
Cray® Message System
Programmer’s Guide

SG–2121 6.5

Document Number 007–3548–002

Copyright © 1991, 1998 Silicon Graphics, Inc. and Cray Research, Inc. All Rights Reserved. This manual or parts thereof may not
be reproduced in any form unless permitted by contract or by written permission of Silicon Graphics, Inc. or Cray Research, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set
forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in
similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the
Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View,
CA 94043-1389.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI,
CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90,
CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP, CRAY XMS,
CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc.

CHALLENGE, Indigo, Indy, IRIX, Onyx, and Silicon Graphics are registered trademarks and Origin2000, Indigo2, , Indigo2
IMPACT, O2, OCTANE, Onyx2, Origin, Origin200, Origin2000, POWER CHALLENGE, POWER Indigo2, POWER Onyx, the
Silicon Graphics logo, and Trusted IRIX are trademarks of Silicon Graphics, Inc. Extreme is a trademark used under license by
Silicon Graphics, Inc. R4000 and R5000 are registered trademark of MIPS Technologies, Inc. UNIX is a registered trademark in the
United States and other countries, licensed exclusively through X/Open Company Limited. X/Open is a trademark of the
X/Open Company Limited.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

Cray® Message System Programmer’s Guide SG–2121 6.5

This revision of the Cray Message System Programmer’s Guide supports the IRIX 6.5 software release. It
incorporates the following changes:

• The name of the message system has been changed from “UNICOS Message System” to “Cray Message
System” in order to reflect its use with the IRIX operating system.

• Printing formatted messages in manuals is no longer supported, and text on this subject has been
removed.

• On IRIX systems, the default NLSPATH, found in nl_types.h, differs from the default UNICOS and
UNICOS/mk NLSPATH. This may cause problems for packages that do not set the NLSPATH using
modules and assume the default NLSPATH.

• On IRIX systems, assuming the system language is C, if the user has not set NLSPATH, and neither LANG
nor LC_MESSAGES is set, and the catalog name lib.cat is passed to the catopen(3) utility, catopen(3)
tries to open a catalog using the paths defined by the DEF_NLSPATH macro in file nl_types.h.

• On IRIX systems, most message and explanation catalogs are located in the
/usr/lib/locale/C/LC_MESSAGES directory.

• On IRIX systems, message macros for formatting explanation text are defined in the
/usr/share/lib/tmac/tmac.sg file.

• On IRIX systems, other language, territory, and code set designations are defined and supported in six
localized desktops and over 30 basic locales.

• On IRIX systems, catalogs for other languages are installed in the
/usr/lib/locale/LANG/LC_MESSAGES directory tree.

• On IRIX systems, users control the language in which they receive messages by setting the LANG
environment variable or the LC_MESSAGES locale category.

Record of Revision

Version Description

6.0 January 1991
Original Printing.

7.0 June 1992
Reprint with revision to reflect message system features added in the UNICOS 7.0
release.

8.0 January 1994
Revision to reflect message system features added in the UNICOS 8.0 release. This
revision is only distributed online through Docview.

8.3 January 1995
Revision to reflect message system features added in the UNICOS 8.3 release for
X/Open compliance. This revision is only distributed online through Docview.

9.0 July 1995
Reprint with revision to reflect message system features added since the last reprint.

6.5 May 1998
Revision to support the IRIX operating system 6.5 release.

SG–2121 6.5 i

Contents

Page

About This Guide vii

Related Publications . vii

Ordering Publications . vii

Conventions . viii

Reader Comments . ix

Introduction [1] 1

Message System Features . 1

Document Outline . 2

Message System Design [2] 3

Overview . 3

Message Text Files . 5

Message Text . 7

Numbering of Messages . 7

Ordering of Messages . 9

Example 1: . 9

Example 2: . 9

Example 3: . 9

Variables in Messages . 10

Special Characters in Messages 10

Explanation Text . 11

Formatted Explanation Text 12

Unformatted Explanation Text 13

Comment Text . 13

SG–2121 6.5 iii

Cray® Message System Programmer’s Guide

Page

Combining Text Types in a File 14

Message and Explanation Catalogs 15

Catalog Search Path . 15

LANG Variable . 16

NLSPATH Variable . 16

Catalog Names . 18

Generating Catalogs . 20

Retrieving Messages . 22

Retrieval Errors . 23

Formatting Messages . 25

Special Message Types . 28

System Messages . 28

Version Messages . 29

Usage Messages . 29

User Access to the Message System 30

Using the Message System [3] 31

Planning a Conversion . 31

Building a Message Text File . 32

Modifying the Program Source . 34

Integrating Message System Files in UNICOS and UNICOS/mk Systems 36

Integrating Messages into the PL 37

Building and Installing the Catalogs 37

Maintaining Message System Catalogs 38

Deleting a Message from a Release 39

Adding and Changing Messages 39

Appendix A Guidelines for Messages and Explanations 41

Guidelines for Messages . 41

iv SG–2121 6.5

Contents

Page

Clear Messages . 42

Specific Messages . 43

Respectful Messages . 44

Grammatical Messages . 45

Severity Levels in Messages . 46

Substitutable Strings in Messages 48

Guidelines for Explanations . 49

Describing the Problem . 49

Describing the Solution . 50

Glossary 53

Index 55

Figures
Figure 1. Message System Overview 4

Figure 2. Processing the Message Text File 6

Tables
Table 1. Special characters used in messages and explanations 11

Table 2. Special characters accepted by MSG_FORMAT and CMDMSG_FORMAT 26

SG–2121 6.5 v

About This Guide

This publication documents the Cray message system, which runs on the
UNICOS, UNICOS/mk, and IRIX operating systems. This publication discusses
the Cray message system from the perspective of a programmer who wants to
issue messages from code by using the message system library routines and
message system catalogs. It contains information about how to create message
and explanation catalogs and how to retrieve messages from those catalogs
from within a program.

This information is useful to programmers using the message system and to
individuals (for example, system administrators) who want to understand the
design of the Cray message system.

Related Publications

The following documents contain additional information that may be helpful:

• For information on the message system from the point of view of the system
administrator who is installing, maintaining, and updating message catalogs
on a UNICOS system, and for information about using the message system
to retrieve message explanations, see General UNICOS System Administration,
publication SG–2301.

• For information on the message system from the point of view of the system
administrator who is installing, maintaining, and updating message catalogs
on a UNICOS/mk system, and for information about using the message
system to retrieve message explanations, see UNICOS/mk General
Administration, publication SG–2601.

Ordering Publications

Silicon Graphics maintains publications information on the IRIX operating
system and related products at the following URL:

http://techpubs.sgi.com/library

The preceding website contains information that allows you to browse
documents online, order documents, and send feedback to Silicon Graphics.

SG–2121 6.5 vii

Cray® Message System Programmer’s Guide

Cray Research maintains publications information on the UNICOS and
UNICOS/mk operating systems and related products at the following URL:

http://www.cray.com/swpubs

Also, the User Publications Catalog, publication CP–0099, describes the
availability and content of all Cray Research hardware and software documents
that are available to customers. Cray Research customers who subscribe to the
Cray Inform (CRInform) program can access this information on the CRInform
system.

To order a Cray Research or Silicon Graphics document, either call the
Distribution Center in Mendota Heights, Minnesota, at +1–612–683–5907, or
send a facsimile of your request to fax number +1–612–452–0141.

Silicon Graphics employees may send their orders via electronic mail (using a
UNIX system) to orderdsk.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

The following machine naming conventions may be used throughout this
document:

viii SG–2121 6.5

About This Guide

Term Definition

UNICOS systems All configurations of Cray parallel vector
processing (PVP) systems that support the Cray
message system

UNICOS/mk systems All configurations of Cray massively parallel
processing (MPP) systems that support the Cray
message system

IRIX systems All configurations of CHALLENGE,
CHALLANGE 10000, CRAY, CRAY Origin2000,
Indigo2 10000, Indigo R4000, Indigo2, Indy, O2,
Octane, Onyx, Onyx Extreme, Onyx2, Origin 200,
Origin 2000, POWER CHALLENGE, POWER
CHALLANGE 10000, POWER Indigo2, and
POWER Onyx systems that support this release

The default shell in the UNICOS and UNICOS/mk operating systems, referred
to in Cray Research documentation as the standard shell, is a version of the Korn
shell that conforms to the following standards:

• Institute of Electrical and Electronics Engineers (IEEE) Portable Operating
System Interface (POSIX) Standard 1003.2–1992

• X/Open Portability Guide, Issue 4 (XPG4)

The UNICOS and UNICOS/mk operating systems also support the optional use
of the C shell.

Cray UNICOS Version 10.0 is an X/Open Base 95 branded product.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. You can contact us in any of the following ways:

• Send us electronic mail at the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an SPR or PV be
filed. If filing an SPR, use PUBLICATIONS for the group name, PUBS for the
command, and NO-LICENSE for the release name.

SG–2121 6.5 ix

Cray® Message System Programmer’s Guide

• Call our Software Publications Group in Eagan, Minnesota, through the
Customer Service Call Center, using either of the following numbers:

1–800–950–2729 (toll free from the United States and Canada)

+1–612–683–5600

• Send a facsimile of your comments to the attention of “Software Publications
Group” in Eagan, Minnesota, at fax number +1–612–683–5599.

We value your comments and will respond to them promptly.

x SG–2121 6.5

Introduction [1]

User messages are the most important part of communication between software
and its users. Messages tell users when the hardware or software cannot
perform as requested. It is vital in these situations to report in accurate detail
the circumstances of the problem and the path to a solution.

Silicon Graphics/Cray Research has systems installed worldwide. Our users
require not only accurate message information, but also access to the messages
so that they can be translated to the native language of users who do not speak
English.

The Cray message system consists of tools and procedures for issuing messages
to users from program code and delivering documentation on those messages
in a format that is suitable for translation.

The Cray message system is based on the X/Open Native Language System
specification as described in the X/Open Company Standard XPG4. Cray
Research has provided extensions to the standard that include a more complete
set of tools and procedures for working with messages and message
explanations.

Any programmer can use the message system tools in a Cray Research
UNICOS or UNICOS/mk environment or in a Silicon Graphics IRIX
environment. This manual explains how the message system is designed to
work and how you can use it from your programs. The examples in this
document assume that you are using the C language; however, any language
that can call C library functions can use the Cray message system.

Warning: Sites using the Cray ML-Safe configuration of the UNICOS or
UNICOS/mk operating systems or the Trusted IRIX operating system can use
the information and procedures outlined in the following sections to change
or add messages. However, for changed messages, you must not alter the
original, underlying meaning of the message.

