
MIPSproTM Fortran 90 Commands and
Directives Reference Manual

007–3696–005

COPYRIGHT
© 1997 - 1999, 2002 - 2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated
elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, IRIX, Onyx2, and Origin are registered trademarks and ProDev, SpeedShop, and OpenMP are
trademarks of Silicon Graphics, Inc. in the United States and other countries worldwide. Portions of this publication may have been
derived from the OpenMP Language Application Program Interface Specification.

MIPSpro, R4000, and R5000 are registered trademarks of MIPS Technologies, Inc. MIPSpro is used under license by Silicon Graphics,
Inc. UNIX and the X device are registered trademarks in the United States and other countries of The Open Group. UNICOS,
UNICOS/mk, and CF90 are registered trademarks of Cray, Inc.

Cover design by Sarah Bolles, Sarah Bolles, Design, and Dany Galgani, SGI Technical Publications.

New Features in this Document

This manual describes the commands and directives supported by the MIPSpro
Fortran 90 compiler that runs on IRIX systems. New features for this release include
the following:

• The -u option as been reinstated and is described in Chapter 2.

007–3696–005 iii

Record of Revision

Version Description

3.0 August 1997
Original Printing. This printing supports the MIPSpro 7 Fortran 90
compiler, release 7.2, running on IRIX systems.

3.0.2 March 1998
This revision supports the MIPSpro 7 Fortran 90 compiler, release
7.2.1, running on IRIX systems.

003 April 1999
This release supports the MIPSpro 7 Fortran 90 compiler, release
7.3, running on IRIX systems.

004 September 2002
This release supports the MIPSpro Fortran 90 compiler, release 7.4,
running on IRIX systems version 6.5 and later.

005 June 2003
This release supports the MIPSpro Fortran 90 compiler, release 7.4.1,
running on IRIX systems version 6.5 and later.

007–3696–005 v

Contents

About This Manual . xix

Related Publications . xix

Compiler Messages . xx

Compiler Man Pages . xx

Related Fortran Publications . xxi

Obtaining Publications . xxi

Conventions . xxii

Reader Comments . xxii

1. Introduction . 1

The f90(1) Command . 1

The Compiler Programming Environment 2

2. The F90 Command Line 5

f90 command line options . 6

3. General Directives . 17

Using Directives . 17

Directives and Command Line Options 18

Directive Range . 19

Directive Continuation and Other Considerations 19

LNO Directives . 19

Symbol Storage Directives . 21

Control Symbol Alignment and Padding 21

Declare a Synchronization Point 23

007–3696–005 vii

Contents

Specify Global Pointer Use . 24

Inlining and IPA Directives . 24

4. OpenMP Fortran API Multiprocessing Directives 27

Using Directives . 28

Conditional Compilation . 30

Parallel Region Constructs . 31

Work-sharing Constructs . 31

Combined Parallel Work-sharing Constructs 33

Synchronization Constructs . 33

Data Environment Constructs 35

Data Scope Attribute Clauses 35

Directive Binding . 36

Directive Nesting . 37

5. CF90 Directives . 39

Using Directives . 39

Directive Continuation . 40

Directive Range and Placement 40

Interaction of Directives with the -x Command Line Option 41

Checking Array Bounds . 41

Specifying Source Form . 42

Creating Identification String . 43

Ignoring Dummy Argument Type, Kind, and Rank 45

Ignoring Vector Dependencies 46

Mapping External Names . 49

Inhibiting Loop Interchange . 49

Determining Register Storage . 50

viii 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Designating a Nest to Task . 51

Tasking Directives . 52

Unrolling Loops . 52

6. Source Preprocessing 55

General Rules . 55

Directives . 57

#include Directive . 57

#define Directive . 58

#undef Directive . 59

(Null) Directive . 59

Conditional Directives . 60

#if Directive . 60

#ifdef Directive . 61

#ifndef Directive . 62

#elif Directive . 62

#else Directive . 62

#endif Directive . 62

Predefined Macros . 63

7. Interlanguage Calling 65

External and Public Names . 65

Fortran Treatment of External and Public Names 66

Calling a Fortran Subprogram from C 67

Calling a C Function from Fortran 67

Correspondence of Fortran and C Data Types 68

Corresponding Scalar Types 68

Corresponding Character Types 69

Unsupported Array Arguments 70

007–3696–005 ix

Contents

How Fortran Passes Arguments 70

Calling Fortran from C . 71

Calling a Fortran Subroutine from C 72

Calling a Fortran Function from C 73

Calling C from Fortran . 75

Calls to C Functions . 75

Using Fortran Common Blocks in C Code 77

Using Fortran Arrays in C Code 78

Calls to C Using LOC and %VAL 79

Using %VAL . 79

Using LOC . 80

Calling Assembly Language from Fortran 80

8. The Auto-Parallelizing Option (APO) 81

f90(1) Command Line Options That Affect APO 83

-apo . 83

-apokeep and -apolist . 83

-flist . 84

-IPA:... 84

-LNO:... 84

-O3 . 85

-OPT:... 85

file . 86

Files . 86

The file.list File . 87

The file.w2f.f File . 87

About the .m and .anl Files 89

Running Your Program . 90

x 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Troubleshooting Incomplete Optimizations 90

Constructs That Inhibit Parallelization 91

Loops Containing Data Dependencies 91

Loops Containing Function Calls 92

Loops Containing GO TO Statements 93

Loops Containing Problematic Array Constructs 93

Loops Containing Local Variables 94

Constructs That Slow Down Parallelized Code 95

Parallelizing Nested Loops 96

Parallelizing Loops with Small or Indeterminate Trip Counts 97

Parallelizing Loops with Poor Data Locality 98

Compiler Directives . 100

!*$* ASSERT CONCURRENT CALL 101

!*$* ASSERT DO (CONCURRENT) 103

!*$* ASSERT DO (SERIAL) 104

!*$* ASSERT DO PREFER (CONCURRENT) 104

!*$* ASSERT PERMUTATION (array_name) 105

!*$* NO CONCURRENTIZE and !*$* CONCURRENTIZE 106

Appendix A. Libraries 109

Miscellaneous Library Routines 110

Library Functions . 111

Compatibility with sproc(2) . 118

Index . 119

007–3696–005 xi

Figures

Figure 8-1 Files Generated by the ProDev Automatic Parallelization Option 82

007–3696–005 xiii

Tables

Table 7-1 Corresponding Fortran and C Data Types 68

Table A-1 Summary of System Interface Library Routines 111

007–3696–005 xv

Examples

Example 3-1 Controlling symbol alignment and padding 22

Example 3-2 Inlining . 26

Example 4-1 OpenMP fixed source form 29

Example 4-2 OpenMP free source form 29

Example 5-1 Data Dependency: non-loop-carried 46

Example 5-2 Data Dependency: IVDEP directive 47

Example 5-3 Data Dependency: broken dependence 47

Example 5-4 Data Dependency: IVDEP broken dependence 47

Example 5-5 IVDEP and non-loop-carried dependence 48

Example 5-6 OPT:cray_ivdep 48

Example 5-7 IVDEP and dependence 48

Example 7-1 Argument passing 70

Example 7-2 Argument passing (continued) 71

Example 7-3 Calling Fortran from C 72

Example 7-4 Calling Fortran from C (continued) 72

Example 7-5 Calling Fortran functions 74

Example 7-6 Calling functions 74

Example 8-1 APO OPT example 86

Example 8-2 file.list and APO 87

Example 8-3 APO and .w2f.f file 88

Example 8-4 Parallelizing nested loops 96

Example 8-5 Parallelizing nested loops (continued) 96

Example 8-6 Distribution of iterations 99

007–3696–005 xvii

Contents

Example 8-7 Two nests in sequence 99

Example 8-8 ASSERT CONCURRENT (illegal use) 102

Example 8-9 ASSERT DO . 104

Example 8-10 ASSERT DO PREFER 105

Example 8-11 ASSERT PERMUTATION 106

xviii 007–3696–005

About This Manual

This manual describes the commands and directives for using the MIPSpro Fortran 90
compiler. This book is organized into the following chapters:

• Chapter 1, "Introduction", page 1, introduces the content of the manual and
provides a general description of the compiler.

• Chapter 2, "The F90 Command Line", page 5, provides an overview of the f90(1)
command, which you use to invoke the compiler. For complete details about
using the compiler, see the f90(1) man page.

• Chapter 3, "General Directives", page 17, introduces the compiler directives and
describes the general compiler directives recognized by the compiler.

• Chapter 4, "OpenMP Fortran API Multiprocessing Directives", page 27, describes
the OpenMP Fortran API multiprocessing directives.

• Chapter 5, "CF90 Directives", page 39, describes CF90 compiler directives that are
also supported by the compiler.

• Chapter 6, "Source Preprocessing", page 55, describes the source preprocessor.

• Chapter 7, "Interlanguage Calling", page 65, describes the interlanguage calling
conventions used when calling a C/C++ function from a Fortran procedure and a
Fortran procedure from a C function.

• Chapter 8, "The Auto-Parallelizing Option (APO)", page 81, describes the
Auto-Parallelizing Option (APO) and the directives that accompany this feature.
APO requires an additional license from Silicon Graphics, Inc. Please contact your
sales representative if you are interested in using this feature.

• Appendix A, "Libraries", page 109, describes library routines available to you from
Fortran programs.

Related Publications
The following documents contain information that may be useful:

• MIPSpro Fortran Language Reference Manual, Volume 1

• MIPSpro Fortran Language Reference Manual, Volume 2

007–3696–005 xix

About This Manual

• MIPSpro Fortran Language Reference Manual, Volume 3

• Application Programmer’s I/O Guide

• ProDev WorkShop: Overview

• SpeedShop User’s Guide

• ProDev WorkShop: Debugger User’s Guide

• ProDev WorkShop: Debugger Reference Manual

• ProDev WorkShop: Performance Analyzer User’s Guide

• ProDev WorkShop: Tester User’s Guide

• dbx User’s Guide

• Origin 2000 and Onyx2 Performance Tuning and Optimization Guide

Compiler Messages
You can obtain explanations for compiler messages by using the online explain(1)
command.

Compiler Man Pages
In addition to printed and online prose documentation, several online man pages
describe aspects of the compiler. Man pages exist for the library routines, the intrinsic
procedures, and several programming environment tools.

You can print copies of online man pages by using the pipe symbol with the man(1),
col(1), and lpr(1) commands. In the following example, these commands are used
to print a copy of the explain(1) man page:

% man explain | col -b | lpr

Each man page includes a general description of one or more commands, routines,
system calls, or other topics, and provides details of their usage (command syntax,
routine parameters, system call arguments, and so on). If more than one topic
appears on a page, the entry in the printed manual is alphabetized under its primary
name; online, secondary entry names are linked to these primary names. For
example, egrep is a secondary entry on the page with a primary entry name of

xx 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

grep. To access grep online, you can type man grep. To access egrep online, you
can type either man grep or man egrep. Both commands display the grep man
page on your terminal.

Related Fortran Publications
The following commercially available reference books are among those that you
should consult for more information on the history of Fortran and the Fortran
language itself:

• Adams, J., W. Brainerd, and J. Martin. Fortran 95 Handbook : Complete ISO/ANSI
Reference. MIT Press, 1997. ISBN 0262510960.

• Chapman, S. Fortran 90/95 for Scientists and Engineers. McGraw Hill Text, 1998.
ISBN 0070119384.

• Chapman, S. Introduction to Fortran 90/95. McGraw Hill Text, 1998. ISBN
0070119694.

• Counihan, M. Fortran 95 : Including Fortran 90, Details of High Performance Fortran
(HPF), and the Fortran Module for Variable-Length Character Strings. UCL Press, 1997.
ISBN 1857283678.

• Gehrke, W. Fortran 95 Language Guide. Springer Verlag, 1996. ISBN 3540760628.

• International Standards Organization. ISO/IEC 1539–1:1997, Information technology
— Programming languages — Fortran. 1997.

• Metcalf, M. and J. Reid. Fortran 90/95 Explained. Oxford University Press, 1996.
ISBN 0198518889.

Obtaining Publications
You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various
formats are available. This library contains the most recent and most
comprehensive set of online books, release notes, man pages, and other
information.

007–3696–005 xxi

About This Manual

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With
an IRIX system, select Help from the Toolchest, and then select InfoSearch. Or
you can type infosearch on a command line.

• You can also view release notes by typing either grelnotes or relnotes on a
command line.

• You can also view man pages by typing man title on a command line.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

xxii 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Parkway, M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.

007–3696–005 xxiii

Chapter 1

Introduction

This manual describes the MIPSpro Fortran 90 compiler which runs on IRIX operating
systems (6.2 or later). This manual describes the command line options, the
directives, and related library routines used by the compiler. It does not discuss in
detail any optimization or debugging techniques. See the Preface for a list of books
that describe the optimization and debugging tools.

The compiler was developed to support the Fortran standard adopted by the
American National Standards Institute (ANSI) and the International Standards
Organization (ISO). This standard, commonly referred to as the Fortran 95 standard, is
ISO/IEC 1539–1:1997. Because the Fortran 95 standard is a superset of previous
Fortran standards, the compiler compiles code written in accordance with previous
Fortran standards.

The Fortran 95 standard is a revision to the Fortran 90 language standard. Because of
the number and complexity of the features, the standards organizations are
continuing to interpret the Fortran 95 standard for vendors. To maintain conformance
to the Fortran 95 standard, some compiler features may be changed in in future
releases based upon the outcome of the outstanding interpretations to the standard.

The f90(1) Command
In the following example, the f90(1) command is used to invoke the compiler. The
-listing option is specified to generate a source listing and a cross reference. File
pgm.f is the input file. After compilation, you can run this program by entering the
output file name as a command. In this example, the default output file name,
a.out, is used.

% f90 -listing pgm.f

% ./a.out

You can use the options on the f90(1) command line to modify the default actions;
for example, you can disable the load step. For more information on f90(1)
command line options, see the f90(1) man page..

007–3696–005 1

1: Introduction

The Compiler Programming Environment
The compiling environment allows you to develop, debug, and run Fortran codes on
your computer system. It includes the following products:

• A preprocessor. By default, files suffixed with .F or .F90 are run through the
Fortran source preprocessor prior to compilation. You can use the -ftpp or -cpp
options on the f90(1) command line to invoke a preprocessor for files without the
.F or .F90 suffix.

• A lister. You can specify the -listing option on the f90(1) command line to
obtain a source listing and a cross reference. You can also invoke a separate lister,
ftnlist(1).

• The ftnlint(1) utility, which checks Fortran programs for possible errors.

• The compiler information file (CIF) tools, which include the cifconv(1) command
and the libraries.

• The libraries, which include optimized functions and intrinsics. Information on the
individual library routines can be found in the online man pages for each routine.

• The performance tools contained in SpeedShop and in the ProDev ProMP suite.
For more information on these products, see the SpeedShop User’s Guide or the
ProDev WorkShop: ProMP User’s Guide.

• An archiving tool. An archive library is a file that contains one or more routines in
object file format (file.o). When a program calls an object file that is not explicitly
included in the program, the linker, ld(1), looks for that object file in an archive
library. The scheduler then loads only that object file, not the whole library, and
loads it with the calling program.

The archiver creates and maintains archive libraries. It allows you to copy new
objects into the library, replace existing objects in the library, move objects within
the library, and copy individual objects from the library into individual object files.
For more information on the archive library, see the ar(1) man page.

• Object file tools, which allow you to disassemble object files into machine
instructions, print information about archive files, and perform other tasks. For
more information on these tools, see the following man pages: dis(1),
elfdump(1), file(1), nm(1), size(1), and strip(1).

• ftnchop(1), ftnmgen(1), and ftnsplit(1). These commands invoke a program
unit problem isolator, a Fortran makefile utility, and a split utility, respectively. For
more information on these commands, see the man pages for each.

2 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

• Online documentation utilities. The man(1) command allows you to retrieve online
man pages. Prose reference text, such as this manual, can be retrieved through the
WWW browser supported at your site. Contact your support staff for specific
information on retrieving information in this manner.

• Modules. The compiler can be installed with the modules utility. This utility
allows you to access different versions of the compiler and runtime environment.
For more information on using the modules utility, see the modules(1) man page
or enter the following command:

% relnotes modules

• The message system. This system lets you obtain more comprehensive
explanations of messages generated by the compiler and tools in the compiling
environment. When a message condition occurs, both a message number and a
verbal summary of the problem is generated. If you need more information on the
error condition described in the summary, you can enter the explain(1)
command to retrieve a more detailed description.

• Environment variables. For more information, see the pe_environ(5) man page,
which describes many environment variables that can be used when compiling
Fortran programs.

007–3696–005 3

Chapter 2

The F90 Command Line

This chapter provides an overview to the options for the f90(1) command. For
complete details about each option, see the f90(1) man page.

The f90(1) command invokes the compiler. The following syntax box shows the
complete f90(1) command syntax.

f90 [-64 | -n32] [-alignn] [-ansi] [-apo] [-apokeep] [-apolist]
[-auto_use module_name[,module_name]...] [-bigp_off] [-bigp_on] [-c]
[-C] [-check_bounds] [-chunk=integer] [-cif] [-coln] [-cord] [-cpp]
[-dn] [-Dvar[=def][,var[=def]]…] [-DEBUG] [-default64] [-E]
[-extend_source] [-fbfile] [fb_create path][-fixedform] [-flist]
[fb_opt path] [-FLIST] [-freeform] [-ftpp] [-fullwarn] [-Gnum]
[-g[debug_lvl]] [-help] [-I[dir]] [-INLINE] [-in] [-ipa] [-IPA]
[-ignore_suffix] [-KPIC] [-keep] [-Ldirectory] [-llibrary] [-LANG]
[-LIST] [-LNO] [-listing] [-lscs] [-lscs_mp] [-macro_expand]
[-MDupdate[file]] [-mipsn] [-mp] [-mplist] [-MP] [-mp_schedtype=mode]
[-noappend] [-nocpp] [-noextend_source] [-nostdinc] [-Olevel]
[-OPT] [-oout_file] [-P] [-pad_char_literals] [-pfa] [-pfakeep]
[-pfalist] [-rreal_spec] [-rprocessor] [-S] [-show] [-show_defaults]
[-static] [-static_threadprivate] [-TARG] [-TENV] [-Uvar]
[-use_command] [-use_suffix] [-version] [-Wl,opt[,arg][,opt[,arg]]...]
[-w[arg]] [-woffnum] [-x lang] [-xdirlist] [--] file.suffix[90]
[file.suffix[90]…]

In some cases, more than one option can have an effect on a single compiler feature.
The following list shows some of the compiler features and the options that affect
them:

• Listing control: -flist, -FLIST:, -listing, -LIST:.

• Control of suffix interpretation: -ignore_suffix, -use_command,
-use_suffix, -x lang.

• Source preprocessing: -cpp, -Dvar[=def][,var[=def]]…, -E, -F, -ftpp,
-macro_expand, -nocpp, -P, -Uvar.

• Setting the compilation environment: -n32, -64, -mipsn, -rprocessor, -TARG:,
-TENV:.

007–3696–005 5

2: The F90 Command Line

• Optimization: -apo, -LNO:, -OPT:, -Olevel.

Note: The Auto-Parallelizing Option is invoked when you specify the -apo
command line option. You must be licensed for the MIPSpro Auto-Parallelizing
Option in order to be able to use this command line option.

Various environment variable settings can affect your compilation. For more
information on the environment variables, see the pe_environ(5) man page.

Some f90(1) command options, for example, -LNO:..., -LIST:..., -MP:... ,
-OPT:..., -TARG:..., and -TENV:... accept several suboptions and allow you to
specify a setting for each suboption. To specify multiple suboptions, either use colons
to separate each suboption or specify multiple options on the command line. For
example, the following command lines are equivalent:

f90 -LIST:notes=ON:options=OFF b.f
f90 -LIST:notes=ON -LIST:options=OFF b.f

Some arguments to suboptions of this type are specified with a setting that either
enables or disables the feature. To enable a feature, specify the suboption either alone
or with =1, =ON, or =TRUE. To disable a feature, specify the suboption with either =0,
=OFF, or =FALSE. For example, the following command lines are equivalent:

f90 -LNO:auto_dist:blocking=OFF:oinvar=FALSE a.f

f90 -LNO:auto_dist=1:blocking=0:oinvar=OFF a.f

For brevity, this manual shows only the ON or OFF settings to suboptions, but the
compiler also accepts 0, 1, TRUE, and FALSE as settings.

f90 command line options
The following list summarizes the options to the f90 command. For complete details,
see the f90(1) man page.

-n32, -64

Specifies the Application Binary Interface (ABI), either -n32 or -64.
Specifying -n32 generates 32–bit objects. Specifying -64 generates
64–bit objects.

6 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

-alignn

Aligns data objects on 32– or 64– bit boundaries.

-ansi

Causes the compiler to generate messages when it encounters source
code that does not conform to the Fortran standard.

-apo, -apokeep, -apolist

Controls the Auto-Parallelizing Option (APO), which automatically
converts sequential code into parallel code by inserting parallel
directives where it is safe and beneficial to do so.

Note: These options are ignored unless you are licensed for the
Auto-Parallelizing Option. For more information on this product
contact, your sales representative.

-auto_use module_name[,module_name] ...

Directs the compiler to behave as if a USE module_name statement
were entered in your Fortran source code for each module_name. The
USE statements are entered in every program unit and interface body
in the source file being compiled.

-bigp_on

Tells the compiler to enable the use of large pages within your
program.

-bigp_off

Tells the compiler to disable the use of large pages within your
program. This is the default for all optimization levels except -Ofast.

-c

Disables the load step and writes the binary object file to file.o.

-C, -check_bounds

Performs run–time array subscript range checking. These options are
equivalent to the -DEBUG:subscript_check option. For more
information on this option, see the debug_group(5) man page.

007–3696–005 7

2: The F90 Command Line

-chunk=integer

When compiling a multitasked program, this option specifies the
number of loop iterations per chunk.

-cif

Generates a compiler information file (CIF) for use by the
programming tools.

-coln

Specifies the line width for fixed-format source lines. Specify 72, 80,
or 120 for n.

