
MIPSproTM Fortran 90 Programmer’s I/O
Guide

007–3695–006

COPYRIGHT
Copyright © 1994-1995, 1997-1999, 2002 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties,
as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this
electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
SGI, Silicon Graphics, the Silicon Graphics logo, and IRIX are registered trademarks of Silicon Graphics, Inc. Cray is a registered
trademark of Cray, Inc. CDC is a trademark of Syntegra. DEC, ULTRIX, VAX, and VMS are trademarks of Compaq. IBM is a
trademark of International Business Machines Corporation. MIPS is a registered trademark and MIPSpro is a trademark of MIPS
Technologies, Inc., used under license by Silicon Graphics, Inc. UNIX and the X device are registered trademarks of the Open Group in
the United States and other countries.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

Record of Revision

Version Description

1.0 May 1994
Original Printing. This document incorporates information from the
I/O User’s Guide, publication SG-3075, and the Advanced I/O User’s
Guide, publication SG-3076.

1.2 October 1994
Revised for the Programming Environment 1.2 release.

2.0 November 1995
Revised for the Programming Environment 2.0 release.

3.0 May 1997
Revised for the Programming Environment 3.0 release.

3.0.1 August 1997
Revised for the Programming Environment 3.0.1 release and the
MIPSpro 7 Fortran 90 compiler release.

3.0.2 March 1998
Revised for the Programming Environment 3.0.2 release and the
MIPSpro 7 Fortran 90 compiler release.

3.1 August 1998
Revised for the Programming Environment 3.1 release.

3.2 January 1999
Revised for the Programming Environment 3.2 release.

7.3 April 1999
Revised for the MIPSpro 7.3 release.

3.3 July 1999
Revised for the Programming Environment 3.3 release.

7.3.1.1.m October 1999
Revised for the MIPSpro 7.3.1.1.m release.

007–3695–006 iii

Record of Revision

006 September 2002
Revised for the MIPSpro 7.4 release. The title of this document was
changed to more clearly reflect the content.

iv 007–3695–006

Contents

About This Guide . xix

Related Publications . xix

Obtaining Publications . xix

Conventions . xix

Reader Comments . xx

1. Introduction . 1

The Message System . 2

2. Standard Fortran I/O 5

Files . 5

Internal Files . 5

External Files . 6

Fortran Unit Identifiers . 8

Data Transfer Statements . 11

Formatted I/O . 11

Edit-directed I/O . 12

List-directed I/O . 14

Namelist I/O . 15

Unformatted I/O . 16

Auxiliary I/O . 16

File Connection Statements 16

The INQUIRE Statement . 17

File Positioning Statements 17

Multithreading and Standard Fortran I/O 18

007–3695–006 v

Contents

3. Fortran I/O Extensions 19

BUFFER IN/BUFFER OUT Routines 19

The UNIT Intrinsic . 20

The LENGTH Intrinsic . 20

4. Named Pipe Support 21

Named Pipes . 21

Piped I/O Example without End-of-file Detection 22

Detecting End-of-file on a Named Pipe 24

Piped I/O Example with End-of-file Detection 24

5. System and C I/O . 27

System I/O . 27

Synchronous I/O . 27

Asynchronous I/O . 27

Unbuffered I/O . 28

C I/O from Fortran . 28

6. The assign Environment 31

assign Basics . 31

Open Processing . 31

The assign Command . 32

Related Library Routines . 35

assign and Fortran I/O . 36

Alternative File Names . 36

File Structure Selection . 38

Buffer Size Specification . 39

Foreign File Format Specification 40

Direct-access I/O Tuning . 40

vi 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

Fortran File Truncation . 40

The assign Environment File 41

Local assign . 42

7. File Structures . 43

Unblocked File Structure . 44

assign -s unblocked File Processing 45

assign -s sbin File Processing (Not Recommended) 45

assign -s bin File Processing (Not Recommended) 46

assign -s u File Processing 46

Text File Structure . 46

COS or Blocked File Structure 47

8. Buffering . 51

Buffering Overview . 51

Types of Buffering . 52

Unbuffered I/O . 53

Library Buffering . 53

System Cache . 53

Default Buffer Sizes . 54

9. Introduction to FFIO 55

Layered I/O . 55

Using Layered I/O . 57

I/O Layers . 58

Layered I/O Options . 59

10. Using FFIO . 61

FFIO on IRIX systems . 61

007–3695–006 vii

Contents

FFIO and Common Formats . 62

Reading and Writing Text Files 62

Reading and Writing Unblocked Files 63

Reading and Writing Fixed-length Records 63

Reading and Writing COS Blocked Files 63

Enhancing Performance . 64

Buffer Size Considerations . 64

Removing Blocking . 64

The bufa and cachea Layers 65

The cache Layer . 65

11. Foreign File Conversion 67

Conversion Overview . 67

Using fdcp to Transfer Files . 67

Data Item Conversion . 68

Explicit Data Item Conversion 68

Implicit Data Item Conversion 69

Choosing a Conversion Method 73

Explicit Conversion . 73

Implicit Conversion . 74

Foreign Conversion Techniques 74

Workstation and IEEE Conversion 74

12. I/O Optimization . 77

Overview . 77

An Overview of Optimization Techniques 79

Optimizations Not Affecting Source Code 79

Optimizations That Affect Source Code 80

viii 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

Optimizing I/O Speed . 80

Optimizing System Requests . 81

Using a Cache Layer . 81

Optimizing File Structure Overhead 82

Scratch Files . 82

Using Asynchronous Read-ahead and Write-behind 83

Using Simpler File Structures 84

Minimizing Data Conversions 84

Minimizing Data Copying . 85

Changing Library Buffer Sizes 85

Bypassing Library Buffers . 85

Other Optimization Options . 86

Using Pipes . 86

Overlapping CPU and I/O 86

13. FFIO Layer Reference 89

Characteristics of Layers . 89

Individual Layers . 91

The bufa Layer . 92

The cache Layer . 93

The cachea Layer . 95

The cos Blocking Layer . 97

The event Layer . 99

The f77 Layer . 100

The fd Layer . 102

The global Layer . 102

The null layer . 104

007–3695–006 ix

Contents

The syscall Layer . 105

The system Layer . 106

The text Layer . 106

The user and site Layers 108

The vms Layer . 109

14. Creating a user Layer 113

Internal Functions . 113

The Operations Structure . 114

FFIO and the Stat Structure 115

user Layer Example . 116

Glossary . 143

Index . 145

x 007–3695–006

Figures

Figure 6-1 Access methods and default buffer size (IRIX systems) 41

Figure 9-1 Typical data flow 55

Figure 12-1 I/O layers . 78

007–3695–006 xi

Tables

Table 7-1 Fortran access methods and options 44

Table 9-1 Available I/O Layers 58

Table 11-1 Available conversion routines 69

Table 11-2 Conversion types 70

Table 11-3 Supported foreign I/O formats and default data types 71

Table 13-1 Data manipulation: bufa layer 92

Table 13-2 Supported operations: bufa layer 92

Table 13-3 Data manipulation: cache layer 94

Table 13-4 Supported operations: cache layer 94

Table 13-5 Data manipulation: cachea layer 96

Table 13-6 Supported operations: cachea layer 96

Table 13-7 Data manipulation: cos layer 98

Table 13-8 Supported operations: cos layer 98

Table 13-9 Data manipulation: f77 layer 101

Table 13-10 Supported operations: f77 layer 101

Table 13-11 Data manipulation: global layer 103

Table 13-12 Supported operations: global layer 103

Table 13-13 Data manipulation: syscall layer 105

Table 13-14 Supported operations: syscall layer 105

Table 13-15 Data manipulation: text layer 107

Table 13-16 Supported operations: text layer 107

Table 13-17 Values for record size: vms layer 110

Table 13-18 Values for maximum block size: vms layer 110

007–3695–006 xiii

Contents

Table 13-19 Data manipulation: vms layer 111

Table 13-20 Supported operations: vms layer 111

xiv 007–3695–006

Examples

Example 4-1 No EOF detection: writerd 23

Example 4-2 No EOF detection: readwt 23

Example 4-3 EOF detection: writerd 25

Example 4-4 EOF detection: readwt 25

Example 5-1 C I/O from Fortran 29

Example 6-1 local assign mode 42

007–3695–006 xv

Procedures

Procedure 2-1 Optimization technique: using single statements 12

Procedure 2-2 Optimization technique: using longer records 13

Procedure 2-3 Optimization technique: using repeated edit descriptors 14

Procedure 2-4 Optimization technique: using data edit descriptors 14

007–3695–006 xvii

About This Guide

This publication describes Fortran input/output (I/O) techniques. Information about
the interaction of the I/O library and supported compilers is also discussed. This
document also serves as an I/O optimization guide for Fortran programmers. It
describes the types of I/O that are available, including insight into the efficiencies and
inefficiencies of each, the ways to speed up various forms of I/O, and the tools used
to extract statistics from the execution of a Fortran program.

Related Publications
The following documents contain additional information that may be helpful:

• MIPSpro Fortran 90 Commands and Directives Reference Manual

• MIPSpro Fortran Language Reference Manual, Volume 1

• MIPSpro Fortran Language Reference Manual, Volume 2

• MIPSpro Fortran Language Reference Manual, Volume 3

Obtaining Publications
To obtain SGI documentation, go to the SGI Technical Publications Library at:

http://techpubs.sgi.com.

Conventions
The following conventions are used throughout this documentation:

command This fixed-space font denotes literal items, such as pathnames, man
page names, commands, and programming language structures.

variable Italic typeface denotes variable entries and words or concepts being
defined.

007–3695–006 xix

About This Guide

[] Brackets enclose optional portions of a command line.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

xx 007–3695–006

Chapter 1

Introduction

This manual introduces standard Fortran, supported Fortran extensions, and provides
a discussion of flexible file input/output (FFIO) and other input/output (I/O)
methods. This manual is for Fortran programmers who need general I/O information
or who need information on how to optimize their I/O.

This manual contains the following chapters:

• Chapter 2, "Standard Fortran I/O", page 5, discusses elements of the Fortran 95
standard that relate to I/O.

• Chapter 3, "Fortran I/O Extensions ", page 19, discusses extensions to the Fortran
standard.

• Chapter 4, "Named Pipe Support ", page 21, discusses tape handling and FIFO
special files.

• Chapter 5, "System and C I/O ", page 27, discusses system calls and Fortran
callable entry points to C library routines.

• Chapter 6, "The assign Environment", page 31, discusses the use of the
assign(1) command to access and update advisory information from the I/O
library and how to create an I/O environment.

• Chapter 7, "File Structures ", page 43, discusses native file structures.

• Chapter 8, "Buffering", page 51, discusses file buffering as it applies to I/O.

• Chapter 9, "Introduction to FFIO ", page 55, provides an overview of the Flexible
File I/O system.

• Chapter 10, "Using FFIO ", page 61, describes how to use FFIO with common file
structures, and how to use FFIO to enhance program performance.

• Chapter 11, "Foreign File Conversion", page 67, discusses how to convert data
from one file structure to another.

• Chapter 12, "I/O Optimization ", page 77, discusses methods to speed up I/O
processing.

• Chapter 13, "FFIO Layer Reference ", page 89, provides details about individual
FFIO layers.

007–3695–006 1

1: Introduction

• Chapter 14, "Creating a user Layer ", page 113, provides an example of how to
create an FFIO layer.

The Message System
An error message system is provided that consists of commands, library routines, and
files that allow error messages to be retrieved from message catalogs and formatted at
run time.

The user who receives a message can request more information by using the
explain(1) user command. The explain command retrieves a message explanation
from an online explanation catalog and displays it on the standard output device.

The msgid argument to the explain command is the message ID string that appears
when an error message is written. The ID string contains a product group code and
the message number.

The product group code or product code is a string that identifies the product issuing
the message. The product code for the Fortran libraries and for the I/O libraries is
lib. The number specifies the number of the message. The following list describes
the categories of message numbers:

• All Fortran library errors are within the range of 4000–5000. Libraries may also
return system error numbers in the range of 1 to the first library error number.
You must use the sys product code with numbers in this range.

• Flexible file I/O (FFIO) returns error values that are in the range of 5000 to 6000
and have a product code of lib.

Both of the following are variations of the explain command used with a msgid
from the Fortran I/O library:

explain lib1100

explain lib-1100

The previous explain command produces the following description on a standard
output file:

explain lib-1100

lib-1100: A READ operation tried to read a nonexistent record.

On a Fortran READ statement, the REC (record) specifier was

2 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

larger than the largest record number for that direct-access
file. Check the value of the REC specifier to ensure that it

is a valid record number. Check the file being read to ensure

that it is the correct file. Also see the description of

input/output statements in your Fortran reference manual. The

class of the error is unrecoverable (issued by the Fortran
run-time library).

There are two classes of Fortran library error messages: UNRECOVERABLE and
WARNING.

The following is an example of a warning message:

lib-1951 a.out: At line <n> in Fortran routine "<name>", in

dimension <d>, extents <e1> and <e2> are not equal.

When bounds checking is enabled, this message is issued if an array

assignment exceeds the bounds of the result array. The line
number <n> in the Fortran routine <name> is where the two array

extents (<el> and <e2>) did not match.

Modify the program so as not exceed the bounds of the array, or

ensure that the array extents are equal.

Also see the description of array operations in your Fortran

reference manual.
Note that this message is issued as a warning. Execution of the

program will continue.

If the message number is not valid, a message similar to the following appears:

explain: no explanation for lib-3000

007–3695–006 3

Chapter 2

Standard Fortran I/O

The Fortran standard describes program statements that you can use to transfer data
between external media (external files) or between internal files and internal storage.
It describes auxiliary input/output (I/O) statements that can be used to change the
position in the external file or to write an endfile record. It also describes auxiliary
I/O statements that describe properties of the connection to a file or that inquire
about the properties of that connection.

Files
The Fortran standard specifies the form of the input data that a Fortran program
processes and the form of output data resulting from a Fortran program. It does not
specifically describe the physical properties of I/O records, files, and units. This
section provides a general overview of files, records, and units.

Standard Fortran has two types of files: external and internal. An external file is any
file that is associated with a unit number. An internal file is a character variable that is
used as the unit specifier in a READ or WRITE statement. A unit is a means of
referring to an external file. A unit is connected or linked to a file through the OPEN
statement in standard Fortran. An external unit identifier refers to an external file and
an internal file identifier refers to an internal file. See "Fortran Unit Identifiers", page
8, for more information about unit identifiers.

A file can have a name that can be specified through the FILE= specifier in a Fortran
OPEN statement. If no explicit OPEN statement exists to connect a file to a unit, and if
assign(1) was not used, the I/O library uses a form of the unit number as the file
name.

Internal Files

Internal files provide a means of transferring and converting text stored in character
variables. An internal file must be a character variable or character array. If the file is
a variable, the file can contain only one record. If the file is a character array, each
element within the array is a record. On output, the record is filled with blanks if the
number of characters written to a record is less than the length of the record. An
internal file is always positioned at the beginning of the first record prior to data
transfer. Internal files can contain only formatted records.

007–3695–006 5

2: Standard Fortran I/O

When reading and writing to an internal file, only sequential formatted data transfer
statements that do not specify list-directed formatting may be used. Only sequential
formatted READ and WRITE statements may specify an internal file.

External Files

In standard Fortran, one external unit may be connected to a file. SGI allows more
than one external unit to be connected to the standard input, standard output, or
standard error files if the files were assigned with the assign -D command. More
than one external unit can be connected to a terminal.

External files have properties of form, access, and position as described in the
following text. You can specify these properties explicitly by using an OPEN statement
on the file. The Fortran standard provides specific default values for these properties.

• Form (formatted or unformatted): external files can contain formatted or
unformatted records. Formatted records are read or written by formatted I/O data
transfer statements. Unformatted records are accessed through unformatted I/O
data transfer statements. If the default does not match the form needed, you can
specify the form by using an OPEN statement.

• File access (sequential or direct access): external files can be accessed through
sequential or direct access methods. The file access method is determined when
the file is connected to a unit.

– Sequential access does not require an explicit open of a file by using an OPEN
statement.

When connected for sequential access, the external file has the following
properties:

• The records of the file are either all formatted or unformatted, except that
the last record of the file may be an endfile record.

• The records of the file must not be read or written by direct-access I/O
statements when the file is opened for sequential access.

• If the file is created with sequential access, the records are stored in the
order in which they are written (that is, sequentially).

To use sequential access on a file that was created as a formatted direct-access
file, open the file as sequential. To use sequential access on a file that was

6 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

created as an unformatted direct-access file, open the file as sequential, and use
the assign command on the file as follows:

assign -s unblocked ...

The assign command is required to specify the type of file structure. The I/O
libraries need this information to access the file correctly.

Buffer I/O files are unformatted sequential access files.

– Direct access does require an explicit open of a file by using an OPEN
statement. If a file is accessed through a sequential access READ or WRITE
statement, the I/O library implicitly opens the file. During an explicit or
implicit open of a file, the I/O library tries to access information generated by
the assign(1) command for the file.

Direct access can be faster than sequential access when a program must access
a set of records in a nonsequential manner.

When connected for direct access, an external file has the following properties:

• The records of the file are either all formatted or all unformatted. If the file
can be accessed as a sequential file, the endfile record is not considered part
of the file when it is connected for direct access. Some sequential files do
not contain a physical endfile record.

• The records of the file must not be read or written by sequential-access I/O
statements while the file is opened for direct access.

• All records of the file have the same length, which is specified in the RECL
specifier of the OPEN statement.

• Records do not have to be read or written in the order of their record
numbers.

• The records of the file must not be read or written using list-directed or
namelist formatting.

• The record number (a positive integer) uniquely identifies each record.

If all of the records in the file are the same length and if the file is opened as
direct access, a formatted sequential-access file can be accessed as a formatted
direct-access file if the direct access file is assigned a text structure (with
assign -s text).

007–3695–006 7

2: Standard Fortran I/O

Unformatted sequential-access files can be accessed as unformatted
direct-access files if all of the records are the same length and if the file is
opened as direct access, but only if the sequential-access file was created with
an unblocked file structure. The following assign commands create these
file structures:

assign -s unblocked ...
assign -s u ...

assign -F system ...

For more information about the assign environment and about default file
structures, see Chapter 6, "The assign Environment", page 31.

• File position: a file connected to a unit has a position property, which can be either
an initial point or a terminal point. The initial point of a file is the position just
before the first record, and the terminal point is the position just after the last
record. If a file is positioned within a record, that record is considered to be the
current record; otherwise, there is no current record.

During an I/O data transfer statement, the file can be positioned within a record
as each individual input/output list (iolist) item is processed. The use of a dollar
sign ($) or a backslash (\) as a carriage control edit descriptor in a format may
cause a file to be positioned within a record.

In standard Fortran, the end-of-file (EOF) record is a special record in a sequential
access file; it denotes the last record of a file. A file can be positioned after an EOF,
but only CLOSE, BACKSPACE, or REWIND statements are then allowed on the file
in standard Fortran. Other I/O operations are allowed after an EOF to provide
multiple-file I/O if a file is assigned to certain devices or is assigned with a certain
file structure.

Fortran Unit Identifiers
A Fortran unit identifier is required for Fortran READ or WRITE statements to
uniquely identify the file. A unit identifier can be one of the following:

• An integer variable or expression whose value is greater than or equal to 0. Each
integer unit identifier i is associated with the fort.i file, which may exist (except
as noted in the following text). For example, unit 10 is associated with the
fort.10 file in the current directory.

8 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

• An asterisk (*) is allowed only on READ and WRITE statements. It identifies a
particular file that is connected for formatted, sequential access. On READ
statements, an asterisk refers to unit 100 (standard input). On WRITE statements,
an asterisk refers to unit 101 (standard output).

Certain Fortran I/O statements have an implied unit number. The PRINT statement
always refers to unit 101 (standard output), and the outmoded PUNCH statement
always refers to unit 102 (standard error).

Fortran INQUIRE and CLOSE statements may refer to any valid or invalid unit
number (if referring to an invalid unit number, no error is returned). All other
Fortran I/O statements may refer only to valid unit numbers. For the purposes of an
executing Fortran program, all unit numbers in use or available for use by that
program are valid; that is, they exist. All unit numbers not available for use are not
valid; that is, they do not exist.

Valid unit numbers are all nonnegative numbers except 100 through 102. Unit
numbers 0, 5, and 6 are associated with the standard error, standard input, and
standard output files; any unit can also refer to a pipe. All other valid unit numbers
are associated with the fort.i file, or with the file name implied in a Hollerith unit
number. Use the INQUIRE statement to check the validity (existence) of any unit
number prior to using it, as in the following example:

logical UNITOK, UNITOP...
inquire (unit=I,exist=UNITOK,opened=UNITOP)

if (UNITOK .and. .not. UNITOP) then

open (unit = I, ...)

endif

All valid units are initially closed. A unit is connected to a file as the result of one of
three methods of opening a file or a unit:

• An implicit open occurs when the first reference to a unit number is an I/O
statement other than OPEN, CLOSE, INQUIRE, BACKSPACE, ENDFILE, or REWIND.
The following example shows an implicit open:

WRITE (4) I,J,K

If unit number 4 is not open, the WRITE statement causes it to be connected to the
associated file fort.4, unless overridden by an assign command that references
unit 4.

The BACKSPACE, ENDFILE, and REWIND statements do not perform an implicit
OPEN. If the unit is not connected to a file, the requested operation is ignored.

007–3695–006 9

2: Standard Fortran I/O

• An explicit unnamed open occurs when the first reference to a unit number is an
OPEN statement without a FILE specifier. The following example shows an
explicit unnamed open:

OPEN (7, FORM=’UNFORMATTED’)

If unit number 7 is not open, the OPEN statement causes it to be connected to the
associated file fort.7, unless an assign(1) command that references unit 7
overrides the default file name.

• An explicit named open occurs when the first reference to a unit number is an OPEN
statement with a FILE specifier. The following is an example:

OPEN (9, FILE=’blue’)

If unit number 9 is not open, the OPEN statement causes it to be connected to file
blue, unless overridden by an assign command that references the file named
blue.

Unit numbers 100, 101, and 102 are permanently associated with the standard input,
standard output, and standard error files, respectively. These files can be referenced
on READ and WRITE statements. A CLOSE statement on these unit numbers has no
effect. An INQUIRE statement on these unit numbers indicates they are nonexistent
(not valid).

These unit numbers exist to allow guaranteed access to the standard input, standard
output, and standard error files without regard to any unit actions taken by an
executing program. Thus, a READ or WRITE I/O statement with an asterisk unit
identifier (which is equivalent to unit 101) or a PRINT statement always works.
Nonstandard I/O operations such as BUFFER IN and BUFFER OUT, READMS, and
WRITMS on these units are not supported.

Fortran applications or library subroutines that must access the standard input,
standard output, and standard error files can be certain of access by using unit
numbers 100 through 102, even if the user program closes or reuses unit numbers 0,
5, and 6.

For all unit numbers associated with the standard input, standard output, and
standard error files, the access mode and form must be sequential and formatted. The
standard input file is read only, and the standard output and standard error files are
write only. REWIND and BACKSPACE statements are permitted on these files but have
no effect. ENDFILE statements are permitted on terminal files unless they are read
only. The ENDFILE statement writes a logical endfile record.

10 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

The REWIND statement is not valid for any unit numbers associated with pipes. The
BACKSPACE statement is not valid if the device on which the file exists does not
support repositioning. BACKSPACE after a logical endfile record does not require
repositioning because the endfile record is only a logical representation of an endfile
record.

