sequence: Single-use Memory with Initiator as Source

ST Initiator Endpoint ST Responder Endpoint

Echoes request.

Sends I_Port, R_Port, and R_Key
to identify connection.

Sends R_Port, I_Port, and I_Key

to identify connection; Gives

information for size and memory

region to use for the data

Sends I_Port, R_Port, and R_Key
to identify connection; uses responder's
memory address (R_Bufx, R_Offset)
to identify memory.

Allocates memory for reception.

ST Connection Setup Sequence
has been completed.

Request_Answer

Data

<more Datas>

Clear_To_Send

Request_To_Send

Verifies existence/validity of
connection.

Waits for permission.

<more Clear_To_Sends>

Verifies existence/validity of
connection.

Either side can initiate the handshake.

Tuplet for Verifying
Incoming Operations
other_Port (R_Port)
my_Port (I_Port)
my_Key (I_Key)

Tuplet for Verifying
Incoming Operations
other_Port (I_Port)
my_Port (R_Port)
my_Key (R_Key)

M
em

or
y

A
llo

ca
tio

n
H

an
ds

ha
ke

44 007-3719-003

1: Overview of IRIX GSN

Figure 1-25 ST Data Movement Sequence: Single-use Memory with Initiator as Destination

ST Initiator Endpoint ST Responder Endpoint

Echoes request.

Uses I_Port, R_Port, and R_Key
to identify connection.

Uses R_Port, I_Port, and I_Key

to identify connection;

Requests region of memory.

Uses R_Port, I_Port, and I_Key

to identify connection; uses responder's

memory address (R_Bufx, R_Offset)

to identify memory.

Sends I_Port, R_Port, and R_Key
to identify connection.Gives information for size and memory
region to use for the data.

ST Connection Setup Sequence
has been completed.

Request_Answer

Data

Clear_To_Send

<more Clear_To_Sends>

Request_To_Send

Request_To_Receive

Verifies existence/validity of
connection. Allocates

memory for reception.

Waits for permission.

Allocates memory for reception.

Waits for permission.

<more Datas>

Verifies existence/validity of
connection.

Verifies existence/validity of
connection.

Either side can initiate the handshake.

Tuplet for Verifying
Incoming Operations
other_Port (R_Port)
my_Port (I_Port)
my_Key (I_Key)

Tuplet for Verifying
Incoming Operations
other_Port (I_Port)
my_Port (R_Port)
my_Key (R_Key)

M
em

or
y

A
llo

ca
tio

n
H

an
ds

ha
ke

What is ST?

007-3719-003 45

ST Flow Control Sequences

Flow control operates differently for data transfers and ST operations. Each is explained
below.

Data Transfer Flow Control

ST endpoints implement strict flow control for all data transfers done to single-use
memory. For this purpose they use the Request_To_Send (RTS) and Clear_To_Send (CTS)
control operations. There can be multiple CTSs generated in response to one RTS, as
explained below and summarized in Table 1-10.

The ST flow control sequence regulates both the number of data transfer events that
occur between the two endpoints and the size of these events. Before any data is
transferred, the data transmitter (source) generates an RTS, in which it specifies the
maximum size block of data and the number of blocks that it wants to send right now.
The specified (requested) size and number do not oblige the receiver to give permission
for that size or number; these are only suggestions that, if followed, could make the
transfer more efficient.

The data receiver (destination) generates one or more CTSs in response to each RTS. In
each CTS, the receiver gives the source permission to transmit one block of data; the
number of CTSs issued by the receiver cannot exceed the number of “requested blocks”
specified in the RTS. In the first CTS for the data movement, the receiver indicates the
block size that it is willing to receive during this data movement; the block size must be
no larger than the maximum block size specified in the associated RTS. Before issuing
each CTS, the receiver must allocate the amount of memory specified by the block size in
that CTS. See Figure 1-24 and Figure 1-25 for illustrations of the flow control sequence.

Note: ST does not use flow control for persistent memory data movements: Put, Get, and
FetchOp.

46 007-3719-003

1: Overview of IRIX GSN

Operation Flow Control

Flow control for the ST Headers of ST operations is managed with a mechanism called
slot allocation. Each slot represents memory that has been allocated at an endpoint to
hold one incoming ST Header while it awaits processing. All incoming ST Headers use
one slot, except Request_Connection operations and Data operations that have the Silent
flag set.

Note: Data operations with the Silent flag set, do not occupy a slot because the ST
Header for these operations is not passed to the receiving endpoint (and hence is not
stored). The Request_Connection operation does not occupy a slot because the VC does
not yet exist when this operation arrives. An implementation may have a queue of slots

Table 1-10 ST Flow Control Sequence

Transfer Event
Parameter Source Specifies Destination Specifies

Number of
events

In RTS: number of blocks the source
would like to send at this time.

Limitations: none.

In CTS: with each CTS, the destination
gives the source permission to transmit
1 block of data.

Limitations: Destination must not issue
more CTSs than source has requested
in its RTS. Destination must allocate
memory for each CTS it generates.

Size of each
event

In RTS: requested maximum block size
for transfer events associated with this
RTS.

Limitations: none.

Note: When the source does the actual
data transfer, the size is not controlled
by the RTS maximum block size; it is
limited by the block size specified in
the CTS.

In first CTS: block size that will be used
for these transfer events.

Limitations: Block size must not exceed
maximum size specified in the
associated RTS.

What is ST?

007-3719-003 47

associated with Port 0 (the port to which the Request_Connection arrives), but the queue
is not required because there are no consequences caused by the endpoint dropping the
request other than the initiator trying again, until it succeeds.

During the setup sequence for a VC, each endpoint communicates to the other endpoint
the number of slots it has allocated for that VC. Updates for slot availability are
communicated during normal operation with Request_State_Response operations. (See
“ST Status Sequences” for details.) Each source keeps track of the number of outstanding
operations (that is, slot-consuming ST Headers that it sends) and makes sure that it does
not send more operations than the destination can handle.

ST Status Sequences

During normal operation, the endpoints for a VC can use either of two status sequences
(illustrated in Figure 1-26 and Figure 1-27) to obtain information from the other endpoint
about its state and status.

Figure 1-26 Status Sequence Using Request_State

ST Initiator Endpoint ST Responder Endpoint

Request_State_Response

Request_State

48 007-3719-003

1: Overview of IRIX GSN

Figure 1-27 Status Sequence Using S Flag in ST Header

The information that can be exchanged with this mechanism includes:

• number of currently available slots for this VC

• highest Block received for a data movement

• reception status for a specific Block

ST Termination Sequence for a Data Movement

The following data movements do not have a natural ending:

• a persistent memory region

• a data transfer of unlimited size

To terminate either of the above data movements and release the associated resources,
either endpoint initiates the termination sequence illustrated in Figure 1-28. In addition,
this sequence can be used to abort a data transfer of specific length before all the data has
been transferred.

ST Initiator Endpoint ST Responder Endpoint

Request_State_Response

Data S flag = 1

What is ST?

007-3719-003 49

Figure 1-28 Termination Sequence

ST Initiator Endpoint ST Responder Endpoint

End_Ack

End

There is currently an active
data movement. Either side
can initiate the termination.

50 007-3719-003

1: Overview of IRIX GSN

Example of ST Virtual Connections and GSN Channels

GSN virtual channels are designed to carry specific sizes of data (see Table 1-3). The
various ST data channels (DCs) that exist within ST virtual connections (VCs) can take
advantage of these sized GSN channels. The IRIX ST-over-GSN stack routes any ST
operation with DC=0 to GSN channel 0, DC=1 to GSN channel 1, and so on. For example,
each ST application (for example, ST Port), is required to have one data channel (DC_0)
for its control operations and one or more other channels (DCs 1, 2, and/or 3) for its data
operations. Note that each GSN channel is shared by many VCs; for example, DC_0 for
all ST VCs share GSN channel 0. Figure 1-29 shows an example of ST VCs using their data
channels (DC values) to effectively make use of the four GSN channels.

Figure 1-29 Example of ST Virtual Connections Using Multiple GSN Virtual Channels

Virtual Connection #2

Virtual Connection #1

Operating System

GSN Channel #0

GSN Channel #1

GSN Channel #2

GSN Channel #3

ST Port 0
(well-known)

ST DC = ST data channel

control operations

control operations

large data operations

small data operations

ST DC=0

ST DC=3

ST DC=1

ST DC=0

ST DC=1small data operations
ST Port 12

ST Port 128

(creates new VCs)

co
nn

ec
tio

n
m

an
ag

em
en

t
op

er
at

io
ns

GSN Fabrics and Logical Networks

007-3719-003 51

GSN Fabrics and Logical Networks

This section explains how logical networks are created on GSN and HIPPI fabrics. The
discussion assumes that you have a thorough understanding of the concept of a logical
network, the format of INET addresses, and the use of subnet masks to divide a single INET
network address space into smaller networks, called Logical IP Subnets (LISs).

Note: For complete details on INET address subnetting and the netmask, see the
comments in the /etc/config/ifconfig.options file, the man page for inet(7F),
the man page for ifconfig(1M), and the online IRIS InSight document IRIX
Admin:Networking and Mail.

There are three basic concepts that underlie the discussion in this section. Each is
discussed in more detail in subsequent sections:

Basic Concept #1
The hosts connected to a GSN or HIPPI fabric do not have to function as
one logical network whose addresses all come from one address space.

Basic Concept #2
A LIS (one address space) can include hosts from physically different
GSN and/or HIPPI fabrics, as long as there is a bridging switch between
the fabrics.

Basic Concept #3
Within a GSN or HIPPI fabric, direct communication (without use of an
intermediate router) between INET hosts can occur only when (1) the
network interfaces involved in the exchange have addresses that come
from the same logical address space (for example, they are members of
the same LIS), and (2) both hosts have access to an address resolution
mechanism.

Basic Concept #1

The hosts connected to a GSN or HIPPI fabric do not have to function as one network
address space. The hosts can be organized into smaller groupings (for example, based on
function, project, or hardware manufacturer). Each grouping of hosts is a separate logical
network or a LIS. Each LIS is assigned a sequence of network-layer addresses (that is, a
unique address space). Figure 1-31 illustrates this concept.

52 007-3719-003

1: Overview of IRIX GSN

A group’s address space can be the complete range of addresses for an INET network
address (192.0.2.0 to 192.0.2.255), or it can be a portion of the range (for example, subnet
192.0.2.0 to 192.0.2.31). Membership in a group is determined for each GSN network
interface (for example, each gsn#) by the INET address associated with the interface (in
the /etc/config/netif.options file) and the netmask value (in the
ifconfig.options or the ifconfig-#.options file). The netmask value defines
the size of the address space for each group. For example, a netmask value of 0xFFFFFF00
creates an address range that provides 256 individual host addresses. However, netmask
value 0xFFFFFFE0 (shown in Figure 1-30) creates eight LISs in which each LIS can have
up to 32 “host” addresses.

Basic Concept #2

A logical network or a LIS can include hosts from physically different GSN and HIPPI
fabrics, as long as there is a “bridging” communication path between the fabrics. Hosts
that are members of the same INET address space (thus benefitting from the services
provided by broadcast and routing) do not have to be physically attached to the same
physical medium (fabric). Figure 1-32 illustrates this concept.

Basic Concept #3

Direct communication between INET hosts (without use of an intermediate router) can
occur only when the network interfaces involved in the exchange are members of the
same logical address space (network or LIS). Contact with members outside one’s own
LIS requires use of an INET address router.

This rule is true even when a shared hardware connection (for example, a switch) exists
between the two hosts that belong to different LISs. For example, for two hosts attached
to the same switch, a message from host A in LIS 1, if sent to host B in LIS 2, must go
through host C, an INET router. The benefit is that, no matter where a GSN network
adapter is physically located or relocated, it continues to function as a member of the
same LIS. Notice that no address or LIS-membership change is required when an
endpoint is physically relocated.

The following facts explain why this concept exists:

• GSN switches do not resolve network-layer (INET) addresses.

• The local INET routing software (for example, IRIX’ routed) does not maintain
complete paths to destinations that are not members of the same LIS.

GSN Fabrics and Logical Networks

007-3719-003 53

• Before transmission of an IP packet, a GSN hardware address (ULA) must be
discovered for the destination. This step requires the services of a HARP server.

• Each HARP server maintains mappings only for its own LIS. (However, in the IRIX
implementation, a single HARP daemon can act as a HARP server for multiple LISs
at the same time.)

Consequences and Examples

The basic concepts summarized in “GSN Fabrics and Logical Networks” on page 51,
make the examples described in this section possible.

Figure 1-31 and Figure 1-32 show examples of subnetting within two different GSN
fabric configurations. The LIS addressing used in these examples (summarized in
Figure 1-30) is identical. The examples use network INET address 192.0.2, so that each
host address is 192.0.2.xxx. Hosts in LIS_1 use addresses between 192.0.2.0 and
192.0.2.31; those in LIS_2 use addresses between 192.0.2.32 and 192.0.2.63, and so on.

Figure 1-30 Subnet Mask for Examples

If you want a single-fabric site to have multiple address spaces, you can use multiple
INET network addresses, or you can use a netmask to divide a single INET address space
into smaller chunks (referred to as LISs). Likewise, in a multiple-fabric site, you can
group all the hosts into one logical address space, or into multiple LISs regardless of each
host’s location.

32-bit INET address: nnnnnnnn_nnnnnnnn_nnnnnnnn_hhhhhhhh (binary)

32-bit INET address: nnnnnnnn_nnnnnnnn_nnnnnnnn_sss hhhhh
subnetted:

subnet mask: 11111111_11111111_11111111_11100000 (binary)

LIS addresses
(showing only
3 subnet bits):

Host addresses
(5 host bits):

sss = 000 for LIS 1
sss = 001 for LIS 2
sss = 010 for LIS 3
sss = 011 for LIS 4
and so on

LIS 1: 192.0.2.0 to 192.0.2.31

LIS 2: 192.0.2.32 to 192.0.2.63

FF:FF:FF:E0 (hexadecimal)

24 network or netid bits host or hostid bits

additional bits to
create subnet/LIS

54 007-3719-003

1: Overview of IRIX GSN

Figure 1-31 illustrates a GSN fabric that has one switch to which all the network
interfaces are attached (that is, all endpoints in this fabric have a direct physical link to
one another). The example shows two LISs. Communication from A in LIS_1 to C in
LIS_2 passes through the router (network interfaces J and H). Messages do not go directly
from endpoint A to C, because of the concept explained in “Basic Concept #3”.

GSN Fabrics and Logical Networks

007-3719-003 55

Figure 1-31 Single-switch GSN Fabric with LISs

192.0.2.2

endpoint A

192.0.2.60

gsn0

endpoint C

192.0.2.34

endpoint G

LIS 2

LIS 2

LIS 1

LIS 1

Switch_A

router between
LIS 1 and LIS 2

19
2.

0.
2.

32
gs

n0
19

2.
0.

2.
1

gs
n1

en
dp

oi
nt

 H

en
dp

oi
nt

 J

192.0.2.5

endpoint K

56 007-3719-003

1: Overview of IRIX GSN

Figure 1-32 illustrates a different configuration for the same address space and network
interfaces (“hosts”) used in Figure 1-31. This configuration is a two-switch fabric. In this
example, A, B, E, J, K, and L belong to LIS_1, while C, D, F, G, and H belong to LIS_2. The
system with network interfaces H and J continues to perform as the router between the
two LISs. Just as in the first example (Figure 1-31), communication directed to C in LIS_2
from A in LIS_1, goes first to the router (J/H), even though both A and C are physically
attached to the same switch. But, most importantly, notice that the router has been moved
to a different switch, and yet, the INET addressing is identical to that used in the first
configuration. The hardware changes do not affect the addressing. Also note that a router
for an LIS does not need to share a switch with the members of its LISs, as illustrated by
router J in relation to hosts A and B and router H in relation to hosts C and D.

GSN Fabrics and Logical Networks

007-3719-003 57

Figure 1-32 Multiple-switch GSN Fabric with LISs

gs
no

19
2.

0.
2.

32

gs
n1

19
2.

0.
2.

1

en
dp

oi
nt

 H

en
dp

oi
nt

 J

Bridging Switch_B

Bridging Switch_A

endpoint F

192.0.2.33

192.0.2.60

endpoint C 192.0.2.61

endpoint D

router between
LIS 1 and LIS 2

192.0.2.4

endpoint E

192.0.2.2

endpoint A

192.0.2.3

endpoint B

LIS 2

LIS 2

LIS 1

LIS 1

endpoint G

192.0.2.34

192.0.2.6

endpoint K

192.0.2.5

endpoint L

58 007-3719-003

1: Overview of IRIX GSN

Figure 1-33 LIS Membership That Spans Fabrics

gs
no

19
2.

0.
2.

32

gs
n1

19
2.

0.
2.

1

en
dp

oi
nt

 H

en
dp

oi
nt

 Jendpoint F

192.0.2.33

192.0.2.60

endpoint C 192.0.2.61

endpoint D

router between
LIS 1 and LIS 2

192.0.2.4

endpoint E

192.0.2.2

endpoint A

192.0.2.3

endpoint B

LIS 2

LIS 2

LIS 1

HIPPI-800 Fabric

GSN Fabric

LIS 1

endpoint G

192.0.2.34

192.0.2.6

endpoint K

192.0.2.5

endpoint L

Bridging HIPPI-800/GSN Switch

Bridging GSN Switch

Address Resolution for GSN

007-3719-003 59

Address Resolution for GSN

This section describes how network (OSI layer three) addresses are mapped (resolved) to
physical (OSI layer-one) addresses in a GSN fabric. This section assumes that you are
familiar with standard Internet ARP (RFC 826, Ethernet Address Resolution Protocol) and
Inverse ARP (RFC 2390, Inverse Address Resolution Protocol) protocols.

When a network-layer address is locally associated with (configured to) an IRIX GSN or
IRIS HIPPI subsystem, address mapping is needed between network-layer addresses
and physical-layer addresses so that communication can occur between the local
network-layer entity and remote network-layer entities. The GSN/HIPPI physical
address is known as the Universal LAN MAC Address or ULA. For IRIX, the default
network protocol stack is the Internet Protocol and the network address is the INET
address.3 The address resolution scheme for IP/ST-over-GSN is defined by RFC 2835, IP
and ARP over HIPPI-6400, as described in the section “HARP Address Resolution.”

Note: Each INET address (AF_INET) can support multiple protocols. For example, in
IRIX 6.5, INET addresses support both the IP suite of protocols (PF_INET) and the ST
protocol (PF_ST). For further details, see the man page for inet(7).

To transmit data to another network-layer entity within the GSN fabric, each
network-layer stack in the GSN fabric needs two addresses for each destination:

• The network-layer address for the destination host. In IRIX, this information is
supplied by the static “hosts” database or the dynamic NIS server.

• The physical-layer address for the destination endpoint. This information is
supplied by the static HARP table or the dynamic HARP server. See “HARP
Address Resolution” on page 61 for details.

3 For IRIX GSN, the Scheduled Transfer Protocol is an additional default stack; ST shares the INET
address used by IP.

60 007-3719-003

1: Overview of IRIX GSN

HARP and Broadcast Support

A GSN fabric is said to support broadcasting when all of the switches of that fabric
provide broadcasting. The behavior for HARP clients and HARP servers is different
depending on whether the underlying GSN/HIPPI fabric supports broadcasting.

No Broadcast Support

When the fabric does not support broadcasting, at least one host behaves as a HARP
server for each defined LIS. All other hosts on the LIS are HARP clients.

HARP servers act as centralized repositories for IP-to-ULA mappings. As each host on
an LIS initializes its GSN interface, it registers its IP-to-ULA mapping with each of the
LIS’s servers. The servers save this mapping information internally. When a host needs
to communicate with another host via GSN, it queries the HARP server for the
destination host’s IP-to-ULA mapping. A HARP client will typically save mapping
information it has received from the HARP server in its own local cache for faster
subsequent mappings.

Address mappings are not permanent, so HARP clients must reregister with all HARP
servers periodically. If HARP clients wish to locally maintain a cache of address
mappings for other hosts, they must periodically validate these mappings with a HARP
server as well.

Broadcast Support

When broadcast is supported by all switches in fabric, there are no HARP servers.
HARP’s behavior is almost identical to standard ARP: when a host needs to perform an
IP-to-ULA mapping, it broadcasts an ARP request using the broadcast ULA
(FF:FF:FF:FF:FF:FF). The host for which the mapping is requested can identify its own IP
address in the request packet, and sends a reply to the requestor with its ULA. All other
hosts ignore the request.

Address Resolution for GSN

007-3719-003 61

HARP Address Resolution

The address resolution protocol for HIPPI networks is specified in the HARP RFCs. The
protocol works with fabrics that provide broadcasting and with those that do not. One of
the first tasks of each HARP client is to determine if its underlying fabric supports
broadcasting, as described in “Determining Fabric Support for Broadcast” on page 61.

HARP provides a dynamic, client/server-based address resolution service. The protocol
makes it possible for each IP/ST-over-HIPPI endpoint (client) within a network to
register or communicate its own INET address and ULA, and to discover the ULAs for
hosts with whom it wants to communicate. The HARP server maintains a kernel-resident
lookup table that maps INET addresses to ULAs. HARP occurs in two phases: a
registration phase (summarized in the section “HARP Registration Phase”) and a normal
operation phase (summarized in “HARP Normal Operation Phase”).

When an LIS includes one or more endpoints that do not support dynamic HARP, static
mappings for those endpoints must be added to the address resolution table at the HARP
server (as described in the section “HARP Normal Operation Phase” on page 62).

Determining Fabric Support for Broadcast

A host determines whether it is on a broadcast- or nonbroadcast-capable LIS during its
initialization phase by sending a request for its own address to the broadcast ULA
(FF:FF:FF:FF:FF:FF). If the underlying fabric is a broadcast medium, the sending host will
receive a copy of this packet, as will every other host on the LIS. If it does not receive this
packet, the host is not on a broadcast medium. (To ensure that a single lost packet does
not result in the host being brought up in the wrong mode, a host may send multiple
self-identification packets during the initialization phase.)

If a host discovers that it is on a broadcast fabric, the HARP registration phase described
in the following section is skipped (because there are no HARP servers with which to
register), and HARP immediately enters the operational phase, described in “HARP
Normal Operation Phase” on page 62.

HARP Registration Phase

During initialization of each GSN device, a HARP client on a non-broadcast medium will
register its address pair (INET address and ULA) with each HARP server on its LIS. This
is done by transmitting an InARP request to each HARP server. The InARP request
contains the IP-to-ULA mapping of the client, and it requests the IP-to-ULA mapping of

62 007-3719-003

1: Overview of IRIX GSN

the server in reply. (Since InARP requests are sent to ULAs, each client must know the
ULAs for all servers on the LIS. For IRIX, this information is contained in the
configuration file /etc/config/harpd.options. For details, see “Edit
harpd.options File” on page 81.)

Because HARP clients can be brought up before HARP servers, a client might not receive
replies to all (or any) of the InARP requests that it transmits. For each nonresponding
HARP server, a HARP client will periodically retransmit the InARP request.

When at least one HARP server has responded with an InARP reply, the HARP client
gains the ability to resolve unknown IP-to-ULA mappings on the LIS; the client then
transitions from the registration phase to the operational phase.

Figure 1-34 HARP Registration

HARP Normal Operation Phase

The client enters HARP’s operational phase under one of the following circumstances:

• When a host determines that its GSN is connected to a broadcast-capable medium

• When a host on nonbroadcast-capable medium has successfully registered with a
HARP server

In the operational phase, a host can resolve IP-to-ULA mappings that it does not have in
its local HARP table by issuing ARP requests. On broadcast-capable media, these

HARP Client
on GSN Network

HARP Server
on Same GSN Network

Provides server's IP.

Provides client's ULA;provides client's IP;includes server's ULAasks for server's IP.

InARP_Reply

InARP_Request

If no reply occurs within timeout,
client waits and tries again later.

Adds time-stamped entry to table.

Adds time-stamped entry to table.

