
IRIS FailSafe™ Programmer’s Guide

Document Number 007-3298-001

IRIS FailSafe™ Programmer’s Guide
Document Number 007-3298-001

CONTRIBUTORS

Written by Susan Ellis
Illustrated by Dany Galgani
Edited by Christina Cary
Production by Ruth Christian
Engineering contributions by Gilberto Arnaiz, Ashwinee Dinkar, Michael

Nishimoto, and Paddy Sreenivasan
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© 1996, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, CHALLENGE, IRIS, and the Silicon Graphics logo are registered
trademarks and IRIX and IRIS FailSafe are trademarks of Silicon Graphics, Inc. NFS
is a registered trademark of Sun Microsystems, Inc. Netscape is a trademark of
Netscape Communications Corporation. Sybase is a registered trademark of Sybase,
Inc. Oracle is a registered trademark of Oracle Corporation. INFORMIX is a
registered trademark of Informix Software, Inc.

iii

Contents

List of Figures vii

List of Tables ix

About This Guide xi
Audience xi
Structure of This Document xii
Related Documentation xii
Conventions Used in This Guide xiv

1. Introduction to IRIS FailSafe Programming 1
What Applications Can Be Highly Available Services in an IRIS FailSafe Cluster? 2
IRIS FailSafe Programming Steps 3
IRIS FailSafe System Software 4

Software Components 4
Node States 7
Failover Operations 8
State Transition Scenarios 9

Concurrent Reboot 11
Reboot of a Node While the Other Node Is Down or Not Running
IRIS FailSafe 12
System Maintenance Shutdown 13
Restart After System Maintenance (No Reboot) 14
Restart After System Maintenance With Reboot 15
Node Failure 16
Recovery After Node Failure With the Controlled-Failback Parameter Set
to False (or Not Set) 17
Recovery After Node Failure With the Controlled-Failback Parameter Set 18
Node in Normal State Detects a Local Failure 19

iv

Contents

Node in Degraded State Detects Local Failure While the Other Node Is in
Standby State 20
Node in Degraded State Detects Local Failure While the Other Node Is in
Controlled Failback State 21
Node in Controlled Failback State Detects the Failure of a Node in
Degraded State 22

IRIS FailSafe Scripts 22
Tasks Performed by the Standard Failover Scripts 26

Filesystems 26
Interfaces 27
NFS 27
Statd 28
Volumes 28
Webserver 29

2. Modifying the Configuration File for a New Highly Available Service 31
An Example of Configuration File Information for a New Highly Available Service 31
Adding a New Highly Available Service to the Configuration File 33
Choosing Parameters for a New Highly Available Service 34
Checking the Configuration File 35

3. Writing a Monitoring Script 37
Writing a Monitoring Script 37
Preparing to Write a Monitoring Script 39
Understanding the Monitoring Script Template 41
Defining Variables for New Block, Section, and Parameter Names 45
Using ha_cfginfo to Get Configuration File Information 46
Understanding the Function of the Monitoring Script check() Function 48
Executing a Command in a Monitoring Script 50

4. Writing a Failover Script 53
Writing a Failover Script 53
Preparing to Write a Failover Script 54
Understanding the Failover Script Template 56

Contents

v

Writing the Failover Functions 62
Executing a Command in a Failover Script 64

5. Installing and Testing Scripts 65
Naming and Installing Monitoring Scripts 65
Choosing the Execution Order of Failover Scripts for Each Operation 66
Installing Failover Scripts 67
Modifying Application Startup Procedures 67
Testing New Scripts 68

General Testing and Debugging Techniques 68
Testing Monitoring Scripts 69
Testing Failover Scripts Without Starting IRIS FailSafe 70
Testing Failover Scripts While Running IRIS FailSafe 72

A. Names Used in Template Configuration Files 75
Block Names 76
Section Names 77
Parameter Names 78

vii

List of Figures

Figure 1-1 Message Paths Between Software Components While Nodes Are
in Normal State 6

Figure 1-2 Concurrent Reboot 11
Figure 1-3 Reboot of a Node While the Other Node Is Down or Not Running

IRIS FailSafe 12
Figure 1-4 System Maintenance Shutdown 13
Figure 1-5 Restart After System Maintenance (No Reboot) 14
Figure 1-6 System Maintenance Restart With Reboot 15
Figure 1-7 Node Failure 16
Figure 1-8 Recovery After Node Failure With the Controlled-Failback

Parameter Set to False (or Not Set) 17
Figure 1-9 Recovery After Node Failure With the Controlled-Failback

Parameter Set 18
Figure 1-10 Node in Normal State Detects a Local Failure 19
Figure 1-11 Node in Degraded State Detects Local Failure While the Other Node

Is in Standby State 20
Figure 1-12 Node in Degraded State Detects Local Failure While the Other Node

Is in Controlled Failback State 21
Figure 1-13 Node in Controlled Failback State Detects the Failure of a Node

in Degraded State 22
Figure 1-14 Directory Structure of /var/ha 23

ix

List of Tables

Table 1-1 IRIS FailSafe Software 4
Table 1-2 IRIS FailSafe Administrative Commands 7
Table A-1 Major Blocks in the Configuration File 76
Table A-2 Section Names in Template Configuration Files 77
Table A-3 Parameters in Template Configuration Files 78

xi

About This Guide

The IRIS FailSafe™ system is a pair of servers (called nodes in this guide) that
communicate with each other using serial cables and a private Ethernet connection in
addition to using the public network. The nodes may be configured in a dual-hosted or
dual-initiator configuration. IRIS FailSafe software enables the nodes to be configured so
that if one node fails, applications and services running on the failed node can be
transferred (failed over) to the remaining node. IRIS FailSafe software and IRIS FailSafe
software options fail over specific applications and resources, called highly available
services, such as databases, Web servers, NFS® filesystems, XLV logical volumes, and IP
addresses. This guide explains how to write the set of scripts that are required to turn an
application into a highly available service.

This guide assumes that the IRIS FailSafe system has been set up and configured as
described in the IRIS FailSafe Administrator’s Guide and is able to successfully fail over
highly available services. This guide requires that the configuration file /var/ha/ha.conf be
an IRIS FailSafe Release 1.1 configuration file (version-major = 1 and version-minor = 1
in /var/ha/ha.conf).

This guide was prepared in conjunction with Release 1.1 of IRIS FailSafe.

Audience

This guide is written for system programmers who are developing scripts for the IRIS
FailSafe system that enable it to fail over applications that aren’t handled by the base and
optional IRIS FailSafe products. These programmers must be familiar with the operation
and administration of nodes running IRIS FailSafe, with the applications that are to be
failed over, and with the IRIS FailSafe Administrator’s Guide.

xii

About This Guide

Structure of This Document

This guide contains the following chapters and appendix:

• Chapter 1, “Introduction to IRIS FailSafe Programming,” introduces the software
components of the IRIS FailSafe system and provides an overview on the steps
required to add a new, highly available service to the system.

• Chapter 2, “Modifying the Configuration File for a New Highly Available Service,”
explains how to add configuration information to the IRIS FailSafe configuration
file.

• Chapter 3, “Writing a Monitoring Script,” describes how to write local and remote
monitoring scripts.

• Chapter 4, “Writing a Failover Script,” explains how to write a failover script for a
highly available service.

• Chapter 5, “Installing and Testing Scripts,” describes how to test the newly added
scripts.

• Appendix A, “Names Used in Template Configuration Files,” lists the names used
in the configuration file and their purposes.

Related Documentation

Besides this guide, other documentation for the IRIS FailSafe system includes

• IRIS FailSafe Administrator’s Guide

• IRIS FailSafe Sybase Administrator’s Guide (IRIS FailSafe Sybase® option)

• IRIS FailSafe Oracle Administrator’s Guide (IRIS FailSafe Oracle® option)

• IRIS FailSafe INFORMIX Administrator’s Guide (IRIS FailSafe INFORMIX® option)

The IRIS FailSafe reference pages are as follows:

• ha_admin(1M)

• ha_appmon(1M)

• ha_cfgchksum(1M)

• ha_cfginfo(1M)

• ha_cfgverify(1M)

About This Guide

xiii

• ha_exec(1M)

• ha_hbeat(1M)

• ha_ifa(1M)

• ha_ifmx(1M) (IRIS FailSafe INFORMIX option)

• ha_killd(1M)

• ha_nc(1M)

• ha_orcl(1M) (IRIS FailSafe Oracle option)

• ha_spng(1M)

• ha_sybs(1M) (IRIS FailSafe Sybase option)

• http_ping(1M) (IRIS FailSafe Web option)

• macconfig(1M)

• ha.conf(4)

• failsafe(7M)

Release notes are included with each IRIS FailSafe product. The names of the release
notes are as follows:

ha_base release notes for IRIS FailSafe

ha_nfs release notes for IRIS FailSafe NFS

ha_www release notes for IRIS FailSafe Web

ha_ orcl release notes for IRIS FailSafe Oracle

ha_ ifmx release notes for IRIS FailSafe INFORMIX

ha_ sybs release notes for IRIS FailSafe Sybase

xiv

About This Guide

Conventions Used in This Guide

These type conventions and symbols are used in this guide:

Bold Literal command-line arguments and literal parameter values

Italics Command names, filenames, new terms, the names of inst subsystems,
manual/book titles, variable command-line arguments, and variables to
be supplied by the user in examples, code, and syntax statements

Fixed-width type

Examples of command output that is displayed in windows on your
monitor and of the contents of files

Bold fixed-width type

Commands and text that you are to type literally in response to shell and
command prompts

IRIX™ shell prompt for the superuser (root)

1

Chapter 1

1. Introduction to IRIS FailSafe Programming

Programmers must write several scripts and add information to the IRIS FailSafe
configuration file to turn an application into a highly available service supported by the
IRIS FailSafe system. No modifications need to be made to an application to make it a
highly available service—all changes are to the IRIS FailSafe system software and to the
IRIS FailSafe configuration file.

Not every application can become a highly available service—this chapter explains the
characteristics an application must have to become a highly available service. This
chapter also describes the procedure for developing the scripts that make an application
a highly available service and gives information about IRIS FailSafe system software that
is important for programmers developing these scripts.

The major sections in this chapter are as follows:

• “What Applications Can Be Highly Available Services in an IRIS FailSafe Cluster?”
on page 2

• “IRIS FailSafe Programming Steps” on page 3

• “IRIS FailSafe System Software” on page 4

2

Chapter 1: Introduction to IRIS FailSafe Programming

What Applications Can Be Highly Available Services in an IRIS FailSafe Cluster?