Data Transfer Statements
The READ statement is the data transfer input statement. The WRITE and PRINT
statements are the data transfer output statements. If the data transfer statement
contains a format specifier, the data transfer statement is a formatted I/O statement.
If the data transfer statement does not contain a format specifier, the data transfer
statement is an unformatted I/O statement. The time required to convert input or
output data to the proper form adds to the execution time for formatted I/O
statements. Unformatted I/O maintains binary representations of the data. Very little
CPU time is required for unformatted I/O compared to formatted I/O.

Formatted I/O

In formatted I/O, data is transferred with editing. Formatted I/O can be edit-directed,
list-directed, and namelist I/O. If the format identifier is an asterisk, the I/O statement
is a list-directed I/O statement. All other format identifiers indicate edit-directed I/O.

Formatted I/O should be avoided when I/O performance is important. Unformatted
I/O is faster and it avoids potential inaccuracies due to conversion. However, there
are occasions when formatted I/O is necessary. The advantages for formatted I/O are
as follows:

• Formatted data can be interpreted by humans.

• Formatted data can be readily used by programs and utilities not written in
Fortran, or otherwise unable to process Fortran unformatted files.

• Formatted data can be readily exchanged with other computer systems where the
structure of Fortran unformatted files may be different.

See the Fortran Language Reference manuals for your compiler system for more
information about formatted I/O statements.

007–3695–006 11

2: Standard Fortran I/O

Edit-directed I/O

The format used in an edit-directed I/O statement provides information that directs
the editing between internal representation and the character strings of a record (or
sequence of records) in the file.

An example of a sequential access, edit-directed WRITE statement follows:

C Sequential edit-directed WRITE statement

C

WRITE (10,10,ERR=101,IOSTAT=IOS) 100,200
10 FORMAT (TR2,I10,1X,I10)

An example of a sequential access, edit-directed READ statement follows:

C Sequential edit-directed READ statement

C
READ (10,11,END=99,ERR=102,IOSTAT=IOS) IVAR

11 FORMAT (BN,TR2,I10:1X,I10)

An example of a direct access edit-directed I/O statement follows:

OPEN (11,ACCESS=’DIRECT’,FORM=’FORMATTED’,
+ RECL=24)

C

C Direct edit-directed READ and WRITE statements

C

WRITE (11,10,REC=3,ERR=103,IOSTAT=IOS) 300,400
READ (11,11,REC=3,ERR=104,IOSTAT=IOS) IVAR

There are four general optimization techniques that you can use to improve the
efficiency of edit-directed formatted I/O.

Procedure 2-1 Optimization technique: using single statements

Read or write as much data with a single READ/WRITE/PRINT statement as possible.
The following is an example of an inefficient way to code a WRITE statement:

DO J=1,M
DO I=1,N

WRITE (42, 100) X(I,J)

100 FORMAT (E25.15)

ENDDO

ENDDO

12 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

It is better to write the entire array with a single WRITE statement, as is done in the
following two examples:

WRITE (42, 100) ((X(I,J),I=1,N),J=1,M)

100 FORMAT (E25.15)

or

WRITE (42, 100) X
100 FORMAT (E25.15)

Each of these three code fragments produce exactly the same output; although the
latter two are about twice as fast as the first. Note that the format can be used to
control how much data is written per record. Also, the last two cases are equivalent if
the implied DO loops write out the entire array, in order and without omitting any
items.

Procedure 2-2 Optimization technique: using longer records

Use longer records if possible. Because a certain amount of processing is necessary to
read or write each record, it is better to write a few longer records instead of more
shorter records. For example, changing the statement from Example 1 to Example 2
causes the resulting file to have one fifth as many records and, more importantly,
causes the program to execute faster:

Example 1: (Not recommended)

WRITE (42, 100) X

100 FORMAT (E25.15)

Example 2: (Recommended)

WRITE (42,101) X
101 FORMAT (5E25.15)

You must make sure that the resultant file does not contain records that are too long
for the intended application. Certain text editors and utilities, for example, cannot
process lines that are longer than a predetermined limit. Generally lines that are 128
characters or less are safe to use in most applications.

007–3695–006 13

2: Standard Fortran I/O

Procedure 2-3 Optimization technique: using repeated edit descriptors

Use repeated edit descriptors whenever possible. Instead of using the format in
Example 1, use the format in Example 2 for integers which fit in four digits (that is,
less than 10000 and greater than –1000).

Example 1: (Not recommended)

200 FORMAT (16(X,I4))

Example 2: (Recommended)

201 FORMAT (16(I5))

Procedure 2-4 Optimization technique: using data edit descriptors

Character data should be read and written using data edit descriptors that are the
same width as the character data. For CHARACTER*n variables, the optimal data
edit descriptor is A (or An). For Hollerith data in INTEGER variables, the optimal
data edit descriptor is A8 (or R8).

List-directed I/O

If the format specifier is an asterisk, list-directed formatting is specified. The REC=
specifier must not be present in the I/O statement.

In list-directed I/O, the I/O records consist of a sequence of values separated by
value separators such as commas or spaces. A tab is treated as a space in list-directed
input, except when it occurs in a character constant that is delimited by apostrophes
or quotation marks.

List-directed and namelist output of real values uses either an F or an E format with a
number of decimal digits of precision that assures full-precision printing of the real
values. This allows formatted, list–directed, or namelist input of real values to result
later in the generation of bit-identical binary floating point representation. Thus, a
value may be written and then reread without changing the stored value.

The LISTIO_PRECISION and LISTIO_OUTPUT_STYLE environment variables can be
used to control list-directed output, as discussed in the following paragraphs.

14 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

You can set the LISTIO_PRECISION environment variable to control the number of
digits of precision printed by list-directed or namelist output. The following values
can be assigned to LISTIO_PRECISION:

FULL Prints full precision (this is the default value).

PRECISION Prints x or x +1 decimal digits, where x is a value of the Fortran 95
PRECISION() intrinsic function for a given real value. This is a smaller
number of digits that usually ensures that the last decimal digit is
accurate to within 1 unit.

An example of a list-directed WRITE statement follows:

C Sequential list-directed WRITE statement

WRITE (10,*,ERR=101,IOSTAT=IOS) 100,200

An example of a list-directed READ statement follows:

C Sequential list-directed READ statement
READ (10,*,END=99,ERR=102,IOSTAT=IOS) IVAR

Namelist I/O

Namelist I/O is similar to list-directed I/O, but it allows you to group variables by
specifying a namelist group name. On input, any namelist item within that list may
appear in the input record with a value to be assigned. On output, the entire namelist
is written.

The namelist item name is used in the namelist input record to indicate the namelist
item to be initialized or updated. During list-directed input, the input records must
contain a value or placeholder for all items in the input list. Namelist does not
require that a value be present for each namelist item in the namelist group.

You can specify a namelist group name in READ, WRITE, and PRINT statements.

The following is an example of namelist I/O:

NAMELIST/GRP/T,I

READ(5,GRP)

WRITE(6,GRP)

007–3695–006 15

2: Standard Fortran I/O

Unformatted I/O

During unformatted I/O, binary data is transferred without editing between the
current record and the entities specified by the I/O list. Exactly one record is read or
written. The unit must be an external unit.

The following is an example of a sequential access unformatted I/O WRITE statement:

C Sequential unformatted WRITE statement

WRITE (10,ERR=101,IOSTAT=IOS) 100,200

The following is an example of a sequential access unformatted I/O READ statement:

C Sequential unformatted READ statement

READ (10,END=99,ERR=102,IOSTAT=IOS) IVAR

The following is an example of a direct access unformatted I/O statement:

OPEN (11,ACCESS=’DIRECT’,FORM=’UNFORMATTED’, RECL=24)

C Direct unformatted READ and WRITE statements

WRITE (11,REC=3,ERR=103,IOSTAT=IOS) 300,400

READ (11,REC=3,ERR=103,IOSTAT=IOS) IVAR

Auxiliary I/O
The auxiliary I/O statements consist of the OPEN, CLOSE, INQUIRE, BACKSPACE,
REWIND, and ENDFILE statements. These types of statements specify file connections,
describe files, or position files. See the Fortran Language Reference manual for your
compiler system for more details about auxiliary I/O statements.

File Connection Statements

The OPEN and CLOSE statements specify an external file and how to access the file.

An OPEN statement connects an existing file to a unit, creates a file that is
preconnected, creates a file and connects it to a unit, or changes certain specifiers of a
connection between a file and a unit. The following are examples of the OPEN
statement:

OPEN (11,ACCESS=’DIRECT’,FORM=’FORMATTED’,RECL=24)

OPEN (10,ACCESS=’SEQUENTIAL’, FORM=’UNFORMATTED’)
OPEN (9,BLANK=’NULL’)

16 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

The CLOSE statement terminates the connection of a particular file to a unit. A unit
that does not exist or has no file connected to it may appear within a CLOSE
statement; this would not affect any files.

The INQUIRE Statement

The INQUIRE statement describes the connection to an external file. This statement
can be executed before, during, or after a file is connected to a unit. All values that
the INQUIRE statement assigns are current at the time that the statement is executed.

You can use the INQUIRE statement to check the properties of a specific file or check
the connection to a particular unit. The two forms of the INQUIRE statement are
INQUIRE by file and INQUIRE by unit.

The INQUIRE by file statement retrieves information about the properties of a
particular file.

The INQUIRE by unit statement retrieves the name of a file connected to a specified
unit if the file is a named file. The standard input, standard output, and standard
error files are unnamed files. An INQUIRE on a unit connected to any of these files
indicates that the file is unnamed.

An INQUIRE by unit on any unit connected by using an explicit named OPEN
statement indicates that the file is named, and returns the name that was present in
the FILE= specifier in the OPEN statement.

An INQUIRE by unit on any unit connected by using an explicit unnamed OPEN
statement, or an implicit open may indicate that the file is named. A name is returned
only if the I/O library can ensure that a subsequent OPEN statement with a FILE=
name will connect to the same file.

File Positioning Statements

The BACKSPACE and REWIND statements change the position of the external file. The
ENDFILE statement writes the last record of the external file.

You cannot use file positioning statements on a file that is connected as a direct access
file. The REC= record specifier is used for positioning in a READ or WRITE statement
on a direct access file.

007–3695–006 17

2: Standard Fortran I/O

The BACKSPACE statement causes the file connected to the specified unit to be
positioned to the preceding record. The following are examples of the BACKSPACE
statement:

BACKSPACE 10

BACKSPACE (11, IOSTAT=ios, ERR=100)

BACKSPACE (12, ERR=100)
BACKSPACE (13, IOSTAT=ios)

The ENDFILE statement writes an endfile record as the next record of the file. The
following are examples of the ENDFILE statement:

ENDFILE 10
ENDFILE (11, IOSTAT=ios, ERR=100)

ENDFILE (12, ERR=100)

ENDFILE (13, IOSTAT=ios)

The REWIND statement positions the file at its initial point. The following are
examples of the REWIND statement:

REWIND 10

REWIND (11, IOSTAT=ios, ERR=100)

REWIND (12, ERR=100)

REWIND (13, IOSTAT=ios)
REWIND (14)

Multithreading and Standard Fortran I/O
Multithreading is the concurrent use of multiple threads of control which operate
within the same address space. Multithreading is available through DOACROSS
compiler directives and through the Pthreads interface.

Standard Fortran I/O is thread-safe. The runtime I/O library performs all the needed
locking to permit multiple threads to concurrently execute Fortran I/O statements.
The result is proper execution of all Fortran I/O statements and the sequential
execution of I/O statements issued across multiple threads to files opened for
sequential access.

18 007–3695–006

Chapter 3

Fortran I/O Extensions

This chapter describes additional I/O routines and statements that are available.
These additional routines, known as Fortran extensions, perform unformatted I/O.

For details about the routines discussed in this chapter, see the individual man pages
for each routine. In addition, see the reference manuals for your compiler system.

BUFFER IN/BUFFER OUT Routines
BUFFER IN and BUFFER OUT statements initiate a data transfer between the specified
file or unit at the current record and the specified area of program memory. To allow
maximum asynchronous performance, all BUFFER IN and BUFFER OUT operations
should begin and end on a sector boundary.

The BUFFER IN and BUFFER OUT statements can perform sequential asynchronous
unformatted I/O if the files are assigned as unbuffered files. You must declare the
BUFFER IN and BUFFER OUT files as unbuffered by using one of the following
assign(1) commands.

assign -s u ...

assign -F system ...

If the files are not declared as unbuffered, the BUFFER IN and BUFFER OUT
statements may execute synchronously.

For tapes, BUFFER IN and BUFFER OUT operate synchronously; when you execute a
BUFFER statement, the data is placed in the buffer before you execute the next
statement in the program. Therefore, for tapes, BUFFER IN has no advantage over a
read statement or a CALL READ statement; however, the library code is doing
asynchronous read-aheads to fill its own buffer.

The F77 format is the default file structure.

The BUFFER IN and BUFFER OUT statements decrease the overhead associated with
transferring data through library and system buffers. These statements also offer the
advantages of asynchronous I/O. I/O operations for several files can execute
concurrently and can also execute concurrently with CPU instructions. This can
decrease overall wall-clock time.

007–3695–006 19

3: Fortran I/O Extensions

In order for this to occur, the program must ensure that the requested asynchronous
data movement was completed before accessing the data. The program must also be
able to do a significant amount of CPU-intensive work or other I/O during
asynchronous I/O to increase the program speed.

Buffer I/O processing waits until any previous buffer I/O operation on the file
completes before beginning another buffer I/O operation.

Use the UNIT(3f) and LENGTH(3f) functions with BUFFER IN and BUFFER OUT
statements to delay further program execution until the buffer I/O statement
completes.

For details about the routines discussed in this section, see the individual man pages
for each routine.

The UNIT Intrinsic

The UNIT intrinsic routine waits for the completion of the BUFFER IN or BUFFER
OUT statement. A program that uses asynchronous BUFFER IN and BUFFER OUT
must ensure that the data movement completes before trying to access the data. The
UNIT routine can be called when the program wants to delay further program
execution until the data transfer is complete. When the buffer I/O operation is
complete, UNIT returns a status indicating the outcome of the buffer I/O operation.

The following is an example of the UNIT routine:

STATUS=UNIT(90)

The LENGTH Intrinsic

The LENGTH intrinsic routine returns the length of transfer for a BUFFER IN or a
BUFFER OUT statement. If the LENGTH routine is called during a BUFFER IN or
BUFFER OUT operation, the execution sequence is delayed until the transfer is
complete. LENGTH then returns the number of words successfully transferred. A 0 is
returned for an end-of-file (EOF).

The following is an example of the LENGTH routine:

LENG=LENGTH(90)

20 007–3695–006

Chapter 4

Named Pipe Support

Named pipes or UNIX FIFO special files are created with the mknod(2) system call;
these special files allow any two processes to exchange information. The system call
creates an inode for the named pipe and establishes it as a read/write named pipe. It
can then be used by standard Fortran I/O or C I/O. Piped I/O is faster than normal
I/O; it requires less memory than memory-resident files.

Named Pipes
After a named pipe is created, Fortran programs can access that pipe almost as if it
were a typical file; the differences between process communication using named pipes
and process communication using normal files is discussed in the following list. The
examples show how a Fortran program can use standard Fortran I/O on pipes.

• A named pipe must be created before a Fortran program opens it. The following
is the syntax for the command to create a named pipe called fort.13:

/etc/mknod fort.13 p

A named pipe can be created from within a Fortran program by using ISHELL(3f)
or by using the C language library interface to the mknod(2) system call; either of
the following examples creates a named pipe:

CALL ISHELL(’/etc/mknod fort.13 p’)

I = MKNOD (’fort.13’,010600B,0)

• Fortran programs can communicate using two named pipes: one to read and one
to write. A Fortran program must either read from or write to any named pipe,
but it cannot do both at the same time. This is a Fortran restriction on pipes, not a
system restriction. It occurs because Fortran does not allow read and write access
at the same time.

• I/O transfers through named pipes use memory for buffering. A separate buffer is
created for each named pipe that is created. The PIPE_BUF parameter defines the
kernel buffer size in the /sys/param.h parameter file. The default value of
PIPE_BUF is 8 blocks (8 * 512 words), but the full size may not be needed or
used. I/O to named pipes does not transfer to or from a disk. However, if I/O
transfers fill the buffer, the writing process waits for the receiving process to read

007–3695–006 21

4: Named Pipe Support

the data before refilling the buffer. If the size of the PIPE_BUF parameter is
increased, I/O performance may decrease; there may be more I/O buffer
contention. If memory has already been allocated for buffers, more space will not
be allocated.

• Binary data transferred between two processes through a named pipe must use
the correct file structure. The undefined file structure (specified by assign -s u)
should be specified for a pipe by the sending process. The unblocked structure
(specified by assign -s unblocked) should be specified for a pipe by the
receiving process.

The file structure for the pipe of the sending (write) process should be set to
undefined (assign -s u), which issues a system call for each write. You can
also select a file specification of system (assign -F system) for the sending
process.

The file structure of the receiving or read process can be set to either the
undefined or the unblocked file structure. However, if the sending process writes
a request that is larger than MAXPIPE, it is essential for the receiving process to
read the data from a pipe set to the unblocked file structure. A read of a transfer
larger than MAXPIPE on an undefined file structure yields only MAXPIPE amount
of data. The receiving process would not wait to see whether the sending process
is refilling the buffer. The pipe may be less than MAXPIPE.

For example, the following assign commands specify that the file structure of the
named pipe (unit 13, file name pipe) for the sending process should be
undefined (-s u). The named pipe (unit 15, file name pipe) is type
unblocked (-s unblocked) for the read process.

assign -s u -a pipe u:13

assign -s unblocked -a pipe u:15

• A read from a pipe that is closed by the sender causes a detection of end-of-file
(EOF).

To detect EOF on a named pipe, the pipe must be opened as read-only by the
receiving process. Use the ACTION=READ specifier on the OPEN statement to open
a file as read-only.

Piped I/O Example without End-of-file Detection

In this example, two Fortran programs communicate without end-of-file (EOF)
detection. In the example, program writerd generates an array that contains the

22 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

elements 1 to 3 and writes the array to named pipe pipe1. Program readwt reads
the three elements from named pipe pipe1, prints out the values, adds 1 to each
value, and writes the new elements to named pipe pipe2. Program writerd reads
the new values from named pipe pipe2 and prints them. The -a option of the
assign(1) command allows the two processes to access the same file with different
assign characteristics.

Example 4-1 No EOF detection: writerd

program writerd
parameter(n=3)

dimension ia(n)

do 10 i=1,n

ia(i)=i

10 continue
write (10) ia

read (11) ia

do 20 i=1,n

print*,’ia(’,i,’) is ’,ia(i),’ in writerd’

20 continue

end

Example 4-2 No EOF detection: readwt

program readwt

parameter(n=3)
dimension ia(n)

read (15) ia

do 10 i=1,n

print*,’ia(’,i,’) is ’,ia(i),’ in readwt’

ia(i)=ia(i)+110 continue

write (16) ia
end

The following commands execute the programs:

f90 -o readwt readwt.f

f90 -o writerd writerd.f

/etc/mknod pipe1 p
/etc/mknod pipe2 p

assign -s u -a pipe1 u:10

assign -s unblocked -a pipe2 u:11

assign -s unblocked -a pipe1 u:15

007–3695–006 23

4: Named Pipe Support

assign -s u -a pipe2 u:16
readwt &

writerd

The following is the output of the two programs:

ia(1) is 1 in readwt

ia(2) is 2 in readwt

ia(3) is 3 in readwt

ia(1) is 2 in writerd

ia(2) is 3 in writerd
ia(3) is 4 in writerd

Detecting End-of-file on a Named Pipe

The following conditions must be met to detect end-of-file on a read from a named
pipe within a Fortran program: the program that sends data must open the pipe in a
specific way, and the program that receives the data must open the pipe as read-only.

The program that sends or writes the data must open the named pipe as read and
write or write-only. This is the default because the /etc/mknod command creates a
named pipe with read and write permission.

The program that receives or reads the data must open the pipe as read-only. A read
from a named pipe that is opened as read and write waits indefinitely for the data.
Use the ACTION=READ specifier on the OPEN statement to open a file as read-only.

Piped I/O Example with End-of-file Detection

This example uses named pipes for communication between two Fortran programs
with end-of-file detection. The programs in this example are similar to the programs
used in the preceding section. This example shows that program readwt can detect
the EOF.

Program writerd generates array ia and writes the data to the named pipe pipe1.
Program readwt reads the data from the named pipe pipe1, prints the values, adds
one to each value, and writes the new elements to named pipe pipe2. Program
writerd reads the new values from pipe2 and prints them. Finally, program
writerd closes pipe1 and causes program readwt to detect the EOF.

The following commands execute these programs:

24 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

f90 -o readwt readwt.f
f90 -o writerd writerd.f

assign -s u -a pipe1 u:10

assign -s unblocked -a pipe2 u:11

assign -s unblocked -a pipe1 u:15

assign -s u -a pipe2 u:16
/etc/mknod pipe1 p

/etc/mknod pipe2 p

readwt &

writerd

Example 4-3 EOF detection: writerd

program writerd

parameter(n=3)

dimension ia(n)

do 10 i=1,n

ia(i)=i
10 continue

write (10) ia

read (11) ia

do 20 i=1,n

print*,’ia(’,i,’) is’,ia(i),’ in writerd’
20 continue

close (10)

end

Example 4-4 EOF detection: readwt

program readwt

parameter(n=3)

dimension ia(n)

C open the pipe as read-only

open(15,form=’unformatted’, action=’read’)
read (15,end = 101) ia

do 10 i=1,n

print*,’ia(’,i,’) is ’,ia(i),’ in readwt’

ia(i)=ia(i)+1

10 continue

write (16) ia
read (15,end = 101) ia

goto 102

007–3695–006 25

4: Named Pipe Support

101 print *,’End of file detected’
102 continue

end

The output of the two programs is as follows:

ia(1) is 1 in readwt

ia(2) is 2 in readwt

ia(3) is 3 in readwt
ia(1) is 2 in writerd

ia(2) is 3 in writerd

ia(3) is 4 in writerd

End of file detected

26 007–3695–006

Chapter 5

System and C I/O

This chapter describes systems calls used by the I/O library to perform asynchronous
or synchronous I/O. This chapter also describes Fortran callable entry points to
several C library routines.

System I/O
The I/O library and programs use the system calls described in this chapter to
perform synchronous and asynchronous I/O, to queue a list of distinct I/O requests,
and to perform unbuffered I/O without system buffering.

Synchronous I/O

With synchronous I/O, an executing program relinquishes control during the I/O
operation until the operation is complete. An operation is not complete until all data
is moved.

The read(2) and write(2) system calls perform synchronous reads and writes. The
READ(3f) and WRITE(3f) functions provide a Fortran interface to the read and write
system calls. The read system call reads a specified number of bytes from a file into
a specified buffer. The write system call writes from a buffer to a file.

Asynchronous I/O

Asynchronous I/O lets the program use the time that an I/O operation is in progress
to perform some other operations that do not involve the data in the I/O operation.
In asynchronous I/O operations, control is returned to the calling program after the
I/O is initiated. The program may perform calculations unrelated to the previous I/O
request or it may issue another unrelated I/O request while waiting for the first I/O
request to complete.

The asynchronous I/O routines provide functions that let a program wait for a
particular I/O request to complete. The asynchronous form of BUFFER IN and
BUFFER OUT statements used with UNIT and LENGTH routines provide this type of
I/O.

007–3695–006 27

5: System and C I/O

Unbuffered I/O

The open(2) system call opens a file for reading or writing. If the I/O request is
well-formed and the O_RAW flag is set, the read(3f) or write(3f) system call reads or
writes whole blocks of data directly into user space, bypassing system cache.

C I/O from Fortran
The C library provides a set of routines that constitute a user-level I/O buffering
scheme to be used by C programmers.