Address Resolution for GSN

007-3719-003 63

requests are transmitted to the broadcast ULA (FF:FF:FF:FF:FF:FF:); on
nonbroadcast-capable media, these reqeusts are transmitted to a HARP server.

When a host receives an ARP reply, it places the reply’s IP-to-ULA mapping into its local
mapping table for subsequent mappings of this address.

While in the operational phase, all HARP clients on nonbroadcast media must
periodically reregister their own IP-to-ULA mappings. This reregistration is
accomplished by sending either an ARP request or an InARP request to each HARP
server for the LIS. Since, according to the HARP protocol, servers "forget" about clients
they have not heard from in 20 minutes, this reregistration must occur in shorter
intervals. In IRIX, by default this reregistration occurs every 15 minutes.

If a HARP server does not respond to the reregistration request, the HARP client must
assume that the server is no longer functioning and cannot be used as a target for
mapping requests. If no server is responding to a HARP client’s reregistration requests,
the client must fall back to the HARP registration phase.

HARP clients must also revalidate or remove from their local mapping table all entries
that are more than 15 minutes old. Clients revalidate by sending ARP requests to the
server or (on broadcast media) directly to the hosts whose mapping entry is to expire. An
entry that has been revalidated is valid for another 15 minutes. If no reply (or a NAK
reply) is received for an ARP request, the address for which the request was sent must be
considered unmappable and is removed from the local mapping table.

Static Address Resolution

When a host within a HIPPI/GSN LIS does not support dynamic HARP, the system
administrator needs to add a static entry for that host to each HARP client (for broadcast
capable networks) or to each HARP server’s database (for nonbroadcast-capable
networks). Static entry definitions can be placed into the HARP daemon configuration
file (/etc/config/harpd.options), or they can be added manually to the mapping
database by using the gsnarp utility. Each entry in the database must map a ULA (IEEE
or MAC address) to an INET address.

64 007-3719-003

1: Overview of IRIX GSN

Guidelines for Selecting a HARP Server

These guidelines explain how to select a system to provide HARP services (that is, be the
HARP server) when the HIPPI fabric does not support broadcasting. It is not necessary
to identify a system for this purpose when the fabric supports broadcasting.

From among the members of the LIS, at least one system must be chosen to be a HARP
server. For redundancy purposes, at least two systems should be selected for this
purpose. (When no HARP servers are available on an LIS, no HARP address resolution
can occur, so the only members of the LIS who will be able to intercommunicate are hosts
whose HARP entries are statically defined.

To ensure that every HARP server’s database contains a complete mapping for all
registered hosts, all hosts in an LIS must identify the same systems as HARP servers.

How Address Resolution Works for ST-over-GSN

The IRIX GSN implementation of the ST protocol uses the same address resolution
scheme as is used for IP-over-GSN. See “Address Resolution for GSN” for the details.

Note: Each gsn# network interface services two protocols: ST and IP. The INET address
assigned to an instance of gsn# is shared by the ST-over-GSN and IP-over-GSN stacks.
Some of the upper-layer address processing (for example, routing) that is performed on
the address applies to both IP and ST traffic.

IRIX HARP Table

The HARP table is a list of address mappings. Each entry (mapping) consists of an IP
address and a GSN ULA. Each entry is either a dynamic entry or a static entry, as
explained below.

Static Entries

These entries are loaded when the harpd daemon is initialized via the harpd
configuration file (by default, /etc/config/harpd.options; for details, see “Edit

Assignment of Unit Numbers and Network Interfaces to GSN Hardware

007-3719-003 65

harpd.options File” on page 81). Alternatively, the administrator can add them
individually via the gsnarp -s command. The administrator can remove static entries
via gsnarp -d.

Dynamic Entries

IRIX HARP maintains the dynamic entries in its HARP table in conformance with the
HARP standard. It adds entries as it learns about them, refreshes them as they are
reregistered by their owners (the clients), and ages and deletes entries as they go stale.

Assignment of Unit Numbers and Network Interfaces to GSN Hardware

The description in this section applies to systems running IRIX 6.5.9f (or later) and to
network interfaces for the Internet Protocol suite (INET address over GSN subsystem)
and Scheduled Transfer (ST-over-GSN) protocol.

Assignment of Unit Numbers to Hardware

With each restart (for example, a power on, a reboot or init 0 command), the startup
routine probes for hardware on all the modules connected into the CrayLink interconnect
fabric. All the slots and links in all the modules within the fabric are probed. The routine
then creates a hierarchical filesystem, called the hardware graph, that lists all the located
hardware. The top of the hardware graph is visible at /hw. For complete details, see the
man page for hwgraph(4). After the hardware graph is completed, the ioconfig
program assigns a unit number to each located device that needs a number. Other
programs (for example, hinv and each device’s driver) read this assigned number and
use it.

The XIO slots are searched (probed for a device) in the order shown below; this order is
not the same sequence as the XIO slot numbering. For example, the device in XIO slot 4
is located before the device in slot 2 and, because of this, may have a lower unit number
than the device in slot 2. After the first power on, you can edit the
/etc/ioconfig.conf file to assign unit numbers that are convenient for you. Your
changes are used during each subsequent power on. See the ioconfig(1M) man page
for further details.

66 007-3719-003

1: Overview of IRIX GSN

1. slot 8

2. slot 11

3. slot 10

4. slot 7

5. slot 12

6. slot 9

7. slot 4

8. slot 2

9. slot 6

10. slot 5

11. slot 3

On an initial system startup, ioconfig groups devices into classes/types and assigns
hardware unit numbers sequentially within each class. It records these assignments in
the /etc/ioconfig.conf file; for example, if two SGI GSN products are found, they
are numbered unit 0 (gsn0) for the first one found and unit 1 (gsn1) for the second one.
When an SGI GSN product is a two-board solution, both boards are associated with a
single unit number. On subsequent startups, ioconfig distinguishes between
hardware that it has seen before and new items. To previously seen items, it assigns the
same hardware unit numbers (those that are recorded in the ioconfig.conf file). To
new hardware, it assigns new sequential numbers and records them. It never reassigns a
number, even if the device that had the number is removed and leaves a gap in the
numbering. For example, in a system with two instances of some class of devices, if the
unit0 is removed, the next restart results in the system listing only unit1; if a new board
is installed in a new location, it is listed as unit2.

New items are differentiated from previously seen items through the hardware graph
listing (that is, the path under /hw/module/#/slot/io#/...). The database of
previously seen devices is kept in the file /etc/ioconfig.conf. A replacement board
(with the exact same hardware device name) that is installed into the location of an old
board (so that it has the same hardware graph listing) is assigned the old board’s unit
number, but a board that is moved from one location to another is assigned a new
number. For example, in a two-device system with ioconfig.conf entries illustrated
below, if unit0 is moved to a different slot, the next restart results in a new item in the
ioconfig.conf file. The hinv command lists unit1 (an original board in its original
slot) and unit2 (the board that has been moved to a new slot), but not unit0. For more

Assignment of Unit Numbers and Network Interfaces to GSN Hardware

007-3719-003 67

information about the hardware graph and ioconfig, see the man pages for
hwgraph(4) and ioconfig(1M).

Initial entries for two devices:
0 /hw/module/1/slot/io8/xio_gsn/device
1 /hw/module/1/slot/io4/xio_gsn/device
0 /hw/gsn/0
1 /hw/gsn/1

Entries after unit0 is moved:
0 /hw/module/1/slot/io8/xio_gsn/device
1 /hw/module/1/slot/io4/xio_gsn/device
2 /hw/module/1/slot/io5/xio_gsn/device
1 /hw/gsn/1
2 /hw/gsn/2

The two-board SGI GSN product occupies two XIO slots that are logically associated
with a single device (one unit number). The device has two XIO slots and two hardware
graph entries. All links (for example, the short or convenience path, /hw/gsn/#) point
to the XIO slot for the main SGI GSN board. All located SGI GSN hardware devices can
be displayed with the /sbin/hinv or find command.

Assignment of Network Interface to Hardware Device

As the startup process continues, it calls the network drivers and protocol software
modules so that they can create their network and programmatic interfaces. For GSN,
this step works in the following manner:

• For each located SGI GSN device (port), the startup process creates short
(/hw/gsn/#) and long (/hw/module/#/slot/io#/xio_gsn) entries in the
hardware graph. Then, the initialization scripts create a symbolic link in /dev that
points to the device’s entry in the hardware graph.

• For each located GSN hardware device, the startup routine creates an entry in the
hardware inventory database that can be displayed by hinv.

• For each located hardware device, the IRIX GSN driver creates a logical network
interface and assigns it a number that matches the hardware. For example, if the
only hardware device is /hw/gsn/2, then the only network interface created is
gsn2.

• The ifconfig command searches the netif.options file for IP-over-GSN
network interface names (for example, gsn0, gsn1, gsn2), associates each network

68 007-3719-003

1: Overview of IRIX GSN

interface with the hardware that is specified, then configures and enables each
interface.

Comparison of ST to IP

ST requires that the endpoints and their associated resources be set up before any data
movement can proceed in which IP acts on a store-and-forward basis. The IP endpoints
and intermediate hosts dynamically provide resources such as target buffers. ST is
connection-oriented and the end points retain state information such as packet
sequencing numbers. IP does not guarantee sequential delivery of packets and is a
connectionless protocol.

The logical IP subnets on GSN can be independent of the underlying GSN physical
network. Refer to “Consequences and Examples” on page 53.

The table below lists notable differences between ST and IP.

Table 1-11 ST vs IP

IP ST

ST When It Is
Borrowing From IP
(INET address,
routing protocol, ARP,
etc.)

network-layer routing within an
LIS

y n y

routing between LISs and inter-LIS
forwarding

y n y

multiple hop routing (more than
one intermediate hardware
device--switch/concentrator/hub-
-between endpoints

y n n

broadcasting to all members of an
LIS

y n y

broadcasting to all members
attached to a physical fabric

only if physical
layer supports
functionality

only if physical
layer supports
functionality

only if physical layer
supports
functionality

Comparison of ST to IP

007-3719-003 69

encapsulation y n n

data handling between source and
final destination

store and
forward; finds
path/resources
along the way

direct delivery
from source to
final
destination;
path/resources
established and
open before data
transfer started

direct delivery;
path/resources
established and open
before data transfer
started

Table 1-11 (continued) ST vs IP

IP ST

ST When It Is
Borrowing From IP
(INET address,
routing protocol, ARP,
etc.)

007-3719-003 71

Chapter 2

2. Installing and Configuring IRIX GSN

This chapter provides instructions and information about configuring the IRIX GSN
software, as summarized in this list.

• The entire installation and configuration procedure is covered in “Complete GSN
Installation Process” on page 71.

• The following sections provide quick-reference summaries of the configuration
tasks required for specific functionality:

– “Configure IP-over-GSN” on page 73

– “Configure the Address Resolution Service” on page 75

• Each specific configuration task is described separately in detail in the reference
section “Individual Configuration Tasks” on page 77.

• Table 2-2 provides a listing of all the individual parameters in IRIX GSN that can be
configured.

See “Assignment of Unit Numbers and Network Interfaces to GSN Hardware” on
page 65 for a description of how the physical network devices (gsn0, gsn1, gsn2, and gsn3)
are numbered and assigned to IP/ST-over-GSN logical network interfaces (gsn0, gsn1,
gsn2, and gsn3).

Complete GSN Installation Process

This section lists the steps required for configuring your IRIX GSN network connection.
The procedures listed below are those that must be performed before an IRIX GSN
connection is functional:

72 007-3719-003

2: Installing and Configuring IRIX GSN

1. Use inst or the System:SoftwareManager to install the IRIX GSN software from
CD-ROM, as explained in the IRIX GSN Release Notes. The inst command is
described in the online man page and the InSight document IRIX Admin: Software
Installation and Licensing that came with the system.

2. Collect the information you need for the configuration, as described in “Collect
Information Before Starting” on page 73.

3. Follow the steps in the section “Configure IP-over-GSN” on page 73 to configure the
IP-over-GSN and ST-over-GSN stacks.

4. Optional: change the default settings for optional configuration tasks, as
summarized in Table 2-2 on page 91 .

Note: If the system has more than one GSN network interface, the netmask values
are not optional; they must be set as described in “Summary of Network Interface
Operational Parameters and Default Settings” on page 86.

5. Use the decision tree provided in “Configure the Address Resolution Service” on
page 75 to determine which set of HARP configuration instructions you need to
follow. Then follow those instructions.

6. If there are any members of the LIS that do not support dynamic HARP, follow the
instructions in “Adding Static HARP Table Entries” on page 82.

7. Arrange to have the hardware installed and its functionality verified as described in
SGI GSN XIO Hardware Installation Instructions for SGI Origin Family, SGI-2000-series,
and Silicon Graphics Onyx2 Platforms.

It is most efficient to install the IRIX GSN hardware after installing and configuring
the software. This avoids at least one reboot of the system.

Note: If the hardware is already installed, follow the instructions in the section
“Building a New Driver Into the Operating System” on page 89. Then follow the
instructions in “Verify That the Board Has Been Located by the Software” on
page 130 and “Verify the SGI GSN Hardware” on page 131 to verify the functionality
of the GSN hardware.

Complete GSN Installation Process

007-3719-003 73

Collect Information Before Starting

To configure the IRIX GSN software, you need the following information. SGI
recommends collecting this information before you start to configure the software.

• An INET (also known as IP) address and, optionally, a subnet mask for each
IP/ST-over-GSN network interface.

If there are multiple GSN network interfaces on this system, each interface must
belong to a different LIS. That is, the address and mask for each interface must
identify all the interfaces on the system as members of different address spaces
(LISs). See “GSN Fabrics and Logical Networks” on page 51 and Figure 1-30 for
further explanation.

• A network connection name for each INET address. This name usually includes the
system’s hostname (as configured in the /etc/sys_id file). An example is:
gsn3-amazon.

• If the GSN port is connected to a GSN switch, answer these questions:
Do all the switches in the GSN fabric support broadcasting?
Does this system have multiple GSN network interfaces?

If the answer to either of these questions is yes, collect the information listed below.
Otherwise, you are through collecting information; you can proceed to the next step
in the installation procedure (step 3 in the “Complete GSN Installation Process” on
page 71).

• If broadcasting is not supported by the GSN fabric, determine the ULAs of the
HARP servers for each LIS. (The same HARP servers must be used for all members
of an LIS.)

• For each GSN interface, identify all members of its LIS that do not support dynamic
HARP.

Configure IP-over-GSN

This section describes how to configure the IP-over-GSN and ST-over-GSN network
interface. All these steps are standard IP configuration procedures, required for all IRIX
network interfaces.

1. Enable the network layer stack:

chkconfig network on

74 007-3719-003

2: Installing and Configuring IRIX GSN

2. Open the local /etc/hosts file for editing. For each GSN physical port, add an
entry (like the one below) that maps an INET address (for example, IP address) to a
GSN network connection name (“hostname”). Each address is shared by both the IP
and ST protocols. (See “Edit hosts File” for detailed instructions.)

gsn-amazon 223.209.1.18

Note: The local hosts file must be edited. In addition, if the site uses an NIS or DNS
server, this information must be added to that server’s database.

3. Open the /etc/config/netif.options file for editing. For each GSN physical
port, add a pair of entries (similar to the pair below) to map the GSN network
interface (gsn#) of the port to one of the INET/IP addresses (or network connection
names) from the hosts file. (See “Edit netif.options File” for detailed
instructions.)

if2name=gsn0
if2addr=gsn-amazon

4. Edit the /etc/config/ifconfig-#.options file for one or more of the GSN
network interfaces to change the default settings for the operational parameters that
are listed in Table 2-1. This step is required if there is a subnet mask (netmask) for
this network interface; otherwise, this step is optional. (See “Edit
ifconfig-#.options File” on page 84 for detailed instructions.)

5. Optional: edit the /var/sysgen/master.d/gsn file to change default settings in
the IP/ST-over-GSN driver. (See “Edit master.d/gsn File” on page 87 for detailed
instructions.)

6. If this is the final configuration step, rebuild the operating system so that it includes
the newly configured IRIX GSN driver:

% su
Password: thepassword
/etc/init.d/autoconfig
Automatically reconfigure the operating system (y or n)? y
/etc/shutdown

The system is now ready to have its IRIX GSN hardware installed, or if the
hardware is already installed, you can restart the system. The IP/ST-over-GSN
functionality automatically becomes operational during this restart.

7. To verify this configuration, follow the procedures described in “Verifying the IRIX
GSN Subsystem” on page 130 once the hardware is installed.

Complete GSN Installation Process

007-3719-003 75

Configure ST-over-GSN

ST-over-GSN address configuration occurs when you follow the instructions in
“Configure IP-over-GSN” on page 73. Follow the IP instructions even if your site does
not plan to use the IP-over-GSN stack.

Configure the Address Resolution Service

If any of the following statements are true for your configuration, you must manually
configure IRIX HARP, as follows:

• The SGI GSN port is directly connected to another host, not to a switch.

• One or more of the switches in the GSN fabric does not support broadcasting.

• One or more of the hosts on the LIS does not support dynamic HARP.

For each GSN connection/interface, use the decision tree shown in Figure 2-1 to discover
which procedures are required for configuring the address resolution software.

76 007-3719-003

2: Installing and Configuring IRIX GSN

Figure 2-1 Decision Tree for HARP Configuration Procedures

Must be either its own HARP server or have a static HARP
entry for itself in the /etc/config/harpd.options file

Finished. All clients use
FF:FF:FF:FF:FF:FF
for HARP solicitation requests.

Finished.
All clients within this address space
use configured ULAs to contact HARP
servers. Only selected systems
run HARP server programs.

Select systems to be
HARP servers.

Configure each client with
ULAs for contacting selected
HARP servers.

Discover ULAs for the selected
systems. gsncntl gsn# getmac

NoYes

Do all the switches in the GSN fabric support broadcasting?

What is the GSN port connected to?

loopback device

point-to-point, direct connection to another member of LIS
switch

If there are any members of an LIS that do not support dynamic HARP, add these numbers to the HARP table.

Individual Configuration Tasks

007-3719-003 77

Individual Configuration Tasks

This section provides detailed instructions for each individual configuration task. This is
a reference section only; the tasks appear in alphabetical order, and are listed below. Most
of these tasks are optional. See “Complete GSN Installation Process” on page 71 for the
list of required configuration tasks.

• “Change HARP Lookup Table” on page 77

• “Configure IRIX GSN Network Interfaces In Real Time” on page 78

• “Configure IRIX HARP Client” on page 79

• “Configure IRIX HARP Server” on page 80

• “Edit harpd.options File” on page 81

• “Edit hosts File” on page 83

• “Edit ifconfig-#.options File” on page 84

• “Edit master.d/gsn File” on page 87

• “Edit netif.options File” on page 88

• “Enable Networking” on page 89

Note: For additional details about enabling IP networking software and configuring IP
network interfaces, refer to IRIX Admin:Networking and Mail, which is available online
through IRIS InSight.

Change HARP Lookup Table

The /usr/etc/gsnarp command makes changes to the address resolution lookup
table that is currently in memory for use by static HARP. This table maps 32-bit
network-layer INET addresses (or network connection names) to 48-bit physical layer
Universal LAN Addresses, or ULAs. HARP table entries made with the gsnarp -s
command are lost if the system is restarted; to make changes that survive restarts, follow
the instructions in “Adding Static HARP Table Entries” on page 82.

78 007-3719-003

2: Installing and Configuring IRIX GSN

• To add a static entry for a GSN host to the lookup table, use this command line:
gsnarp -s name ULA_value

where name is the network connection name or address for a logical network
interface as listed in the /etc/hosts file, and the ULA_value is a 6-byte (48-bit)
value represented in hexadecimal characters separated by colons (for example,
7:8d:fe:8:13:5).

• To delete one entry from the table, use this command line:
gsnarp -d name

where name is the network connection name or INET address for a logical network
interface as listed in the /etc/hosts file.

• To purge only the dynamic entries and leave the static entries and HARP server
entries in the table, use this command line:
gsnarp -p

• To remove all dynamic (i.e., non-static) entries and reload the harpd configuration
file, you must terminate the currently running HARP daemon and restart it, as
follows:
gsnarp -k
harpd

• To prevent any more IP-to-ULA mappings from occuring on the system -- and
thereby prevent any GSN traffic -- you must stop the HARP daemon and remove all
entries from the HARP mapping table, as follows:
gsnarp -k
gsnarp -r

(The gsnarp -r command is allowed only when the HARP daemon is not
running.) To allow GSN traffic again, you must restart the HARP daemon, as
follows:
harpd

Configure IRIX GSN Network Interfaces In Real Time

Dynamic configuration of the IRIX GSN network interfaces that use INET addresses is
done with the /usr/etc/ifconfig command, which is explained in detail in the
ifconfig(1M) man page. The command lines listed below are appropriate with IRIX
GSN:

ifconfig [gsn#] INET_addr
ifconfig [gsn#] netmask 0x########
ifconfig [gsn#] metric

Individual Configuration Tasks

007-3719-003 79

where INET_address is the 32-bit INET (IP) address, ######## is the 32-bit netmask value,
and # is the routing metric. See the ifconfig(1M) man page for details about acceptable
formats.

Note: Some of the standard ifconfig arguments are not supported for IRIX GSN (for
example, broadcast and arp).

Configuration changes made in this manner do not persist across restarts of the system.
To make configuration changes that persist, edit the configuration file as explained in
“Edit ifconfig-#.options File” on page 84 and “Edit netif.options File” on
page 88.

Configure IRIX HARP Client

Each IRIX HARP client running on nonbroadcast media must know the ULAs for all of
the HARP servers for each LIS with which it will be communicating.

Each IRIX HARP client running on broadcast media must know the IP-to-ULA mapping
for all hosts that do not run the HARP protocol.

These server ULAs and static mappings should be listed in the harpd configuration file,
which by default is /etc/config/harpd.options.

1. Open the /etc/config/harpd.options file for editing.

2. For each IRIX GSN network interface that requires HARP servers, add one line per
HARP server. The lines have the following format:

server gsn# xx:xx:xx:xx:xx:xx

where gsn# is the network interface, and xx:xx:xx:xx:xx:xx is the HARP server’s
6-byte ULA in colon-separated hexadecimal notation. For example:

server gsn1 08:00:71:C5:AD:74

Note: All hosts on the LIS (both HARP clients and HARP servers) must have the
same list of HARP server ULAs in their harpd configuration files.)

3. Static mapping entries can be added on separate lines, as follows:

static name xx:xx:xx:xx:xx:xx

80 007-3719-003

2: Installing and Configuring IRIX GSN

where name is the IP name of the nonHARP enabled host, and xx:xx:xx:xx:xx:xx is
the HARP server’s 6-byte ULA in colon-separated hexadecimal notation. For
example:

static groucho-gsn0 10:22:f3:03:77:01

4. Save the changes.

5. To activate the changes, stop the HARP daemon (if it is running), and restart the
daemon with a completely purged HARP table, as follows:

% su
Password: thepassword
gsnarp -k
harpd -p

Configure IRIX HARP Server

Each LIS that is operating on a nonbroadcast medium must have at least one HARP
server defined. These servers, just like the clients, must know the ULAs for all of the
HARP servers for each LIS with which it will be communicating.

Each IRIX HARP server must also know the IP-to-ULA mapping for all hosts that do not
run the HARP protocol. (This information is not necessary for HARP clients in
nonbroadcast LISs, since the clients can request this information from the servers, just
like any other IP-to-ULA mappings.)

For a description of how to edit the harpd configuration file and activate the changes, see
the preceding section, “Configure IRIX HARP Client.”

Identifying Your ULA

If the system already has its GSN hardware installed, use the following command to
discover the ULA that is assigned to this endpoint by its switch:

% gsncntl gsn# getmac
PROM ULA Address: 08:00:71:C5:AD:74
Device ULA Address: 00:01:3b:ff:00:0e

where gsn# identifies the GSN hardware that carries traffic for the server’s LIS.

Individual Configuration Tasks

007-3719-003 81

Use the Device ULA value; this is the address assigned by the switch. The PROM ULA is
the MAC address retrieved from the SGI GSN board.