1.1 Message System Features

The message system includes the following features, which aid in improving
error reporting and problem resolution:

• message catalogs, located separately from the program code, which contain
the text of the messages issued at run time

SG–2121 6.5 1

Cray® Message System Programmer’s Guide

• explanation catalogs, located in the same directory as the message catalogs,
which contain a discussion of the problem and suggested solutions

• Online access to message explanations through the explain(1) command

• User control of the message format through the MSG_FORMAT environment
variable

• User control of the language of the message text (where translated messages
are supplied) through the LANG environment variable

• Message and explanation text source files distributed with the release to
allow local modifications of the message or explanation text

• Published guidelines for writing good messages and good message
documentation

1.2 Document Outline

Each chapter of this document discusses an aspect of the message system.

Chapter 2, page 3, describes each part of the message system and the purpose it
serves.

Chapter 3, page 31, provides a sample procedure for converting an existing
piece of software to use the message system.

Appendix A, page 41, is an appendix that lists guidelines for writing effective
messages and usable message explanations.

2 SG–2121 6.5

Message System Design [2]

The Cray message system consists of a set of tools to build message text files into
catalogs, to retrieve messages from catalogs, and to format messages to be issued
to the user. Under the message system, all messages and explanations reside in
a binary message catalog maintained on disk. No messages need to appear
within program code.

This chapter describes each element of the message system from a design
perspective. All terms and concepts involved in the message system are
introduced.

The procedures for using the message system in a product are described in
Chapter 3, page 31. That chapter presents a sample procedure for using
message system tools in a program.

2.1 Overview

The elements of the message system are as follows:

• Message text files (group.msg)

• Message and explanation catalogs (group.cat and group.exp)

• Catalog creation utilities (caterr(1) and gencat(1))

• Message retrieval library functions (catopen(3), catclose(3),
catgetmsg(3), and catgets(3))

• Message formatting library function (catmsgfmt(3))

• Explanation viewing utility (explain(1))

• Catalog search path utility (whichcat(1)) (UNICOS and UNICOS/mk
systems only)

• User environment variables or locales for language, catalog path, and
message format (LANG, NLSPATH, MSG_FORMAT, and CMDMSG_FORMAT)

These elements are described briefly in the following paragraphs. Figure 1
shows the relationships among these elements.

SG–2121 6.5 3

Cray® Message System Programmer’s Guide

caterr
gencat

caterr
gencat

group. cat group. exp

File system

group. msg

Standard input/output

Library routinesUser process

User environment

MSG_FORMAT

LANG

NLSPATH

catclose

catmsgfmt

catgets

catgetmsg

catopen

Utility, program,
application, or command

explain

CMDMSG_FORMAT

a11000

Figure 1. Message System Overview

Under the message system, programs issue messages from catalogs. Each
software product has a catalog of messages and a catalog of explanations. The
source format of these catalogs is maintained in a message text file within the

4 SG–2121 6.5

Message System Design [2]

source directory tree for the product. The message system contains tools to
build a message catalog and an explanation catalog from the message text file.
The message text file and the two catalogs all use the group code, which
identifies the product or product group, as part of the file name.

Catalogs can be built from a message text file, either from the command line or
from within an nmake(1) makefile (on UNICOS and UNICOS/mk systems) or a
make(1) or smake(1) makefile (on IRIX systems). On UNICOS and
UNICOS/mk systems, catalogs are installed in the /lib or /usr/lib directory
trees. On IRIX systems, catalogs are installed in the
/usr/lib/locale/LANG/LC_MESSAGES directory tree. (LANG represents
either the LANG environment variable or the LC_MESSAGES category, both of
which the catopen(3C) utility uses to locate the correct message catalog.)

Programs gain run-time access to the message catalogs through library
functions. These functions open and close catalogs, retrieve messages from a
catalog, and format messages according to a user-specified pattern.

Users receive information from the online explanation catalog by using the
explain(1) utility.

Users control the type and format of information output with an error message
by setting the MSG_FORMAT and CMDMSG_FORMAT environment variables. They
control the directory from which the error messages are retrieved by setting the
NLSPATH environment variable. On UNICOS and UNICOS/mk systems, users
can determine which catalogs are being accessed and what catalog search path
is being traversed by using the whichcat(1) utility.

If the messages are available in multiple languages, users control the language
in which they receive messages by setting the LANG environment variable or the
LC_MESSAGES locale category.

For a complete description of the library functions, utilities, environment
variables, and files that constitute the message system, see the man pages.

Each of the following sections describes part of the message system.

2.2 Message Text Files

The message text file contains the source text for both the messages issued to
users from a program and the message explanations available to users through
the explain(1) utility. The message text file is the source for all messages and
explanations to be processed and delivered by the rest of the message system.

SG–2121 6.5 5

Cray® Message System Programmer’s Guide

Figure 2 illustrates how the message text file is processed by and for other
elements of the message system.

caterr -c caterr -e -c

UNICOS
program explain

Message catalog Explanation catalog

Message text file

Run-time message Online explanation

a115xx

Figure 2. Processing the Message Text File

The message text file should be named as follows:

group.msg

This name is required to satisfy rules for catalog names and implicit rules in
nmake(1) (UNICOS and UNICOS/mk systems). group is the group code that
identifies your product. Several programs can use the same group code or a
single program can use several group codes. The group code helps users
determine the source of the message. The .msg suffix distinguishes a message

6 SG–2121 6.5

Message System Design [2]

text file from a message catalog (.cat suffix) or explanation catalog (.exp
suffix).

The group codes local, Local, LOCAL, and all group codes that begin with Z
(uppercase only) are reserved for site use. Catalogs supplied by Cray Research
do not use these group codes.

The message text file can contain the following four basic types of information:

• Message text, preceded by the $msg tag

• Explanation text containing nroff formatting codes, preceded by the $nexp
tag

• Plain ASCII explanation text, preceded by the $exp tag

• Comments, consisting of $<space> text, $<tab> text, or $<newline>

The following sections describe the text associated with each type of tag.

2.2.1 Message Text

A $msg tag precedes each message in the message text file. This tag is used by
the catalog utilities to identify the associated text as a user message to be
included in the message catalog. Each message entry must also include the
message number.

The following sections discuss these aspects of writing message text:

• Numbering of messages

• Ordering of messages

• Variables in messages

• Special characters in messages

2.2.1.1 Numbering of Messages

Each message contained in the message text file must have a message number.
The two types of message numbers are as follows:

• Literal numbers

• Symbolic names

SG–2121 6.5 7

Cray® Message System Programmer’s Guide

Literal message numbers are integers that follow the $msg tag. Combined with
the group code, the message number provides a unique message identifier for
messages issued using the message system.

A typical message with a literal number appears as follows:

$msg 6 The daemon is unable to migrate the file.

Rather than literal message numbers, it is recommended that you use symbolic
message names (that is, a symbol instead of a number). The purpose of
symbolic names is to provide a cross-reference capability between message
names and numbers.

A typical message with a symbolic name appears as follows:

$msg DGR_UTM The daemon is unable to migrate the file.

To use symbolic names, you must perform the following steps:

1. Create an include file to map the symbolic names to literal numbers.

2. Specify the include file in the message text file.

3. Use the -s option of the caterr(1) catalog generation utility when you
generate the message and explanation catalogs from the message text file.
(For a complete description of the caterr utility, see Section 2.3.3, page 20.)

Suppose you have a message text file (xyz.msg) that contains the following
message definitions:

$msg EMLEVPAR Missing parameter to MLEV routine
$msg EMLEVPMI Parameter to MLEV routine must be a positive integer

An include file (xyzcodes.h) can be created to map the symbolic names to
literal numbers. This include file would appear as follows:

#define EMLEVPAR 500 /* Missing parameter to MLEV routine */

#define EMLEVPMI 501 /* Parameter to MLEV routine must be positive *

You must add the following line before the first message in the message text file:

#include "xyzcodes.h"

A message catalog (xyz.cat) can be created from the message text file that
contains the symbolic names by using the following utility:

caterr -s -c xyz.cat xyz.msg

8 SG–2121 6.5

Message System Design [2]

The -s option calls the cpp(1) C language preprocessor, which maps the
symbols to numbers based on the definitions in the include file. These include
files also can be included in C source code files to provide access to the same
symbolic message names.

Symbolic error codes can be created in any language if the compiler for that
language has a capability comparable to #include. In some cases, the cpp(1)
utility might not be appropriate to do the symbolic-to-numeric mapping,
because it processes only C-style include files; instead, a stand-alone program
may be required to do the mapping.

Whether you use literal or symbolic message names, separate the $msg tag
from the message number with at least one space or tab. If you use more than
one space or tab, the file is still processed correctly, but the extra spaces or tabs
are removed during text-to-catalog processing.

Separate the message number from the message text with one space. If you use
more than one space, all spaces after the first are processed as leading spaces in
the message text.

2.2.1.2 Ordering of Messages

Messages must appear in ascending order, but they are not required to be
consecutive. For example, all three of the following message numbering
systems are acceptable:

Example 1:

$msg 1 Message one

$msg 2 Message two

$msg 3 Message three

Example 2:

$msg 100 Message one

$msg 101 Message two

$msg 102 Message three

Example 3:

$msg 150 Message one

$msg 160 Message two

$msg 170 Message three

SG–2121 6.5 9

Cray® Message System Programmer’s Guide

Space is not allocated in the message file for each possible number in the
sequence. Therefore, messages numbered as shown in example 2 or 3 require
the same storage space as messages numbered as shown in example 1.

2.2.1.3 Variables in Messages

Many messages contain variables that are supplied at run time. Variables can
be included in messages by using the printf(3) (UNICOS and UNICOS/mk
systems) or printf(3S) (IRIX systems) format codes. For example, format
codes such as %s, %d, and %f) could be used in the message that appears in the
message text file. The message is returned from the catalog with the code
embedded. You construct a print statement that supplies the proper value for
the variable at run time.

Note: Use single quotation marks (’ ’)to enclose user-supplied strings (such
as file names and user IDs) that are referred to as tokens. The use of
quotation marks highlights for users information that is specific to the
situation and reduces the possibility of variables being interpreted with a
literal meaning. It is not a requirement to use quotation marks to enclose
numeric values, language keywords, or other literal replacement strings.

A typical message text entry might appear as follows:

$msg 100 Unknown account name ’%s’.

When printed at run time for a user who has entered abcd as an account name,
the message appears as follows:

Unknown account name ’abcd’.

For an example of code to retrieve a message and modify it, see Section 3.3,
page 34.

2.2.1.4 Special Characters in Messages

Messages that extend past the length of one physical line in the message text
file must contain a continuation character (\) at the end of each continued line
of message text source. The last line of the message text must not end with a \
character because it is not continued.

The following example illustrates a message that exceeds one line in the
message text file:

10 SG–2121 6.5

Message System Design [2]

$msg 104 A report modification option was used \

in the command line, but a report was not \
requested.