The getc(3c) and putc(3c) inline macros process characters. The getchar and
putchar macros, and the higher-level routines fgetc, fgets, fprintf, fputc,
fputs, fread, fscanf, fwrite, gets, getw, printf, puts, putw, and scanf all
use or act as if they use getc and putc. They can be intermixed.

A file with this associated buffering is called a streams and is associated with a pointer
to a defined type FILE. The fopen(3c) routine creates descriptive data for a stream
and returns a pointer to designate the stream in all further transactions. Three open
streams with constant pointers are usually declared in the <stdio.h> header file and
are associated with stdin, stdout, and stderr.

Three types of buffering are available with functions that use the FILE type:
unbuffered, fully buffered, and line buffered, as described in the following list:

• If the stream is unbuffered, no library buffer is used.

• For a fully buffered stream, data is written from the library buffer when it is filled,
and read into the library buffer when it is empty.

• If the stream is line buffered, the buffer is flushed when a new line character is
written, the buffer is full, or when input is requested.

The setbuf and setvbuf functions let you change the type and size of the buffers.
By default, output to a terminal is line buffered, output to stderr is unbuffered, and
all other I/O is fully buffered. See the setbuf(3c) man page for details.

Mixing the use of C I/O functions with Fortran I/O on the same file may have
unexpected results. If you want to do this, ensure that the Fortran file structure
chosen does not introduce unexpected control words and that library buffers are
flushed properly before switching between types of I/O.

28 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

The following example illustrates the use of some C routines. The assign
environment does not affect these routines.

Example 5-1 C I/O from Fortran

PROGRAM STDIOEX

INTEGER FOPEN, FCLOSE, FWRITE, FSEEK

INTEGER FREAD, STRM

CHARACTER*25 BUFWR, BUFRD

PARAMETER(NCHAR=25)
C Open the file /tmp/mydir/myfile for update

STRM = FOPEN(’/tmp/mydir/myfile’,’r+’)

IF (STRM.EQ.0) THEN

STOP ’ERROR OPENING THE FILE’

ENDIF
C Write

I = FWRITE(BUFWR, 1, NCHAR, STRM)

IF (I.NE.NCHAR*1)THEN

STOP ’ERROR WRITING FILE’

ENDIF

C Rewind and read the data
I = FSEEK(STRM, 0, 0)

IF (I.NE.0)THEN

STOP ’ERROR REWINDING FILE’

ENDIF

I = FREAD(BUFRD, 1, NCHAR, STRM)
IF (I.NE.NCHAR*1)THEN

STOP ’ERROR READING FILE’

ENDIF

C Close the file

I = FCLOSE(STRM)
IF (I.NE.0) THEN

STOP ’ERROR CLOSING THE FILE’

ENDIF

END

007–3695–006 29

Chapter 6

The assign Environment

Fortran programs require the ability to alter many details of a Fortran file connection.
You may need to specify device residency, an alternative file name, a file space
allocation scheme, file structure, or data conversion properties of a connected file.

This chapter describes the assign(1) command and the ASSIGN(3f) library routine,
which are used for these purposes. The ffassign command provides an interface to
assign processing from C. See the ffassign man page for details about its use.

assign Basics
The assign(1) command passes information to Fortran OPEN statements and to the
ffopen(3c), AQOPEN(3f), WOPEN(3f), OPENDR(3f), and OPENMS(3f) routines.

This information is called the assign environment; it consists of the following elements:

• A list of unit numbers

• File names

• File name patterns that have attributes associated with them

Any file name, file name pattern, or unit number to which assign options are attached
is called an assign_object. When the unit or file is opened from Fortran, the options are
used to set up the properties of the connection.

Open Processing

The I/O library routines apply options to a file connection for all related assign_objects.

If the assign_object is a unit, the application of options to the unit occurs whenever
that unit becomes connected.

If the assign_object is a file name or pattern, the application of options to the file
connection occurs whenever a matching file name is opened from a Fortran program.

When any of the previously listed library I/O routines open a file, they use assign
options for any assign_objects which apply to this open request. Any of the following
assign_objects or categories might apply to a given open request:

007–3695–006 31

6: The assign Environment

• g:all options apply to any open request.

• g:su, g:sf, g:du, , and g:ff each apply to types of open requests (for example,
sequential unformatted, sequential formatted, and so on).

• u:unit_number applies whenever unit unit_number is opened.

• p:pattern applies whenever a file whose name matches pattern is opened. The
assign environment can contain only one p: assign_object which matches the
current open file. The exception is that the p:%pattern (which uses the % wildcard
character) is silently ignored if a more specific pattern also matches the current
filename being opened.

• f:filename applies whenever a file with the name filename is opened.

Options from the assign objects in these categories are collected to create the complete
set of options used for any particular open. The options are collected in the listed
order, with options collected later in the list of assign objects overriding those
collected earlier.

The assign Command

The following is the syntax for the assign command:

assign [-a actualfile] [-b bs] [-f fortstd] [-s ft] [-t] [-y setting] [-B setting]
[-C charcon] [-D fildes] [-F spec[,specs]] [-I] [-N numcon] [-O] [-R]
[-S setting] [-T setting] [-U setting] [-V] [-W setting] [-Y setting] [-Z setting]
assign_object

The following two specifications cannot be used with any other options:

assign -R [assign_object]

assign -V [assign_object]

The following is a summary of the assign command options. For details, see the
assign(1) and INTRO_FFIO(3f) man pages.

-I Specifies an incremental assign. All attributes are added to the
attributes already assigned to the current assign_object. This option and
the -O option are mutually exclusive.

32 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

-O Specifies a replacement assign. This is the default control option. All
currently existing assign attributes for the current assign_object are
replaced. This option and the -I option are mutually exclusive.

-R Removes all assign attributes for assign_object. If assign_object is not
specified, all currently assigned attributes for all assign_objects are
removed.

-V Views attributes for assign_object. If assign_object is not specified, all
currently assigned attributes for all assign_objects are printed.

The following are the assign command attribute options:

-a actualfile The FILE= specifier or the actual file name.

-b bs Library buffer size in 4096–byte blocks.

-f fortstd Fortran standard.

Specify 77 to be compatible with the FORTRAN 77
standard.

Specify 90 to be compatible with the Fortran 90
standard.

Specify irixf77 to be compatible with SGI’s
FORTRAN 77 compiling system which runs on IRIX
systems.

Specify irixf90 to be compatible with the MIPSpro 7
Fortran 90 compiler.

-s ft File type. Enter text, cos, blocked, unblocked, u,
sbin, or bin for ft.

-t Temporary file.

-y setting Suppresses repeat counts in list-directed output. setting
can be either on or off. The default setting is off.

-B setting Activates or suppresses the passing of the O_DIRECT
flag to the open(2) system call. Enter either on or off
for setting.

-C charcon Character set conversion information. Enter ascii for
charcon. If you specify the -C option, you must also
specify the -F option.

007–3695–006 33

6: The assign Environment

-D fildes Specifies a connection to a standard file. Enter stdin,
stdout, or stderr for fildes.

-F spec [,specs] Flexible file I/O (FFIO) specification. See the assign(1)
man page for details about allowed values for spec and
for details about hardware platform support. See the
INTRO_FFIO(3f) man page for details about specifying
the FFIO layers.

-N numcon Foreign numeric conversion specification. See the
assign(1) man page for details about allowed values
for numcon and for details about hardware platform
support.

-S setting Suppresses use of a comma as a separator in
list-directed output. Enter either on or off for setting.
The default setting is off.

-T setting Activates or suppresses truncation after write for
sequential Fortran files. Enter either on or off for
setting.

-U setting Produces a form of list-directed output. This is a global
setting which sets the value for the -y, -S, and -W
options. Enter either on or off for setting. The default
setting is off.

-W setting Suppresses compressed width in list-directed output.
Enter either on or off for setting. The default setting is
off.

-Y setting Skips unmatched namelist groups in a namelist input
record. Enter either on or off for setting. The default
setting is on.

-Z setting Recognizes –0.0 for IEEE floating point systems and
writes the minus sign for edit-directed, list-directed,
and namelist output. Enter either on or off for setting.
The default setting is off.

assign_object Specifies either a file name or a unit number for
assign_object. The assign command associates the
attributes with the file or unit specified. These

34 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

attributes are used during the processing of Fortran
OPEN statements or during implicit file opens.

Use one of the following formats for assign_object:

• f:file_name (for example, f:file1)

• g:io_type; io_type can be su, sf, du, df, ff, or aq (for example, g:ff)

• p:pattern (for example, p:file%)

• u:unit_number (for example, u:9)

• file_name (for example, myfile)

When the p: pattern form is used, the % and _ wildcard characters can be used. The %
matches any string of 0 or more characters. The _ matches any single character. The %
performs like the * when doing file name matching in shells. However, the %
character also matches strings of characters containing the / character.

Related Library Routines

The ASSIGN(3f), ASNUNIT(3f), ASNFILE(3f), and ASNRM(3f) routines can be called
from a Fortran program to access and update the assign environment. The ASSIGN
routine provides an easy interface to ASSIGN processing from a Fortran program. The
ASNUNIT and ASNFILE routines assign attributes to units and files, respectively. The
ASNRM routine removes all entries currently in the assign environment.

The calling sequences for the assign library routines are as follows:

CALL ASSIGN (cmd,ier)

CALL ASNUNIT (iunit,astring,ier)

CALL ASNFILE (fname,astring,ier)

CALL ASNRM (ier)

cmd Fortran character variable that contains a complete assign command
in the format that is also acceptable to the ISHELL(3f) routine.

ier Integer variable that is assigned the exit status on return from the
library interface routine.

007–3695–006 35

6: The assign Environment

iunit Integer variable or constant that contains the unit number to which
attributes are assigned.

astring Fortran character variable that contains any attribute options and
option values from the assign command. Control options -I, -O, and
-R can also be passed.

fname Character variable or constant that contains the file name to which
attributes are assigned.

A status of 0 indicates normal return and a status of greater than 0 indicates a specific
error status. Use the explain command to determine the meaning of the error status.
For more information about the explain command, see the explain(1) man page.

The following calls are equivalent to the assign -s u f:file command:

CALL ASSIGN(’assign -s u f:file’,ier)

CALL ASNFILE(’file’,’-s u’,IER)

The following call is equivalent to executing the assign -I -n 2 u:99 command:

IUN = 99

CALL ASNUNIT(IUN,’-I -n 2’,IER)

The following call is equivalent to executing the assign -R command:

CALL ASNRM(IER)

assign and Fortran I/O
Assign processing lets you tune file connections. The following sections describe
several areas of assign command usage and provide examples of each use.

Alternative File Names

The -a option specifies the actual file name to which a connection is made. This
option allows files to be created in alternative directories without changing the FILE=
specifier on an OPEN statement.

For example, consider the following assign command issued to open unit 1:

assign -a /tmp/mydir/tmpfile u:1

36 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

The program then opens unit 1 with any of the following statements:

WRITE(1) variable ! implicit open

OPEN(1) ! unnamed open

OPEN(1,FORM=’FORMATTED’) ! unnamed open

Unit 1 is connected to file /tmp/mydir/tmpfile. Without the -a attribute, unit 1
would be connected to file fort.1.

When the -a attribute is associated with a file, any Fortran open that is set to connect
to the file causes a connection to the actual file name. An assign command of the
following form causes a connection to file $TMPDIR/joe:

assign -a $TMPDIR/joe ftfile

This is true when any of the following statements are executed in a program:

OPEN(IUN,FILE=’ftfile’)

CALL AQOPEN(AQP,AQPSIZE,’ftfile’,ISTAT)

CALL OPENMS(’ftfile’,INDARR,LEN,IT)

CALL OPENDR(’ftfile’,INDARR,LEN,IT)
CALL WOPEN(’ftfile’,BLOCKS,ISTATS)

WRITE(’ftfile’) ARRAY

If the following assign command is issued and is in effect, any Fortran INQUIRE
statement whose FILE= specification is foo refers to the file named actual instead
of the file named foo for purposes of the EXISTS=, OPENED=, or UNIT= specifiers:

assign -a actual f:foo

If the following assign command is issued and is in effect, the -a attribute does not
affect INQUIRE statements with a UNIT= specifier:

assign -a actual ftfile

When the following OPEN statement is executed, INQUIRE(UNIT=n,NAME=fname)
returns a value of ftfile in fname, as if no assign had occurred:

OPEN(n,file=’ftfile’)

The I/O library routines use only the actual file (-a) attributes from the assign
environment when processing an INQUIRE statement. During an INQUIRE statement
that contains a FILE= specifier, the I/O library searches the assign environment for
a reference to the file name that the FILE= specifier supplies. If an assign-by-filename

007–3695–006 37

6: The assign Environment

exists for the file name, the I/O library determines whether an actual name from the
-a option is associated with the file name. If the assign-by-filename supplied an actual
name, the I/O library uses the name to return values for the EXIST=, OPENED=, and
UNIT= specifiers; otherwise, it uses the file name. The name returned for the NAME=
specifier is the file name supplied in the FILE= specifier. The actual file name is not
returned.

File Structure Selection

Fortran I/O uses the text file structure, unblocked file structure, pure file structure,
F77 file structure, and COS blocked structure. By default, a file structure is selected
for a unit based on the type of Fortran I/O selected at open time. If an alternative file
structure is needed, the user can select a file structure by using the -s and -F options
on the assign command.

No assign_object can have both -s and -F attributes associated with it. Some file
structures are available as -F attributes but are not available as -s attributes. The -F
option is more flexible than the -s option; it allows nested file structures and buffer
size specifications for some attribute values. The following list summarizes how to
select the different file structures with different options to the assign command:

Structure assign command

COS blocked assign -F cos
assign -s cos

text assign -F text
assign -s text

unblocked assign -F system
assign -s unblocked
assign -s u

F77 blocked assign -F f77

For more information about file structures, see Chapter 7, "File Structures ", page 43.

The following are examples of file structure selection:

• To select unblocked file structure for a sequential unformatted file:

IUN = 1

CALL ASNUNIT(IUN,’-s unblocked’,IER)

38 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

OPEN(IUN,FORM=’UNFORMATTED’,ACCESS=’SEQUENTIAL’)

• You can use the assign -s u command to specify the unblocked file structure
for a sequential unformatted file. When this option is selected, the I/O is
unbuffered. Each Fortran READ or WRITE statement results in a read(2) or
write(2) system call such as the following:

CALL ASNFILE(’fort.1’,’-s u’,IER)

OPEN(1,FORM=’UNFORMATTED’,ACCESS=’SEQUENTIAL’)

• Use the following command to assign unit 10 a COS blocked structure:

assign -F cos u:10

Buffer Size Specification

The size of the buffer used for a Fortran file can have a substantial effect on I/O
performance. A larger buffer size usually decreases the system time needed to process
sequential files. However, large buffers increase a program’s memory usage; therefore,
optimizing the buffer size for each file accessed in a program on a case-by-case basis
can help increase I/O performance and can minimize memory usage.

The -b option on the assign command specifies a buffer size, in blocks, for the unit.
The -b option can be used with the -s option, but it cannot be used with the -F
option. Use the -F option to provide I/O path specifications that include buffer sizes;
the -b, and -u options do not apply when -F is specified.

For more information about the selection of buffer sizes, see Chapter 8, "Buffering",
page 51, and the assign(1) man page.

The following are some examples of buffer size specification using the assign -b
and assign -F options:

• If unit 1 is a large sequential file for which many Fortran READ or WRITE
statements are issued, you can increase the buffer size to a large value, using the
following assign command:

assign -b 336 u:1

• If file foo is a small file or is accessed infrequently, minimize the buffer size using
the following assign command:

assign -b 1 f:foo

007–3695–006 39

6: The assign Environment

Foreign File Format Specification

The Fortran I/O library can read and write files with record blocking and data
formats native to operating systems from other vendors. The assign -F command
specifies a foreign record blocking; the assign -C command specifies the type of
character conversion; the -N option specifies the type of numeric data conversion.
When -N or -C is specified, the data is converted automatically during the processing
of Fortran READ and WRITE statements. For example, assume that a record in file
fgnfile contains the following character and integer data:

character*4 ch

integer int

open(iun,FILE=’fgnfile’,FORM=’UNFORMATTED’)

read(iun) ch, int

Use the following assign command to specify foreign record blocking and foreign
data formats for character and integer data:

assign -F ibm.vbs -N ibm -C ebcdic fgnfile

Direct-access I/O Tuning

Fortran unformatted direct-access I/O supports number tuning and memory cache
page size (buffer) tuning; it also supports specification of the prevailing direction of
file access. The assign -b command specifies the size of each buffer in 4096–byte
blocks.

Fortran File Truncation

The assign -T option activates or suppresses truncation after the writing of a
sequential Fortran file. The -T on option specifies truncation; this behavior is
consistent with the Fortran standard and is the default setting for most assign -s
fs specifications.

The assign(1) man page lists the default setting of the -T option for each -s fs
specification. It also indicates if suppression or truncation is allowed for each of these
specifications.

FFIO layers that are specified by using the -F option vary in their support for
suppression of truncation with -T off.

40 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

The following figure summarizes the available access methods and the default buffer
sizes. Figures are given in units of 4096 bytes.

Blocked Unblocked

Access method
 assign option

Blocked
-F f77

Text
-s text

Undef
-s u

Binary
-s bin

Unblocked
-s unblocked

Buffer size
for default

Formatted sequential I/O
 WRITE(9,20)
 PRINT

Valid
Default 8

Formatted direct I/O
 WRITE(9,20,REC=)

Unformatted sequential I/O
 WRITE(9)

Unformatted direct I/O
 WRITE(9,REC=)

Buffer in/buffer out

Control words Yes NEWLINE No

Library buffering

System cached

BACKSPACE

Record size

Default library buffer size† 8 1 0 Varies Varies

Yes

Valid

Valid
Default

Valid
Default

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid
Default

Valid

Valid

Valid
Default

8

8

No No

Yes Yes Yes YesNo

16 units

16 units

Any Any Any

Yes

Yes Yes

Yes No

Yes Yes

Any

No No

Valid

a11335

Invalid

Invalid

Invalid

< 232

Invalid

Invalid

Invalid

Figure 6-1 Access methods and default buffer size (IRIX systems)

The assign Environment File
To use the assign command, you must set the FILENV environment variable.
FILENV can contain the pathname of a file which will be used to store assign
information or it can specify that the information should be stored in the process
environment.

007–3695–006 41

6: The assign Environment

Local assign
The assign environment information is usually stored in the assign environment
file. Programs that do not require the use of the global assign environment file can
activate local assign mode. If you select local assign mode, the assign
environment will be stored in memory. Thus, other processes could not adversely
affect the assign environment used by the program.

The ASNCTL(3f) routine selects local assign mode when it is called by using one of
the following command lines:

CALL ASNCTL(’LOCAL’,1,IER)

CALL ASNCTL(’NEWLOCAL’,1,IER)

Example 6-1 local assign mode

In the following example, a Fortran program activates local assign mode and then
specifies an unblocked data file structure for a unit before opening it. The -I option
is passed to ASNUNIT to ensure that any assign attributes continue to have an effect
at the time of file connection.

C Switch to local assign environment

CALL ASNCTL(’LOCAL’,1,IER)

IUN = 11

C Assign the unblocked file structure

CALL ASNUNIT(IUN,’-I -s unblocked’,IER)
C Open unit 11

OPEN(IUN,FORM=’UNFORMATTED’)

If a program contains all necessary assign statements as calls to ASSIGN, ASNUNIT,
and ASNFILE, or if a program requires total shielding from any assign commands,
use the second form of a call to ASNCTL, as follows:

C New (empty) local assign environment

CALL ASNCTL(’NEWLOCAL’,1,IER)

IUN = 11

C Assign a large buffer size
CALL ASNUNIT(IUN,’-b 336’,IER)

C Open unit 11

OPEN(IUN,FORM=’UNFORMATTED’)

42 007–3695–006

Chapter 7

File Structures

A file structure defines the way that records are delimited and how the end-of-file is
represented.

The unblocked, pure, text, and F77 file structures can be used.

The I/O library provides four different forms of file processing to indicate an
unblocked file structure by using the assign -s ft command: unblocked
(unblocked), standard binary (sbin), binary (bin), and undefined (u). These
alternative forms provide different types of I/O packages used to access the records
of the file, different types of file truncation and data alignment, and different endfile
record recognitions in a file.

The full set of options allowed with the assign -s ft command are the following:

• bin (not recommended)

• blocked

• cos

• sbin

• text

• u

• unblocked

For more information about valid arguments to the assign -F command, see "File
Structure Selection", page 38. Table 7-1 summarizes the Fortran access methods and
options.

007–3695–006 43

7: File Structures

Table 7-1 Fortran access methods and options

Access and form assign -s ft defaults assign -s ft options

Unformatted sequential BUFFER IN /
BUFFER OUT

blocked bin
sbin
u
unblocked

Unformatted direct unblocked bin
sbin
u
unblocked

Formatted sequential text blocked
cos
sbin/text

Formatted direct on IRIX systems unblocked u
unblocked

You cannot specify the default for unformatted sequential access with assign -s.
You must use assign -F f77.

Unblocked File Structure
A file with an unblocked file structure contains undelimited records. Because it does
not contain any record control words, it does not have record boundaries. The
unblocked file structure can be specified for a file that is opened with either
unformatted sequential access or unformatted direct access. It is the default file
structure for a file opened as an unformatted direct-access file.

If a file with unblocked file structure must be repositioned, a BACKSPACE statement
should not be used. You cannot reposition the file to a previous record when record
boundaries do not exist.

BUFFER IN and BUFFER OUT statements can specify a file that is an unbuffered and
unblocked file structure. If the file is specified with assign -s u, BUFFER IN and
BUFFER OUT statements can perform asynchronous unformatted I/O.

You can specify the unblocked data file structure by using the assign(1) command in
several ways. All methods result in a similar file structure but with different library

44 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

buffering styles, use of truncation on a file, alignment of data, and recognition of an
endfile record in the file. The following unblocked data file structure specifications
are available:

Specification Structure

assign -s
unblocked

Library-buffered

assign -F system No library buffering

assign -s u No library buffering

assign -s sbin Standard-I/O-compatible buffering; for example, both
library and system buffering

The type of file processing for an unblocked data file structure depends on the
assign -s ft option declared or assumed for a Fortran file.

assign -s unblocked File Processing

An I/O request for a file specified using the assign -s unblocked command does
not need to be a multiple of a specific number of bytes. Such a file is truncated after
the last record is written to the file. Padding occurs for files specified with the
assign -s bin command and the assign -s unblocked command. Padding
usually occurs when noncharacter variables follow character variables in an
unformatted direct-access file.

No padding is done in an unformatted sequential access file. An unformatted
direct-access file contains records that are the same length. The endfile record is
recognized in sequential-access files.

assign -s sbin File Processing (Not Recommended)

You can use an assign -s sbin specification for a Fortran file that is opened with
either unformatted direct access or unformatted sequential access. The file does not
contain record delimiters. The file created for assign -s sbin in this instance has
an unblocked data file structure and uses unblocked file processing.

The assign -s sbin option can be specified for a Fortran file that is declared as
formatted sequential access. Because the file contains records that are delimited with
the new-line character, it is not an unblocked data file structure. It is the same as a
text file structure.

007–3695–006 45

7: File Structures

The assign -s sbin option is compatible with the standard C I/O functions. See
Chapter 5, "System and C I/O ", page 27, for more details.