Applications need not be modified to make them highly available when running in an
FailSafe cluster. However, not every application is appropriate for high availability. This
section describes the characteristics that an application must have for high availability.
When an application has these characteristics, a programmer can develop the scripts
required by the IRIS FailSafe system.

The characteristics of an application that can be made highly available are:

• The application is crash tolerant.

It should be able to recover from failures. The failure could be a system failure (a
hardware failure or an operating system failure) or an application failure.

• The application must have a start and stop procedure.

When the application fails over, the instances of the application are stopped on one
node using the stop procedure and restarted on the other node using start
procedure.

• The application can be moved from one node to the other after failures.

If the application has failed, it must still be possible to run the application stop
procedure. In addition, the application must recover from the failed state when the
application start procedure is executed in the other node.

• If the application depends on other applications and resources, they must also be
highly available.

IRIS FailSafe and its optional products enable you to configure system resources
(interfaces, IP addresses, XLV volumes, and XFS filesystems) and applications (NFS
filesystems, Netscape servers, and INFORMIX, Oracle, and Sybase databases) as
highly available services. For these highly available services, you must configure
them as described in the IRIS FailSafe Administrator’s Guide.

If the application you want to make highly available depends on resources and
applications not supported by IRIS FailSafe products, you must make these
resources and applications highly available, too, using the information in this guide.

IRIS FailSafe Programming Steps

3

IRIS FailSafe Programming Steps

To turn an application into a highly available service automatically failed over by the
IRIS FailSafe system, follow these steps:

1. Understand the application and determine:

■ The system resources on which the application depends.

■ The type of configuration required for the applications—active/backup or
dual-active.

■ The number of instances of the application.

■ The commands and arguments required to start, stop, and monitor the
application instances.

■ The relationships between this application and other highly available services;
specifically, the order all highly available services need to be started and
stopped.

2. Configure and test the base IRIS FailSafe system as described in the IRIS FailSafe
Administrator’s Guide.

3. Add configuration information for the new application to /var/ha/ha.conf. See
Chapter 2, “Modifying the Configuration File for a New Highly Available Service.”

4. Write the local and remote monitoring scripts. See Chapter 3, “Writing a Monitoring
Script.”

5. Write the failover script. This script includes the giveaway(), giveback(),
takeback(), and takeover() functions. See Chapter 4, “Writing a Failover Script.”

6. Install, test, and debug the scripts. See Chapter 5, “Installing and Testing Scripts.”

Note: Do not modify the scripts included with the IRIS FailSafe product. New or
customized scripts must have different names than the files included with IRIS FailSafe
(see Figure 1-14).

4

Chapter 1: Introduction to IRIS FailSafe Programming

IRIS FailSafe System Software

In this section, the architecture of the system software is described: the software
components and the messages they send, the states that nodes can be in and how they
transition to other states, and the scripts that enable fail over of highly available services.
This material supplements the overview IRIS FailSafe system provided in Chapter 1 of
the IRIS FailSafe Administrator’s Guide.

Software Components

Table 1-1 describes the IRIS FailSafe system software executables.

Table 1-1 IRIS FailSafe Software

Component Process Purpose

Heartbeat
daemon

/usr/etc/ha_hbeat Generates heartbeats, which are messages passed
between the two nodes of the cluster over the
private Ethernet that connects the nodes.

Node controller /usr/etc/ha_nc Keeps track of the node state. Determines when a
state transition is needed as a result of a heartbeat
failure, an application failure, an interface failure,
an administrative command, or a node re-entering
a cluster. Controls actions such as killing the other
node; leaving, rejoining, and reintegrating into a
cluster; and starting and stopping monitoring.

Application
monitor

/usr/etc/ha_appmon Monitors the node’s highly available services.
Monitors the remote heartbeat daemon and local
node controller. Notifies the node controller of
failures. Executes scripts. Sends mail at state
transitions and failures.

Kill daemon /usr/etc/ha_killd Monitors the serial connection to the other node.
Has the ability to kill the other node.

Local
monitoring
scripts

/var/ha/actions/ha_*_lmon Each local monitoring script monitors all instances
of one highly available service on the local node.

Database agents /usr/etc/ha_ifmx,
/usr/etc/ha_orcl,
/usr/etc/ha_sybs

Each database agent monitors all instances of one
type of database.

IRIS FailSafe System Software

5

Figure 1-1 shows the communication paths between the software components listed in
Table 1-1 on the two nodes of an IRIS FailSafe cluster while they are in normal state. All
of the processes shown run continuously during normal IRIS FailSafe operation except
the monitoring scripts and failover scripts. The monitoring scripts run periodically to
check the state of agents and applications. The failover scripts run only during fail over.

Interface agent /usr/etc/ha_ifa Monitors the local node’s interfaces.

Failover scripts
for highly
available
services

/var/ha/resources/* Each script contains four failover functions
(takeback(), takeover(), giveaway(), and
giveback()) for one highly available service.

Failover scripts
for operations

/var/ha/actions/{giveaway,
giveback,takeback,takeover}

Each of these scripts causes the failover scripts in
/var/ha/resources to be executed with the name of the
calling script as a command-line argument. This
causes the function with the same name as the
argument (takeback(), takeover(), giveaway(), or
giveback()) to be executed.

Table 1-1 (continued) IRIS FailSafe Software

Component Process Purpose

6

Chapter 1: Introduction to IRIS FailSafe Programming

Figure 1-1 Message Paths Between Software Components While Nodes Are in Normal State

Interface
agent

Interface
agent

Heartbeat
daemon

Node
controller

Application
monitor

Failover
scripts

Heartbeat
daemon

Node
controller

Application
monitor

Failover
scripts

Monitoring
scripts

Database
agents

Monitoring
scripts

Kill
daemon

Kill
daemon

Node A Node B

Database
agents

IRIS FailSafe System Software

7

Table 1-2 describes the IRIS FailSafe administrative commands.

The IRIS FailSafe configuration file /var/ha/ha.conf is a key component of IRIS FailSafe
software. It contains cluster-specific configuration information, which is used by IRIS
FailSafe monitoring and failover scripts. The configuration files on the nodes in a cluster
must be identical.

Node States

The condition of each node in a cluster is described by its state. The possible states are as
follows:

standalone The node is coming up and IRIS FailSafe is starting up. This is a transient
state.

joining The node is coming up and joining the cluster. The node should never
remain in this state for more than two or three minutes.

normal The node is actively providing its own highly available services. It is also
monitoring the other node in the cluster.

degraded The node is providing all highly available services for the cluster; the
other node is unavailable.

Table 1-2 IRIS FailSafe Administrative Commands

Command Purpose

ha_admin Enable the system administrator to force IRIS FailSafe failover operations.

ha_cfgchksum Compute the checksum of a configuration file.

ha_cfginfo Extract information from the configuration file.

ha_cfgverify Verify a configuration file.

ha_exec Execute a command, possibly repeatedly.

ha_spng Verify the serial connections between nodes.

http_ping Check if a Netscape™ server is still running.

macconfig Display or modify MAC addresses.

8

Chapter 1: Introduction to IRIS FailSafe Programming

standby This node has stopped monitoring the other node in the cluster and is no
longer providing highly available services. It is not capable of providing
highly available services.

controlled failback
This node is no longer providing highly available services, but it is
monitoring the other node in the cluster and the services it is providing.
The node is capable of providing highly available services if the other
node fails.

error An unrecoverable failure has occurred.

Evaluating the current node state and monitoring the state of the other node in the cluster
are the responsibilities of the IRIS FailSafe node controller (ha_nc). The state of each node
in the cluster is kept by each node controller.

Failover Operations

Nodes move from one state to another as a result of system bootup, system halt, failure
(system failure or the failure of a highly available service), and ha_admin commands. To
move from one state to another, a node controller sends a message to its local application
monitor and asks it to perform one or more of these four operations, called failover
operations:

takeback Start up all services for which this node is listed as the primary node
(specified by the server-node parameter for the service) in ha.conf.

takeover Start up all services for which this node is listed as the backup node
(specified by the backup-node parameter for the service) in ha.conf.

giveaway Stop all services for which this node is listed as the primary node for the
service in ha.conf.

giveback Stop all services for which this node is listed as the backup node for the
service in ha.conf.

IRIS FailSafe System Software

9

State Transition Scenarios

The possible state transition scenarios are shown in Figure 1-2 through Figure 1-13 in the
following subsections. They show the sequences of states for the two nodes in a cluster,
the primary messages passed between the nodes, and the takeback, takeover, giveaway,
and giveback operations that occur during the different scenarios. Understanding these
scenarios can help you interpret messages written to logs and to debug the scripts you
write when you add the failover of a new service to the IRIS FailSafe system.

Figure 1-2 through Figure 1-13 show two nodes over time (time increases from the top of
the figures to the bottom). The components of the figures are:

NORMAL, CONTROLLED FAILBACK, DEGRADED, JOINING, STANDALONE,
STANDBY
These names and their colored blocks show the current state of a node.
See the section “Node States” in this chapter for descriptions of the
states.

diagonal lines A block of unlabeled diagonal lines indicates that the node is down or it
is up, but IRIS FailSafe is not running.

ovals Ovals are used to indicate events such as crashes, reboots, and the
detection of failures by IRIS FailSafe software.

takeback, takeover, giveaway, giveback
These names indicate that this failover operation is performed. See the
section “Failover Operations” in this chapter for descriptions of the
failover operations.

ha_admin commands
ha_admin commands entered by system administrators are shown next
to the node on which they are entered, for example, # ha_admin -fr.

arrows Arrows are used with message names to indicate messages from one
node to the other. The remainder of this list describes these messages.

kill A kill message from one node to the other causes the recipient to shut
down.

rejoin A message sent when a node is in joining state. It is sent when a node
comes up initially. If there is no response from the other node, the node
sending the message cannot move to normal state. Additional rejoin
messages are sent every 30 seconds until long-timeout seconds have
passed, in case the initial messages are lost. The diagrams show only the
one rejoin message.

10

Chapter 1: Introduction to IRIS FailSafe Programming

reintegrate A message similar to rejoin, except that it is sent after the ha_admin -fr
command or ha_admin -G command is executed on a node in standby
state. It requests permission for the node to move to normal state or
degraded state, respectively.

released A message sent after the giveback script has been executed or as a
response to a rejoin or reintegrate message.

standby A message that tells a node to stay in standby state.

start_rmon A message from a node in degraded state that tells the other node to
begin remote monitoring. Normally, a node in standby state doesn’t do
heartbeat or serial line monitoring of the node in degraded state. This
message, sent when the parameter controlled-failback is true for the
other node, tells the node in standby state to begin monitoring. The
other node in standby state moves to controlled failback state.

takeover A message from one node that tells the other node to perform the
takeover operation.

timeout The timeout event indicates that a node does not respond to the previous
message.