-cord

Runs the procedure rearranger, cord(1), on the resulting file after
loading.

-cpp

Runs a nondefault source preprocessor, cpp(1), on all input source
files, regardless of suffix, before compiling. This preprocessor
automatically expands macros outside of preprocessor statements.

-dn

Specifies the KIND specification used for objects declared DOUBLE
COMPLEX and DOUBLE PRECISION.

-Dvar[=def][,var[=def]]...

Defines variables used for source preprocessing as if they had been
defined by a #define directive. If no def is specified, 1 is used. For
information on undefining variables, see the -Uvar option.

-DEBUG:...

Controls the compiler’s attempts to detect various errors (at compile
time or run time) and controls how the errors are reported. For more
information on the debugging options, see the debug_group(5) man
page.

8 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

-default64

Sets the sizes of default integer, real, logical, and double precision
objects. This option causes the following options to go into effect:
-r8, -i8, -d16, and -64.

-E

Run only the source preprocessor files, without considering suffixes,
and writes the result to stdout.

-extend_source

Specifies a 132-character line length for fixed-format source lines. By
default, fixed-format lines are 72 characters wide. For more
information on controlling line length, see the -coln option

-fbfile

Specifies the feedback file to be used.

-fb_create path

Generates an instrumented executable program, which is suitable for
producing one or more .instr files for subsequent feedback
compilation.

-fb_opt path

Specifies the directory that contains the instrumentation output
generated by compiling with -fb_create and then running your
program with a training input set.

-fixedform

Treats all input source files, regardless of suffix, as if they were
written in fixed source form. By default, only input files suffixed with
.f or .F are assumed to be written in fixed source form.

-flist

Invokes all Fortran listing control options. Shows lowering,
versioning, and tilling. The effect is the same as if all -FLIST:...
options had been enabled.

007–3696–005 9

2: The F90 Command Line

-FLIST:...

Invokes the Fortran listing control group, which controls production
of the compiler’s internal program representation back into Fortran
code, after IPA inlining and loop-nest transformations. This is used
primarily as a diagnostic tool, and the generated Fortran code may
not always compile.

-freeform

Treats all input source files, regardless of suffix, as if they were
written in free source form. By default, only input files suffixed with
.f90 or .F90 are assumed to be written in free source form.

-ftpp

Runs the Fortran source preprocessor on input Fortran source files
that are suffixed with .f or .f90 before compiling. By default, only
files suffixed with .F or .F90 are run through the Fortran source
preprocessor.

-fullwarn

Requests that the compiler generate comment-level messages. These
messages are suppressed by default. This option can be useful during
software development.

-Gnum

Specifies the maximum size, in bytes, of a data item that is to be
accessed from the Global Pointer (GP). num must be a decimal
number.

-gdebug_lvl

Generates debugging information and establishes a debugging level.

-help

Lists all available options. The compiler is not invoked.

-in

Specifies the length of default integer constants, default integer
variables, and logical quantities.

10 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

-Idir

Specifies a directory to be search for INCLUDE files.

-ignore_suffix

Compiles all files as if they were Fortran source files.

-INLINE:…

Specifies actions for the standalone inliner. For more information on
the individual options in this group, see ipa(5).

-ipa

Invokes interprocedural analysis (IPA). Specifying this option is
identical to specifing -IPA or -IPA:. Default settings for the
individual IPA suboptions are used.

-IPA[:…]

Controls the application of interprocedural analysis (IPA) and
optimization. This includes inlining, common block array padding,
constant propagation, dead function elimination, alias analysis, and
other features. Specify -IPA with no arguments to invoke the
interprocedural analysis phase with default options. For more
information on the individual options in this group, see the ipa(5)
man page.

-keep

Writes all intermediate compilation files.

-KPIC

Generates position-independent code (PIC), which is necessary for
programs loaded with dynamic shared libraries. Enabled by default.

-llibrary

Searches the library named liblibrary.a or liblibrary.so. Libraries
are searched in the order given on the command line.

-Ldirectory

Changes the library search algorithm for the loader.

007–3696–005 11

2: The F90 Command Line

-LANG:...

Controls the language option group.

-LIST:...

Writes an assembler listing file to file.l.

-listing

Writes a source code listing and a cross reference listing to file.L.

-LNO:…

Specifies options and transformations performed on loop nests by the
Loop Nest Optimizer. For details about these options, see the lno(5)
man page.

-lscs and -lscs_mp

Loads the SCSL Scientific library. The -lscs_mp option loads the
multi-processor version of the library. This is a link-time option; if
you compile and link programs separately, you only have to specify
this option on the link line.

-macro_expand

Enables macro expansion in preprocessed Fortran source files
throughout each file.

-MDupdate[file]

Updates makefile dependencies in file.

-mipsn

Specifies the Instruction Set Architecture (ISA).

-mp

Generates multiprocessing code for the files being compiled. This
option causes the compiler to recognize all multiprocessing directives
and enables all -MP:... options.

12 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

-MP:…

Specifies individual multiprocessing options that provide fine control
over certain optimizations.

-mplist

Generates file.w2f.f.

-mp_schedtype=mode

Specifies a default mode for scheduling work among the participating
tasks in loops. This option must be specified in conjunction with -mp.

-noappend

Prevents the compiler from appending a trailing underscore character
(_) on external names.

-nocpp

Disables the source preprocessor.

-noextend_source

Restricts Fortran source code lines to columns 1 through 72.

-nostdinc

Directs the system to skip the standard directory, /usr/include,
when searching for #include files and files named on Fortran
INCLUDE statements.

-ooutfile

Writes the executable file to out_file rather than to a.out. By default,
the executable output file is written to a.out.

-Olevel

Specifies the basic optimization level.

-OPT:…

Controls miscellaneous optimizations. These options override
defaults based on the main optimization level. For details, see the
opt(5) man page.

007–3696–005 13

2: The F90 Command Line

-P

Runs only the source preprocessor and puts the results for each
source file (that is, for file.f[90], file.F[90], and/or file.s) in a
corresponding file.i. The file.i that is generated does not contain #
lines.

-pad_char_literals

Blank pads all character literal constants that are shorter than the size
of the default integer type and that are passed as actual arguments.
The padding extends the length to the size of the default integer type.

-rprocessor

Specifies the code scheduler.

-rreal_spec

Specifies the default kind specification for real values.

-S

Generates an assembly file, file.s, rather than an object file (file.o).
See the MIPSpro Assembly Language Programmer’s Guide for a
discussion of the assembly language file that can be created by using
this option.

-show

Print the passes as they execute with their arguments and their input
and output files.

-show_defaults

List all defaults used in the compiler environment. This option does
not compile the program.

-static

Statically allocates all local variables. Statically allocated local
variables are initialized to zero and exist for the life of the program.
This option can be useful when porting programs from older systems
in which all variables are statically allocated.

14 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

-static_threadprivate

Makes all static variables private to each thread. This option can be
specified in conjunction with the -static option, which statically
allocates all local variables.

-TARG:…

Cross compiling is compiling a program on one system and executing
it on another. To cross compile, you can either use the -TARG:
command line options to control the target architecture and machine
for which code is generated or you can set the
COMPILER_DEFAULTS_PATH environment variable to specify the file
that contains the default processor information needed to generate
executable code for the target system.

-TENV:…

Specifies the target environment option group. The target environment
is the system upon which the executable code will be run. These
options control the target environment assumed and/or produced by
the compiler.

-Uvar

Undefines a variable for the source preprocessor.

-use_command

Use the command name to determine which compiler to invoke for
recognized source files.

-use_command

Use the command name to determine which compiler to invoke for
recognized source files.

-u

Makes the default type of a variable undefined, rather than using
default rules.

-version

Writes compiler release version information to stdout. No input file
needs to be specified when this option is used.

007–3696–005 15

2: The F90 Command Line

-w[arg]

Specifies messages.

-Wl,opt[,arg][,opt[,arg]]...

Specifies options to be passed directly to the linker.

-woffnum

Specifies message numbers to suppress.

-xlang

Specifies the programming language, regardless of suffix.

-xdirlist

Disables specified directives or specified classes of directives.

--

Separates options and file names. This option, which consists of two
dashes, signifies the end of the options. After this symbol, you can
specify the files to be processed. This is not allowed in non-XPG4
environments.

file.suffix[90][file.suffix[90]…]

File or files to be processed, where suffix is either an uppercase F or a
lowercase f for source files.

16 007–3696–005

Chapter 3

General Directives

A directive is a line inserted into Fortran source code that specifies actions to be
performed by the compiler. Directive lines are not Fortran statements.

Many compiler features are implemented as either command line options or
directives. The features implemented as command line options are set at compile time
and applied to all files in the compilation. The features implemented through
directives are set within your Fortran source code, and they apply to portions of your
source code.

This chapter introduces the compiler directive set and describes the general directives.
The sections in this chapter are as follows:

• "Using Directives", page 17, describes using directives.

• "LNO Directives", page 19, describes the loop nest optimization (LNO) directives.

• "Symbol Storage Directives", page 21, describes the symbol storage directives.

• "Inlining and IPA Directives", page 24, describes the inlining and IPA directives.

Using Directives
All directives are of the following form:

prefix directive

prefix Each directive begins with a prefix. The prefix needed for each directive
is shown in the directive’s description. The following directive prefixes
are used:

• !*$* and C*$*. These prefixes are used by the loop-nest directives
described in this chapter.

• !$OMP and C$OMP. These prefixes are used by the OpenMP Fortran
API multiprocessing directives described in Chapter 4, "OpenMP
Fortran API Multiprocessing Directives", page 27.

007–3696–005 17

3: General Directives

• !DIR$ and CDIR$. These prefixes are used by the Autotasking
directives described in Chapter 5, "CF90 Directives", page 39.

The prefix used also depends on which Fortran source form you are
using, as follows:

• If you are using fixed source form, begin a directive line with the
characters Cprefix or !prefix. The ! or C character must appear in
column 1. Beginning the directive with a ! or C character ensures
that other compilers will treat directive lines as comment lines.

• If you are using free source form, begin a directive line with the
characters !prefix, followed by a space, and then one or more
directives. The !prefix need not start in column 1, but it must be the
first text on a line.

Because both fixed source form and free source form accept directives
that start with the exclamation point (!), that is the initial character
used in all directive syntax descriptions in this manual.

directive This is the specific directive’s syntax. The syntax usually consists of the
directive name. Some directives accept arguments. A directive’s
arguments, if any, are shown in the description for the directive itself.

The following sections describe the general format for directives and explain how
directives are continued across source code lines.

Note: The multiprocessing directives supported in previous MIPSpro Fortran 90
releases are outmoded, and so are the !PAR, CPAR, !$, and C$ directive prefixes.
This technology is outmoded, but it is still supported for older codes that require this
functionality. You are encouraged to modify your code using the OpenMP directives
described in Chapter 4, "OpenMP Fortran API Multiprocessing Directives", page 27.

Directives and Command Line Options

Some compiler features can be activated on the command line and through compiler
directives. The difference is that a command line setting applies to all files in the
compilation, but a directive applies to only a program unit or to another specific part
of a source file.

18 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Generally, and by default, directives override command line options. There are
exceptions to this rule, however. The exceptions, if any, are noted in the introductory
text to each directive group.

Directive Range

The range of a particular directive depends on the directive itself, as follows:

• If a directive appears within a program unit, it applies only to that program unit.
Within a program unit, many directives apply only to the loops that they
immediately precede.

• If a directive appears outside a program unit (for example, prior to program code
in a file) it applies to the entire file.

The descriptions for the individual directives indicate the range of the directive.

Directive Continuation and Other Considerations

It is sometimes necessary to continue a directive across one or more source code lines.
The continuation character used and its placement within the directive line depends
on the type of directive you are using. The introductory text for each directive group
indicates the continuation character that is appropriate for that group.

For all directives in this chapter, the prefix for a directive line that is a continuation
line is !*$*&.

Do not use source preprocessor (#) directives within multiline compiler directives.

LNO Directives
The loop nest optimization (LNO) directives control loop nest optimizations. By
default, directives override command line options. To reverse this, and have
command line options override the LNO directives, specify -LNO:ignore_pragmas.
To continue a directive, the continuation line must begin with !*$*&.

The LNO directives are described in detail on the lno(5) man page. The following list
summarizes the available directives:

007–3696–005 19

3: General Directives

• The AGGRESSIVEINNERLOOPFISSION directive specifies that the following loop
should be split into as many loops as possible. In a loop nest, this directive must
precede an inner loop.

• The BLOCKABLE directive specifies that it is legal to cache block the subsequent
loops.

• The BLOCKINGSIZE and NOBLOCKING directives assert that the loop following the
directive either is (or is not) involved in a cache blocking for the primary or
secondary cache.

• The fission control directives specify whether the compiler should perform loop
fission on the loops that immediately follow these directives.

• The fusion control directives specify whether the compiler should perform loop
fusion on the loops that immediately follow these directives. Loop iterations may
be peeled as needed during loop fusion. The limit of this peeling is 5, or the
number specified by the -LNO:fusion_peeling_limit command line option.

• The loop interchange control directives specify whether or not the order of the
following two or more loops should be interchanged. These directives apply to the
loops that they immediately precede.

• The PREFETCH directive controls the MIPS IV prefetch instruction. Using this
directive can increase performance in program units that are likely to encounter
cache misses during execution. This directive applies only to the program unit in
which it appears.

When the directive is specified, the compiler estimates the memory references that
will be cache misses, inserts prefetches for the misses, and schedules the
prefetches ahead of their corresponding references. You can specify different levels
of prefetching aggressiveness for the primary and secondary cache.

• The PREFETCH_MANUAL directive specifies whether the PREFETCH_REF and the
PREFETCH_REF_DISABLE directives, which perform manual prefetches, should be
respected or ignored within a subprogram.

• The PREFETCH_REF directive requests prefetching for a specific memory
reference. This directive applies only to the loop nest that includes references to
array, and the directive must immediately precede the loop nest.

When this directive is specified, all references to array in the subsequent loop nest
are ignored by the automatic prefetcher (if enabled).

20 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

• The PREFETCH_REF_DISABLE directive disables prefetching for all references to
an array. This directive applies to all array references within the program unit.

• The UNROLL directive specifies loop unrolling. This directive applies to the loop
that immediately follows the directive.

Inner loop unrolling occurs automatically when -O2 or -O3 are in effect.
Non-inner loop unrolling (and jam) occurs when -O3 is in effect.

Symbol Storage Directives
The following directives control symbol storage:

• ALIGN_SYMBOL

• FILL_SYMBOL

• FLUSH

• SECTION_GP

• SECTION_NON_GP

Control Symbol Alignment and Padding

The ALIGN_SYMBOL and FILL_SYMBOL directives control the way symbols are stored.

The ALIGN_SYMBOL directive aligns the start of symbol at a specified alignment
boundary.

The FILL_SYMBOL directive pads symbol with additional storage so that the symbol is
assured not to overlap (even partially) with any other data item within the storage of
the specified size. The additional padding required is divided between each end of
the specified variable. For example, a FILL_SYMBOL(X,L1CACHELINE) directive
guarantees that X does not suffer from false sharing for the primary cache line.

The formats for these directives are as follows:

!*$* ALIGN_SYMBOL (symbol [, storage])

!*$* FILL_SYMBOL (symbol [, storage])

007–3696–005 21

3: General Directives

symbol Specify the name of a symbol. symbol can be a common block variable
or a module name. symbol cannot be a component of a derived type, an
array element, a common block, or blank common.

storage Specify the storage size. Specify one of the following values for storage:

storage Action

L1CACHELINE Specifies the machine-specific first-level
cache line size, typically 32 bytes.

L2CACHELINE Specifies the machine-specific secondary
cache line size, typically 128 bytes.

PAGE Specifies a machine-specific page.
Typically 16 KB.

power-of-two An integer value that is a power of 2.
This is measured in bytes.

For common block variables, these directives are required at each declaration of the
common block. Because the directives modify the allocated storage and its alignment
for the named symbol, inconsistent directives can lead to undefined results.

The ALIGN_SYMBOL directive has no effect on fixed-size local symbols, such as simple
scalars or arrays of known size (for example symbols declared as REAL(N) or
REAL(A(3))). The directive continues to be effective for automatic arrays
(stack-allocated arrays of dynamically determined size).

You cannot specify an ALIGN_SYMBOL directive and a FILL_SYMBOL directive for the
same symbol.

Example 3-1 Controlling symbol alignment and padding

! X IS A COMMON BLOCK VARIABLE

COMMON X!

INTEGER(KIND=4) X

!*$* ALIGN_SYMBOL (X, 32)

! X WILL START AT A 32-BYTE BOUNDARY.

! WARNING: THE LAYOUT OF THE COMMON BLOCK WILL BE AFFECTED

!*$* ALIGN_SYMBOL (X, 2)
! ERROR: CANNOT REQUEST AN ALIGNMENT LOWER THAN THE NATURAL

22 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

! ALIGNMENT OF THE SYMBOL.

REAL(KIND=8) Y

! Y IS A COMMON BLOCK OR LOCAL VARIABLE

!*$* FILL_SYMBOL (Y, L2CACHELINE)

! ALLOCATE EXTRA STORAGE BOTH BEFORE AND AFTER Y SO THAT

! Y IS WITHIN AN L2CACHELINE (128 BYTES) ALL BY ITSELF.

! THIS CAN BE USEFUL TO AVOID FALSE-SHARING BETWEEN MULTIPLE

! PROCESSORS FOR THE CACHE LINE CONTAINING Y.

Declare a Synchronization Point

The FLUSH directive identifies synchronization points at which thread-visible
variables are written back to memory. This directive must appear at the precise point
in the code at which the synchronization is required.

Note: This directive has the same effect as the FLUSH directive described in the
OpenMP Fortran API.

Thread-visible variables include the following data items:

• Globally visible variables (common blocks and modules).

• Local variables that do not have the SAVE attribute but have had their address
taken and saved or have had their address passed to another subprogram.

• Local variables that do not have the SAVE attribute that are declared shared in a
parallel region within the subprogram.

• Dummy arguments.

• All pointer dereferences.

This directive has the following format:

!*$* FLUSH [(var[, var] ...)]

007–3696–005 23

3: General Directives

var Variables to be flushed.

Specify Global Pointer Use

The compiler can reference global data by using the global pointer and an offset
value. Using the global pointer (gp) is more efficient than constructing the address at
each occurence, but because the offset size is limited to 16 bits, only a limited set of
elements can be referenced using the global pointer.

The compiler places global data in gp-relative or non-gp-relative sections, but you can
use the SECTION_GP and SECTION_NON_GP directives to specify the variables to go
within the gp-relative section and the variables that need to be addressed explicitly.

The formats for these directives are as follows:

!*$* SECTION_GP (symbol [, symbol] ...)

!*$* SECTION_NON_GP (symbol [, symbol] ...)

symbol Enter one or more symbols. Separate multiple symbols with commas.
Valid symbols are common block names, variables specified on SAVE
statements, and module names. If a module name is specified, all
storage in the module is affected. If a common block name is specified,
it must be of the following form: /name/.

Inlining and IPA Directives
The following are the inlining and interprocedural analysis (IPA) directives:

• INLINE, NOINLINE

• IPA, NOIPA

24 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Note: Neither inlining nor IPA are enabled by default. By default, the directives in
this section, if present in your source code, are ignored. To enable the directives and
turn on inlining and IPA, specify the -INLINE: option or the -IPA: option on your
f90(1) command line. For more information on the command line interaction with
these features, see the f90(1) or ipa(5) man page.

Inlining is the process of replacing a procedure reference with a copy of the
procedure’s code. This eliminates procedure call overhead and exposes the
relationships between the procedure code, the return value, and the surrounding
code. The INLINE and NOINLINE directives allow you to specify procedures that
should be inlined.

Interprocedural analysis (IPA) is a compiler feature that includes inlining, common
block array padding, constant propagation, dead procedure elimination, dead variable
elimination, and global name optimizations. For detailed information on the IPA
feature, see the ipa(5) man page. The IPA and NOIPA directives allow you to control
IPA.

The formats of these directives are as follows:

!*$* INLINE location [(name [,name] ...)]

!*$* NOINLINE location [(name [,name] ...)]

!*$* IPA location [(name [,name] ...)]

!*$* NOIPA location [(name [,name] ...)]

location Specify one of the following for location:

location Action

HERE Specifies that routines named on the subsequent source
code line should be inlined or should undergo IPA.
Default.

ROUTINE Specifies that the named function should be inlined or
should undergo IPA everywhere it appears within the
current routine.

007–3696–005 25

3: General Directives

GLOBAL Specifies that the named function should be inlined or
should undergo IPA throughout the source file.

name For the inlining directives, each name specification represents one or
more routines to be inlined. If no routines are named, all routines in the
program are inlined.

For the IPA directives, each name specification represents one or more
routines to undergo IPA. If no routines are named, all routines in the
program undergo IPA.

Example 3-2 Inlining

Consider the following code fragment:

DO I = 1,N

!*$* INLINE HERE (BETA)

CALL BETA(I,1)

ENDDO
CALL BETA(N,2)

Using the specifier ROUTINE rather than HERE in this example would inline both calls
to BETA. Note that -INLINE:=ON must be specified on the f90(1) command line
when this code is compiled in order for the inlining directive to be recognized.

26 007–3696–005

Chapter 4

OpenMP Fortran API Multiprocessing Directives

This chapter provides an overview of the supported multiprocessing directives. These
directives are based on the OpenMP Fortran application program interface (API)
standard. Programs that use these directives are portable and can be compiled by
other compilers that support the OpenMP standard.

The complete OpenMP standard is available at http://www.openmp.org/specs.
See that documentation for complete examples, rules of usage, and restrictions. This
chapter provides only an overview of the supported directives and does not give
complete details about usage or restrictions.

To enable recognition of the OpenMP directives, specify -mp on the f90(1) command
line. The -mp option must be specified in order for the compiler to honor any
-MP:... options that may also be specified on the command line. The
-MP:open_mp=ON option is on by default and must be in effect during compilation.