Note: Use of assign -s sbin is discouraged. Use assign -s text for formatted
files, and assign -s unblocked for unformatted files.

assign -s bin File Processing (Not Recommended)

An I/O request for a file that is specified with assign -s bin does not need to be a
multiple of a specific number of bytes. The I/O library uses an internal buffer for the
records. If opened for sequential access, a file is not truncated after each record is
written to the file.

assign -s u File Processing

The assign -s u command specifies undefined or unknown file processing. An
assign -s u specification can be specified for a Fortran file that is declared as
unformatted sequential or direct access. Because the file does not contain record
delimiters, it has an unblocked data file structure. Both synchronous and
asynchronous BUFFER IN and BUFFER OUT processing can be used with u file
processing.

For best performance, a Fortran I/O request on a file assigned with the assign -s
u command should be a multiple of 4096 bytes. I/O requests are not library buffered.
They cause an immediate system call.

Fortran sequential files declared by using assign -s u are not truncated after the
last word written. The user must execute an explicit ENDFILE statement on the file to
get truncation.

Text File Structure
The text file structure consists of a stream of 8-bit ASCII characters. Every record in a
text file is terminated by a newline character (\n, ASCII 012). Some utilities may omit
the newline character on the last record, but the Fortran library will treat such an
occurrence as a malformed record. This file structure can be specified for a file that is
declared as formatted sequential access or formatted direct access. It is the default file
structure for formatted sequential access files.

46 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

The assign -s text command specifies the library-buffered text file structure.
Both library and system buffering are done for all text file structures (for more
information about library buffering, see Chapter 8, "Buffering", page 51).

An I/O request for a file using assign -s text does not need to be a multiple of a
specific number of bytes.

You cannot use BUFFER IN and BUFFER OUT statements with this structure. Use a
BACKSPACE statement to reposition a file with this structure.

COS or Blocked File Structure
The cos or blocked file structure uses control words to mark the beginning of each
4096–byte block and to delimit each record. You can specify this file structure for a
file that is declared as unformatted sequential access. Synchronous BUFFER IN and
BUFFER OUT statements can create and access files with this file structure.

You can specify this file structure with one of the following assign(1) commands:

assign -s cos

assign -s blocked

assign -F cos

assign -F blocked

These four assign commands result in the same file structure.

An I/O request on a blocked file is library buffered. For more information about
library buffering, see Chapter 8, "Buffering", page 51.

In a COS file structure, one or more ENDFILE records are allowed. BACKSPACE
statements can be used to reposition a file with this structure.

A blocked file is a stream of words that contains control words called Block Control
Word (BCW) and Record Control Words (RCW) to delimit records. Each record is
terminated by an EOR (end-of-record) RCW. At the beginning of the stream, and
every 512 words thereafter, (including any RCWs), a BCW is inserted. An end-of-file
(EOF) control word marks a special record that is always empty. Fortran considers
this empty record to be an endfile record. The end-of-data (EOD) control word is
always the last control word in any blocked file. The EOD is always immediately
preceded by an EOR, or an EOF and a BCW.

007–3695–006 47

7: File Structures

Each control word contains a count of the number of data words to be found between
it and the next control word. In the case of the EOD, this count is 0. Because there is
a BCW every 512 words, these counts never point forward more than 511 words.

A record always begins at a word boundary. If a record ends in the middle of a word,
the rest of that word is zero filled; the ubc field of the closing RCW contains the
number of unused bits in the last word.

The following is a representation of the structure of a BCW:

m
unused bdf unused bn fwi

(4) (7) (1) (19) (24) (9)

Field Bits Description

m 0-3 Type of control word; 0 for BCW

bdf 11 Bad Data flag (1-bit).

bn 31-54 Block number (modulo 224).

fwi 55-63 Forward index; the number of words to next control word.

The following is a representation of the structure of an RCW:

m
ubc tran bdf srs unused pfi pri fwi

(4) (6) (1) (1) (1) (7) (20) (15) (9)

48 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

Field Bits Description

m 0-3 Type of control word; 108 for EOR, 168 for EOF, and 178 for EOD.

ubc 4-9 Unused bit count; number of unused low-order bits in last word of previous
record.

tran 10 Transparent record field (unused).

bdf 11 Bad data flag (unused).

srs 12 Skip remainder of sector (unused).

pfi 20-39 Previous file index; offset modulo 220 to the block where the current file starts
(as defined by the last EOF).

pri 40-54 Previous record index; offset modulo 215 to the block where the current record
starts.

fwi 55-63 Forward index; the number of words to next control word.

007–3695–006 49

Chapter 8

Buffering

This chapter provides an overview of buffering and a description of file buffering as it
applies to I/O.

Buffering Overview
I/O is the process of transferring data between a program and an external device.
The process of optimizing I/O consists primarily of making the best possible use of
the slowest part of the path between the program and the device.

The slowest part is usually the physical channel, which is often slower than the CPU
or a memory-to-memory data transfer. The time spent in I/O processing overhead
can reduce the amount of time that a channel can be used, thereby reducing the
effective transfer rate. The biggest factor in maximizing this channel speed is often
the reduction of I/O processing overhead.

A buffer is a temporary storage location for data while the data is being transferred. A
buffer is often used for the following purposes:

• Small I/O requests can be collected into a buffer, and the overhead of making
many relatively expensive system calls can be greatly reduced.

A collection buffer of this type can be sized and handled so that the actual
physical I/O requests made to the operating system match the physical
characteristics of the device being used.

• Many data file structures, such as the f77 and cos file structures, contain control
words. During the write process, a buffer can be used as a work area where
control words can be inserted into the data stream (a process called blocking). The
blocked data is then written to the device. During the read process, the same
buffer work area can be used to examine and remove these control words before
passing the data on to the user (deblocking).

• When data access is random, the same data may be requested many times. A cache
is a buffer that keeps old requests in the buffer in case these requests are needed
again. A cache that is sufficiently large and/or efficient can avoid a large part of
the physical I/O by having the data ready in a buffer. When the data is often
found in the cache buffer, it is referred to as having a high hit rate. For example, if

007–3695–006 51

8: Buffering

the entire file fits in the cache and the file is present in the cache, no more physical
requests are required to perform the I/O. In this case, the hit rate is 100%.

• Running the disks and the CPU in parallel often improves performance; therefore,
it is useful to keep the CPU busy while data is being moved. To do this when
writing, data can be transferred to the buffer at memory-to-memory copy speed
and an asynchronous I/O request can be made. The control is then immediately
returned to the program, which continues to execute as if the I/O were complete
(a process called write-behind). A similar process can be used while reading; in this
process, data is read into a buffer before the actual request is issued for it. When it
is needed, it is already in the buffer and can be transferred to the user at very high
speed. This is another form or use of a cache.

The I/O path is divided into two parts. One part includes the user data area, the
library buffer, and the system cache. The second part is referred to as the logical
device, which includes the ultimate I/O device and all of the buffering, caching, and
processing associated with that device. This includes any caching in the disk
controller and the operating system.

Users can directly or indirectly control some buffers. These include most library
buffers and, to some extent, system cache and ldcache. Some buffering, such as that
performed in the IOS, or the disk controllers, is not under user control.

A well-formed request requires the following:

• The size of the request must be a multiple of the sector size in bytes. For most
disk devices, this will be 4096 bytes.

• The data that will be transferred must be located on a word boundary.

• The file must be positioned on a sector boundary. This will be a 4096-byte sector
boundary for most disks.

Types of Buffering
The following sections briefly describe unbuffered I/O, library buffering, and system
cache buffering.

52 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

Unbuffered I/O

The simplest form of buffering is none at all; this unbuffered I/O is known as raw
I/O. For sufficiently large, well-formed requests, buffering is not necessary; it can add
unnecessary overhead and delay. The following assign(1) command specifies
unbuffered I/O:

assign -s u ...

Use the assign command to bypass library buffering for all well-formed requests.
The data is transferred directly between the user data area and the logical device.
Requests that are not well formed use system cache.

Library Buffering

The term library buffering refers to a buffer that the I/O library associates with a file.
When a file is opened, the I/O library checks the access, form, and any attributes
declared on the assign or asgcmd(1) command to determine the type of processing
that should be used on the file. Buffers are usually an integral part of the processing.

If the file is assigned with one of the following options, library buffering is used:

-s blocked
-F spec (buffering as defined by spec)
-s cos
-s bin
-s unblocked

The -F option specifies flexible file I/O (FFIO), which uses library buffering if the
specifications selected include a need for some buffering. In some cases, more than
one set of buffers might be used in processing a file.

System Cache

The operating system or kernel uses a set of buffers in kernel memory for I/O
operations. These are collectively called the system cache. The I/O library uses system
calls to move data between the user memory space and the system buffer. The system
cache ensures that the actual I/O to the logical device is well formed, and it tries to
remember recent data in order to reduce physical I/O requests. In many cases,
though, it is desirable to bypass the system cache and to perform I/O directly
between the user’s memory and the logical device.

007–3695–006 53

8: Buffering

For the assign -s cos and assign -s bin commands, a library buffer ensures
that the actual system calls are well formed. This is not true for the assign -s u
option. If you plan to bypass the system cache, all requests go through the cache
except those that are well-formed.

See the explanation of the -B option on the assign(1) man page for information
about bypassing system buffering on IRIX systems.

Default Buffer Sizes

The Fortran I/O library automatically selects default buffer sizes. These defaults can
be overridden with the assign command.

The default buffer sizes are as follows (note that one block is 4096 bytes):

Sequential access,
formatted

Default buffer size is 8 blocks.

Sequential access,
unformatted

Default buffer size is 8 blocks.

Direct access, formatted Default buffer size is 16 blocks.

Direct access,
unformatted

Default buffer size is 16 blocks. Four buffers of this size
are allocated.

54 007–3695–006

Chapter 9

Introduction to FFIO

This chapter provides an overview of the capabilities of the flexible file input/output
(FFIO) system, sometimes called the FFIO system or layered input/output (I/O). The
FFIO system is used to perform many I/O-related tasks. For details about each
individual I/O layer, see Chapter 13, "FFIO Layer Reference ", page 89.

Layered I/O
The FFIO system is based on the concept that for all I/O a list of processing steps
must be performed to transfer the user data between the user’s memory and the
desired I/O device. Computer manufacturers have always provided I/O options to
users because I/O is often the slowest part of a computational process. In addition, it
is extremely difficult to provide one I/O access method that works optimally in all
situations.

The following figure depicts the typical flow of data from the user’s variables to and
from the I/O device.

Kernel
job

User ’s

System
call

a10844

Figure 9-1 Typical data flow

It is useful to think of each of these boxes as a stopover for the data, and each
transition between stopovers as a processing step.

Each transition has benefits and costs. Different applications might use the total I/O
system in different ways. For example, if I/O requests are large, the library buffer is

007–3695–006 55

9: Introduction to FFIO

unnecessary because the buffer is used primarily to avoid making system calls for
every small request. You can achieve better I/O throughput with large I/O requests
by not using library buffering.

If library buffering is not used, I/O requests should be on 4096–byte block
boundaries; otherwise, I/O performance will be degraded. On the other hand, if all
I/O requests are very small, the library buffer is essential to avoid making a costly
system call for each I/O request.

It is useful to be able to modify the I/O process to prevent intermediate steps (such
as buffering of data) for existing programs without requiring that the source code be
changed. The assign(1) command lets you modify the total user I/O path by
establishing an I/O environment.

The FFIO system lets you specify each stopover in Figure 9-1, page 55. You can
specify a comma-separated list of one or more processing steps by using the assign
-F command:

assign -F spec1,spec2,spec3...

Each spec in the list is a processing step that requests one I/O layer, or logical
grouping of layers. The layer specifies the operations that are performed on the data
as it is passed between the user and the I/O device. A layer refers to the specific type
of processing being done. In some cases, the name corresponds directly to the name
of one layer. In other cases, however, specifying one layer invokes the routines used
to pass the data through multiple layers. See the INTRO_FFIO(3f) man page for
details about using the -F option to the assign command.

Processing steps are ordered as if the -F side (the left side) is the user and the
system/device is the right side, as in the following example:

assign -F user,bufa,system

With this specification, a WRITE operation first performs the user operation on the
data, then performs the bufa operation, and then sends the data to the system. In a
READ operation, the process is performed from right to left. The data moves from the
system to the user. The layers closest to the user are higher-level layers; those closer to
the system are lower-level layers.

The FFIO system has an internal model of the world of data, which it maps to any
given actual logical file type. Four of these concepts are basic to understanding the
inner workings of the layers.

56 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

Concept Definition

Data Data is a stream of bits.

Record marks End-of-record marks (EOR) are boundaries between
logical records.

File marks End-of-file marks (EOF) are special types of record
marks that exist in some file formats.

End-of-data (EOD) An end-of-data (EOD) is a point immediately beyond
the last data bit, EOR, or EOF in the file.

All files are streams of 0 or more bits that may contain record or file marks.

Individual layers have varying rules about which of these things can appear and in
which order they can appear in a file.

Fortran users can use the assign(1) command to specify these FFIO options. For C
users, the FFIO layers are available only to programs that call the FFIO routines
directly (ffopen(3c), ffread(3c), and ffwrite(3c)).

You can use FFIO with the following Fortran I/O forms:

• Buffer I/O

• Unformatted sequential

• Unformatted direct access

• Formatted sequential

• Namelist

• List-directed

Using Layered I/O
The specification list on the assign -F command comprises all of the processing
steps that the I/O system performs. If assign -F is specified, any default
processing is overridden. The FFIO system provides detailed control over I/O
processing requests. However, to effectively use any FFIO option, you must
understand the I/O processing details.

As a very simple example, suppose you were making large I/O requests and did not
require buffering or blocking on your data. You could specify the following:

007–3695–006 57

9: Introduction to FFIO

assign -F system

The system layer is a generic system interface that chooses an appropriate layer for
your file. If the file is on disk, it chooses the syscall layer, which maps each user
I/O request directly to the corresponding system call. A Fortran READ statement is
mapped to one or more read(2) system calls and a Fortran WRITE statement to one
or more write(2) system calls. This results in almost the same processing as would
be done if the assign -s u command was used.

If you want your file to be COS blocked, you can specify the following:

assign -F cos,system

If you want your file to be F77 blocked, you can specify the following:

assign -F f77,system

These two specs request that each WRITE request first be blocked (blocking adds
control words to the data in the file to delimit records). The cos layer then sends the
blocked data to the system layer. The system layer passes the data to the device.

The process is reversed for READ requests. The system layer retrieves blocked data
from the file. The blocked data is passed to the next higher layer, the cos layer,
where it is deblocked. The deblocked data is then presented to the user.

I/O Layers

Several different layers are available for the spec argument. Each layer invokes one or
more layers, which then handles the data it is given in an appropriate manner. For
example, the syscall layer essentially passes each request to an appropriate system
call.

The following tables list the classes you can specify for the spec argument to the
assign -F option:

Table 9-1 Available I/O Layers

Layer Function

bufa Asynchronous buffering layer

cache Memory cached I/O

cachea Asynchronous memory cached I/O

58 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

cos or
blocked

COS blocking

fd File descriptor open

f77 Record blocking common to most UNIX Fortran implementations

global Distributed cache layer

null Syntactic convenience for users (does nothing)

site Site-specific layer

syscall System call I/O

system Generic system interface

text Newline separated record formats

tmf IRIX tape management facility

user User-written layer

Layered I/O Options

You can modify the behavior of each I/O layer. The following spec format shows how
you can specify a class and one or more opt and num fields:

class.opt1.opt2:num1:num2:num3

For class, you can specify one of the layers listed in the previous tables. Each of the
layers has a different set of options and numeric parameter fields that can be
specified. This is necessary because each layer performs different duties. The
following rules apply to the spec argument:

• The class and opt fields are case-insensitive. For example, the following two specs
are identical:

Ibm.VBs:100:200

IBM.vbS:100:200

• The opt and num fields are usually optional, but sufficient separators must be
specified as placeholders to eliminate ambiguity. For example, the following spec s
are identical:

cos..::40, cos.::40

cos::40

007–3695–006 59

9: Introduction to FFIO

In this example, opt1, opt2, num1, and num2 can assume default values. Similarly,
the sds layer also allows optional opt and num fields and it sets opt1, opt2, num1,
num2, and num3 to default values as required.

• To specify more than one spec, use commas between specs. Within each spec, you
can specify more than one opt and num. Use periods between opt fields, and use
colons between num fields.

60 007–3695–006

Chapter 10

Using FFIO

This chapter describes how you can use flexible file I/O (FFIO) with common file
structures and how to enhance code performance without changing your source code.

FFIO on IRIX systems
The FFIO library calls the aio_sgi_init library routine the first time the library
issues an asynchronous I/O call. It passes the following parameters to
aio_sgi_init:

aio_numusers=MAX(64,sysconf(_SC_NPROC_CONF))

aio_threads=5

aio_locks=3

If a program is using multiple threads and asynchronous I/O, it is important that the
value in aio_numusers be at least as large as the number of sprocs or pthreads that
the application contains. See the aio_sgi_init man page for more details.

Users can change these values by setting the following environment variables to the
desired value:

• change FF_IO_AIO_THREADS to modify aio_threads

• change FF_IO_AIO_LOCKS to modify aio_locks

• change FF_IO_AIO_NUMUSERS to modify aio_numusers

In the following example, aio_threads is set to 8 when the FFIO routines call
aio_sgi_init:

setenv FF_IO_AIO_THREADS 8

Users can also supersede the FFIO library’s call to aio_sgi_init by calling it
themselves, before the first I/O statement in their programs.

The following FFIO layers may issue asynchronous I/O calls on IRIX systems:

• cos: see the description of cos on the INTRO_FFIO(3f) man page for a
description of the circumstances when the cos layer uses asynchronous I/O.

007–3695–006 61

10: Using FFIO

• cachea and bufa: users should assume that these layers may issue asynchronous
I/O calls.

• system or syscall: these layers may issue asynchronous I/O calls if called from
a BUFFER IN or BUFFER OUT Fortran statement, or if called from one of the
listed layers.

FFIO and Common Formats
This section describes the use of FFIO with common file structures and describes the
correlation between the common and/or default file structures and the FFIO usage
that handles them.

Reading and Writing Text Files

Most human-readable files are in text format; this format contains records comprised
of ASCII characters with each record terminated by an ASCII line-feed character,
which is the newline character in UNIX terminology. The FFIO specification that
selects this file structure is assign -F text.

The FFIO package is seldom required to handle text files. In the following types of
cases, however, using FFIO may be necessary:

• Optimizing text file access to reduce I/O wait time

• Handling multiple EOF records in text files

• Converting data files to and from other formats

I/O speed is important when optimizing text file access. Using assign -F text is
expensive in terms of CPU time, but it lets you use memory-resident files, which can
reduce or eliminate I/O wait time.

The FFIO system also can process text files that have embedded EOF records. The ~e
string alone in a text record is used as an EOF record. Editors such as sed(1) or other
standard utilities can process these files, but it is sometimes easier with the FFIO
system.

Use the fdcp command to copy files while converting record blocking.

62 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

Reading and Writing Unblocked Files

The simplest form of data file format is the simple binary stream or unblocked data. It
contains no record marks, file marks, or control words. This is usually the fastest way
to move large amounts of data, because it involves a minimal amount of CPU and
system overhead.

The FFIO package provides the syscall layer, which is designed specifically to
handle this binary stream of data. The unblocked binary stream is usually used for
unformatted data transfer. It is not usually useful for text files or when record
boundaries or backspace operations are required. The complete burden is placed on
the application to know the format of the file and the structure and type of the data
contained in it.

This lack of structure also allows flexibility; for example, a file declared with one of
these layers can be manipulated as a direct-access file with any desired record length.

In this context, fdcp can be called to do the equivalent of the cp(1) command only if
the input file is a binary stream and to remove blocking information only if the
output file is a binary stream.

Reading and Writing Fixed-length Records

The most common use for fixed-length record files is for Fortran direct access. Both
unformatted and formatted direct-access files use a form of fixed-length records. The
simplest way to handle these files with the FFIO system is with binary stream layers,
such as system, syscall, cache, and cachea. These layers allow any requested
pattern of access and also work with direct-access files. The syscall and system
layers, however, are unbuffered and do not give optimal performance for small
records.

The FFIO system also directly supports some fixed-length record formats.

Reading and Writing COS Blocked Files

The cos layer is provided to sequential unformatted files. It provides for COS blocked
files on disk and on magnetic tape and it supports multifile COS blocked datasets.

The cos layer must be specified for COS blocked files. If COS is not the default file
structure, or if you specify another layer you may have to specify a cos layer to get
COS blocking.

007–3695–006 63

10: Using FFIO

Enhancing Performance
FFIO can be used to enhance performance in a program without changing the source
code or recompiling the code. This section describes some basic techniques used to
optimize I/O performance. Additional optimization options are discussed in Chapter
12, "I/O Optimization ", page 77.

Buffer Size Considerations

In the FFIO system, buffering is the responsibility of the individual layers; therefore,
you must understand the individual layers in order to control the use and size of
buffers.

The cos layer has high payoff potential to the user who wants to extract top
performance by manipulating buffer sizes. As the following example shows, the cos
layer accepts a buffer size as the first numeric parameter:

assign -F cos:42 u:1

The preceding example declares a working buffer size for the cos layer of forty-two
4096–byte blocks. This is an excellent size for a file that resides on a DD-49 disk drive
because a track on a DD-49 disk drive is comprised of forty-two 4096–byte blocks.

If the buffer is sufficiently large, the cos layer also lets you keep an entire file in the
buffer and avoid almost all I/O operations.

Removing Blocking

I/O optimization usually consists of reducing overhead. One part of the overhead in
doing I/O is the CPU time spent in record blocking. For many files in many
programs, this blocking is unnecessary. If this is the case, the FFIO system can be
used to deselect record blocking and thus obtain appropriate performance advantages.

The following layers offer unblocked data transfer:

Layer Definition

syscall System call I/O

bufa Buffering layer

cachea Asynchronous cache layer

64 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

cache Memory-resident buffer cache

You can use any of these layers alone for any file that does not require the existence
of record boundaries. This includes any applications that are written in C that require
a byte stream file.

The syscall layer offers a simple direct system interface with a minimum of system
and library overhead. If requests are larger than approximately 32 Kbytes, this method
can be appropriate, especially if the requests are a uniform multiple of 4096 bytes.

The other layers are discussed in the following sections.

The bufa and cachea Layers

The bufa layer and cachea layer permits efficient file processing. Both layers
provide library-managed asynchronous buffering, and the cachea layer allows
recently accessed parts of a file to be cached either in main memory or in a secondary
data segment.

The number of buffers and the size of each buffer is tunable. In the bufa:bs:nbufs or
cachea:bs:nbufs FFIO specifications, the bs argument specifies the size in 4096–byte
blocks of each buffer. The nbufs argument specifies the number of buffers to use.

The cache Layer

The cache layer permits efficient file processing for repeated access to one or more
regions of a file. It is a library-managed buffer cache that contains a tunable number
of pages of tunable size.

To specify the cache layer, use the following option:

assign -F cache[:[bs][:[nbufs]]]

The bs argument specifies the size in 4096–byte blocks of each cache page; the default
is 8. The nbufs argument specifies the number of cache pages to use. The default is 4.
You can achieve improved I/O performance by using one or more of the following
strategies:

• Use a cache page size (bs) that is a multiple of the disk 4096–byte block or track
size. This improves the performance when flushing and filling cache pages.

007–3695–006 65

10: Using FFIO

• Use a cache page size that is a multiple of the user’s record size. This ensures that
no user record straddles two cache pages. If this is not possible or desirable, it is
best to allocate a few additional cache pages (nbufs).

• Use a number of cache pages that is greater than or equal to the number of file
regions the code accesses at one time.