You can embed special characters within the text of the message by using
escape sequences (initiated with the \ character). Table 1 lists the escape
sequences that are allowed in messages and unformatted explanation text.

Table 1. Special characters used in messages and explanations

Sequence Character

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\ nnn ASCII character corresponding to the octal value nnn

Use newline characters within a multiline message to indicate where the lines
should break on the screen.

Any characters other than those listed in Table 1 are passed through without
the back slash (for example, \q produces q).

Although special characters are sometimes necessary in the message text, they
make it difficult for users to control the layout of the error message through the
MSG_FORMAT and CMDMSG_FORMAT environment variables. For more
information about how the message system formats messages, see Section 2.5,
page 25.

2.2.2 Explanation Text

Each message entry should have a corresponding explanation. The message
system accepts the following two types of explanations:

• Formatted explanations that contain formatting macros

SG–2121 6.5 11

Cray® Message System Programmer’s Guide

• Unformatted explanations that consist of plain ASCII text

Note: Message explanations originating within Silicon Graphics/Cray
Research software development (as opposed to on site) are formatted using
the nroff message macros contained in the tmac.sg file (see the msg(7D)
man page or the msg(5) reference page). The option to use unformatted
ASCII message explanations exists for the convenience of customer
programmers who want to use the message system, but do not want to
format the explanations.

The following sections discuss details specific to formatted and unformatted
explanation text.

2.2.2.1 Formatted Explanation Text

An $nexp tag at the beginning of the text identifies formatted explanation text.
Each formatted explanation text entry must include the message number and the
text of the message with variable names inserted in place of variable symbols.

Use the message macros provided with the message system tools to mark up
the explanation text. (The message macros are defined in the
/usr/lib/tmac/tmac.sg file on UNICOS and UNICOS/mk systems and
described on the msg(7D) man page. On IRIX systems, message macros are
defined in the /usr/share/lib/tmac/tmac.sg file and described on the
msg(5) reference page.) The message macros are collections of nroff(1) text
formatting directives defined for use with the message system.

It is a convention to use italics for variable names in formatted message text.
(Italic characters usually appear as underscored or reverse video text online.)

An nroff explanation does not require continuation characters at the end of
lines.

An explanation might appear after markup as follows:

$nexp 100

The account name \&’*Vacid*C’ is not recognized.

.PP

The account ID (\fIacid\fR) specified with the

-a option is not a known account name. Verify

that the ID you entered is a valid account ID on
the system.

.ME

12 SG–2121 6.5

Message System Design [2]

2.2.2.2 Unformatted Explanation Text

Sites that elect not to format their explanations, but that want to create a
message catalog for site-specific software, can use unformatted message
explanations.

Each unformatted explanation text entry begins with an $exp tag and includes
the message number and the text of the message, with variable names inserted
in place of variable symbols. A continuation character (\) must appear at the
end of each continued line of a multiline unformatted explanation. The last line
of the explanation must not end with a \ character because it is not continued.
Use angle brackets (< >) for variable names in unformatted explanation text.
(Italics are usually used for variables, but italics are not available in
unformatted text.)

You must specify the locations of newline and other special characters in an
unformatted explanation. Table 1, page 11, summarizes the special characters. If
you do not specify newline characters, none are used. This could render the
explanation unreadable.

The unformatted version of the explanation presented on page 12 would appear
in the text file as follows:

$exp 100 The account name ’<acid>’ is not recognized.\n\

\n\

The account ID (acid) specified with the\n\

-a option is not a known account name. Verify\n\

that the ID you entered is a valid account ID on\n\

the system.\n

2.2.3 Comment Text

The $ tag indicates that all remaining text on the source file line is a comment.
A space or tab must appear between the $ and the first character of the
comment, or the $ must appear as the only character on the line. Comments
cannot consist of more than one line.

The following example shows four comment lines:

$ The following text contains the messages

$ and explanations for the ja(1) command.
$ These messages are part of the "acct"

$ software group.

SG–2121 6.5 13

Cray® Message System Programmer’s Guide

Use comments rather than blank lines to create white space in the source file.
Blank lines are significant to the nroff and troff text formatters and can
create extra vertical spacing in online and printed explanations.

2.2.4 Combining Text Types in a File

The only rule governing how you can combine the four types of text in a
message file is that messages and explanations must appear in ascending
numerical order. One common arrangement is for messages and explanations to
appear in an alternating order.

The following example illustrates this arrangement:

$msg 100 Text of message 1
$nexp 100

Text of message 1 with variables inserted

.PP

The explanation for message 1

.ME
$

$msg 101 Text of message 2

$nexp 101

Text of message 2 with variables inserted

.PP

The explanation for message 2
.ME

Another possible arrangement is to group all of the messages together, followed
by all of the explanations.

The following example illustrates this arrangement:

$ Messages

$msg 100 Text of message 1

$msg 101 Text of message 2

$
$ Explanations

$nexp 100

Text of message 1 with variables inserted

.PP

The explanation for message 1

.ME
$nexp 101

Text of message 2 with variables inserted

14 SG–2121 6.5

Message System Design [2]

.PP

The explanation for message 2
.ME

Any other arrangement in which messages and explanations are presented in
ascending order can be processed successfully by the catalog generation tools.
For the purposes of arranging the catalog, formatted and unformatted
explanations are interchangeable.

Comments can appear before, after, or between any of the other text types (that
is, $msg, $nexp, and $exp) but cannot appear within them.

2.3 Message and Explanation Catalogs

The message system uses message catalogs and explanation catalogs. Message
catalogs contain the text of user messages issued by the program or programs
of a particular software group. The message catalog is the run-time source of
messages issued to users. Typically, explanation catalogs contain copies of each
message in the message catalog, along with an accompanying explanation of
the cause of the message, and actions suggested to remedy the error condition.

Both types of catalogs are generated from the message text file. When you have
created a message text file, run the caterr(1) utility, using the message text file
as input, to convert the message text file into the form that is used by the
message system library functions. When invoked with the -c option, caterr
calls a utility named gencat(1) to build a binary message catalog or a binary
explanation catalog. (For more information on caterr and gencat, see Section
2.3.3, page 20.) To produce a message catalog and an explanation catalog from
one message text file, you must run caterr twice.

The following sections discuss the location of message and explanation catalogs
and explain how to use caterr to build them.

2.3.1 Catalog Search Path

The LANG and NLSPATH environment variables and the LC_MESSAGES category
determine the search path on the disk for the message and explanation catalogs.
(The acronym NLS refers to the X/Open Native Language System on which the
Cray message system is based.)

The use of environment variables and categories to determine the catalog search
path gives users and program developers control over which catalogs the
message system library functions access.

SG–2121 6.5 15

Cray® Message System Programmer’s Guide

2.3.1.1 LANG Variable

The LANG environment variable and the LC_MESSAGES category identify the
user’s requirements for native language, territory, and coded character set.
These components are specified in a string of the following form:

language[_territory[.codeset]]

On UNICOS and UNICOS/mk systems, the string En is the designation for the
American English language. On IRIX systems, the string en_US is the
designation for the American English language.

On UNICOS and UNICOS/mk systems, other language, territory, and code set
designations (if any) are defined and supported locally. IRIX systems support
six localized desktops and over 30 basic locales produced by Silicon Graphics.

The value of language is part of the internal value of the NLSPATH environment
variable.

2.3.1.2 NLSPATH Variable

The NLSPATH environment variable contains the message system search path;
that is, the message system searches for catalogs in the directories specified by
the value of NLSPATH. If the catalog is not found on the user search path (or if
the user does not define NLSPATH), the internal value of NLSPATH is searched.

In addition to string literals, NLSPATH can contain any of the following variable
fields:

Field Description

%N The value of the name parameter passed to catopen. This is the
same as the group code.

%L The value of the LANG environment variable or the LC_MESSAGES
category.

%l The language component of the LANG environment variable or
the LC_MESSAGES category. This component determines the
language in which messages are displayed.

%t The territory component of the LANG environment variable or the
LC_MESSAGES category.

16 SG–2121 6.5

Message System Design [2]

%c The code set component of the LANG environment variable or the
LC_MESSAGES category.

The file name specified in the NLSPATH environment variable must be the name
of the message catalog (not the explanation catalog) to be referenced. For
example, to specify that the message system should search the group.cat file in
the /usr/tmp directory, specify the following NLSPATH definition:

/usr/tmp/%N.cat

The message system replaces %N with the group code you pass to catopen(3)or
explain(1). For example, if your group code is lib, the message system
would search for a message catalog called /usr/tmp/lib.cat.

On UNICOS and UNICOS/mk systems, the explain utility changes the .cat
suffix to .exp before searching for the explanation catalog. Therefore, using the
NLSPATH defined in the previous example and a group code of lib, the
explain utility would search for the explanation catalog named
/usr/tmp/lib.exp. On IRIX systems, the explain utility will properly
display explanations even if the NLSPATH definition does not append the .cat
suffix.

Note: You must always use %N for the catalog name in the definition of the
NLSPATH environment variable. If you hard code the catalog name, the
message system tries to retrieve all messages from the catalog you specify.
For example, if you set the NLSPATH environment variable to
/usr/tmp/lib.cat, the message system searches this catalog for errors
from any product. This could cause a library message to be issued in a
situation in which another product’s message should have been issued.
Using the %N variable as the catalog name prevents this error.

Also, you must never specify the explanation catalog in the NLSPATH
environment variable. If you specify the path name /usr/tmp/%N.exp in
NLSPATH, the message system will access the explanation, rather than the
message when it retrieves the message by using the catgetmsg(3) or
catgets(3) function. Use the .cat (not the .exp) suffix in NLSPATH
declarations.

If the message system searches the paths specified by the NLSPATH variable and
does not find the file it is looking for, or if the user has not defined NLSPATH,
the message system searches its internally specified path. This path is defined
as follows.

SG–2121 6.5 17

Cray® Message System Programmer’s Guide

(UNICOS and UNICOS/mk systems only)

/usr/lib/nls/%l/%N.cat:/lib/nls/%l/%N.cat:\

/usr/lib/nls/En/%N.cat:/lib/nls/En/%N.cat

(IRIX systems only)

/usr/lib/locale/%L/LC_MESSAGES/%N:\

/usr/lib/locale/%L/Xopen/LC_MESSAGES/%N:\
/usr/lib/locale/%L/LC_MESSAGES/%N.cat:\

/usr/lib/locale/C/LC_MESSAGES/$N:\

/usr/lib/locale/C/LC_MESSAGES/%N.cat

Most message and explanation catalogs are located on disk in the
/usr/lib/nls/En directory (for UNICOS and UNICOS/mk systems) or in
the /usr/lib/locale/C/LC_MESSAGES directory (for IRIX systems).
Catalogs that must be present for the system to work when the /usr/lib file
system is not mounted are located in the /lib/nls/En directory (UNICOS
and UNICOS/mk systems). Thus, if the LANG or LC_MESSAGES language
designation variable is set to an unsupported value, the English catalog is still
searched. Users with an unset or incorrectly set LANG environment variable or
LC_MESSAGES category always receive messages in English. On IRIX systems,
if the LANG or LC_MESSAGES language designation variable is set to an
unsupported value, the catalog from C locale will be used, and the message will
be displayed in American English.