The following example command line can compile program ompprg.f, which
contains OpenMP Fortran API directives:

f90 -mp ompprg.f

In addition to directives, the OpenMP Fortran API describes several library routines
and environment variables. Information on these other utilities can be found in the
following locations:

Programming
Utility

Information Location

Command line
information

For information on the -mp option, and the -MP:
option, see the f90 man page.

Library routines omp_lock(3), omp_nested(3), and omp_threads(3)
man pages

Environment variables pe_environ(5) man page

007–3696–005 27

4: OpenMP Fortran API Multiprocessing Directives

Note: If individual loops in your program contain both OpenMP directives and
extensions (prefixed with !$OMP or !$SGI) and any of the outmoded multiprocessing
directives (prefixed with !$ or !$PAR), you must specify the set of directives that the
compiler should use. To direct the compiler to ignore the OpenMP directives, compile
with -MP:open_mp=OFF. To direct the compiler to ignore the outmoded
multiprocessing directives, compile with -MP:old_mp=OFF. To direct the compiler to
ignore the outmoded distributed shared memory directives, specify -MP:dsm=OFF.

Note: The SGI multiprocessing directives, including the Origin series distributed
shared memory directives, are outmoded. Their preferred alternatives are the
OpenMP Fortran API directives described in this chapter.

Using Directives
All multiprocessing directives are case-insensitive and are of the following form:

prefix directive [clause[[,] clause]...]

prefix Each directive begins with a prefix, and the prefixes you can use
depend on your source form, as follows:

• If you are using fixed source form, the following prefixes can be
used: !OMP, COMP, or *$OMP.

Prefixes must start in column one and appear as a single word with
no intervening white space. Fortran fixed form line length, case
sensitivity, white space, continuation, and column rules apply to the
directive line.

• If you are using free source form, the following prefix can be used:
!$OMP.

A prefix can appear in any column as long as it is preceded only by
white space. It must appear as a single word with no intervening
white space. Fortran free form line length, case sensitivity, white
space, and continuation rules apply to the directive line.

28 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

directive The name of the directive.

clause One or more directive clauses. Clauses can appear in any order after
the directive name and can be repeated as needed, subject to the
restrictions listed in the description of each clause.

Directives cannot be embedded within continued statements, and statements cannot
be embedded within directives. Comments cannot appear on the same line as a
directive.

In fixed source form, initial directive lines must have a space or zero in column six,
and continuation directive lines must have a character other than a space or a zero in
column six.

In free source form, initial directive lines must have a space after the prefix.
Continued directive lines must have an ampersand as the last nonblank character on
the line. Continuation directive lines can have an ampersand after the directive prefix
with optional white space before and after the ampersand.

Example 4-1 OpenMP fixed source form

The following formats for specifying directives are equivalent (the first line represents
the position of the first 9 columns):

C23456789

!$OMP PARALLEL DO SHARED(A,B,C)

C$OMP PARALLEL DO

C$OMP+SHARED(A,B,C)

C$OMP PARALLELDOSHARED(A,B,C)

Example 4-2 OpenMP free source form

The following formats for specifying directives are equivalent (the first line represents
the position of the first 9 columns):

!23456789

!$OMP PARALLEL DO &
!$OMP SHARED(A,B,C)

!$OMP PARALLEL &

!$OMP&DO SHARED(A,B,C)

!$OMP PARALLEL DO SHARED(A,B,C)

007–3696–005 29

4: OpenMP Fortran API Multiprocessing Directives

One or more blanks or tabs must be used to separate adjacent keywords in directives
in free source form, except in the following cases where white space is optional
between the keywords:

END CRITICAL
END DO
END MASTER
END ORDERED
END PARALLEL
END SECTIONS
END SINGLE
END WORKSHARE
PARALLEL DO
PARALLEL SECTIONS
PARALLEL WORKSHARE

Note: In order to simplify the presentation, the remainder of this chapter uses the
!$OMP prefix in all syntax descriptions and examples.

Comments are allowed inside directives. Comments can appear on the same line as a
directive. In free source form, the exclamation point initiates a comment; in fixed
source form, it initiates a comment when it appears after column 6. Regardless of
form, the comment extends to the end of the source line and is ignored. If the first
nonblank character after the initial prefix (or after a continuation directive line in
fixed source form) is an exclamation point, the line is ignored.

Conditional Compilation
Fortran statements can be compiled conditionally as long as they are preceded by one
of the following conditional compilation prefixes: !$, C$, or *$. The prefix must be
followed by a Fortran statement on the same line. During compilation, the prefix is
replaced by two spaces, and the rest of the line is treated as a normal Fortran
statement.

Your program must be compiled with the -mp option in order for the compiler to
honor statements preceded by conditional compilation prefixes; without the mp
command line option, statements preceded by conditional compilation prefixes are
treated as comments.

30 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

You must define the _OPENMP symbol to be used for conditional compilation. This
symbol is defined during OpenMP compilation to have the decimal value YYYYMM
where YYYY and MM are the year and month designators of the version of the
OpenMP Fortran API is supported.

The !$ prefix is accepted when compiling either fixed source form files or free source
form files. The C$ and *$ prefixes are accepted only when compiling fixed source
form. The source form you are using also dictates the following:

• In fixed source form, the prefixes must start in column one and appear as a single
word with no intervening white space. Fortran fixed form line length, case
sensitivity, white space, continuation, and column rules apply to the line. Initial
lines must have a space or zero in column six, and continuation lines must have a
character other than a space or zero in column six.

• In free source form, the !$ prefix can appear in any column as long as it is
preceded only by white space. It must appear as a single word with no
intervening white space. Fortran free source form line length, case sensitivity,
white space, and continuation rules apply to the line. Initial lines must have a
space after the prefix. Continued lines must have an ampersand as the last
nonblank character on the line prior to any comment appearing on the
conditionally compiled line. Continuation lines can have an ampersand after the
prefix, with optional white space before and after the ampersand.

Parallel Region Constructs
The PARALLEL and END PARALLEL directives define a parallel region. A parallel
region is a block of code that is to be executed by multiple threads in parallel. This is
the fundamental OpenMP parallel construct that starts parallel execution.

The END PARALLEL directive denotes the end of the parallel region. There is an
implied barrier at this point. Only the master thread of the team continues execution
past the end of a parallel region.

Work-sharing Constructs
A work-sharing construct divides the execution of the enclosed code region among
the members of the team that encounter it. A work-sharing construct must be
enclosed within a parallel region in order for the directive to execute in parallel.
When a work-sharing construct is not enclosed dynamically within a parallel region,

007–3696–005 31

4: OpenMP Fortran API Multiprocessing Directives

it is treated as though the thread that encounters it were a team of size one. The
work-sharing directives do not launch new threads, and there is no implied barrier on
entry to a work-sharing construct.

The following restrictions apply to the work-sharing directives:

• Work-sharing constructs and BARRIER directives must be encountered by all
threads in a team or by none at all.

• Work-sharing constructs and BARRIER directives must be encountered in the same
order by all threads in a team.

If NOWAIT is specified on the END DO, END SECTIONS, END SINGLE, or END
WORKSHARE directive, an implementation may omit any code to synchronize the
threads at the end of the worksharing construct. In this case, threads that finish early
may proceed straight to the instructions following the work-sharing construct without
waiting for the other members of the team to finish the work-sharing construct.

The following list summarizes the work-sharing constructs:

• The DO directive specifies that the iterations of the immediately following DO loop
must be divided among the threads in the parallel region. If there is no enclosing
parallel region, the DO loop is executed serially.

The loop that follows a DO directive cannot be a DO WHILE or a DO loop without
loop control. If an END DO directive is not specified, it is assumed at the end of
the DO loop.

• The SECTIONS directive specifies that the enclosed sections of code are to be
divided among threads in the team. It is a noniterative work-sharing construct.
Each section is executed once by a thread in the team.

Each section must be preceded by a SECTION directive, though the SECTION
directive is optional for the first section. The SECTION directives must appear
within the lexical extent of the SECTIONS/END SECTIONS directive pair. The last
section ends at the END SECTIONS directive. Threads that complete execution of
their sections wait at a barrier at the END SECTIONS directive unless a NOWAIT is
specified.

• The SINGLE directive specifies that the enclosed code is to be executed by only
one thread in the team. Threads in the team that are not executing the SINGLE
directive wait at the END SINGLE directive unless NOWAIT is specified.

• The WORKSHARE directive divides the work of executing the enclosed code into
separate units of work, and causes the threads of the team to share the work of

32 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

executing the enclosed code such that each unit is executed only once. The units
of work may be assigned to threads in any manner as long as each unit is
executed exactly once.

Combined Parallel Work-sharing Constructs
The combined parallel work-sharing constructs are shortcuts for specifying a parallel
region that contains only one work-sharing construct. The semantics of these
directives are identical to that of explicitly specifying a PARALLEL directive followed
by a single work-sharing construct.

The following list describes the combined parallel work-sharing directives:

• The PARALLEL DO directive provides a shortcut form for specifying a parallel
region that contains a single DO directive.

If the END PARALLEL DO directive is not specified, the PARALLEL DO is assumed
to end with the DO loop that immediately follows the PARALLEL DO directive. If
used, the END PARALLEL DO directive must appear immediately after the end of
the DO loop.

The semantics are identical to explicitly specifying a PARALLEL directive
immediately followed by a DO directive.

• The PARALLEL SECTIONS/END PARALLEL SECTIONS directives provide a
shortcut form for specifying a parallel region that contains a single SECTIONS
directive. The semantics are identical to explicitly specifying a PARALLEL directive
immediately followed by a SECTIONS directive.

• The PARALLEL WORKSHARE/END PARALLEL WORKSHARE directive provides a
shortcut form for specifying a parallel region that contains a single WORKSHARE
directive. The semantics are identical to explicitly specifying a PARALLEL directive
immediately followed by a WORKSHARE directive.

Synchronization Constructs
The following list describe the synchronization constructs:

• The code enclosed within MASTER and END MASTER directives is executed by the
master thread.

007–3696–005 33

4: OpenMP Fortran API Multiprocessing Directives

• The CRITICAL and END CRITICAL directives restrict access to the enclosed code
to one thread at a time.

A thread waits at the beginning of a critical section until no other thread is
executing a critical section with the same name. All unnamed CRITICAL directives
map to the same name. Critical section names are global entities of the program. If
a name conflicts with any other entity, the behavior of the program is unspecified.

• The BARRIER directive synchronizes all the threads in a team. When it encounters
a barrier, a thread waits until all other threads in that team have reached the same
point.

• The ATOMIC directive ensures that a specific memory location is updated
atomically, rather than exposing it to the possibility of multiple, simultaneous
writing threads.

• The FLUSH directive identifies synchronization points at which thread-visible
variables are written back to memory. This directive must appear at the precise
point in the code at which the synchronization is required.

Thread-visible variables include the following data items:

– Globally visible variables (common blocks and modules)

– Variables visible through host association

– Variables that appear in an EQUIVALENCE statement with a threat-visible
variable

– Local variables that have had their address taken and saved or have had their
address passed to another subprogram.

– Local variables that do not have the SAVE attribute that are declared shared in
the enclosing parallel region.

– Dummy arguments

– All pointer dereferences

• The code enclosed within ORDERED and END ORDERED directives is executed in
the order in which it would be executed in a sequential execution of an enclosing
parallel loop.

An ORDERED directive can appear only in the dynamic extent of a DO or
PARALLEL DO directive. This DO directive must have the ORDERED clause
specified. For information on directive binding, see "Directive Binding", page 36.

34 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Only one thread is allowed in an ordered section at a time. Threads are allowed to
enter in the order of the loop iterations. No thread can enter an ordered section
until it is guaranteed that all previous iterations have completed or will never
execute an ordered section. This sequentializes and orders code within ordered
sections while allowing code outside the section to run in parallel. ORDERED
sections that bind to different DO directives are independent of each other.

Data Environment Constructs
The THREADPRIVATE directive makes named common blocks and named variables
private to a thread but global within the thread.

Data Scope Attribute Clauses

In addition to the THREADPRIVATE directive, several directives accept clauses that
allow a user to control the scope attributes of variables for the duration of the
construct. Not all of the clauses are allowed on all directives; usually, if no data scope
clauses are specified for a directive, the default scope for variables affected by the
directive is SHARED.

The following list describes the data scope attribute clauses:

• The PRIVATE clause declares variables to be private to each thread in a team.

• The SHARED clause makes variables shared among all the threads in a team. All
threads within a team access the same storage area for SHARED data.

• The DEFAULT clause allows the user to specify a PRIVATE, SHARED, or NONE
default scope attribute for all variables in the lexical extent of any parallel region.
Variables in THREADPRIVATE common blocks are not affected by this clause.

• The FIRSTPRIVATE clause provides a superset of the functionality provided by
the PRIVATE clause.

• The LASTPRIVATE clause provides a superset of the functionality provided by the
PRIVATE clause.

When the LASTPRIVATE clause appears on a DO directive, the thread that executes
the sequentially last iteration updates the version of the object it had before the
construct. When the LASTPRIVATE clause appears in a SECTIONS directive, the
thread that executes the lexically last SECTION updates the version of the object it

007–3696–005 35

4: OpenMP Fortran API Multiprocessing Directives

had before the construct. Subobjects that are not assigned a value by the last
iteration of the DO or the lexically last SECTION of the SECTIONS directive are
undefined after the construct.

• The REDUCTION clause performs a reduction on the variables specified, with the
operator or the intrinsic specified.

At the end of the REDUCTION, the shared variable is updated to reflect the result
of combining the original value of the (shared) reduction variable with the final
value of each of the private copies using the operator specified. The reduction
operators are all associative (except for subtraction), and the compiler can freely
reassociate the computation of the final value (the partial results of a subtraction
reduction are added to form the final value).

The value of the shared variable becomes undefined when the first thread reaches
the containing clause, and it remains so until the reduction computation is
complete. Normally, the computation is complete at the end of the REDUCTION
construct; however, if the REDUCTION clause is used on a construct to which
NOWAIT is also applied, the shared variable remains undefined until a barrier
synchronization has been performed to ensure that all the threads have completed
the REDUCTION clause.

• The COPYIN clause applies only to common blocks that are declared
THREADPRIVATE. A COPYIN clause on a parallel region specifies that the data in
the master thread of the team be copied to the thread private copies of the
common block at the beginning of the parallel region.

• The COPYPRIVATE clause uses a private variable to broadcast a value, or a pointer
to a shared object, from one member of a team to the other members. It is an
alternative to using a shared variable, or pointer association, and is useful when
providing such a shared variable would be difficult. The COPYPRIVATE clause can
only appear on the END SINGLE directive.

There are several rules and restrictions that apply with respect to data scope. See the
OpenMP specification at http://www.openmp.org/specs for complete details.

Directive Binding
Some directives are bound to other directives. A binding specifies the way in which
one directive is related to another. For instance, a directive is bound to a second
directive if it can appear in the dynamic extent of that second directive. The following
rules apply with respect to the dynamic binding of directives:

36 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

• A parallel region is available for binding purposes, whether it is serialized or
executed in parallel.

• The DO, SECTIONS, SINGLE, MASTER, BARRIER, and WORKSHARE directives bind
to the dynamically enclosing PARALLEL directive, if one exists. The dynamically
enclosing PARALLEL directive is the closest enclosing PARALLEL directive
regardless of the value of the expression in the IF clause, should the clause be
present.

• The ORDERED directive binds to the dynamically enclosing DO directive.

• The ATOMIC directive enforces exclusive access with respect to ATOMIC directives
in all threads, not just the current team.

• The CRITICAL directive enforces exclusive access with respect to CRITICAL
directives in all threads, not just the current team.

• A directive can never bind to any directive outside the closest enclosing PARALLEL.

Directive Nesting
The following rules apply to the dynamic nesting of directives:

• A PARALLEL directive dynamically inside another PARALLEL directive logically
establishes a new team, which is composed of only the current thread unless
nested parallelism is enabled.

• DO, SECTIONS, SINGLE, and WORKSHARE directives that bind to the same
PARALLEL directive cannot be nested one inside the other.

• DO, SECTIONS, SINGLE, and WORKSHARE directives are not permitted in the
dynamic extent of CRITICAL and MASTER directives.

• BARRIER directives are not permitted in the dynamic extent of DO, SECTIONS,
SINGLE, WORKSHARE, MASTER, CRITICAL, and ORDERED directives.

• MASTER directives are not permitted in the dynamic extent of DO, SECTIONS,
SINGLE, WORKSHARE, MASTER, CRITICAL, and ORDERED directives.

• ORDERED directives must appear in the dynamic extent of a DO or PARALLEL DO
directive which has an ORDERED clause.

• ORDERED directives are not allowed in the dynamic extent of SECTIONS, SINGLE,
WORKSHARE, CRITICAL, and MASTER directives.

007–3696–005 37

4: OpenMP Fortran API Multiprocessing Directives

• CRITICAL directives with the same name are not allowed to be nested one inside
the other.

• Any directive set that is legal when executed dynamically inside a PARALLEL
region is also legal when executed outside a parallel region. When executed
dynamically outside a user-specified parallel region, the directive is executed with
respect to a team composed of only the master thread.

38 007–3696–005

Chapter 5

CF90 Directives

The MIPSpro Fortran 90 compiler, running on IRIX systems, recognizes some of the
directives that are supported by the CF90 compiler on UNICOS and UNICOS/mk
systems. The directives themselves and the sections in which they are discussed are
as follows:

• "Using Directives", page 39, describes using directives.

• "Checking Array Bounds", page 41, describes the BOUNDS and NOBOUNDS
directives.

• "Specifying Source Form", page 42, describes the FREE and FIXED directives.

• "Creating Identification String", page 43, describes the ID directive.

• "Ignoring Dummy Argument Type, Kind, and Rank", page 45, describes the
IGNORE_TKR directive.

• "Ignoring Vector Dependencies", page 46, describes the IVDEP directive.

• "Mapping External Names", page 49, describes the NAME directive.

• "Inhibiting Loop Interchange", page 49, describes the NOINTERCHANGE directive.

• , describes the NOSIDEEFFECTS directive.

• "Designating a Nest to Task", page 51, describes the PREFERTASK directive.

• "Tasking Directives", page 52, describes the TASK and NOTASK directives.

• "Unrolling Loops", page 52, describes the UNROLL and NOUNROLL directives.

Using Directives
The following sections describe how to use the CF90 directives and the effects they
have on IRIX platforms.

007–3696–005 39

5: CF90 Directives

Directive Continuation

In the following example, an asterisk (*) appears in column 6 to indicate that the
second line is a continuation of the preceding line:

!DIR$ NA

!DIR$*ME

The FIXED and FREE directives must appear alone on a directive line and cannot be
continued.

If you want to specify more than one directive on a line, separate each directive with
a comma. Some directives require that you specify one or more arguments; when
specifying a directive of this type, no other directive can appear on the line.

Spaces can precede, follow, or be embedded within a directive, regardless of source
form.

Do not use source preprocessor (#) directives within multiline compiler directives.

Directive Range and Placement

The range and placement of directives is as follows:

• The FIXED and FREE directives can appear anywhere in your source code. All
other directives must appear within a program unit.

• The BOUNDS/NOBOUNDS and TASK/NOTASK directives take effect at the point at
which they appear in the source code.

• The ID and NOSIDEEFFECTS directives do not apply to any particular range of
code. They add information to the file.o generated from the input program.

• The following directives apply only to the next loop encountered lexically:

– IVDEP

– NOINTERCHANGE

– PREFERTASK

– UNROLL/NOUNROLL

40 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

• The NAME and IGNORE_TKR directives do not apply to particular ranges of code.
They are declarative directives that alter the status of entities in ways that affect
compilation.

Interaction of Directives with the -x Command Line Option

The -x option on the f90(1) command line accepts one or more directives as
arguments. When your input is compiled, the compiler ignores directives named as
arguments to the -x option. For example, if you specify -x mipspro, all directives
are ignored. If you specify -x dirname, the particular directive named in dirname is
ignored.

Checking Array Bounds
Array bounds checking provides a check of most array references at both compile
time and run time to ensure that each subscript is within the array’s declared size.

The -C option on the f90(1) command line controls bounds checking for a whole
compilation. The BOUNDS and NOBOUNDS directives toggle the feature on and off
within a program unit. Either directive can specify particular arrays or can apply to
all arrays. The formats of these directives are as follows:

!DIR$ BOUNDS [array [, array] ...]

!DIR$ NOBOUNDS [array [, array] ...]

array The name of an array. The name cannot be a subobject of a derived type.
When no array name is specified, the directive applies to all arrays.

BOUNDS remains in effect for a given array until the appearance of a NOBOUNDS
directive that applies to that array, or until the end of the program unit. Bounds
checking can be enabled and disabled many times in a single program unit.

Note: To be effective, these directives must follow the declarations for all affected
arrays. It is suggested that they be placed at the end of a program unit’s specification
statements unless they are meant to control particular ranges of code.

007–3696–005 41

5: CF90 Directives

The bounds checking feature detects any reference to an array element whose
subscript exceeds the array’s declared size. For example:

REAL A(10)

! DETECTED AT COMPILE TIME:

A(11) = X

! DETECTED AT RUN TIME IF IFUN(M) EXCEEDS 10:
A(IFUN(M)) = W

The compiler generates a message when it detects an out-of-bounds subscript. If the
compiler cannot detect the out-of-bounds subscript (for example, if the subscript
includes a function reference), a message is issued for out-of-bound subscripts when
your program runs.

Bounds checking increases program run time. If an array’s last dimension declarator
is *, checking is not performed on the last dimension’s upper bound. Arrays in
formatted WRITE and READ statements are not checked.

If bounds checking detects an out-of-bounds array reference, a message is issued and
the program halts.

Specifying Source Form
The FREE and FIXED directives specify whether the source code in the program unit
is written in free source form or fixed source form. The FREE and FIXED directives
override the -fixedform and -freeform options, if specified, on the f90(1)
command line.

The formats of these directives are as follows:

!DIR$ FREE

!DIR$ FIXED

These directives apply to the source file in which they appear, and they allow you to
switch source forms within a source file.

You can change source form within an INCLUDE file. After the INCLUDE file has been
processed, the source form reverts back to the source form that was being used prior
to processing of the INCLUDE file.