If the number of regions accessed within a file is known, the number of cache pages
can be chosen first. To determine the cache page size, divide the amount of memory
to be used by the number of cache pages. For example, suppose a program uses
direct access to read 10 vectors from a file and then writes the sum to a different file:

integer VECTSIZE, NUMCHUNKS, CHUNKSIZE

parameter(VECTSIZE=1000*512)

parameter(NUMCHUNKS=100)

parameter(CHUNKSIZE=VECTSIZE/NUMCHUNKS)

real*8 a(CHUNKSIZE), sum(CHUNKSIZE)
open(11,access=’direct’,recl=CHUNKSIZE*8)

call asnunit (2,’-s unblocked’,ier)

open (2,form=’unformatted’)

do i = 1,NUMCHUNKS

sum = 0.0
do j = 1,10

read(11,rec=(j-1)*NUMCHUNKS+i)a

sum=sum+a

enddo

write(2) sum
enddo

end

If 4 Mbytes of memory are allocated for buffers for unit 11, 10 cache pages should be
used, each of the following size:

4MB/10 = 400000 bytes = 97 4096-byte blocks

Make the buffer size an even multiple of the record length of 40960 bytes by rounding
it up to 100 4096–byte blocks (= 40960 bytes), then use the following assign
command:

assign -F cache:100:10 u:11

66 007–3695–006

Chapter 11

Foreign File Conversion

This chapter contains information about data conversion, a discussion about moving
data between machines, and information about the working of implicit and explicit
data conversion. It also explains the support provided for reading and writing files in
foreign formats, including the record blocking and numeric and character conversion.

These routines convert data (primarily floating-point data, but also integer and
character, as well as Fortran complex and logical data) from your system’s native
representation to a foreign representation, and vice versa.

Conversion Overview
Data can be transferred between computer systems in several ways. Several formats
are supported. For each foreign file type, several supported file and record formats
exist or explicit or implicit data conversion can also be used.

When processing foreign data, you must consider the interactions between the data
formats and the chosen method of data transfer. This section describes, in broad
terms, the techniques available to do these data conversions.

Explicit data conversion is the process by which the user performs calls to subroutines
that convert the native data to and from the foreign data formats. These routines are
provided for many data formats. This is discussed in more detail in "Explicit Data
Item Conversion", page 68.

Implicit data conversion is the process by which users declare that a particular file
contains foreign data and/or record blocking and then request that the run-time
library perform appropriate transformations on the data to make it useful to the
program at I/O time. This method of record and/or data format conversion requires
changes in command scripts. This is discussed in more detail in "Implicit Data Item
Conversion", page 69.

Using fdcp to Transfer Files
The fdcp(1) command can handle data that is not a simple disk-resident byte stream.
The fdcp command assumes that both the data and any record, including EOF
records, can be copied from one file to another. Record structures can be preserved or

007–3695–006 67

11: Foreign File Conversion

removed. EOF records can be preserved either as EOF records in the output file or
used to separate the delimited data in the input file into separate files.

The fdcp command does not perform data conversion; the only transformations done
are on the record and file structures (fdcp transforms block, record, and file control
words from one format to another).

If no assign(1) information is available for a file, the system layer is used. This
means that if the file being accessed is on disk and if no assign -F attribute is used,
the syscall layer is used; if it is on a tape, the bmx layer is used. Therefore, each
tape block is considered a record; user tape marks are mapped to EOF.

Data Item Conversion
Both implicit and explicit conversion of data items are provided. Explicit conversion
means that the user’s code must invoke the routines that convert between native
systems and foreign representations.

Options to the assign(1) command control implicit conversion. The data types in the
Fortran I/O lists direct implicit conversion. Implicit conversion is usually transparent
to users and is available only to Fortran programmers. The following sections describe
these data conversion types and provide direction in choosing a conversion type.

Explicit Data Item Conversion

The Fortran library contains a set of subroutines that convert between data formats of
various vendors. These routines are callable from any supported programming
language. For complete details, see the individual man pages for each routine. These
subroutines provide an efficient way to convert data that was read into system central
memory.

The following table lists these conversion routines.

68 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

Table 11-1 Available conversion routines

Non-IEEE CRY2MIPS MIPS2CRY

IEEE Fortran conversion IEG2MIPS MIPS2IEG

VAX Fortran conversion VAX2MIPS MIPS2VAX

See the individual man pages for details about the syntax and arguments for each
routine.

Implicit Data Item Conversion

Implicit data conversion in Fortran requires no explicit action by the program to
convert the data in the I/O stream other than using the assign command to instruct
the libraries to perform conversion. For details, see the assign(1) man page.

The implicit data conversion process is performed in two steps:

1. Record format conversion

2. Data conversion

Record format conversion interprets or converts the internal record blocking
structures in the data stream to gain record-level access to the data. The data
contained in the records can then be converted.

Using implicit conversion, you can select record blocking or deblocking alone, or you
can request that the data items be converted automatically. When enabled, record
format conversion and data item conversion occur transparently and simultaneously.
Changes are usually not required in your Fortran code.

To enable conversion of foreign record formats, specify the appropriate record type
with the assign -F command. The -N (numeric conversion) and -C (character
conversion) assign options control conversion of data contained in a record. If -F is
specified, but -N and -C are not, the libraries interpret the record format, but they do
not convert data. You can obtain information about the type of data that will be
converted (and, therefore, the type of conversion that will be performed) from the
Fortran I/O list.

If -N is used and -C is not, an appropriate character conversion type is selected by
default, as shown in the following table.

007–3695–006 69

11: Foreign File Conversion

Table 11-2 Conversion types

-N option -C default Meaning

none none No data conversion

default default No data conversion

cray ASCII Non-IEEE data conversion

mips ASCII No data conversion

user ASCII User defined data conversion

site ASCII Site defined data conversion

ieee ASCII Generic 32–bit IEEE data conversion

ieee_32 (alias for above)

ieee_64 ASCII Cray 64–bit IEEE data conversion

ieee_le ASCII Little-endian 32–bit IEEE data conversion

vax ASCII DEC VAX/VMS data conversion

vms (alias for above)

Supported implicit data conversion includes conversion of the supported tape and
disk formats and data types through standard Fortran formatted, unformatted
list-directed, and Namelist I/O and through BUFFER IN and BUFFER OUT
statements. Generally, read, write, and rewind are supported for all record formats.

If you select the -N option, the libraries perform data conversion for Fortran
unformatted statements and BUFFER IN and BUFFER OUT I/O statements. Data is
converted according to its Fortran data type. Table 11-3, page 71 describes the
conversion performed for each of the conversion types.

For numeric data conversions, most foreign data elements are defined with fewer bits
than their corresponding native data elements. If the value in a native element is too
large to fit in the foreign element, the foreign element is set to the largest or smallest
possible value; no error is generated. When converting from a native element to a
smaller foreign element, precision is also lost due to truncation of the floating-point
mantissa.

70 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

If the assign -N user or assign -N site command is specified, the user or site
must provide site numeric data conversion routines. They follow the same calling
conventions as the other explicit routines.

Table 11-3 Supported foreign I/O formats and default data types

Vendor data
type

Record formats Foreign data types Native data types

IBM U, F, FB, V, VB, VBS INTEGER*2
INTEGER*4
DOUBLE PRECISION
COMPLEX*4
LOGICAL*4
CHARACTER (EBCDIC)

INTEGER(24/32)
INTEGER(64)
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER (ASCII)

VMS
F, V, S for tape; bb or disk
and tr types

INTEGER*2
INTEGER*4
REAL*4
DOUBLE PRECISION
COMPLEX*4
LOGICAL*4
CHARACTER (ASCII)

INTEGER(24/32)
INTEGER(64)
REAL(64)
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER (ASCII)

CDC (60 bit) Subtype: DISK, I, SI Block
record: IW, CW, CZ, CS

INTEGER
REAL
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER (display code)

INTEGER
REAL
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER (ASCII)

CDC NOS/VE F, S, V INTEGER
REAL
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER

INTEGER
REAL
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER (ASCII)

007–3695–006 71

11: Foreign File Conversion

Vendor data
type

Record formats Foreign data types Native data types

CDC/ETA
CYBER205

W type INTEGER
REAL
REAL*4
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER (display code)

INTEGER
REAL
INTEGER(24/32) (See
Note 1)
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER (ASCII)

IEEE None defined (often f77) INTEGER*2 (see Note 2)
INTEGER*4
REAL*4
DOUBLE PRECISION
COMPLEX*4
LOGICAL*4
CHARACTER (ASCII)

INTEGER(24/32)
INTEGER(64)
REAL(64)
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER (ASCII)

ULTRIX f77.vax INTEGER*2
INTEGER*4
REAL*4
DOUBLE PRECISION
COMPLEX*4
LOGICAL*4
CHARACTER (ASCII)

INTEGER(24/32)
INTEGER(64)
REAL(64) (see Note 3)
DOUBLE PRECISION
COMPLEX
LOGICAL
CHARACTER (ASCII)

Note 1: The CYBER 205 half-precision type maps to the short integer (INTEGER*2) type

For implicit conversion, specify format characteristics on an assign command.

Files can be converted to one of the following:

• A magnetic tape

• A disk file

• A file transferred from a front end with the station

When a Fortran I/O operation is performed on the file, the appropriate file format
and data conversions are performed during the I/O operation. Data conversion is
performed on each data item, based on the type of the Fortran variable in the I/O list.

72 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

For example, if the first read of a foreign format file is the following, the library
interprets any blocking structures in the file that precede the first data record:

READ (10) INT,FLOAT1,FLOAT2

These vary depending on the file type and record format. The first 32 bits of data (in
IBM format, for example) are extracted, sign-extended, and stored in the INT Fortran
variable. The next 32 bits are extracted, converted to native floating-point format, and
stored in the FLOAT1 Fortran variable.

The next 32 bits are extracted, converted, and stored into the FLOAT2 Fortran
variable. The library then skips to the end of the foreign logical record. When writing
from a native system to a foreign format (for example, if in the previous example
WRITE(10) was used), precision is lost when converting from a 64-bit representation
to 32-bit representation.

Choosing a Conversion Method

As with any software process, the various options for data conversion have
advantages and disadvantages, which are discussed in this section. As a set, various
data conversion options provide choices in methods of file processing for front-end
systems. No one option is best for all applications.

Explicit Conversion

Explicit data conversion has some distinct advantages over using station software,
including the following:

• Direct control over data conversion is provided (including some options not
available through implicit conversion).

• Programmers can control the conversion, and they can do the conversion at a
convenient and appropriate time.

• Conversion is usually performed on large data areas as vector operations,
increasing performance.

One disadvantage of using explicit conversion is that explicit routines require changes
to the source code.

007–3695–006 73

11: Foreign File Conversion

Implicit Conversion

An advantage when using implicit conversion is that you do not have to change the
source code.

The following are disadvantages when using implicit conversion:

• Job Control Language (JCL) or script changes are required on the assign(1)
command.

• Conversion is less efficient on a record-by-record basis.

• Conversion is done at I/O time according to the declared data types, allowing
little flexibility for nonstandard requirements.

Foreign Conversion Techniques
This section contains some tips and techniques for the following conversion types:

Conversion type Convert data to/from

IEEE conversion Various types of workstations and different vendors
that support IEEE floating-point format

VAX/VMS conversion DEC VAX machines that run MVS

Workstation and IEEE Conversion

IRIX systems use 32-bit IEEE standard floating point, as do many workstations and
personal computers. These workstations often use a dialect of UNIX software as the
operating system, with twos-complement arithmetic and the ASCII character set. The
logical values in these implementations are usually the same for Fortran and C. They
use zero for false and nonzero for true. It is also common to see the f77 record
blocking used by the Fortran run-time library on unformatted sequential files.

No IEEE record format exists, but the IEEE implicit and explicit data conversion
routine facilities are provided with the assumption that many of these things are true.

Most computer systems that use the IEEE data formats run operating systems based
on UNIX software and use f77 record blocking. You can use the rcp or ftp
commands to transfer files. In most cases, the following command should work for
implicit conversion:

74 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

assign -F f77 -N ieee fort.1

When writing files in the f77 format, remember that you can gain a large
performance boost by ensuring that the records being written fit in the working buffer
of the f77 layer.

SGI MIPS systems use IEEE floating-point representation, so IEEE conversion is
usually unnecessary when reading or writing IEEE data on these systems.

On MIPS systems, data types can be declared as 64-bits in size and can then be read
or written directly. This is the most direct and efficient method to read or write data
files for IEEE systems. The user can either alter the declarations of the variables used
in the Fortran I/O list to declare them as KIND=8 or as REAL*8 (or INTEGER*8), or
all the variables in the program can be resized by compiling with the -r8 (or -i8)
compiler option.

The following are other IEEE data conversion variants; not all variants are available
on all systems:

ieee or ieee_32 The default workstation conversion specification. Data
sizes are based on 32-bit words.

ieee_64 Data sizes are based on 64-bit words.

ieee_dp Data sizes are based on 32-bit words except for
floating-point data which is based on 64-bit words.

ieee_le or ultrix Data sizes are based on 32-bit words and are
little-endian.

ieee_le_dp or
ultrix_dp

Data sizes are based on 32-bit words except for
floating-point data which is based on 64-bit words. All
data is little-endian.

mips Data sizes are based on 32-bit words except for 128-bit
floating-point data which uses a "double double"
format.

007–3695–006 75

Chapter 12

I/O Optimization

Although I/O performance is one of the strengths of supercomputers, speeding up
the I/O in a program is an often neglected area of optimization. A small optimization
effort can often produce a surprisingly large gain.

The run-time I/O library contains low overhead, built-in instrumentation that can
collect vital statistics on activities such as I/O. This run-time library, together with
procstat(1) and other related commands, offers a powerful tool set that can analyze
the program I/O without accessing the program source code.

A wide selection of optimization techniques are available through the flexible file I/O
(FFIO) system. You can use the assign(1) command to invoke FFIO for these
optimization techniques. This chapter stresses the use of assign and FFIO because
these optimization techniques do not require program recompilation or relinking.

This chapter describes ways to identify code that can be optimized and the techniques
that you can use to optimize the code.

Overview
I/O can be represented as a series of layers of data movement. Each layer involves
some processing. Figure 12-1, page 78 shows typical output flow from the system to
disk.

007–3695–006 77

12: I/O Optimization

~0.1 ms

~1 ms

~18 ms

a10845

Figure 12-1 I/O layers

On output, data moves from the user space to a library buffer, where small chunks of
data are collected into larger, more efficient chunks. When the library buffer is full, a
system request is made and the kernel moves the data to a system buffer. From there,
the data is sent through the I/O processor (IOP), perhaps through ldcache, to the
device. On input, the path is reversed.

The times shown in Figure 12-1 may not be duplicated on your system because many
variables exist that affect timing. These times do, however, give an indication of the
times involved in each processing stage.

For optimization purposes, it is useful to differentiate between permanent files and
temporary files. Permanent files are external files that must be retained after the
program completes execution. Temporary files or scratch files are usually created and

78 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

reused during the execution of the program, but they do not need to be retained at
the end of the execution.

Permanent files must be stored on actual devices. Temporary files exist in memory
and do not have to be written to a physical device. With temporary files, the strategy
is to avoid using system calls (going to "lower layers" of I/O processing). If a
temporary file is small enough to reside completely in memory, you can avoid using
system calls.

Permanent files require system calls to the kernel; because of this, optimizing the I/O
for permanent files is more complicated. I/O on permanent files may require the full
complement of I/O layers. The goal of I/O optimization is to move data to and from
the devices as quickly as possible. If that is not fast enough, you must find ways to
overlap I/O with computation.

An Overview of Optimization Techniques
This section briefly describes the optimization techniques that are discussed in the
remainder of this chapter.

Optimizations Not Affecting Source Code

The following types of optimization may improve I/O performance:

• Specify the cache page size so that one or more records will fit on a cache page if
the program is using unformatted direct access I/O (see "Using a Cache Layer",
page 81, for details).

• Use file structures without record control information to bypass the overhead
associated with records (see "Using Simpler File Structures", page 84, for details).

• Choose file processing with appropriate buffering strategies. The cos, bufa, and
cachea FFIO layers implement asynchronous write-behind (see "Using
Asynchronous Read-ahead and Write-behind", page 83, for details). The cos and
bufa FFIO layers implement asynchronous read-ahead; this is available for the
cachea layer through use of an assign option.

• Choose efficient library buffer sizes. Bypass the library buffers when possible by
using the system or syscall layers (see "Changing Library Buffer Sizes", page
85, for details).

007–3695–006 79

12: I/O Optimization

• Use the assign command to specify scratch files to prevent writes to disk and to
delete the files when they are closed (see "Scratch Files", page 82, for details).

"Enhancing Performance", page 64, also provides further information about using
FFIO to enhance I/O performance.

Optimizations That Affect Source Code

The following source program changes may affect the I/O performance of a Fortran
program:

• Use unformatted I/O when possible to bypass conversion of data.

• Use whole array references in I/O lists where possible. The generated code passes
the entire array to the I/O library as the I/O list item rather than pass it through
several calls to the I/O library.

• Use special packages such as buffer I/O, random-access I/O, and asynchronous
queued I/O.

• Overlap CPU time and I/O time by using asynchronous I/O.

Optimizing I/O Speed

I/O optimization can often be accomplished by simply addressing I/O speed. The
following storage systems are available, ranked in order of speed:

• CPU main memory

• Magnetic disk drives

• Optional magnetic tape drives

Fast storage systems are expensive and have smaller capacities. You can specify a fast
device through FFIO layers and use several FFIO layers to gain the maximum
performance benefit from each storage medium. The remainder of this chapter
discusses many of these FFIO optimizations. These easy optimizations are frequently
those that yield the highest payoffs.

80 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

Optimizing System Requests
In a busy interactive environment, queuing for service is time consuming. In tuning
I/O, the first step is to reduce the number of physical delays and the queuing that
results by reducing the number of system requests, especially the number of system
requests that require physical device activity.

System requests are made by the library to the kernel. They request data to be moved
between I/O devices. Physical device activity consumes the most time of all I/O
activities.

Typical requests are read, write, and seek. These requests may require physical device
I/O. During physical device I/O, time is spent in the following activities:

• Transferring data between disk and memory.

• Waiting for physical operations to complete. For example, moving a disk head to
the cylinder (seek time) and then waiting for the right 4096–byte block to come
under the disk head (latency time).

System requests can require substantial CPU time to complete. The system may
suspend the requesting job until a relatively slow device completes a service.

Besides the time required to perform a request, the potential for congestion also
exists. The system waits for competing requests for kernel, disk, IOP, or channel
services. System calls to the kernel can slow I/O by one or two orders of magnitude.

The information in this section summarizes some ways you can optimize system
requests.

Using a Cache Layer

The FFIO cache layer keeps recently used data in fixed size main memory or cache
pages in order to reuse the data directly from these buffers in subsequent references. It
can be tuned by selecting the number of cache pages and the size of these pages.

The use of the cache layer is especially effective when access to a file is localized to
some regions of the whole file. Well-tuned cached I/O can be an order of magnitude
faster than the default I/O.

Even when access is sequential, the cache layer can improve the I/O performance.
For good performance, use page sizes large enough to hold the largest records.

007–3695–006 81

12: I/O Optimization

The cache layers work with the standard Fortran I/O types and the compiler
extensions of BUFFER IN/OUT, READMS/WRITMS, and GETWA/PUTWA.

The following assign command requests 100 pages of 42 blocks each:

assign -F cache:42:100 f:filename

Specifying cache pages of 42 blocks matches the track size of a DD-49 disk.

Optimizing File Structure Overhead
The Fortran standard uses the record concept to govern I/O. It allows you to skip to
the next record after reading only part of a record, and you can backspace to a
previous record. The I/O library implements Fortran records by maintaining an
internal record structure.

In the case of a sequential unformatted file, it uses a COS blocked file structure,
which contains control information that helps to delimit records. The I/O library
inserts this control information on write operations and removes the information on
read operations. This process is known as record translation, and it consumes time.

If the I/O performed on a file does not require this file structure, you can avoid using
the blocked structure and record translation. However, if you must do positioning in
the file, you cannot avoid using the blocked structure.

The information in this section describes ways to optimize your file structure
overhead.

Scratch Files

Scratch files are temporary and are deleted when they are closed. To decrease I/O
time, move applications’ scratch files from user file systems to high-speed file systems.

When optimizing, you should avoid writing the data to disk. This is especially
important if most of the data can be held in main memory.

Fortran lets you open a file with STATUS=’SCRATCH’. It also lets you close
temporary files by using a STATUS=’DELETE’. These files are placed on disk, unless
the .scr specification for FFIO or the assign -t command is specified for the file.
Files specified as assign -t or .scr are deleted when they are closed.

82 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

Using Asynchronous Read-ahead and Write-behind

Several FFIO layers automatically enhance I/O performance by performing
asynchronous read-ahead and write-behind. These layers include:

• cos: default Fortran sequential unformatted file. Specified by assign -F cos.

• bufa: specified by assign -F bufa.

• cachea: default Fortran direct unformatted files. Specified by assign -F
cachea. Default cachea behavior provides asynchronous write-behind.
Asynchronous read-ahead is not enabled by default, but is available by an assign
option.

If records are accessed sequentially, the cos and bufa layers will automatically and
asynchronously pre-read data ahead of the file position currently being accessed. This
behavior can be obtained with the cachea layer with an assign option; in that case,
the cachea layer will also detect sequential backward access patterns and pre-read in
the reverse direction.

Many user codes access the majority of file records sequentially, even with
ACCESS=’DIRECT’ specified. Asynchronous buffering provides maximum
performance when:

• Access is mainly sequential, but the working area of the file cannot fit in a buffer
or is not reused frequently.

• Significant CPU-intensive processing can be overlapped with the asynchronous
I/O.

Use of automatic read-ahead and write-behind may decrease execution time by half
because I/O and CPU processing occur in parallel.

The following assign command specifies a specific cachea layer with 10 pages, each
the size of a DD-40 track. Three pages of asynchronous read-ahead are requested.
The read-ahead is performed when a sequential read access pattern is detected.

assign -F cachea:48:10:3 f:filename

This command would work for a direct access or sequential Fortran file which has
unblocked file structure.

007–3695–006 83

12: I/O Optimization

Using Simpler File Structures

Marking records incurs overhead. If a program reads all of the data in any record it
accesses and avoids the use of BACKSPACE, you can make some minor performance
savings by eliminating the overhead associated with records. This can be done in
several ways, depending on the type of I/O and certain other characteristics.

For example, the following assign statements specify the unblocked file structure:

assign -s unblocked f:filename

assign -s u f:filename
assign -s bin f:filename

Minimizing Data Conversions
When possible, avoid formatted I/O. Unformatted I/O is faster, and it avoids
potential inaccuracies due to conversion. Formatted Fortran I/O requires that the
library interpret the FORMAT statement and then convert the data from an internal
representation to ASCII characters. Because this must be done for every item
generated, it can be very time-consuming for large amounts of data.

Whenever possible, use unformatted I/O to avoid this overhead. Do not use
edit-directed I/O on scratch files. Major performance gains are possible.

You can explicitly request data conversions during I/O. The most common
conversion is through Fortran edit-directed I/O. I/O statements using a FORMAT
statement, list-directed I/O, and namelist I/O require data conversions.

Conversion between internal representation and ASCII characters is time-consuming
because it must be performed for each data item. When present, the FORMAT
statement must be parsed or interpreted. For example, it is very slow to convert a
decimal representation of a floating-point number specified by an E edit descriptor to
an internal binary representation of that number.

For more information about data conversions, see Chapter 11, "Foreign File
Conversion", page 67.

84 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

Minimizing Data Copying
The Fortran I/O libraries usually use main memory buffers to hold data that will be
written to disk or was read from disk. The library tries to do I/O efficiently on a few
large requests rather than in many small requests. This process is called buffering.