On UNICOS and UNICOS/mk systems, to determine which catalog is
returning a message or explanation, use the whichcat(1) utility. This utility
verifies that the expected catalog is being referenced. The syntax whichcat -l
returns a list of the path names that are searched when looking for the catalog.
If no message or explanation catalog is found, this usage can help you to
determine why. There is no parallel utility on IRIX systems.

2.3.2 Catalog Names

Message catalogs are named by group code with a .cat suffix added (for
example, the messages for the library group are in a catalog named lib.cat).
Explanation catalogs are named by group code with a .exp suffix added (for
example, the explanations for the lib group are in a catalog named lib.exp).
This naming convention is required to satisfy rules for catalog names and for
UNICOS and UNICOS/mk nmake(1) implicit rules. (nmake(1) is not available
on IRIX systems.)

18 SG–2121 6.5

Message System Design [2]

The catopen(3) function references the NLSPATH environment variable when
determining the message catalog to open. For example, on UNICOS and
UNICOS/mk systems, if the user has not set NLSPATH, and neither LANG nor
LC_MESSAGES is set, and the catalog name lib is passed to catopen,
catopen tries to open the catalog /usr/lib/nls//lib.cat. If this catalog
does not exist, catopen tries the next catalog, in this order:

/lib/nls//lib.cat

/usr/lib/nls/En/lib.cat

/lib/nls/En/lib.cat

On IRIX systems, assuming the system language is C, if the user has not set
NLSPATH, and neither LANG nor LC_MESSAGES is set, and the catalog name
lib.cat is passed to the catopen utility, catopen tries to open a catalog
using the paths defined by the DEF_NLSPATH macro in file nl_types.h, in
this order:

/usr/lib/locale/C/LC_MESSAGES/lib.cat

/usr/lib/locale/C/Xopen/LC_MESSAGES/lib.cat
/usr/lib/locale/C/LC_MESSAGES/lib.cat.cat

/usr/lib/locale/C/LC_MESSAGES/lib.cat

/usr/lib/locale/C/LC_MESSAGES/lib.cat.cat

If no catalog exists, an error condition has been encountered. For information
about the different types of catalog errors you may encounter and
recommendations for handling them, see Section 2.4.1, page 23.

The explain(1) user utility references the NLSPATH environment variable
when determining what explanation catalog to open. For example, a user enters
one of the following utilities:

explain lib1001

explain lib-1001

Using the internal values of NLSPATH and either LANG or LC_MESSAGES for %l,
the explain utility searches for the following catalogs in succession on
UNICOS and UNICOS/mk systems:

SG–2121 6.5 19

Cray® Message System Programmer’s Guide

/usr/lib/nls/%l/lib.cat.exp

/lib/nls/%l/lib.cat.exp
/usr/lib/nls/En/lib.cat.exp

/lib/nls/En/lib.cat.exp

On IRIX systems, if NL_CAT_LOCALE is passed to catopen(3C) and
LC_MESSAGES equals C, explain(1) searches for the following catalogs in
succession:

/usr/lib/locale/C/LC_MESSAGES/lib.exp

/usr/lib/locale/C/Xopen/LC_MESSAGES/lib.exp

/usr/lib/locale/C/LC_MESSAGES/lib.exp.cat

Otherwise, explain(1) searches for the following catalogs in succession:

/usr/lib/locale/%L/LC_MESSAGES/lib.exp
/usr/lib/locale/%L/Xopen/LC_MESSAGES/lib.exp

/usr/lib/locale/%L/LC_MESSAGES/lib.exp.cat

/usr/lib/locale/C/LC_MESSAGES/lib.exp

/usr/lib/locale/C/LC_MESSAGES/lib.exp.cat

You can change the value of NLSPATH so that the message catalogs can be
located in any directory. You may want to change the value of NLSPATH when
you are developing code, locate the message catalog in a local directory, and
change NLSPATH to point to that local directory.

2.3.3 Generating Catalogs

Use the caterr(1) utility to convert your message text file to a binary message
catalog and a binary explanation catalog. You must invoke caterr twice to
generate both types of catalogs.

The syntax for caterr is as follows:

caterr [-c catfile] [-e] [-s[-P cpp_opts]] [-Y x,pathname]
[msgfile]

The caterr utility processes the message text file (msgfile) to prepare it for
conversion to a catalog. (If msgfile is not specified, the input is read from
stdin.) The conversion to a catalog is actually performed by a second utility
called gencat(1). However, you can use the -c option to caterr to instruct
caterr to call gencat automatically. If you use the -c option, caterr
outputs the catalog and names it catfile.

20 SG–2121 6.5

Message System Design [2]

It is recommended that you use caterr with the -c option. (The gencat
utility exists as a separate utility to maintain compatibility with the X/Open
standards for message catalog processing. There is no advantage in calling
gencat separately.) By default, caterr looks for gencat in the
/usr/bin/gencat file.

By default, the caterr utility generates a message catalog. To generate the
explanation catalog, use the -e option.

Message text files can contain symbolic message codes instead of message
numbers. (For a definition of symbolic message codes, see Section 2.2.1.1, page
7.) The -s option to caterr calls the C preprocessor (cpp(1)) to process the
symbolic codes in the message text file into message numbers according to a
mapping defined in an include file specified in the message text file. The -P
suboption to the -s option passes the contents of a string enclosed in quotation
marks to cpp for processing. Use the -P suboption if you need to pass options
and parameters to cpp from the caterr command line.

If $nexp explanation tags are encountered in the message text file, the caterr
utility calls the text formatting utility nroff as part of its processing of the
message text file. nroff uses message macro definitions to format the
explanation text. By default, caterr looks for nroff in the /usr/bin/nroff
file and for the message macros in the /usr/lib/tmac/tmac.sg file.

The -Y option lets you specify the version of nroff, gencat, and the tmac.sg
message macros that caterr calls. This option is needed primarily when
caterr is used in the system generation environment. For examples of using
the -Y option, see the caterr(1) man page.

The following example uses caterr to generate a message catalog named
lib.cat from the message text file lib.msg:

caterr -c lib.cat lib.msg

The following example uses caterr to generate an explanation catalog named
lib.exp from the message text file lib.msg:

caterr -e -c lib.exp lib.msg

Remember to invoke caterr twice to generate both a message and an
explanation catalog. For more information about generating catalogs, see the
caterr(1) and gencat(1) man pages.

SG–2121 6.5 21

Cray® Message System Programmer’s Guide

2.4 Retrieving Messages

To access the message catalog from your program on UNICOS and
UNICOS/mk systems, use the catopen(3), catclose(3), catgetmsg(3), and
catgets(3) library functions. To access the message catalog from your
program on IRIX systems, use the catopen(3C), catclose(3C),
catgetmsg(3C), and catgets(3C) library functions. For the details of calling
these functions, see the man pages.

To retrieve a message from the catalog, open the catalog by using catopen and
then retrieve the message by using either catgetmsg or catgets. The nature
of your program and the type of messages it issues determines which of these
two functions you use. If the program usually issues fatal messages and then
aborts, you should use catgetmsg. If the program issues many messages and
continues processing, you should use catgets.

On UNICOS and UNICOS/mk systems, the two functions are used in separate
situations because they use system resources differently. catgetmsg reads into
a user buffer the message corresponding to the message ID that you pass to it.
catgets reads the entire set into an internal buffer. This has the effect of
reading in the entire catalog, because Cray message catalogs are structured as a
single set.

Because of this difference, catgetmsg is more efficient in situations in which
only a few messages are issued, where error conditions are usually fatal, or
where there are many messages and a program cannot afford the increased size
at run time. Library functions and most utilities are examples of programs that
should use catgetmsg.

The catgets function is more efficient in situations in which many messages
are issued during the execution of the program. It is unnecessary to access the
disk each time a message is read from the catalog, because all of the messages
are in a buffer. Compilers are an example of programs that can gain an
advantage from using catgets.

On IRIX systems, the performance difference is minimal between catgets and
catgetmsg on relatively short messages, which are the most common.
catgets may be slightly faster than catgetmsg because it does not need to
copy the message into a supplied message buffer.

If catgetmsg or catgets fails because the message catalog identified by the
catalog descriptor is not available or because the requested message is not in
the catalog, a pointer to a null ("") string is returned.

22 SG–2121 6.5

Message System Design [2]

When you are finished with a message catalog, close it by using the catclose
library function.

2.4.1 Retrieval Errors

It is possible that an error might occur during your attempt to open the message
catalog or to retrieve a message. The message system library functions let you
write your code assuming that the message retrieval will succeed. If the retrieval
does not succeed, your program can continue processing despite the failure.

You do not need to perform a specific check to determine whether a catopen
function fails, because the next catgets or catgetmsg will fail if the catalog
is not available.

If you issue a correct catgetmsg or catgets function, you can encounter only
two types of errors:

• The catalog is unavailable.

• The catalog is available, but the requested message is not available.

The catgets function returns a pointer to the default string s, which you
passed to catgets, in response to either of these errors.

The catgetmsg function returns a pointer to a null ("") string in response to
either of these errors. You can create a default message by placing it into the
buffer used by catgetmsg. If the catgetmsg function fails, your default
message will be undisturbed.

This default message capability allows (but does not require) your program to
distinguish between these two types of failures. As with almost any call to a
library function, you must decide on the level of fault tolerance or error
recovery appropriate to your program.

The __catopen_error_code() internal routine also is available to help you
diagnose the cause of a failed catopen call. (A failed catopen call is one
which returns a value of –1.)

The __catopen_error_code routine returns a nonzero value indicating the
reason for the failure. A return value less than indicates that the problem is an
error internal to the program. A return value greater than 0 indicates that the
problem is a system error.

The internal error codes have symbolic names defined in the nl_types.h
header file. These names and definitions are as follows:

SG–2121 6.5 23

Cray® Message System Programmer’s Guide

Error name Description

NL_ERR_ARGCNT catopen was called with fewer than two
arguments. (UNICOS and UNICOS/mk systems)

NL_ERR_ARGNULL The name argument to catopen is NULL.
(UNICOS and UNICOS/mk systems)

NL_ERR_HEADER catopen was not able to validate the message
catalog file header as a valid message catalog file.
(UNICOS and UNICOS/mk systems)

NL_ERR_MALLOC catopen was not able to allocate memory (using
malloc(3)) for internal structures.