42 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Note: The source preprocessor does not recognize the FREE and FIXED directives.
These directives must not be specified in a file that is submitted to the source
preprocessor.

Creating Identification String
The ID directive inserts a character string into the file.o produced for a Fortran
source file. The format of this directive is as follows:

!DIR$ ID "character_string"

character_ string The character string to be inserted into file.o. The
syntax box shows quotation marks as the
character_string delimiter, but you can use either
apostrophes (’ ’) or quotation marks (" ").

Note: This directive is active only when the -g3 and
-DEBUG:optimize_space=off options are used.

The character_string can be obtained from file.o in one of the following ways:

• Method 1. Using the what(1) command. To use the what(1) command to retrieve
the character string, begin the character string with the sentinel characters @(#).
For example, assume that id.f contains the following source code:

!DIR$ ID "@(#)file.f 01 July 1997"

PRINT *, ’hello’
END

The next step is to use file id.o as the argument to the what(1) command, as
follows:

% what id.o

% id.o:

% file.f 01 July 1997

Note that what(1) does not include the special sentinel characters in the output.

007–3696–005 43

5: CF90 Directives

In the following example, character_string does not begin with the characters @(#).
The output shows that what(1) does not recognize the string.

Input file id2.f contains the following:

!DIR$ ID ’file.f 01 July 1997’

PRINT *, ’Hello, world’

END

The what(1) command generates the following output:

% what id2.o

% id2.o:

• Method 2. Using the strings(1) or od(1) command. The following example
shows how to obtain output using the strings(1) command.

Input file id.f contains the following:

!DIR$ ID "File: id.f Date: 1 July 1997"

PRINT *, ’hello’

END

The strings(1) command generates the following output:

% f90 -c -g3 -DEBUG:optimize_space=off id.f

% strings id.o

File: id.f Date: 1 July 1997

% od -c id.o

... portion of dump deleted

0002300 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

0002320 F i l e : i d . f D a t

0002340 e : 1 J u l y 1 9 9 7 001 \0

0002360 \0 \0 \0 \0 024 003 240 031 \0 \0 203 031 \0 \0 205 005

... portion of dump deleted

44 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Ignoring Dummy Argument Type, Kind, and Rank
The IGNORE_TKR directive directs the compiler to ignore the type, kind, and rank
(TKR) of specified dummy arguments in a procedure interface. For information on
Fortran TKR rules, see the MIPSpro Fortran Language Reference Manual, Volume 2.

The format for this directive is as follows:

!DIR$ IGNORE_TKR [darg_name [, darg_name] ...]

darg_name If specified, indicates the dummy arguments for which TKR rules
should be ignored. Dummy arguments for assumed-shape arrays or
Fortran pointers cannot be specified.

If not specified, TKR rules are ignored for all dummy arguments in the
procedure that contains the directive.

The directive causes the compiler to ignore type and kind and rank of the specified
dummy arguments when resolving a generic to a specific call. The compiler also
ignores type and kind and rank on the specified dummy arguments when checking
all the specifics in a generic call for ambiguities.

Example. The following directive instructs the compiler to ignore type, kind, and
rank rules for the dummy arguments supplied for the SHMEM_PUT64(3) function call:

INTERFACE SHMEM_PUT64

SUBROUTINE SHMEM_PUT64(targ, src, len, pe)

!DIR$ IGNORE_TYPE targ, src

INTEGER(KIND=4) len

INTEGER(KIND=4) pe
END SUBROUTINE SHMEM_PUT64

END INTERFACE

The preceding code specifies that targ and src can be any data type, but len and
pe must be INTEGER(KIND=4) data.

007–3696–005 45

5: CF90 Directives

Ignoring Vector Dependencies
The IVDEP directive directs the compiler to perform a more liberal dependency
analysis for the purpose of software pipelining and other optimizations. The format
of this directive is as follows:

!DIR$ IVDEP

This directive’s effects depend on command line settings. When this directive is in
effect, certain dependencies are ignored depending on the state of the following
f90(1) command line options:

Option Effect

-OPT:cray_ivdep=OFF

Default command line setting. IRIX semantics are used when
performing dependency analysis. Non-loop-carried dependencies in
the subsequent loop are ignored between any two array references
whenever the location referred to by at least one of the array
references varies inside the loop. For more information on this
command line option, see the opt(5) man page.

-OPT:cray_ivdep=ON

UNICOS semantics are used when performing dependency analysis.
The compiler disregards backward dependencies only. For more
information on this command line option, see the opt(5) man page.

-OPT:liberal_ivdep=ON

All dependencies are disregarded. For more information on this
command line option, see the opt(5) man page.

The IVDEP directive applies only to inner loops, and it applies to the first DO loop
that follows the directive within the same program unit.

Example 5-1 Data Dependency: non-loop-carried

There are two basic types of dependencies in the loop below: loop-carried and
non-loop-carried. A loop-carried dependency occurs across iterations of the loop. A
non-loop-carried dependency occurs within an iteration of the loop.

46 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

!DIR$ IVDEP
DO I = 1,N

A(INDEX(1,I)) = B(I)

A(INDEX(2,I)) = C(I)

END DO

A loop-carried dependency would occur if INDEX(1,I) in some iteration of I was
equal to INDEX(1,I+K) in some other iteration of I. A non-loop-carried dependency
would occur if INDEX(1,I) was equal to INDEX(2,I) in any iteration of I.

Example 5-2 Data Dependency: IVDEP directive

The following loop is executed with default command line options:

!DIR$ IVDEP

DO I = 1,N
A(B(K)) = A(C(K)) + D(I)

END DO

Neither the reference to A(B(K)) nor to A(C(K)) vary inside the loop, so the IVDEP
directive does not break the dependence.

Example 5-3 Data Dependency: broken dependence

The following loop is executed with default command line options:

!DIR$ IVDEP

DO I = 1,N

A(I) = A(I-1) + 3.0

END DO

The IVDEP directive breaks the dependence, but the compiler issues a message
indicating that an obvious dependence is being broken.

Example 5-4 Data Dependency: IVDEP broken dependence

The following loop is executed with default command line options, and the IVDEP
directive breaks the dependence:

!DIR$ IVDEP
DO I = 1,N

A(B(I)) = A(B(I)) + 3.0

END DO

007–3696–005 47

5: CF90 Directives

Example 5-5 IVDEP and non-loop-carried dependence

The following loop is executed with default command line options, and the IVDEP
directive does not break the dependence on A(I) because the dependence is
non-loop-carried:

!DIR$ IVDEP

DO I = 1,N

A(I) = B(I)

C(I) = A(I) + 3.0

END DO

Example 5-6 OPT:cray_ivdep

The following loop is executed with -OPT:cray_ivdep=ON in effect:

!DIR$ IVDEP

DO I = 1,N
A(I) = A(I-1) + 3.0

END DO

The IVDEP directive breaks all lexically backward dependencies. When the loop is
executed, however, the compiler issues a message indicating that it is breaking an
obvious dependence.

Example 5-7 IVDEP and dependence

When the following loop is executed, the IVDEP directive does not break the
dependence. This is because the dependence is from the load to the store, and the
load comes lexically before the store. Assume that the code fragment in this example
was compiled with -OPT:cray_ivdep=ON.

!DIR$ IVDEP

DO I = 1,N

A(I) = A(I+1) + 3.0

END DO

To break all dependencies, specify -OPT:liberal_ivdep=ON. Both
-OPT:cray_ivdep and -OPT:liberal_ivdep are disabled by default.

For vector codes being transitioned to IRIX, it is recommended that
-OPT:cray_ivdep=ON be used.

48 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Mapping External Names
The NAME directive allows you to specify a case-sensitive external name, or a name
that contains characters outside of the Fortran character set, in a Fortran program.
This directive must appear inside a program unit. The case-sensitive external name is
specified on the NAME directive, in the following format:

!DIR$ NAME (_name="external_name" [,_name="external_name"] ...)

_name The name used for the object throughout the Fortran
program.

external_name The external form of the name.

Rules for Fortran naming do not apply to the external_name string; any character
sequence is valid. You can use this directive, for example, when writing calls to C
routines.

Example:

PROGRAM MAIN
!DIR$ NAME (FOO="XyZ")

CALL FOO ! XyZ IS REALLY BEING CALLED

END PROGRAM

Inhibiting Loop Interchange
The NOINTERCHANGE directive inhibits the compiler’s ability to interchange the loop
that follows the directive with another inner or outer loop. The format of this
directive is as follows:

!DIR$ NOINTERCHANGE

007–3696–005 49

5: CF90 Directives

Determining Register Storage
The NOSIDEEFFECTS directive allows the compiler to keep information in registers
across a single call to a subprogram without reloading the information from memory
after returning from the subprogram. The directive is not needed for intrinsic
functions.

NOSIDEEFFECTS declares that a called subprogram does not redefine any variables
that meet the following conditions:

• Local to the calling program

• Passed as arguments to the subprogram

• Accessible to the calling subprogram through host association

• Declared in a common block or module

• Accessible through USE association

The format of this directive is as follows:

!DIR$ NOSIDEEFFECTS f [, f] ...

f Symbolic name of a subprogram that the user ensures to have no side
effects. f must not be the name of a dummy procedure, module
procedure, or internal procedure.

A procedure declared NOSIDEEFFECTS should not define variables in a common
block or module shared by a program unit in the calling chain. All arguments should
be intent IN; that is, the procedure must not modify its arguments. If these conditions
are not met, results are unpredictable.

The NOSIDEEFFECTS directive must appear in the specification part of a program
unit and must appear before the first executable statement.

The compiler may move invocations of a NOSIDEEFFECTS subprogram from the
body of a DO loop to the loop preamble if the arguments to that function are invariant
in the loop. This may affect the results of the program, particularly if the
NOSIDEEFFECTS subprogram calls functions such as the random number generator
or the real-time clock.

50 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

The effects of the NOSIDEEFFECTS directive are similar to those that can be obtained
by specifying the PURE prefix on a function or a subroutine declaration. For more
information on the PURE prefix, see MIPSpro Fortran Language Reference Manual,
Volume 2.

Designating a Nest to Task
The PREFERTASK directive allows loops with large iteration counts to be considered
as candidates for tasking.

The compiler analyzes loops that follow a PREFERTASK directive to determine
whether the loop is suitable for Autotasking. The PREFERTASK directive disables the
compiler’s threshold checking.

Note: The Autotasking directives are outmoded. SGI encourages you to write new
codes using the OpenMP Fortran API directives.

This directive can be used if there is more than one loop in the nest that can be
autotasked. Autotasking must be enabled for this directive to take effect. The format
of this directive is as follows:

!DIR$ PREFERTASK

In the following example, both loops can be autotasked, but the PREFERTASK
directive directs the compiler to autotask the inner DO J loop. Without the directive
and without any knowledge of N and M, the compiler would task the outer DO I
loop. With the directive, the loops are interchanged, to increase parallel granularity,
and the resulting outer DO J loop is autotasked.

DO I = 1, N

!DIR$ PREFERTASK

DO J = 1, M

E(J,I) = F(J,I) + G(J,I)
END DO

END DO

007–3696–005 51

5: CF90 Directives

Tasking Directives
The NOTASK directive suppresses compiler attempts to task loops and disables
recognition of Autotasking directives. NOTASK takes effect at the next statement and
applies to the rest of the program unit unless it is superseded by a TASK directive.
These directives are disabled if tasking is disabled.

Note: The Autotasking directives are outmoded. SGI encourages you to write new
codes using the OpenMP Fortran API directives.

The formats of these directives are as follows:

!DIR$ TASK

!DIR$ NOTASK

When !DIR$ NOTASK has been used within the same program unit, !DIR$ TASK
causes the compiler to resume its attempts to task loops. After a TASK directive is
specified, the compiler again attempts to autotask loops and array syntax statements
and !MIC$ directives are again recognized.

The TASK directive affects subsequent loops. The NOTASK directive also affects
subsequent loops, but if it is specified within the body of a loop, it affects the loop in
which it is contained and all subsequent loops.

Unrolling Loops
Loop unrolling can improve program performance by revealing cross-iteration
memory optimization opportunities such as read-after-write and read-after-read. The
effects of loop unrolling also include:

• Improved loop scheduling by increasing basic block size

• Reduced loop overhead

• Improved chances for cache hits

The formats of these directives are as follows:

52 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

!DIR$ UNROLL [n]

!DIR$ NOUNROLL

n Specifies the total number of loop body copies to be generated. n must
be a positive integer.

If you specify a value for n, the compiler does not attempt to determine
the number of copies to generate based on the number of inner loops in
the loop nest.

The UNROLL directive should be placed immediately before the DO statement of the
loop that should be unrolled.

Warning: If placed prior to a noninnermost loop, the UNROLL directive asserts that
the following loop has no dependencies across iterations of that loop. If dependencies
exist, incorrect code could be generated.

The UNROLL directive can be used only on loops whose iteration counts can be
calculated before entering the loop. If UNROLL is specified on a loop that is not the
innermost loop in a loop nest, the inner loops must be nested perfectly. That is, all
loops in the nest can contain only 1 loop, and only the innermost loop can contain
work.

The NOUNROLL directive inhibits loop unrolling.

007–3696–005 53

Chapter 6

Source Preprocessing

Source preprocessing can help you port a program from one platform to another by
allowing you to specify source text that is platform specific.

For a source file to be preprocessed automatically, it must have an uppercase
extension, either .F (for a file in fixed source form) or .F90 (for a file in free source
form). Files with these suffixes are preprocessed automatically by the Fortran
preprocessor.

To specify preprocessing of source files with other extensions, including lowercase
ones, use the -cpp, -E, -ftpp, or -P options to the f90 command.

General Rules
You can alter the source code through source preprocessing directives. These
directives are fully explained in "Directives", page 57. The directives must be used
according to the following rules:

• Do not attempt macro substitution in Fortran comments. This will cause macros
beginning with a C in column 1 (in fixed source form) not to be substituted.

• When the Fortran preprocessor is used, you must specify -macro_expand on the
f90(1) command line if you want to enable macro expansion outside of
preprocessor directive lines.

• Do not use source preprocessor (#) directives within multiline compiler directives.

• You cannot include a source file that contains an #if directive without a balancing
#endif directive within the same file.

The #if directive includes the #ifdef and #ifndef directives.

• If a directive is too long for one source line, the backslash character (\) is used to
continue the directive on successive lines. Successive lines of the directive can
begin in any column (up to the column limit of 132).

The backslash character (\) can appear in any location within a directive in which
whitespace can occur. A backslash character (\) in a comment is treated as a
comment character. It is not recognized as signaling continuation.

007–3696–005 55

6: Source Preprocessing

• Every directive begins with the pound character (#), and the pound character (#)
must be in column 1.

• Blank and tab (HT) characters can appear between the pound character (#) and
the directive keyword.

• You cannot write form feed (FF) or vertical tab (VT) characters to separate tokens
on a directive line. That is, if a source preprocessing line spans lines, it must be
continued by using a backslash character (\).

• Blanks are significant, so the use of spaces within a source preprocessing directive
is independent of the source form of the file. The fields of a source preprocessing
directive must be separated by blank or tab (HT) characters.

• Because source preprocessing directives are independent of source form, a
directive can be up to 132 columns on a single source line.

Any directive text that extends past column 132 is ignored. The directive text is
truncated, which is likely to produce parsing errors or unexpected results. If a
directive is too long to fit on a single line, you can continue the line by using the
backslash character (\). It cannot be continued using standard Fortran
continuation methods.

• Any user-specified identifier that is used in a directive must follow Fortran rules
for identifier formation. There are two exceptions to this rule:

– The first character in the name can be an underscore character (_).

– Although Fortran rules state that only the first 31 characters of identifiers are
significant, to the source preprocessor, the first 132 characters are significant.

• Source preprocessing identifier names are case sensitive.

• Numeric literal constants must be integer literal constants or real literal constants,
as defined for Fortran.

• Comments written in the style of the C language, beginning with /* and ending
with */, can appear anywhere within a source preprocessing directive in which
blanks or tabs can appear. The comment, however, must begin and end on a
single source line.

• The blanks shown in the syntax descriptions of the source preprocessing directives
are significant. The tab character (HT) can be used in place of a blank. Multiple
blanks can appear wherever a single blank appears in a syntax description.

56 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Directives
The following sections describe the source preprocessing directives.

#include Directive

The #include directive directs the system to use the content of a file or directory.
Just as with the INCLUDE line processing defined by the Fortran standard, an
#include directive effectively replaces that directive line with the content of filename.
This directive has the following formats:

#include "filename"

#include <filename>

filename A file or directory to be used.

In the first form, if filename does not begin with a slash (/) character, the
system searches for the named file, first in the directory of the file
containing the #include directive, then in the sequence of directories
specified by the -I option(s) on the f90(1) command line, and then the
standard (default) sequence. If filename begins with a slash (/) character,
it is used as is and is assumed to be the full path to the file.

The second form directs the search to begin in the sequence of
directories specified by the -I option(s) on the f90(1) command line
and then search the standard (default) sequence.

The Fortran standard prohibits recursion in INCLUDE files, so recursion is also
prohibited in the #include form.

The #include directives can be nested.

When the compiler is invoked to do only source preprocessing, not compilation, text
will be included by #include directives but not by Fortran INCLUDE lines.

007–3696–005 57

6: Source Preprocessing

#define Directive

The #define directive lets you declare a source preprocessing variable and associate
a token string with the variable. It also allows you to define a function-like macro.
This directive has the following formats:

#define identifier value

#define identifier(dummy_arg_list) value

The first format defines an object-like macro (also called a source preprocessing variable),
and the second defines a function-like macro. In the second format, the left
parenthesis that begins the dummy_arg_list must immediately follow the identifier,
with no intervening white space.

identifier Specifies the name of the variable or macro being
defined.

dummy_arg_list Specifies a list of dummy argument identifiers.

value Specifies the value as a sequence of tokens. The value
can be continued onto more than one line using
backslash (\) characters.

If a preprocessor identifier appears in a subsequent #define directive without being
the subject of an intervening #undef directive, and the value in the second #define
directive is different from the value in the first #define directive, then the
preprocessor issues a warning message about the redefinition. The second directive’s
value is used. For more information on the #undef directive, see "#undef Directive",
page 59.

When an object-like macro’s identifier is encountered as a token in the source file, it is
replaced with the value specified in the macro’s definition. This is referred to as an
invocation of the macro. By default, tokens are not processed in Fortran source code.
They are recognized only when used in other source preprocessing directives.

The invocation of a function-like macro is more complicated. It consists of the macro’s
identifier, immediately followed by a left parenthesis with no intervening white space,
then a list of actual arguments separated by commas, and finally a terminating right
parenthesis. There must be the same number of actual arguments in the invocation as
there are dummy arguments in the #define directive. Each actual argument must be
balanced in terms of any internal parentheses. The invocation is replaced with the

58 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

value given in the macro’s definition, with each occurrence of any dummy argument
in the definition replaced with the corresponding actual argument in the invocation.

The following two examples must be compiled with -macro_expand specified on
the f90(1) command line:

• The following program prints Hello, world. when compiled and run:

PROGRAM P

#define GREETING ’Hello, world.’

PRINT *, GREETING

END PROGRAM P

• The following program prints Hello, Hello, world. when compiled and run:

PROGRAM P

#define GREETING(str1, str2) str1, str1, str2
PRINT *, GREETING(’Hello, ’, ’world.’)

END PROGRAM P

#undef Directive

The #undef directive sets the definition state of identifier to an undefined value. If
identifier is not currently defined, the #undef directive has no effect. This directive
has the following format:

#undef identifier

identifier Specifies the name of the source preprocessing variable or macro being
undefined.

(Null) Directive

The null directive simply consists of the pound character (#) in column 1 with no
significant characters following it. That is, the remainder of the line is typically blank
or is a source preprocessing comment. This directive is generally used for spacing out
other directive lines.

007–3696–005 59

6: Source Preprocessing

Conditional Directives

Conditional directives cause lines of code to either be produced by the source
preprocessor or to be skipped. The conditional directives within a source file form
if-groups. An if-group begins with an #if, #ifdef, or #ifndef directive, followed
by lines of source code that you may or may not want skipped. Several similarities
exist between the Fortran IF construct and if-groups:

• The #elif directive corresponds to the ELSE IF statement.

• The #else directive corresponds to the ELSE statement.

• Just as an IF construct must be terminated with an END IF statement, an if-group
must be terminated with an #endif directive.

• Just as with an IF construct, any of the blocks of source statements in an if-group
can be empty.

For example, you can write the following directives:

#if MIN_VALUE == 1
#else

...

#endif

Determining which group of source lines (if any) to compile in an if-group is
essentially the same as the Fortran determination of which block of an IF construct
should be executed.

#if Directive

The #if directive has the following format:

#if expression

expression An expression. The values in expression must be integer literal constants
or previously defined preprocessor variables. The expression is an
integer constant expression as defined by the C language standard. All
the operators in the expression are C operators, not Fortran operators.
The expression is evaluated according to C language rules, not Fortran
expression evaluation rules.

60 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Note that unlike the Fortran IF construct and IF statement logical
expressions, the expression in an #if directive need not be enclosed in
parentheses.

The #if expression can also contain the unary defined operator, which can be used
in either of the following formats:

defined identifier

defined(identifier)

When the defined subexpression is evaluated, the value is 1 if identifier is currently
defined, and 0 if it is not.

All currently defined source preprocessing variables in expression, except those that
are operands of defined unary operators, are replaced with their values. During this
evaluation, all source preprocessing variables that are undefined evaluate to 0.

Note that the following two directive forms are not equivalent:

• #if X

• #if defined(X)

In the first case, the condition is true if X has a nonzero value. In the second case, the
condition is true only if X has been defined (has been given a value that could be 0).

#ifdef Directive

The #ifdef directive is used to determine if identifier is predefined by the source
preprocessor, has been named in a #define directive, or has been named in the -D
option on the f90(1) command line.