Overhead is incurred and time is spent whenever data is copied from one place to
another. This happens when data is moved from user space to a library buffer and
when data is moved between buffers. Minimizing buffer movement can help improve
I/O performance.

Changing Library Buffer Sizes

The libraries generally have default buffer sizes. The default is suitable for many
devices, but major performance improvements can result from requesting an efficient
buffer size.

The optimal buffer size for very large files is usually a multiple of a device allocation
for the disk. This may be the size of a track on the disk. If optimal size buffers are
used and the file is contiguous, disk operations are very efficient. Smaller sizes
require more than one operation to access all of the information on the allocation or
track. Performance does not improve much with buffers larger than the optimal size,
unless striping is specified.

When enough main memory is available to hold the entire file, the buffer size can be
selected to be as large as the file for maximum performance.

The maximum length of a formatted record depends on the size of the buffer that the
I/O library uses for a file. The size of the buffer depends on the following:

• hardware system and OS level

• Type of file (external or internal)

• Type of access (sequential or direct)

• Type of formatted I/O (edit-directed, list-directed, or namelist)

Bypassing Library Buffers

After a request is made, the library usually copies data between its own buffers and
the user data area. For small requests, this may result in the blocking of many
requests into fewer system requests, but for large requests when blocking is not

007–3695–006 85

12: I/O Optimization

needed, this is inefficient. You can achieve performance gains by bypassing the
library buffers and making system requests to the user data directly.

To bypass the library buffers and to specify a direct system interface, use the assign
-s u option or specify the FFIO system, or syscall layer, as is shown in the
following assign command examples:

assign -s u f:filename

assign -F system f:filename
assign -F syscall f:filename

The user data should be in multiples of the disk sector size (usually 4096 bytes) for
best disk I/O performance.

If library buffers are bypassed, the user data should be on a 4096–byte boundary to
prevent I/O performance degradation.

Other Optimization Options
There are other optimizations that involve changing your program. The following
sections describe these optimization techniques.

Using Pipes

When a program produces a large amount of output used only as input to another
program consider using pipes. If both programs can run simultaneously, data can
flow directly from one to the next by using a pipe. It is unnecessary to write the data
to the disk. See Chapter 4, "Named Pipe Support ", page 21, for details about pipes.

Overlapping CPU and I/O

Major performance improvements can result from overlapping CPU work and I/O
work. This approach can be used in many high-volume applications; it
simultaneously uses as many independent devices as possible.

To use this method, start some I/O operations and then immediately begin
computational work without waiting for the I/O operations to complete. When the
computational work completes, check on the I/O operations; if they are not completed
yet, you must wait. To repeat this cycle, start more I/O and begin more computations.

86 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

As an example, assume that you must compute a large matrix. Instead of computing
the entire matrix and then writing it out, a better approach is to compute one column
at a time and to initiate the output of each column immediately after the column is
computed. An example of this follows:

dimension a(1000,2000)

do 20 jcol= 1,2000
do 10 i= 1,1000

a(i,jcol)= sqrt(exp(ranf()))

10 continue

20 continue

write(1) a
end

First, try using the assign -F cos.async f:filename command. If this is not
fast enough, rewrite the previous program to overlap I/O with CPU work, as follows:

dimension a(1000,2000)
do 20 jcol= 1,2000

do 10 i= 1,1000

a(i,jcol)= sqrt(exp(ranf()))

10 continue

BUFFER OUT(1,0) (a(1,jcol),a(1000,jcol))

20 continue
end

The following Fortran statements and library routines can return control to the user
after initiating I/O without requiring the I/O to complete:

• BUFFER IN and BUFFER OUT statements (buffer I/O)

• FFIO cos blocking asynchronous layer (available on IRIX systems)

• FFIO cachea layer (available on IRIX systems)

• FFIO bufa layer (available on IRIX systems)

007–3695–006 87

Chapter 13

FFIO Layer Reference

This chapter provides details about each of the following FFIO layers:

Layer Definition

bufa Library-managed asynchronous buffering

cache cache layer

cachea cachea layer

cos COS blocking

event I/O monitoring

f77 UNIX record blocking

fd File descriptor

global Cache distribution layer

null The null layer

syscall System call I/O

system Generic system layer

text Newline separated record formats

user and site Writable layer

vms VAX/VMS file formats

Characteristics of Layers
In the descriptions of the layers that follow, the data manipulation tables use the
following categories of characteristics:

007–3695–006 89

13: FFIO Layer Reference

Characteristic Description

Granularity Indicates the smallest amount of data that the layer can
handle. For example, layers can read and write a single
bit; other layers, such as the syscall layer, can process
only 8-bit bytes. Still others, such as some CDC
formats, process data in units of 6-bit characters in
which any operation that is not a multiple of 6 bits
results in an error.

Data model Indicates the data model. Three main data models are
discussed in this section. The first type is the record
model, which has data with record boundaries, and
may have an end-of-file (EOF).

The second type is stream (a stream of bits). None of
these support the EOF.

The third type is the filter, which does not have a
data model of its own, but derives it from the
lower-level layers. Filters usually perform a data
transformation (such as blank compression or
expansion).

Truncate on write Indicates whether the layer forces an implied EOD on
every write operation (EOD implies truncation).

Implementation
strategy

Describes the internal routines that are used to
implement the layer.

The X-record type referred to under implementation
strategy refers to a record type in which the length of
the record is prepended and appended to the record.
For f77 files, the record length is contained in 4 bytes
at the beginning and the end of a record. The v type of
NOS/VE and the w type of CYBER 205/ETA also
prepend and append the length of the record to the
record.

In the descriptions of the layers, the supported operations tables use the following
categories:

90 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

Operation Lists the operations that apply to that particular layer. The following is
a list of supported operations:

ffopen ffclose

ffread ffflush

ffreada ffweof

ffreadc ffweod

ffwrite ffseek
ffwritea ffpos

ffwritec ffbksp

Support Uses three potential values: Yes, No, or Passed through. “Passed
through” indicates that the layer does not directly support the
operation, but relies on the lower-level layers to support it.

Used Lists two values: Yes or No. “Yes” indicates that the operation is
required of the next lower-level layer. “No” indicates that the operation
is never required of the lower-level layer. Some operations are not
directly required, but are passed through to the lower-layer if requested
of this layer. These are noted in the comments.

Comments Describes the function or support of the layer’s function.

On many layers, you can also specify the numeric parameters by using a keyword.
See the INTRO_FFIO(3f) man page for more details about FFIO layers.

When using direct access files, you must assign the file to either the system or the
global layer for code that works with more than one processor. The default layer for
direct access is the cache layer and it does not have the coherency to handle multiple
processes doing I/O to the same file.

Individual Layers
The remaining sections in this chapter describe the individual FFIO layers in more
detail.

007–3695–006 91

13: FFIO Layer Reference

The bufa Layer

The bufa layer provides library-managed asynchronous buffering. This can reduce
the number of low-level I/O requests for some files. The syntax is as follows:

bufa:[num1]:[num2]

The keyword syntax is as follows:

bufa[.bufsize=num1][.num_buffers=num2]

The num1 argument specifies the size, in 4096-byte blocks, of each buffer. The default
buffer size depends on the device where your file is located. The maximum allowed
value for num1 on IRIX systems is 32,767.

The num2 argument specifies the number of buffers. The default is 2.

Table 13-1 Data manipulation: bufa layer

Granularity Data model Truncate on write

8 bits Stream No

Table 13-2 Supported operations: bufa layer

Supported operations Required of next lower level?

ffopen Yes Yes

ffread Yes Yes

ffreada Yes Always synchronous Yes

ffreadc Yes No

ffwrite Yes Yes

ffwritea Yes Always synchronous Yes

92 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

Supported operations Required of next lower level?

ffwritec Yes No

ffclose Yes Yes

ffflush Yes Yes

ffweof Passed
through

Yes Only if explicitly requested

ffweod Yes Yes

ffseek Yes Only if supported by the
underlying layer

Yes Only if explicitly requested

ffpos Yes Yes Only if explicitly requested

ffbksp No No

The cache Layer

The cache layer allows recently accessed parts of a file to be cached either in main
memory. This can significantly reduce the number of low-level I/O requests for some
files that are accessed randomly. This layer also offers efficient sequential access when
a buffered, unblocked file is needed. The syntax is as follows:

cache[.type]:[num1]:[num2][num3]

The following is the keyword specification:

cache[.type][.page_size=num1][.num_pages=num2
[.bypass_size=num3]]

The type argument must be mem; this directs that cache pages reside in main memory.
num1 specifies the size, in 4096–byte blocks, of each cache page buffer. The default is
8. The maximum allowed value for num1 is 32,767.

num2 specifies the number of cache pages. The default is 4. num3 is the size in
4096–byte blocks at which the cache layer attempts to bypass cache layer buffering.
If a user’s I/O request is larger than num3, the request might not be copied to a cache
page. The default size for num3 is num3=num1.

007–3695–006 93

13: FFIO Layer Reference

When a cache page must be preempted to allocate a page to the currently accessed
part of a file, the least recently accessed page is chosen for preemption. Every access
stores a time stamp with the accessed page so that the least recently accessed page
can be found at any time.

Table 13-3 Data manipulation: cache layer

Granularity Data model Truncate on write

8 bit Stream No

512 words (cache.sds) Stream No

Table 13-4 Supported operations: cache layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes No

ffreada Yes Always synchronous Yes

ffreadc Yes No

ffwrite Yes No

ffwritea Yes Always synchronous Yes

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof No No

ffweod Yes Yes

ffseek Yes Yes Requires underlying interface to
be a stream

94 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffpos Yes NA

ffbksp No NA

The cachea Layer

The cachea layer allows recently accessed parts of a file to be cached either in main
memory. This can significantly reduce the number of low-level I/O requests for some
files that are accessed randomly.

This layer can provide high write performance by asynchronously writing out
selective cache pages. It can also provide high read performance by detecting
sequential read access, both forward and backward. When sequential access is
detected and when read-ahead is chosen, file page reads are anticipated and issued
asynchronously in the direction of file access. The syntax is as follows:

cachea[mem]:[num1]:[num2]:[num3]:[num4]

The keyword syntax is as follows:

cachea[mem][.page_size=num1][.num_pages=num2]
[.max_lead=num3][.shared_cache=num4]

mem Directs that cache pages reside in main memory.

num1 Specifies the size, in 4096-byte blocks, of each cache page buffer.
Default is 8. The maximum allowed value for num1 is 32,767.

num2 Specifies the number of cache pages to be used. Default is 4.

num3 Specifies the number of cache pages to asynchronously read ahead
when sequential read access patterns are detected. Default is 0.

num4 Specifies a cache number in the range of 1 to 15. Cache number 0 is a
cache which is private to the current FFIO layer. Any cache number

007–3695–006 95

13: FFIO Layer Reference

larger than 0 is shared with any other file using a cachea layer with
the same number.

Multiple cachea layers in a chain may not contain the same nonzero cache number.

Stacked shared cachea layers are not supported.

The following examples demonstrate this functionality:

• The following specifications cannot both be used by a multitasked program:

assign -F cachea::::1,cachea::::2 u:1
assign -F cachea::::2,cachea::::1 u:2

Table 13-5 Data manipulation: cachea layer

Granularity Data model Truncate on write

8 bit Stream No

Table 13-6 Supported operations: cachea layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes No

ffreada Yes Yes

ffreadc Yes No

ffwrite Yes No

ffwritea Yes Yes

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

96 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffweof No No

ffweod Yes Yes

ffseek Yes Yes Requires that the
underlying interface be
a stream

ffpos Yes NA

ffbksp No NA

The cos Blocking Layer

The cos layer performs COS blocking and deblocking on a stream of data. The
general format of the cos specification follows:

cos:[.type][.num1]

The format of the keyword specification follows:

cos[.type][.bufsize=num1]

The num1 argument specifies the working buffer size in 4096-byte blocks.

If not specified, the default buffer size is the larger of the following: the preferred I/O
block size (see the stat(2) man page for details), or 8 4096–byte blocks. See the
INTRO_FFIO(3f) man page for more details.

Reads are always performed in partial read mode; therefore, you do not have to know
the block size of a tape to read it (if the tape block size is larger than the buffer,
partial mode reads ensure that no parts of the tape blocks are skipped).

007–3695–006 97

13: FFIO Layer Reference

Table 13-7 Data manipulation: cos layer

Granularity Data model Truncate on write Implementation strategy

1 bit Records with multi-EOF
capability

Yes cos specific

Table 13-8 Supported operations: cos layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes Yes

ffreada Yes Always synchronous Yes

ffreadc Yes No

ffwrite Yes Yes

ffwritea Yes Always synchronous Yes

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No-op Yes

ffweof Yes No

ffweod Yes Yes Truncation occurs only on close

ffseek Yes Minimal support (see
following note)

Yes

ffpos Yes NA

ffbksp Yes No records No

98 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

The event Layer

The event layer monitors I/O activity (on a per-file basis) which occurs between two
I/O layers. It generates statistics as an ASCII log file and reports information such as
the number of times an event was called, the event wait time, the number of bytes
requested, and so on. You can request the following types of statistics:

• A list of all event types

• Event types that occur at least once

• A single line summary of activities that shows information such as amount of data
transferred and the data transfer rate.

Statistics are reported to stderr by default. The FF_IO_LOGFILE environment
variable can be used to name a file to which statistics are written by the event layer.
The default action is to overwrite the existing statistics file if it exists. You can append
reports to the existing file by specifying a plus sign (+) before the file name, as in this
example:

setenv FF_IO_LOGFILE +saveIO

This layer report counts for read, reada, write, and writea. These counts
represent the number of calls made to an FFIO layer entry point. In some cases, the
system layer may actually use a different I/O system call, or multiple system calls.
For example, the reada system call does not exist on IRIX systems, and the system
layer reada entry point will use aio_read().

Amention of the lock layer may be included during report generation even though
that layer may not have been specified by the user.

The event layer is enabled by default and is included in the executable file; you do
not have to relink to study the I/O performance of your program. To obtain event
statistics, rerun your program with the event layer specified on the assign
command, as in this example:

assign -F bufa, event, cachea, event, system

The syntax for the event layer is as follows:

event[.type]

There is no alternate keyword specification for this layer.

007–3695–006 99

13: FFIO Layer Reference

The type argument selects the level of performance information to be written to the
ASCII log file; it can have one of the following values:

Value Definition

nostat No statistical information is reported.

summary Event types that occur at least once are reported.

brief A one line summary for layer activities is reported.

The f77 Layer

The f77 layer handles blocking and deblocking of the f77 record type, which is
common to most UNIX Fortran implementations. The syntax for this layer is as
follows:

f77[.type]:[num1]:[num2]

The following is the syntax of the keyword specification:

f77[.type][.recsize=num1][.bufsize=num2]

The type argument specifies the record type and can take one of the following two
values:

Value Definition

nonvax Control words in a format common to large machines such as the
MC68000; default.

vax VAX format (byte-swapped) control words.

The num1 field refers to the maximum record size. The num2 field refers to the
working buffer size.

To achieve maximum performance, ensure that the working buffer size is large
enough to hold any records that are written plus the control words (control words
consist of 8 bytes per record). If a record plus control words are larger than the buffer,
the layer must perform some inefficient operations to do the write. If the buffer is
large enough, these operations can be avoided.

100 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

On reads, the buffer size is not as important, although larger sizes will usually
perform better.

If the next lower-level layer is magnetic tape, this layer does not support I/O.

Table 13-9 Data manipulation: f77 layer

Granularity Data model Truncate on write Implementation strategy

8 bits Record Yes x records

Table 13-10 Supported operations: f77 layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes Yes

ffreada Yes Always synchronous No

ffreadc Yes No

ffwrite Yes Yes

ffwritea Yes Always synchronous No

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof Passed
through

Yes Only if explicitly requested

ffweod Yes Yes

007–3695–006 101

13: FFIO Layer Reference

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffseek Yes ffseek(fd,0,0)
equals rewind;
ffseek(fd,0,2)
seeks to end

Yes

ffpos Yes NA

ffbksp Yes Only in lower-level
layer

No

The fd Layer

The fd layer allows connection of a FFIO file to a system file descriptor. You must
specify the fd layer, as follows:

fd:[num1]

The keyword specification is as follows:

fd[.file_descriptor=num1]

The num1 argument must be a system file descriptor for an open file. The ffopen or
ffopens request opens a FFIO file descriptor that is connected to the specified file
descriptor. The file connection does not affect the file whose name is passed to
ffopen.

All other properties of this layer are the same as the system layer. See "The system
Layer", page 106, for details.

The global Layer

The global layer is a caching layer that distributes data across all multiple SHMEM
or MPI processes. Open and close operations require participation by all processes
which access the file; all other operations are independently performed by one or
more processes.

The following is the syntax for the global layer:

102 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

global[. type]:[num1]:[num2]

The following is the syntax for the keyword specification:

global[. type][.page_size=num1][.num_pages=num2]

The type argument can be privpos (default), in which is the file position is private to
a process or globpos (deferred implementation), in which the file position is global
to all processes.

The num1 argument specifies the size in 4096–byte blocks of each cache page. num2
specifies the number of cache pages to be used on each process. If there are n
processes, then n � num2 cache pages are used.

num2 buffer pages are allocated on every process which shares access to a global file.
File pages are direct-mapped onto processes such that page n of the file will always
be cached on process (n mod NPES), where NPES is the total number of processes
sharing access to the global file. Once the process is identified where caching of the
file page will occur, a least-recently-used method is used to assign the file page to a
cache page within the caching process.

Table 13-11 Data manipulation: global layer

Granularity Data model Truncate on write

8 bits Stream No

Table 13-12 Supported operations: global layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes No

007–3695–006 103

13: FFIO Layer Reference

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffreada Yes Always synchronous Yes

ffreadc Yes No

ffwrite Yes No

ffwritea Yes Always synchronous Yes

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof No No

ffweod Yes Yes

ffseek Yes Yes Requires underlying interface to be
a stream

ffpos Yes NA

ffbksp No NA

The null layer

The null layer is a syntactic convenience for users; it has no effect. This layer is
commonly used to simplify the writing of a shell script when a shell variable is used
to specify a FFIO layer specification. For example, the following is a line from a shell
script with a tape file using the assign command and overlying blocking is expected
on the tape (as specified by BLKTYP):

assign -F $BLKTYP,bmx fort.1

If BLKTYP is undefined, the illegal specification list ,bmx results. The existence of the
null layer lets the programmer set BLKTYP to null as a default, and simplify the
script, as in the following:

assign -F null,bmx fort.1

This is identical to the following command:

104 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

assign -F bmx fort.1

The syscall Layer

The syscall layer directly maps each request to an appropriate system call. It has
one optional parameter, as follows:

syscall[.cboption]

The cboption argument can have one of the following values:

aiocb The syscall layer will be notified, via a signal, when
the asynchronous I/O is completed.

noaiocb The syscall layer will poll the completion status
word to determine asynchronous I/O completion. This
is the default value.

Table 13-13 Data manipulation: syscall layer

Granularity Data model Truncate on write

8 bits (1 byte) Stream No

Table 13-14 Supported operations: syscall layer

Operation Supported Comments

ffopen Yes open

ffread Yes read

ffreada Yes reada(aio.read on IRIX systems

ffreadc Yes read plus code

ffwrite Yes write

007–3695–006 105

13: FFIO Layer Reference

Operation Supported Comments

ffwritea Yes writea (aio.write on IRIX
systems

ffwritec Yes write plus code

ffclose Yes close

ffflush Yes None

ffweof No None

ffweod Yes trunc(2)

ffseek Yes lseek(2)

ffpos Yes

ffbksp No

Lower-level layers are not allowed.

The system Layer

The system layer is implicitly appended to all specification lists, if not explicitly
added by the user (unless the syscall, or fd layer is specified). It maps requests to
appropriate system calls.

If the file that is opened is a tape file, the system layer becomes the tape layer.

For a description of options, see the syscall layer. Lower-level layers are not
allowed.

The text Layer

The text layer performs text blocking by terminating each record with a newline
character. It can also recognize and represent the EOF mark. The text layer is used
with character files and does not work with binary data. The general specification
follows:

text[.type]:[num1]:[num2]

106 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

The keyword specification follows:

text[.type][.newline=num1][.bufsize=num2]

The type field can have one of the following three values:

Value Definition

nl Newline-separated records.

eof Newline-separated records with a special string such as ~e. More than
one EOF in a file is allowed.

c205 CYBER 205–style text file (on the CYBER 205, these are called R-type
records).

The num1 field is the decimal value of a single character that represents the newline
character. The default value is 10 (octal 012, ASCII line feed).

The num2 field specifies the working buffer size (in decimal bytes). If any lower-level
layers are record oriented, this is also the block size.

Table 13-15 Data manipulation: text layer

Granularity Data model Truncate on write

8 bits Record. No

Table 13-16 Supported operations: text layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes Yes

ffreada Yes Always synchronous No

007–3695–006 107

13: FFIO Layer Reference

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffreadc Yes No

ffwrite Yes Yes

ffwritea Yes Always synchronous No

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof Passed through Yes Only if explicitly requested

ffweod Yes Yes

ffseek Yes Yes

ffpos Yes No

ffbksp No No

The user and site Layers

The user and site layers let users and site administrators build layers that meet
specific needs. The syntax follows:

user[num1]:[num2]

site:[num1]:[num2]

The open processing passes the num1 and num2 arguments to the layer and are
interpreted by the layers.

See “Creating a user Layer,” Chapter 14, "Creating a user Layer ", page 113 for an
example of how to create an FFIO layer.

108 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

The vms Layer

The vms layer handles record blocking for three common record types on VAX/VMS
operating systems. The general format of the specification follows.

vms.[type.subtype]:[num1]:[num2]

The following is the alternate keyword specification for this layer:

vms.[type.subtype][.recsize=num1][.mbs=num2]

The following type values are supported:

Value Definition

f VAX/VMS fixed-length records

v VAX/VMS variable-length records

s VAX/VMS variable-length segmented records

In addition to the record type, you must specify a record subtype, which has one of
the following four values:

Value Definition

bb Format used for binary blocked transfers

disk Same as binary blocked

tr Transparent format, for files transferred as a bit stream to and from the
VAX/VMS system

tape VAX/VMS labeled tape

The num1 field is the maximum record size that may be read or written. It is ignored
by the s record type.

007–3695–006 109

13: FFIO Layer Reference

Table 13-17 Values for record size: vms layer

Field Minimum Maximum Default Comments

v.bb 1 32,767 32,767

v.tape 1 9995 2043

v.tr 1 32,767 2044

s.bb 1 None None No maximum record size

s.tape 1 None None No maximum record size

s.tr 1 None None No maximum record size

The num2 field is the maximum segment or block size that is allowed on input and is
produced on output. For vms.f.tr and vms.f.bb, num2 should be equal to the
record size (num1). Because vms.f.tape places one or more records in each block,
vms.f.tape num2 must be greater than or equal to num1.

Table 13-18 Values for maximum block size: vms layer

Field Minimum Maximum Default Comments

v.bb 1 32,767 32,767

v.tape 6 32,767 2,048

v.tr 3 32,767 32,767 N/A

s.bb 5 32,767 2,046

s.tape 7 32,767 2,048

s.tr 5 32,767 2,046 N/A

For vms.v.bb and vms.v.disk records, num2 is a limit on the maximum record
size. For vms.v.tape records, it is the maximum size of a block on tape; more
specifically, it is the maximum size of a record that will be written to the next lower
layer. If that layer is tape, num2 is the tape block size. If it is cos, it will be a COS
record that represents a tape block. One or more records are placed in each block.