Otherwise, discover the ULA that the switch will assign to this system, as explained in
the switch manufacturer’s documentation.

Changing the HARP Database on the Fly

If IRIX HARP is already functioning and you want to make changes to the HARP
database, invoke the following command as superuser:

gsnarp -s name ULA_value

where name is the remote system’s network connection name or INET address and
ULA_value is the remote system’s ULA address in colon-separated hexadecimal notation
(for example, AA:12:CC:34:DD:56).

Edit harpd.options File

The /etc/config/harpd.options file is the configuration file read by the HARP
daemon when it starts. (The file can have a different name or location. You can start the
harpd daemon by using a -c config_file argument on the harpd command, specifying
the name of the configuration file.)

The harpd.options file contains the list of HARP servers used by each GSN interface,
and any static mappings that are needed.

Each GSN interface that is using nonbroadcast media must have HARP servers defined.
The list of HARP servers must be configured identically on all GSN-connected hosts,
whether they are HARP clients or HARP servers.

On nonbroadcast GSN media, the HARP servers must also have defined a static
IP-to-ULA mapping for all GSN-connected hosts that do not run the HARP protocol. On
broadcast GSN, each host must have these static mappings, since there are no HARP
servers on broadcast GSN.

82 007-3719-003

2: Installing and Configuring IRIX GSN

Adding Server Addresses for Client

Follow these instructions to configure each HARP client:

1. Open the /etc/config/harpd.options file for editing.

2. For each IRIX GSN network interface that requires HARP servers, add one line per
HARP server. A line has the following format:

server gsn# xx:xx:xx:xx:xx:xx

where gsn# is the network interface, and xx:xx:xx:xx:xx:xx is the HARP server’s
6-byte ULA in colon-separated hexadecimal notation. For example:

server gsn0 08:00:de:00:ba:84
server gsn1 08:00:71:C5:AD:74

3. Save the changes.

Adding Static HARP Table Entries

The /etc/config/harpd.options file can also contain static HARP entries. Each
entry maps a network connection name (or INET address) to a Universal LAN MAC
address (ULA) for a host that does not support dynamic HARP.

Follow these instructions to configure static entries for the HARP table:

1. Open the /etc/config/harpd.options file for editing.

2. For each host that needs a static HARP entry, add a line of the following format:

static name xx:xx:xx:xx:xx:xx

where name is the IP name of the nonHARP enabled host, and xx:xx:xx:xx:xx:xx is
the HARP server’s 6-byte ULA in colon-separated hexadecimal notation. For
example:

static groucho-gsn0 10:22:f3:03:77:01
static harpo-gsn0 10:22:f3:03:77:02
static gummo-gsn0 10:22:f3:03:77:05

The IRIX HARP software does not check or verify these values. It is the system
administrator’s responsibility to ensure that each entry is both valid and correct.
The ULA value must be the exact ULA (IEEE address) for use as the Destination
ULA in HIPPI-6400-PH headers and in the MAC Header of HARP packets.

Individual Configuration Tasks

007-3719-003 83

Note: Do not create an entry in this format for any system for which a "server" entry
is defined.

3. Save the changes.

Loading the New Configuration

After all changes have been made to the configuration file, you can activate the changes
by terminating the current HARP daemon and restarting the daemon with a completely
purged HARP table, as follows:

gsnarp -k
harpd -p

If you are not using the standard configuration file name, use the
following harpd command:

harpd -p -c config_file

Edit hosts File

The /etc/hosts file maps network connection names1 (commonly referred to as hosts) to
INET addresses. Each time the IP-over-GSN and/or ST-over-GSN driver starts (for
example, ifconfig gsn# up), it uses information from this file to configure the
interfaces. There must be one entry in the hosts file for each local IRIX GSN connection;
this statement is true even in environments that are using an NIS or DNS server on an
attached LAN. The local hosts file must exist so that the network interface(s) can be
configured during system startup, before the NIS service is accessible. Each address in
this file must also exist in the /etc/config/netif.options file; the strings (names)
in the two files must be identical.

1 A network connection name is associated with an IP address (by an entry in the /etc/hosts file) and
with an IP network interface (by an entry in the /etc/config/netif.options file). For example,
for the entries “223.209.1.2 gsn1-amazon; if1name=gsn0 and if1addr=gsn-amazon,” 223.209.1.2 is the
IP address, gsn1-amazon is the network connection name, and gsn0 is the IP network interface name.
Due to UNIX convention, the hostname (in the /etc/sys_id file) for this machine is probably
amazon.

84 007-3719-003

2: Installing and Configuring IRIX GSN

The entries must be similar to the example below, which illustrates four IRIX GSN
interfaces for a system whose hostname is amazon:

223.209.1.2 gsn0-amazon.brazil.com gsn1-amazon
223.209.2.4 gsn1-amazon.brazil.com gsn2-amazon
223.209.3.16 gsn2-amazon.brazil.com gsn3-amazon
223.209.4.32 gsn3-amazon.brazil.com gsn4-amazon

Note: For systems that have a primary interface served by an NIS or DNS server, this
information must also be added to that server’s database.

Edit ifconfig-#.options File

Each /etc/config/ifconfig-#.options file configures one IP network interface.
The # in the filename matches the numeral in the if#name entry in the netif.options
file. Table 2-1 lists the operational parameters that can be controlled with this file. Each
instance of this file is optional; when a file does not exist for a specific network interface,
the default values are used (as listed in Table 2-1).

For IRIX GSN, the parameters that are most commonly configured are netmask and local
buffer areas. For a complete description of the IP parameters that can be configured in
this file, see the ifconfig(1M) man page.

Configuring Netmask / LIS Address Space

If your site is using variable-length INET addressing or is dividing its INET network
address space into subnets, place a line like this in the ifconfig-#.options file. The
netmask entry determines the number of separate address spaces (LISs) possible within
the INET address space and the number of hosts possible within each LIS.

netmask 0xyour_netmask

where your_netmask is a 32-bit value in hexadecimal notation in which each local network
bit is a 1 and each local host bit is a 0. For example, FFFFFFE0 subdivides a Class-C INET
network address into 8 subnets (LISs) with up to 30 hosts each by dividing the final byte
(the 8 bits of host portion) into 3 bits of additional network address and 5 bits of host
address (E0=1110 0000 binary).

Individual Configuration Tasks

007-3719-003 85

Hint: From the 32 values possible with a 5-bit local host portion, 00000 and 11111 are not
usable, leaving 30 local host addresses available.

Configuring TCP Local Buffer Areas

To obtain optimal TCP/IP performance on an IRIX GSN interface, the size of the local
buffers for handling outstanding/in_transit TCP/IP data must match the sizes used on
the other (remote) systems. If possible, the IRIX GSN default value (524288 bytes) should
be configured on all the GSN interfaces within the GSN fabric. If this default cannot be
used throughout the fabric, you must create anifconfig-#.optionsfile for each IRIX
GSN interface and set the local buffering (sspace) value to the value selected for the other
systems within the GSN fabric.

To configure the size of the TCP local buffer areas (in bytes), create an
ifconfig-#.options file for the IRIX GSN interface and place these lines in the file:

sspace nnnn
rspace nnnn

where nnnn is any value, divisible by 1024, between 1024 and 524288.

Keep the following in mind:

• If the memory used by TCP/IP applications is an issue, you can obtain nearly full
performance by using 262144 (256*1024), instead of the default 524288 (512*1024).

• If rspace is set to a value significantly smaller than the value used for sspace, TCP
acknowledgments (ACKs) can be delayed. This can have a negative effect on
performance.

• For large TCP windows to work, the tcp_winscale and tcp_tsecho variables in
the /var/sysgen/master.d/bsd file must be set to 1 (their defaults).

86 007-3719-003

2: Installing and Configuring IRIX GSN

Summary of Network Interface Operational Parameters and Default Settings

Table 2-1 lists the operational parameters that can be controlled with each
/etc/config/ifconfig-#.options file and the default values that are used for
each parameter when the file does not exist or when there is no entry in the file for that
item.

Table 2-1 IP Network Interface Operational Parameters

Parameter
Default Setting for GSN
Interfaces Description

Netmask The mask, appropriate for the
INET address’ Class, that does
not extend the network portion
or reduce the host portion of
the address.

Value used by system to know which bits
of the INET address are used locally to
identify hosts and which bits identify local
subnets (that is, LISs).

Broadcast address off Value used by system for broadcasting.

ARP off Enables/disables address resolution
(ARP).

Routing metric 0 Number of hops added to the hop count
for this interface. The higher the number,
the less likely the interface will be selected
as a route by the routing module.

sspace 524288 Value used by the transmitting TCP/IP
module for size of buffering for
transmitted but outstanding
(unacknowledged) data for a specific GSN
connection.

rspace 524288 Value used by the receiving TCP/IP
module for size of buffering for incoming
data that is not yet passed to the
application for a specific GSN connection.

Automatic startup up When the parameter is set, each system
restart configures and starts this interface.

Individual Configuration Tasks

007-3719-003 87

Edit master.d/gsn File

The /var/sysgen/master.d/gsn file configures the IRIX GSN hardware device
driver and the hardware. This configuration is optional because all parameters have
default settings that are considered optimal for most sites. The settings in this file affect
all SGI GSN boards installed in the system.

The specific items that are configurable vary from release to release, so they are explained
fully within the file. Here are a few of the more important items:

• Size of maximum transmission unit. if_gsn_mtu: valid values are 0-65,280 which is
the GSN default, or 1 to (232 minus 1) inclusive.

• Enable/disable onboard (hardware) IP checksumming for reception, for
transmission, for both, or for neither. if_gsn_cksum: valid entries are 0=disabled,
1=receive_only, 2=transmit_only, and 3= both.

• Operate GSN board in onboard loopback mode. gsn_use_loopback=1 enables
internal loopback and gsn_use_loopback=0 is for normal operational.

Note: Setting gsn_use_loopback is not required when the hardware loopback
connector is used.

• Number of small buffers (2 KB is default size for each buffer) passed by the driver to
each IP reception entity on the GSN board. Note that one IP reception entity is
associated with each activated interrupt queue (QID).
if_gsn_small_mbuf_entries: valid values are 0 to 8,192 inclusive.

• Number of large buffers (16 KB is default size for each buffer) passed by the driver
to each IP reception entity on the GSN board. Note that one IP reception entity is
associated with each activated interrupt queue (QID).
if_gsn_large_mbuf_entries: valid values are 0 to 1024 inclusive.

• Number of 5 microsecond increments (ticks) for loading the interrupt holdoff timer.
While this timer is counting, the hardware does not generate interrupts to the
driver. A value of 40 means that interrupts are not generated any faster than one
every 200 microseconds. Adjusting this parameter affects latency and throughput.
The optimal value depends on site-specific network traffic patterns and application
performance requirements. gsn_intr_holdoff_ticks: valid values are 0 to (232

minus 1) inclusive.

88 007-3719-003

2: Installing and Configuring IRIX GSN

• Size of queue for Admin micropackets awaiting transmission.
gsn_admin_desc_entries: valid values are 2, 4, 8, 16, and 32.

After editing this file, follow the instructions in “Building a New Driver Into the
Operating System” on page 89 to start using the new configuration.

Edit netif.options File

The /etc/config/netif.options file maps local network connection names (or IP
addresses) to IRIX GSN network interface names (for example, gsn0, gsn1, and so on), and
sets the maximum number of network interfaces for the system. Each time the
IP-over-GSN and/or ST-over-GSN driver starts (for example, ifconfig gsn# up), it
uses information from this file to configure its interfaces. There must be a two-line entry
for each IRIX GSN network interface. Each address (if#addr entry) in this file must also
exist in the /etc/hosts file; the strings in the two files must be identical.

The first entry in the netif.options file (that is, the pair of lines: if1name and
if1addr) defines the primary interface. In most situations, the primary interface should
be Ethernet or FDDI; however, when the GSN fabric supports broadcasting and the LISs
on the fabric are using dynamic client/server HARP, GSN can be configured as the
primary interface. Any system that functions as a client or server for NFS, NIS, or other
major client/server IP program should configure the network interface over which the
client/server program functions occur as the primary network interface.

Note: Systems that function as a client or server for bootp must configure Ethernet as
their primary network interface. The IRIX GSN driver is not included in the miniroot.

The example below illustrates a system with two IRIX GSN network interfaces (gsn#), an
FDDI interface (xpi0), and a primary Ethernet interface (ef0). If this system’s hostname
is amazon, these IRIX GSN entries work with the examples of /etc/hosts file entries
used in the section “Edit hosts File.” A line that starts with a colon (:) is a comment.

if1name=ef0
if1addr=$HOSTNAME

if2name=xpi0
if2addr=fddi-$HOSTNAME

: configuration associated with hardware device /hw/gsn/0
if3name=gsn0

Building a New Driver Into the Operating System

007-3719-003 89

if3addr=gsn0-$HOSTNAME

: configuration associated with hardware device /hw/gsn/1
if4name=gsn1
if4addr=gsn1-$HOSTNAME

Note: The use of the $HOSTNAME variable assumes that the system’s hostname has
been defined in the /etc/sys_id file.

IRIX, by default, allows up to eight logical network interfaces of any type to be
configured. To increase this maximum, edit the if_num line in the netif.options file
as illustrated below. Change the default entry:

: if_num=8

to a numeral equal to the number (decimal format) of logical IP network interfaces that
will be configured on this system. For example:

if_num=12

Enable Networking

To automatically enable the IP/ST network stacks each time the system is started, edit
the /etc/config/network file so that it contains the single word ON or on. If the file is
missing, add the file, or invoke the command-line utility chkconfig network on.

Note: Enabling networking does not result in IP-over-GSN functionality; it only enables
the IP/ST software within the operating system to operate over whatever drivers are
available to service it. See “Edit netif.options File” for instructions that associate a
network device (that is, its network interface) with the IP/ST stacks.

Building a New Driver Into the Operating System

This section describes how to rebuild the operating system to include a totally new driver
or to include configuration changes to a driver that is already present. In either case,
complete all the configuration steps listed in the “Complete GSN Installation Process”
before rebuilding the operating system.

90 007-3719-003

2: Installing and Configuring IRIX GSN

For the IRIX GSN subsystem to be functional, the IRIX operating system (kernel) that is
currently running the system must be rebuilt (after the configuration) to include the new
or reconfigured IRIX GSN driver. When changes are made to any of the following files,
or when new IRIX GSN software is installed, it is necessary to rebuild the operating
system:

• /var/sysgen/master.d/gsn

• /var/sysgen/system/gsn.sm

• /var/sysgen/master.d/harp

• /var/sysgen/system/harp.sm

Note: After any configuration change, it is advisable to verify that the subsystem is
functional. Follow the instructions in “Verifying the IRIX GSN Subsystem” on page 130
to verify the functionality of the GSN subsystem.

Each set of instructions below builds a new operating system and starts it running. It is
not important which set of instructions you use. Note that in the second set, you shut the
system down twice.

Instruction Set 1
% su
Password: thepassword
/etc/init.d/autoconfig
Automatically reconfigure the operating system (y or n)? y
/etc/reboot
.....<various messages are displayed on console>...
configuring gsn0 as hostname
configuring gsn1 as hostname

Instruction Set 2
% su
Password: thepassword
/etc/shutdown

After the system shuts down, restart it by turning/pressing the reset/restart key or
button. When the following question is displayed, answer with yes or y.

List of All Configurable Parameters for IRIX GSN

007-3719-003 91

Automatically reconfigure the operating system (y or n)? y
<log on>

% su
Password: thepassword
/etc/reboot

After the system shuts down, again restart it by turning/pressing its reset/restart key or
button. When the above question is displayed, answer no or n.

List of All Configurable Parameters for IRIX GSN

Table 2-2 lists all the parameters that can be configured for the IRIX GSN product.

Table 2-2 Summary of Configurable Items for IRIX GSN

Parameter
Required (R)/
Optional (O) Default Setting

Location of
Configuration
Instructions

How to Start Using the
New Configuration

IP parameters:

assign #s to GSN network interfaces O see “Assignment of
Unit Numbers and
Network Interfaces to
GSN Hardware”

“Assignment
of Network
Interface to
Hardware
Device”

init 0 or shutdown or
reboot

assign netmask O 0 for each
Class-defined host bit
and 1 for each netid bit

“Edit
ifconfig-#
.options
File”

ifconfig gsn# down,
then
ifconfig gsn# up

map name (alias) to IP address R none “Edit hosts
File”

same as above

assign IP/INET address R none same as above same as above

map address/name to gsn# R none “Edit
netif.opti
ons File”

same as above

enable IP networking R disabled “Enable
Networking”

same as above

92 007-3719-003

2: Installing and Configuring IRIX GSN

enable broadcast O automatic, if needed none same as above

ARP (i.e., HARP) O see HARP entries in
this table

“Individual
Configuration
Tasks”

maximum MTU size O 65,280 bytes “Edit
master.d/g
sn File”

autoconfig, then
reboot

of IP reception entities/queues O 4 same as above same as above

buffers for IP reception O 50 small and 50 large same as above same as above

Hardware parameters:

ULA address NA with switcha switch provides addr instructions
for switch

each time link is activated

NA for pt-to-pt read from PROM none with each restart

set hold-off timer for
interrupts to CPU

O “Edit
master.d/g
sn File”

autoconfig, then
reboot

buffers for IP reception O 50 small and 50 large same as above autoconfig, then
reboot

assign unit #s to GSN boards O usually, hardware #s
match network
interface #s

“Assignment
of Unit
Numbers to
Hardware”

init 0 or shutdown or
reboot

HARP parameters:

HARP server O for fabric with
broadcasting

distributed dynamic
HARP

“Configure
IRIX HARP
Server”

R for
non-broadcast
fabric

No default ULA Figure 2-1 and
“Configure
IRIX HARP
Server”

gsnarp -k

harpd -p

Table 2-2 (continued) Summary of Configurable Items for IRIX GSN

Parameter
Required (R)/
Optional (O) Default Setting

Location of
Configuration
Instructions

How to Start Using the
New Configuration

List of All Configurable Parameters for IRIX GSN

007-3719-003 93

R if LIS contains
any hosts that
do not support
dynamic HARP

dynamic HARP “AddingStatic
HARP Table
Entries”

O for other
server
parameters

assumes defaults in
/var/sysgen/mast
er.d/gsn file are
used

“Edit
master.d/g
sn File”

autoconfig, then
reboot

HARP client O FF:FF:FF:FF:FF:FF to
locate HARP service
on broadcasting fabric;

00:10:3b:ff:ff:e0 to
locate HARP server on
non-broadcasting
fabric

“Configure
IRIX HARP
Client”

R if defaults not
used

see “HARP client” cell
(above)

same as above ifconfig gsn# down,
gsnarp -f -S, then
ifconfig gsn# up

HARP table O dynamic HARP

R only when LIS
contains clients
that do not
support
dynamic HARP

none “AddingStatic
HARP Table
Entries”

gsnarp -k

harpd -p

a. NA stands for not applicable.

Table 2-2 (continued) Summary of Configurable Items for IRIX GSN

Parameter
Required (R)/
Optional (O) Default Setting

Location of
Configuration
Instructions

How to Start Using the
New Configuration

007-3719-003 95

Chapter 3

3. Maintaining, Monitoring, Verifying, and
Troubleshooting IRIX GSN

This chapter describes how to maintain, monitor, verify, and troubleshoot the IRIX GSN
subsystem.

Commands Available for IRIX GSN

IRIX GSN can be monitored and maintained with the commands summarized in
Table 3-1.

Table 3-1 Utilities for Monitoring and Maintaining IRIX GSN

Command Function

/usr/etc/gsnarp Configures ULA(s) for contacting interface’s HARP server(s) (see
“Configure IRIX HARP Client”).

Adds and deletes static entries to the HIPPI address resolution
(HARP) lookup table (in kernel-resident memory). The HARP table
maps ULAs to INET (IP/ST) addresses (see “Changing the HARP
Database on the Fly”).

Configures address for contacting HARP server (see “Adding Server
Addresses for Client”).

Displays HARP servers that are configured, and the content of the
HARP table with status flags for entries (see “Display Address
Resolution Lookup Table”).

/usr/etc/harpdump Displays all data of all HARP tables in several formats; used for
troubleshooting.

/usr/etc/gsncntl Provides control and status functions for the hardware and driver
portions of the IRIX GSN subsystem, including display of GSN port’s
ULA (see “Display ULA (MAC) Address”, “Check Status of
Hardware”).

96 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Instructions for Common Procedures

This section describes some procedures that are commonly used to monitor and maintain
the IRIX GSN subsystem. All of the IRIX GSN utilities (gsnmap, gsncntl, and

/usr/etc/gsntest Verifies the functionality of the SGI GSN (HIPPI-6400) hardware,
without using the IP or ST network interfaces (see “Verify the SGI
GSN Hardware”).

/usr/etc/ttcp Verifies the functionality of IP over any physical-layer subsystem (see
“Verify an IP-over-GSN Interface”).

/usr/etc/ping Verifies the functionality of IRIX IP network interfaces. Can be used
to verify that a gsn# IP network interface is functioning (see “Verify an
IP-over-GSN Interface”).

/etc/init.d/gsn Reconfigures all IRIX GSN network interfaces with HARP server
information in gsnarp.options file. This script calls ifconfig
and gsnarp commands (see “Build New HARP Server Addresses
Into Network Interfaces”).

/usr/etc/ifconfig Configures standard IP stack options for IRIX GSN network
interfaces (that is, ifconfig gsn#). Each ifconfig up of an IRIX
GSN network interface, resets the SGI GSN hardware (see “Configure
IRIX GSN Network Interfaces In Real Time”).

/usr/etc/netstat Displays network parameters (including INET and ULA/MAC
addresses), traffic statistics, and status information for IP-over-GSN
and ST-over-GSN. When an IRIX GSN IP/ST network interface (gsn#)
is not configured, the disabled interface is listed, but without an INET
address (see “Verify an IP-over-GSN Interface”,“Troubleshoot
IP-over-GSN Interfaces”).

Table 3-1 (continued) Utilities for Monitoring and Maintaining IRIX GSN

Command Function

Instructions for Common Procedures

007-3719-003 97

gsntest) require the user to have superuser (root) privileges. Table 3-2 lists the
procedures:

Table 3-2 Common Procedures for Monitoring and Maintaining IRIX GSN

Procedure Utility

Hardware:

Check status of hardware gsncntl (see “Check Status of
Hardware”)

Configure IRIX GSN to loopback through the board none (see “Configure the SGI GSN
Board for On-board (Internal)
Loopback Operation” in)

Display ULA/MAC address for GSN hardware gsncntl;
netstat (see “Display ULA (MAC)
Address”)

Reset hardware (and network interface) ifconfig (see “Disable or Enable
IP/ST Interface”)

Verify that software has located GSN hardware hinv (see “Verify That the Board
Has Been Located by the
Software”)

Verify/test GSN hardware gsntest (see “Verify the SGI GSN
Hardware”)

IP/ST Software:

Enable/disable IP protocol stack chkconfig (see “Enable
Networking”)

Enable/disable each IP/ST-over-GSN network interface ifconfig (see “Disable or Enable
IP/ST Interface”)

Check status of IP traffic/interface netstat -p ip (see “Checking Status
of IP-over-GSN Traffic”)

Check status of ST traffic/interface netstat -p stp (see “Checking
Status of ST-over-GSN Traffic”)

HARP/ARP Software:

Change address for contacting primary server gsnarp -S (see “Configure IRIX
HARP Client”)

98 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Disable or Enable IP/ST Interface

To enable/disable the network interface to an IRIX GSN port that service the IP protocol
stack and the ST protocol stack, use the standard /usr/etc/ifconfig command:

ifconfig [gsn#] down
ifconfig [gsn#] up

Note: This sequence of commands also resets the XTALK interface(s) to the SGI GSN
hardware, which results in a warm reset of the hardware.