This directive has the following format:

#ifdef identifier

The #ifdef directive is equivalent to either of the following two directives:

• #if defined identifier

007–3696–005 61

6: Source Preprocessing

• #if defined(identifier)

#ifndef Directive

The #ifndef directive tests for the presence of an identifier that is not defined. This
directive has the following format:

#ifndef identifier

This directive is equivalent to either of the following two directives:

• #if ! defined identifier

• #if ! defined(identifier)

#elif Directive

The #elif directive serves the same purpose in an if-group as does the ELSE IF
statement of a Fortran IF construct. This directive has the following format:

#elif expression

expression The expression follows all the rules of the integer constant expression in
an #if directive.

#else Directive

The #else directive serves the same purpose in an if-group as does the ELSE
statement of a Fortran IF construct. This directive has the following format:

#else

#endif Directive

The #endif directive serves the same purpose in an if-group as does the END IF
statement of a Fortran IF construct. This directive has the following format:

62 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

#endif

Predefined Macros
The source preprocessor supports a number of predefined macros. They are divided
into groups as follows:

• Macros that are based on the host machine

• Macros that are based on IRIX system targets

The following predefined macros are based on the host system (the system upon
which the compilation is being done):

Macro Notes

__unix Always defined. The leading characters consist of 2
consecutive underscores.

The following predefined macros are based on an IRIX system target:

Macro Notes

_ABIabi=n Defined when abi is set to N32 or 64. Its value is the
instruction set architecture. For example, _ABIN32=2 is
set when -n32 is specified on the f90(1) command
line; _ABI64=3 is set when -64 is specified on the
f90(1) command line.

For information on the f90(1) command line, see the
f90(1) man page.

_COMPILER_VERSION Defined as the compiler version. For example, for the
MIPSpro 7.2.1 release it is set as follows:
_COMPILER_VERSION=721.

LANGUAGE_FORTRAN90,
_LANGUAGE_FORTRAN90

__host_mips The leading characters in the second form consist of 2
consecutive underscores.

007–3696–005 63

6: Source Preprocessing

LANGUAGE_FORTRAN,
_LANGUAGE_FORTRAN

MIPSEB, _MIPSEB

__mips Set to the instruction set architecture, either 3 or 4. The
leading characters consist of 2 consecutive underscores.

_MIPS_ISA Set to the instruction set architecture, either 3 or 4.

_MIPS_SIM Set to the instruction set architecture, as follows:
_MIPS_SIM=_ABIN32 when -n32 is specified on the
f90(1) command line; _MIPS_SIM=_ABI64 when -64
is specified on the f90(1) command line.

_OPENMP

__sgi The leading characters consist of 2 consecutive
underscores.

_SYSTYPE_SVR4

64 007–3696–005

Chapter 7

Interlanguage Calling

You may want to call external procedures written in C, C++, or some other language,
or you may need to call a Fortran procedure from one of those languages. This
chapter focuses on the interface between Fortran and C/C++.

If your application has source programs written in different languages, you should
compile each file separately, with the appropriate compiler, and then load them in a
separate step. You can create object files suitable for loading by specifying the -c
option on the f90(1) command, which disables the load step and writes the binary
file to file.o.

In the following example, the C/C++ compiler and the Fortran compiler produce
object files that can be loaded. These files are named main.o and rest.o:

% cc -c main.c

% f90 -c rest.f

This chapter provides more details on compiling and loading application programs
that are written in Fortran, C, and C++.

External and Public Names
When your Fortran program defines the body of a procedure, the compiler places the
name of the procedure, as a character string, in the object file it generates. This is a
public name, which is accessible to other object files.

When your Fortran program uses a procedure, the compiler places the name of the
procedure in the generated object file. This is an external name, which is used by the
object file but not defined in it. Names of common blocks and names of data and
procedures declared within object files are also external names. You can use the nm(1)
utility to display the public and external names defined in a file.

It is up to the linker to resolve each reference to an external name by finding that
same name as a public name in some other module. This is the main job of the linker.

007–3696–005 65

7: Interlanguage Calling

Fortran Treatment of External and Public Names

The Fortran compiler ignores the case of the input source text (other than the contents
of character literals). As a result, it may change the case of the names of procedures
and named common blocks while it translates the source file. The names recorded in
the object file are changed in the following two ways from the way you may have
written them:

• They are converted to all lowercase letters.

• They are normally extended with a final underscore (_) character.

Procedure names and common block names are translated, too.

The following declarations produce the identifiers matrix_, mixedcase_, and
cblk_ in the object file:

SUBROUTINE MATRIX

external function MixedCase()
COMMON /CBLK/a,b,c

These changes cause no problems when loading program units compiled by Fortran.
The same convention is used for both the public and external names, so the names
match.

Note: Some IRIX-based FORTRAN 77 compilers support the -U command line
option, which prevents the compiler from forcing all uppercase input to lowercase.
As a byproduct, it becomes possible to put mixed case public names in the object file.
This option is not supported by the MIPSpro Fortran 90 compiler.

In addition, some IRIX-based FORTRAN 77 compilers take the use of the $ character
as the final letter of a procedure name as a signal to suppress the underscore in the
public name. The $ is not permitted to appear in a name if the program is to be
compiled by the MIPSpro Fortran 90 compiler. Use the noappend option to prevent
the compiler from appending a trailing underscore character.

You can override the default conventions by using the !DIR$ NAME directive
described in "Mapping External Names", page 49.

Module and internal procedure names are connected with .in. to make a unique
name. For example, the following code creates procedures named MPROC.in.MMM
and IPROC.in.MPROC.in.MMM:

66 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

MODULE MMM
...

CONTAINS

SUBROUTINE MPROC()

...

CONTAINS
SUBROUTINE IPROC()

...

Calling a Fortran Subprogram from C

To call a Fortran subprogram from a C procedure, spell the name the way the Fortran
compiler spells it, using all lowercase letters and a trailing underscore.

For example, consider the following Fortran declaration:

SUBROUTINE HYPOT()

This must be declared in a C function as follows (note the use of lowercase with a
trailing underscore):

extern int hypot_()

Note: You cannot call Fortran subroutines that contain assumed-shape dummy
arguments or Fortran pointer arguments from C.

Calling a C Function from Fortran

To call a C function from a Fortran program, ensure that the C function’s name is
spelled the way the Fortran compiler expects it to be. When you control the name of
the C function, the simplest solution is to give it a name that consists of lowercase
letters with a terminal underscore. For example, the following C function:

int fromfort_() {...}

could be declared in a Fortran program as follows:

external FROMFORT

When you do not control the name of a C function, you must either supply a function
name that the Fortran compiler can call or use the !DIR$ NAME directive described in

007–3696–005 67

7: Interlanguage Calling

"Mapping External Names", page 49. If you choose to supply a function name that
the Fortran compiler can call, you need to write a C function that accepts the same
arguments and has a name composed of lowercase letters followed by an underscore.
This C function can then call the function whose name contains mixed case letters.
You can write such a wrapper function manually, or you can use the mkf2c(1) utility
to do it automatically.

Correspondence of Fortran and C Data Types
When you exchange data between Fortran and C, either as arguments, as function
results, or as members of common blocks, you must make sure that the two
languages agree on the size, alignment, and subscript of each data object.

Corresponding Scalar Types

The correspondence between Fortran and C scalar data types is shown in Table 7-1.
This table assumes that the default command line options that affect precision are in
effect. Certain f90(1) command line options (such as -i2 or -r8) affects storage sizes
for integer, logical, real, and double precision data types. For information on the -i2
and -r8 options, see the f90(1) man page.

Table 7-1 Corresponding Fortran and C Data Types

Fortran Data Type Declaration C Data Type

INTEGER(KIND=1),
LOGICAL(KIND=1)

signed char

CHARACTER unsigned char

INTEGER(KIND=2),
LOGICAL(KIND=2)

short

INTEGER, INTEGER(KIND=4),
LOGICAL, LOGICAL(KIND=4)

int

INTEGER(KIND=8),
LOGICAL(KIND=8)

long long

REAL, REAL(KIND=4) float

68 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Fortran Data Type Declaration C Data Type

DOUBLE PRECISION,
REAL(KIND=8)

double

REAL(KIND=16) long double

COMPLEX, COMPLEX(KIND=4) struct{float real, imag;};

DOUBLE COMPLEX,
COMPLEX(KIND=8)

struct{double real, imag;};

COMPLEX(KIND=16) struct{long double real, imag;};

CHARACTER(n) char fstr_n[n]

For type character, Fortran declarations with a length designator, such as
CHARACTER(LEN=N) :: X, are equivalent to a C declaration of unsigned char
X[N].

To set a NULL character in a Fortran string, use CHAR(0), as in this example:

character*4 aaa

aaa(1:3) = ’abc’
aaa(4:4) = CHAR(0)

Corresponding Character Types

The Fortran CHARACTER data type declaration corresponds to the C type
unsigned char. However, the two languages differ in the treatment of strings of
characters.

A Fortran variable can be declared as CHARACTER(n), where n>1, contains exactly n
characters at all times. When a shorter character expression is assigned to it, it is
padded on the right with spaces to reach n characters.

A C vector of characters is normally sized 1 greater than the longest string assigned
to it. It may contain fewer meaningful characters than its size allows, and the end of
meaningful data is marked by a null byte. There is no null byte at the end of a
Fortran string (except by chance memory alignment).

There is no terminal null byte, so most of the string library functions familiar to C
programmers (strcpy()(3c), strcat()(3c), strcmp()(3c), and so on) cannot be
used with Fortran string values. The strncpy()(3c), strncmp()(3c), bcopy()(3c),

007–3696–005 69

7: Interlanguage Calling

and bcmp()(3c) functions can be used because they depend on a count rather than a
delimiter.

Unsupported Array Arguments

Fortran supports assumed-shape arrays, deferred-shape arrays, and array sections.
You cannot pass any of these types of array to a non-Fortran procedure because
Fortran represents such arrays in memory using a descriptor containing indirect
pointers and other data. The format of this descriptor is not part of the published
programming interface to the compiler because it is subject to change.

How Fortran Passes Arguments
When calling non-Fortran functions, you must know how arguments are passed.
When calling Fortran subprograms from other languages, you must cause the other
language to pass arguments correctly.

Note: All compilers for a given version of an operating system use identical
conventions for passing arguments. These conventions are documented at the
machine instruction level in the Assembly Language manual for the system.

An argument passed to a subprogram, regardless of its data type, is passed as the
address of the actual in memory. This rule is extended for two special cases:

• The length of each CHARACTER(n) declaration is passed as an implicit additional
INTEGER(KIND=4) value, following the explicit arguments.

• When a function returns type CHARACTER(n), the address of the space to receive
the result is passed as the first argument to the function, and the length of the
result space is passed as the second implicit argument, preceding all explicit
arguments.

Example 7-1 Argument passing

Consider the following code:

COMPLEX(KIND=8) :: CMPLX8

CHARACTER*(16) :: CSTR1, CSTR2
EXTERNAL CPXASC

CALL CPXASC(CSTR1,CSTR2,CMPLX8)

70 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

The code generated from the subroutine call in this example passes the following
arguments:

• The address of CSTR1

• The address of CSTR2

• The address of CMPLX8

• The length of CSTR1, an integer value of 16

• The length of CSTR2, an integer value of 16

Example 7-2 Argument passing (continued)

Consider the following code:

CHARACTER*(8) :: SYMBL,PICKSYM

CHARACTER*(100) :: SENTENCE
INTEGER NSYM

SYMBL = PICKSYM(SENTENCE,NSYM)

The code generated from the function call in the preceding example passes the
following arguments:

• The address of an unnamed result variable

• The length of an unnamed result variable

• The address of SENTENCE, the first explicit argument

• The address of NSYM, the second explicit argument

• The length of SENTENCE, an integer value of 100

Calling Fortran from C
There are two types of callable Fortran subprograms: subroutines and functions. In C
terminology, both types of subprograms are external functions. The difference is the
use of the function return value from each.

007–3696–005 71

7: Interlanguage Calling

Calling a Fortran Subroutine from C

From the standpoint of a C function, a Fortran subroutine is an external function
returning void.

Example 7-3 Calling Fortran from C

The following example shows a simple Fortran subroutine that adds arrays of
complex numbers:

SUBROUTINE ADDC32(Z, A, B, N)

INTEGER :: N

COMPLEX(KIND=16),DIMENSION(N) :: Z,A,B

Z = A + B

RETURN

END SUBROUTINE

The Fortran subroutine could be called from C using the following code fragment:

typedef struct{long double real, imag;} cpx32;
extern void

addc32_(cpx32 *,cpx32 *,cpx32 *,int *);

cpx32 z[MAXARRAY], a[MAXARRAY], b[MAXARRAY];

...

int n = MAXARRAY;
addc32_(&z, &a, &b, &n);

The preceding code fragments show how the Fortran subroutine is named in the C
code using lowercase letters and a terminal underscore. This is the way the Fortran
compiler spells the public name in the object file.

Example 7-4 Calling Fortran from C (continued)

The following subroutine takes assumed-length character arguments:

SUBROUTINE PRT(BEF, VAL, AFT)

CHARACTER*(*) :: BEF, AFT

REAL :: VAL

PRINT *, BEF, VAL, AFT

RETURN
END SUBROUTINE PRT

The following C code prepares CHARACTER(16) values and passes them to the
Fortran subroutine:

72 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

typedef char fstr_16[16];
extern void

prt_(fstr_16 *, float *, fstr_16 *,

int, int);

main()

{
float val = 2.1828e0;

fstr_16 bef,aft;

strncpy(bef,"Before..........",sizeof(bef));

strncpy(aft,"...........After",sizeof(aft));

prt_(bef, &val, aft, sizeof(bef), sizeof(aft));

}

Note that the subroutine call requires five actual arguments: the addresses of the
three explicit arguments and the lengths of the two string arguments. In the C code,
the string length arguments are generated using sizeof(), which returns the
memory size of the typedef fstr_16.

When the Fortran code does not require a specific string length, the C code that calls
it can pass an ordinary C character vector, as shown in the following code fragment:

extern int

prt_(char *, float *, char *, int, int);

main()
{

float val = 2.1828e0;

char *bef = "Start:";

char *aft = ":End";

(void)prt_(bef, &val, aft, strlen(bef), strlen(aft));
}

In this example, the string length implicit argument values are calculated dynamically
using strlen().

Calling a Fortran Function from C

A Fortran function that returns a scalar value as its result corresponds exactly to the
C concept of a function with an explicit return value. When a Fortran function
returns any type shown in Table 7-1, page 68, other than CHARACTER(n), where n>1,
you can call the function from C and handle its return value exactly as if it were a C
function returning that data type.

007–3696–005 73

7: Interlanguage Calling

Example 7-5 Calling Fortran functions

The following function accepts and returns COMPLEX(KIND=8) values.

FUNCTION FSUB8(INP)
COMPLEX(KIND=8) :: INP,FSUB8

FSUB8 = INP

END FUNCTION FSUB8

Although a complex value is declared as a structure in C, it can be used as the return
type of a function. The following C code shows how the preceding Fortran function
is declared and called:

typedef struct{ double real, imag; } cpx8;

extern cpx8 fsub8_(cpx8 *);
main()

{

cpx8 inp = { -3.333, -5.555 };

cpx8 oup = { 0.0, 0.0 };

printf("testing fsub8...");
oup = fsub8_(&inp);

if (inp.real == oup.real && inp.imag == oup.imag)

printf("Ok\n");

else

printf("Nope\n");

}

The arguments to a function, like the arguments to a subroutine, are passed as
pointers, but the value returned is a value, not a pointer to a value.

Example 7-6 Calling functions

The following function has a CHARACTER(16) return value.

FUNCTION FS16(J, K, S)
CHARACTER*(16) :: FS16, S

INTEGER J, K

FS16 = S(J:K)

RETURN

END FUNCTION FS16

When a Fortran function returns CHARACTER(n), where n>1, value, the returned
value is not the explicit result of the function. Instead, you must pass the address and

74 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

length of the result area as the first two arguments of the function, preceding the
explicit arguments. This is demonstrated in the following C code:

typedef char fstr_16[16];

extern void

fs16_ (fstr_16 *, int, int *, int *, fstr_16 *, int);

main()

{

char work[64];
fstr_16 inp, oup;

int j = 7;

int k = 11;

strncpy(inp,"0123456789abcdef", sizeof(inp));

fs16_ (oup, sizeof(oup), &j, &k, inp, sizeof(inp));
strncpy(work, oup, sizeof(oup));

work[sizeof(oup)] = ’\0’;

printf("FS16 returns <%s>\n", work);

}

In this example, the address and length of the function result are the first two
arguments of the function. Because type fstr_16 is an array, its name, oup, evaluates
to the address of its first element. The next three arguments are the addresses of the
three named arguments. The final argument is the length of the string argument.

Calling C from Fortran
You can call units of C code from Fortran as if they were written in Fortran, provided
that the C modules follow the Fortran conventions for passing arguments. For more
information on this, see "How Fortran Passes Arguments", page 70.

When the C function expects arguments passed using other conventions, you
normally need to build a wrapper for the C function using the mkf2c(1) command.

Calls to C Functions

The following C function is written to use the Fortran conventions for its name
(lowercase with final underscore) and for argument passing:

/*

|| C functions to export the facilities of strtoll()

007–3696–005 75

7: Interlanguage Calling

|| to Fortran programs. Effective Fortran declaration:
||

|| FUNCTION ISCAN(S,J)

|| INTEGER(KIND=8) :: ISCAN

|| CHARACTER*(*) S

|| INTEGER J
||

|| String S(J:) is scanned for the next signed long value

|| as specified by strtoll(3c) for a "base" argument of 0

|| (meaning that octal and hex literals are accepted).

||

|| The converted long long is the function value, and J is
|| updated to the nonspace character following the last

|| converted character, or to 1+LEN(S).

||

|| Note: if this routine is called when S(J:J) is neither

|| whitespace nor the initial of a valid numeric literal,
|| it returns 0 and does not advance J.

*/

#include <ctype.h> /* for isspace() */

long long iscan_(char *ps, int *pj, int ls)

{

int scanPos, scanLen;
long long ret = 0;

char wrk[1024];

char *endpt;

/* when J>LEN(S), do nothing, return 0 */

if (ls >= *pj)
{

/* convert J to origin-0, permit J=0 */

scanPos = (0 < *pj)? *pj-1 : 0 ;

/* calculate effective length of S(J:) */
scanLen = ls - scanPos;

/* copy S(J:) and append a null for strtoll() */

strncpy(wrk,(ps+scanPos),scanLen);

wrk[scanLen] = ‘\0’;

/* scan for the integer */

ret = strtoll(wrk, &endpt, 0);

76 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

/*

|| Advance over any whitespace following the number.

|| Trailing spaces are common at the end of Fortran

|| fixed-length char vars.

*/
while(isspace(*endpt)) { ++endpt; }

*pj = (endpt - wrk)+scanPos+1;

}

return ret;

}

The following Fortran code fragment demonstrates a call to the preceding C function:

EXTERNAL ISCAN

INTEGER(KIND=8) ISCAN
INTEGER(KIND=8) RET

INTEGER J,K

CHARACTER*(50) INP

INP = ’1 -99 3141592 0xfff 033 ’

J = 0
DO WHILE (J .LT. LEN(INP))

K = J

RET = ISCAN(INP,J)

PRINT *, K,’: ’,RET,’ -->’,J

END DO

END

Using Fortran Common Blocks in C Code

A C function can refer to the contents of a common block defined in a Fortran
program. The name of the block as given in the COMMON statement is altered as
described in "Fortran Treatment of External and Public Names", page 66. (The name
is converted to lowercase and extended with an underscore). The name of the blank
common is _BLNK__, with one leading underscore and two trailing ones.

To refer to the contents of a common block, take these steps:

1. Declare a C structure with fields that have the appropriate data types to match
the successive elements of the Fortran common block. For information on
corresponding data types, see Table 7-1, page 68.

007–3696–005 77

7: Interlanguage Calling

2. Declare the common block name as an external structure of that type.

The following example employs this method:

INTEGER STKTOP, STKLEN, STACK(100)
COMMON /WITHC/ STKTOP, STKLEN, STACK

struct fstack {

int stktop, stklen;

int stack[100];

}
extern fstack withc_;

int peektop_()

{

if (withc_.stktop) /* stack not empty */

return withc_.stack[withc_.stktop-1];
else...

}

The restrictions on this capability are as follows:

• You cannot map a common block that contains Fortran pointer-based variables.

• If the common block contains a variable of Fortran derived type (a structure),
ensure that the derived type is declared with the SEQUENCE attribute. Otherwise,
its fields may not appear in the expected sequence in memory.

• When -O3 is in effect, the compiler may split up common blocks. For information
on the -O3 option, see the f90(1) man page.

Using Fortran Arrays in C Code

A C program can access arrays created in Fortran. The following example illustrates
this.

The following Fortran code fragment declares a matrix in a common block and then
calls a C subroutine to modify the array:

INTEGER IMAT(10,100), R, C
COMMON /WITHC/ IMAT

R = 74

C = 6

CALL CSUB(C, R, 746)

78 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

PRINT *, IMAT(6,74)
END

The following C function stores its third argument in the common array using the
subscripts passed in the first two arguments. In the C function, the order of the
dimensions of the array are reversed, so the subscript values are reversed to match,
and decremented by 1 to provide 0-origin indexing:

extern struct { int imat[100][10]; } withc_;

void csub_(int *pc, int *pr, int *pval)

{
withc_.imat[*pr-1][*pc-1] = *pval;

}

Calls to C Using LOC and %VAL

You can use the nonstandard intrinsic functions %VAL and LOC to pass arguments in
ways other than the standard Fortran conventions described in "How Fortran Passes
Arguments", page 70.

Using %VAL

The %VAL function is used in an argument list to cause an argument to be passed by
value rather than by reference. Suppose that you need to call a C function having the
following prototype in file ti.c:

#includevoid takesint_(int i, char *s, int len)

{

printf("i: %d\n", i);
printf("s: %.*s\n", len, s);

}

The first argument to this function is an integer value, not the address of an integer
value in memory. You could call this function from the following Fortran code in file
ti_f.f:

CHARACTER(80) SENTENCE

INTEGER(4) J
J = 13

SENTENCE = "Hello, there."