IRIS FailSafe System Software

11

Concurrent Reboot

In Figure 1-2, two nodes are rebooted or IRIS FailSafe is started on both nodes within the
value of long-timeout seconds (specified in ha.conf) of each other. Each node moves to
normal state.

Figure 1-2 Concurrent Reboot

Node A

Reboot or
FailSafe started

STANDALONE

giveback

JOINING

takeback

NORMAL

rejoin

rejoin

Node BTime

STANDALONE

giveback

JOINING

takeback

NORMAL

Reboot or
FailSafe started

12

Chapter 1: Introduction to IRIS FailSafe Programming

Reboot of a Node While the Other Node Is Down or Not Running IRIS FailSafe

In the scenario shown in Figure 1-3, one node (Node B) is down or not running IRIS
FailSafe. The other node (Node A) is rebooted or IRIS FailSafe is started. Node A moves
to degraded state.

Figure 1-3 Reboot of a Node While the Other Node Is Down or Not Running IRIS FailSafe

Node A Node BTime

Reboot or
FailSafe started

STANDALONE
giveback

JOINING

STANDBY

takeback
takeover

DEGRADED

rejoin

timeout

reintegrate

kill

timeout

ha_admin -G

IRIS FailSafe System Software

13

System Maintenance Shutdown

In the scenario shown in Figure 1-4, both nodes begin in normal state. The ha_admin -s
command is entered by the system administrator on one node (node B) to cause all highly
available services to fail over to the other node (Node A) in preparation for performing
system maintenance on Node B.

Figure 1-4 System Maintenance Shutdown

Node A

NORMAL

takeover

DEGRADED

Node BTime

NORMAL

giveaway

STANDBY

ha_admin -s

takeover

14

Chapter 1: Introduction to IRIS FailSafe Programming

Restart After System Maintenance (No Reboot)

In the scenario shown in Figure 1-5, one node (Node A) has been providing all highly
available services while system maintenance has been performed on the other node
(Node B). This system maintenance doesn’t include a reboot. The ha_admin -fr command
is entered by the system administrator on Node B after system maintenance is
completed. Both nodes move automatically to normal state.

Figure 1-5 Restart After System Maintenance (No Reboot)

DEGRADED

giveback

NORMAL

Node A Node BTime

STANDBY

takeback

NORMAL

reintegrate

released

ha_admin -fr

IRIS FailSafe System Software

15

Restart After System Maintenance With Reboot

In the scenario shown in Figure 1-6, one node (Node A) has been providing all highly
available services while system maintenance has been performed on the other node
(Node B). (Node B was brought to standby state using the command ha_admin -s.) The
system maintenance included a reboot. After the reboot, Node B moves to standby state
after attempting to rejoin. The command ha_admin -fr must be used to move both nodes
to normal state.

Figure 1-6 System Maintenance Restart With Reboot

DEGRADED

giveback

NORMAL

Node A Node BTime

Perform system
maintenance and

a reboot

STANDALONE
giveback

JOINING

STANDBY

takeback

NORMAL

rejoin

standby

reintegrate

released

STANDBY

ha_admin -fr

16

Chapter 1: Introduction to IRIS FailSafe Programming

Node Failure

In the scenario shown in Figure 1-7, both nodes are operating normally when one node
(Node B) crashes or hangs (shown in Figure 1-7). The other node (Node A) moves to
degraded state.

Figure 1-7 Node Failure

Node B

Crash or hang

NORMAL

Node A

NORMAL

takeover

DEGRADED

Time

Heartbeat or
remote monitoring

detects failure

kill

IRIS FailSafe System Software

17

Recovery After Node Failure With the Controlled-Failback Parameter Set to False
(or Not Set)

In the scenario shown in Figure 1-8, one node (Node A) is operating in degraded state
and the other node (Node B) is down or not running IRIS FailSafe. Node B is in an
indeterminate state as a result of the scenario in Figure 1-7. It got to When Node B is
rebooted, both nodes are brought automatically to normal state because the
configuration parameter controlled failback is set to false for Node B (or not set for Node
B).

Figure 1-8 Recovery After Node Failure With the Controlled-Failback Parameter Set to False
(or Not Set)

DEGRADED

giveback

NORMAL

Node A Node B

rejoin

released

Time

Reboot or
FailSafe started

STANDALONE
giveback

JOINING

takeback

NORMAL

18

Chapter 1: Introduction to IRIS FailSafe Programming

Recovery After Node Failure With the Controlled-Failback Parameter Set

In the scenario shown in Figure 1-9, one node (Node A) is operating in degraded state
and the other node (Node B) is down or is not running IRIS FailSafe because it has been
killed (by Node A or by an incorrect shutdown of IRIS FailSafe). Node B is rebooted, but
because the controlled-failback parameter is set to true for Node B, Node B goes to
controlled failback state. After the ha_admin -fr command is entered by the system
administrator, both nodes move to normal state.

Figure 1-9 Recovery After Node Failure With the Controlled-Failback Parameter Set

DEGRADED

giveback

NORMAL

Node A Node B

rejoin

start_rmon

reintegrate

released

ha_admin -fr

Time

Reboot or
FailSafe started

STANDALONE
giveback

JOINING

CONTROLLED
FAILBACK

takeback

NORMAL

IRIS FailSafe System Software

19

Node in Normal State Detects a Local Failure

In the scenario shown in Figure 1-10, both nodes begin in normal state. One node (Node
A) detects a local failure and moves to standby state. The other node (Node B) takes over
all services and moves to degraded state.

Figure 1-10 Node in Normal State Detects a Local Failure

Node BTime

NORMAL

takeoverSTANDBY

NORMAL

giveaway

DEGRADED

Node A

Local monitoring
detects failure

takeover

20

Chapter 1: Introduction to IRIS FailSafe Programming

Node in Degraded State Detects Local Failure While the Other Node Is in Standby
State

In the scenario shown in Figure 1-11, one node (Node A) is in degraded state and the
other node (Node B) is in standby state. Local monitoring on Node A detects that there
has been a failure of a highly available service. All highly available services remain on
Node A. Neither node changes state. Local monitoring on Node A is stopped.

Figure 1-11 Node in Degraded State Detects Local Failure While the Other Node Is in Standby
State

Node BTime

STANDBYDEGRADED

DEGRADED

Node A

Local monitoring
detects failure

IRIS FailSafe System Software

21

Node in Degraded State Detects Local Failure While the Other Node Is in Controlled
Failback State

In the scenario shown in Figure 1-12, one node (Node A) is in degraded state and the
other node (Node B) is in controlled failback state. Node A detects the failure of a highly
available service that it is providing. Node A moves to standby state and Node B moves
to degraded state. Node B provides all highly available services.

Figure 1-12 Node in Degraded State Detects Local Failure While the Other Node Is in
Controlled Failback State

Node BTime

CONTROLLED
FAILBACK

takeback
takeoverSTANDBY

DEGRADED

giveback
giveaway

DEGRADED

Node A

Local monitoring
detects failure

takeover

22

Chapter 1: Introduction to IRIS FailSafe Programming

Node in Controlled Failback State Detects the Failure of a Node in Degraded State

In the scenario shown in Figure 1-13, one node (Node A) is in degraded state and the
other node (Node B) is in controlled failback state. Heartbeat monitoring on Node B
detects a failure on Node A. All highly available services are failed over to node B, which
transitions to degraded state. The node that was originally in degraded state is killed and
restarted.

Figure 1-13 Node in Controlled Failback State Detects the Failure of a Node in Degraded State

IRIS FailSafe Scripts

Scripts perform monitoring and the failover operations giveaway, giveback, takeback,
and takeover. To add the failover of a new class of applications, you must create
monitoring and failover scripts (described in Chapter 3, “Writing a Monitoring Script,”
and Chapter 4, “Writing a Failover Script”) for the new application class.

IRIS FailSafe scripts and configuration file are stored in the directory /var/ha. Figure 1-14
shows the contents of this directory.

DEGRADED

Node A Node BTime

CONTROLLED
FAILBACK

CONTROLLED
FAILBACK

takeback
takeover

DEGRADED

Heartbeat or
remote monitoring

detects failure

kill

IRIS FailSafe System Software

23

Figure 1-14 Directory Structure of /var/ha

ha.confactions actions.d

giveaway

giveaway

giveback

takeback

takeover

common.vars

mail

ha_app_Xmon

ha_filesys_lmon

ha_ifa_rmon

ha_nfs_lmon

ha_vol_rmon

ha_web_lmon

S800filesystems

S100interfaces

S700nfs

S200statd

S850volumes

S050webserver

filesystems

interfaces

nfs

statd

volumes

webserver

appclass

ha.conf.filesystems

ha.conf.interfaces

ha.conf.nfs

ha.conf.system

ha.conf.template

ha.conf.volumes

ha.conf.web

giveback takeback takeover

logs resources

/var/ha

templates

24

Chapter 1: Introduction to IRIS FailSafe Programming

The directory /var/ha contains several categories of files and directories as follows:

actions/giveaway, actions/giveback, actions/takeback, actions/takeover
These scripts execute this operation (giveaway, giveback, takeback, or
takeover) for each of the IRIS FailSafe highly available services. They do
this by executing all scripts (in lexical order) in the actions.d directory
(giveaway, giveback, takeback, and takeover) and specifying the
operation as a command-line argument.

actions/common.vars
common.vars defines variables used in all of the scripts. Most variables
defined in common.vars have values that are parameter names. An
example is

T_SERVER=server-node

T_SERVER is a variable used in the scripts to get the value of the
parameter server-node from the configuration file ha.conf.

common.vars is sourced by each IRIS FailSafe monitoring and failover
script at the beginning of the script.

actions/mail This script sends a mail message (using /usr/sbin/Mail) to the address
specified by the parameter mail-dest-addr in /var/ha/ha.conf when
various types of errors are detected. It is executed by the application
monitor (ha_appmon).

actions/ha_<app>_lmon
These scripts are local monitoring scripts. Each script monitors the
highly available service with a name similar (or identical) to <app>.
When you add a highly available service to the IRIS FailSafe system, you
must add a local monitoring script. See Chapter 3, “Writing a
Monitoring Script,” for information about writing a local monitoring
script.

logs This directory contains the logs of all scripts executed by IRIS FailSafe.
The outputs and errors from the commands in the scripts are logged.

resources This directory contains one script per highly available service, plus the
script statd, which is required by NFS. These scripts contain functions for
the IRIS FailSafe operations giveaway, giveback, takeback, and takeover.