Display ULA (MAC) Address

To display the ULA (MAC) address for the SGI GSN hardware, invoke this command:

% gsncntl [gsn#] getmac
PROM ULA Address: 00:01:3b:ff:00:0e
Device ULA Address: 00:01:3b:ff:00:0e

This command displays both the ULA (MAC) address that is stored in (read from) the
GSN board’s PROM and the ULA that is currently being used for GSN communications,
which is either the address assigned from the attached GSN switch or the address read
from PROM. The IRIX GSN subsystem uses the “Switch ULA” for all communications.

Change address for alternate (backup) HARP server(s) gsnarp -A (see “Configure IRIX
HARP Client”)

Add/delete static entries to HARP table gsnarp (see “Adding Static HARP
Table Entries”)

Display current HARP server(s) gsnarp -av (see “Display Client’s
Active HARP Server”)

Check status of HARP table gsnarp -a (see “Display Address
Resolution Lookup Table”)

Table 3-2 (continued) Common Procedures for Monitoring and Maintaining IRIX GSN

Procedure Utility

Instructions for Common Procedures

007-3719-003 99

You can also use the netstat command, which displays only the ULA that is currently
being used by the GSN subsystem; netstat does not read from PROM:

% netstat -ina
gsn0 16256 <INET netid> <complete INET address> ...

<ULA/MAC address>

For example:

% netstat -ina
gsn0 16256 192.0.113 192.0.113.1 ...
 00:01:3b:ff:00:0e

Configure the SGI GSN Board for On-board (Internal) Loopback Operation

To configure the SGI GSN board to loop outgoing traffic through the SHAC ASIC and
back into the same system (host) that transmitted it, use the following procedure.
Operating the board in this mode tests the software (that is, the host protocol stacks, the
driver, and the firmware on the board) associated with the IRIX GSN subsystem as well
as the SHAC ASIC on the board. This mode of operation does not utilize the GSN
hardware (that is, the SuMAC ASIC and the panel plate receptacle).

1. Edit the SGI GSN board’s configuration file, as described in “Edit master.d/gsn
File” on page 87.

Change this default entry: gsn_use_loopback = 0

to this: gsn_use_loopback = 1

2. Use ifconfig to disable then enable (reset) the GSN interface:

% ifconfig gsn# down
% ifconfig gsn# up

To return the board to normal operation, change this variable back to its default setting,
then disable and enable the interface.

Note: In this board-loopback mode, the functionality of the entire SGI GSN board cannot
be verified. Use an external loopback connector for complete hardware verification.

100 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Check Status of Hardware

There are utilities for checking the status of the following functions:

• verify that hardware was located during startup, “Verifying That GSN Hardware
Was Found” on page 100

• firmware version currently running on hardware, “Displaying Firmware Version”
on page 101

• ULA (MAC address) currently being used by network interface, “Display ULA
(MAC) Address” on page 98

• state of GSN physical link, “Displaying Status of Physical Link” on page 101

• operational statistics for the GSN hardware, including SHAC ASIC, “Displaying
Status of Local GSN Hardware” on page 103

• XIO slot errors, “Displaying Status of XIO and Network-layer Processing (SHAC
ASIC)” on page 103

• ST traffic errors, VC# receive and transmit status in Table 3-6 on page 104

• status for GSN element, “Displaying Status of Closest GSN Elements (Hops)” on
page 113

• HIPPI-6400 ADMIN traffic, “Checking Status of ADMIN Traffic” on page 122

Verifying That GSN Hardware Was Found

To verify that the operating system located the SGI GSN hardware during startup, use
this command:

/bin/hinv -d gsn
<display for single-board product>
GSN 1-XIO adapter: unit #, in module # I/O slot #
<display for two-board product>
GSN 2-XIO adapter: unit #,
 XIO port 1 in module # I/O slot #
 XIO port 2 in module # I/O slot #

Instructions for Common Procedures

007-3719-003 101

Displaying Firmware Version

To display the version of firmware that is currently running on SGI GSN hardware, use
this command:

gsncntl [gsn#] versions

where gsn# identifies the SGI GSN board for which you want information.

Displaying ULA (MAC) Address

See “Display ULA (MAC) Address” on page 98.

Displaying Status of Physical Link

To display the status of the SGI GSN board and the physical link attached to it, use the
command below. The status information is described in Table 3-3.

gsncntl gsn# status device

Table 3-3 Status Information for GSN Physical Link

Status Item Normal Value Description

State: LNK_RDY The GSN states are sequential. They are listed here in the
order in which they occur during startup.

NULL The driver has reset the GSN hardware but has not yet
been able to configure it. This state is normal for a few
seconds during startup.

CFG The IRIX GSN driver has successfully configured the GSN
hardware, but has not yet made contact with the SuMAC
ASIC. This state is normal for a few seconds during
startup.

SUMAC_POLL The driver has started communication with the
HIPPI-6400 (SuMAC) ASIC on the GSN board;
HIPPI-6400 ADMIN micropackets are being exchanged.
This state is normal for a few seconds during startup.

102 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

EX_ELEM The local GSN subsystem has transmitted an
EXCHANGE_ELEMENT_FUNCTION Admin
micropacket and received a reply from the local SuMAC;
the local GSN subsystem is attempting to contact the
system at the other end of its physical link.This state is
normal for a few seconds during startup; if it persists,
there may be a problem with the remote GSN system or
the physical link.

ULA_REQ The local GSN subsystem has completed the
EXCHANGE_ELEMENT_FUNCTION with its neighbor,
has requested a ULA from the attached switch, and is
waiting for a reply. This state is normal for a few seconds
during startup; if it persists, there may be a problem with
the attached switch.

LNK_RDY LNK_RDY The local GSN subsystem (driver and hardware) is ready
to operate. This is the normal operational state.

Flags:

LNK_SWITCH LNK_SWITCH The local GSN subsystem believes that its neighbor
element is a GSN switch. That is, the physical link (cable)
is attached to a GSN switch.

LNK_P-2-P The local GSN subsystem believes that its neighbor
element is another GSN endpoint (not a switch). That is,
the physical link (cable) is attached to a HIPPI-6400
element, but is not attached to a HIPPI-6400 (GSN) switch.

LNK_EXT_LOOP The SGI GSN board is operating with a loopback
connector/cable installed.LNK_P_2_P indicates that the
physical link (cable) attached to another GSN endpoint
(not a switch).

LNK_INT_LOOP The SGI GSN board is configured to operate in
board-loopback mode.

Table 3-3 (continued) Status Information for GSN Physical Link

Status Item Normal Value Description

Instructions for Common Procedures

007-3719-003 103

Displaying Status of Local GSN Hardware

To display status information for an SGI GSN board, use either of the following
commands.

gsncntl [gsn#] status

or

gsncntl -v [gsn#] status
<verbose mode expands general error counts into specific errors>

gsn# identifies the SGI GSN board for which you want information

The displayed information is described in Table 3-4. Most of the counted items are
initialized to zero upon reset of the board and roll over to zero upon reaching 232 (that is,
at 4,294,967,295); exceptions are explained in the table. Check all of the cables and nodes
between this system and the system(s) you tried to ping. “Verify the SGI GSN
Hardware” on page 131 describes how to do this for the local SGI GSN port and its link.

.

Displaying Status of XIO and Network-layer Processing (SHAC ASIC)

To display status information for the SHAC ASIC, use this command. (The SHAC ASIC
is the component on the main SGI GSN board that processes XIO [that is, XTALK] and
network-layer traffic.) Table 3-5 describes the basic display; Table 3-6 describes the
verbose display that occurs when the -v option is used.

gsncntl [gsn#] status shac

Table 3-4 GSN Status Information for Copper-Based XIO Hardware

Status Item Description

Link state and flags See Table 3-3.

ADMIN Packet Count and Errors See Table 3-9.

SHAC Status See Table 3-5 and Table 3-6. Display shows errors collected
by the SHAC ASIC on the main SGI GSN board.

Hop Status See Table 3-7. Display shows status for local HIPPI-6400-PH
element (hop 0, SuMAC), as well as the remote (hop 1)
link-end element.

104 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

or

gsncntl -v [gsn#] status shac
<verbose mode expands general error counts into specific errors>

Table 3-5 SHAC ASIC Status: Basic Listing

SHAC Status Item Normal Value Description

Error interrupt status OK A count of the total number of error interrupts generated by
the SHAC ASIC.

Use the verbose option (-v) to list the specific errors.

QIDs with interrupts pending None A count of the total number of system interrupt queues (QIDs)
that currently have interrupts (generated by the SHAC ASIC)
awaiting processing by the operating system.

Use the verbose option (-v) to list the specific QIDs that have
interrupts pending.

VC# receive error status OK A count of the total number of errors detected by the SHAC
ASIC’s receive logic on the identified GSN virtual channel
(VC#).

Use the verbose option (-v) to list the specific errors.

Transmit error status OK A count of the total number of errors detected by the SHAC
ASIC’s transmit logic.

Use the verbose option (-v) to list the specific errors.

Table 3-6 SHAC ASIC Status: Verbose Listing

SHAC Status Item Normal Value Description

Error interrupt status OK Error interrupts generated by the SHAC ASIC.

Xtalk0 error 0 An error occurred on the main GSN board’s XIO slot (that is,
XTALK interface 0).

Xtalk1 error 0 An error occurred on the additional GSN board’s XIO slot (that
is, XTALK interface 1 located on the XTOWN board).

MAC error 0 An error occurred on the SuMAC ASIC.

IC error 0 An error was detected by the SHAC port that connects to the
SuMAC ASIC.

Instructions for Common Procedures

007-3719-003 105

SSRAM parity error 0 An SSRAM parity error was detected.

Receive VC# error 0 An error was detected by the receive logic for the indicated VC
(0, 1, 2, or 3).

Transmit error 0 An error was detected by the transmit logic.

Synthetic port error 0 An error occurred during a read or write of the area in SSRAM
where information is kept for IP processing and hardware
interrupts to the driver.

Total I desc. oflow 0 SHAC cannot keep up with the interrupts being generated (by
all types of traffic). Specifically, one or more QIDs overflowed.

ST I desc. oflow 0 SHAC cannot keep up with the ST traffic occurring on at least
one of its QIDs. Specifically, the interrupts being generated by
the ST traffic to a specific QID overflowed the queue.

Total I desc. uflow 0 The counts of unprocessed interrupts on one or more QIDs
kept by the GSN driver and the SHAC ASIC are out of sync
with each other. SHAC’s count has fewer unprocessed
interrupts than the driver’s count.

ST I desc. uflow 0 The counts of unprocessed ST interrupts on one or more QIDs
kept by the GSN driver and the SHAC ASIC are out of sync
with each other. SHAC’s count has fewer unprocessed ST
interrupts than the driver’s count.

DMA engine error 0 The on-board DMA logic has been halted because an error was
detected on a XTALK interface or the SSRAM interface. This is
a secondary error indication.

QIDs with interrupts pending None Identifies the QIDs that currently have interrupts awaiting
processing. 1=one or more interrupts are pending on this QID;
0=no interrupts pending on this QID.

QID 0 0

QID 1 0

QID 2 0

QID 3 0

QID 4 0

Table 3-6 (continued) SHAC ASIC Status: Verbose Listing

SHAC Status Item Normal Value Description

106 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

QID 5 0

QID 6 0

QID 7 0

VC# receive error status OK Errors detected by the SHAC ASIC’s receive logic.
VC# identifies the GSN virtual channel (0, 1, 2, and 3).

Sideband error 0 An incoming HIPPI-6400 micropacket had its ERROR bit set.

Underrun error 0 A TAIL bit was received unexpectedly. That is, an incoming
HIPPI-6400 micropacket had its TAIL bit set before the receive
logic received the number of micropackets implied by
message’s M_len field.

Overrun error 0 A TAIL bit was not received when expected. That is, the TAIL
indicator was not set in the final HIPPI-6400 micropacket for
the message, as calculated from the message’s M_len field.

Fatal error 0 The SHAC ASIC’s connection to the SuMAC ASIC detected a
data or control parity error, a Data Valid error, or an external
Link or Warm Reset. The RX logic cannot recover from these
conditions. When one occurs, SHAC must be reset. All
incoming data is discarded and all pending DMAs are aborted.

SSRAM error 0 The receive logic detected an SSRAM parity error.

STC invalid port error 0 The ST header on an incoming Control Operation contained an
invalid entry: for example, an incorrect destination port or an
invalid key.

STC invalid key error 0 The ST header on an incoming Control Operation contained an
invalid key for the destination port.

STD invalid port error 0 The ST header on an incoming Data Operation contained an
invalid destination port entry.

STD invalid BID error 0 The ST header on an incoming Data Operation contained an
invalid Mx parameter. Either the Mx parameter itself was
invalid (for example, greater than 4095), or the local
information for the specified Mx parameter is not valid.

Table 3-6 (continued) SHAC ASIC Status: Verbose Listing

SHAC Status Item Normal Value Description

Instructions for Common Procedures

007-3719-003 107

STD invalid key error 0 The ST header on an incoming Data Operation contained an
invalid key for the destination Mx.

STD invalid BUFX error 0 The ST header on an incoming Data Operation contained an
invalid BUFX value. Either the BUFX value specified an
unsupported striping feature or the local information for the
specified BUFX is invalid.

STD BUFX range error 0 The Bufx in the Schedule Header of an ST Data Operation does
not fall in the range allowed for the B_id as specified by the
Base_Bufx and Bufx_Range fields in the B_ID table entry. Any of
the following conditions result in this error:

• ST Schedule Header’s Bufx[31:29] does not equal
Base_Bufx_31_29 in the B_ID table.

• ST Schedule Header Bufx[19:0] is less than Base_Bufx_19_0
from the B_ID table entry.

• ST Schedule Header Bufx[19:0] is greater than the sum of
Base_Bufx_19_0 and Bufx_Range from the B_ID table entry.

STD offset error 0 An ST Data Operation included incorrect offset of data length
values. The Offset (from its Schedule Header) plus the length of
the DMA portion of the STU is greater than the destination
buffer size:

Offset + (M_len - 0x30) > (2**Bufsize).

This error also occurs when Offset[6:0] is non-zero when
Bufx[31:29] is non-zero; this is a violation of the alignment
restriction for memory striping.

STD STU num error 0 The STU sequence numbering for an ST Data Operation is not
sequential with respect to the previous STU for the same B_id.
This error can also occur when the Poisoned (P) bit in the B_ID
table entry is set.

STD read timeout 0 During memory striping or dual-path operation, a readback
timeout occurred on one of the XIO ports.

SRC port 0 oflow 0 SHAC dropped at least one ST Control Operation due to an
overflow on its queue for Port 0.

Table 3-6 (continued) SHAC ASIC Status: Verbose Listing

SHAC Status Item Normal Value Description

108 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

STD 6-way offset error 0 An error occurred during 6-way striping of data. This error
occurs when, for a six-way striped ST Data Operation, the
Offset (from the Schedule Header) plus the length of the DMA
portion of the STU is greater than three-quarters the
destination buffer size:

Offset + (M_len - 0x30) >.75*(2**Bufsize)

Transmit error status OK

SSRAM parity error 0 The transmit logic encountered an SSRAM parity error.

STD invalid BUFX error 0 The BUFX table entry is invalid for the specified Src_Bufx
parameter in a transmit descriptor for a Data Operation. The
transmission was not performed.

Xtalk read req. timeout 0 The transmit logic encountered a timeout error for a read
request on the XTALK interface. This error is fatal to the GSN
interface because the SHAC ASIC forces the SuMAC ASIC to
drop all micropackets.

Xtalk read access error 0 The transmit logic encountered an error in a read request on
the XTALK interface. This error is fatal to the GSN interface
because the SHAC ASIC forces the SuMAC ASIC to drop all
micropackets.

PULL desc. timeout 0 The transmit logic encountered a timeout error on the XTALK
interface for a read request done in Pull Mode.

PULL desc. access error 0 The transmit logic encountered an error in a read response on
the XTALK interface.

FIFO CR underrun error 0 A transmission was initiated by a user process when no credits
had been allocated to the process. The transmission was not
performed. This error cannot be produced by transmissions
initiated by the kernel.

FIFO underrun 0 The pointers indicated that there was a descriptor on SHAC’s
transmission queue, but SHAC found none when it tried to
read the queue. This error can occur only if software writes the
queue’s consumer pointer, which is illegal during normal
operation.

Table 3-6 (continued) SHAC ASIC Status: Verbose Listing

SHAC Status Item Normal Value Description

Instructions for Common Procedures

007-3719-003 109

FIFO overrun 0 The pointers indicated that there were empty slots on SHAC’s
ST transmission queue, but the queue was full when a user
process tried to initiate a transmission (that is, write to the
queue). This error can occur only if software writes the
queue’s producer pointer, which is illegal during normal
operation. This error cannot be produced by transmissions
initiated by the kernel.

User virt. conn. error 0 A user process attempted to transmit an ST Control Operation.
This is illegal. The transmission is not performed.

User RAW error 0 A user process attempted to transmit a raw ST Operation. This
is illegal. The transmission is not performed.

User invalid port error 0 A user process initiated a transmission for an invalid PORT.
The transmission is not performed. This error cannot occur
when the initiator is the kernel.

Source offset error 0 A user process initiated a transmission using an invalid
Src_Offset value; the value was greater than or equal to the
source buffer size specified in Src_Bufsize in the PORT table.
The transmission is not performed. This error cannot occur
when the initiator is the kernel.

Buffer range error 0 A user process initiated a transmission and one of the
following errors occurred:

• The Src_Bufx field is less than Base_Bufx in the PORT table
entry.

• Src_Bufx[31:29] is not equal to Base_Bufx[31:29] in the PORT
table entry.

• The data to be transmitted extends past the last valid Bufx in
the series of valid Bufxs for the PORT.

The transmission was not performed. This error cannot be
produced by a transmission initiated by the kernel.

Table 3-6 (continued) SHAC ASIC Status: Verbose Listing

SHAC Status Item Normal Value Description

110 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Stripe VC error 0 A user process initiated a transmission in which the Src_Bufx
value indicated striping, but the transmission was to a VC0,
VC1, or VC2, which is illegal; striping is legal only on VC3. The
transmission was not performed. This error cannot be
produced by a transmission initiated by the kernel.

Transmit Error Source Identifies the source (the cause) of the first error recorded in
the Transmit error status section. (This section consists of the
rows immediately above this row in this table.) The item
marked with a 1 is the source; only one item is marked.

VC0 0 When 1, indicates error was encountered on VC0.

VC1 0 When 1, indicates error was encountered on VC1.

VC2 0 When 1, indicates error was encountered on VC2.

VC3 0 When 1, indicates error was encountered on VC3.

IP VC1 0 When 1, indicates error was caused by IP traffic on VC1.

H2F FIFO 0 When 1, indicates error was caused by the queue that holds
host-to-board (that is, operating system to firmware)
interrupts/commands.

Unknown 0 When 1, indicates that the source for the captured error is
unknown.

None 0 When 1, indicates that no error source is identified.

Local/Remote Xtalk Error Status OK

Req. unsupported OP 0 bit 0: SHAC received a crosstalk request packet type that it
does not support: Fetch and Operation, Store and Operation,
Special Packet Request, or Reserved. Note: Even numbered
reserved packet types are considered by SHAC to be requests.
Odd numbered reserved packet types are considered by SHAC
to be responses and will cause the XRESP_UNEXPECTED
bit to set.

Req. unsupported size 0 bit 1: SHAC received a Crosstalk request packet type/size
combination that it does not support. All register accesses
must be a single word, i.e., the data enables must be 0x0F or
0xF0.

Table 3-6 (continued) SHAC ASIC Status: Verbose Listing

SHAC Status Item Normal Value Description

Instructions for Common Procedures

007-3719-003 111

Req. frame error 0 bit 2: The data size in the command word of a request did not
match the actual size of the request packet as framed by the
head and tail bits. This is a severe error. If it occurs, there may
be other side effects, such as lost credits and spurious
responses.

Req. err/invalid pkt 0 bit 3: Either the ERROR bit was set in the command word of
a request, or the Micro-Packet Invalid bit was set in the
sideband of one or more micropackets in a Crosstalk request
packet.

Req. invalid address 0 bit 4: The requested address does not exist. This error will
only occur when a request is made to a reserved location (i.e.,
a hole) in the SHAC register space. Accesses to unconfigured
SSRAM or PROM locations will not set this bit.

Req. access error 0 bit 5: A write request was received for a read-only register or
a read request was received for a write-only register or
descriptor FIFO tail.

Req. fifo oflow 0 bit 6: A request was received when the request FIFO was full.
This indicates a credit count problem, i.e., the Crossbow was
programmed to reflect more than four request credits for
SHAC. Because the request that overflowed the FIFO may
have been partially written to the FIFO, this error will often be
followed by a XREQ_FRAME_ERR.

Req. drop mode enabled 0 bit 7: An error was detected for which it would be unsafe to
continue executing write requests. All writes are dropped until
SHAC is reset or until a clear register is read on the SHAC
ASIC. To diagnose the failure, reads are allowed.

Req. fatal error 0 bit 8: A condition was detected that indicates an inconsistency
internal to SHAC.

Resp. unexpected response 0 bit 9: An unexpected crosstalk response was received. A read
response with a TNUM value that is not associated with an
outstanding read request will cause this error. All write
responses will also cause this error since SHAC does not
generate Write w/Response requests. Also, read responses
with data size = 3 (OVCL) will cause this error since SHAC
does not send requests of this sizes.

Table 3-6 (continued) SHAC ASIC Status: Verbose Listing

SHAC Status Item Normal Value Description

112 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Resp. frame error 0 bit 10: The data size in the command word of a response did
not match the actual size of the response packet as framed by
the head and tail bits.

OR

A spurious micropacket without the sideband Head bit set was
received when a packet was not in progress.

Resp. err/invalid pkt 0 bit 11: Either the ERROR bit was set in the command word of
a response, or the Micro-Packet Invalid bit was set in the
sideband of one or more micropackets in a crosstalk response
packet. Unrecoverable memory errors on DMA reads will
result in this error.

Xtalk req cnt oflow 0 bit 12: The counter that keeps track of the outstanding requests
sent by SHAC has overflowed. This could be caused only by
an internal error in SHAC, since it should never send a request
if this counter is at its maximum value.

Xtalk req cnt uflow 0 bit 13: The counter that keeps track of the outstanding requests
sent by SHAC has underflowed. This will happen if the
Crossbow returns more request credits to SHAC than the
number of requests SHAC issued.

Xtalk credit oflow 0 bit 14: The counter that keeps track of the credits available to
SHAC for requests and responses to the Crossbow has
overflowed. This will happen if the Crossbow returns more
request and response credits to SHAC than the number of
requests and responses SHAC issued.

Xtalk credit uflow 0 bit 15: The counter that keeps track of the credits available to
SHAC for requests and responses to the Crossbow has
underflowed. This could be caused only by an internal error in
SHAC, since it should never send a request or response if this
counter is at its maximum value.

Xtalk req timeout 0 bit 16: A Crosstalk read request to the host has not received a
response in at least the time configured on the SHAC ASIC.

LLP retry timeout 0 bit 17: The LLP has retried sending a micropacket
LLP_MAXRETRY times without success.

Table 3-6 (continued) SHAC ASIC Status: Verbose Listing

SHAC Status Item Normal Value Description

Instructions for Common Procedures

007-3719-003 113

Displaying Status of Closest GSN Elements (Hops)

To display status information for the two closest HIPPI-6400-PH (GSN) elements (hop 0,
hop1, and hop2), use this command:

gsncntl gsn# status elements

The closest element (hop 0) is the SuMAC ASIC located on the local SGI GSN board; the
next closest element (hop 1) is the link end located at the other side of the physical link.
The identity of this element depends on the configuration of the GSN connection, as
illustrated in Figure 3-1. When a loopback device is installed, the hop 1 element is the
same local GSN element as hop 0; when a cable is connected, the hop 1 element is the
element at the other end of the cable (for example, switch or endpoint). Table 3-7
describes the gsncntl status elements display. Figure 3-1 illustrates the physical
position for each numbered GSN element; status messages refer to the items identified in
this illustration.

Note: When the SGI GSN board is configured for internal loopback, the hop 0 element
is the IRIX GSN driver. The local SuMAC ASIC is not available when the board is
configured for internal loopback.