NL_ERR_MAP The requested catalog file could not be memory
mapped (see the mmap(2) man page). (IRIX
systems)

NL_ERR_MAXOPEN The maximum number of per process open
message catalogs had been exceeded. See
NL_MAX_OPENED in the nl_types.h file. (IRIX
systems)

NL_ERR_VERSION catopen found an invalid version number in the
message catalog file header. (UNICOS and
UNICOS/mk systems)

System error codes are the system return values defined in the errno.h header
file. (These codes are documented on the intro(2) man page.) System error
codes are generated in the following cases:

• (UNICOS and UNICOS/mk systems) catopen was not able to successfully
open (using open(2)) any of the message catalog files specified in the
NLSPATH environment variable search path.

• (UNICOS and UNICOS/mk systems) catopen was not able to successfully
read from (using read(2)) or set the read/write file pointer to (using
lseek(2)) the message catalog file header and set directory.

• (IRIX systems) catopen was not able to successfully open (using open(2))
any of the message catalog files specified in the NLSPATH environment
variable search path.

• (IRIX systems) catopen was not able to successfully read from (using
read(2)) the message catalog file header and set directory.

24 SG–2121 6.5

Message System Design [2]

• (IRIX systems) catopen could not obtain file status information (using
fstat(2)) for the message catalog.

2.5 Formatting Messages

The message system can format a message before you print it. The message is
formatted according to the format pattern specified by the user in the
MSG_FORMAT and CMDMSG_FORMAT environment variables. For details about
the difference between these two message formatting environment variables,
see the explain(1) man page.

The MSG_FORMAT and CMDMSG_FORMAT environment variables hold a pattern
constructed from the following replaceable characters:

Character Description

%C Command name

%D Debugging information

%G Group code

%M Message text

%N Message number

%P Position of the error

%S Severity

%T Time stamp

If any of the % fields is not present in the variable definition, the corresponding
message field is not printed.

The format of the time stamp (%T) is equivalent to that produced by the
cftime(3) function and can be overridden by the CFTIME environment
variable. For details about time-stamp formats, see the strftime(3) man page,
which documents the cftime function.

The MSG_FORMAT and CMDMSG_FORMAT environment variables also accept
printf(3) escape sequences. Table 2 lists these special character sequences.

SG–2121 6.5 25

Cray® Message System Programmer’s Guide

Table 2. Special characters accepted by MSG_FORMAT and CMDMSG_FORMAT

Description Symbol Sequence

Newline character NL (LF) \n

Horizontal tab HT \t

Vertical tab VT \v

Backspace BS \b

Carriage return CR \r

Form feed FF \f

Audible alert BEL \a

Backslash \ \\

Question mark ? \?

Single quote ’ \’

Double quote " \"

Octal number ooo \ooo

Hexadecimal number hh \xhh

The escape \ooo consists of the backslash followed by 1, 2, or 3 octal digits,
which are taken to specify the value of the desired character. A common
example of this construction is \0, which specifies the null character. The
escape \xhh consists of the backslash, followed by x, followed by hexadecimal
digits, which are taken to specify the value of the desired character. There is no
limit on the number of digits, but the behavior is undefined if the resulting
character value exceeds that of the largest character.

Any characters other than those listed in Table 2 are passed through without
the backslash (for example, \q produces q).

In most cases, end your MSG_FORMAT and CMDMSG_FORMAT specification with a
newline character (\n) so that any output that follows begins on a new line.

If MSG_FORMAT is not defined, messages are formatted according to the
following default format:

%G-%N %C: %S %P\n %M\n

For the default format of the CMDMSG_FORMAT variable and the order of
precedence of variable evaluation, see the explain(1) man page.

26 SG–2121 6.5

Message System Design [2]

This pattern produces a message of the following format:

groupname-msgnumber command: severity position
The text of the message

For example, library message number 1001, which is in the lib group and has
a severity level of unrecoverable, would print as follows:

lib-1001 a.out: UNRECOVERABLE
A READ operation tried to read past the

end-of-file

Because no position is specified, %P is replaced with a null ("") string.

Use of MSG_FORMAT and CMDMSG_FORMAT lets users control the message
format. This gives users a common format to work with from product to
product and allows the construction of more robust scripts to process messages.
Users can format messages in a way that a script accepts, rather than changing
the script to use the message format imposed by the program.

If you issue a message with replaceable parameters embedded in it, substitute
the parameters in the message before passing it to the catmsgfmt(3) message
formatting function. For example, suppose you have the following message,
which contains replaceable parameters:

The account name ’account’ is not recognized.

The message might be returned from the catalog as follows:

The account name ’%s’ is not recognized.

Before passing the message string to catmsgfmt, replace the %s character with
its value. One way this can be done is by using the sprintf function (see
printf(3) on UNICOS and UNICOS/mk systems or printf(3S) on IRIX
systems).

In the following example, the first line of code inserts the value of the
parameter variable into the message in the buffer to which p is a pointer. The
result is placed in buf2. The second line resets the pointer p to point to the
modified string.

(void) sprintf(buf2, p, parameter);

p = buf2;

After parameter replacement, you can call catmsgfmt to format the message.
catmsgfmt returns a pointer to the buffer that contains the formatted message.
You can then print the message in any way and to any device that you choose.

SG–2121 6.5 27

Cray® Message System Programmer’s Guide

The catmsgfmt function exists as a convenience to those who want to issue
messages in the format specified by MSG_FORMAT. If you have a need for
complex or program-specific formats, you can control the message formatting
yourself with the output functions for the programming language you use.

Note: Be cautious in creating hard-coded message formats. Users quickly
grow accustomed to the flexibility of an environment variable and may create
software that depends on a particular message format under the assumption
that they can control message formats by using the MSG_FORMAT
environment variable.

2.6 Special Message Types

Special considerations exist for working with certain types of messages. The
following sections discuss issuing the following message types by using the
message system:

• System messages

• Version messages

• Usage messages

2.6.1 System Messages

System messages are drawn from the sys_errlist[] structure. These messages
are indexed by error number (errno) and are used by many programs
throughout the system.

On UNICOS and UNICOS/mk systems, the sys_errlist[] structure also is
contained in a message catalog with the group code of sys. The text of
standard system error messages appears in this catalog. An explanation catalog
that contains explanations for the system messages also is provided. Your
program can draw the text for system error messages from the catalog by using
sys as the group code and the value of errno as the message number.

Note: Be sure to save the value of errno to a variable before calling the
message system. Otherwise, the value of errno may be reset during
message processing and you could issue an inappropriate error message.

On IRIX systems there is no sys catalog. To retrieve system error messages, use
the strerror(3c) function.

28 SG–2121 6.5

Message System Design [2]

2.6.2 Version Messages

A version message states the version of the product issuing the message. When
issuing a version message from the message system, observe the following rules:

1. Pass the version number to be stated in the message from the calling
program rather than coding it into the message text file. This is important;
if the version number is coded into the message text file, the version
message will return the version of the message catalog, rather than the
version of the product.

2. Use the techniques described in Section 2.4.1, page 23, to ensure that the
version message is always issued, even if the message catalog is unavailable
for some reason. This is important because a discrepancy between the
version of the product and the version of the message catalog cannot be
investigated unless the version of the product is accurately reported by the
code.

2.6.3 Usage Messages

A usage message provides a summary of the correct syntax for a utility. The
explanation for a usage message does not have to describe the utility’s syntax in
full detail. Instead, it is sufficient to refer the reader to the man page for the
utility. The man page describes the syntax of the utility in complete detail.

If the usage message contains a complex syntax that is difficult to reproduce in
the explanation, it is acceptable to restate the message simply as "Usage error"
in the explanation. For example, the following portion of a message text file
defines the full usage message to be issued by the docexec code, but
abbreviates the message to "Usage error" in the explanation.

$msg 100 Usage: \n\

docexec \n\

docexec -i\n\

docexec -b ifile [-o docname] [-l]\n\
docexec -a docname -t doctitle -n number [-c catname] [-l]\n\

docexec -d docname [-l]\n\

docexec -g\n

docexec -l\n\

$nexp 100
Usage error

.PP

Either an incomplete command line or an unrecognized option

was entered. For details about the *Cdocexec\fR options, enter

SG–2121 6.5 29

Cray® Message System Programmer’s Guide

the following command line:

.CS
man docexec

.CE

.ME

2.7 User Access to the Message System

The message system provides users with online access to message explanations
through the explain(1) utility. The syntax of the explain utility is as follows:

explain msgid

The user supplies the msgid (group code and message number) of the message
to be expanded. The explain(1) utility retrieves the message explanation from
the appropriate message catalog and outputs it to standard output.

A sample user session with explain appears as follows:

% explain dm100

A .keep file is not present for ’user’.

The dmlim(1) command did not find a file named

.keep in the home directory of the specified user.

To exempt files from migration, you must create a

file named .keep in your home directory. It should

contain the names of the files that you wish to
exempt from migration. The file names in this file

may contain standard wildcard characters.

The output of explain is piped through the pager specified in the PAGER
environment variable. If PAGER is not specified, the default pager more -s is
used.

For a complete description of the explain(1) utility, see the explain(1) man
page.

30 SG–2121 6.5

Using the Message System [3]

Using the Cray message system requires changes to the way messages have
traditionally been coded, tested, and documented in most organizations. This
chapter explains how to use the message system as an alternative to coding
messages within the program source and addresses some common questions
that you may have about message system procedures.

Each section describes a step in a sample procedure for approaching the
conversion of a program to use the message system. As the principal developer
for a product, you must determine how the procedure applies to your product.
The procedure also applies loosely to the creation of new code using the
message system.

The procedure assumes that the product you are changing is coded in the C
language; however, you can use the message system with any language that can
interface with C language library functions.

3.1 Planning a Conversion

When you are ready to convert a piece of code to the message system, the best
first step is to survey the existing code to answer the following questions:

• Where are the error messages located? Are they contained within one
error-processing routine or are they dispersed throughout the program?

• Are the messages generated using a consistent mechanism? For example, are
all messages printed using fprintf(3)?

If the messages are generated consistently, it is easier to extract them to
build a message catalog. If the messages are generated by various
mechanisms, you must create some method of extracting the messages.

• What should the software group code be for the product? The group code
you choose can be any alphanumeric string. The recommended length of a
group code is 3 to 6 characters. Group codes cannot exceed 10 characters.

The group codes local, Local, LOCAL, and all codes that begin with Z
(uppercase only) are reserved for site use. It is recommended that sites use
these codes to ensure that the release software does not contain a message
file with the same group code as a local program. Using this naming
convention also makes a clear distinction between local messages and
release messages.