For segmented records, num2 is a limit on the block size that will be produced. No
limit on record size exists. For vms.s.tr and vms.s.bb, the block size is an upper

110 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

limit on the size of a segment. For vms.s.tape, one or more segments are placed in
a tape block. It functions as an upper limit on the size of a segment and a preferred
tape block size.

Table 13-19 Data manipulation: vms layer

Granularity Data model Truncate on write Implementation strategy

8 bits Record No for f records. Yes for v and s
records.

f records for f formats. v records for
v formats.

Table 13-20 Supported operations: vms layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffopen Yes Yes

ffread Yes Yes

ffreada Yes Always synchronous No

ffreadc Yes No

ffwrite Yes Yes

ffwritea Yes Always synchronous No

ffwritec Yes No

ffclose Yes Yes

ffflush Yes No

ffweof Yes and passed
through

Yes for s records;
passed through for
others

Yes Only if explicitly requested

ffweod Yes Yes

007–3695–006 111

13: FFIO Layer Reference

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ffseek Yes seek(fd,0,0) only
(equals rewind)

Yes seek(fd,0,0) only

ffpos Yes NA

ffbksp No No

112 007–3695–006

Chapter 14

Creating a user Layer

This chapter explains some of the internals of the FFIO system and explains the ways
in which you can put together a user or site layer. "user Layer Example", page
116, is an example of a user layer.

Internal Functions
The FFIO system has an internal model of data that maps to any given actual logical
file type based on the following concepts:

• Data is a stream of bits. Layers must declare their granularity by using the
fffcntl(3c) call.

• Record marks are boundaries between logical records.

• End-of-file marks (EOF) are a special type of record that exists in some file
structures.

• End-of-data (EOD) is a point immediately beyond the last data bit, EOR, or EOF
in the file. You cannot read past or write after an EOD. In a case when a file is
positioned after an EOD, a write operation (if valid) immediately moves the EOD
to a point after the last data bit, end-of-record (EOR), or EOF produced by the
write.

All files are streams that contain zero or more data bits that may contain record or file
marks.

No inherent hierarchy or ordering is imposed on the file structures. Any number of
data bits or EOR and EOF marks may appear in any order. The EOD, if present, is by
definition last. Given the EOR, EOF, and EOD return statuses from read operations,
only EOR may be returned along with data. When data bits are immediately followed
by EOF, the record is terminated implicitly.

Individual layers can impose restrictions for specific file structures that are more
restrictive than the preceding rules. For instance, in COS blocked files, an EOR
always immediately precedes an EOF.

Successful mappings were used for all logical file types supported, except formats
that have more than one type of partitioning for files (such as end-of-group or more
than one level of EOF). For example, some CDC file formats have level numbers in

007–3695–006 113

14: Creating a user Layer

the partitions. FFIO and CDC map level 017 to an EOF. No other handling is
provided for these level numbers.

Internally, there are two main protocol components: the operations and the stat
structure.

The Operations Structure

Many of the operations try to mimic system calls. In the man pages for ffread(3c),
ffwrite(3c), and others, the calls can be made without the optional parameters and
appear like the system calls. Internally, all parameters are required.

The following list is a brief synopsis of the interface routines that are supported at the
user level. Each of these ff entry points checks the parameters and issues the
corresponding internal call. Each interface routine provides defaults and dummy
arguments for those optional arguments that the user does not provide.

Each layer must have an internal entry point for all of these operations; although in
some cases, the entry point may simply issue an error or do nothing. For example,
the syscall layer uses _ff_noop for the ffflush entry point because it has no
buffer to flush, and it uses _ff_err2 for the ffweof entry point because it has no
representation for EOF. No optional parameters for calls to the internal entry points
exist. All arguments are required.

A list of operations called as functions from a C program follows:

fd = ffopen(file, flags, mode, stat);
nb = ffread(fd, buf, nb, stat, fulp, &ubc);
opos = ffseek(fd, pos, whence, stat);
nb = ffreada(fd, buf, nb, stat, fulp, &ubc);
ret = ffpos(fd,cmd, argp, len, stat)
ret = fffcntl(fd, cmd, arg, stat);
nb = ffwritea(fd, buf, nb, stat, fulp, &ubc);

The following are the variables for the internal entry points and the variable
definitions. An internal entry point must be provided for all of these operations:

Variable Definition

fd The FFIO pointer (struct fdinfo *)fd.

file A char* file.

114 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

flags File status flag for open, such as O_RDONLY.

buf Bit pointer to the user data.

nb Number of bytes.

ret The status returned; >=0 is valid, <0 is error.

stat A pointer to the status structure.

fulp The value FULL or PARTIAL defined in ffio.h for full or
partial-record mode.

&ubc A pointer to the unused bit count; this ranges from 0 to 7 and
represents the bits not used in the last byte of the operation. It is used
for both input and output.

pos A byte position in the file.

opos The old position of the file, just like the system call.

whence The same as the syscall.

cmd The command request to the fffcntl(3c) call.

arg A generic pointer to the fffcntl argument.

mode Bit pattern denoting file’s access permissions.

argp A pointer to the input or output data.

len The length of the space available at argp. It is used primarily on output
to avoid overwriting the available memory.

FFIO and the Stat Structure

The stat structure contains four fields in the current implementation. They mimic the
iosw structure of the ASYNC syscalls to the extent possible. All operations are expected
to update the stat structure on each call. The SETSTAT and ERETURN macros are
provided in ffio.h for this purpose.

The fields in the stat structure are as follows:

Status field Description

stat.sw_flag 0 indicates outstanding; 1 indicates I/O complete.

stat.sw_error 0 indicates no error; otherwise, the error number.

007–3695–006 115

14: Creating a user Layer

stat.sw_count Number of bytes transferred in this request. This
number is rounded up to the next integral value if a
partial byte is transferred.

stat.sw_stat This tells the status of the I/O operation. The
FFSTAT(stat) macro accesses this field. The
following are the possible values:

FFBOD: At beginning-of-data (BOD).

FFCNT: Request terminated by count (either the count
of bytes before EOF or EOD in the file or the count of
the request).

FFEOR: Request termination by EOR or a full record
mode read was processed.

FFEOF: EOF encountered.

FFEOD: EOD encountered.

FFERR: Error encountered.

If count is satisfied simultaneously with EOR, the FFEOR is returned.

The EOF and EOD status values must never be returned with data. This means that if
a byte-stream file is being traversed and the file contains 100 bytes and then an EOD,
a read of 500 bytes will return with a stat value of FFCNT and a return byte count of
100. The next read operation returns FFEOD and a count of 0.

A FFEOF or FFEOD status is always returned with a zero-byte transfer count.

user Layer Example
This section gives a complete and working user layer. It traces I/O at a given level.
All operations are passed through to the next lower-level layer, and a trace record is
sent to the trace file.

The first step in generating a user layer is to create a table that contains the addresses
for the routines which fulfill the required functions described in "The Operations
Structure", page 114, and "FFIO and the Stat Structure", page 115. The format of the
table can be found in struct xtr_s, which is found in the <ffio.h> file. No
restriction is placed on the names of the routines, but the table must be called

116 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

_usr_ffvect for it to be recognized as a user layer. In the example, the declaration
of the table can be found with the code in the _usr_open routine.

To use this layer, you must take advantage of the soft external files in the library.

On IRIX systems, to build for the n32 ABI on MIPS3 architectures:

cc -c -n32 -mips3 usr*.c -D_LIB_INTERNAL

f90 -n32 -mips3 usr*.o main.f -o abs

assign -F user,others... fort.1

./abs

007–3695–006 117

14: Creating a user Layer

static char USMID[] = "@(#)code/usrbksp.c 1.0 ";
/* COPYRIGHT SGI

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.

*/

#include <ffio.h>
#include "usrio.h"

/*

* trace backspace requests

*/

int

_usr_bksp(struct fdinfo *fio, struct ffsw *stat)
{

struct fdinfo *llfio;

int ret;

llfio = fio->fioptr;
_usr_enter(fio, TRC_BKSP);

_usr_pr_2p(fio, stat);

ret = XRCALL(llfio, backrtn) llfio, stat);

_usr_exit(fio, ret, stat);

return(0);

}

118 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

static char USMID[] = "@(#)code.usrclose.c 1.0 ";

/* COPYRIGHT SGI

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.

*/
#include <stdio.h>

#include <malloc.h>

#include <ffio.h>

#include "usrio.h"

/*

* trace close requests
*/

int

_usr_close(struct fdinfo *fio, struct ffsw *stat)

{

struct fdinfo *llfio;
struct trace_f *pinfo;

int ret;

llfio = fio->fioptr;

/*

* lyr_info is a place in the fdinfo block that holds

* a pointer to the layer’s private information.
*/

pinfo = (struct trace_f *)fio->lyr_info;

_usr_enter(fio, TRC_CLOSE);

_usr_pr_2p(fio, stat);
/*

* close file

*/

ret = XRCALL(llfio, closertn) llfio, stat);

/*
* It is the layer’s responsibility to clean up its mess.

*/

free(pinfo->name);

pinfo->name = NULL;

free(pinfo);

_usr_exit(fio, ret, stat);
(void) close(pinfo->usrfd);

return(0);

007–3695–006 119

14: Creating a user Layer

}

120 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

static char USMID[] = "@(#)code/usrfcntl.c 1.0 ";

/* COPYRIGHT SGI

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.

*/
#include <ffio.h>

#include "usrio.h"

/*

* trace fcntl requests

*

* Parameters:
* fd - fdinfo pointer

* cmd - command code

* arg - command specific parameter

* stat - pointer to status return word

*
* This fcntl routine passes the request down to the next lower

* layer, so it provides nothing of its own.

*

* When writing a user layer, the fcntl routine must be provided,

* and must provide correct responses to one essential function and

* two desirable functions.
*

* FC_GETINFO: (essential)

* If the ’cmd’ argument is FC_GETINFO, the fields of the ’arg’ is

* considered a pointer to an ffc_info_s structure, and the fields

* must be filled. The most important of these is the ffc_flags
* field, whose bits are defined in <ffio.h>.(Look for FFC_STRM

* through FFC_NOTRN)

* FC_STAT: (desirable)

* FC_RECALL: (desirable)

*/
int

_usr_fcntl(struct fdinfo *fio, int cmd, void *arg, struct ffsw *stat)

{

struct fdinfo *llfio;

struct trace_f *pinfo;

int ret;

llfio = fio->fioptr;

007–3695–006 121

14: Creating a user Layer

pinfo = (struct trace_f *)fio->lyr_info;
_usr_enter(fio, TRC_FCNTL);

_usr_info(fio, "cmd=%d ", cmd);

ret = XRCALL(llfio, fcntlrtn) llfio, cmd, arg, stat);

_usr_exit(fio, ret, stat);

return(ret);
}

122 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

static char USMID[] = "@(#)code/usropen.c 1.0 ";

/* COPYRIGHT SGI

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.
*/

#include <stdio.h>

#include <fcntl.h>

#include <malloc.h>

#include <ffio.h>

#include "usrio.h"
#define SUFFIX ".trc"

/*

* trace open requests;

* The following routines compose the user layer. They are declared
* in "usrio.h"

*/

/*

* Create the _usr_ffvect structure. Note the _ff_err inclusion to

* account for the listiortn, which is not supported by this user
* layer

*/

struct xtr_s _usr_ffvect =

{

_usr_open, _usr_read, _usr_reada, _usr_readc,
_usr_write, _usr_writea, _usr_writec, _usr_close,

_usr_flush, _usr_weof, _usr_weod, _usr_seek,

_usr_bksp, _usr_pos, _usr_err, _usr_fcntl

};

_ffopen_t

_usr_open(

const char *name,

int flags,

mode_t mode,

struct fdinfo * fio,
union spec_u *spec,

struct ffsw *stat,

007–3695–006 123

14: Creating a user Layer

long cbits,
int cblks,

struct gl_o_inf *oinf)

{

union spec_u *nspec;

struct fdinfo *llfio;
struct trace_f *pinfo;

char *ptr = NULL;

int namlen, usrfd;

_ffopen_t nextfio;

char buf[256];

namlen = strlen(name);

ptr = malloc(namlen + strlen(SUFFIX) + 1);

if (ptr == NULL) goto badopen;

pinfo = (struct trace_f *)malloc(sizeof(struct trace_f));

if (pinfo == NULL) goto badopen;

fio->lyr_info = (char *)pinfo;

/*

* Now, build the name of the trace info file, and open it.

*/

strcpy(ptr, name);
strcat(ptr, SUFFIX);

usrfd = open(ptr, O_WRONLY | O_APPEND | O_CREAT, 0666);

/*

* Put the file info into the private data area.

*/
pinfo->name = ptr;

pinfo->usrfd = usrfd;

ptr[namlen] = ’\0’;

/*

* Log the open call
*/

_usr_enter(fio, TRC_OPEN);

sprintf(buf,"(\"%s\", %o, %o...);\n", name, flags, mode);

_usr_info(fio, buf, 0);

/*

* Now, open the lower layers
*/

nspec = spec;

124 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

NEXT_SPEC(nspec);
nextfio = _ffopen(name, flags, mode, nspec, stat, cbits, cblks,

NULL, oinf);

_usr_exit_ff(fio, nextfio, stat);

if (nextfio != _FFOPEN_ERR)

{
DUMP_IOB(fio); /* debugging only */

return(nextfio);

}

/*

* End up here only on an error

*
*/

badopen:

if(ptr != NULL) free(ptr);

if (fio->lyr_info != NULL) free(fio->lyr_info);
_SETERROR(stat, FDC_ERR_NOMEM, 0);

return(_FFOPEN_ERR);

}

_usr_err(struct fdinfo *fio)

{

_usr_info(fio,"ERROR: not expecting this routine\n",0);
return(0);

}

007–3695–006 125

14: Creating a user Layer

static char USMID[] = "@(#)code/usrpos.c 1.1 ";

/* COPYRIGHT SGI

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.
*/

#include <ffio.h>

#include "usrio.h"

/*
* trace positioning requests

*/

_ffseek_t

_usr_pos(struct fdinfo *fio, int cmd, void *arg, int len, struct ffsw *stat)
{

struct fdinfo *llfio;

struct trace_f *usr_info;

_ffseek_t ret;

llfio = fio->fioptr;
usr_info = (struct trace_f *)fio->lyr_info;

_usr_enter(fio,TRC_POS);

_usr_info(fio, " ", 0);

ret = XRCALL(llfio, posrtn) llfio, cmd, arg, len, stat);
_usr_exit_sk(fio, ret, stat);

return(ret);

}

126 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

static char USMID[] = "@(#)code/usrprint.c 1.1 ";

/* COPYRIGHT SGI

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.
*/

#include <stdio.h>

#include <ffio.h>

#include "usrio.h"

static char *name_tab[] =
{

"???",

"ffopen",

"ffread",

"ffreada",
"ffreadc",

"ffwrite",

"ffwritea",

"ffwritec",

"ffclose",

"ffflush",
"ffweof",

"ffweod",

"ffseek",

"ffbksp",

"ffpos",
"fflistio",

"fffcntl",

};

/*
* trace printing stuff

*/

int

_usr_enter(struct fdinfo *fio, int opcd)

{

char buf[256], *op;
struct trace_f *usr_info;

007–3695–006 127

14: Creating a user Layer

op = name_tab[opcd];
usr_info = (struct trace_f *)fio->lyr_info;

sprintf(buf, "TRCE: %s ",op);

write(usr_info->usrfd, buf, strlen(buf));

return(0);

}

void

_usr_info(struct fdinfo *fio, char *str, int arg1)

{

char buf[256];

struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;

sprintf(buf, str, arg1);

write(usr_info->usrfd, buf, strlen(buf));

}

void

_usr_exit(struct fdinfo *fio, int ret, struct ffsw *stat)

{

char buf[256];

struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;

fio->ateof = fio->fioptr->ateof;

fio->ateod = fio->fioptr->ateod;

sprintf(buf, "TRCX: ret=%d, stat=%d, err=%d\n",
ret, stat->sw_stat, stat->sw_error);

write(usr_info->usrfd, buf, strlen(buf));

}

void
_usr_exit_ss(struct fdinfo *fio, ssize_t ret, struct ffsw *stat)

{

char buf[256];

struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;
fio->ateof = fio->fioptr->ateof;

fio->ateod = fio->fioptr->ateod;

128 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

#ifdef __mips
#if (_MIPS_SZLONG== 32)

sprintf(buf, "TRCX: ret=%lld, stat=%d, err=%d\n",

ret, stat->sw_stat, stat->sw_error);

#else

sprintf(buf, "TRCX: ret=%ld, stat=%d, err=%d\n",
ret, stat->sw_stat, stat->sw_error);

#endif

#else

sprintf(buf, "TRCX: ret=%d, stat=%d, err=%d\n",

ret, stat->sw_stat, stat->sw_error);

#endif
write(usr_info->usrfd, buf, strlen(buf));

}

void

_usr_exit_ff(struct fdinfo *fio, _ffopen_t ret, struct ffsw *stat)
{

char buf[256];

struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;

#ifdef __mips
sprintf(buf, "TRCX: ret=%lx, stat=%d, err=%d\n",

ret, stat->sw_stat, stat->sw_error);

#else

sprintf(buf, "TRCX: ret=%d, stat=%d, err=%d\n",

ret, stat->sw_stat, stat->sw_error);
#endif

write(usr_info->usrfd, buf, strlen(buf));

}

void

_usr_exit_sk(struct fdinfo *fio, _ffseek_t ret, struct ffsw *stat)
{

char buf[256];

struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;

fio->ateof = fio->fioptr->ateof;

fio->ateod = fio->fioptr->ateod;
#ifdef __mips

#if (_MIPS_SZLONG== 32)

007–3695–006 129

14: Creating a user Layer

sprintf(buf, "TRCX: ret=%lld, stat=%d, err=%d\n",
ret, stat->sw_stat, stat->sw_error);

#else

sprintf(buf, "TRCX: ret=%ld, stat=%d, err=%d\n",

ret, stat->sw_stat, stat->sw_error);

#endif
#else

sprintf(buf, "TRCX: ret=%d, stat=%d, err=%d\n",

ret, stat->sw_stat, stat->sw_error);

#endif

write(usr_info->usrfd, buf, strlen(buf));

}
void

_usr_pr_rwc(

struct fdinfo *fio,

bitptr bufptr,

size_t nbytes,
struct ffsw *stat,

int fulp)

{

char buf[256];

struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;

#ifdef __mips

#if (_MIPS_SZLONG == 64) && (_MIPS_SZPTR == 64)

sprintf(buf,"(fd / %lx */, &memc[%lx], %ld, &statw[%lx], ",

fio, BPTR2CP(bufptr), nbytes, stat);
#else if (_MIPS_SZLONG == 32) && (_MIPS_SZPTR == 32)

sprintf(buf,"(fd / %lx */, &memc[%lx], %lld, &statw[%lx], ",

fio, BPTR2CP(bufptr), nbytes, stat);

#endif

#else
sprintf(buf,"(fd / %x */, &memc[%x], %d, &statw[%x], ",

fio, BPTR2CP(bufptr), nbytes, stat);

#endif

write(usr_info->usrfd, buf, strlen(buf));

if (fulp == FULL)

sprintf(buf,"FULL");
else

sprintf(buf,"PARTIAL");

130 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

write(usr_info->usrfd, buf, strlen(buf));
}

void

_usr_pr_rww(

struct fdinfo *fio,

bitptr bufptr,
size_t nbytes,

struct ffsw *stat,

int fulp,

int *ubc)

{

char buf[256];
struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;

#ifdef __mips

#if (_MIPS_SZLONG == 64) && (_MIPS_SZPTR == 64)
sprintf(buf,"(fd / %lx */, &memc[%lx], %ld, &statw[%lx], ",

fio, BPTR2CP(bufptr), nbytes, stat);

#else if (_MIPS_SZLONG == 32) && (_MIPS_SZPTR == 32)

sprintf(buf,"(fd / %lx */, &memc[%lx], %lld, &statw[%lx], ",

fio, BPTR2CP(bufptr), nbytes, stat);

#endif
#else

sprintf(buf,"(fd / %x */, &memc[%x], %d, &statw[%x], ",

fio, BPTR2CP(bufptr), nbytes, stat);

#endif

write(usr_info->usrfd, buf, strlen(buf));
if (fulp == FULL)

sprintf(buf,"FULL");

else

sprintf(buf,"PARTIAL");

write(usr_info->usrfd, buf, strlen(buf));
sprintf(buf,", &conubc[%d]; ", *ubc);

write(usr_info->usrfd, buf, strlen(buf));

}

void

_usr_pr_2p(struct fdinfo *fio, struct ffsw *stat)

{
char buf[256];

struct trace_f *usr_info;

007–3695–006 131

14: Creating a user Layer

usr_info = (struct trace_f *)fio->lyr_info;

#ifdef __mips

#if (_MIPS_SZLONG == 64) && (_MIPS_SZPTR == 64)

sprintf(buf,"(fd / %lx */, &statw[%lx], ",

fio, stat);
#else if (_MIPS_SZLONG == 32) && (_MIPS_SZPTR == 32)

sprintf(buf,"(fd / %lx */, &statw[%lx], ",

fio, stat);

#endif

#else

sprintf(buf,"(fd / %x */, &statw[%x], ",
fio, stat);

#endif

write(usr_info->usrfd, buf, strlen(buf));

}

132 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

static char USMID[] = "@(#)code/usrread.c 1.0 ";

/* COPYRIGHT SGI

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.

*/

#include <ffio.h>

#include "usrio.h"

/*

* trace read requests
*

* Parameters:

* fio - Pointer to fdinfo block

* bufptr - bit pointer to where data is to go.

* nbytes - Number of bytes to be read
* stat - pointer to status return word

* fulp - full or partial read mode flag

* ubc - pointer to unused bit count

*/

ssize_t

_usr_read(
struct fdinfo *fio,

bitptr bufptr,

size_t nbytes,

struct ffsw *stat,

int fulp,
int *ubc)

{

struct fdinfo *llfio;

char *str;

ssize_t ret;
llfio = fio->fioptr;

_usr_enter(fio, TRC_READ);

_usr_pr_rww(fio, bufptr, nbytes, stat, fulp, ubc);

ret = XRCALL(llfio, readrtn) llfio, bufptr, nbytes, stat,

fulp, ubc);

_usr_exit_ss(fio, ret, stat);
return(ret);

}

007–3695–006 133

14: Creating a user Layer

/*

* trace reada (asynchronous read) requests

*

* Parameters:

* fio - Pointer to fdinfo block
* bufptr - bit pointer to where data is to go.

* nbytes - Number of bytes to be read

* stat - pointer to status return word

* fulp - full or partial read mode flag

* ubc - pointer to unused bit count

*/
ssize_t

_usr_reada(

struct fdinfo *fio,

bitptr bufptr,

size_t nbytes,
struct ffsw *stat,

int fulp,

int *ubc)

{

struct fdinfo *llfio;

char *str;
ssize_t ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_READA);

_usr_pr_rww(fio, bufptr, nbytes, stat, fulp, ubc);
ret = XRCALL(llfio,readartn)llfio,bufptr,nbytes,stat,fulp,ubc);

_usr_exit_ss(fio, ret, stat);

return(ret);

}

/*

* trace readc requests

*

* Parameters:

* fio - Pointer to fdinfo block

* bufptr - bit pointer to where data is to go.
* nbytes - Number of bytes to be read

* stat - pointer to status return word

134 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

* fulp - full or partial read mode flag
*/

ssize_t

_usr_readc(

struct fdinfo *fio,

bitptr bufptr,
size_t nbytes,

struct ffsw *stat,

int fulp)

{

struct fdinfo *llfio;

char *str;
ssize_t ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_READC);

_usr_pr_rwc(fio, bufptr, nbytes, stat, fulp);

ret = XRCALL(llfio, readcrtn)llfio, bufptr, nbytes, stat,
fulp);

_usr_exit_ss(fio, ret, stat);

return(ret);

}

/*
* _usr_seek()

*

* The user seek call should mimic the lseek system call as

* much as possible.