LLP send retry == 256 0 bit 18: The LLP send retry counter (LLP_TX_CNT in
XT_STATUS) has reached x’FF’.

LLP send retry 0 bit 19: An LLP retry was required on the LLP send side.

LLP recv errors == 256 0 bit 20: The LLP receive error counter (LLP_REC_CNT in
XT_STATUS) has reached x’FF’.

LLP recv CB error 0 bit 21: A receive check bit error was detected by the LLP.

LLP recv SN error 0 bit 22: A receive sequence number error was detected by the
LLP.

Table 3-6 (continued) SHAC ASIC Status: Verbose Listing

SHAC Status Item Normal Value Description

114 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Figure 3-1 Physical Position of GSN Elements for Different Connection Scenarios

With External Loopback Point-to-Point With HIPPI-6400 Switch

Element's port to HIPPI-6400 fabric

Element's port to system

Local GSN Element
Hop 0

GSN driver
Hop 2

Local GSN Element
Hop 1

SuMAC ASIC

Element's port to HIPPI-6400 fabric

Element's port to system

Local GSN Element / Hop 0

SuMAC ASIC

Element's port to HIPPI-6400 fabric

Element's port to system

Local GSN Element / Hop 0

SuMAC ASIC

upper-layer
destination

upper-layer
source

Hop 2
IRIX GSN driver

upper-layer
source

gsncntl status
gsntest

gsncntl status
gsntest

upper-layer
destination

upper-layer
source

gsncntl status
gsntest

tx
 /

so
ur

ce

rx
 /

de
st

in
at

io
n

tx
 /

so
ur

ce

rx
 /

de
st

in
at

io
n

physical link / cable

physical link / cable

Remote GSN Element / Hop 1

Element's port to
upper-layer sytem

Element's port to HIPPI-6400 fabric

physical link / cable

Remote GSN Element / Hop 2

Element's port to
upper-layer sytem

Element's port to HIPPI-6400 fabric

Switch's GSN Element / Hop 1

Element's port to
upper-layer sytem

Element's port to HIPPI-6400 fabric

Instructions for Common Procedures

007-3719-003 115

Table 3-7 HIPPI-6400-PH Element (Hop) Status

Status Item
Normal
Values Description

Hop # Status: Status for the HIPPI-6400 physical element.
When # = 0, status is for the SuMAC ASIC on the local
SGI GSN board.

When # = 1, status is for the first element on the other
side of the physical link.

Port to endpoint’s system ready Current state of element’s port that connects to upper
layers. States are sequential and are listed here in the
order in which they occur. For hop 0, this information
is for the port that connects to the SHAC ASIC on the
GSN board.

shutdown = the port is shut down.

reset = the port is being reset.

synchronizing ssr = the port is trying to
synchronize itself with the port into the system.

ready = the port is operational.

Port to HIPPI-6400 fabric CLK2,
TRAINED,
LLP_OP,
VC_OP

Status for element’s port that connects to the
HIPPI-6400 fabric. Multiple status items can be listed
simultaneously.

CLK2 = the element detects the activity-monitor signal
(CLOCK2) coming from the remote element.

TRAINED = the element has successfully completed its
training sequence for dynamic adjustment of signal
skew over physical link.

LLP_OP = the port’s link-level protocol is operational.

VC_OP = the port’s virtual channels are operating
according to protocol.

116 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Port to endpoint’s system
Error Status

OK Errors detected on the element’s port that connects to
the upper layers and the system. Errors are listed
alphabetically. For hop 0 (local element), this
information is for the SuMAC port that connects to the
SHAC ASIC on the GSN board.

2nd link =
link errors (data/ctl parity or data invalid errors) have
occurred on more than one clock cycle.

admin missing tail: VC hex_value =
an admin PDU (either GSN micropacket or SGI-LLP
message) did not end with Tail bit set. Table 3-8
explains VC hex_value.

credit-only on VC hex_value =
an illegal credit-only (TYPE=0xA) micropacket was
detected. Table 3-8 explains VC hex_value.

ctl parity =
control parity error was detected.

data invalid =
the signal that indicates the presence of invalid data
was detected more than once in a single micropacket.

data parity in byte hex_value =
data parity error detected. Bit 7 covers most-significant
byte of data, bit 0 covers least-significant byte. When a
bit is set to 1, the corresponding data byte had an error.

ext link =
link error is asserted from system.

IC-SSR sample =
this port’s SSR layer experienced an illegal clock
transitions.

OK =
no errors were detected since last startup/reset of
hardware.

Table 3-7 (continued) HIPPI-6400-PH Element (Hop) Status

Status Item
Normal
Values Description

Instructions for Common Procedures

007-3719-003 117

Missing end of msg on VC hex_value =
a GSN DATA micropacket without Tail bit was
followed by a HEADER or ADMIN micropacket.
Table 3-8 explains VC hex_value.

Missing strt of msg on VC hex_value =
a GSN micropacket with Tail bit was followed by
DATA micropacket (HEADER was missing). Table 3-8
explains VC hex_value.

Rcvr tail timeout on VC hex_value =
receiver timed out before a GSN micropacket with Tail
bit arrived. Table 3-8 explains VC hex_value.

RX VC buf overflow on VC hex_value =
receiver’s buffer for the VC overflowed. Table 3-8
explains VC hex_value.

SGI-LLP admin extra tail on VC hex_value =
non-GSN protocol error in the SGI-LLP layer. Table 3-8
explains VC hex_value.

sndr credit=0 timeout on VC hex_value =
the credit=0 timeout expired due to internal VC full
assertion from system’s receiving port. Table 3-8
explains VC hex_value.

undefined pkt type on VC hex_value =
a GSN micropacket was detected whose type was not
Header, Data, or Admin. Table 3-8 explains VC
hex_value.

undefined val: hex_value =
TYPE value (in hexadecimal notation) read from last
detected undefined micropacket.

Table 3-7 (continued) HIPPI-6400-PH Element (Hop) Status

Status Item
Normal
Values Description

118 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Port to HIPPI-6400 fabric
Error Status

OK Errors that have been detected on the element’s port
that connects to the HIPPI-6400 fabric. Errors are listed
alphabetically.

activity mon lost =
activity monitor signal (CLOCK2) became inactive
after port had been operational.

admin missing tail: VC hex_value =
an admin PDU (either GSN micropacket or SGI-LLP
message) did not end with Tail bit set. Table 3-8
explains VC hex_value.

credit ovfl: VC hex_value =
more than 255 credits were received on the indicated
virtual channel. Table 3-8 explains “VC hex_value”.

ECRC rcv err cnt =
number of micropackets that were received with
ECRC errors in which the micropacket’s Error bit was
not set.

ECRC snd err cnt =
number of micropackets that were transmitted in
which the ECRC received from the system was
erroneous and the micropacket ERROR bit was not set.

LCRC err cnt =
number of micropackets that were received with
LCRC errors.

missing end of msg: VC hex_value =
a micropacket of Type=data without Tail bit set was
followed by Type=header or Type=admin. The
micropacket with its Tail bit set was missing. Table 3-8
explains VC hex_value.

missing start of msg: VC hex_value =
a micropacket with its Tail bit set was followed by a
Type=data micropacket. The Type=header
micropacket was missing. Table 3-8 explains VC
hex_value.

Table 3-7 (continued) HIPPI-6400-PH Element (Hop) Status

Status Item
Normal
Values Description

Instructions for Common Procedures

007-3719-003 119

OK =
no errors were detected since last startup/reset of
hardware.

rcv tail timeout: VC hex_value =
receiving VC timed out before final micropacket (with
its Tail bit set) for a message arrived. This error is called
the “stall timeout error” in the HIPPI-6400-PH
standard. Table 3-8 explains VC hex_value.

Retry cnt =
number of retransmissions that have occurred.

retry failed =
a retransmission failed, forcing port into shutdown.

RSEQ missing cnt =
number of times the ACK timeout expired before an
expected RSEQ was received, resulting in a
retransmission.

RSEQ val err cnt =
number of times an incoming RSEQ value fell outside
the expected range, resulting in a retransmission.

rx vc buf overflow: VC hex_value =
receiving VC’s buffer overflowed. See Table 3-8 for
explanation of VC hex_value.

SGI-LLP admin extra tail: VC hex_value =
non-GSN protocol error in the SGI-LLP layer. Table 3-8
explains VC hex_value.

skew retrain failed =
skew compensation retraining sequence failed (after it
had been healthy).

skew retrain rst err =
skew compensation has not been successful since last
reset.

Table 3-7 (continued) HIPPI-6400-PH Element (Hop) Status

Status Item
Normal
Values Description

120 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

sndr credit=0 timeout: VC hex_value =
local source’s credit=0 timeout expired due to VC full
assertion from the element’s port to the system. This
error is called the “credit timeout error” in the
HIPPI-6400-PH standard. Table 3-8 explains VC
hex_value.

TSEQ val err cnt =
number of times a TSEQ value error was detected.
TSEQ errors are not counted if a micropacket has not
been accepted since the last TSEQ error.

undef pkt type: VC hex_value =
a micropacket of an undefined type was detected on
the indicated virtual channel. Table 3-8 explains VC
hex_value.

undef val: hex_value =
value of last detected undefined type of micropacket.

Table 3-7 (continued) HIPPI-6400-PH Element (Hop) Status

Status Item
Normal
Values Description

Instructions for Common Procedures

007-3719-003 121

Table 3-8 Meaning of “VC hex_value” in Status Screen Displays

VC hex_value Indicates Errors on These VCs

0x1 VC0

0x2 VC1

0x3 VC0, VC1

0x4 VC2

0x5 VC0, VC2

0x6 VC1, VC2

0x7 VC0, VC1, VC2

0x8 VC3

0x9 VC0, VC3

0xA VC1, VC3

0xB VC0, VC1, VC3

0xC VC2, VC3

0xD VC0, VC2, VC3

0xE VC1, VC2, VC3

0xF VC0, VC1, VC2, VC3

identifies one VC
 each bit of hex_valuVC3 VC2 VC1 VC0

122 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Displaying Status of HIPPI-6400 ADMIN Traffic

See “Checking Status of ADMIN Traffic” on page 122.

Check Status of GSN Traffic

This section describes methods for monitoring various types of traffic that can move
through an IRIX GSN subsystem: HIPPI-6400 Admin micropackets in “Displaying Status
of HIPPI-6400 ADMIN Traffic” on page 122 and ST messages and IP datagrams in
“Checking Status of IP-over-GSN Traffic” on page 125.

Checking Status of ADMIN Traffic

To display status information about HIPPI-6400 ADMIN micropackets for a SGI GSN
connection, use the gsncntl status admin command. This command displays
counts for the various types of HIPPI-6400 ADMIN micropackets, as described in
Table 3-9; each count includes both those transmitted and those received. The counts for
pairs (for example, Ping and Ping_Response) should be very close.

gsncntl [gsn#] status admin

Table 3-9 describes the information that is displayed about ADMIN micropackets:

Table 3-9 Local Element’s HIPPI-6400 ADMIN Traffic Status

Status Item Description

ADMIN Packet Count
(by command/type):

For each type of ADMIN micropacket, the display shows
a count of request/command (Cmd) micropackets and a
count of responses (Rsp).

Ping Simple “HELLO, I’m alive.” Response does same for
remote endpoint.

Set Element Address Commands the element to use the supplied element
address. (This address is different from the
globally-unique ULA.) Response is an acknowledgment
only.

Exchange Element Function Describes element’s function: link-end, endpoint, or
switch. Response does same.

Instructions for Common Procedures

007-3719-003 123

ULA Request Requests assignment of a Universal LAN MAC address
(ULA) to the requestor from the receiver; the receiver
must be a switch. Response assigns a ULA.

Read Register Asks for current contents of element’s ADMIN register.
Response provides the contents. The local IRIX GSN
driver is the main reader for local element’s ADMIN
register.

Write Register Asks element to update (write) one or more fields in the
ADMIN register. The local IRIX GSN driver is the main
writer for local element’s ADMIN register.

ULA List Request Asks for a list of all connected ULAs. Response provides
the list.

Port Remap Changes the port-to-ULA mapping.

Port Map Request Asks switch to provide the physical port that is
necessary to open a connection to a particular ULA.
Response is the port identification.

Reset Commands element to reset (reinitialize) itself. There is
no response to this.

Invalid Command The ADMIN micropacket’s command (that is, the type
of ADMIN packet) was not recognized as one of those
listed in this table. There is no response to this.

ADMIN Packet Errors:

Admin cmd/rsp on vc0 or 3 An ADMIN micropacket was illegally detected on VC0
or VC3.

Admin cmd on vc != 1 A request/command ADMIN micropacket was illegally
detected on a VC other than VC1.

Admin rsp on vc != 2 A response ADMIN micropacket was illegally detected
on a VC other than VC2.

Table 3-9 (continued) Local Element’s HIPPI-6400 ADMIN Traffic Status

Status Item Description

124 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Admin rsp w/bad status A response ADMIN micropacket was received with one
of its status flags set. All status flags indicate that some
problem occurred with the request/command that was
generated by the source on the local element: undefined
operation, invalid key, parameter out of range, invalid
address for ADMIN register, command failed, etcetera.

Rec’d pkt when shut down When the physical link was shut down, an ADMIN
micropacket arrived. The packet has been discarded.

Rec’d unexp rd reg An illegal Read Register request/command arrived. For
example, the hop count asked that the micropacket be
forwarded even though the local element’s function is
endpoint (not switch).

Rec’d unexp rd reg rsp A Read Register response arrived when no
request/command has been sent to initiate the response.

Rec’d unexp set elem addr rsp A Set Element Address response arrived when no
request/command has been sent to initiate the response.

Rec’d unexp xchange elem func An illegal Exchange Element Function arrived. For
example, the hop count asked that the micropacket be
forwarded, indicating that the sender believes the local
element is a switch.

Rec’d unexp xchange elem func rsp An Element Function response arrived when no
request/command has been sent to initiate the response.

Rec’d unknown elem type An Element Function response arrived with an
unknown function. The known functions are switch,
link-end, and endpoint.

Rec’d unexp pkt in ULA_REQ state While the local element was waiting for a response to its
request for ULA assignment, an ADMIN micropacket
arrived that seemed to require forwarding (for example,
the hop count was not 0 or the destination element
address was not 0xFFFFFFFF).

Table 3-9 (continued) Local Element’s HIPPI-6400 ADMIN Traffic Status

Status Item Description

Instructions for Common Procedures

007-3719-003 125

Checking Status of IP-over-GSN Traffic

To list the configuration information for the IRIX GSN network interface (gsn#), use this
command:

% netstat -ina

To display statistics about the IP, TCP, UDP, or ICMP protocol stacks, use these
commands:

% netstat -p ip

% netstat -p tcp

% netstat -p udp

% netstat -p icmp

Checking Status of ST-over-GSN Traffic

To list the configuration information for the IRIX GSN network interface (gsn#) that
handles ST traffic, use this command:

% netstat -ina

To display protocol statistics for the ST protocol stack, use this command:

% netstat -p stp

Rec’d unexp pkt in LINK_RDY state After the local element (an endpoint) was functional, an
ADMIN micropacket arrived that required forwarding
(for example, the hop count was not 0 or the destination
element address was not 0xFFFFFFFF).

Rec’d unexpected unknown
admin pkt

An ADMIN micropacket was received that had an
unknown command.

Table 3-9 (continued) Local Element’s HIPPI-6400 ADMIN Traffic Status

Status Item Description

126 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

Checking Status for All Protocols Simultaneously

To simultaneously display statistics for the IRIX GSN network interface, and traffic for
all the protocol stacks, use this command:

% netstat -C

Use the numbers (highlighted in the menu area on the bottom of the display) to select the
protocol or information you wish to view. Notice that there are two menus; press the 9
key on your keyboard to toggle between them. The first menu has Interfaces and IP; the
second menus has ST (listed in the menu as STP), TCP, and UDP.

Use these letters to change the time period over which the displayed statistics have been
counted:

r displays totals collected (counted) since the last reset of the interface or
operating system

z resets all statistics to zero and starts counting

d every second resets all statistics to zero and starts counting

Build New HARP Server Addresses Into Network Interfaces

To reconfigure the GSN network, configure down and up the interface(s) that you are
working with, as follows:

ifconfig gsn# down
ifconfig gsn# up

The HARP daemon will be informed of the device’s changes in state and the daemon will
configure the HARP tables accordingly.

Display Client’s Active HARP Server

Use the following command line to display the address that is currently being used by
IRIX HARP to contact the HARP server (marked “Primary”) and all other registered
HARP servers (marked “Alternate”) and servers (marked “Not Registered”).

% gsnarp -av

Instructions for Common Procedures

007-3719-003 127

Output is as follows:

HRAL for gsn0:
 00:10:3b:ff:00:25 Primary
 00:10:3b:ff:00:26 Alternate
HRAL for gsn1:
 00:10:3b:ff:01:25 Primary
 00:10:3b:ff:01:26 Alternate

IP address ULA if Resolves Flags
iridium-g0 00:10:3b:ff:00:28 gsn0 9028 LOCAL
iridium-g0st 00:10:3b:ff:00:28 gsn0 9028 LOCAL
iridium-g1 00:10:3b:ff:01:28 gsn1 390 LOCAL
iridium-g1st 00:10:3b:ff:01:28 gsn1 390 LOCAL
harp2-g1 00:10:3b:ff:01:26 gsn1 2994 SERVER
harp2-g1st 00:10:3b:ff:01:26 gsn1 2994 SERVER
harp1-g1 00:10:3b:ff:01:25 gsn1 71331 PRIMARY_SERVER
harp1-g1st 00:10:3b:ff:01:25 gsn1 71331 PRIMARY_SERVER
harp2-g0 00:10:3b:ff:00:26 gsn0 189 SERVER
harp2-g0st 00:10:3b:ff:00:26 gsn0 189 SERVER
harp1-g0 00:10:3b:ff:00:25 gsn0 10027 PRIMARY_SERVER
harp1-g0st 00:10:3b:ff:00:25 gsn0 10027 PRIMARY_SERVER
ruby-g1 00:10:3b:ff:01:13 gsn1 46
ruby-g0 00:10:3b:ff:00:13 gsn0 45
uranium-g1 00:10:3b:ff:01:27 gsn1 9488
uranium-g0 00:10:3b:ff:00:27 gsn0 9 PERM
copper-g0 00:10:3b:ff:00:08 gsn0 2492

The gsnarp(1) man page provides a full example of the output from the gsnarp -av
command.

Display Address Resolution Lookup Table

Use the following command line to display the HARP table that is currently loaded into
memory and being used by IRIX HARP. This table maps INET addresses to
physical/hardware addresses (ULAs):

gsnarp -a

Output is as follows:

IP address ULA Flags
iron-g1.private 00:10:3b:ff:01:31
iron-g0.private 00:10:3b:ff:00:31
graphite-g1.private 00:10:3b:ff:00:1a

128 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

copper-g1.private 00:10:3b:ff:01:08
copper-g0.private 00:10:3b:ff:00:08
quartz-g1.private 00:10:3b:ff:01:07
harp2-g1.private 00:10:3b:ff:01:26 SERVER
harp2-g1st.private 00:10:3b:ff:01:26 SERVER
harp1-g1.private 00:10:3b:ff:01:25 PRIMARY_SERVER
harp1-g1st.private 00:10:3b:ff:01:25 PRIMARY_SERVER
harp2-g0.private 00:10:3b:ff:00:26 SERVER
harp2-g0st.private 00:10:3b:ff:00:26 SERVER
harp1-g0.private 00:10:3b:ff:00:25 PRIMARY_SERVER
harp1-g0st.private 00:10:3b:ff:00:25 PRIMARY_SERVER
ruby-g0.private 00:10:3b:ff:00:13 LOCAL
ruby-g0st.private 00:10:3b:ff:00:13 LOCAL
mercury-g0.private 00:10:3b:ff:00:2b
ruby-g1.private 00:10:3b:ff:01:13 LOCAL
ruby-g1st.private 00:10:3b:ff:01:13 LOCAL
lead-g0.private 00:10:3b:ff:00:29
quartz-g0.private 00:10:3b:ff:00:07
iridium-g0.private 00:10:3b:ff:00:28
iridium-g1.private 00:10:3b:ff:01:28
uranium-g1.private 00:10:3b:ff:01:27
uranium-g0.private 00:10:3b:ff:00:27
lead-g1.private 00:10:3b:ff:01:29

Flag descriptions are as follows:

Flag Description

LOCAL Entry is the local host.

PRIMARY_SERVER
Entry is for the HARP server currently in use.

SERVER Entry is for an alternate HARP server. Should the primary server fail to
respond to requests, the host will select a different primary from among
the alternate servers.

PERM Entry is permanent (static). Entry does not get revalidated, and cannot
be changed by received HARP packets.

PERM_ULA Entry is for a nonremovable ULA, whose INET address is determined
whenever the interface is activated by means of an InARP request. (For
a full description, see the harpd(1) man page.)

PENDING Entry is incomplete and is awaiting a reply from the HARP server.
(Entries should exist in this state for only a very short time.)

Installing a Loopback Device

007-3719-003 129

Installing a Loopback Device

To run a loopback verification test on an SGI GSN board, use one of the procedures
described below to set up the loopback:

1. Disable the IRIX GSN network interface:

% ifconfig gsn# down

where # identifies the network interface you are going to verify.

2. Use one of these methods for installing a loopback path:

• Attach a loopback device to the HIPPI-6400 port on the board’s I/O panel plate.
The connector is keyed with a long and a short side to ensure correct alignment,
as illustrated in Figure 3-2.

Figure 3-2 Installing a HIPPI-6400 Loopback Connector

• At the switch, configure the attached input port so that it loops back all traffic to
the same port’s output. For example, you might need to make all the entries in
the port’s routing (forwarding) table point to this port.

• Configure the board for internal loopback, as described in “Configure the SGI
GSN Board for On-board (Internal) Loopback Operation” on page 99.

Note: With internal board loopback, the HIPPI-6400 connector and the GSN
component on the board are not verified during the verification procedures.

Long/wide side of key

Short/narrow side of key

130 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

3. Enable the network interface:

% ifconfig gsn# up

where # is the interface you disabled.

Note: When you remove the loopback device or link and make a new connection
(point-to-point or to a switch), you must invoke ifconfig down to disable, then
ifconfig up to enable the network interface.

Verifying the IRIX GSN Subsystem

The most reliable method for verifying an IRIX GSN subsystem is to install a loopback
device or looped back link (as described in “Installing a Loopback Device” on page 129),
then run the gsntest hardware verification test, as described below. After the GSN
hardware has been verified, further upper-layer verification and interconnectivity tests
can be run (for example, the tests described under the headings “Verify an IP-over-GSN
Interface”) by communicating with other GSN systems.

Note: Unlike many IRIX drivers, the IRIX GSN driver does not automatically route
self-addressed packets through the local loopback interface (lo0), so that even the IP stack
can be verified with the loopback link in place.

Verify That the Board Has Been Located by the Software

To verify that a SGI GSN board has been located by the operating system during the last
reboot, use any of the following commands:

% hinv -d gsn
GSN #-XIO adapter: unit #, in module # I/O slot #

% hinv -mvv -d gsn
. . .
Location: /hw/module/#/slot/io#/xio_gsn
XIO_GSN Board: barcode ###### part 030-1361-00# rev #
Group ff Capability ffffffff Variety ff Laser 0000002adfaa

. . .
GSN #-XIO adapter: unit #, in module # I/O slot #

Verifying the IRIX GSN Subsystem

007-3719-003 131

% find /hw/module -name xio_gsn
/hw/module/#/slot/io#/xio_gsn

Each GSN solution may have multiple full-path entries in the IRIX hardware graph. For
example, in the sample display shown below, the startup routine located two SGI GSN
products installed into two different modules; one instance is the two-board product
while the other is the single-board product. With the two-board product, the main GSN
board is always identified as XIO port 1, and the additional board is XIO port 2.