IRIS FailSafe System Software

25

resources/<appclass>
Each highly available service added to the IRIS FailSafe system must
have a script added to the resources directory that contains takeback(),
takeover(), giveaway(), and giveback() functions for the highly
available service. (See Chapter 4, “Writing a Failover Script,” for more
details.)

actions.d/giveaway
This directory contains links to each of the files in the resources directory.
The names of the links are the same as the files in the resources directory
that have “S” and a three-digit number prepended. Because the files in
this directory are executed in lexical order, the three-digit numbers that
control the execution order are chosen with care. (See the section
“Choosing the Execution Order of Failover Scripts for Each Operation”
in Chapter 5 for more details.)

When the files in actions/giveaway are executed, they are executed with
the command-line argument giveaway (the name of the directory). This
causes the giveaway() function in the script to be performed. For
example, executing

S800filesystems checksum giveaway

really executes resources/filesystems (because S800 filesystems is a link to
resources/filesystems) with the argument giveaway. checksum is the
checksum for ha.conf.

actions.d/giveaway/S<nnn><appclass>
This is a link to the file resources/<appclass>. <nnn> is a three-digit
number chosen so that this file is executed in the correct order with
respect to the other links in this directory. (See the section “Choosing the
Execution Order of Failover Scripts for Each Operation” in Chapter 5 for
more details.)

actions.d/giveback, actions.d/takeback, actions.d/takeover
These directories are analogous to actions.d/giveaway: they contain links
to files in the resources directory. The links are executed in lexical order
with the name of the directory (giveback, takeback, or takeover) as an
argument.

ha.conf This file is the IRIS FailSafe configuration file. It is not included with the
IRIS FailSafe product or any of its options; it must be created by the user.
(See Chapter 4, “Creating the IRIS FailSafe Configuration File,” of the
IRIS FailSafe Administrator’s Guide for more details.)

26

Chapter 1: Introduction to IRIS FailSafe Programming

templates This directory contains template files used to create the ha.conf file. (See
Chapter 4, “Creating the IRIS FailSafe Configuration File,” of the IRIS
FailSafe Administrator’s Guide for more details.)

Tasks Performed by the Standard Failover Scripts

When the IRIS FailSafe system performs a failover operation (giveaway, giveback,
takeback, or takeover), the function with that name in each of the scripts in the
/var/ha/resources directory is executed. The order of execution is controlled by the
filenames in the /var/ha/actions.d/giveaway, /var/ha/actions.d/giveback,
/var/ha/actions.d/takeback, and /var/ha/actions.d/takeover directories as explained in the
section “Choosing the Execution Order of Failover Scripts for Each Operation” in
Chapter 5. Because all scripts are executed when a failover operation occurs, it is
important to understand what tasks are going to be performed by other scripts when
writing a new script. For your reference, the tasks performed by each of the standard
scripts, the NFS scripts and the Web script for each of the failover operations are
described below. The NFS scripts (nfs and statd) and Web script (webserver) are present
only if the optional IRIS FailSafe NFS and IRIS FailSafe Web products are installed.

Filesystems

The actions performed by each function in the filesystems script are as follows:

takeback() Mounts all filesystems for which this node is the primary node. They are
mounted in increasing lexicographic order.

takeover() Mounts all filesystems for which this node is the backup node. They are
mounted in increasing lexicographic order.

giveaway() Unmounts all filesystems for which this node is the primary node in
decreasing lexicographic order. Before unmounting, it kills any nfsd
processes. After unmounting, it restarts all nfsd processes.

Note: Any processes with open file descriptors for the unmounted
filesystems are killed.

giveback() Unmounts all filesystems for which this node is the backup node in
decreasing lexicographic order. Before unmounting, it kills any nfsd
processes. After unmounting, it restarts all nfsd processes.

Note: Any processes with open file descriptors for the unmounted
filesystems are killed.

IRIS FailSafe System Software

27

Interfaces

The actions performed by each function in the interfaces script are as follows:

takeback() Adds all the IP addresses for which this node is the primary node to
their network interfaces. Also restores the MAC addresses to the
interfaces, if re-mac’ing is used.

takeover() Adds all the IP addresses for which this node is the backup node to their
network interfaces. Also moves the MAC addresses to the interfaces, if
re-mac’ing is used.

giveaway() Removes IP addresses from the network interfaces for which this node
is the primary node.

giveback() Removes IP addresses from the network interfaces for which this node
is the backup node. Restores the MAC addresses if re-mac’ing is used.

NFS

The actions performed by each function in the nfs script are as follows:

takeback() Exports filesystems for which this node is the primary node. They are
exported in a sorted hierarchical order.

takeover() Exports filesystems for which this node is the backup node. They are
exported in a sorted hierarchical order.

giveaway() Unexports (exportfs -u) any filesystem for which this node is the primary
node.

giveback() Unexports (exportfs -u) any filesystem for which this node is the backup
node.

28

Chapter 1: Introduction to IRIS FailSafe Programming

Statd

The actions performed by each function in the statd script are as follows:

takeback() Add an NFS locking directory (called the statmon directory) to be used
for all NFS filesystems for which this node is the primary node. Also
send out a message instructing NFS clients to reacquire NFS locks if that
client had an NFS lock to one of the IP addresses for which this node is
primary node.

takeover() Add an NFS locking directory (called the statmon directory) to be used
for all NFS filesystems for which this node is the backup node. Also send
out a message instructing NFS clients to reacquire NFS locks if that client
had an NFS lock to one of the IP addresses for which this node is backup
node.

giveaway() Remove the NFS locking directory added by takeback().

giveback() Remove the NFS locking directory added by takeover().

Volumes

The actions performed by each function in the volumes script are as follows:

takeback() Changes the node names of all of the XLV volumes that are owned by
the backup node to this node’s (the primary node) name. Assembles all
the local XLV volumes and starts xlv_labd if necessary.

takeover() Changes the node names of all of the XLV volumes that are owned by
the primary node to this node’s (the backup node) name. Assembles all
the local XLV volumes and starts xlv_labd if necessary.

giveaway() Shuts down all the XLV volumes for which this node is the primary
node. Changes the node name for these XLV volumes to the other node’s
name.

giveback() Shuts down all the XLV volumes for which this node is the backup node.
Changes the node name for these XLV volumes to the other node’s
name.

IRIS FailSafe System Software

29

Webserver

The actions performed by each function in the webserver script are as follows:

takeback() Starts all Netscape servers for which this node is the primary node.
Reads all the webserver blocks and puts all directories specified by
httpd-dir for which this is the primary node into the configuration file
specified by httpd-options-file. Calls the script specified by httpd-script
with the start argument.

takeover() Starts all Netscape servers for which this node is the backup node. Reads
all the webserver blocks and puts all directories specified by httpd-dir
for which this is the backup node into the configuration file specified by
httpd-options-file. Calls the script specified by httpd-script with the
start argument.

giveaway() Stops all Netscape servers for which this is the primary node. Reads all
the webserver blocks and puts all the directories specified by httpd-dir
for which this is the primary node into the configuration file specified by
httpd-options-file. Calls the script specified by httpd-script with the stop
argument.

giveback() Stops all Netscape servers for which this is the backup node. Reads all
the webserver blocks and puts all the directories specified by httpd-dir
for which this is the backup node into the configuration file specified by
httpd-options-file. Calls the script specified by httpd-script with the stop
argument.

31

Chapter 2

2. Modifying the Configuration File for a New Highly
Available Service

This chapter describes how to add configuration information about a new service to the
IRIS FailSafe configuration file /var/ha/ha.conf. It assumes that you are familiar with
creating a configuration file, which is described in Chapter 4 of the IRIS FailSafe
Administrator’s Guide.

This chapter begins by showing an example: configuration file information for the
application named, the Internet domain name server. It then describes the process of
developing this configuration file text. Other sections provide information about adding
new block, section, and parameter names to the configuration file and about checking the
syntax of the configuration file.

The sections in this chapter are as follows:

• “An Example of Configuration File Information for a New Highly Available
Service” on page 31

• “Adding a New Highly Available Service to the Configuration File” on page 33

• “Choosing Parameters for a New Highly Available Service” on page 34

• “Checking the Configuration File” on page 35

An Example of Configuration File Information for a New Highly Available Service

Like all highly available services supported by IRIS FailSafe software options (interfaces,
volumes, filesystems, nfs, and so on), the configuration of the application you are making
highly available must be described in the IRIS FailSafe configuration file /var/ha/ha.conf.

32

Chapter 2: Modifying the Configuration File for a New Highly Available Service

For example, if you are adding named as a highly available application, the blocks and
parameters for named in the configuration file might be as follows (shown with line
numbers):

 1 application-class named
 2 {
 3 server-node = ha1 # active node's hostname
 4 }
 5
 6 action named
 7 {
 8 local-monitor = /var/ha/actions/ha_named_lmon
 9 }
10
11 action-timer named
12 {
13 start-monitor-time = 60
14 lmon-probe-time = 120
15 lmon-timeout = 30
16 }
17
18 named named_block
19 {
20 server-node = ha1 # primary node's hostname
21 backup-node = ha2 # backup node's hostname
22 process-name = named
23 }

named is an application that needs one instance running in an IRIS FailSafe cluster. Thus,
it is run in an active/backup configuration and just one server-node parameter is needed
in the application-class block (line 3). The node ha1 is the active (or primary) node, the
node that runs named when the nodes are in normal state.

Each application class needs one action block (lines 6 to 9) and one action-timer block
(lines 11 to 16). These blocks have standard parameters, which are described in Chapter
4 of the IRIS FailSafe Administrator’s Guide.

Because there is just one instance of named running in the cluster, there is just one named
block (lines 18 to 23). The block’s label is named_block (line 18). The block specifies the
active node as ha1 (the server-node parameter on line 20) and the backup node as ha1
(the backup-node parameter on line 21). The process-name parameter (line 22) will be
used by the local monitoring script /var/ha/actions/ha_named_lmon. (See Example 3-1.)

Adding a New Highly Available Service to the Configuration File

33

Adding a New Highly Available Service to the Configuration File

You must develop the configuration file contents for a new highly available service in
several phases as you proceed with developing and testing the scripts for the new highly
available services. The phases are:

1. Put the framework in place in /var/ha/ha.conf. This phase can be done before writing
the scripts described in Chapter 3, “Writing a Monitoring Script,” and Chapter 4,
“Writing a Failover Script.” This framework has these components:

■ Begin with a copy of the /var/ha/ha.conf that you are using on your IRIS FailSafe
cluster.

■ Add a copy of the template for new highly available applications, the file
/var/ha/templates/ha.conf.template.

■ If you know how many instances of the application will be running on the
cluster, create that many copies of the <application_name> block. Using
filesystems as an example, the <application_name> is “filesystem,” and there is
one filesystem block for each filesystem on the shared disks in a cluster.