SG–2121 6.5 31

Cray® Message System Programmer’s Guide

The group code for each product must be unique. The explain(1) man
page lists many of the group codes in use for the UNICOS, UNICOS/mk,
and IRIX operating systems.

• Is there more than one program in the group? It is possible for several
programs with a related function to share a group code. For example, the
UNICOS ja(1) command (job accounting) may share a message catalog with
other accounting code (for example, Cray system accounting (CSA)). If this
is the case, how are message ID numbers divided among the various
programs in the group?

One common solution to this problem is to divide the catalog into ranges
(for example, numbers 1 through 1000 are used for the first program in the
group, numbers 1001 through 2000 are used for the second program in the
group, and so on). You should select ranges that are appropriate for your
software group.

3.2 Building a Message Text File

When you have looked at the code to be converted, chosen the group code to
use, and decided on an approach to isolating the messages, you can build the
message text file.

Use the following steps to build the message text file:

1. Extract a copy of the messages from the code and write them to a text file.
UNICOS, UNICOS/mk, and IRIX text processing utilities such as grep(1),
awk(1), and sed(1) are useful for this process. If the messages are generated
by a consistent mechanism, this will be an easy task. If they are not, this
step will take longer.

2. Add a number or symbolic name to the beginning of each message. Using
the convention you decided on during the planning step, number the
messages. Each message must have a unique number. The numbers must
appear in the text file in ascending order, but they do not have to be
consecutive.

3. Edit the copy of the messages that you extracted in step 2. Remove the
printing command (fprintf, printf, and so on). Delete variable
argument names, the name of the command issuing the message, the
severity level, and any quotation marks added for print command syntax.
(The message formatting function, catmsgfmt(3), inserts the command
name and severity level when it formats the messages.) If you have a
newline character (\n) at the end of the message, delete it also. Add the

32 SG–2121 6.5

Using the Message System [3]

$msg tag to the beginning of the message and place single quotation marks
(’ ’) around variables.

For example, suppose your code contains the following message:

fprintf(stderr,"ja: Unknown account name
%s\n", arg)

You should edit the message line so that it appears in the text file as follows:

$msg 100 Unknown account name ’%s’

Edit each message in the text file in this way. The following listing shows a
sample message text file.

$ message catalog for ja (part of group ’acct’)

$msg 100 Unknown account name ’%s’

$msg 101 Unknown group name ’%s’

$msg 102 getoptlst() failed
$msg 103 Unknown user name ’%s’

$msg 104 report modifying option(s) used without requesting a report

$msg 105 -m option cannot be selected when issuing a report

$msg 106 -m and -t options are mutually exclusive

$msg 107 -h option must be used with -l option
$msg 108 process is not part of a job

$msg 109 can’t find TMPDIR in environment

$msg 110 can’t make file name

$msg 111 file name exceeds max length

$msg 112 empty or nonexistent job accounting file
$msg 113 no commands seen

$msg 114 ’%s’ not removed

$msg 115 couldn’t get space for selection by name

$msg 116 invalid regular expression for selection by name

$msg 117 couldn’t get space for positioning marks

$msg 118 -p option’s argument is invalid
$msg 119 cannot position to last entry

$msg 120 unable to position file

$msg 121 error in reading job accounting file

$ Next message is a warning

$msg 122 command flow tree overflow

The messages shown in the listing have not been edited to conform with
the guidelines presented in Appendix A, page 41. You may want to edit
your messages with the guidelines in mind at this point in the procedure,
or you may want to complete the conversion of your code, perform

SG–2121 6.5 33

Cray® Message System Programmer’s Guide

preliminary testing, and then return to the message file and concentrate on
improving the text of the messages.

4. Use the caterr(1) utility to build the text file into a binary catalog. Give
caterr the name of your message text file and the name of the catalog file
you want to produce; caterr processes the message text file into a catalog
binary. For details of the syntax of the caterr utility, see the caterr(1)
man page.

For example, to build a catalog file called /home/me/messages/lib.cat
from a message text file called lib.msg in the current directory, issue the
following command:

caterr -c /home/me/messages/lib.cat lib.msg

5. Change the NLSPATH environment variable to point to the output of the
caterr utility. For example, suppose the catalog binary file is in the
following directory:

/home/cypress/me/messages

Set NLSPATH to the following value:

/home/cypress/me/messages/%N.cat

This lets you test your program by using a local message catalog.

3.3 Modifying the Program Source

The next step is to modify your program source to work with the message
system. You must modify the program source in the following ways to call the
message system correctly:

1. Add a line to include the <nl_types.h> header file in the program. The
<nl_types.h> file defines variables used by the message system. For a
description of the file, see the nl_types(5) man page.

The include line appears in the program as follows:

#include <nl_types.h>

2. Add a line to define a message catalog file descriptor:

nl_catd mcfd;

3. Change the code that issues each message. You can change the code on a
message-by-message basis, or you can write a message routine that can be

34 SG–2121 6.5

Using the Message System [3]

called each time you want to issue a user message. You decide which
method works best for you, given the characteristics of your product.

The following code example illustrates one possible message processing
routine designed to be called each time a user message is issued. The code
is offered here as an example of an error processing routine. It is specific to
one piece of code (ja(1)) and may not work for any other application.

The following assumptions were made when designing the routine:

• Only two message severities are used by this code: warning and
unrecoverable.

• No more than one replaceable parameter was used in a single message.

• Parameters substituted into messages are strings.

• The group code for this product is acct, and the command issuing the
messages is ja.

You could easily modify the code to use more severity levels, more
replaceable parameters, and different types of parameters.

/*

* Retrieve and print error message

*/

#include <stdio.h>

#include <nl_types.h>
#define BUFL 200

processerror (

int err_num, /* Message error number */

int fatal, /* Fatal flag (0 = warning, 1 = fatal) */

char *parameter /* Optional substitution string parameter */
)

{

char *s; /* Error severity */

char *p; /* Pointer to error message */
char buf1[BUFL]; /* Error message buffer */

char buf2[BUFL]; /* Error message buffer */

char buf3[BUFL]; /* Error message buffer */

nl_catd mcfd; /* Message catalog file descriptor */

/* Open the message catalog */
mcfd = catopen("acct", 0);

p = catgetmsg(mcfd, NL_MSGSET, err_num, buf1, BUFL);

SG–2121 6.5 35

Cray® Message System Programmer’s Guide

/* If a parameter was passed in, insert it into the message */
if (_numargs() >= 3) {

(void) sprintf(buf2, p, parameter);

p = buf2;

}

/* Set s to the appropriate severity level */
if (fatal == 1)

s = "UNRECOVERABLE";

else

s = "WARNING";

/* Format the message using the catmsgfmt function */

(void) catmsgfmt("ja", "acct", err_num, s, p, buf3, BUFL);

/* Print the formatted message to stderr */

fprintf(stderr, buf3);

/* If error is fatal, return error status */

if (fatal == 1)

return(1);

return(0);
}

With this routine in place, the following line of code could be used to issue
error message number 100 as an unrecoverable error with the optarg
argument to be placed into the message:

processerror(100, 1, optarg);

The line or lines of code that print each message in the existing code must be
changed to call the error processing routine.

3.4 Integrating Message System Files in UNICOS and UNICOS/mk Systems

If your code is part of the UNICOS or UNICOS/mk system, your completed
code and message catalogs must be integrated and built into the UNICOS or
UNICOS/mk release. The following sections describe the steps in the
integration procedure. If you are using the message system in an application,
these integration steps are not necessary.

36 SG–2121 6.5

Using the Message System [3]

3.4.1 Integrating Messages into the PL

The message and explanation source should be placed in a file called
group.msg. The file should be added to the UNICOS source manager (USM)
source control program library (PL) for your product. (USM also works for the
UNICOS/mk system.) Modifications to the message source should follow the
same procedures as modification to other source elements of your product.

3.4.2 Building and Installing the Catalogs

The nmake(1) makefile for your product must be modified to build and install
the message and explanation catalogs. nmake uses implicit rules to handle most
of the process automatically. You must explicitly perform the following steps:

1. Name the message source file as group.msg; group is the group code for
your product.

2. Decide where to install your catalogs. If your program must execute at
times when only the root file system is available, it is usually installed in
/bin. If this is the case, install the catalogs in /lib/nls/En.

If your program is not required to execute when only the root file system is
available, it probably resides in /usr/bin. In this case, install your
catalogs in /usr/lib/nls/En.

If your catalogs will be installed in /lib/nls/En, add the following
statement to your makefile:

NLSDIR = $(ROOT)/lib/nls/En

If your catalogs will be installed in /usr/lib/nls/En, you do not have to
specify a definition for NLSDIR. This variable is predefined as
/usr/lib/nls/En.

3. If you use symbolic message names, add the following line to the INIT
section of your nmake makefile:

CATERRFLAGS += -s

This line calls caterr(1) by using the -s option.

4. Add the target names group.cat and group.exp to the sys or sysgen
target list. nmake automatically creates message and explanation catalogs
with those names from your group.msg file.

SG–2121 6.5 37

Cray® Message System Programmer’s Guide

If your program is called sample, and your group code is also sample,
your target line might appear as follows:

sys: sample sample.cat sample.exp

5. To install the catalogs, add the following statements to your installsys
or installsysgen target:

$(CPSET) $(CPSETFLAGS) group.cat $(NLSDIR)/. $(CHMODR) $(OWNER) $(GROUP)

if [-s group.exp]; then

$(CPSET) $(CPSETFLAGS) group.exp $(NLSDIR)/. $(CHMODR) $(OWNER) $(GROUP)

fi

The message catalog must always be installed unconditionally.

Generation of the explanation catalog depends on the presence of the nroff
program on the system. If nroff is present, the explanation catalog is
generated and installed. If nroff is not present, a zero-length explanation
catalog is produced. This zero-length catalog must not be installed. If the
length of the catalog is 0, the -s test in the preceding code segment prevents
installation of the explanation catalog.

The message text source file is delivered as part of both source and binary
releases; therefore, the group.msg file must not be specified on any of the rm
targets. This prevents removal of this file.

The message catalog (group.cat) file should be specified on either the rmubin
or rmrbin target so that the file can be deleted along with other generated files
associated with the product.

The explanation catalog (group.exp) file can be rebuilt only if nroff is
available. To prevent removal of this file in cases where nroff is not available,
add the following statements to the rmubin or rmrbin target:

if whence nroff > /dev/null ; then

ignore $(RM) $(RMFLAGS) group.exp

fi

3.5 Maintaining Message System Catalogs

Code that uses the message system and the message system catalogs must be
maintained from release to release. The following sections discuss guidelines
for adding, deleting, and changing messages.