% hinv -d gsn
GSN 1-XIO adapter: unit 0, in module 1 I/O slot 8
GSN 2-XIO adapter: unit 1,

XIO port 1 in module 2 I/O slot 4
XIO port 2 in module 2 I/O slot 12

% find /hw/module -name xio_gsn
/hw/module/1/slot/io8/xio_gsn
/hw/module/2/slot/io12/xio_gsn
/hw/module/2/slot/io4/xio_gsn

Verify the SGI GSN Hardware

To verify the main SGI GSN board (without going through the IP or ST stack), use the
/usr/etc/gsntest command. This test works only for a SGI GSN board that has a
loopback device installed. (See “Installing a Loopback Device” for instructions.) The
command requires the user to be superuser (root).

Note: Unlike many IRIX drivers, the IRIX GSN driver does not automatically route
self-addressed IP/ST packets through the network stack’s loopback interface (lo0); the
GSN driver passes self-addressed packets to the hardware. This allows you to use
standard IP utilities (such asping <myaddress>) to test the IRIX GSN subsystem when
it is physically looped back.

For a simple, quick verification test, use the commands below:

% cd /usr/etc
% su
Password: thepassword

hinv -d gsn

132 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

<use the displayed unit number for # in the following command lines>

/usr/etc/gsncntl gsn# status device
<verify that the STATE and FLAGS are correct
as described in Table 3-3 on page 101>

/usr/etc/gsntest gsn#
gsntest: PING
GSN PING hop 0: Received ping cmd/response from element in 150.40 us
GSN PING hop 1: Received ping cmd/response from element in 117.60 us
GSN PING hop 2: Received ping cmd/response from element in 1707.20 us
<refer to Figure 3-1 to identify the physical element
associated with each hop #>

The gsntest utility sends HIPPI-6400 Admin “PING” micropackets. The command
creates packets with the following nonconfigurable characteristics:

Key 0

Hop Count 0

Dest_Reg 0

Dest_Addr 0xFFFFFFFF

Command HIPPI-6400-SC Ping

Status_Flags 0

Src_Reg 0

Src_Addr Local interface’s ULA obtained from switch, or if not available, as read
from PROM.

Data_Reg Bytes 0-3 contain the PID of the process. Bytes 4-15 contain randomly
generated data.

Example:

This example illustrates the test when the local SGI GSN port is connected to a switch:

% /usr/etc/gsntest gsn#
gsntest: PING
GSN PING hop 0: Received ping cmd/response from element in 148.80 us
GSN PING hop 1: Received ping cmd/response from element in 131.20 us
GSN PING hop 2: Received ping cmd/response from element in 13844.80 us

Verifying the IRIX GSN Subsystem

007-3719-003 133

Note: The hop 1 response came from the switch while the hop 2 response came from the
remote endpoint.

This example illustrates the test when a loopback device is installed on the local SGI GSN
port:

% /usr/etc/gsntest gsn#
gsntest: PING
GSN PING hop 0: Received ping cmd/response from element in 140.20 us
GSN PING hop 1: Received ping cmd/response from element in 148.80 us
GSN PING hop 2: Received ping cmd/response from element in xx us

Note: Hop 0 came from the local SuMAC’s source logic. The hop 1 response came from
the destination logic (on the “other side” of the external loopback device) within the local
SuMAC ASIC, while the hop 2 response came from the local IRIX GSN driver.

The gsntest utility does not verify the data path through the second XIO slot of a
two-board GSN solution. If the gsntest utility fails with an error message, locate the
error message in the section “Error Messages from the gsntest Command” in Chapter 4
and follow the instructions

Verify an IP-over-GSN Interface

To verify that each IP-over-GSN network interface is functional, follow the instructions
in this section. This test assumes that the IRIX GSN subsystem has passed the gsntest
verification, as described under the heading “Verify the SGI GSN Hardware.”

Note: Unlike many network products, the IRIX GSN software does not loop IP packets
through the system’s local loopback interface (lo0). All IP-over-GSN packets are passed
to the GSN hardware.

To accomplish this verification, use /usr/etc/ping -r (lowercase -r, not -R) to make
this station communicate with another GSN IP station (or itself) over the IRIX GSN
subsystem.

134 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

1. Obtain the IP network addresses for all the IP-over-GSN interfaces (gsn#) on this
system. This information can be displayed with the command shown below. The
network address is listed in the column labeled Network, as illustrated in Figure 3-3.

% /usr/etc/netstat -ina

Figure 3-3 The /usr/etc/netstat -ina Display

2. Obtain the name (or IP address) of at least one remote station on each of these GSN
network addresses. Two methods for obtaining station names are described below.

• For a system connected to a local area network that provides name lookup
service (NIS), use the commands below to create a file for each GSN network
connection. Each file will contain the names and addresses of stations that share
a particular network address:

% ypcat hosts | grep gsn0_networkaddress > gsn0.s
% ypcat hosts | grep gsn1_networkaddress > gsn1.s
<do this for each GSN IP network address>

where each gsn#_networkaddress value is an address from the Network column
of the netstat display (illustrated in Figure 3-3).

Example:

% ypcat hosts | grep 253.5.88 > gsn0.s

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
ef0 1500 192.74.28 192.74.28.64 873404 1248 316177 0 1576

gsn0 65280 253.5.88 235.5.88.1 2578 2 28679 0 2148

gsn1 65280 none none 0 0 0 0 0

lo0 8304 127 127.0.0.1 3609810 0 3609810 0 0

08:AC:15:B1:02:6F

08:10:26:00:8A:EC

Ethernet connection

Network interface configuration for first IRIX GSN connection

Network interface configuration for second IRIX GSN connection

Verifying the IRIX GSN Subsystem

007-3719-003 135

• For a system that does not have access to NIS, use these commands to create a
file for each network connection. Each file will contain the locally-known names
and addresses of stations that share a particular network address:

% grep gsn0_networkaddress /etc/hosts > gsn0.s
% grep gsn1_networkaddress /etc/hosts > gsn1.s
<do this for each IP-over-GSN network address>

Example:

% grep 253.5.88 /etc/hosts > gsn1.s

3. Communicate with one station on the GSN network used by the gsn0 connection.
For the variable gsn0_station, you can use any of the names or IP addresses from the
gsn0.s file.

% ping -r gsn0_station
PING stationname (IPaddress): 56 data bytes
64 bytes from . . . time=x ms . . .
<Ctrl><c>
----stationname PING Statistics----
packets trans,# pckts rcvd, x% packet loss

Note: If a loopback link is in place, use the system’s own IP address for the
gsn0_station variable.

4. If netstat lists more than one IRIX GSN (gsn#) network interface, communicate
with one station on each of those networks. For the variable gsn#_station, you can
use any of the names from the gsn#.s file.

% ping -r gsn#_station
PING stationname (IPaddress): 56 data bytes
64 bytes from . . . time=x ms
. . .
<Ctrl><c>
----stationname PING Statistics----
packets trans, # pckts rcvd, x% packet loss

Note: If a loopback link is in place on any of the ports, use the system’s own IP
address for the gsn#_station variable.

136 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

5. If one ping on each network succeeds, you have completed the verification
procedure. All the local network connections are functioning. Use the commands
below to remove the files with the lists of stations:

% rm gsn0.s
% rm gsn1.s

Do this command line for each gsn#.s file created.

If the ping on a network fails, follow the instructions in “Troubleshoot IP-over-GSN
Interfaces” in the next section.

6. To verify the throughput for a functional network interface, open an IRIX shell
window for the local station and antoher one for a remote station. Then, invoke the
following commands:

In the IRIX shell for station #1, the receiver:
% /usr/etc/ttcp -s -r -l49152 -b1048576

In the IRIX shell for station #2, the transmitter:
% /usr/etc/ttcp -s -t -l49152 -b1048576 -n262144 station1_IPaddress

Note: In the previous example, please note that the -l option specifies the length.

Troubleshooting

This section provides basic procedures for troubleshooting IRIX GSN.

Troubleshoot SGI GSN Hardware

See the SGI GSN Hardware Owner’s Guide.

If the gsntest utility fails with an error message, locate the error message in “Error
Messages from the gsntest Command” in Chapter 4 and follow the instructions.

Troubleshooting

007-3719-003 137

Troubleshoot IP-over-GSN Interfaces

This section describes separate sets of instructions for troubleshooting a system in which
all the IP-over-GSN network interfaces are failing, and a system where only some of the
network interfaces are failing.

All IP-over-GSN Network Interfaces Are Failing

If the ping verification tests fail for all the system’s IP-over-GSN network connections,
your system probably has been configured incorrectly. Verify the configuration by
performing the steps below.

Note: This procedure assumes that the hardware has been varified by following the
instructions in “Verify the SGI GSN Hardware” and has been found to function correctly.

1. Use this command to verify that the local GSN board is not in loopback mode and
that the physical link is operational:

% gsncntl gsn# status device
STATE: LNK_RDY
FLAGS: LNK_SWITCH

2. If the system is connected to a switch, use gsncntl to verify that the switch has
assigned a ULA to the local system. The assigned address is the one labeled Device.

% gsncntl gsn# getmac
PROM ULA Address: 08:00:69:05:0d:2c4
Device ULA Address: 00:01:3b:ff:00:04

3. Verify that IP networking is enabled with the following command line:

% /sbin/chkconfig | grep network
network on

4. Use /usr/etc/netstat -ina to verify that the local IP-over-GSN network
interfaces have been configured and enabled. The display should look similar to
that shown in Figure 3-3.

Refer to the online IRIX Admin:Networking and Mail guide for information about
configuring and troubleshooting IP network interfaces.

138 007-3719-003

3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIX GSN

5. Use gsnarp -av to verify that the address resolution mechanism is functioning.
Check that a primary HARP server is listed for each local GSN network interface
and verify that the HARP table has correct entries for the remote system(s) that you
tried to ping.

/usr/etc/gsnarp -av
HRAL for gsn0:
 00:10:3b:ff:00:25 Primary
 00:10:3b:ff:00:26 Alternate
HRAL for gsn1:
 00:10:3b:ff:01:25 Primary
 00:10:3b:ff:01:26 Alternate

IP address ULA if Resolves Flags
iridium-g0 00:10:3b:ff:00:28 gsn0 9028 LOCAL
iridium-g0st 00:10:3b:ff:00:28 gsn0 9028 LOCAL
iridium-g1 00:10:3b:ff:01:28 gsn1 390 LOCAL
iridium-g1st 00:10:3b:ff:01:28 gsn1 390 LOCAL
harp2-g1 00:10:3b:ff:01:26 gsn1 2994 SERVER
harp2-g1st 00:10:3b:ff:01:26 gsn1 2994 SERVER
harp1-g1 00:10:3b:ff:01:25 gsn1 71331 PRIMARY_SERVER
harp1-g1st 00:10:3b:ff:01:25 gsn1 71331 PRIMARY_SERVER
harp2-g0 00:10:3b:ff:00:26 gsn0 189 SERVER
harp2-g0st 00:10:3b:ff:00:26 gsn0 189 SERVER
harp1-g0 00:10:3b:ff:00:25 gsn0 10027 PRIMARY_SERVER
harp1-g0st 00:10:3b:ff:00:25 gsn0 10027 PRIMARY_SERVER
ruby-g1 00:10:3b:ff:01:13 gsn1 46
ruby-g0 00:10:3b:ff:00:13 gsn0 45
uranium-g1 00:10:3b:ff:01:27 gsn1 9488
uranium-g0 00:10:3b:ff:00:27 gsn0 9 PERM
copper-g0 00:10:3b:ff:00:08 gsn0 2492

6. Use ttcp to verify that the local IP protocol stack is functioning:

% ttcp -r -s &
% ttcp -t -s IPaddress

where IPaddress is the INET address (as displayed by the netstat command) for
the local IP-over-GSN network interface.

7. Verify that the remote system you tried to ping is operational.

Troubleshooting

007-3719-003 139

Some IP-over-GSN Network Interfaces Are Failing

If theping verification tests succeed for one GSN network connection, but others fail, the
local IP stack is functioning, but one (or more) specific interface has a problem. To resolve
the problem, follow the instructions below for each problematic network connection.

1. Make sure that you know which IRIX GSN port is associated with the GSN network
interface (gsn#) that you are troubleshooting.

2. Use gsnarp -av to verify that a primary HARP server is listed for the problematic
interface (Dev) and to verify that the HARP table has a correct entry for the remote
system you tried to ping.

/usr/etc/gsnarp -av

The output for this command is shown in step 5 in “All IP-over-GSN Network
Interfaces Are Failing” on page 137.

3. Verify that the other endpoint (IP host) is operational.

Or, as an alternative, select a different station in this LIS, and use the ping -r
command with the station’s numerical address (instead of the name). If the ping
works, the network connection is functional. If the ping fails, proceed to the next
step.

4. Verify that the network portion (leftmost digits) of the addresses you are attempting
to ping match the network address for the GSN interface you are troubleshooting.
The network address for each GSN network interface can be displayed by the
/usr/etc/netstat -in command.

Check all of the cables and nodes between this system and the system(s) you tried to
ping. “Verify the SGI GSN Hardware” on page 131 describes how to do this for the local
SGI GSN port and its link.

007-3719-003 141

Chapter 4

4. IRIX GSN Error Messages

IRIX GSN error messages are written into the /var/adm/SYSLOG file or displayed at the
terminal; some messages appear in both places. Within the SYSLOG file, each message is
preceded by the date, time, hostname, name of the process that created the message, and
process ID number, as illustrated in Figure 4-1 (process ID number not shown).

Figure 4-1 Error Message Format in /var/adm/SYSLOG File

Overview of the Error Message Listing

This chapter contains an alphabetic listing of the IRIX GSN product’s error messages.
Only the text of the error message (see the text of error message in Figure 4-1) is included
in this list.

With each error message is a short description of the problems the message may indicate.
The list contains only messages that indicate an error or problem; it does not contain
informational messages that occur during normal operation.

Messages in this chapter are alphabetized according to the following rules:

• Each message is alphabetized by the numerals (0–9) and letters (a–z) of the
message’s text. Numerals precede letters.

• Nonletters (for example, - or %) and blank spaces are shown in the text of the
message, but are ignored in alphabetization. For example, these messages are
alphabetized as follows: gsn . . ., gsnnet . . ., gsn_open . . .

May 10 05:12:03 goofy gsn0[58]: Unknown ULA

date and time host creator
name

text of error message

142 007-3719-003

4: IRIX GSN Error Messages

• When an error message includes an item that the software specifies differently (fills
in) for each instance of the message, this item is displayed in italic font and labeled
with a generic name (for example, filename). The generic names are skipped for
alphabetization purposes. For example, the error message goofy not responding

is located under hostname not responding among the “n” listings. Common
generic names used in this listing include hostname, interfacename, packet#, version#,
userentry, reason, digit, filename, and hexnumeral.

• If you cannot find an error message in the listing, identify potential fill-in words,
then look up the message without those words.

• Capitalization is not considered in alphabetization.

Note: The lists of error messages in this chapter cover only those unique to IRIX GSN.
Standard system error messages, even when caused by the IRIX GSN code, are not
covered.

Error Messages from the harpd Command

The harpd daemon logs error conditions in two places: into its own log file, and into the
system log.

Into its own logfile harpd writes all error conditions, as well as information pertaining to
a wide variety of normal operational events. This logfile is named
/var/adm/harpd.log by default, but this can be changed by harpd configuration file
commands. Under normal operations, the system administrator need not be concerned
with the contents of the harpd logfile, although it may be of use when inexplicable harpd
error messages are detected in the system log. The harpd logfile’s message formats are
beyond the scope of this manual.

The harpd daemon writes all error messages that may be of interest to the system
administrator into the system log. This section lists only the harpd error messages that
are displayed in the system log.

harpd: invoked with invalid arguments

The harpd daemon was invoked with invalid arguments. For a list of
valid arguments, see the harpd(1M) man page.

Error Messages from the harpd Command

007-3719-003 143

harpd: could not initialize

Global initialization of harpd did not occur. This message is preceded
by more specific error messages indicating the cause of the error.

harpd: DOWN on already-down interface, index %d

The harpd daemon has received a "DOWN" command from the kernel
for a GSN interface that is already down. This causes no problem, but
should not occur.

harpd: got zero IP address from kernel

An ARP_Request request was received from the kernel that contains a
zero IP address. The request is discarded; the error indicates that the
kernel is misbehaving.

harpd: got zero ULA from kernel

An InARP_Request request was received from the kernel that contains a
zero ULA. The request is discarded; the error indicates that the kernel is
misbehaving.

harpd: unknown ioctl from kernel: %d

The kernel passed us a request that originated as a user-level ioctl()
for some program running as root. However, the ioctl type is
unrecognized. This indicates a problem with the originating problem,
not with the kernel. The %d is the unrecognized ioctl command
value.

harpd: reply failed: %s

The harpd daemon processed an ioctl request from the user, and has
tried to send the return status of the ioctl back to the user, but the
ioctl that harpd uses to communicate with the kernel has itself failed.
The %s indicates the reason for the failure.

harpd: kernel ioctl error %d

The harpd daemon processed an ioctl request from the user, and has
sent the return status of the ioctl back to the user. While this ioctl
to the kernel itself succeeded, the kernel found an error in the data of the
ioctl. The %d indicates the error.

144 007-3719-003

4: IRIX GSN Error Messages

harpd: invalid opcode in header

The kernel has sent a command that cannot be parsed. This causes
harpd to abort. The command that caused us to fail is dumped in
hexadecimal in the harpd log.

harpd: shutting down at superuser request

The harpd daemon has received a STOP request from the superuser.
This is the preferred method of terminating harpd.

harpd: internal error with %s

The harpd daemon has detected a serious inconsistency in the data
structures used for IP-to-ULA mapping. harpd continues, but such
inconsistencies should be examined.

harpd: out of table space

The harpd daemon is being asked to record more IP-to-ULA mappings
than it has space to hold. This error indicates that the harpd tables
should be sized larger, or there are extraneous mapping entries that
should be removed.

harpd: invalid index: %d

A request has come from the kernel that refers to an interface that is not
a GSN interface. This indicates a critical misunderstanding between the
kernel and harpd; harpd aborts.

harpd: ioctl op %d failure: %s

For some operations, the kernel’s HARP driver entrusts harpd with
mbuf pointers, which it passes back to the kernel when it is to dispose of
them or transmit their contents. This error indicates that the kernel has
found an error in a harpd command to operate on one of these mbufs.
Since mbuf misbehavior is a critical problem, harpd aborts immediately
after issuing this message.

harpd: ioctl op %d kernel reject: %s

For some operations, the kernel’s HARP driver entrusts the harpd with
mbuf pointers, which it passes back to the kernel when it is to dispose of
them or transmit their contents. This error indicates that the kernel has

Error Messages from the harpd Command

007-3719-003 145

found an error in a harpd command to operate on one of these mbufs.
Since mbuf misbehavior is a critical problem, harpd aborts immediately
after issuing this message.

harpd: caught signal %d

The superuser has sent harpd an unexpected signal. harpd aborts.

harpd: shutting down on SIGINT

The superuser has sent harpd a SIGINT. At this time, harpd calls
exit(0) on the reception of this signal, but this signal has been
reserved for harpd activity.

harpd: shutting down on SIGTERM

The superuser has sent harpd a SIGTERM. harpd calls exit(0) on the
reception of this signal.

harpd: Error with signal %d sigaction: %s

During initialization, harpd calls sigaction() for all signals. This
message indicates that the sigaction() call has failed for signal %d.
The reason for the failure is indicated by %s. harpd calls exit(1) after
printing this message.

harpd: Error on _daemonize: %s

During initialization, harpd calls _daemonize() to daemonize the
process. This message is printed when this system call fails. The reason
for the failure is indicated by %s. harpd calls exit(1) after printing
this message.

harpd: Can’t open interface file %s: %s

The harpd daemon was unable to open the HARP daemon device. The
actual name of the device is given by the first %s; the reason for the
failure is indicated by the second %s. The most common reason for this
failure is “Resource busy," which normally indicates that an instance of
harpd is already running, so a second instance cannot start. harpd calls
exit(1) after printing this message.

146 007-3719-003

4: IRIX GSN Error Messages

harpd: can’t lock memory: %s

During initialization, harpd calls plock() to lock memory. This
message indicates that that call failed. The %s indicates the reason for
the failure. harpd calls exit(1) after printing this message.

harpd: can’t set priority: %s

During initialization, harpd callssetpriority() to lock memory. This
message indicates that that call failed. The %s indicates the reason for
the failure. harpd calls exit(1) after printing this message.

harpd: shared memory version mismatch: we want %5.3f, we found %5.3f

The HARP driver and harpd share a number of tables. For these two
entities to share tables, they must agree upon the table structures. This
message indicates that harpd is looking for a different table structure
than the one being used by the HARP daemon. harpd calls exit(1)
after printing this message.

harpd: INIT ioctl failed: %s

The harpd daemon is responsible for telling the HARP driver to create
shared table space for their mutual use. This message is printed when
the ioctl() used to send this request to the kernel fails. harpd calls
exit(1) after printing this message.

harpd: INIT ioctl error: %s

The harpd daemon is responsible for telling the HARP driver to create
shared table space for their mutual use. This message is printed when
the creation request is rejected by the kernel. harpd calls exit(1) after
printing this message.

harpd: cannot change entry count after first harpd run

After the kernel has reserved table space for the mutual use of the HARP
driver and harpd, harpd cannot request a different table size. This
message indicates that harpd has requested a different table size. harpd
calls exit(1) after printing this message.

Error Messages from the harpd Command

007-3719-003 147

harpd: cannot change bucket count after first harpd run

After the kernel has reserved table space for the mutual use of the HARP
driver and harpd, harpd cannot request a different table size. This
message indicates that harpd has requested a different table size. harpd
calls exit(1) after printing this message.

harpd: can’t mmap harp tables: %s

The harpd daemon uses the mmap call to map the kernel-created shared
mapping table into its address space. This message indicates that the
mmap() call failed. The %s indicates the reason for the failure. harpd
calls exit(1) after printing this message.

harpd: error loading interface data: %s

The harpd daemon was unable to load the kernel’s interface table, which
it needs to determine which GSN devices are valid. The %s indicates the
reason for the failure. harpd calls exit(1) after printing this message.

harpd: no GSN interfaces found on system

The harpd daemon loaded the kernel’s interface table, but found no
configured GSN devices on the system. With no GSN devices, harpd
cannot run. harpd calls exit(1) after printing this message.

harpd: config files errors

Errors were encountered while reading the harpd configuration file.
This message is preceded by specific error messages indicating which
errors occurred. harpd calls exit(1) after printing this message.

harpd: can’t malloc mib

The harpd daemon was unable to use the malloc() command to
allocate enough space for the system’s routing table MIB. harpd calls
exit(1) after printing this message.

harpd: can’t malloc %d bytes

The harpd daemon was unable to use the malloc() command to
allocate enough space for the system’s routing table. harpd calls
exit(1) after printing this message.

148 007-3719-003

4: IRIX GSN Error Messages

harpd: can’t open logfile %s: %s

the harpd daemon was unable to open the logfile. The name of the
logfile harpd tried to open is printed as the first %s; the reason for the
open failure is specified in the second %s. harpd continues after printing
this error, although (obviously) nothing is logged until the daemon can
successfully open a logfile. If multiple, sequential logfile open()
attempts fail, only the first of them results in a syslog error message.

harpd: can’t write to logfile %s: %s

The harpd daemon was unable to write to the logfile. The name of the
logfile harpd currently has open is printed as the first %s; the reason for
the write failure is specified in the second %s. harpd continues after
printing this error, although (obviously) nothing is logged until write
operations begin working. If multiple, sequential logfile write()
attempts fail, only the first of them results in a syslog error message.

Error Messages from the HARP Driver

harp_init: bad sizeof(uint64_t)

The size of the uint64_t type is not 64 bits. This indicates that there is a
fundamental problem in the way the kernel was built; this condition
causes a system panic.

harp_init: bad sizeof(Hmac)

The size of an Hmac is 64 bits. This indicates that there is a fundamental
problem in the way the kernel was built; this condition causes a system
panic.

harp_init: mbufs are too small for us!