■ Edit the template to fill in as much information as you can. For example, choose
a name for your highly available service and substitute it for <application_name>
throughout the file. Choose a label for each <application_name> block. Enter the
default values for the monitoring frequency parameters in the action-timer
block.

2. Determine if your new highly available service requires the use of system resources
such as IP addresses, filesystems, and XLV logical volumes that are not already in
the configuration file. If they are required, add them to the configuration file. Follow
the instructions in Chapter 2 and Chapter 4 of the IRIS FailSafe Administrator’s Guide.

3. Customize the configuration file information for the new highly available
application as you develop the monitoring and failover scripts. For example, you
can enter the pathname of your local monitoring script. In addition, during script
development you may find that you want to add parameters to the configuration
file that are specific to your application. The section “Choosing Parameters for a
New Highly Available Service” in this chapter describes the type of information
specified in parameters, the syntax you must use, and how to name them.

4. After you complete the development of the monitoring and failover scripts, but
before you install your new configuration file, check the syntax of the new
configuration file as described in the section “Checking the Configuration File” in
this chapter.

34

Chapter 2: Modifying the Configuration File for a New Highly Available Service

5. As you test the IRIS FailSafe system with the new monitoring and failover scripts,
refine the values of the start-monitor-time, lmon-probe-time, and lmon-timeout
parameters. Remember that the value of start-monitor-time must be greater than or
equal to the value of the long-timeout parameter. The values for lmon-probe-time
and lmon-timeout depend on the time it takes to execute the local monitoring script
for the application.

Choosing Parameters for a New Highly Available Service

The parameters in the IRIS FailSafe configuration file specify many details for each
highly available service, including the number of instances and which node is their
primary node, which monitoring script is to be used, and various monitoring frequency
values. These parameters are used by monitoring scripts and failover scripts. Placing
parameters in the configuration file, rather than simply hardcoding values in the scripts,
simplifies maintenance when values are used in more than one script and simplifies
tuning by putting all values that are likely to change into just one file.

For each parameter you add, you must choose a name. You have two choices:

• Use a parameter name already in use.

Tables in Appendix A, “Names Used in Template Configuration Files,” list the
names already in use. To simplify maintenance, you should use these names for the
purposes listed.

• Choose a new name.

See the section “Defining Variables for New Block, Section, and Parameter Names”
in Chapter 3 for more information.

Consider the structure of your blocks when adding parameters. Simple parameter
specification is structured like this:

block-name {
parameter-name = value

 ...
}

Checking the Configuration File

35

Parameters can take several values, known as a list:

block-name {
parameter-name = (value1 value2 ...)

 ...
}

If necessary, you can include sections as follows:

block-name {
section-name label {

parameter-name = value
 }
 ...
}

The formal syntax definition of the configuration file is given in Chapter 4 of the IRIS
FailSafe Administrator’s Guide.

Checking the Configuration File

You can check the syntax and to some extent the content of the configuration file that you
create by entering this ha_cfgverify command:

/usr/etc/ha_cfgverify configuration_file

configuration_file is the pathname of your configuration file under development. The
messages produced by ha_cfgverify are described in Appendix A of the IRIS FailSafe
Administrator’s Guide.

37

Chapter 3

3. Writing a Monitoring Script

This chapter provides information about writing local and remote monitoring scripts. It
begins with a section that describes how to write a monitoring script. The remaining
sections provide details about various aspects of monitoring scripts that will help you
develop your script.

The sections in this chapter are as follows:

• “Writing a Monitoring Script” on page 37

• “Preparing to Write a Monitoring Script” on page 39

• “Understanding the Monitoring Script Template” on page 41

• “Defining Variables for New Block, Section, and Parameter Names” on page 45

• “Using ha_cfginfo to Get Configuration File Information” on page 46

• “Understanding the Function of the Monitoring Script check() Function” on page 48

• “Executing a Command in a Monitoring Script” on page 50

Writing a Monitoring Script

Two types of monitoring scripts can be written. A local monitoring script monitors a
particular resource, for example network interfaces, or the instances of an application, for
example Netscape servers, on the local node. A remote monitoring script monitors a
resource or the instances of an application on the other node in the cluster. The procedure
below describes the steps to write a local or remote monitoring script, including choosing
which type of script to write.

38

Chapter 3: Writing a Monitoring Script

1. Use the questions and information in the section “Preparing to Write a Monitoring
Script” in this chapter to help you get information you may need about the
application you are monitoring and make decisions about how to implement
monitoring.

2. Begin with the monitoring script template /var/ha/actions/ha_app_Xmon or with a
copy of one of the monitoring scripts provided with the product if it is similar to the
script you need.

3. Review the monitoring script template /var/ha/actions/ha_app_Xmon. It is described
in the section “Understanding the Monitoring Script Template” in this chapter.

4. Become familiar with using the command ha_cfginfo to extract information from the
configuration file. The use of this command is described in the section “Using
ha_cfginfo to Get Configuration File Information” in this chapter.

5. Review other monitoring scripts in /var/ha/actions to get an idea of how they
perform their checking tests and to see if portions of these scripts can be reused in
your script.

6. Define variables in the monitoring script for any new block, section, and parameter
names you added to the configuration file that you will use in the monitoring script.
See the section “Defining Variables for New Block, Section, and Parameter Names”
in this chapter for details.

7. Write the function that performs the failure test, check(). It should contain code that
searches for all instances of the application running on $HOST and, for each
instance of the application, perform the failure test. The requirements for this
function are described in the section “Understanding the Function of the
Monitoring Script check() Function” in this chapter.

8. Modify the remainder of the script as necessary.

The remaining sections in this chapter provide information that will help you perform
these steps.

Preparing to Write a Monitoring Script

39

Preparing to Write a Monitoring Script

Here are some questions to think about before writing a monitoring script:

• Is a monitoring script required?

Monitoring scripts may not be needed at all in these situations:

– Heartbeat monitoring is sufficient; simply verifying that the node is alive
(provided automatically by IRIS FailSafe software) determines the health of the
highly available service.

– There is no process or resource that can be monitored. For example, the Silicon
Graphics Gauntlet software performs IP filtering on firewall nodes. Because the
filtering is done in the kernel, there is no process or resource to monitor.

– The resource on which the application depends is already monitored. For
example, monitoring some client-server applications might best be done by
monitoring the filesystems, volumes, and network interfaces they use. Because
this is already done by the IRIS FailSafe base software (the
/var/ha/actions/ha_filesys_lmon and /var/ha/actions/ha_vol_lmon scripts and the
ha_ifa interface agent), additional monitoring is not required.

• Can a local monitoring script be written?

Local monitoring may be so expensive that it affects system performance. In this
case it shouldn’t be done. Also, security issues may make monitoring very difficult.

In some unusual situations, applications may not allow local monitoring. For
example, the application may prevent local clients from connecting. In this case,
only remote monitoring can be done.

• Is a remote monitoring script necessary?

There are generally two components to remote monitoring: testing the network
between the two nodes and verifying that the application is running in the remote
node. Because the network interfaces specified in the node blocks of the
configuration file are monitored by the interface agent and the application can be
monitored by a local monitoring script, a remote monitoring script may not be
necessary.

• What are the symptoms of failure for this application?

Some possibilities include:

– The application returns an error code.

– The application returns the wrong result.

40

Chapter 3: Writing a Monitoring Script

– The application does not return quickly enough.

• What is the test for failure?

The test should be simple and complete quickly, whether it succeeds or fails. Some
examples of tests are as follows:

– For a client-server application that follows a protocol, the monitoring script can
make a simple request and verify that the proper response is received.

– For a web server, the monitoring script can request a home page, verify that the
connection was made, and ignore the resulting home page.

– For a database, a simple request such as querying a table can be made.

– For NFS, more complicated end-to-end monitoring is required. The test might
consist of mounting an exported filesystem, checking access to the filesystem
with a stat() system call to the root of the filesystem, and undoing the mount.

– For an application that writes to a log file, check that the size of the log file is
increasing or use the grep command to check for a particular message.

– The command

killall -0 processname

can be used to determine quickly whether a process exists. Using the ps
command to check on a particular process is not a good test; its execution can be
too slow.

• What should the probe time be set to (the frequency of monitoring)?

For local monitoring, the probe time should be a balance between the frequency of
checking and the cost of checking. Monitoring reduces the performance of a node.

For remote monitoring, the probe time should be longer than the probe time for
local monitoring and longer than the heartbeat probe time. A good initial value for
the probe time for remote monitoring is the value of long-timeout. Remote
monitoring is much more likely to suffer from timeouts than local monitoring.

• What should the timeout be (the period in which a test should complete)?

This value must be determined by testing the monitoring script. It must be long
enough to guarantee that occasional anomalies do not cause false failovers.

Understanding the Monitoring Script Template

41

• Should the failure test be executed multiple times so that a node is not declared
dead after a single failure?

Testing more than once before declaring failure is a good idea. One way to do this if
the test is a single command is to use the ha_exec command. It is described in the
section “Understanding the Function of the Monitoring Script check() Function.”

• What values need to be customized or tuned and should therefore go into the
configuration file as parameters?

See Chapter 2, “Modifying the Configuration File for a New Highly Available
Service,” for information on adding parameters to /var/ha/ha.conf.

Understanding the Monitoring Script Template

The monitoring script template /var/ha/actions/ha_app_Xmon is shown in Example 3-1. A
description of the template is provided at the end of the template.