38 SG–2121 6.5

Using the Message System [3]

3.5.1 Deleting a Message from a Release

You can delete a message from a release by removing its call from your product
code. However, you should not remove the message or explanation text from
the message text file or catalogs. Retain all of this text so that the message
catalogs are upward compatible.

For example, if message number 50 is used for release 6.0 of the product, but
not for release 6.1, the 6.0 version of the product will still execute correctly
using the 6.1 catalog if message 50 is retained in the 6.1 catalog. Try to retain
obsolete messages as long as the release that they support is still in use. If you
are in doubt as to whether the release is still in service, do not reuse the
message number.

Even if you eventually delete a message from the catalog because the
corresponding software is totally obsolete, do not reuse the message number.
Reusing message numbers could cause the wrong error message to be issued
for an error condition. It is good practice to retire the message number, rather
than reusing it.

3.5.2 Adding and Changing Messages

Adding new messages to a catalog is easy. Simply assign an unused number to
the message, add the proper message call to the code, and add the message text
and explanation text to the message text file.

If you need to change a message from one release to the next, you can do so by
updating the message and the explanation in the message text file. Be cautious
when changing the wording of a message so that you do not change the
meaning. If you need to change the message in any significant way, create a
new message. This policy maintains the upward compatibility of the message
catalogs from release to release.

SG–2121 6.5 39

Guidelines for Messages and
Explanations [A]

A message consists of two parts: the message that is printed for the user each
time the error occurs, and an expanded explanation of the error condition that
appears in the message documentation, both online and in the printed manual.

The message and the explanation should both be clear, concise, and focused;
however, the message and the explanation may speak to different audiences.

The message is directed to any user who might encounter the error that the
message describes. It should contain a brief description of the problem in
unambiguous terms.

The explanation is directed to the user who cannot resolve the error using only
the information in the message. This user has sought additional information.
The explanation should give a more complete description of the problem,
suggest actions that will help resolve the problem, and direct the user to
sources of information related to the problem and its resolution.

The following sections give guidelines for writing messages and for writing
message explanations.

Note: These guidelines are intended for Silicon Graphics/Cray Research
software developers who are writing messages for code included in UNICOS,
UNICOS/mk, and IRIX software releases. Others may want to follow the
guidelines to improve the general usability of their messages and
explanations.

A.1 Guidelines for Messages

A good message provides a user with specific information about the problem
that the software has encountered. It conveys the context in which the problem
occurred and, when possible, states the problem in a way that implicitly
suggests a corrective action. A good message also is written with an awareness
of the attitude that is expressed toward the user.

The challenge of writing good messages is conveying as much information as
possible concisely. A good rule of thumb for messages is that users who are
past the initial learning phase for a product should be able to recognize and

SG–2121 6.5 41

Cray® Message System Programmer’s Guide

correct the problem by using only the information in the message. The
explanation exists for users who are new to the product.

Good messages demonstrate the following characteristics:

• Clearly stated

• Specific about the problem

• Respectful of users

• Grammatically correct

These characteristics are important for the usability of the messages in English,
and they also improve translatability.

A.1.1 Clear Messages

Clear messages state the problem as simply as possible without the use of
specialized terminology. A clear message is unambiguous in its description of
the problem.

Observe the following guidelines to make messages clear:

1. When describing a problem, use plain English instead of terms familiar
only to a limited audience (for example, UNIX system terminology).

For example, the following message is clear to a programmer familiar with
the stat(2) system call, but it is not clear to most users:

Cannot stat file

The following message is preferred:

Cannot get the status (with stat(2)) of
the ’filename’ file.

2. Choose message syntax carefully. Avoid long strings of modifiers.

For example, the following message:

bad swap superblock magic number

could be worded more clearly as follows:

The checkword number in the swap superblock
is incorrect.

42 SG–2121 6.5

Guidelines for Messages and Explanations [A]

3. Use worded explanations rather than programming-language expressions.

For example, the following message:

end bp forw != NULL

would be clearer if rewritten as follows:

The I/O chain for the pty/tty device has

failed an internal consistency check.

Follow these principles wherever possible. Remember that users do not know
as much about the system, the program, or the origin of the error as you do.

A.1.2 Specific Messages

Messages that are specific give users all of the information needed to correct the
problem. Observe the following guidelines to make messages specific:

1. Identify the problem specifically, rather than in a general sense.

For example, the following message is very vague:

I/O error

Instead, give information that is definite enough to point to a corrective
action.

2. Explain the problem from the user’s perspective rather than the system’s
perspective.

For example, the following message:

No device response

would be better stated as follows:

Cannot access the device you selected.

3. Include information specific to the situation.

Instead of the following message:

Terminating job

it would be better to write:

Terminating job ’job-identifier’.

SG–2121 6.5 43

Cray® Message System Programmer’s Guide

4. Include information pertinent to the solution of the problem; do not force
users to guess arbitrary limits.

The following message:

Identifier too long

would be better stated as follows:

The identifier must consist of 14 characters

or less.

A.1.3 Respectful Messages

The message should respect users and the situation. Respect is shown by
adhering to guidelines, as follows.

1. State the problem neutrally or as a deficiency of the system rather than
blaming the user for the problem.

For example, the following message:

Illegal expression ’exp’ has been specified

in the input file

could be stated more neutrally as follows:

Cannot accept the expression ’exp’ in the

input file.

2. Avoid unnecessarily hostile, violent, or threatening terminology. Terms such
as catastrophic, abort, illegal, kill, abandon, and disastrous have a negative effect
on users. Rephrase messages containing such words to be more neutral and
less threatening.

It can be difficult to follow this guideline in situations in which accepted
UNIX terminology requires the use of a "hostile" word to provide an
accurate technical description of the situation. For example, UNIX uses the
term kill in a technical sense to describe forced job termination. In such a
situation, it may not be possible to avoid the term. However, whenever it is
within your control, avoid overly dramatic terminology.

3. Avoid introducing attempts at humor.

Humor in messages has many dangers. Everyone’s idea of what is funny
differs, especially across cultures. Messages often occur repeatedly, and the
humor wears off quickly. Therefore, the best policy is to avoid making
messages humorous or cute.

44 SG–2121 6.5

Guidelines for Messages and Explanations [A]

A.1.4 Grammatical Messages

A grammatical message is phrased as a complete sentence, is punctuated
according to standard usage, contains no truncated words, uses conventional
spelling, and contains articles, auxiliary verbs, and prepositions as dictated by
standard English usage. Messages written in standard English are less likely to
be misinterpreted and can be translated more accurately into foreign languages.

Observe the following guidelines to make messages grammatical:

1. Use capitalization in a standard way; start the message with a capital letter,
and capitalize words and abbreviations as they would appear in narrative
text.

2. Avoid beginning messages with a special character or a variable. Special
characters and variables at the beginning of messages make them difficult
to index.

3. Use punctuation in a standard way; include commas and semicolons when
appropriate, and end the message with a period.

4. Observe Silicon Graphics trademark and style conventions when using
industry terms. Consult a writer or editor if you have questions regarding
style conventions.

5. Spell out words completely.

The space and time saved by writing max instead of maximum is not worth
the lack of clarity it creates in the messages. Use only abbreviations that are
very widely understood by users of Silicon Graphics/Cray Research
systems. For example, it is sensible to use IOS and OWS in messages
instead of I/O subsystem and operator workstation. However, it is
inappropriate to use MTU for maximum transmission unit in a message
whose audience is the end user.

6. Write messages as complete sentences; include a verb and all the needed
articles (a, an, the), prepositions, and auxiliary verbs.

The following example illustrates the intention of these guidelines.

The following message:

read error

SG–2121 6.5 45

Cray® Message System Programmer’s Guide

would be more grammatical if phrased as follows:

An error occurred during an attempt to read

the ’filename’ file.

The rewritten message is longer, but it is much less likely to be misunderstood
or mistranslated. It is more specific, in addition to being more grammatically
correct.

A.1.5 Severity Levels in Messages

Each message issued to users should have a severity level associated with it.
The severity level should indicate to users how important the message is to the
success of the job. To help users assess the impact an error has on a job, it is
important that you use severity level designations in a consistent manner when
you develop software.

The following guidelines apply to message severity levels:

• Indicate the message severity level in uppercase letters (for example,
WARNING). Use of all uppercase letters calls attention to the severity level.

• Avoid the use of ERROR as a severity level. Messages that users receive are
commonly called error messages. Therefore, to designate ERROR as a severity
level is uninformative and creates an ambiguity in phrases such as the error
message manual.

• If it does not conflict with third-party vendor constraints on your code, try
to restrict your use of severity levels to the following set:

Level Description

INFO The system is communicating information to
users, usually about the status of a job or
process. An informational message requires
no user action because a problem was not
encountered.

EFFICIENCY An inefficient use of the software or the
hardware is suspected. Users should examine
the code for a better way to perform the
process.

CAUTION A possible problem was detected. The output
of the program is still usable, but the results
may not be what users expect.

46 SG–2121 6.5

Guidelines for Messages and Explanations [A]

WARNING A probable problem was encountered. The
program continues to process from this point,
but the output or the results are likely to be
incorrect.

FATAL A definite problem was encountered. The
output produced from this point forward is
unusable. Output may be suppressed after
this point.

Use this level of message when a fatal error is
encountered in the input, rather than in the
processing. If processing encounters an error
that is terminal, issue an unrecoverable error.
For example, when a compiler encounters an
error in the program source it is compiling
that renders further execution of the program
useless, issue a fatal error message. But, if the
compiler program itself encounters a situation
in which it can no longer execute, perhaps
because of hardware or system software
problems, issue an unrecoverable error.

Avoid the use of FATAL as a severity level
when possible because, although it is standard
in some contexts, fatal is an inappropriate
word to use as a severity level because it is
threatening and overused.

UNRECOVERABLE An error has occurred that renders further
processing impossible. The program
terminates immediately.

You should issue this level of message only
once and terminate processing immediately.
See the description of FATAL for an example
of the difference between fatal and
unrecoverable errors.

These guidelines and suggested severity levels may not apply to all situations.
The most important point to remember is that users rely on the message
severity to indicate the nature of the problem. Be as consistent and as accurate
as possible with this information.

SG–2121 6.5 47

Cray® Message System Programmer’s Guide

A.1.6 Substitutable Strings in Messages

Care should be taken to limit the type of information substituted into messages.
Only information that users supply should be substituted into error messages.
Examples of user-supplied information include variable names, command-line
options, and file names. Building messages from other types of substitutable
strings can be a serious impediment to a correct translation.

Consider the following message:

Example 1:

Cannot find the file ’filename’.

You also may want to apply this message to a situation in which two file names
are supplied by the user and neither is found. To cover this situation, you
should create a second message that is issued when two files are involved in
the error.

The second message might appear as follows:

Example 2:

Cannot find the files ’filename’ and ’filename’.