*/
_ffseek_t

_usr_seek(

struct fdinfo *fio,

off_t pos,

int whence,
struct ffsw *stat)

{

struct fdinfo *llfio;

_ffseek_t ret;

char buf[256];

llfio = fio->fioptr;

_usr_enter(fio, TRC_SEEK);

007–3695–006 135

14: Creating a user Layer

#ifdef __mips
#if (_MIPS_SZLONG == 64)

sprintf(buf,"pos %ld, whence %d\n", pos, whence);

#else

sprintf(buf,"pos %lld, whence %d\n", pos, whence);

#endif
#else

sprintf(buf,"pos %d, whence %d\n", pos, whence);

#endif

_usr_info(fio, buf, 0);

ret = XRCALL(llfio, seekrtn) llfio, pos, whence, stat);

_usr_exit_sk(fio, ret, stat);
return(ret);

}

136 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

static char USMID[] = "@(#)code/usrwrite.c 1.0 ";

/* COPYRIGHT SGI

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER

* THE COPYRIGHT LAWS OF THE UNITED STATES.
*/

#include <ffio.h>

#include "usrio.h"

/*
* trace write requests

*

* Parameters:

* fio - Pointer to fdinfo block

* bufptr - bit pointer to where data is to go.
* nbytes - Number of bytes to be written

* stat - pointer to status return word

* fulp - full or partial write mode flag

* ubc - pointer to unused bit count (not used for IBM)

*/

ssize_t
_usr_write(

struct fdinfo *fio,

bitptr bufptr,

size_t nbytes,

struct ffsw *stat,
int fulp,

int *ubc)

{

struct fdinfo *llfio;

ssize_t ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_WRITE);

_usr_pr_rww(fio, bufptr, nbytes, stat, fulp, ubc);

ret = XRCALL(llfio, writertn) llfio, bufptr, nbytes, stat,

fulp,ubc);
_usr_exit_ss(fio, ret, stat);

return(ret);

007–3695–006 137

14: Creating a user Layer

}

/*

* trace writea requests

*

* Parameters:
* fio - Pointer to fdinfo block

* bufptr - bit pointer to where data is to go.

* nbytes - Number of bytes to be written

* stat - pointer to status return word

* fulp - full or partial write mode flag

* ubc - pointer to unused bit count (not used for IBM)
*/

ssize_t

_usr_writea(

struct fdinfo *fio,

bitptr bufptr,
size_t nbytes,

struct ffsw *stat,

int fulp,

int *ubc)

{

struct fdinfo *llfio;
ssize_t ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_WRITEA);

_usr_pr_rww(fio, bufptr, nbytes, stat, fulp, ubc);
ret = XRCALL(llfio, writeartn) llfio, bufptr, nbytes, stat,

fulp,ubc);

_usr_exit_ss(fio, ret, stat);

return(ret);

}

/*

* trace writec requests

*

* Parameters:

* fio - Pointer to fdinfo block
* bufptr - bit pointer to where data is to go.

* nbytes - Number of bytes to be written

138 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

* stat - pointer to status return word
* fulp - full or partial write mode flag

*/

ssize_t

_usr_writec(
struct fdinfo *fio,

bitptr bufptr,

size_t nbytes,

struct ffsw *stat,

int fulp)

{
struct fdinfo *llfio;

ssize_t ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_WRITEC);
_usr_pr_rwc(fio, bufptr, nbytes, stat, fulp);

ret = XRCALL(llfio, writecrtn)llfio,bufptr, nbytes, stat,

fulp);

_usr_exit_ss(fio, ret, stat);

return(ret);

}
/*

* Flush the buffer and clean up

* This routine should return 0, or -1 on error.

*/

int
_usr_flush(struct fdinfo *fio, struct ffsw *stat)

{

struct fdinfo *llfio;

int ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_FLUSH);

_usr_info(fio, "\n",0);

ret = XRCALL(llfio, flushrtn) llfio, stat);

_usr_exit(fio, ret, stat);

return(ret);
}

007–3695–006 139

14: Creating a user Layer

/*
* trace WEOF calls

*

* The EOF is a very specific concept. Don’t confuse it with the

* EOF, or the trunc(2) system call.

*/
int

_usr_weof(struct fdinfo *fio, struct ffsw *stat)

{

struct fdinfo *llfio;

int ret;

llfio = fio->fioptr;

_usr_enter(fio, TRC_WEOF);

_usr_info(fio, "\n",0);

ret = XRCALL(llfio, weofrtn) llfio, stat);

_usr_exit(fio, ret, stat);
return(ret);

}

/*

* trace WEOD calls

*
* The EOD is a specific concept. Don’t confuse it with the

* EOF. It is usually mapped to the trunc(2) system call.

*/

int

_usr_weod(struct fdinfo *fio, struct ffsw *stat)
{

struct fdinfo *llfio;

int ret;

llfio = fio->fioptr;
_usr_enter(fio, TRC_WEOD);

_usr_info(fio, "\n",0);

ret = XRCALL(llfio, weodrtn) llfio, stat);

_usr_exit(fio, ret, stat);

return(ret);

}

140 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

/* USMID @(#)code/usrio.h 1.1 */

/* COPYRIGHT SGI

* UNPUBLISHED -- ALL RIGHTS RESERVED UNDER
* THE COPYRIGHT LAWS OF THE UNITED STATES.

*/

#define TRC_OPEN 1

#define TRC_READ 2

#define TRC_READA 3
#define TRC_READC 4

#define TRC_WRITE 5

#define TRC_WRITEA 6

#define TRC_WRITEC 7

#define TRC_CLOSE 8
#define TRC_FLUSH 9

#define TRC_WEOF 10

#define TRC_WEOD 11

#define TRC_SEEK 12

#define TRC_BKSP 13

#define TRC_POS 14
#define TRC_UNUSED 15

#define TRC_FCNTL 16

struct trace_f

{
char *name; /* name of the file */

int usrfd; /* file descriptor of trace file */

};

/*

* Prototypes
*/

extern int _usr_bksp(struct fdinfo *fio, struct ffsw *stat);

extern int _usr_close(struct fdinfo *fio, struct ffsw *stat);

extern int _usr_fcntl(struct fdinfo *fio, int cmd, void *arg,

struct ffsw *stat);

extern _ffopen_t _usr_open(const char *name, int flags,
mode_t mode, struct fdinfo * fio, union spec_u *spec,

struct ffsw *stat, long cbits, int cblks,

007–3695–006 141

14: Creating a user Layer

struct gl_o_inf *oinf);
extern int _usr_flush(struct fdinfo *fio, struct ffsw *stat);

extern _ffseek_t _usr_pos(struct fdinfo *fio, int cmd, void *arg,

int len, struct ffsw *stat);

extern ssize_t _usr_read(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp, int *ubc);
extern ssize_t _usr_reada(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp, int *ubc);

extern ssize_t _usr_readc(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp);

extern _ffseek_t _usr_seek(struct fdinfo *fio, off_t pos, int whence,

struct ffsw *stat);
extern ssize_t _usr_write(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp, int *ubc);

extern ssize_t _usr_writea(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp, int *ubc);

extern ssize_t _usr_writec(struct fdinfo *fio, bitptr bufptr,
size_t nbytes, struct ffsw *stat, int fulp);

extern int _usr_weod(struct fdinfo *fio, struct ffsw *stat);

extern int _usr_weof(struct fdinfo *fio, struct ffsw *stat);

extern int _usr_err();

/*
* Prototypes for routines that are used by the user layer.

*/

extern int _usr_enter(struct fdinfo *fio, int opcd);

extern void _usr_info(struct fdinfo *fio, char *str, int arg1);

extern void _usr_exit(struct fdinfo *fio, int ret, struct ffsw *stat);
extern void _usr_exit_ss(struct fdinfo *fio, ssize_t ret,

struct ffsw *stat);

extern void _usr_exit_ff(struct fdinfo *fio, _ffopen_t ret,

struct ffsw *stat);

extern void _usr_exit_sk(struct fdinfo *fio, _ffseek_t ret,
struct ffsw *stat);

extern void _usr_pr_rww(struct fdinfo *fio, bitptr bufptr,

size_t nbytes, struct ffsw *stat, int fulp, int *ubc);

extern void _usr_pr_2p(struct fdinfo *fio, struct ffsw *stat);

142 007–3695–006

Glossary

blocking

In parallel processing, a blocking function is one that does not return until the
function is complete.

disk striping

(1) Multiplexing or interleaving a disk file across two or more disk drives to enhance
I/O performance. The performance gain is function of the number of drives and
channels used.

file system

(1) The disks located in the fileserver that contain directories. (2) An individual
partition or cluster that has been formatted properly. The root file system is always
mounted; other file systems are mounted as needed. (3) The entire set of available
disk space. (4) A structure used to store programs and files on disk. A file system can
be mounted (accessible for operations) or unmounted (noninteractive and unavailable
for system use).

logical device

One or more physical device slices that the operating system treats as a single device.

raw I/O

A method of performing input/output in UNIX in which the programmer must
handle all of the I/O control. This is basically unformatted I/O. The opposite of "raw
I/O" is "cooked I/O" (UNIX humor).

record

(1) A group of contiguous words or characters that are related by convention. A
record may be fixed or of variable length. (2) A record for a listable data set; each line
is a record. (3) Each module of a binary-load data set is a record.

007–3695–006 143

Glossary

slice

(1) As used in the context of the low-speed communication (networking) subsystem
in an EIOP, a slice is a subdivision of a channel buffer; sections of the buffer are
divided into slices used for buffering network messages and data.

stream

(1) A software path of messages related to one file. (2) A stream, or logical command
queue, is associated with a slave in the intelligent peripheral interface (IPI) context.
The stream is used in identifying IPI-3 commands destined for that slave. A slave
may have 0, 1, or many streams associated with it at any given time.

unit

When used in the context of disk software on the IOS-E, unit refers to one disk drive
that is daisy-chained with others on one channel adapter. The unit number represents
an ordinal for referring to one disk on the channel.

144 007–3695–006

Index

A

assign
and Fortran I/O, 36

alternative file names, 36
buffer size selection, 39
direct-access I/O tuning, 40
file structure selection, 38
foreign file format specification, 40
Fortran file truncation, 40

assign basics, 31
assign command, 32
open processing, 31
related library routines, 35

local assign, 42
assign command

syntax, 32
assign environment, 31

related library routines, 35
assign library routines

calling sequences, 35
auxiliary I/O, 16

B

bin processing, 46
blocked file structure, 47
bufa layer, 65, 92
BUFFER IN/BUFFER OUT, 20

advantages, 19
buffer size considerations, 64
buffer size specification, 39
buffering, 51

introduction to, 51
library buffering, 53
overview, 51

system cache, 53
unbuffered I/O, 53

buffers
usage, 51

C

C I/O
C I/O from Fortran, 28
FILE type

usage, 28
functions, 28
mixing Fortran and C I/O, 28

cache layer, 65, 93
and improved I/O performance, 65
specification, 65

cachea layer, 65, 95
characteristics of individual layers, 89

data model, 90
granularity, 90
implementation strategy, 90
truncate on write, 90

conversion methods
advantages and disadvantages, 73

cos file structure, 47
COS blocked file structure

and ENDFILE records, 47
example

formatted file, 39
COS blocked files

and FFIO, 63
cos blocking layer, 97
creating an I/O layer, 113

internal functions, 113
operations structure, 114
stat structure, 115

007–3695–006 145

Index

D

data conversion, 84
data copying, 85
data item conversion

explicit conversion
advantages/disadvantages, 73

implicit conversion
advantages/disadvantages, 74

data manipulation
characteristics, 89

data output flow, 78
data transfer

input statement
READ, 11

output statement
PRINT, 11
WRITE, 11

definitions
external file, 5
external unit identifier, 5
file position, 8
internal file, 5
internal unit identifier, 5

direct access
external file properties, 7

direct-access I/O tuning, 40
distributed I/O, 102

E

environment variables
LISTIO_PRECISION, 15

EOF records
in standard Fortran, 8

event layer, 99
examples

assign -a, 36
BACKSPACE statement, 18
buffer size specification, 39
COS blocked file structure

formatted file, 39
direct access edit-directed I/O statement, 12
direct access unformatted I/O statement, 16
ENDFILE statement, 18
explicit named open statement, 10
explicit unnamed open statement, 10
file structure selection, 38
Fortran interfaces to C functions, 29
implicit open statement, 9
ISHELL call, 21
layered I/O, 59
LENGTH function, 20
list-directed READ statement, 15
list-directed WRITE statement, 15
local assign mode, 42
named pipe, 21
named pipes file structure, 22
namelist I/O, 15
OPEN statement, 16
piped I/O with EOF detection, 24
piped I/O with no EOF detection, 22
sequential access edit-directed READ

statement, 12
sequential access edit-directed WRITE

statement, 12
sequential access unformatted READ

statement, 16
sequential access unformatted WRITE

statement, 16
specifying I/O class, 56
specifying I/O processing steps, 57

READ requests, 58
unblocked file structure, 38
UNIT function, 20
user layer, 116

explicit data conversion
definition, 67

explicit data item conversion, 68
explicit named open statement

example, 10
explicit unnamed open statement

146 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

example, 10
external file, 5
external files

direct access, 7
format, 6
sequential access, 6

external unit identifier, 5
external units

and file connections, 6

F

f77 layer, 100
fd layer, 102
fdcp tool, 67
FFIO

and buffer size considerations, 64
and Fortran I/O forms, 57
and performance enhancements, 64
and reading and writing COS files, 63
and reading and writing fixed-length records, 63
and reading and writing unblocked files, 63
common formats, 62
error messages, 2
introduction, 55
reading and writing text files, 62
removing blocking, 64
using the bufa layer, 65
using the cache layer, 65
using the cachea layer, 65

FFIO and foreign data
foreign conversion tips

workstation and IEEE conversion, 74
FFIO and the stat structure, 115
FFIO layer reference

individual layers
bufa layer, 92
cache layer, 93
cachea layer, 95
COS blocking layer, 97
event layer, 99

f77 layer, 100
fd layer, 102
global layer, 102
null layer, 104
syscall layer, 105
system layer, 106
text layer, 106
user and site layers, 108
vms layer, 109

FFIO specifications
text files, 62
using with text files, 62
using with unblocked files, 63

file access, 6
direct access, 7
sequential access, 6

file connections
alternative file names, 36
tuning, 36

file positioning statement, 17
file properties, 6
file structure, 43

alternatives
using assign, 38

assign options, 43
COS file structure, 47
default, 38
selection, 38
text file structures, 46
unblocked file structure, 44

bin file processing, 46
sbin file processing, 45
u file processing, 46

file structure overhead, 82
file truncation

activating and suppressing, 40
FILE type

available buffering, 28
used with C I/O functions, 28

fixed-length records
and FFIO, 63

007–3695–006 147

Index

foreign conversion tips
workstation and IEEE conversion, 74

foreign file conversion
and fdcp, 67
choosing conversion methods, 73
conversion techniques, 74
data item conversion, 68
explicit data item conversion, 68
implicit data item conversion, 69
overview, 67
routines, 68

foreign file format specifications, 40
foreign I/O formats

supported data types, , 71
formatted I/O statements

optimizing, 12
types, 11

formatted record size, 85
Fortran I/O extensions, 19

BUFFER IN/BUFFER OUT, 19
LENGTH function, 20
UNIT intrinsic routine, 20

Fortran standard
auxiliary I/O statements

BACKSPACE file positioning statement, 18
ENDFILE file positioning statement, 18
file connection statements, 16, 17
file positioning statements, 17
INQUIRE statement, 17
OPEN, 16
REWIND file positioning statement, 18

auxilliary I/O statements, 16
data transfer

formatted I/O, 11
data transfer statements, 11

edit-directed formatted I/O, 12
list-directed formatted I/O, 14
namelist I/O, 15
unformatted I/O, 16

external files, 6
file access, 6

file name specification, 5

file properties, 6
file types, 5
files

direct file access, 7
external files, 6
file position, 8
form, 6
internal files, 5
sequential file access, 6

formatted I/O statements
optimizing, 12

Fortran unit identifiers, 8
overview, 5
overview of files, 5

Fortran unit identifiers, 8
valid unit numbers, 9

G

global I/O, 102
global layer, 102

I

I/O forms
and FFIO usage, 57

I/O layers, 58, 78
supported operations, 91
unblocked data transfer, 64

I/O optimization, 77
avoiding formatted I/O, 84
bypassing library buffers, 85
characterizing files, 78
data conversions, 84
file structure overhead, 82
library buffer sizes, 85
optimizing speed, 80
overlapping CPU and I/O, 86
overview, 77

148 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

overview of optimization techniques, 79
source code changes, 80
summary of techniques, 79
system requests, 81
using asynchronous

read-ahead/write-behind, 83
using pipes, 86
using scratch files, 82
using simpler file structures, 84
using the cache layer, 81

I/O processing steps, 56
description, 55
I/O classes, 58
specifying I/O class, 56

example, 56
implicit data conversion

definition, 67
implicit data item conversion, 69

supported conversions, 70
implicit open

example, 9
implied unit numbers, 9
increasing formatted record size, 85
individual layer reference, 89
INQUIRE statement, 17

INQUIRE by file statement, 17
INQUIRE by unit statement, 17

internal file, 5
internal file identifier, 5
internal files

definition, 5
format, 6
standard Fortran, 5

introduction to FFIO
layered I/O, 55

layered I/O options, 59

L

layered I/O, 57
options, 59

overview, 55
specifying layers, 58
usage, 57
usage rules, 59

library buffer sizes, 85
library buffering, 53
library error messages

flexible file I/O error messages, 2
message system, 2
system error messages, 2

LISTIO_PRECISION, 15
local assign mode, 42
logical device

definition, 52

M

multitasking
standard Fortran I/O, 19

multithreading, 19

N

named pipes, 21
and binary data, 22
and EOF, 22
detecting EOF, 24
difference from normal files, 21
ISHELL call, 21
MAXPIPE parameter, 21
piped I/O example (EOF detection), 24
piped I/O example (no EOF detection), 22
receiving process

file structure, 22
restrictions, 21
sending process

file structure, 22
specifying file structure for binary data, 22
syntax, 21

007–3695–006 149

Index

with EOF detection
usage requirements, 24

namelist I/O, 15
null layer, 104

O

open processing, 31
and INQUIRE statement, 37

operations in FFIO, 114
optimization techniques, 79

P

performance enhancements, 64
permanent files

definition, 78
physical device I/O activities, 81
position property

definition, 8
Pthreads, 19

R

raw I/O, 53
read system call, 27
record blocking

removal, 64

S

sbin processing, 45
sequential access

external file properties, 6
setbuf function, 28
setvbuf function, 28
site layer, 108
standard error

unit number, 10
standard Fortran

EOF records, 8
standard input

unit number, 10
standard output

unit number, 10
stream

definition, 28
supported implicit data conversions, 70
syscall layer, 105
system cache, 53

definition, 52
system I/O, 27

asynchronous I/O, 27
synchronous I/O, 27
unbuffered I/O, 28

system layer, 106

T

temporary files
definition, 78

text file structure, 46
text files

and FFIO, 62
text layer, 106

U

u file processing, 46
unblocked data transfer

I/O layers, 64
unblocked file structure

and BACKSPACE statement, 44
and BUFFER IN/BUFFER OUT statements, 44
definition, 44
example, 38
specifications, 45

150 007–3695–006

MIPSproTM Fortran 90 Programmer’s I/O Guide

unblocked files
and FFIO, 63

unbuffered I/O, 53
unformatted I/O, 16
UNIT intrinsic routine, 20
unit number

standard error, 10
access mode and form, 10

standard input, 10
access mode and form, 10

standard output, 10
access mode and form, 10

UNIX FFIO special files, 21
usage rules

layered I/O options, 59
user layer, 108

user layer example, 116

V

valid unit numbers, 9
vms layer, 109

W

well-formed requests
definition, 52

workstation and IEEE conversion, 74
write system call, 27

007–3695–006 151

	Table of Contents
	List of Figures
	List of Tables
	List of Examples
	List of Procedures

	About This Guide
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. Introduction
	The Message System

	2. Standard Fortran I/O
	Files
	Internal Files
	External Files

	Fortran Unit Identifiers
	Data Transfer Statements
	Formatted I/O
	Unformatted I/O

	Auxiliary I/O
	File Connection Statements
	The INQUIRE Statement
	File Positioning Statements

	Multithreading and Standard Fortran I/O

	3. Fortran I/O Extensions
	BUFFER IN /BUFFER OUT Routines
	The UNIT Intrinsic
	The LENGTH Intrinsic

	4. Named Pipe Support
	Named Pipes
	Piped I/O Example without End-of-file Detection
	Detecting End-of-file on a Named Pipe
	Piped I/O Example with End-of-file Detection

	5. System and C I/O
	System I/O
	Synchronous I/O
	Asynchronous I/O
	Unbuffered I/O

	C I/O from Fortran

	6. The assign Environment
	assign Basics
	Open Processing
	The assign Command
	Related Library Routines

	assign and Fortran I/O
	Alternative File Names
	File Structure Selection
	Buffer Size Specification
	Foreign File Format Specification
	Direct-access I/O Tuning
	Fortran File Truncation

	The assign Environment File
	Local assign

	7. File Structures
	Unblocked File Structure
	assign -s unblocked File Processing
	assign -s sbin File Processing (Not Recommended)
	assign -s bin File Processing (Not Recommended)
	assign -s u File Processing

	Text File Structure
	COS or Blocked File Structure

	8. Buffering
	Buffering Overview
	Types of Buffering
	Unbuffered I/O
	Library Buffering
	System Cache
	Default Buffer Sizes

	9. Introduction to FFIO
	Layered I/O
	Using Layered I/O
	I/O Layers
	Layered I/O Options

	10. Using FFIO
	FFIO on IRIX systems
	FFIO and Common Formats
	Reading and Writing Text Files
	Reading and Writing Unblocked Files
	Reading and Writing Fixed-length Records
	Reading and Writing COS Blocked Files

	Enhancing Performance
	Buffer Size Considerations
	Removing Blocking
	The bufa and cachea Layers
	The cache Layer

	11. Foreign File Conversion
	Conversion Overview
	Using fdcp to Transfer Files
	Data Item Conversion
	Explicit Data Item Conversion
	Implicit Data Item Conversion
	Choosing a Conversion Method

	Foreign Conversion Techniques
	Workstation and IEEE Conversion

	12. I/O Optimization
	Overview
	An Overview of Optimization Techniques
	Optimizations Not Affecting Source Code
	Optimizations That Affect Source Code
	Optimizing I/O Speed

	Optimizing System Requests
	Using a Cache Layer

	Optimizing File Structure Overhead
	Scratch Files
	Using Asynchronous Read-ahead and Write-behind
	Using Simpler File Structures

	Minimizing Data Conversions
	Minimizing Data Copying
	Changing Library Buffer Sizes
	Bypassing Library Buffers

	Other Optimization Options
	Using Pipes
	Overlapping CPU and I/O

	13. FFIO Layer Reference
	Characteristics of Layers
	Individual Layers
	The bufa Layer
	The cache Layer
	The cachea Layer
	The cos Blocking Layer
	The event Layer
	The f77 Layer
	The fd Layer
	The global Layer
	The null layer
	The syscall Layer
	The system Layer
	The text Layer
	The user and site Layers
	The vms Layer

	14. Creating a user Layer
	Internal Functions
	The Operations Structure
	FFIO and the Stat Structure

	user Layer Example

	Glossary
	Index