Example 3-1 Monitoring Script Template With Line Numbers

 1 #!/sbin/sh
 2 #
 3 ## Instructions for modifying this file are on lines that begin with ##.
 4 #
 5 ## Provide a description of this script including its name, installation
 6 ## location, purpose, and the monitoring tests performed.
 7 #
 8 # Usage:
 9 ## Replace <scriptname> in the next line with the name of this script.
 10 # <scriptname> “<checksum> <nodename>”
 11 #
 12 # Exit codes:
 13 # 0: The local/remote monitor succeeded
 14 # 1: This script called illegally
 15 # 2: Configuration file is incorrect
 16 # 3: The local/remote monitoring failed
 17 #
 18
 19 SUCCESS=0
 20 ILLEGAL_CALL=1
 21 INCORRECT_CONF_FILE=2
 22 FAILED=3
 23
 24 HA_DIR=/var/ha/actions

42

Chapter 3: Writing a Monitoring Script

 25 HAEXEC=/usr/etc/ha_exec
 26 CONF=$HA_DIR/common.vars
 27
 28 ## Define other variables that are local to this script here.
 29 ## Use ${LOGGER} to print error and TESTING messages to /var/adm/SYSLOG
 30 ## file.
 31
 32 # Source in common variables
 33 . $CONF
 34
 35 if [X$TESTING = Xok]; then
 36 ## Replace <application> and <local/remote> in the next line.
 37 ${LOGGER} “Executing <application> <local/remote> monitor
script”
 38 fi
 39
 40 if [$# -ne 1]; then
 41 ${LOGGER} “Illegal syntax: argument required”
 42 ${LOGGER} “Usage: $0 \”checksum nodename\””
 43 exit $ILLEGAL_CALL;
 44 fi
 45
 46 # Get the checksum and nodename from the argument string.
 47 set $1
 48
 49 if [$# -ne 2]; then
 50 ${LOGGER} “Illegal syntax: argument required”
 51 ${LOGGER} “Usage: $0 \”checksum nodename\””
 52 exit $ILLEGAL_CALL;
 53 fi
 54
 55 HOST=$2
 56
 57 #
 58 # Compare the checksum argument (the checksum known by the node
 59 # controller and application monitor) with the checksum of ha.conf
 60 # on this system.
 61
 62 CNF_CHKSUM=$1
 63 CHKSUM=`$CFG_SUM`
 64 if [$CNF_CHKSUM != $CHKSUM]; then
 65 ${LOGGER} “Checksum mismatch [argument: $CNF_CHKSUM] [file:
$CHKSUM]”
 66 exit $INCORRECT_CONF_FILE;
 67 fi

Understanding the Monitoring Script Template

43

 68
 69 ##
 70 ## Substitute ha_app_Xmon by the application name
 71 ##
 72 LOGFILE=/var/ha/logs/ha_app_Xmon.$HOST.log
 73 echo Started logging at `date` > $LOGFILE
 74
 75 #
 76 # Executes the command $EXEC and prints the command, output and
 77 # error to log file $LOGFILE. If the return value from the command
 78 # is non-zero, the function exits with value 3.
 79 # It takes one parameter, log message about the command.
 80 #
 81 execute_cmd()
 82 {
 83
 84 echo $1 >> $LOGFILE;
 85 if [X${TESTING} = Xok]; then
 86 ${LOGGER} $1
 87 fi
 88
 89 eval $EXEC >> $LOGFILE 2>&1;
 90
 91 exit_code=$?;
 92
 93 if [$exit_code -ne 0]; then
 94 echo “ERROR: $EXEC, exit_code: $exit_code” >> $LOGFILE;
 95 ${LOGGER} “ERROR: $EXEC”
 96 exit 3;
 97 fi
 98
 99 echo “*** $EXEC completed with exit_code 0 ***” >> $LOGFILE;
100
101 }
102
103 ## Put the checking procedure(s) here.
104
105 ## Comment about check() procedure.
106 ## Use $HAEXEC for commands which have to be retried before declaring
107 ## application monitor failure.
108 ## Check to see if the application instances whose server-node is $HOST
109 ## has failed.
110 ## The check() procedure should return $FAILED if the application
111 ## instance has failed.
112 ## If the configuration file ha.conf is incorrect, check() procedure

44

Chapter 3: Writing a Monitoring Script

113 ## should return $INCORRECT_CONF_FILE.
114 ## To read the configuration file ha.conf, use $CFG_INFO command. For
115 ## more information about the command, see ha_cfginfo(1M) manpage.
116 ## Use execute_cmd() to execute the commands in the script.
117 ##
118
119 ## check()
120 ## {
121 ## ...
122 ## }
123
124 ## Make call(s) to checking procedure(s) here.
125
126 ## check;
127
128 # Exit with SUCCESS
129
130 exit $SUCCESS;

The monitoring script template can be broken into these sections:

• Lines 19 to 22 set variables for the script return values. Failover scripts have these
return values:

– 0 ($SUCCESS)—Success; the operation succeeded, so the application is running.

– 1 ($ILLEGAL_CALL)—An invalid argument was passed to the script.

– 2 ($INCORRECT_CONF_FILE)—The configuration file is invalid; either
information in the configuration file is incorrect or some information is missing
from the configuration file.

– 3 ($FAILED)—The operation failed.

If a monitoring script returns a non-zero value, the application is assumed to have
failed.

• Line 33 sources the file /var/ha/actions/common.vars, which assigns strings in
/var/ha/ha.conf to variables and defines the ${LOGGER} command, which is used to
write messages to /var/adm/SYLOG, and the ${TESTING} variable, which is used to
control debugging information written to /var/adm/SYSLOG. It also sets the variable
${CFG_SEP} to the character #.

Defining Variables for New Block, Section, and Parameter Names

45

• Lines 40 to 54 contain code for checking the monitoring script’s command-line
argument. The monitoring script must have one command line argument, a
double-quoted argument that contains two strings separated by a blank:

– The first string is the checksum of the /var/ha/ha.conf file, as generated by the
ha_cfgchksum command.

– The second string is a node name. This is the hostname of the node to be
monitored. Line 55 sets $HOST to the node name.

• Lines 62 to 67 compare the checksum argument with the checksum of
/var/ha/ha.conf.

• Lines 72 and 73 set $LOGFILE to the name of the log file and write a message to it.
The directory for the log file is /var/ha/logs. The convention for the filename is the
name of the application, $HOST, and the word log, separated by periods.

• Lines 76 to 101 describe and define the execute_cmd() function. It writes
information to the log file and executes the command specified by the variable
$EXEC. It is described fully in the section “Executing a Command in a Monitoring
Script.”

• Lines 103 to 122 describe and define the check() function. The check() function is
described fully in the next section, “Understanding the Function of the Monitoring
Script check() Function.”

Defining Variables for New Block, Section, and Parameter Names

Each new block, section, or parameter name that you added to the configuration file (see
the section “Choosing Parameters for a New Highly Available Service” in Chapter 2)
must be assigned to a shell variable at the beginning of each script in which they are used.
The variables are used in scripts, not the parameter, section, and block names.

When assigning a parameter, section, or block name to a variable, choose a variable name
that starts with T_. You can see examples of these assignments in the file
/var/ha/actions/common.vars. Your variables can be defined in the scripts in which they are
used. Do not modify the /var/ha/actions/common.vars file to add new variables.
/var/ha/actions/common.vars gets updated by new releases and your modifications will be
lost when a new release of IRIS FailSafe software is installed.

46

Chapter 3: Writing a Monitoring Script

For example, say that you added this parameter to the configuration file:

process-name = named

To use this parameter in a script, add this line to the script you write (about line 31 in
Example 3-1):

T_PROCNAME=process-name

Using ha_cfginfo to Get Configuration File Information

The command ha_cfginfo is used in monitoring and failover scripts to obtain information
from the configuration file /var/ha/ha.conf. The command is

/usr/etc/ha_cfginfo [-f filename] [string]

filename is the name of a configuration file; by default it is /var/ha/ha.conf. If string isn’t
specified, the names of the blocks in the configuration file are listed. By specifying string,
you can get any value in the file. For example, say that this is a portion of a configuration
file:

volume shared1_vol
{
 server-node = xfs-ha1
 backup-node = xfs-ha2
 devname = /dev/dsk/xlv/shared1_vol
}

volume shared2_vol
{
 server-node = xfs-ha2
 backup-node = xfs-ha1
 devname = /dev/dsk/xlv/shared2_vol
 disks = (/dev/dsk/dks0d1s2 /dev/dsk/dks0d5s3 /dev/dsk/dks0d2s6)
}

Some example ha_cfginfo commands and their output are shown below. The string
argument specifies the hierarchical path you are interested in, with the # character
separating elements in the hierarchy.

/usr/etc/ha_cfginfo volume
shared1_vol shared2_vol
/usr/etc/ha_cfginfo volume#shared1_vol
server-node backup-node devname

Using ha_cfginfo to Get Configuration File Information

47

/usr/etc/ha_cfginfo volume#shared1_vol#server-node
xfs-ha1
/usr/etc/ha_cfginfo volume#shared2_vol#server-node
xfs-ha2
/usr/etc/ha_cfginfo volume#shared2_vol#disks
/dev/dsk/dks0d1s2 /dev/dsk/dks0d5s3 /dev/dsk/dks0d2s6

A simple example of using ha_cfginfo in a script is this fragment that monitors each of the
volumes defined in /var/ha/ha.conf:

EXEC = ‘/usr/etc/ha_cfginfo volume‘

for VOL in $EXEC
do

monitor the volume $VOL here
done

Scripts access the labels and parameter values in /var/ha/ha.conf by specifying the
hierarchical path to the label or parameter they want—for example, the block, its label, a
section, its label, and finally the parameter—as an argument to the ha_cfginfo command.
However, there is a level of indirection in the naming of the blocks, sections, and
parameters. In the shell script /var/ha/actions/common.vars, each block, section, and string
name in /var/ha/ha.conf is assigned to a similarly named variable. These variables are used
as arguments to ha_cfginfo in monitoring and failover scripts.

As an example of the use of ha_cfginfo, say that the configuration file contains this
fragment:

nfs nfs1
{
 export-point = /shared1/export
 ...
}
nfs nfs2
{
 export-point = /shared2/export
 ...
}

48

Chapter 3: Writing a Monitoring Script

The file /var/ha/actions/common.vars includes these lines:

CFG_FILE=/var/ha/ha.conf
CFG_INFO="/usr/etc/ha_cfginfo -f ${CFG_FILE}"
CFG_SEP=#
T_NFS=nfs
T_EXPORTPT=export-point

To perform an operation on each export point for NFS filesystems, use a shell script
fragment such as this to get the value of each export-point parameter:

for FS in `$CFG_INFO ${T_NFS}` # loop through each nfs block
do
 # set up the ha_cfginfo command line to get the export-point value of an nfs block
 SEARCH=”$CFG_INFO ${T_NFS}${CFG_SEP}${FS}${CFG_SEP}${T_EXPORTPT}”

 # perform the ha_cfginfo command, assign the result to $EXPORT_PT
 EXPORT_PT=`$SEARCH`

 # perform operation on $EXPORT_PT
 ...
done

Understanding the Function of the Monitoring Script check() Function

The checking function check() must perform these functions:

• Check to see if the application instances whose server-node is $HOST have failed.

• Exit the script with the return value $FAILED if the application instance has failed.

• Exit the script with the return value $INCORRECT_CONF_FILE if the configuration
file /var/ha/ha.conf is incorrect.

To extract information from /var/ha/ha.conf, use the ha_cfginfo command. (The
common.vars file sets the variable $CFG_INFO to the ha_cfginfo command.) ha_cfginfo is
described in the section “Using ha_cfginfo to Get Configuration File Information” in this
chapter.