CALL TAKESINT(%VAL(J), SENTENCE)

END

007–3696–005 79

7: Interlanguage Calling

The use of %VAL(j) causes the contents of j to be passed, rather than the address of j.

% f90 -n32 ti_f.f ti.c
ti_f.f:

ti.c:

% ./a.out

i: 13

s: Hello, there.

Using LOC

The LOC function returns the address of its argument. The type of the argument is
determined by hardware type. It can be used with %VAL to prevent passing the
length of a character value as a hidden argument. In other words, the argument
%VAL(LOC(char_var)) passes only the address of char_var. It does not pass the
implicit length argument.

Calling Assembly Language from Fortran
You can write modules in MIPS assembly language, following the guidelines in the
MIPSpro Assembly Language Programmer’s Guide. Procedures in these modules can be
called from Fortran. There is only one special consideration.

Operating in assembly language, you can change the operating mode and the
rounding mode of the CPU. When running Fortran programs that contain quad
precision operations, you must run the compiler in round-to-nearest mode. This
mode is in effect by default, so you usually do not need to set it. When writing
programs that call your own assembly routines, ensure that this mode is set. For
more information, see the swapRM(3c) man page.

80 007–3696–005

Chapter 8

The Auto-Parallelizing Option (APO)

The Auto-Parallelizing Option (APO) enables the compiler to optimize parallel codes
and enhances performance on multiprocessor systems. APO is controlled with
command line options and source directives.

Note: APO is licensed and sold separately from the compiler. APO features in your
code are ignored unless you are licensed for this product. For sales and licensing
information, contact your SGI sales representative.

APO is integrated into the compiler; it is not a source-to-source preprocessor.
Although runtime performance suffers slightly on single-processor systems,
parallelized programs can be created and debugged with APO enabled.

Parallelization is the process of analyzing sequential programs for parallelism and
restructuring them to run efficiently on multiprocessor systems. The goal is to
minimize the overall computation time by distributing the computational workload
among the available processors. Parallelization can be automatic or manual.

During automatic parallelization, the compiler analyzes and restructures the program
with little or no intervention by you. With APO, the compiler automatically generates
code that splits the processing of loops among multiple processors. An alternative is
manual parallelization, in which you perform the parallelization using compiler
directives and other programming techniques.

As the following figure shows, APO integrates automatic parallelization with other
compiler optimizations, such as interprocedural analysis (IPA), optimizations for
single processors, and loop nest optimization (LNO):

007–3696–005 81

8: The Auto-Parallelizing Option (APO)

Fortran 90 source

Front end

Intermediate representation

-apolist
file.list

-flist
file.w2f.f

-apokeep file.list
file.m
file.anl

Pre-optimization

Intermediate representation

APO

Fortran 90

Intermediate representation

LNO

Intermediate representation

Main optimization

Intermediate representation

Code generator

file.o
a12059

Figure 8-1 Files Generated by the ProDev Automatic Parallelization Option
82 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

f90(1) Command Line Options That Affect APO
Several f90(1) command line options control APO’s effect on your program. The
following command line, for example, invokes APO and requests aggressive
optimization:

f90 -apo -O3 zebra.f

The following subsections describe the effects that various f90(1) command line
options have on APO.

Note: If you invoke the linker separately, you must specify the -apo option on the
ld(1) command line.

-apo

The -apo option invokes APO. When this option is enabled, the compiler
automatically converts sequential code into parallel code by inserting parallel
directives where it it safe and beneficial to do so. Specifying -apo also enables the
-mp option, which enables recognition of the parallel directives inserted into your
code.

-apokeep and -apolist

The -apokeep and -apolist options control output files. Both options generate
file.list, which is a listing file that contains information on the loops that were
executed in parallel and explains why others were not executed in parallel.

When -apokeep is specified, the compiler writes file.list, and in addition, it retains
file.anl and file.m. The ProDev ProMP tools use file.anl. For more information on
ProDev ProMP, see the ProDev WorkShop: ProMP User’s Guide. file.m is an annotated
version of your source code that shows the insertion of multiprocessing directives.

For more information on the content of file.list, file.anl, and file.m, see "The
file.w2f.f File", page 87.

Note: Because of data conflicts, do not specify the -mplist or -FLIST options when
-apokeep is specified.

007–3696–005 83

8: The Auto-Parallelizing Option (APO)

-flist

This option generates a Fortran listing and directs the compiler to write the
transformed source code and multiprocessing directives to file.w2f.f. For more
information on the content of file.w2f.f, see "Files", page 86.

-IPA:...

Interprocedural analysis (IPA) is invoked by the -IPA command line option. It
performs program optimizations that can only be done by examining the whole
program rather than processing each procedure separately.

When APO is invoked with IPA, only those loops with calls determined to be safe are
parallelized.

If IPA expands subroutines inline in a calling routine, the subroutines are compiled
with the options of the calling routine. If the calling routine is not compiled with
-apo, none of its inlined subroutines are parallelized. This is true even if the
subroutines are compiled separately with -apo because with IPA, automatic
parallelization is deferred until link time.

If -apokeep or -pfakeep are specified in conjunction with -ipa or -IPA, the
default settings for IPA suboptions are used with the exception of the inline=setting
suboption. For that suboption, the default becomes OFF.

For more information on the effect of IPA, see "Loops Containing Function Calls",
page 92. For more information on IPA itself, see the ipa(5) man page.

-LNO:...

The -LNO options control the Loop Nest Optimizer (LNO). LNO is enabled by default
at -O3. LNO performs loop optimizations that better exploit caches and
instruction-level parallelism. The following LNO options are of particular interest to
APO users:

• -LNO:auto_dist=on. This option requests that APO insert data distribution
directives to provide the best memory utilization on Origin2000 systems.

• -LNO:ignore_pragmas=setting. This option directs APO to ignore all of the
directives and assertions described in "Compiler Directives", page 100.

84 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

• -LNO:parallel_overhead=num_cycles. This option allows you to override
certain compiler assumptions regarding the efficiency to be gained by executing
certain loops in parallel rather than serially. Specifically, changing this setting
changes the default estimate of the cost to invoke a parallel loop in your runtime
environment. This estimate varies depending on your particular runtime
environment, but it is typically several thousand machine cycles.

-O3

To obtain maximum performace, specify -O3 when compiling with APO enabled. The
optimizations at this level maximize code quality even if they require extensive
compile time or relax the language rules. In addition, LNO is enabled by default at
this -O level.

The -O3 option uses transformations that are usually beneficial but can sometimes
hurt performance. This optimization may cause noticeable changes in floating-point
results due to the relaxation of operation-ordering rules. Floating-point optimization
is discussed further in "-OPT:...", page 85.

-OPT:...

The -OPT command line option controls general optimizations that are not associated
with a distinct compiler phase.

The -OPT:roundoff=n option controls floating-point accuracy and the behavior of
overflow and underflow exceptions relative to the source language rules.

When -O3 is in effect, the default rounding setting is -OPT:roundoff=2. This
setting allows transformations with extensive effects on floating-point results. It
allows associative rearrangement across loop iterations and the distribution of
multiplication over addition and subtraction. It disallows only transformations
known to cause overflow, underflow, or cumulative round-off errors for a wide range
of floating-point operands.

At -OPT:roundoff=2 or 3, APO can change the sequence of a loop’s floating-point
operations in order to parallelize it. Because floating-point operations have finite
precision, this change can cause slightly different results. If you want to avoid these
differences by not having such loops parallelized, you must compile with
-OPT:roundoff=0 or -OPT:roundoff=1.

007–3696–005 85

8: The Auto-Parallelizing Option (APO)

Example 8-1 APO OPT example

APO parallelizes the following loop when compiled with the default settings of
-OPT:roundoff=2 and -O3:

REAL A, B(100)

DO I = 1, 100

A = A + B(I)

END DO

At the start of the loop, each processor gets a private copy of A in which to hold a
partial sum. At the end of the loop, the partial sum in each processor’s copy is added
to the total in the original, global copy. This value of A can be different from the value
generated by a version of the loop that is not parallelized.

file

Your input file.

For information on files used and generated when APO is enabled, see "Files". For
information on Fortran input files, see the f90(1) man page.

Files
APO provides a number of options to generate listings that describe where
parallelization failed and where it succeeded. You can use these listings to identify
constructs that inhibit parallelization. When you remove these constructs, you can
often improve program performance dramatically.

When looking for loops to run in parallel, focus on the areas of the code that use
most of the execution time. To determine where the program spends its execution
time, you can use tools such as SpeedShop and the ProDev ProMP Parallel Analyzer
View described in the ProDev WorkShop: ProMP User’s Guide.

The following sections describe the content of the files generated by APO.

86 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

The file.list File

The -apolist and -apokeep options generate files that list the original loops in the
program along with messages indicating if the loops were parallelized. For loops that
were not parallelized, an explanation is provided.

Example 8-2 file.list and APO

The following subroutine resides in file testl.f:

SUBROUTINE SUB(ARR, N)

REAL(KIND=8), DIMENSION(N) :: ARR

INTEGER :: N, I

ARR(2:N) = ARR(1:N-1) + ARR(2:N)

DO I = 1, N

ARR(I) = ARR(I) + 7.0

CALL FOO(A)
END DO

ARR = ARR + 7.0

END

The preceding code produces the following APO list file:

Parallelization Log for Subprogram sub_

5: Not Parallel

Array dependence from ARR on line 5 to ARR on line 5.

7: Not Parallel

Call foo_ on line 9.

12: PARALLEL (Auto) __mpdo_sub_1

The file.w2f.f File

The -flist option generates file.w2f.f. File file.w2f.f contains code that mimics
the behavior of programs after they undergo automatic parallelization. The
representation is designed to be readable so that you can see what portions of the

007–3696–005 87

8: The Auto-Parallelizing Option (APO)

original code were not parallelized. You can use this information to change the
original program.

The compiler creates file.w2f.f by invoking the appropriate translator to turn the
compiler’s internal representations into FORTRAN 77 (not Fortran 95). In most cases,
the files contain valid code that can be recompiled, although compiling file.w2f.f
without APO enabled does not produce object code that is exactly the same as that
generated when APO is enabled on the original source.

By default, the parallelized program in file.w2f.f uses OpenMP directives. To
generate a parallelized program that uses the outmoded MIPS multiprocessing
directives specify -FLIST:emit_omp=OFF.

Example 8-3 APO and .w2f.f file

File testw2.f is compiled with the following command:

f90 -O3 -n32 -mips4 -c -apo -apokeep testw2.f

SUBROUTINE INIT(A)
REAL(KIND=4), DIMENSION(10000) :: A

A = 0.0

END

Compiling testw2.f generates an object file, testw2.o, and listing file
testw2.w2f.f, which contains the following code:

C **********************************
C Fortran file translated from WHIRL

C **********************************

CSGI$ start 1

SUBROUTINE init(A)
IMPLICIT NONE

REAL(4) A(10000_8)

C

C **** Temporary variables ****

C
INTEGER(4) f90li_0_1

C

C **** statements ****

C

88 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

C PARALLEL DO will be converted to SUBROUTINE __mpdo_init_1
CSGI$ start 2

C$OMP PARALLEL DO private(f90li_0_1), shared(A)

DO f90li_0_1 = 0, 9999, 1

A(f90li_0_1 + 1) = 0.0

END DO
CSGI$ end 2

RETURN

END

CSGI$ end 1

Note: WHIRL is the name for the compiler’s intermediate representation. It is written
in the style of the FORTRAN 77 standard, not the Fortran 95 standard.

As explained in "The file.list File", page 87, parallel versions of loops are put in
their own subroutines. In this example, that subroutine is __mpdo_init_1.
C$OMP PARALLEL DO is an OpenMP directive that specifies a parallel region
containing a single DO directive.

About the .m and .anl Files

The -apokeep option generates file.list. It also generates file.m and file.anl,
which are used by Workshop ProMP.

file.m is similar to the file.w2f.f file; it is based on OpenMP and mimics the behavior
of the program after automatic parallelization.

ProDev ProMP is a SGI product that provides a graphical interface to aid in both
automatic and manual parallelization for Fortran. The ProDev ProMP Parallel
Analyzer View helps you understand the structure and parallelization of
multiprocessing applications by providing an interactive, visual comparison of their
original source with transformed, parallelized code. For more information, see the
ProDev WorkShop: ProMP User’s Guide and the ProDev WorkShop: Performance Analyzer
User’s Guide.

SpeedShop, another SGI product, allows you to run experiments and generate reports
to track down the sources of performance problems. SpeedShop includes a set of
commands and a number of libraries to support the commands. For more
information, see the SpeedShop User’s Guide.

007–3696–005 89

8: The Auto-Parallelizing Option (APO)

Note: The code in file.m is written in the style of the FORTRAN 77 standard, not the
Fortran 95 standard.

Running Your Program
You invoke a parallelized version of your program using the same command line as a
sequential one. The same binary output file can be executed on various numbers of
processors. The default is to have the run-time environment select the number of
processors to use based on how many are available.

You can change the default behavior by setting the OMP_NUM_THREADS environment
variable, which tells the system to use a particular number of processors. The
following statement causes the program to create two threads regardless of the
number of processors available:

setenv OMP_NUM_THREADS 2

The OMP_DYNAMIC environment variable allows you to control whether the run-time
environment should dynamically adjust the number of threads available for executing
parallel regions to optimize use of system resources. The default value is TRUE. If
OMP_DYNAMIC is set to FALSE, dynamic adjustment is disabled.

For more information on these and other environment variables, see the
pe_environ(5) man page.

Troubleshooting Incomplete Optimizations
Some loops cannot be safely parallelized and others are written in ways that inhibit
APO’s efficiency. The following subsections describe the steps you can take to make
APO more effective:

• "Constructs That Inhibit Parallelization", page 91, describes constructs that inhibit
parallelization.

• "Constructs That Slow Down Parallelized Code", page 95, describes constructs that
inhibit APO’s effectiveness.

90 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Constructs That Inhibit Parallelization

A program’s performance can be severely constrained if APO cannot recognize that a
loop is safe to parallelize. APO analyzes every loop in a program. If a loop does not
appear safe, it does not parallelize that loop. The following sections describe
constructs that can inhibit parallelization:

• "Loops Containing Data Dependencies", page 91, describes basic data
dependencies.

• "Loops Containing Function Calls", page 92, describes function calls.

• "Loops Containing GO TO Statements", page 93, describes GO TO statements.

• "Loops Containing Problematic Array Constructs", page 93, describes problematic
array subscripts.

• "Loops Containing Local Variables", page 94, describes conditionally assigned local
variables.

In many instances, loops containing the previous constructs can be parallelized after
minor changes. Reviewing the information generated in program file.list, described
in "The file.list File", page 87, can show you if any of these constructs are in your
code.

Loops Containing Data Dependencies

Generally, a loop is safe if there are no data dependencies, such as a variable being
assigned in one iteration of a loop and used in another. APO does not parallelize
loops for which it detects data dependencies.

For example, APO cannot parallelize loop I in the following subroutine because it
contains a data dependence on variable X:

SUBROUTINE SUB(N, A, B)

INTEGER :: I, N
REAL :: X, A(N), B(N)

X = 0.0

DO I = 1, N

A(I) = X

007–3696–005 91

8: The Auto-Parallelizing Option (APO)

IF (I .GT. N / 2) X = 1.0
END DO

END

Many times, such dependences can be removed by making simple modifications to
the source code. In this case, we can assign to X in each iteration before we read X, as
follows:

SUBROUTINE SUB(N, A, B)

INTEGER :: I, N
REAL :: X, A(N), B(N)

DO I = 1, N

IF (I .LE. N / 2) THEN

X = 0.0
ELSE

X = 1.0

END IF

A(I) = X

END DO

END

APO now can parallelize loop I.

Loops Containing Function Calls

By default, APO does not parallelize a loop that contains a function call because the
function in one iteration of the loop can modify or depend on data in other iterations.

You can, however, use interprocedural analysis (IPA) to provide APO with enough
information to parallelize some loops containing subroutine calls by inlining those
calls. IPA is specified by the -IPA command line option. For more information on
IPA, see the ipa(5) man page.

You can also direct APO to ignore function call dependencies when analyzing the
specified loops by using the !*$* ASSERT CONCURRENT CALL directive described
in "!*$* ASSERT CONCURRENT CALL", page 101.

92 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Loops Containing GO TO Statements

GO TO statements are unstructured control flows. APO converts most unstructured
control flows in loops into structured flows that can be parallelized. However, GO TO
statements in loops can still cause the following problems:

• Unstructured control flows. APO is unable to restructure all types of flow control
in loops. You must either restructure these control flows or manually parallelize
the loops containing them.

• Early exits from loops. Loops with early exits cannot be parallelized, either
automatically or manually.

For improved performance, remove GO TO statements from loops to be considered
candidates for parallelization.

Loops Containing Problematic Array Constructs

The following array constructs inhibit parallelization and should be removed
whenever APO is used:

• Arrays with subscripts that are indirect array references. APO cannot analyze
indirect array references. The following loop cannot be run safely in parallel if the
indirect reference IB(I) is equal to the same value for different iterations of I:

DO I = 1, N

A(IB(I)) = ...

END DO

If every element of array IB is unique, the loop can safely be made parallel. To
achieve automatic parallelism in such cases, use the !*$* ASSERT PERMUTATION
directive, discussed in "!*$* ASSERT PERMUTATION (array_name)", page 105.

• Arrays with unanalyzable subscripts. APO cannot parallelize loops containing
arrays with unanalyzable subscripts. Allowable subscripts can contain the
following elements:

– Literal constants (1, 2, 3, …)

– Variables (I, J, K, …)

– The product of a literal constant and a variable, such as N*5 or K*32

– A sum or difference of any combination of the first three items, such as
N*21+K-251

007–3696–005 93

8: The Auto-Parallelizing Option (APO)

In the following case, APO cannot analyze the division operator (/) in the array
subscript and cannot reorder the loop:

DO I = 2, N, 2

A(I/2) = ...

END DO

• Unknown information. In the following example there may be hidden knowledge
about the relationship between variables M and N:

DO I = 1, N

A(I) = A(I+M)

END DO

The loop can be run in parallel if M > N because the array reference does not
overlap. However, APO does not know the value of the variables and therefore
cannot make the loop parallel. You can use the
!*$* ASSERT DO (CONCURRENT) directive to have APO automatically
parallelize this loop. For more information on this directive, see "!*$* ASSERT
DO (CONCURRENT)", page 103.

Loops Containing Local Variables

When parallelizing a loop, APO often localizes (privatizes) temporary scalar and
array variables by giving each processor its own nonshared copy of them. In the
following example, array TMP is used for local scratch space:

DO I = 1, N

DO J = 1, N

TMP(J) = ...

END DO

DO J = 1, N
A(J,I) = A(J,I) + TMP(J)

END DO

END DO

To successfully parallelize the outer loop (I), APO must give each processor a
distinct, private copy of array TMP. In this example, it is able to localize TMP and,
thereby, to parallelize the loop.

APO cannot parallalize a loop when a conditionally assigned temporary variable
might be used outside of the loop, as in the following example:

94 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

SUBROUTINE S1(A, B)
COMMON T

...

DO I = 1, N

IF (B(I)) THEN

T = ...
A(I) = A(I) + T

END IF

END DO

CALL S2()

END

If the loop were to be run in parallel, a problem would arise if the value of T were
used inside subroutine S2() because it is not known which processor’s private copy
of T should be used by S2(). If T were not conditionally assigned, the processor that
executed iteration N would be used. Because T is conditionally assigned, APO cannot
determine which copy to use.

The solution comes with the realization that the loop is inherently parallel if the
conditionally assigned variable T is localized. If the value of T is not used outside the
loop, replace T with a local variable. Unless T is a local variable, APO assumes that
S2() might use it.

Constructs That Slow Down Parallelized Code

APO parallelizes a loop by distributing its iterations among the available processors.
Loop nesting, loops with low trip counts, and other program characteristics can affect
the efficiency of APO. The following sections describe the effect that these and other
programming constructs can have on APO’s ability to parallelize:

• "Parallelizing Nested Loops", page 96, describes parallelizing nested loops.

• "Parallelizing Loops with Small or Indeterminate Trip Counts", page 97, describes
parallelizing loops with small or indeterminate trip counts.

• "Parallelizing Loops with Poor Data Locality", page 98, describes parallelizing
loops that exhibit poor data locality.

007–3696–005 95

8: The Auto-Parallelizing Option (APO)

Parallelizing Nested Loops

APO can parallelize only one loop in a loop nest. In these cases, the most effective
optimization usually occurs when the outermost loop is parallelized. The
effectiveness derives from that fact that more processors end up processing larger
sections of the program. This saves synchronization and other overhead costs.

Example 8-4 Parallelizing nested loops

Consider the following simple loop nest:

DO I = 1, L

...

DO J = 1, M

...

DO K = 1, N
...

When parallelizing nested loops I, J, and K, APO distributes only one of the loops.
Effective loop nest parallelization depends on the loop that APO chooses, but it is
possible for APO to choose an inferior loop to be parallelized. APO may attempt to
interchange loops to make a more promising one the outermost. If the outermost loop
attempt fails, APO attempts to parallelize an inner loop. Because of the potential for
improved performance, it is useful for you to modify your code so that the outermost
loop is the one parallelized.

"The file.list File", page 87, describes file.list. This output file contains
information that tells you which loop in a nest was parallelized.

For every loop that could be parallelized, APO generates a test to determine whether
the loop is being called from within either another parallel loop or from within a
parallel region. In some cases, you can minimize the extra testing that APO must
perform by inserting directives into your code to inhibit parallization testing. The
following example demonstrates this:

Example 8-5 Parallelizing nested loops (continued)

SUBROUTINE CALLER
DO I = 1, N

CALL SUB

END DO

...

END
SUBROUTINE SUB

96 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

...
DO I = 1, N

...

END DO

END

If the loop inside CALLER() is parallelized, the loop inside SUB() cannot be run in
parallel when CALLER() calls SUB(). In this case, the test can be avoided.

If SUB() is always called from CALLER(), you can use the
!*$* ASSERT DO (SERIAL) directive to force the sequential execution of the loop
in SUB(). With the addition of the directive, the subroutine would be written as
follows:

SUBROUTINE CALLER

DO I = 1, N

CALL SUB

END DO
...