An alternative in this situation would be to modify the first message to
accommodate errors on both one or two files. However, doing so would create
a potential for translation errors.

For example, consider the case where you change the message in example 1 to
read as shown in example 3 in the message catalog:

Example 3:

Cannot find the file%s ’%s’ %s ’%s’.

Then you replace the first string with s to make the word file plural, replace
the second string with a file name, replace the third string with and, and
replace the fourth string with another file name.

The result would be a message that would appear to users to be identical to
example 2. However, the translator cannot determine which of the replaceable
strings is really a user variable and which is part of the message text. Also, the
pluralization of file by adding a trailing s is correct in English, but it would
not be correct in most other languages. The insertion of the connective and
between the file names might also be incorrect in the target language.

48 SG–2121 6.5

Guidelines for Messages and Explanations [A]

Because of the complexities involved in writing for translation, avoid writing
messages to appear in multiple contexts. If you must issue a message that is a
variation on the syntax of a similar message, write a new message to cover the
variation, rather than try to adjust the first message to accommodate all cases.

A.2 Guidelines for Explanations

Message explanations exist for the benefit of users who, upon receiving an error
message, cannot resolve the problem without the following additional
information:

• A more complete description of the problem

• A suggested course of action to solve the problem

A good explanation contains both types of information. The most natural way
to format the information is to describe the problem in the first paragraph of
the explanation and recommend solutions in the second paragraph. In some
cases, more information will be given than comfortably fits in a paragraph.
Add additional paragraph breaks as needed.

The following sections discuss describing problems and solutions to users in
message explanations.

A.2.1 Describing the Problem

The message explanation provides a more complete description of the problem
than the message itself does. Include the following information in the message
description:

• Statement about the cause of the problem

• Context surrounding the cause of the problem

• System or job status affected by the problem

• References to documentation discussing related topics

The following message description states the cause of the problem clearly and
outlines the status of the job:

The catalog specified for reset was not

defined with the RECOVERABLE attribute.

RESETCAT can reset only recoverable

catalogs. The command is terminated. The

SG–2121 6.5 49

Cray® Message System Programmer’s Guide

catalog and CRA entries have not been

altered. The workfile has not been defined.

The description also could refer users to documentation on the RESETCAT
command.

A.2.2 Describing the Solution

The solution portion of the message explanation presents courses of action that
users can pursue in solving the problem. Many messages result from complex
or unknown causes. In these cases, users may have to test several conditions or
try several solutions before arriving at one that applies to the problem. Most
users realize that this is a fact of life. They do not expect a cure-all to be
provided in the message explanation. Rather, they are looking for somewhere
to start to solve the problem.

Include the following information in the message solution:

• Suggested problem remedies, listed in the order in which users should try
them.

• Parameters, files, permissions, and other configuration information that
might be related to the problem. Instruct users to check these items.

• Any steps needed to recover from the problem; for example, if the problem
requires that a component be restarted after the problem is located, be sure
to instruct the user to perform the restart.

• Possible or likely consequences of various courses of action, especially if
those consequences are destructive. For example, if a suggested action might
damage or destroy data, you must point that out to users. Do not assume
that they know.

• References to documentation that discusses utilities, procedures, or
configuration information needed to solve the problem.

• Recommendation to seek help if the problem is not a user-level error. In
these cases, direct users to contact the system support staff and state the
purpose of the contact. The following phrase can be used in this situation:

If none of the suggested actions resolve

the error condition, contact your system

support staff and request that

fill in an action the support staff should perform.

50 SG–2121 6.5

Guidelines for Messages and Explanations [A]

The following paragraph is an example of the solution portion of a message
explanation:

To recover a nonrecoverable catalog and its
volumes, you must do a synchronized volume

restore of all volumes owned by the catalog.

If you have incorrectly specified the CATALOG

parameter, correct the parameter. If CATALOG

dname was specified, correct the associated

DLBL catalog name. Rerun the command.

As with the messages themselves, make the explanations as clear and specific as
possible. Try to create a course of action for users that leads to the resolution of
the problem.

SG–2121 6.5 51

Glossary

catalog

The binary form of the message or explanation file. There are two kinds of
catalogs: message catalogs and explanation catalogs. The gencat(1) command
produces the catalog from the output of the caterr(1) command. The -c
option of caterr calls gencat(1) and generates a message or explanation
catalog from a message text file in a single step.

explanation catalog

A binary file, produced by the gencat(1) command, that contains the text of
UNICOS, UNICOS/mk, or IRIX error message explanations. The user accesses
and displays these explanations by using the explain(1) command. For more
information, see also the explain(1) man page.

group code

The name given to the catalog of messages for a product; it is a shorthand way
to refer to the software products that share one message file. The group code
should consist of 2 to 6 alphanumeric characters; a maximum of 10 characters
are allowed. The group codes Local, local, and LOCAL and all group codes
that begin with Z (uppercase only) are reserved for site use.

message catalog

A binary file produced by the gencat(1) command that contains the text of
error messages as they are called from the software at run time.

message text file

The file that contains the source form of the messages and explanations. A
message text file can contain messages, formatted and unformatted
explanations, and comments.

SG–2121 6.5 53

Index

A

Adding messages to a release, 39

C

C language, 1, 31
Catalogs

definition, 15
explanation, 4
generation, 15, 20, 34
internal search path, 17
location, 18
message, 4
naming, 18
search path, 5, 15, 16, 34
suffixes, 18

catclose function, 23
caterr utility, 8, 15, 20, 34
catgetmsg function, 22
catgets function, 22
catmsgfmt function, 27
catopen function, 18, 22
catopen library function, 17
Changing messages in a release, 39
Clarity in message writing, 42
CMDMSG_FORMAT variable, 5, 11, 25
Comment text, 13
Comments in message text file, 7
Continuing messages over lines, 10
Converting code to the message system, 31
Converting to the message system, 31
cpp utility, 9, 21
Creating a message text file from existing

code, 32

D

Default catalog search path, 17
Default message format, 26
Deleting messages from a release, 39
Design information, 3

E

EN language designation, 16
en_US language designation, 16
English language messages, 16
Environment variables

CMDMSG_FORMAT, 5, 11, 25
LANG, 5, 16, 18, 19
MSG_FORMAT, 5, 11, 25, 28
NLSPATH, 5, 16, 18, 19, 34
PAGER, 30

errno variable, 28
Example message processing routine, 35
$exp tag, 7, 13
explain utility, 5, 17, 19, 30
Explanation catalogs, 4, 15
Explanation text, 11

formatted, 12
unformatted, 13

Explanations of messages, 30

F

Features, 1
File descriptor for message catalog, 34
Files

nl_types header, 34
tmac.sg, 12

Format of messages, 25

SG–2121 6.5 55

Cray® Message System Programmer’s Guide

default, 26
Formatted explanation text, 12

G

gencat utility, 15, 20, 21
Generating catalogs, 15, 20
Grammar in message writing, 45
Group code, 5, 6, 30, 31, 37

reserved for local use, 7
Guidelines for explanations, 49

describe the problem, 49
describe the solution, 50

Guidelines for messages, 41
clarity, 42
grammar, 45
severity levels, 46
specificity, 43
tone, 44

I

Installing catalogs, 37
Integrating message files, 37

L

LANG variable, 5, 16, 18, 19
Language of messages, 16
LC_MESSAGES category, 16, 18, 19
LC_MESSAGES locale category, 5
Library functions, 5

catclose, 23
catgetmsg, 22
catgets, 22
catmsgfmt, 27
catopen, 17, 18, 22
printf, 10, 26, 27

Location of catalogs, 18
Long messages, 10

M

Macros, 12
tmac.sg, 21

makefile, 5
Message catalog file descriptor, 34
Message catalogs, 4, 15
Message explanations

accessing, 30
Message macros, 12
Message numbers, 32

description, 7
literal, 8
symbolic names, 8, 37

Message order, 9
Message retrieval, 22
Message routine

example, 35
Message syntax

continuation characters, 10
message numbers, 7
message order, 9
special characters, 10
variables, 10, 27

Message system
converting to, 31
design, 3
elements, 3
features, 1
library functions, 5
nmakefile, 5
overview, 3
programming example, 31
smakefile, 5
standards, 1

Message text file, 5
adding messages, 39
ASCII explanations, 7
changing messages, 39
comment text, 7, 13
content, 7
deleting messages, 39

56 SG–2121 6.5

Index

description, 5
explanation text, 11
formatted explanations, 7, 12
integration of, 37
message numbers, 7
message order, 9
message text, 7
naming, 6
order of text, 14
processing, 6
unformatted explanations, 13

Message types
system, 28
usage, 29
version, 29

Messages
format of output, 25

default, 26
severity levels, 46

$msg tag, 7
MSG_FORMAT variable, 5, 11, 25, 28

N

Naming of catalogs, 18
Native Language System (NLS), 1
$nexp tag, 7, 12, 21
nl_types header file, 34
NLSPATH variable, 5, 16, 18, 19, 34
nmake utility, 6, 18, 37
nmakefile

for catalogs, 5
nmakefile for catalogs, 37
nroff utility, 12, 21, 38
Numbering of messages, 7

O

Online explanations, 5
Overview, 3

P

PAGER variable, 30
printf function, 10, 25, 27
Problem description in explanations,

guidelines, 49
Programming

converting to the message system, 31
integrating message files, 37
message retrieval, 22
message retrieval errors, 23
sample code to process messages, 35

Programming languages supported, 1, 31

R

Removing messages from a release, 39
Retrieval errors, 23
Retrieving messages, 22

S

Search path for catalogs, 5, 15, 16
Severity levels in messages, 46
smakefile

for catalogs, 5
Solution description in explanations,

guidelines, 50
Source control, 37
Source file of message text, 5
Special characters in messages, 10
Specificity in message writing, 43
sprintf function, 27
Standard, X/Open Native Language System, 1
Substitutable strings in messages, guidelines, 48
Symbolic message names, 8, 37
sys group code, 28
syserrlist structure, 28
System messages, 28

SG–2121 6.5 57

Cray® Message System Programmer’s Guide

T

tmac.sg macro file, 12, 21
Tone in message writing, 44
troff utility, 12

U

Unformatted explanation text, 13
Usage messages, 29
User access to message explanations, 30
USM, 37
Utilities

caterr, 8, 15, 20, 34
cpp, 9, 21
explain, 5, 17, 19, 30
gencat, 15, 20, 21
nmake, 18, 37
nroff, 12, 21, 38
troff, 12

whichcat, 5, 18

V

Variables in messages, 10, 27
guidelines, 48

Version messages, 29

W

whichcat utility, 5, 18
Writing messages and explanations,

guidelines, 41

X

X/Open Native Language System, 1

58 SG–2121 6.5