Understanding the Function of the Monitoring Script check() Function

49

When executing each command used to check if an application instance has failed, you
can use the ha_exec command, which provides automatic retry and timeout, and the
execute_cmd() function, which provides automatic logging. See the subsection
“Executing a Command in a Monitoring Script” for more information.

Shown below is the check() function for a named local monitoring script (to be installed
as /var/ha/actions/ha_named_lmon).

check()
{
 NAMED=named
 # for each named block ...
 for i in `$CFG_INFO ${NAMED}`
 do
 # get the server-node name
 SEARCH="$CFG_INFO ${NAMED}${CFG_SEP}${i}${CFG_SEP}${T_SERVER}"
 SERVER_NODE=`$SEARCH`
 # if that failed, log a message and exit
 if [$? -eq 1]; then
 ${LOGGER} "$0: Trouble finding server node for named $i ($SEARCH)"
 exit $INCORRECT_CONF_FILE;
 fi

 # if this node is the server-node ...
 if [X${SERVER_NODE} = X${HOST}]; then
 # get the value of process-name
 SEARCH="$CFG_INFO ${NAMED}${CFG_SEP}${i}${CFG_SEP}${PROC_NAME}"
 PROC_NAME=`$SEARCH`
 # if that failed, log a message and exit
 if [$? -eq 1]; then
 ${LOGGER} "$0: Trouble finding process name for named $i ($SEARCH)"
 exit $INCORRECT_CONF_FILE;
 fi

 # set up and execute the command "killall -0 named", which checks to
 # see if named is running
 EXEC="${KILLALL} -0 ${PROC_NAME}"
 execute_cmd "check if ${PROC_NAME} is running"
 fi
 done
}

50

Chapter 3: Writing a Monitoring Script

Executing a Command in a Monitoring Script

To execute each command that you add to a script, you have these choices:

• Execute the command.

• Use the ha_exec command to execute the command.

ha_exec is used when the command has to be retried before declaring that the
application has failed or when the command might not return quickly enough and
you want to set a time limit.

The syntax of the ha_exec command is

ha_exec [-p waitperiod] timeout retry command

command is the command for the failure test, timeout is the length of time to wait
without response before declaring that a single test failure, retry is the number of
times to retry the test, and waitperiod is the length of time to wait after a failure or
command timeout before retrying command. waitperiod defaults to 0. (See the
ha_exec(1M) reference page for more information.)

• Use the execute_cmd() function (with or without ha_exec) to execute the command.

The execute_cmd() function writes information to the log file and executes the
command specified by the variable $EXEC. It takes one parameter, a string that is a
message of your choice. It executes a command you specify and writes a message
passed as a parameter, the command executed, the output of the command
executed, and a message about the return value of the command to the log file
/var/ha/logs/ha_<app>_lmon.<node_name>.log. This log file makes debugging a
monitoring script failure easier. The command is the value of $EXEC, which you set
in the check() function.

For example, say that you decide to use this command to determine if the sendmail
process is running: killall -0 sendmail. This command returns 0 if sendmail is running and
non-zero if it is not. Your choices are these:

• Execute the command and check the return value with code such as this:

RESULT = ‘killall -0 sendmail‘

• Use ha_exec to execute the command, giving it three seconds to return and trying
twice if necessary:

RESULT = ‘$HAEXEC 3 2 "killall -0 sendmail"‘

Executing a Command in a Monitoring Script

51

• Use execute_cmd() without ha_exec to execute the command:

EXEC = "killall -0 sendmail"
RESULT = execute_cmd "checking for sendmail"

• Use execute_cmd() with ha_exec to execute the command:

EXEC = ‘$HAEXEC 3 2 "killall -0 sendmail"‘
RESULT = execute_cmd "checking for sendmail"

Using execute_cmd() with ha_exec is recommended.

When choosing between these different methods of executing a command, keep these
things in mind:

• Use ha_exec when the command might fail and has to be retried or when the
command might not return quickly and you want to set a time limit.

• When you use ha_exec and execute_cmd(), the command must return 0 on success
and non-zero on failure.

• If you need to examine the output of the command, don’t use execute_cmd()
because the output goes to the log file, where it would be difficult to parse.

53

Chapter 4

4. Writing a Failover Script

This chapter provides information about writing a failover script for a resource or
application that you want the IRIS FailSafe system to treat as a highly available service.
It begins with a section that describes how to write a failover script. The remaining
sections provide details about various aspects of failover scripts that will help you
develop your script.

The sections in this chapter are as follows:

• “Writing a Failover Script” on page 53

• “Preparing to Write a Failover Script” on page 54

• “Understanding the Failover Script Template” on page 56

• “Writing the Failover Functions” on page 62

• “Executing a Command in a Failover Script” on page 64

Writing a Failover Script

Follow these steps to write a failover script:

1. Use the questions and information in the section “Preparing to Write a Failover
Script” in this chapter to help you get information about the application you are
failing over and make decisions about how to implement the failover script.

2. Begin with the failover script template in /var/ha/resources/appclass or with a copy of
one of the failover scripts in /var/ha/resources if it is similar to the script you need.

3. Review the failover script template /var/ha/resources/appclass. It is described in the
section “Understanding the Failover Script Template” in this chapter.

4. If necessary, review how to extract information from /var/ha/ha.conf using the
ha_cfginfo command. ha_cfginfo is described in the section “Using ha_cfginfo to Get
Configuration File Information” in Chapter 3.

54

Chapter 4: Writing a Failover Script

5. Review your choices for executing commands in the script, which are described in
the section “Executing a Command in a Failover Script” in this chapter.

6. Define variables in the monitoring script for any new block, section, and parameter
names you added to the configuration file that you will use in the monitoring script.
See the section “Defining Variables for New Block, Section, and Parameter Names”
in Chapter 3 for details.

7. Write the takeback(), takeover(), giveaway(), and giveback() functions. See the
section “Writing the Failover Functions” in this chapter for more information.

8. Make each of the functions takeback(), takeover(), giveaway(), and giveback() in
the script idempotent—if it is executed twice in a row and the first execution
succeeds, the second time must also succeed.

For example, running the script with the giveaway argument should stop all
instances of the highly available service. If it is run again immediately, it should
return without error. If the giveaway argument is specified when no instances of
highly available service are running, the giveaway() function must succeed. To
achieve this, you may have to add a check that tests whether the application is
running prior to each command that halts an application. The command to halt an
application is executed only if the application is running.

9. Review each function and test if necessary to verify that it executes in less than the
value of the long-timeout parameter in the internal block, which is 60 seconds by
default.

The remaining sections in this chapter provide information that will help you perform
these steps.

Preparing to Write a Failover Script

Each highly available service has a failover script in the /var/ha/resources directory. This
script contains at least these four functions: takeover(), takeback(), giveaway(), and
giveback().

Here are some questions to think about before writing a failover script:

• How do I move this application from one machine to another?

• Can this application be moved at any time?

Preparing to Write a Failover Script

55

• Do any highly available services, such as filesystems on shared disks, need to exist
before the application can be started on another node?

• Do any actions need to be performed to recover lost transactions, data, or state
before starting the application on another node?

For example, databases are able to recover lost transactions. Commands can be
executed by the script to recover lost transactions. For NFS filesystems or a
Netscape server, there is no automatic recovery; the client simply requests the data
again.

• How do you start and stop the application on a node? How do you start and stop a
specific instance of the application?

• Can the application be started and stopped as root or must it be another user?

• If a user other than root must start and stop the application, should that user be
specified in /var/ha/ha.conf?

• Where is the configuration information for the application stored? Will it be on
shared or local disks?

You may not have any flexibility about where the configuration information is
stored. To store it on a shared disk, you may need to link or copy files. (Remember
that shared disks don’t allow concurrent access; they can be used by only one node
at a time.)

• Where is the data for the application stored? Will it be on shared or local disks?

• Does the application both read and write data or just read it?

If the application doesn’t write data, for example a front end Web server that has
ready-only data, duplicating the data on local disks might be the best choice.

• Where is the log information for the application stored? Will it be on shared or local
disks?

• Where is the application itself stored? Will it be on shared or local disks?

• Does information about the application, data, log, or configuration information
need to be specified in /var/ha/ha.conf?

56

Chapter 4: Writing a Failover Script

• What tasks will be performed by other failover scripts executed prior to this script?

If log, data, or configuration information is stored in a raw volume or in a filesystem
on a shared disk, the filesystems and volumes failover scripts must be run before the
application is started by the takeover or takeback operations.

See “Tasks Performed by the Standard Failover Scripts” in Chapter 1 for
information about the actions of each failover script.

• What tasks will be performed by other failover scripts after this script is executed?

If log, data, or configuration information is stored in a raw volume or in a filesystem
on a shared disk, the filesystems and volumes failover scripts must be run after the
application is stopped by the giveback or giveaway operations.

See “Tasks Performed by the Standard Failover Scripts” in Chapter 1 for
information about the actions of each failover script. See “Choosing the Execution
Order of Failover Scripts for Each Operation” in Chapter 5 for information about
specifying the ordering of execution of the script relative to other scripts.

• What additional information about the application should be stored in
/var/ha/ha.conf?

All shared filesystems and volumes must be specified in /var/ha/ha.conf.
Command-line arguments for starting and stopping applications should be put in
/var/ha/ha.conf if they will vary; otherwise they can be hardcoded in the failover
script.

Understanding the Failover Script Template

The failover script template /var/ha/resources/appclass is shown in Example 4-1. A
description of the template is provided at the end of the template.

Example 4-1 Failover Script Template

 1 #!/sbin/sh
 2 #
 3 ## Instructions for modifying this file are on lines that begin with ##.
 4 #
 5 ## Provide a description of this script including its name, installation
 6 ## location, purpose and the resource(s)/application(s) that it fails over.
 7 #
 8 # Usage:
 9 ## Replace <scriptname> in the next line with the name of this script.