END

SUBROUTINE SUB

...

!*$* ASSERT DO (SERIAL)

DO I = 1, N
...

END DO

END

For more information on this compiler directive, see "!*$* ASSERT DO (SERIAL)",
page 104.

Parallelizing Loops with Small or Indeterminate Trip Counts

The trip count is the number of times a loop is executed. Loops with large trip counts
are the best candidates for parallelization. The following paragraphs show how to
modify your program if your program contains loops with small trip counts or loops
with indeterminate trip counts:

• Loops with small trip counts generally run faster when they are not parallelized.
Consider the following loop nest:

DO I = 1, M

DO J = 1, N

007–3696–005 97

8: The Auto-Parallelizing Option (APO)

APO may try to parallelize loop I because it is outermost. If M is very small, it
would be better to interchange the loops and make loop J outermost before
parallelization. Because APO often cannot know that M is small, you can use a
!*$* ASSERT DO PREFER (CONCURRENT) directive to indicate to APO that it is
better to parallelize loop J, as follows:

DO I = 1, M

!*$* ASSERT DO PREFER (CONCURRENT)

DO J = 1, N

• If the trip count is not known (and sometimes even if it is), APO parallelizes the
loop conditionally, generating code for both a parallel and a sequential version. By
generating two versions, APO can avoid running a loop in parallel that may have
small trip count. APO chooses the version to use based on the trip count, the code
inside the loop’s body, the number of processors available, and an estimate of the
cost to invoke a parallel loop in that runtime environment.

You can avoid the overhead incurred by having APO generate both sequential and
parallel versions of a loop by using the !*$* ASSERT DO PREFER (SERIAL)
directive.

Parallelizing Loops with Poor Data Locality

Computer memory has a hierarchical organization. Higher up the hierarchy, memory
becomes closer to the CPU, faster, more expensive, and more limited in size. Cache
memory is at the top of the hierarchy, and main memory is further down in the
hierarchy. In multiprocessor systems, each processor has its own cache memory.
Because it is time consuming for one processor to access another processor’s cache, a
program’s performance is best when each processor has the data it needs in its own
cache.

Programs, especially those that include extensive looping, often exhibit locality of
reference, which means that if a memory location is referenced, it is probable that it or
a nearby location will be referenced in the near future. Loops designed to take
advantage of locality do a better job of concentrating data in memory, increasing the
probability that a processor will find the data it needs in its own cache.

The following examples show the effect of locality on parallelization. Assume that the
loops are to be parallelized and that there are p processors.

98 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Example 8-6 Distribution of iterations

DO I = 1, N
...A(I)

END DO

DO I = N, 1, -1

...A(I)...

END DO

In the first loop, the first processor accesses the first N/p elements of A; the second
processor accesses the next N/p elements; and so on. In the second loop, the
distribution of iterations is reversed. That is, the first processor accesses the last N/p
elements of A, and so on. Most elements are not in the cache of the processor needing
them during the second loop. This code fragment would run more efficiently, and be
a better candidate for parallelization, if you reverse the direction of one of the loops.

Example 8-7 Two nests in sequence

DO I = 1, N

DO J = 1, N

A(I,J) = B(J,I) + ...
END DO

END DO

DO I = 1, N

DO J = 1, N
B(I,J) = A(J,I) + ...

END DO

END DO

In Example 8-7, page 99, APO may parallelize the outer loop of each member of a
sequence of nests. If so, while processing the first nest, the first processor accesses the
first N/p rows of A and the first N/p columns of B. In the second nest, the first
processor accesses the first N/p columns of A and the first N/p rows of B. This
example runs much more efficiently if you parallelize the I loop in one nest and the J
loop in the other. You can instruct APO to do this with the
!*$* ASSERT DO PREFER (CONCURRENT) directive, as follows:

DO I = 1, N

!*$* ASSERT DO PREFER (CONCURRENT)

DO J = 1, N
A(I,J) = B(J,I) + ...

END DO

007–3696–005 99

8: The Auto-Parallelizing Option (APO)

END DO

!*$* ASSERT DO PREFER (CONCURRENT)

DO I = 1, N

DO J = 1, N

B(I,J) = A(J,I) + ...
END DO

END DO

Compiler Directives
APO works in conjunction with the OpenMP Fortran API directives. You can use
these directives to manually parallelize some loop nests, while leaving others to APO.
This approach has the following positive and negative aspects:

• As a positive aspect, the OpenMP and Origin series directives are well defined
and deterministic. If you use a directive, the specified loop is run in parallel. This
assumes that the trip count is greater than one and that the specified loop is not
nested in another parallel loop.

• The negative side to this is that you must carefully analyze the code to determine
that parallelism is safe. Also, you must mark all private variables.

In addition to the OpenMP and Origin series directives, you can also use the
APO-specific directives described in this section. These directives give APO more
information about your code.

Note: APO also recognizes outmoded SGI multiprocessing directives. The OpenMP
directive set is the preferred directive set for multiprocessing. You must include the
-mp option on the f90(1) command line in order for the compiler to recognize the
SGI multiprocessing directives.

The APO directives can affect certain optimizations, such as loop interchange, during
the compiling process. To direct the compiler to disregard any of the preceding
directives, use the -xdirlist option described in the f90(1) man page.

The APO directives are as follows:

• !*$* ASSERT CONCURRENT CALL. This directive directs APO to ignore
dependencies in subroutine calls that would inhibit parallelization. For more
information on this directive, see "!*$* ASSERT CONCURRENT CALL", page 101.

100 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

• !*$* ASSERT DO (CONCURRENT). This directive asserts that APO should not let
perceived dependencies between two references to the same array inhibit
parallelizing. For more information on this directive, see "!*$* ASSERT DO
(CONCURRENT)", page 103.

• !*$* ASSERT DO (SERIAL). This directive requests that the following loop be
executed in serial mode. For more information on this directive, see "!*$*
ASSERT DO (SERIAL)", page 104.

• !*$* ASSERT DO PREFER (CONCURRENT). This directive parallelizes the
following loop if it is safe. For more information on this directive, see "!*$*
ASSERT DO PREFER (CONCURRENT)", page 104.

• !*$* ASSERT PERMUTATION (array_name). This directive asserts that array
array_name is a permutation array. For more information on this directive, see
"!*$* ASSERT PERMUTATION (array_name)", page 105.

• !*$* NO CONCURRENTIZE and !*$* CONCURRENTIZE. The
!*$* NO CONCURRENTIZE directive inhibits either parallelization of all loops in a
subroutine or parallelization of all loops in a file. The !*$* CONCURRENTIZE
directive overrides the !*$* NO CONCURRENTIZE directive, and its effect varies
with its placement. For more information on these directives, see "!*$* NO
CONCURRENTIZE and !*$* CONCURRENTIZE", page 106.

Note: The compiler honors the following APO directives even if the -apo option is
not included on your command line:
• !*$* ASSERT CONCURRENT CALL

• !*$* ASSERT DO (CONCURRENT)

• !*$* ASSERT PERMUTATION (array_name)

!*$* ASSERT CONCURRENT CALL

The !*$* ASSERT CONCURRENT CALL directive instructs APO to ignore the
dependencies of subroutine and function calls contained in the loop that follows the
assertion. The directive applies to the loop that immediately follows it and to all
loops nested inside that loop.

Note: The directive affects the compilation even when -apo is not specified.

007–3696–005 101

8: The Auto-Parallelizing Option (APO)

APO ignores the dependencies in subroutine FRED() when it analyzes the following
loop:

!*$* ASSERT CONCURRENT CALL

DO I = 1, N

CALL FRED

...

END DO

SUBROUTINE FRED
...

END

To prevent incorrect parallelization, make sure the following conditions are met when
using !*$* ASSERT CONCURRENT CALL:

• A subroutine inside the loop cannot read from a location that is written to during
another iteration. This rule does not apply to a location that is a local variable
declared inside the subroutine.

• A subroutine inside the loop cannot write to a location that is read from or written
to during another iteration. This rule does not apply to a location that is a local
variable declared inside the subroutine.

Example 8-8 ASSERT CONCURRENT (illegal use)

The following code shows an illegal use of the directive. Subroutine FRED() writes to
variable T, which is also read from by WILMA() during other iterations:

!*$* ASSERT CONCURRENT CALL

DO I = 1,M

CALL FRED(B, I, T)

CALL WILMA(A, I, T)

END DO
SUBROUTINE FRED(B, I, T)

REAL B(*)

T = B(I)

END

SUBROUTINE WILMA(A, I, T)
REAL A(*)

A(I) = T

END

102 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

By localizing the variable T, you can manually parallelize the preceding example
safely. However, APO does not know to localize T, so it illegally parallelizes the loop
because of the directive.

!*$* ASSERT DO (CONCURRENT)

The !*$* ASSERT DO (CONCURRENT) directive instructs APO, when analyzing the
loop immediately following this directive, to ignore possible dependencies between
two references to the same array. If there are real dependencies between array
references, the !*$* ASSERT DO (CONCURRENT) directive can cause APO to
generate incorrect code.

Note: This directive affects the compilation even when -apo is not specified.

The following example shows correct use of this directive when M > N:

!*$* ASSERT DO (CONCURRENT)

DO I = 1, N

A(I) = A(I+M)

Be aware of the following points when using this directive:

• If multiple loops in a nest can be parallelized, !*$* ASSERT DO (CONCURRENT)
causes APO to parallelize the loop immediately following the assertion.

• Applying this directive to an inner loop can cause the loop to be made outermost
by APO’s loop interchange operations.

• This directive does not affect how APO analyzes CALL statements. For more
information on APO’s interaction with CALL statements, see "!*$* ASSERT
CONCURRENT CALL", page 101.

• This directive does not affect how APO analyzes dependencies between two
potentially aliased pointers.

• The compiler may find some obvious real dependencies. If it does so, it ignores
this directive.

007–3696–005 103

8: The Auto-Parallelizing Option (APO)

!*$* ASSERT DO (SERIAL)

The !*$* ASSERT DO (SERIAL) directive instructs APO not to parallelize the loop
following the assertion; the loop is executed in serial mode. APO can, however,
parallelize another loop in the same nest. The parallelized loop can be either inside or
outside the designated sequential loop.

Note: This directive has the same effect as the !*$* ASSERT DO PREFER (SERIAL)
directive. In order for the !*$* ASSERT DO PREFER (SERIAL) directive to be
honored, however, the -apo option must appear on the f90(1) command line. The
!*$* ASSERT DO PREFER (SERIAL) directive is outmoded.

The !*$* ASSERT DO (SERIAL) directive affects the compilation even when the
-apo option is not specified.

Example 8-9 ASSERT DO

The following code fragment contains a directive that requests that loop J be run
serially:

DO I = 1, M

!*$* ASSERT DO (SERIAL)

DO J = 1, N

A(I,J) = B(I,J)

END DO
...

END DO

The directive applies only to the loop that immediately follows it. For example, APO
still tries to parallelize loop I. This directive is useful in cases like this when the value
of N is known to be very small.

!*$* ASSERT DO PREFER (CONCURRENT)

The !*$* ASSERT DO PREFER (CONCURRENT) directive instructs APO to
parallelize the loop immediately following the directive if it is safe to do so.

104 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Example 8-10 ASSERT DO PREFER

The following code fragment encourages APO to run loop I loop in parallel:

!*$* ASSERT DO PREFER (CONCURRENT)
DO I = 1, M

DO J = 1, N

A(I,J) = B(I,J)

END DO

...

END DO

When dealing with nested loops, APO follows these guidelines:

• If the loop specified by the !*$* ASSERT DO PREFER (CONCURRENT) directive
is safe to parallelize, APO parallelizes the specified loop even if other loops in the
nest are safe.

• If the specified loop is not safe to parallelize, APO parallelizes a different loop that
is safe.

• If this directive is applied to an inner loop, APO can interchange the loop and
make the specified loop the outermost loop.

• If this directive is applied to more than one loop in a nest, APO parallelizes one of
the specified loops.

!*$* ASSERT PERMUTATION (array_name)

When placed inside a subroutine, the !*$* ASSERT PERMUTATION (array_name)
directive informs APO that array_name is a permutation array. A permutation array is
one in which every element of the array has a distinct value.

This directive does not require the permutation array to be dense. That is, within the
array, every IB(I) must have a distinct value, but there can be gaps between the
values, such as IB(1) = 1, IB(2) = 4, IB(3) = 9, and so on.

Note: This directive affects compilation even when -apo is not specified.

007–3696–005 105

8: The Auto-Parallelizing Option (APO)

Example 8-11 ASSERT PERMUTATION

In the following code fragment, array IB is declared to be a permutation array for
both loops in SUB1():

SUBROUTINE SUB1

DO I = 1, N

A(IB(I)) = ...

END DO

!*$* ASSERT PERMUTATION (IB)

DO I = 1, N
A(IB(I)) = ...

END DO

END

Note the following points about this directive:

• As shown in the example, you can use this directive to parallelize loops that use
arrays for indirect addressing. Without this directive, APO cannot determine that
the array elements used as indexes are distinct.

• !*$* ASSERT PERMUTATION (array_name) affects every loop in a subroutine,
even those that appear ahead of it.

!*$* NO CONCURRENTIZE and !*$* CONCURRENTIZE

The !*$* NO CONCURRENTIZE and !*$* CONCURRENTIZE directives toggle
parallelization. Their effects depend on their placement.

• When placed inside subroutines and functions, !*$* NO CONCURRENTIZE
inhibits parallelization. In the following example, no loops inside SUB1() are
parallelized:

SUBROUTINE SUB1
!*$* NO CONCURRENTIZE

...

END

• When placed outside of a subroutine, !*$* NO CONCURRENTIZE prevents the
parallelization of all procedures in the file, even those that appear ahead of it in
the file. Loops inside subroutines SUB2() and SUB3() are not parallelized in the
following example:

106 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

SUBROUTINE SUB2
...

END

!*$* NO CONCURRENTIZE

SUBROUTINE SUB3

...
END

The !*$* CONCURRENTIZE directive, when placed inside a subroutine, overrides a
!*$* NO CONCURRENTIZE directive that is placed outside of it. Thus, this directive
allows you to selectively parallelize subroutines in a file that has been made
sequential with a !*$* NO CONCURRENTIZE directive.

007–3696–005 107

Appendix A

Libraries

The compiler works with the following other commands, intrinsic procedures, and
library routines:

• The assign(1) command. This command can be used to alter the details of a
Fortran file connection, such as device residency, alternative file names, or file
space allocations. The assign(1) options are associated with file names, file name
patterns, or unit numbers. When associated with file names or file name patterns,
the options are applied whenever a matching file name is opened from a Fortran
program. When associated with a unit number, the options are applied whenever
that unit becomes connected.

For complete details about the assign command, see the assign(1) man page or
the MIPSpro Fortran 90 Programmer’s I/O Guide.

• The Flexible File I/O (FFIO) system. This system lets you specify a
comma-separated list of layers through which I/O data will be passed. The FFIO
layers act as filters that manipulate the data file as it is being read or written. The
layers include performance options and the capability to read and write files in
different vendors’ blocking formats. For more information on FFIO, see the
intro_ffio(3f) man page and the MIPSpro Fortran 90 Programmer’s I/O Guide.

• Intrinsic procedures. These procedures are predefined by the computer
programming language. They are invoked in the same way that other procedures
are invoked.

• POSIX library routines. The POSIX FORTRAN 77 Language Interfaces Standard
IEEE Std 1003.9-1992 (POSIX.a) defines a standardized interface for accessing the
system services of IEEE Std 1003.1-1990 (POSIX.1) and supports routines to access
constructs not directly accessible with FORTRAN 77. These routines can also be
used by Fortran 90/95 programs. For more information on these routines, see the
intro_pxf(3f) man page.

• Miscellaneous library routines. A library is a collection of subprograms, usually
grouped around a specific subject, such as input and output (I/O). You can call
library routines explicitly in your program, or they can be called by the compiler.
The following sections describe the library routines that are available to you.

007–3696–005 109

A: Libraries

Miscellaneous Library Routines
The following list describes the library routines that are available with the MIPSpro
Fortran 90 compiler. See the individual man pages for more details.

• FFIO routines (C routines used with the FFIO layers):

– fffcntl(3c)

– ffopen(3c)

– ffpos(3c)

– ffread(3c)

– ffseek(3c)

• Interface routines (job control routines that control program terminations or
execute a shell command):

– ABORT(3f)

– EXIT(3f)

– ISHELL(3f)

• I/O routines to control input and output:

– ASNCTL(3f)

– ASNQFILE(3f)

– ASSIGN(3f)

– FLUSH(3f)

– NUMBLKS(3f)

– RNL(3f)

– RNLECHO(3f)

– RNLSKIP(3f)

– RNLTYPE(3f)

– WNL(3f)

– WNLLINE(3f)

110 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

– WNLLONG(3f)

• Programming aids (routines for times and dates, packing and unpacking, and
character argument counters):

– SECOND(3f)

– SECONDR(3f)

– SYSCLOCK(3f)

– TIMEF(3f)

• Multiprocessing routines for Fortran. There are a suite of routines developed
specifically for multiprocessing. For information on these routines, see the mp(3f)
man page.

Library Functions
The Fortran library routines provide an interface from Fortran programs to the IRIX
system functions. System functions are facilities that are provided by the IRIX system
kernel directly, as opposed to functions that are supplied by library code loaded with
your program.

summarizes the routines in the Fortran run-time library that can be used with the
compiler. The table indicates PXF POSIX Library standard routines as recommended
substitutions for IRIX system functions. See the individual man pages for details
about each routine.

Table A-1 Summary of System Interface Library Routines

Function Recommended Purpose

abort Abnormal termination

access PXFACCESS Determine accessibility of a file

acct Enable/disable process accounting

alarm PXFALARM Execute a subroutine after a specified time

barrier Perform barrier operations

007–3696–005 111

A: Libraries

Function Recommended Purpose

blockproc Block processes

brk Change data segment space allocation

chdir PXFCHDIR Change default directory

chmod PXFCHMOD Change mode of a file

chown PXFCHOWN Change owner

chroot PXFCHROOT Change root directory for a command

close Close a file descriptor

creat PXFCREAT Create or rewrite a file

ctime Return system time

dtime Return elapsed execution time

dup Duplicate an open file descriptor

etime Return elapsed execution time

exit PXFFASTEXIT Terminate process with status

fcntl File control

fdate Return date and time in an ASCII string

fgetc Get a character from a logical unit

fork PXFFORK Create a copy of this process

fputc Write a character to a Fortran logical unit

free_barrier Free barrier

fseek Reposition a file on a logical unit

fseek64 Reposition a file on a logical unit for 64-bit architecture

fstat Get file status

ftell Reposition a file on a logical unit

ftell64 Reposition a file on a logical unit for 64-bit architecture

gerror Get system error messages

getarg PXFGETARG Return command line arguments

getc Get a character from a logical unit

112 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Function Recommended Purpose

getcwd PXFGETCWD Get pathname of current working directory

getdents Read directory entries

getegid PXFGETEGID Get effective group ID

gethostid Get unique identifier of current host

getenv PXFGETENV Get value of environment variables

geteuid PXFGETEUID Get effective user ID

getgid PXFGETGID Get user or group ID of the caller

gethostname Get current host ID

getlog Get user’s login name

getpgrp PXFGETPGRP Get process group ID

getpid PXFGETPID Get process ID

getppid PXFGETPPID Get parent process ID

getsockopt Get options on sockets

getuid PXFGETUID Get user or group ID of caller

gmtime Return system time

iargc IPXFARGC Return command line arguments

idate Return date or time in numerical form

ierrno Get system error messages

ioctl Control device

isatty PXFISATTY Determine if unit is associated with tty

itime Return date or time in numerical form

kill PXFKILL Send a signal to a process

link PXFLINK Make a link to an existing file

loc Return the address of an object

lseek Move read/write file pointer

lseek64 Move read/write file pointer for 64-bit architecture

lstat Get file status

007–3696–005 113

A: Libraries

Function Recommended Purpose

ltime Return system time

m_fork Create parallel processes

m_get_myid Get task ID

m_get_numprocs Get number of subtasks

m_kill_procs Kill process

m_lock Set global lock

m_next Return value of counter

m_park_procs Suspend child processes

m_rele_procs Resume child processes

m_set_procs Set number of subtasks

m_sync Synchronize all threads

m_unlock Unset a global lock

mkdir Make a directory

mknod Make a directory/file

mount Mount a filesystem

new_barrier Initialize a barrier structure

nice Lower priority of a process

open PXFOPEN Open a file

oserror Get/set system error

pause PXFPAUSE Suspend process until signal

perror Get system error messages

pipe Create an interprocess channel

plock Lock process, test, or data in memory

prctl Control processes

profil Execution-time profile

ptrace Process trace

putc Write a character to a Fortran logical unit

114 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Function Recommended Purpose

putenv Set environment variable

qsort Quick sort

read Read from a file descriptor

readlink Read value of symbolic link

rename PXFRENAME Change the name of a file

rmdir PXFRMDIR Remove a directory

sbrk Change data segment space allocation

schedctl Call to scheduler control

send Send a message to a socket

setblockproccnt Set semaphore count

setgid PXFSETGID Set group ID

sethostid Set current host ID

setoserror Set system error

setpgrp PXFSETPGRP Set process group ID

setsockopt Set options on sockets

setuid PXFSETUID Set user ID

sginap Put process to sleep

sginap64 Put process to sleep in 64-bit environment

shmat Attach shared memory

shmdt Detach shared memory

sighold Raise priority and hold signal

sigignore Ignore signal

signal Change the action for a signal

sigpause Suspend until receive signal

sigrelse Release signal and lower priority

sigset Specify system signal handling

sleep PXFSLEEP Suspend execution for an interval

007–3696–005 115

A: Libraries

Function Recommended Purpose

socket Create an endpoint for communication TCP

sproc Create a new share group process

stat PXFSTAT Get file status

stime Set time

symlink Make symbolic link

sync Update superblock

sysmp Control multiprocessing

sysmp64 Control multiprocessing in 64-bit environment

system Issue a shell command

taskblock Block tasks

taskcreate Create a new task

taskctl Control task

taskdestroy Kill task

tasksetblockcnt Set task semaphore count

taskunblock Unblock task

time PXFTIME Return system time (must be declared EXTERNAL)

ttynam Find name of terminal port

uadmin Administrative control

ulimit Get and set user limits

ulimit64 Get and set user limits in 64-bit architecture

umask PXFUMASK Get and set file creation mask

umount Dismount a file system

unblockproc Unblock processes

unlink PXFUNLINK Remove a directory entry

uscalloc Shared memory allocator

uscalloc64 Shared memory allocator in 64-bit environment

uscas Compare and swap operator

116 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Function Recommended Purpose

usclosepollsema Detach file descriptor from a pollable semaphore

usconfig Semaphore and lock configuration operations

uscpsema Acquire a semaphore

uscsetlock Unconditionally set lock

usctlsema Semaphore control operations

usdumplock Dump lock information

usdumpsema Dump semaphore information

usfree User shared memory allocation

usfreelock Free a lock

usfreepollsema Free a pollable semaphore

usfreesema Free a semaphore

usgetinfo Exchange information through an arena

usinit Semaphore and lock initialize routine

usinitlock Initialize a lock

usinitsema Initialize a semaphore

usmalloc Allocate shared memory

usmalloc64 Allocate shared memory in 64-bit environment

usmallopt Control allocation algorithm

usnewlock Allocate and initialize a lock

usnewpollsema Allocate and initialize a pollable semaphore

usnewsema Allocate and initialize a semaphore

usopenpollsema Attach a file descriptor to a pollable semaphore

uspsema Acquire a semaphore

usputinfo Exchange information through an arena

usrealloc User share memory allocation

usrealloc64 User share memory allocation in 64-bit environment

ussetlock Set lock

007–3696–005 117

A: Libraries

Function Recommended Purpose

ustestlock Test lock

ustestsema Return value of semaphore

usunsetlock Unset lock

usvsema Free a resource to a semaphore

uswsetlock Set lock

wait PXFWAIT Wait for a process to terminate

write Write to a file

Compatibility with sproc(2)

The parallelism used in Fortran is implemented using the sproc(2) system call. It is
recommended that programs not attempt to use both !$OMP PARALLEL DO loops
and sproc calls. It is possible, but there are several restrictions:

• Any threads you create may not execute !$OMP PARALLEL DO loops; only the
original thread is allowed to do this.