A normal mbuf must be able to hold a HARP request. This indicates that
there is a fundamental problem in the way the kernel was built; this
condition causes a system panic.

Error Messages from the HARP Driver

007-3719-003 149

harp_init: can’t make hw device %s: error = %d

One of the required HARP devices cannot be made. Without the HARP
devices, HARP (and any GSN devices) cannot function. This message
indicates that the kernel was not built properly. The error number is the
error returned from hwgraph_char_device_add().

harp_open: process %d opened invalid harp device %lx

The HARP driver was called to open a non-HARP device, which should
never happen. The %d is the process number of the offending process;
the %lx is the address of the invalid device.

harp_close: process %d closing invalid harp device %lx

The HARP driver was called to close a non-HARP device, which should
never happen. The %d is the process number of the offending process;
the %lx is the address of the invalid device.

harp_read: empty queue found, expected data

The HARP driver attempted to satisfy an outstanding read request from
the harp daemon, but found that nothing was queued. This message
indicates that the HARP driver is seriously confused.

harp_write: bad write on gsn%d

In attempting to transfer data from the user to the GSN device, the
HARP driver received an error from the GSN driver. This indicates a
GSN problem that is affecting the GSN driver. There will likely be syslog
messages from the GSN driver when this message occurs. The HARP
driver will print this message only one time for any sequence of write
errors to a particular GSN. This avoids flooding the syslog. If the
message appears multiple times in the syslog, it indicates that between
successive messages, at least one transfer to the GSN driver was
successful.

harp_ioctl: out of mpkt space

The HARP driver contains a pool of data pointers where it stores mbufs
that are (partially) entrusted to the harp daemon. This message
indicates that too many messages have been passed to the daemon
without any instructions from the daemon about their disposal. The
message indicates that the HARP daemon is not keeping up with the

150 007-3719-003

4: IRIX GSN Error Messages

data flow. Messages for which mpkt space cannot be reserved are
dropped. The HARP driver will print this message only one time for
any sequence of mpkt space errors. This avoids flooding the syslog. If
the message appears multiple times in the syslog, it indicates that
between successive messages, at least one packet was successfully
queued for the daemon.

harp_resolve called with IP = 0

The harp_resolve() routine is called by the GSN driver to find a
ULA that matches some specific IP address. This message indicates that
no IP address was provided in the request. The HARP driver will print
this message only one time for any GSN interface. This avoids flooding
the syslog.

harp_invresolve called with ULA = 0

The harp_invresolve() routine is called by the GSN driver to find
an IP address that matches some specific ULA. This message indicates
that no ULA was provided in the request. The HARP driver will print
this message only one time for any GSN interface. This avoids flooding
the syslog.

harp_input: no space in mbuf for Hmac

A HARP packet has been received that is so close to the maximum size
of a default mbuf (MLEN) that there is no room for the 8-byte Hmac
header. HARP packets should not be nearly this large; this error
indicates that invalid HARP packets are being received from the
network.

harp_request: out of mpkt space

The HARP driver contains a pool of data pointers where it stores mbufs
that are (partially) entrusted to the harp daemon. This message
indicates that too many messages have been passed to the daemon
without any instructions from the daemon about their disposal. The
message indicates that the HARP daemon is not keeping up with the
data flow. Message for which mpkt space cannot be reserved are
dropped. The HARP driver will only print this message one time for
any sequence of mpkt space errors; this avoids flooding the syslog. If the

Error Messages from the HARP Driver

007-3719-003 151

message appears multiple times in the syslog, it indicates that between
successive messages at least one packet was successfully queued for the
daemon.

harp_cb_append: queue too big, tossing packets

To limit the problems a misbehaving harp daemon can cause, there is a
limit to the number of messages that the HARP driver will queue
awaiting ingestion by the daemon. This message indicates that this
upper limit has been reached. The message will only appear once in the
logfile for any number of sequential queue-full errors; only after the
daemon has read messages off the queue and the HARP driver once
again reaches the maximum limit will the message be rewritten.

harp_send_mpkts: bad packet family: %d

The HARP driver might have to hold data packets while an IP-to-ULA
mapping is being resolved. This message indicates that one of these
messages, which looked fine when it was saved, does not look so fine
after the address resolution has taken place. Specifically, the address
family of the socket which owns the message is no longer understood.
This message should never occur; it indicates that there is a serious data
inconsistency within the HARP driver.

harp_get: max retries hit

At the core of the HARP driver is its IP-to-ULA mapping table and the
harp_get() routine, which finds the entry that matches a given
mapping request. The harp_get() routine is multi-threaded and is
totally asynchronous from all other HARP driver or HARP daemon
processing. As a result, it is possible (although extremely improbable)
that an IP-to-ULA mapping will change at the very instant that it is
being resolved. To recover from this unlikely event, harp_get()
retries the mapping a large number of times. If it happens that
harp_get() fails for every single one of these attempts, the HARP
driver prints this error message and gives up, returning a "no match
found" error to its caller.

152 007-3719-003

4: IRIX GSN Error Messages

harp_request_init: can’t alloc harp table

The first time the HARP daemon starts, it allocates kernel space for the
various HARP kernel-resident tables. This error indicates that the
HARP driver could not allocate this table space. The HARP daemon
(and all GSN devices) cannot function without this table space.

Error Messages from the gsncntl Command

This section lists gsncntl error messages displayed in the user’s window.

Bad MAC address string

The MAC address entered is not formatted correctly. The error was
detected while parsing the MAC address for the setmac command.

Cannot enable/disable watchdog

The GSN_WATCHDOG_ENABLE ioctl failed.

Cannot get firmware error log mask

The GSN_GET_FWLOG_MASK ioctl failed.

Cannot set firmware error log mask

The GSN_SET_FWLOG_MASK ioctl failed.

Couldn’t get GSN IC Port histogram information

The GSN_GET_IC_HIST ioctl returned an error.

Couldn’t get GSN SSRAM Port histogram information

The GSN_GET_SSRAM_HIST ioctl returned an error.

Couldn’t get GSN ULA

The GSN_GET_DEV_ULA ioctl returned an error.

Couldn’t open GSN device: devicename

An open system call on the specified device failed.

Error Messages from the gsncntl Command

007-3719-003 153

Couldn’t set debug value

The GSN_SET_DEBUG ioctl returned an error

Couldn’t set GSN MAC address

The GSN_SET_PROM_ULA ioctl retuned an error.

Couldn’t set IC Port histogram value

The GSN_SET_IC_HIST_CTL ioctl returned an error.

Error ioctl call failed

The GSN_SHUTDOWN ioctl failed.

Error ioctl call failed

The GSN_STARTUP ioctl failed.

Error reading from SUMAC

The GSN_ADMIN_WRRD ioctl returned an error.

Error writing to SUMAC

The write system call returned an error while writing to the GSN
device.

GSN adapter already has a MAC address programmed

The device has an existing MAC address that is not the same as the one
entered.

GSN_GET_FLASH failed

The GSN_GET_FLASH ioctl returned an error.

GSN_GET_VERSIONS failed

The GSN_GET_VERSIONS ioctl returned an error.

GSN_PGM_FLASH failed

The GSN_PGM_FLASH ioctl returned an error.

154 007-3719-003

4: IRIX GSN Error Messages

GSN production firmware magic header is wrong

The magic number in the PROM firmware to be downloaded is
incorrect. It is probably not SHAC PROM firmware.

Gsngetstate: Error ioctl

The GSN_GET_LAST_STATE ioctl failed.

Gsngetstate: Error ioctl

The GSN_GET_STATE ioctl failed.

Illegal destination timeout value

An illegal timeout value was passed for setting the destination timeout
value (dtimeo command). The value must be less than or equal to 1023.

Illegal prom sector specified: sector

The number of the specified sector exceeds the maximum allowed.

Illegal source timeout value

The stimeo timeout value exceeds the maximum of 1023.

Insufficient number of arguments

An insufficient number of arguments were passed to the command
option.

Invalid MAC address: must start with 8:0:0x69

An SGI MAC address must begin with 8:0:0x69.

Invalid number of arguments

An incorrect number of arguments were entered for this command.

Ioctl call failed

The ioctl GSN_GET_STATS system call for the GSN device returned an
error.

Mask must be a hex number that starts with 0x

The firmware mask should be a hex format number.

Error Messages from the gsntest Command

007-3719-003 155

Mode is out of range: number

The mode exceeds the maximum value allowed.

Packet PID does not match

The packet data returned does not match what was sent out.

Trouble with GSN_ERASE_FLASH might need to shutdown device

The GSN_ERASE_FLASH ioctl returned an error.

Unable to read Sumac Global Parm register

In an attempt to read the SUMAC GLOBAL_PARMS register, the driver
returned an error.

Unable to write Sumac Global Parm register

In an attempt to write the SUMAC GLOBAL_PARMS register, the driver
returned an error.

You’ll run past end of EEPROM!!

The boot code plus firmware exceeds the physical size of EEPROM.

You’ll run past end of sector 0 and clobber the MAC address!!

The SHAC PROM boot code is larger than a PROM sector and will
overrun the next sector.

Error Messages from the gsntest Command

This section lists gsntest error messges displayed in the user’s window.

Accept error

The accept system call returned an error to the loopback receive
process.

clientname: Unspecified client name

No target host address was specified. Using default
SERV_HOST_ADDR defined in gsntest.h.

156 007-3719-003

4: IRIX GSN Error Messages

Data miscompare Exp: hexnumber Act: hexnumber

A data miscompare occurred on the test while in loopback mode.

Error opening device_name for dev access

The open system call on the specified device returned an error. Check
for the existence of the device file.

Error writing to socket

The write system call returned an error while sending data in
loopback mode.

Illegal protocol specified number, test->proto

The protocol specified was not PROTO_TCP, PROTO_UDP, or
PROTO_ST and is not allowed.

Link state is unknown - gsn boot sequence has not completed

Could not determine the link state. The state was not internal loopback,
external loopback, point-to-point, or switch.

option: unknown option - character

The specified option is not recognized. See allowable options listed in
the usage message.

Ping error on hop number (status == hexnumber)

An error was detected after attempting to send an admin packet out the
specified number of hop counts. Check other error messages for
timeouts or unexpected packet responses

Read time-out

A SIGALRM was received by the loopback receive process, indicating a
timeout on a read operation.

Sock open failed --

The socket system call returned an error. Unable to get a socket for this
protocol.

Error Messages from the GSN Driver

007-3719-003 157

Trouble writing

The write from the client side did not write out the requested number
of bytes. The write failed.

Unable to bind to local address

The bind system call returned an error to the loopback receive process.

Unable to connect

The connect system call returned an error on this socket.

Unable to get host name

The gethostname call failed.

Unable to open fd/socket

Thesocket system call returned an error. Unable to get a socket for this
protocol.

Unable to start timer

The gsntest command was unable to start the timer.

Error Messages from the GSN Driver

This section lists the error messages displayed on the system console by the IRIX GSN
utilities and driver and echoed to the SYSLOG file.

Admin pkt NG: cmd = command, status = status in state

An admin command or response packet was received but is being
dropped due to a detected error condition. Possible reasons include bad
packet status or incorrect virtual channel used.

Allocation of xtalk interrupt

A kernel xtalk utility function was unable to allocate interrupt resources
for the xtalk interrupt vector.

158 007-3719-003

4: IRIX GSN Error Messages

Attempting to program flash EEPROM

Informative message that the EEPROM for this device is going to be
flashed in the next step.

Bad ADMIN_READ from SUMAC

An admin read register request was sent to the GSN SUMAC ASIC but
the response from the SUMAC was not correct.

Bad READ_RESPONSE not valid for SUMAC

A read response admin packet was received but is not valid for the
current GSN state.

Bad WRITE_RESPONSE from the SUMAC

An admin write register request was sent to the GSN SUMAC ASIC but
the response from the SUMAC was not correct.

Cable problem

A cable was not detected.

Cannot alloc memory for admin rx

Out of receive descriptor entries for this node.

Cannot get memory for FLUSH PAGE.

An attempt to allocate kernel memory for GSN to use for bufx flush
token target pages failed.

Can’t malloc HARP HW table

The HARP module was unable to allocate memory from the kernel for
the HARP hardware entry table.

Can’t malloc HARP IP table

The HARP module was unable to allocate memory from the kernel for
the HARP IP table.

Check_inventory_info(): hwgraph_inventory_add(number) err: error

A hardware graph utility function returned an error while trying to add
dual xtalk entries to the hardware inventory.

Error Messages from the GSN Driver

007-3719-003 159

Check_inventory_info(): xp1->xp0 hwgraph_edge_add(numbers) err: error

A hardware graph utility function returned an error while trying to add
an edge. It was replacing a single xtalk with dual xtalks and cross linking
the hardware graph edges.

Check_inventory_info(): xp0->xp1 hwgraph_edge_add(numbers) err: error

A hardware graph utility function returned an error while trying to add
an edge. It was replacing a single xtalk with dual xtalks and cross linking
the hardware graph edges.

Check_inventory_info(): xp0 hwgraph_edge_remove(number) err: error

A hardware graph utility function returned an error while trying to
remove an edge. It was replacing a single xtalk with dual xtalks and
cross linking the hardware graph edges.

Check_inventory_info(): xp1 hwgraph_edge_remove(number) err: error

A hardware graph utility function returned an error while trying to
remove an edge. It was replacing a single xtalk with dual xtalks and
cross linking the hardware graph edges.

Check_inventory_info(): hwgraph_inventory_remove (hexnumber) err: error

A hardware graph utility function returned an error while trying to
remove an xtalk entry from the hardware inventory.

CLR_BUFX bad port numb number flags flags

During an attempt to clear transmit bufx table entries, the port table
entry number passed into the current function was not in the range
allowed by SHAC (0-2047).

Could not initialize warm reset propagation mask in SUMAC

An admin write register request was sent to the GSN SUMAC ASIC to
initialize a register but the operation failed.

Desc_dup for number

An error was returned from an attempt to duplicate a device descriptor.
Possible memory allocation problem.

160 007-3719-003

4: IRIX GSN Error Messages

Device_desc_dup() for device failed

While setting up a new xtalk device, a new device descriptor could not
be created. An error was returned during an attempt to create a
descriptor from the current xtalk vertex handle. An EIO error is returned
to the caller.

Did not get RX flush token. f_offset number token number bft hex number

An RX flush token was sent but not received. The maximum number of
flush retires was attempted.

Driver in UNKNOWN STATE.

The GSN link bring up received an admin packet during which the
driver was in an unknown state.

ENOMEM for new_xtalk

The kernel memory allocator is unable to allocate memory for a new
xtalk context.

ENOMEM for qid: number

The kernel memory allocator could not allocate memory pages to
contain this QID area.

Erasing flash EEPROM

Informative message that the EEPROM is being erased.

Erasing flash EEPROM MAC sector

The GSN driver is processing an ioctl to erase the GSN EEPROM MAC
sector for this device. The flash prom will then be written and re-read to
check for errors.

Failed hwgraph add inventory number: under number: number

The hardware graph susbsystem returned an error when the driver
attempted to add the xtalk vertex to the hardware inventory.

Error Messages from the GSN Driver

007-3719-003 161

Failed to add convenience edge string to string

A hardware graph utility function returned an error while trying to add
a graph edge from the convenience edge (/hw/gsn/<devnum>) to the
physical device.

Failed to allocate QID number interrupt

The xtalk interrupt handler could not be allocated for this QID for this
interface. An error was returned by a kernel xtalk interrupt management
function.

Failed to cfg i/f:

An error was detected during an attempt to configure the interface.
Check possible preceding messages for details on the specific error.

Failed to create string: under number

The hardware graph subsystem could not add this GSN character device
node to the /hw tree and returned an error.

Failed to start timer

An attempt to queue a timeout event to the kernel timeout handler
failed.

Failed to start timer

The kernel timeout utility returned an error when called by GSN to set
a link timeout entry for this interface.

Failed to traverse into string: under number

A hardware graph utility function returned an error trying to traverse
the graph from the /hw root to the convenience vertex in the message.

Firmware processor did not finish booting

The firmware processor portion of the GSN adaptor did not finish
booting.

Firmware size or offset = 0

One of the tunables (gsn_firmware_size or gsn_firmware_offset) is zero.

162 007-3719-003

4: IRIX GSN Error Messages

FW BOOTING bit set: FW completely booted

The SHAC control and status register indicates that the SHAC
successfully booted its firmware.

FW BOOTING bit set: FW entered reset

The SHAC control and status register indicates that the SHAC is still
booting its firmware.

FW BOOTING bit set: FW successfully tested

The SHAC control and status register indicates that the SHAC
successfully tested its firmware.

FW did not come out of SSRAM

The EEPROM was reflashed and an attempt was made to reboot the
processor but it did not reboot successfully after waiting past a timeout
period.

Get_num(hexnumber)

An invalid number of SHAC SSRAM FIFO entries was requested during
configuration of the interface.

GSN adapter dynamic loopback unsupported at this time

This is a currently unsupported GSN option.

GSN adapter shutdown unsupported at this time

This is a currently unsupported GSN option.

GSN adapter startup unsupported at this time

This is a currently unsupported GSN option.

GSN cannot alloc memory for admin rx

There are no more receive descriptor entries for this node.

Gsn device: can’t allocate device driver structure

One of several possible errors occurred while trying to set up the
hardware graph information for the device driver.

Error Messages from the GSN Driver

007-3719-003 163

Gsn: intr_connect() number. number. number : number!

An error was encountered while trying to connect the GSN error
interrupt vector.

Gsn_admin_cmd(cmd: command)

An attempt was made to send an admin packet with an invalid cmd
code or an admin packet was received but contains an invalid cmd field
(cmd > ADMIN_MAX_COMMANDS). The check was made while
updating the statistics counters.

Gsn_admin_desc_entries: entries

The tunable parameter, gsn_admin_desc_entries, exceeds the maximum
of MAX_GSN_ADMIN_DESC_ENTRIES or is not a power of two.

Gsn_char_timeout(): number

An attempt was made to start a timeout event for this driver but one is
active already.

Gsn_char_timeout_handler():timeout_id!

The GSN timeout handler was called but the timeout id was zero. There
was no valid timeout event queued.

Gsn_flash_req cmd=command cmd

A GSN function called this function with an unrecognized command
option (cmd).

Gsn_flash_req cmd= hex number???

A GSN function called this function with an unrecognized command
option (cmd).

Gsn_get_dev(): error hexnumber

gsn_get_dev() was called with an illegal flag. The flag is not recognized.

Gsn_ioc_fwlog_mask cmd = hex number???cmd

An unrecognized flag was passed to function gsn_ioc_fwlog_mask
while trying to perform an ioctl command on the firmware processor.

164 007-3719-003

4: IRIX GSN Error Messages

Gsn_ioc_gfx_credits cmd = hex number???cmd

An unrecognized flag was passed to function gsn_ioc_fwlog_mask
while trying to perform a GFX hub credit ioctl.

Gsn_mac_req cmd=command cmd

A GSN function called this function with an unrecognized command
option (cmd).

Gsn_open: add_exit err number

An open of the gsn device failed.

Gsn_qid_per_node: number

The tunable parameter, gsn_qids_per_node, exceeds the limit of
MAX_CPUS_PER_NODE.

Gsn_register_t size: number.number!

An internal driver structure limit has been exceeded. This is a driver
software error.

Gsn_st_if_input: Failed to allocate mbuf for receive descriptor!

The ST portion of the GSN driver failed to allocate an mbuf from the
kernel mbuf allocator.

Gsn_st_if_output: Non VC2,3 Data Op specified

An ST data operation was specified but the virtual channel number is
not correct. IRIX ST data operations must use VC2 or VC3.

Gsn_st_if_txdone: Global credits exceeded number on port number VC number
token hex number

The total system wide transmit credits for this VC have been exceeded.

Gsn_st_if_txdone: received bypass txdone

A txdone interrupt was received for an OS bypass operation.

Error Messages from the GSN Driver

007-3719-003 165

Gsn_st_set_bufx:Misformed Node Group

A memory striped bufx scheme is being used but it was detected that
xtalk ports were not being alternated for each bufx as required.
Correcting this now.

Gsn_st_set_port: string number Could not satisfy bypass tx credit request

This function could not satisfy the request for tx credits from the credit
pools. One or more tx credit pools for the VCs are empty.

Gsn_tx_admin out of tx credits... sending anyway

An admin packet is being prepared to be transmitted but the interface is
out of admin transmit queue credits. Sending anyway.

Gsn_ula_req cmd=command, cmd ioctl

This GSN ioctl is not supported.

HARP server error: downing interface

An error occurred during an attempt to set up the HARP table for this
interface.

Harp_update: invalid PERM case

An error was detected for a HARP permanent entry during a HARP
update operation.

Hwgraph_edge_add (number, number, string) err

The hardware graph subsystem could not add this edge vertex to the
xtalk sister device and returned an error.

Hwgraph_vertex_name_get: name

The hardware graph subsystem returned an error while retrieving the
canonical name of the xtalk vertex from the vertex handle.

IDESC len == 0

An interrupt descriptor shows an mbuf chain of length zero, which is an
error. This was detected during an IP receive interrupt.

166 007-3719-003

4: IRIX GSN Error Messages

IDESC status hex number

Illegal status found in an interrupt packet.

Ifconfig gsnnumber UP

An error occurred during an attempt to set up the HARP table for this
interface.

If_gsn_net_output() unsupported sa_family number

An unrecognized or unsupported address family was specified during
GSN output for this interface. Only AF_INET is supported.

If_gsn_st_input: a ddq entry was missed (seq=number) (ddq_idx=number)

The current ST receive descriptor does not match the current sequence
number for the port. The next receive descriptor does not match either.
Cannot find the correct receive descriptor for this interrupt. Returning
an error to the ifnet layer.

If_gsn_st_input: a ddq entry was skipped (seq=number) (ddq_idx=number)

An ST receive descriptor was skipped because it didn’t match the
current sequence number for the receiving port. The next descriptor
matches and will be used. The result is that one receive descriptor slot
will be unprocessed. This is a workaround for a SHAC edge condition.

Ignoring admin pkt cmd: command, daddr=address

An admin packet was received but will be ignored because of an error
condition.

In error state.

The interface adapter specified has detected an error and is changing to
an error state.

Incorrect manufacturing number: number

The SHAC XT_ID field shows an unrecognized manufacturer’s number.

Incorrect xt_id: partnumber

The SHAC XT_ID field shows an unrecognized widget part number.
Cannot determine the widget type.

Error Messages from the GSN Driver

007-3719-003 167

Init Node Array: Xtalk device not attached

An attempt was made to configure an xtalk but the GSN device structure
(gsn_dev_s) for this interface does not find it connected.

Interface has more aliases then the st_ifnet can handle - limiting.

The maximum number of interface aliases has been exceeded. The
actual number of aliases will be limited. The maximum number is
compiled into the kernel and cannot be changed.

Interface usable.

The driver state has transitioned to GSN_STATE_LINK_USABLE.

Intr_connect() numbers

A kernel xtalk utility function was unable to connect previously
allocated xtalk interrupt resources with its handler.

Invalid config: SSRAM mbuf entries sm = value, lg = value

One of the tunables does not fall into the allowable ranges. Both values
will be set to the defaults.

if_gsn_small_mbuf_entries must be between zero and
MAX_SSRAM_IP_RX_SMALL_ENTRIES, inclusively.

or

if_gsn_large_mbuf_entries must between zero and
MAX_SSRAM_IP_RX_LARGE_ENTRIES, inclusively.

Invalid config: SSRAM mbuf offsets,value1, value2

One of the tunables exceeds the limit. Either if_gsn_small_mbuf_offset
is greater than GSN_SSRAM_UPPER_BOUND or
if_gsn_large_mbuf_offset is greater than
GSN_SSRAM_UPPER_BOUND. Both values will be set to the defaults.

Link startup error

An error occurred during an attempt to set up the HARP table for this
interface.

Link Timeout with switch negotiate

The interface went into the BRING_UP_LINK state and tried to do a
ULA_REQUESTED operation on a switch but timed out.