• The calls to routines like mp_block and mp_destroy apply only to the threads
created by mp_create or to those automatically created when the Fortran job
starts; they have no effect on any user-defined threads.

• Calls to routines such as m_get_numprocs do not apply to the threads created by
the Fortran routines. However, the Fortran threads are ordinary subprocesses;
using the kill routine with the arguments 0 and sig (for example, kill(0,sig))
to signal all members of the process group might kill threads used to execute
!$OMP PARALLEL DO. If you choose to intercept the SIGCLD signal, you must be
prepared to receive this signal when the threads used for the
!$OMP PARALLEL DO loops exit; this occurs when mp_destroy is called or at
program termination.

• The m_fork call is implemented using sproc(2), so it is not legal to run m_fork
on a family of processes that each subsequently executes !$OMP PARALLEL DO
loops. Only the original thread can execute !$OMP PARALLEL DO loops.

118 007–3696–005

Index

(null) directive, 59
– option, 16
-32 option, 7
-64 option, 7

A

ABI, 7
N32, 81
N64, 81

AGGRESSIVEINNERLOOPFISSION directive, 20
ALIGN_SYMBOL directive, 21
-alignn option, 7
-ansi option, 7
APO, 81

array subscripts, 93
command line use, 83
data locality problems, 98
function calls in loops, 92
GO TO statements, 93
local variables, 94
output files, 87, 89

-apo option, 7
Application Binary Interface (ABI)

See "ABI", 7
ar, 2
Archive library

definition, 2
Array slices, 70
Arrays

assumed-shape, 70
deferred-shape, 70
Fortran arrays in C code, 78
slices, 70
unsupported array arguments, 70

Assembly language

calling from Fortran, 80
assign, 109
Assumed-shape arrays, 70
ATOMIC directive, 34
Auto-Parallelizing Option, 81
-auto_use option, 7
automatic parallelization, 81

B

BARRIER directive, 34
-bigp_off option, 7
-bigp_on option, 7
BLOCKABLE directive, 20
BLOCKINGSIZE directive, 20
BOUNDS directive, 40, 41

C

C$OMP, 28
-C option, 8
-c option, 7
C/C++, 65

calling C from Fortran, 75
calling Fortran, 71
calling Fortran functions, 73
calling Fortran subroutines, 72
external functions, 71
Fortran and C correspondence, 68
Fortran arrays in C code, 78
Fortran blocks in C code, 77
normal calls to C functions, 75
using %VAL, 79
using LOC, 79

CDIR$, 39, 40

007–3696–005 119

Index

Character types
Fortran and C correspondence, 69

-check_bounds option, 7, 8
-chunk=integer option, 8
CIF, 2
cifconv, 2
Clauses

COPYIN, 36
COPYPRIVATE, 36
DEFAULT, 35
FIRSTPRIVATE, 35
LASTPRIVATE, 35
PRIVATE, 35
REDUCTION, 36
SHARED, 35

CMIC$, 39
Code scheduler

specifying, 14
-coln option, 8
Common blocks

Fortran in C code, 77
Compiler

invoking, 1
Compiler features, 17
Compiler information file (CIF)

See "CIF", 2
COMPILER_DEFAULTS_PATH, 15
Conditional compilation

directives
See "Directives", 56

overview, 55
Conditional directives

See "Directives", 60
Continuation character, 19
COPYIN clause, 36
COPYPRIVATE clause, 36
cord, 8
-cord option, 8
Correspondence

between Fortran and C data types, 68
cpp, 8
-cpp option, 8

CPU targeting
See also "Cross compiling", 15

CRITICAL/END CRITICAL directive, 34
Cross compiling

definition, 15

D

-D option, 8
Data types

Fortran and C correspondence, 68
Debugging

generating information, 10
DEFAULT clause, 35
-default64 option, 9
Deferred-shape arrays, 70
#define, 8
#define directive, 58
!DIR$, 39, 40
Directive

definition, 17
Directives

(null), 59
AGGRESSIVEINNERLOOPFISSION, 20
ALIGN_SYMBOL, 21

example, 22
and command line options, 18
ATOMIC, 34
BARRIER, 34
BLOCKABLE, 20
BLOCKINGSIZE, 20
conditional, 60
continuation, 19
continuing, 40
CRITICAL/END CRITICAL, 34
#define, 8, 58
DO/END DO, 32
DSM, 13
#elif, 60, 62
#else, 60, 62

120 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

END PARALLEL, 31
#endif, 60, 62
FILL_SYMBOL, 21

example, 22
FISSION, 20
FISSIONABLE, 20
fixed source form, 18
FLUSH, 23, 34
free source form, 18
FUSE, 20
FUSEABLE, 20
#if, 60
#ifdef, 61
#ifndef, 62
#include, 57
INLINE, 24
Inlining and interprocedural analysis (IPA), 24
interaction with -x dirname option, 41
INTERCHANGE, 20
IPA, 24
LNO, 19
MASTER/END MASTER, 33
NOBLOCKING, 20
NOFISSION, 20
NOFUSION, 20
NOINLINE directive, 24
NOINTERCHANGE, 20
NOIPA, 24
OpenMP Fortran API, 27
ORDERED/END ORDERED, 35
overview, 39
PARALLEL, 31
PARALLEL DO/END PARALLEL DO, 33
PARALLEL SECTIONS/END PARALLEL

SECTIONS, 33
PARALLEL WORKSHARE, 33
PREFETCH, 20
PREFETCH_MANUAL, 20
PREFETCH_REF, 20
PREFETCH_REF_DISABLE, 21
range, 19
range and placement, 40

SECTION_GP, 24
SECTION_NON_GP, 24
SECTIONS/END SECTIONS, 32
SINGLE/END SINGLE, 32
source preprocessor, 19
symbol storage, 21
syntax, 17
THREADPRIVATE, 35
#undef, 59
UNROLL, 21
using, 17
WORKSHARE, 33

-dn option, 8
DO/END DO directive, 32
Dynamic shared libraries, 11

E

-E option, 9
#elif directive, 60, 62
#else directive, 60, 62
END PARALLEL directive, 31
#endif directive, 60, 62
—fb option, 9
—fb_create option, 9
—fb_opt option, 9
Environment variables, 3

affecting compilation, 6
COMPILER_DEFAULTS_PATH, 15

Error detection, 2
-extend_source option, 9
External name, 65

F

F90
invoking, 5

f90 command
example, 1

007–3696–005 121

Index

MIPSpro Automatic Parallelization Option, 6
options

–, 16
-32, 7
-64, 7
-alignn, 7
-ansi, 7
-apo, 7
-auto_use option, 7
-bigp_off option, 7
-bigp_on option, 7
-C, 8
-c, 7
-check_bounds, 8
-chunk=integer, 8
-coln, 8
-cord, 8
-cpp, 8
-D, 8
-default64, 9
-dn, 8
-E, 9
-extend_source, 9
-fb, 9
-fb_create, 9
-fb_opt, 9
-fixedform, 9
-FLIST, 10
-flist, 10
-freeform, 10
-ftpp, 10
-fullwarn, 10
-G, 10
-gdebug_lvl, 10
-help, 10
-Idir, 11
-ignore_suffix, 11
-in, 11
-INLINE, 25
-INLINE:…, 11
-IPA, 25
-IPA:…, 11

-keep, 11
-KPIC, 11
-LANG, 12
-Ldirectory, 12
-LIST:..., 12
-listing, 12
-llibrary, 11
-LNO:…, 12
-lscs, 12
-lscs_mp, 12
-macro_expand, 12
-MDupdate, 12
-mipsn, 12
-mp, 13
-MP:, 13
-nocpp, 13
-noextend_source, 13
-nostdinc, 13
-o, 13
-Olevel, 13
-OPT:…, 14
-P, 14
-rprocessor, 14
-rreal_spec, 14
-S, 14
-show, 14
-show_defaults, 14
-static, 15
-TARG:..., 15
-TENV:..., 15
-u, 15
-use_command, 15
-Uvar, 15
-version, 15
-warg, 16
-Wl, 16
-woffnum, 16
-x, 16
-x lang, 16

syntax, 5
using multiple options, 5

122 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

FFIO
routines

See "Library routines", 110
file.suffix90, 17
file.suffix90 option, 17
FILL_SYMBOL directive, 21
FIRSTPRIVATE clause, 35
FISSION directive, 20
FISSIONABLE directive, 20
FIXED directive, 40, 42
Fixed source form, 18
-fixedform option, 9
Flexible File I/O (FFIO)

See "FFIO", 109
-FLIST option, 10
-flist option, 10
FLUSH directive, 23, 34
Fortran

and C data types, 68
arrays in C code, 78
calling assembly language, 80
calling C, 75
calling from C, 71
calling function from C, 73
calling subroutines from C, 72
common blocks in C code, 77
functions, 71
naming C functions, 67
naming subprogram from C, 67
normal calls to C functions, 75
passing subprogram arguments, 70
subroutines, 71
using %VAL, 79
using LOC, 79

FORTRAN 77 compiler
$ character difference, 66
-U option, 66

FREE directive, 40, 42
Free source form, 18
-freeform option, 10
ftnchop, 2
ftnlint, 2

ftnlist, 2
ftnmgen, 2
ftnsplit, 2
ftpp, 9
-ftpp option, 10
-fullwarn option, 10
Functions

calling Fortran from C, 73
normal calls to C functions, 75

FUSE directive, 20
FUSEABLE directive, 20

G

-G option, 10
-gdebug_lvl option, 10

H

-help option, 10

I

I/O routines
See "Library routines", 110

ID directive, 40, 43
#if directive, 60
#ifdef directive, 61
#ifndef directive, 62
-ignore_suffix option, 11
-in option, 11
#include directive, 57
INLINE directive, 24
-INLINE option, 25
-INLINE:… option, 11
Inlining

definition, 25
intrafile subprogram inlining, 11

007–3696–005 123

Index

standalone inliner, 11
Inlining and interprocedural analysis (IPA)

directives
See "Directives", 24

INTERCHANGE directive, 20
Interface routines

See "Library routines", 110
Interlanguage calling, 65
Interprocedural analysis (IPA)

definition, 25
ipa, 25

Interprocedural analyzer (IPA)
See "IPA", 11

Intrinsic procedures, 2, 109
IPA, 11

directives, 24
ipa, 25
IPA directive, 24
-IPA option, 25
-IPA:… option, 11
ISA

specifying, 12
IVDEP directive, 40

K

-keep option, 11
KIND specification

values, 8
Kind specification

real values, 14
-KPIC option, 11

L

-LANG option, 12
Language interface

C/C++, 65
LASTPRIVATE clause, 35
ld, 66

-Ldirectory option, 12
Libraries, 2

changing search algorithm, 12
searching lib.library.a, 11

Library options, 109
Library routines, 109, 111

FFIO, 110
I/O, 110
Interface, 110
programming aids, 111

Lines
restricting Fortran source code lines, 13
specifying length, 9
specifying width, 8

lint
See "ftnlint", 2

-LIST:... option
arguments, 12

Lister
ftnlist, 2
using f90 command, 2

Listing file
writing to, 12
writing to assembly listing file, 12

Listing, obtaining, 10
-listing option, 12
-llibrary option, 11
LNO

directives
See "Directives", 19

-LNO option, 12
Loader

ld, 2
LOC intrinsic function, 80
Loop nest optimization, 19
Loop nest optimizer (LNO)

See "LNO", 12
Loop unrolling

UNROLL directive, 21

124 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

M

Macro expansion, 12
-macro_expand option, 12
Macros

based on host system, 63
based on IRIX system, 63
predefined, 63, 64

_ABI, 63
_COMPILER_VERSION, 63
host_mips, 63
LANGUAGE_FORTRAN, 64
LANGUAGE_FORTRAN90, 63
_LANGUAGE_FORTRAN90, 63
_LANGUAGE_FORTRAN, 64
__mips, 64
_MIPS_ISA, 64
_MIPS_SIM, 64
MIPSEB, 64
_MIPSEB, 64
_OPENMP, 64
__sgi, 64
_SYSTYPE_SVR4, 65
__unix, 63

man, 3
manual parallelization, 81
MASTER/END MASTER directive, 33
-MDupdate option, 12
Message system, 3
Messages

generation of, 7
specifying, 16

!MIC$, 39
-mipsn option, 12
MIPSpro assembly language

calling from Fortran, 80
MIPSpro Automatic Parallelization Option, 6
Modules utility, 3
-mp option, 13
-MP: option

arguments, 13
Multiprocessing

specifying options, 13
multiprocessing routines, 111

N

N64 abi, 81
NAME directive, 41, 49
nm, 65
NOBLOCKING directive, 20
NOBOUNDS directive, 40, 41
-nocpp option, 13
-noextend_source option, 13
NOFISSION directive, 20
NOFUSION directive, 20
NOINLINE directive, 24
NOINTERCHANGE directive, 20, 49
NOIPA directive, 24
NOSIDEEFFECTS directive, 40, 50
-nostdinc option, 13
NOTASK directive, 52
NOUNROLL directive, 52

O

-o option, 13
Object file tools

definition, 2
-Olevel option, 13
!$OMP, 28
!$OMP PARALLEL DO

sproc compatibility, 118
OMP_DYNAMIC, 90
OMP_NUM_THREADS, 90
Online documentation utilities, 3
OpenMP clauses

COPYIN, 36
COPYPRIVATE, 36
DEFAULT, 35
FIRSTPRIVATE, 35

007–3696–005 125

Index

LASTPRIVATE, 35
PRIVATE, 35
REDUCTION, 36
SHARED, 35

OpenMP directives
ATOMIC, 34
BARRIER, 34
CRITICAL/END CRITICAL, 34
DO/END DO, 32
END PARALLEL, 31
FLUSH, 34
MASTER/END MASTER, 33
ORDERED/END ORDERED, 35
PARALLEL, 31
PARALLEL DO/END PARALLEL DO, 33
PARALLEL SECTIONS/END PARALLEL

SECTIONS, 33
PARALLEL WORKSHARE, 33
SECTIONS/END SECTIONS, 32
SINGLE/END SINGLE, 32
THREADPRIVATE, 35
WORKSHARE, 33

OpenMP Fortran API directives, 27
-OPT:… option, 14
Optimization

controlling, 14
specifying level, 13

Options
help, 10

ORDERED/END ORDERED directive, 35

P

-P option, 14
PARALLEL directive, 31
PARALLEL DO/END PARALLEL DO directive, 33
Parallel processing

analyzing source code, 7
PARALLEL SECTIONS/END PARALLEL

SECTIONS directive, 33
PARALLEL WORKSHARE directive, 33

Parallelism
implementation, 118
sproc, 118

parallelization
automatic, 81
manual, 81

Passing arguments, 70
pe_environ, 6
Position-independent code (PIC)

See "PIC", 11
POSIX library routines, 109
Predefined macros

for conditional compilation, 63
PREFERTASK directive, 51
PREFETCH directive, 20
PREFETCH_MANUAL directive, 20
PREFETCH_REF directive, 20
PREFETCH_REF_DISABLE directive, 21
Preprocessing, 55

source, 8
Preprocessor

using f90 command, 2
PRIVATE clause, 35
Procedure rearranging, 8
Programming aids

See "Library routines", 111
Public name, 65

R

REDUCTION clause, 36
-rprocessor option, 14
-rreal_spec option, 14

S

-S option, 14
Scalar types

Fortran and C correspondence, 68

126 007–3696–005

MIPSproTM Fortran 90 Commands and Directives Reference Manual

Scheduling, 13
SECTION_GP directive, 24
SECTION_NON_GP directive, 24
SECTIONS/END SECTIONS directive, 32
-show option, 14
-show_defaults option, 14
SINGLE/END SINGLE directive, 32
Source preprocessing, 14, 55
Source preprocessor, 10

cpp, 8
disabling, 13
ftpp, 9

sproc
compatibility with !$OMP PARALLEL DO, 118

Static analyzer
ftnlint utility, 2

-static option, 15
-static_threadprivate, 15
Subroutines

calling Fortran from C, 72
Symbol storage directives, 21

T

-TARG:... option
arguments, 15

Target environment
specifying, 15

TASK directive, 52
-TENV:... option, 15
THREADPRIVATE directive, 35

U

-u option, 15

#undef directive, 59
UNROLL directive, 21, 52
-use_command option, 15
-Uvar option, 15

V

%VAL intrinsic function, 79
Variables

allocating local, 14, 15
-version option, 15
VSEARCH directive, 40

W

-warg option, 16
WHIRL, 89
-Wl option, 16
-woffnum option, 16
WORKSHARE directive, 33

X

-x dirname option, 41
-x lang option, 16
-x option, 16

007–3696–005 127

	New Features in this Document
	Table of Contents
	List of Figures
	List of Tables
	List of Examples

	About This Manual
	Related Publications
	Compiler Messages
	Compiler Man Pages
	Related Fortran Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. Introduction
	The f90(1) Command
	The Compiler Programming Environment

	2. The F90 Command Line
	f90 command line options

	3. General Directives
	Using Directives
	Directives and Command Line Options
	Directive Range
	Directive Continuation and Other Considerations

	LNO Directives
	Symbol Storage Directives
	Control Symbol Alignment and Padding
	Declare a Synchronization Point
	Specify Global Pointer Use

	Inlining and IP A Directives

	4. OpenMP Fortran API Multiprocessing Directives
	Using Directives
	Conditional Compilation
	Parallel Region Constructs
	Work-sharing Constructs
	Combined Parallel Work-sharing Constructs
	Synchronization Constructs
	Data Environment Constructs
	Data Scope Attribute Clauses

	Directive Binding
	Directive Nesting

	5. CF90 Directives
	Using Directives
	Directive Continuation
	Directive Range and Placement
	Interaction of Directives with the -x Command Line Option

	Checking Array Bounds
	Specifying Source Form
	Creating Identification String
	Ignoring Dummy Argument Type, Kind, and Rank
	Ignoring Vector Dependencies
	Mapping External Names
	Inhibiting Loop Interchange
	Determining Register Storage
	Designating a Nest to Task
	Tasking Directives
	Unrolling Loops

	6. Source Preprocessing
	General Rules
	Directives
	#include Directive
	#define Directive
	#undef Directive
	# (Null) Directive
	Conditional Directives

	Predefined Macros

	7. Interlanguage Calling
	External and Public Names
	Fortran Treatment of External and Public Names
	Calling a Fortran Subprogram from C
	Calling a C Function from Fortran

	Correspondence of Fortran and C Data Types
	Corresponding Scalar Types
	Corresponding Character Types
	Unsupported Array Arguments

	How Fortran Passes Arguments
	Calling Fortran from C
	Calling a Fortran Subroutine from C
	Calling a Fortran Function from C

	Calling C from Fortran
	Calls to C Functions
	Using Fortran Common Blocks in C Code
	Using Fortran Arrays in C Code
	Calls to C Using LOC and %VAL

	Calling Assembly Language from Fortran

	8. The Auto-Parallelizing Option (APO)
	f90 (1) Command Line Options That Affect APO
	-apo
	-apokeep and -apolist
	-flist
	-IPA:...
	-LNO:...
	-O3
	-OPT:...
	file

	Files
	The file .list File
	The file.w2f.f File
	About the .m and .anl Files

	Running Your Program
	Troubleshooting Incomplete Optimizations
	Constructs That Inhibit Parallelization
	Constructs That Slow Down Parallelized Code

	Compiler Directives
	!*…* ASSERT CONCURRENT CALL
	!*…* ASSERT DO (CONCURRENT)
	!*…* ASSERT DO (SERIAL)
	!*…* ASSERT DO PREFER (CONCURRENT)
	!*…* ASSERT PERMUTATION (array_name)
	!*…* NO CONCURRENTIZE and !*…* CONCURRENTIZE

	A. Libraries
	Miscellaneous Library Routines
	Library Functions
	Compatibility with sproc(2)

	Index