Local interface not usable - VC1 flow controlled due remote
interface.ifconfig down/up when remote problem is cleared.

The number of entries in the admin packet transmit queue has been
exceeded. A likely cause is VC1 being flow controlled by the remote
interface. An ifconfig up/down may clear the problem when the remote
interface recovers.

Misconfig of h2f fifo, offset = offset, entries = entries

Because one of the tunables (gsn_h2f_offset or gsn_h2f_entries) is zero
or an illegal value, H2F FIFO configuration is skipped.

No firmware will be configured

The tunable parameter, gsn_firmware_offset, exceeds the limit. It must
be less than GSN_SSRAM_UPPER_BOUND. Firmware offset and size
are being set to null.

No H2F will be configured

The tunable parameter, gsn_h2f_offset, exceeds the limit. It must be less
than GSN_SSRAM_UPPER_BOUND. Host to firmware FIFO
configuration values are being set to null.

No IP TX FIFO as number

Because one of the tunables (if_gsn_ip_tx_desc_offset or
if_gsn_ip_tx_desc_entries) is zero, IP will not be set up.

No read interface.

There is no direct read interface available for this device.

No ST vc configured

The ST virtual channel has not been configured. SSRAM FIFO setup is
skipped.

Error Messages from the GSN Driver

007-3719-003 169

No write interface.

There is no direct write interface available for this device.

Not compiled w/ GSN_DEBUG, ignoring

A GSN ioctl was issued for a debug capability that requires that the GSN
driver be compiled with the GSN_DEBUG debug flag. The ioctl will be
ignored.

Other end inactive. Waiting for other side to come up

An admin packet was received but indicates that the other side is
inactive.

Part number not defined in PROM

GSN board part numbers known to the driver were not found in the
PROM.

Pio_base

The base address pointer of the PIO mapped SHAC address area is null.
The error was found during verification of PIO mappings for this
interface.

Processed more ST than Total idesc???: number. number!

An unknown interrupt descriptor type was detected while handling a
GSN interrupt.

Received gsn_admin_cmd(cmd: number)

An admin packet was received but contains an invalid cmd field (cmd >
ADMIN_MAX_COMMANDS). The check was made while updating
the statistics counters.

Remote end report UNDEFINDED ELEMENT. Using Point <-> Point.

The remote endpoint responded during a negotiate link process but the
element type is neither a switch nor a link end element. The endpoint
type is an undefined type.

170 007-3719-003

4: IRIX GSN Error Messages

Remote end reports UNKNOWN ELEMENT TYPE. Using Point <-> Point.

The remote endpoint responded during a negotiate link process but the
element type is neither a switch nor a link endpoint. The remote element
type is of type UNKNOWN_ELEMENT.

Remote END-POINT not responding

The interface went into the BRING_UP_LINK state and tried to find a
link end point but failed.

Remote hardware not responding

The interface went into the BRING_UP_LINK state and tried to find a
HIPPI end point but failed.

Remote says it is INACTIVE

An admin packet was received but indicates that the remote unit is
inactive.

Response timeout

The GSN interface state is being changed to GSN_STATE_TIMEOUT.

RX_FLUSH bad port numb number flags flags

During an attempt to clear receive bufx table entries, the port table entry
number passed into the current function was not in the range allowed
by SHAC (0-2047).

RX not flushing: base hex number token number f_offset number bft hex number
mask hex number port number cpu number

The maximum number of bufx flush token tries has been attempted
without success. The ST driver was not successful in flushing in-flight
incoming data.

Setting ST vc[number] size=0,was number, offset=hexnumber, was hexnumber

An initialization error was detected during driver bootup while
addresses and entry sizes were being assigned for the ST transmit FIFO
for this virtual channel. Assignments for this virtual channel are being
set to zero.

Error Messages from the GSN Driver

007-3719-003 171

Set_unit_number failed!

An error was returned from a GSN driver utility function used to set the
adaptor unit number.

Setup_fifo_regs

An error was discovered while checking SSRAM address alignment for
FIFO entries during interface configuration.

Shac 1.0 is installed.

An old revision of the SHAC ASIC in the GSN adapter that is no longer
supported has been detected.

SSRAM already initialized

An attempt was made to initialize SSRAM more than once.

string string timeout - Resetting Sumac

There was a VC full or RX tail timeout error detected. Resetting the
SUMAC to recover.

Sumac was not brought out of string chip_reset by fw

The SUMAC ASIC in the GSN adaptor was not reset by the firmware
processor portion of the adaptor, indicating a possible problem.

The tunable gsn_ssram_profile is outside the legal range 0 to number.
Setting gsn_ssram_profile = 0.

The gsn_ssram_profile tunable is an invalid number. The SSRAM profile
used will be the default (profile 0).

Too many refcnt: number

An attempt was made to delete a hardware graph vertex but the graph
was not accessible after several retries. GRAPH_IN_USE was returned
from the hardware graph subsystem.

Transition from state to unknown state state

The GSN driver attempted to change to an undefined or illegal state.

172 007-3719-003

4: IRIX GSN Error Messages

TX flush did no progress on VC vc Port port Aborting tx flush

During an attempt to clear and flush a range of transmit bufx table
entries, the driver detected no progress after a period of time.

TX flush timeout on VC vc Port port Aborting tx flush

During an attempt to clear and flush a range of transmit bufx table
entries, the timer for this event expired after multiple tries.

Unable to select CPU from master node for error interrupt

An error occurred during an attempt to configure the error interrupt
handler for SHAC errors on this interface. An error was returned from
the hardware graph subsystem during an attempt to traverse the graph
from the I/O vertex to a CPU.

Unable to select CPU from master node for error interrupt

A kernel hardware graph function returned an error while trying to
traverse the hardware graph from the master node vertex to a CPU. No
CPU vertex could be found on that node.

Unable to send Admin Reset packet

While the interface was being configured, an error was encountered
when an admin reset packet was sent to the SUMAC.

Unable to shutdown RX cleanly.

An error was encountered while trying to shut down receive and
transmit activity. The driver was in the process of error recovery and
tried to shut down receive processing.

Unexpected part number, Expected: string Got: string There might be a
mismatch between the driver and hardware

An unexpected GSN adaptor part number was encountered while
probing the adaptor. Check for mismatches between the GSN adaptor
hardware revision number on the driver revision.

Unknown device: device

An attempt was made to close a GSN device with a dev_t structure that
did not contain a good GSN_DEV_TAG. This dev_t struct does not point
to a GSN device.

Error Messages from the GSN Driver

007-3719-003 173

Unknown ioctl: ioctl

This GSN ioctl is unrecognized. Returning an EINVAL error.

Unrecognized i-desc type: number

A packet was received by this interface with an unrecognized i-desc
type.

Verify_pio_addr_offset pio: hex number!

GSN utility function gsn_verify_pio_addr_offset returned an error
indicating that there was an xtalk related address that was not correctly
set up.

Vertex(device): no pio_map

An error was encountered during an attempt to set up PIO mapping for
an xtalk device for this interface. An EIO error is returned to the caller.

Vertex(number.number): no pio addr!

A sanity check showed that the PIO address for an xtalk was not set up
correctly.

Watchdog timeout: number

The watchdog timer for this interface has exceeded the maximum tries
to determine that the link is in an up or usable state. Resetting the state
to reflect a watchdog timeout.

XT 0 node has no QID!

This interface has no interrupt queue available. The error was found
during setup of interface for receiving and transmitting of admin
packets.

Xwidget_driver_register

An attempt to register a driver on an xtalk port failed.

Xwidget_error_intr(hexnumber, number, hexnumber, hexnumber)

An error interrupt was received by one of the widget error interrupt
handlers. This particular widget error interrupt handler receives errors
reported by the xbow or hub.

174 007-3719-003

4: IRIX GSN Error Messages

Xwidgetnum: numbers for number

While setting up interrupt handling for the interface an error was
detected. The xtalk widget number in the interrupt resource handle does
not match the destination widget number for this node.GSNadmin_3.ps

007-3719-003 175

Glossary

bridging switch

A node that connects two different sections of a HIPPI/GSN network. The two sections
can be two different fabrics (such as GSN and HIPPI-800) or two similar sections (such
as two groups of GSN endpoints). The node complies with the following:

• provides broadcasting by using the IEEE 802.1d spanning tree algorithm and
protocol

• uses the complete 6-byte destination ULA for path selection

• complies with the IEEE 802.1d algorithms for its automatic path-select
configuration

destination

The receiving element located at the other end of a physical link. An upper-layer entity
(host, network-layer interface, or program) that uses the GSN subsystem is sometimes
loosely referred to as the destination; however, it is more correct to call these software
entities upper-layer protocols (that is, destination ULPs). A “final destination” refers to
the element that is the ultimate receiver for a micropacket; an element that receives then
retransmits the micropacket (for example, a switch) is simply a destination.

element

Any component of a HIPPI-6400 fabric or system that is able to receive, process, and send
HIPPI-6400 Admin micropackets in a manner that conforms with the HIPPI-6400
standard. Each HIPPI-6400 port on an element contains both a source and a destination.
For example, the SuMAC chip in an SGI GSN product is a single-port HIPPI-6400
element.

endpoint

A final destination or an originating source of GSN traffic. An endpoint may have only
one GSN port. A single system may have many endpoints (for example, an Origin
module with two SGI GSN products has two endpoints).

176 007-3719-003

Glossary

fabric

All the HIPPI nodes (switches, endpoint devices, extenders) that are physically
interconnected and speak the same physical-layer protocol. For example, a GSN fabric is
a separate entity from a HIPPI-800 fabric.
One GSN fabric can be logically divided into multiple upper-layer address spaces (that
is, networks or LISs). For example, a single GSN fabric can support multiple IP networks.
Conversely, one logical network can include members from multiple HIPPI fabrics. For
example, an IP network can include members from a GSN (HIPPI-6400) fabric as well as
members from a HIPPI-800 fabric.

hardware device name

The string of characters and numerals used to identify a specific item of hardware. This
string is assigned by the operating system, and is not configurable. The hardware names
for the components/devices in a system can be displayed with the hinv command. For
the SGI GSN hardware, this name has the format gsn0, gsn1, gsn2, and so on. See
“Assignment of Unit Numbers to Hardware” in Chapter 1 for details on how the
numbers are assigned to each hardware device (port).

HARP service

A logical IP subnet (LIS) service that provides address resolution for IP hosts operating
over a HIPPI fabric. The service conforms with the proposed HARP RFC. When the
HIPPI fabric supports broadcasting, every IP host provides the service by responding to
address resolution requests that are addressed to it. If the GSN fabric does not support
broadcast, certain hosts provide the service by maintaining HARP tables and answering
address requests from the other hosts (clients) of the LIS.

hop count

A number used in HIPPI-6400 Admin micropackets to indicate through how many
elements the micropacket should be forwarded. Each time a micropacket exits an
element, the hop count is decremented by one. See “GSN Admin Micropackets” on
page 19 for further details.

hostname

The string of characters and/or numerals used to identify a specific instance of an
operating system (that is, a UNIX host). This string is completely customer-configurable;
it is created by editing the /etc/sys_id file.

Glossary

007-3719-003 177

INET address

Internet address, and frequently referred to as IP address or IP/ST address. A
globally-unique 32-bit number used to identify a network-layer entity that speaks one of
the DARPA Internet protocols (for example, TCP, UDP, ICMP) or another supported
protocol, such as Scheduled Transfer (ST). This address is completely
customer-configurable, but assigned in blocks by a globally-recognized address
authority, such as the National Science Foundation’s InterNIC. In IRIX, this address is
mapped to a network interface name by editing the /etc/config/netif.options
file. See the network connection name glossary entry for a user-friendly name for this
address.

initiator

The ST endpoint that sends the first operation within an ST sequence. The endpoint that
acts as initiator during one sequence (for example, the connection setup) can act as the
responder in a subsequent sequence (for example, the data movement).

LIS

See logical IP subnet.

logical IP subnet

Also known as LIS. A globally-known (public) logical address space that is defined by an
INET network address and a subnet mask. The basic methodology of an LIS is similar to
subnet, at the local (site) level; however, the consequences for routing are quite different
for the two methodologies. Refer to “Classless Inter-domain Routing” RFC 1519. Also see
subnet and subnet mask.

netmask

See subnet mask.

network connection name

Sometimes referred to as alias for IP address or (incorrectly) as hostname. The string of
characters and/or numerals used as a user-friendly method for identifying a specific
network-layer entity; the string is an alternate (alias) for an INET address. This string is
completely customer-configurable; it is created and mapped to an INET address in the
/etc/hostsfile; it can be used in the/etc/config/netif.optionsfile to configure
a network interface. By convention, the network connection name includes the system’s
hostname. For example, a system with the hostname granite might have network
connection names of granite-ef0.rocks.com and granite-gsn0.rocks.com.

178 007-3719-003

Glossary

network interface name

The string of characters and numerals used to identify a specific logical network-layer
interface (sometimes known as an if_net instantiation). This string is assigned by the
operating system and tied to a specific hardware subsystem; it is not customer
configurable. For the IRIS GSN product, this name has the format gsn0, gsn1, gsn2, and
so on. The network interface name is mapped to a configurable network-layer (for
example, INET) address by the /etc/config/netif.options file. See “Assignment
of Network Interface to Hardware Device” in Chapter 1 for details on how the numbers
are assigned to each GSN network interface.

operation

The ST protocol data unit. It is composed of a 40-byte header and variable-length data
ranging from 0 bits to 4 gigabits (illustrated in Figure 1-13). Each ST operation is
transmitted as one GSN Message, as illustrated in Figure 1-13.

physical link

One section of HIPPI-6400-PH transmission medium (copper or fiber-optic cable) that
connects two HIPPI-6400-PH elements. Each element can be either a switch or an
endpoint. Each physical link is a full-duplex link composed of two simplex links; each
simplex link carries data in only one direction. The two streams of data in the full-duplex
link flow in opposite directions. The path (virtual connection) between an original point
of transmission (the originating source) and a final point for reception (the final
destination) can involve numerous physical links.

responder

The other (not the initiator) ST endpoint participating in an ST sequence.

sequence

In the context of the ST protocol, a series of operations that occur in a specific order and
accomplish an ST protocol task.

slot

Memory at an ST destination that is reserved for holding one incoming ST Header.

Glossary

007-3719-003 179

source

The transmitting element located at one end of a physical link. An upper-layer entity
(host, network-layer interface, or program) that uses the GSN subsystem is sometimes
loosely referred to as the source; however, it is more correct to call these software entities
upper-layer protocols (that is, source ULPs). An “originating source” refers to the
element that first transmitted a micropacket; an element that is retransmitting the
micropacket (for example, a switch) is simply a source.

subnet

Also called subnetwork. A site-defined (private) address space that is carved from a
globally-assigned (public) INET network address space. A subnet mask is used to divide
the INET network address into many subnets. See subnet mask.

subnet mask

Also called netmask. A customer-configurable value for increasing the number of bits
within an INET address that are used for network (netid) identification. The netid is
increased by taking 1 or more bits from the host portion (hostid) of the INET address and
using them as additional network bits. For example, a basic INET class C address consists
of 24 bits of netid and 8 bits of hostid. A site can use a subnet mask to alter their addresses
so that 28 bits are used to identify the network and only 4 bits are used to identify hosts.
Use of a subnet mask allows one INET network address to be subdivided into multiple
networks (called subnets). A basic class C address allows a site to have up to 254 hosts on
one network. If a site increases its netid to 28 bits, it can have up to 15 hosts on each of 16
different networks (subnets).
Within a subnet mask, the bits set to 1 specify the portion of the address used to identify
networks, while the bits set to 0 identify the hosts. For example, netmask 0xFFFFFF80
(hexadecimal) provides 25 bits of netid and 7 bits of hostid, while 0xFFFFFFF0 provides
28 bits of netid and 4 bits of hostid. The default netmask for IRIX is 0xFFFFFF00. This
default can be changed for each network interface by editing the appropriate
/etc/config/ifconfig-#.options file.

switch

A node that is located along the route between two endpoints. GSN traffic passes
through the switch on its way to a destination endpoint. A switch must have at least two,
and usually has numerous, GSN ports.

180 007-3719-003

Glossary

unit number

The numeral portion of the hardware device name. See “Assignment of Unit Numbers to
Hardware” on page 65 for a description of how these are assigned.

universal LAN MAC address (ULA)

Also known as a MAC (media access control) or ethernet address. A globally-unique
48-bit IEEE 802-style number used to identify a hardware device. The highest bits (that
is, 47 to 24: the Organizationally Unique Identifier) are assigned by the
globally-recognized address authority, IEEE. The lower 24 bits are assigned by the local
organization that has been given (assigned) the OUI.

007-3719-003 181

Index

A

address discovery, 15
address resolution. See HARP
Admin micropacket. See micropacket

B

broadcast address, 86
broadcast support, 60
buffer configuration for improved TCP/IP

performance, 85, 87

C

commands
apropos, xix
/etc/init.d/gsn script, 96
grelnotes, xx
ifconfig, 96
infosearch, xx
man, xviii
netstat, 96
ping, 96
relnotes, xx
summary of GSN, 95
ttcp, 96
/usr/etc/gsnarp, 95
/usr/etc/gsncntl, 95
/usr/etc/gsntest, 96

compatibility, 5, 6
configuration of

address space for LIS, 84
buffer allotment, 87
buffer sizes, 85
interrupt frequency, 87
IP network interface, 73-74, 78
LIS, 84
MTU, 87
netmask, 84
reception buffers, 87

control bits, 12
credits, 17
customer support, xxi

D

destination, 8
documentation

additional, xv
list of GSN documents, xvi
order paper-copy, xix
via InfoSearch, xx
via the World Wide Web, xviii, xix

driver configuration file. See
/var/sysgen/master.d/gsn

182 007-3719-003

Index

E

element
definition, 7
hop count, 20, 113
ports on, 19, 114
status, 113

endpoint, 8
error message alphabetization rules, 141
error message log file, 141
error messages

from the GSN driver, 157
from the gsncntl command, 152
from the gsntest command, 155
from the HARP driver, 148
from the harpd command, 142

/etc/config/harpd.options file, 81
/etc/config/ifconfig-#.options file, 84, 86
/etc/config/netif.options file, 74, 88
/etc/hosts file, 74, 83
/etc/init.d/gsn script, 96

F

fabric
definition, 8
definition of broadcast support, 60
discover configuration of, 15

files
driver configuration. See

/var/sysgen/master.d/gsn
error message file, 141
IP configuration files. See /etc/hosts,

/etc/config/netif.options, and
/etc/config/ifconfig-#.options

log messages, 141
/usr/adm/SYSLOG, 141

flow control for GSN, 17

G

grelnotes, xx
gsn file. See /var/sysgen/master.d/gsn
GSN product names, 5
GSN protocol

bit rate, 9
control bits, 12
data rate, 9
description, 7-18
flow control. See flow control for GSN
Message format, 18
micropacket. See micropacket
PDU, 12
virtual channels. See virtual channel

gsn script. See /etc/init.d/gsn
GSN standards, 4
gsnarp command. See /usr/etc/gsnarp
gsncntl command. See /usr/etc/gsncntl
gsntest command. See /usr/etc/gsntest

H

hardware address. See ULA
hardware assignment to network interface, 65-68
hardware checksumming, 87
hardware graph, 65
hardware loopback, 99
hardware number assignment, 65
HARP

decision tree for configuration, 76
description, 59-63
description with/without fabric broadcast

support, 60
RFC, 5
server selection, 64
static entries to HARP table, 63

007-3719-003 183

Index

HARP network stack, 3
HARP service

with broadcasting, 60
without fabric support for broadcasting, 60

HARP table
description, 64
maintenance, 64

harpd command, 78
help, xxi
hinv command. See /sbin/hinv
HIPPI-6400. See GSN
hop count use, 20
host name, 83
hosts. See /etc/hosts file
how to

change static entries in HARP table in real time, 77
configure specific items. See configuration of
disable hardware checksums, 87
display current address being used to contact

HARP server, 126
display current HARP lookup table, 127
display status information, 103, 122
enable hardware checksums, 87
enable/disable the IP network interface, 98
improve performance, 85, 87
increase number of network interfaces, 89
install a loopback link, 129
maintain IRIS GSN subsystem, 96-136
map hostnames to ULAs, 78
map IP addresses to ULAs, 78
monitor IP traffic, 125
monitor IRIS GSN subsystem, 96-136
monitor ST traffic, 125
reset hardware, 98
select HARP server, 64
subnetwork an INET address, 84
troubleshoot an IP network interface, 137
tune interrupt generation, 87
tune latency, 87

verify presence of board in hardware inventory,
130

verify that IP is enabled, 137
verify the GSN hardware, 130-133
verify the IP network interface, 133-??
verify the IRIS GSN subsystem, 130-??

HUB ASIC and GSN, 6

I

IEEE address, 63
ifconfig command. See /usr/etc/ifconfig
ifconfig-#.options file. See

/etc/config/ifconfig-#.options

ifnet name for GSN, 5
image name for GSN, 5
INET address, 51, 78, 83
InfoSearch, xx
internal loopback, 99
interrupt tuning, 87
IP checksumming, 87
IP traffic statistics, 125
IP-over-GSN interface name, 5
IP-over-GSN network stack, 3
IRIX and GSN compatibility, 5
I-field, 63

L

LIS
configure address space for, 84
description, 51-57
relationship to netmask, 52
relationship to subnetworking, 52

locating reference (man) pages, xviii, xix

184 007-3719-003

Index

log file, see files
loopback, 99, 130

M

MAC address, 63
maintaining GSN subsystem, 95
man pages, xviii, xix
micropacket

Admin, 15, 16, 19-24
control bits, 12
definition, 12
PDU, 12
types of, 14

monitoring GSN subsystem, 95
MTU configuration, 87

N

names for GSN products, 5
netif.options. See

/etc/config/netif.options file
netmask, 78, 86

configuration, 52, 84
definition, 52
relationship to LIS, 52

netstat command. See /usr/etc/netstat
network connection name, 83
network interface

assignment to hardware device, 65-68
maximum number, 89
name for GSN interfaces, 5
number assignment, 65

network stacks for GSN, 3

O

onboard loopback, 99
online document viewers
grelnotes, xx
iiv, xviii
infosearch, xx
IRIS InSight, xviii
man, xviii
relnotes, xx

P

performance tuning, 85, 87
physical link, 7
ping command. See /usr/etc/ping
product support, xxi

R

reception buffers, 87
reference pages. See man pages
relnotes, xx
reset, 98
RFC 1323, 85
route metric, 78, 86

S

/sbin/hinv command, 100, 130
Silicon Graphics customer support, xxi
simplex link, 7
software image name for GSN, 5
source, 7
ST protocol description, 24-48

007-3719-003 185

Index

ST standards, 4
ST traffic statistics, 125
standards compliance, 4
status information, 103, 104
status reports, 103, 104, 122
ST-over-GSN interface name, 5
ST-over-GSN network stack, 3
subnetworking and the LIS, 52
SuperHIPPI. See GSN
switch, 8
SYSLOG file, 141
SYSLOG file, see /usr/var/adm/SYSLOG

T

technical assistance center, xxi
Technical Publications Library, manuals on the

World Wide Web, xix
testing procedures, 130
ttcp command. See /usr/etc/ttcp
tuning, 87

U

ULA
discovery, 15
HARP client, 63

unit number assignment
for GSN ports, 65

/usr/adm/SYSLOG file, 141
/usr/etc/gsnarp command, 77, 95
/usr/etc/gsncntl command, 95
/usr/etc/gsntest command, 96, 131
/usr/etc/ifconfig command, 78, 96, 98
/usr/etc/netstat command, 96

/usr/etc/ping command, 96, 133
/usr/etc/ttcp command, 96
/usr/var/adm/SYSLOG file, 141
utilities, 96

V

/var/sysgen/master.d/gsn file, 87
verifying the IRIS GSN subsystem, 130-??
virtual channel

definition, 10
type of data carried by each, 11

W

World Wide Web
obtaining manuals via, xviii, xix
URL for SGI, xix