Understanding the Failover Script Template

57

 10 # <scriptname> <checksum> <argument>
 11 #
 12 # The <argument> can be one of the operations - giveback,
 13 # giveaway, takeover or takeback.
 14 #
 15 # Exit codes:
 16 # 0: The operation succeeded
 17 # 1: This script called illegally
 18 # 2: Configuration file is incorrect
 19 # 3: Command exited with non-zero return code - the action
 20 # failed.
 21
 22 SUCCESS=0
 23 ILLEGAL_CALL=1
 24 INCORRECT_CONF_FILE=2
 25 FAILED=3
 26
 27 HA_DIR=/var/ha/actions
 28 CONF=$HA_DIR/common.vars
 29
 30 ## Define other variables that are local to this script here.
 31 ## Use ${LOGGER} to print error and TESTING messages to /var/adm/SYSLOG
 32 ## file.
 33
 34 # Source in common variables
 35 . $CONF
 36
 37 if [X$TESTING = X"ok"]; then
 38 ## Replace <application> in the next line.
 39 ${LOGGER} "Executing <application> script"
 40 fi
 41
 42 if [$# -ne 2]; then
 43 ${LOGGER} "Illegal syntax: checksum and argument required"
 44 ${LOGGER} "Usage: $0 <checksum> <argument>"
 45 exit $ILLEGAL_CALL;
 46 fi
 47
 48 if [$2 != "giveback" -a $2 != "takeback" -a $2 != "takeover" -a
$2 != "giveaway"]; then
 49 ${LOGGER} "Illegal argument: must be giveback, giveaway,
takeback, or takeover"
 50 ${LOGGER} "Usage: $0 <checksum> <argument>"
 51 exit $ILLEGAL_CALL;
 52 fi

58

Chapter 4: Writing a Failover Script

 53
 54 #
 55 # Compare the checksum argument (the checksum known by the node
 56 # controller and application monitor) with the checksum of ha.conf
 57 # on this system.
 58 CNF_CHKSUM=$1
 59 CHKSUM=`$CFG_SUM`
 60 if [$CNF_CHKSUM != $CHKSUM]; then
 61 ${LOGGER} "Checksum mismatch [argument: $CNF_CHKSUM] [file:
$CHKSUM]"
 62 exit $INCORRECT_CONF_FILE;
 63 fi
 64
 65 HOST=`hostname`
 66
 67 ##
 68 ## Substitute applclass by the application name
 69 ##
 70 LOGFILE=/var/ha/logs/appclass.log
 71 echo Started logging at `date` > $LOGFILE
 72
 73 #
 74 # Executes the command $EXEC and prints the command, output and
 75 # error to log file $LOGFILE. If the return value from the command
 76 # is non-zero, the function exits with value 3.
 77 # It takes one parameter, log message about the command.
 78 #
 79 execute_cmd()
 80 {
 81
 82 echo $1 >> $LOGFILE;
 83 if [X${TESTING} = Xok]; then
 84 ${LOGGER} $1
 85 fi
 86
 87 eval $EXEC >> $LOGFILE 2>&1;
 88
 89 exit_code=$?;
 90
 91 if [$exit_code -ne 0]; then
 92 echo "ERROR: $EXEC, exit_code: $exit_code" >> $LOGFILE;
 93 ${LOGGER} "ERROR: $EXEC"
 94 exit 3;
 95 fi
 96

Understanding the Failover Script Template

59

 97 echo "*** $EXEC completed with exit_code 0 ***" >> $LOGFILE;
 98
 99 }
100
101 ## Put the procedures here.
102
103 ## Comment about giveback() procedure.
104 ## Stop all the application instance(s) or resource(s) for which $HOST
105 ## is the backup-node.
106 ## Use $CFG_INFO to read information from the configuration file, ha.conf.
107 ## To get more information about the command, see ha_cfginfo(1M) manpage.
108 ## The procedure should return $FAILED on failure and $SUCCESS on
109 ## success of the operation.
110 ## giveback()
111 ## {
112 ## ...
113 ## }
114
115 ## Comment about giveaway() procedure.
116 ## Stop all the application instance(s) or resource(s) for which $HOST
117 ## is the server-node.
118 ## Use $CFG_INFO to read information from the configuration file, ha.conf.
119 ## The procedure should return $FAILED on failure and $SUCCESS on
120 ## success of the operation.
121 ## giveaway()
122 ## {
123 ## ...
124 ## }
125
126 ## Comment about takeover() procedure.
127 ## Start all the application instance(s) or resource(s) for which $HOST
128 ## is the backup-node.
129 ## Use $CFG_INFO to read information from the configuration file, ha.conf.
130 ## The procedure should return $FAILED on failure and $SUCCESS on
131 ## success of the operation.
132 ## takeover()
133 ## {
134 ## ...
135 ## }
136
137 ## Comment about takeback() procedure.
138 ## Start all the application instance(s) or resource(s) for which $HOST
139 ## is the server-node.
140 ## Use $CFG_INFO to read information from the configuration file, ha.conf.
141 ## The procedure should return $FAILED on failure and $SUCCESS on

60

Chapter 4: Writing a Failover Script

142 ## success of the operation.
143 ## takeback()
144 ## {
145 ## ...
146 ## }
147
148 ## Make calls to operation procedures here.
149
150 if [$2 = "giveback"]; then
151 giveback;
152 elif [$2 = "takeover"]; then
153 takeover;
154 elif [$2 = "takeback"]; then
155 takeback;
156 elif [$2 = "giveaway"]; then
157 giveaway;
158 fi
159
160 # Exit with SUCCESS.
161
162 exit $SUCCESS;

The failover script template can be broken into these sections:

• Lines 22 to 25 set variables for the script return values. Failover scripts have these
return values:

– 0 ($SUCCESS)—Success; the operation succeeded.

– 1 ($ILLEGAL_CALL)—An invalid argument was passed to the script.

– 2 ($INCORRECT_CONF_FILE)—The configuration file is invalid; either
information in the configuration file is incorrect, some information is missing
from the configuration file, or the configuration file changed between starting
up IRIS FailSafe and the execution of the script.

– 3 ($FAILED)—The operation failed.

If the failover script returns a non-zero value, the script is assumed to have failed.

• Line 35 sources the file /var/ha/actions/common.vars, which assigns strings in
/var/ha/ha.conf to variables and defines the ${LOGGER} command, which is used to
write messages to /var/adm/SYLOG, and the ${TESTING} variable, which is used to
control debugging information written to /var/adm/SYSLOG. It also sets the variable
${CFG_SEP} to the character #.

• Lines 37 to 40 write a message to /var/adm/SYLOG.

Understanding the Failover Script Template

61

• Lines 42 to 63 check the command-line arguments. The script takes two arguments:

– The first argument is the checksum for the configuration file. Lines 58 to 63
compare the checksum argument with the checksum of /var/ha/ha.conf.

– The second argument is an operation: takeback, takeover, giveaway, or
giveback. Lines 48 to 52 check this argument.

• Line 65 sets $HOST to the result of the hostname command.

• Lines 70 and 71 set $LOGFILE to the name of the log file and write a message to it.
The directory for the log file is /var/ha/logs. The convention for the filename is the
name of the application and the word log, separated by a period.

• Lines 76 to 101 describe and define the execute_cmd() procedure. It takes one
parameter, a string that is a message of your choice. It executes a command you
specify and writes a message passed as a parameter, the command executed, the
output of the command executed, and a message about the return value of the
command to a log file. The command is the value of $EXEC, which you set in the
check() procedure.

• Lines 103 to 113 describe and define the giveback() procedure. The giveback()
procedure is described fully in the next subsection, “Writing the Failover
Functions.”

• Lines 115 to 124 describe and define the giveaway() procedure. The giveaway()
procedure is described fully in the next subsection, “Writing the Failover
Functions.”

• Lines 126 to 135 describe and define the takeover() procedure. The takeover()
procedure is described fully in the next subsection, “Writing the Failover
Functions.”

• Lines 137 to 146 describe and define the takeback() procedure. The takeback()
procedure is described fully in the next subsection, “Writing the Failover
Functions.”

• Lines 150 to 158 call one of the failover functions—the one passed as an argument to
the failover script.

• Line 162 exits with the success return value.

62

Chapter 4: Writing a Failover Script

Writing the Failover Functions

This section describes how to write the takeback(), takeover(), giveaway(), and
giveback() functions. The purposes of these functions are described below:

takeback() Starts all instances of the applications class for which this node is the
primary node.

takeover() Starts all instances of the applications class for which this node is the
backup node.

giveaway() Stops all instances of the applications class for which this node is the
primary node.

giveback() Stops all instances of the applications class for which this node is the
backup node.

As an example, this section uses the named daemon as the application to be failed over. It
will be run in an active/backup configuration—only one instance of named runs on the
cluster. Follow these general steps to write the failover functions:

1. Determine the commands required to start and stop instances of the application.

Looking in /etc/init.d/network, which normally starts named in a standalone system,
the command to start named is

/usr/sbin/named `cat /etc/config/named.options 2> /dev/null` < \
/dev/null

The command to stop named is

/sbin/killall -k 1 -TERM named

2. Review the application’s use of configuration files and their locations (on shared
disks or non-shared disks?).

For example, named uses the configuration files /etc/named.boot and
/etc/config/named.options. These files reside on non-shared disks and are identical on
each node. Thus, named is not dependent upon filesystems that must be failed over.

Writing the Failover Functions

63

3. Develop the takeback() function. Shown below is the body of this function for
named, along with line numbers and comments.

 1 NAMED=named
 2 # for each named block ...
 3 for i in `$CFG_INFO ${NAMED}`
 4 do
 5 # get the server-node name
 6 SEARCH="$CFG_INFO ${NAMED}${CFG_SEP}${i}${CFG_SEP}${T_SERVER}"
 7 SERVER_NODE=`$SEARCH`
 8 # if that failed, log a message and exit
 9 if [$? -eq 1]; then
10 ${LOGGER} "$0: Trouble finding server node for named ($SEARCH)"
11 exit $INCORRECT_CONF_FILE;
12 fi
13
14 # if server-node matches $HOST ...
15 if [X${SERVER_NODE} = X$HOST]; then
16
17 # execute the command that starts the application
18 EXEC="/usr/sbin/named `cat /etc/config/named.options
2> /dev/null` < /dev/null"
19 execute_cmd "${EXEC}"
20 fi
21 done
22 # exit with success
23 exit $SUCCESS;
24 }

4. Develop the takeover() function. It is the same as the takeback(), with this
exception:

 5 # get the backup-node name
 6 SEARCH="$CFG_INFO ${NAMED}${CFG_SEP}${i}${CFG_SEP}${T_BACKUP}"

5. Develop the giveaway() function. It is the same as the takeback(), with this
exception:

17 # execute the command that stops the application
18 EXEC="/sbin/killall -k1 -TERM named";

64

Chapter 4: Writing a Failover Script

6. Develop the giveback() function. It is the same as the takeback(), with these
exceptions:

 5 # get the backup-node name
 6 SEARCH="$CFG_INFO ${NAMED}${CFG_SEP}${i}${CFG_SEP}${T_BACKUP}"

17 # execute the command that stops the application
18 EXEC="/sbin/killall -k1 -TERM named";

Executing a Command in a Failover Script

To execute each command you add to a script, you have these choices:

• Execute the command.

• Use the execute_cmd() function to execute the command.

The execute_cmd() function writes information to the log file and executes the command
specified by the variable $EXEC. It takes one parameter, a string that is a message of your
choice. It executes a command you specify and writes a message passed as a parameter,
the command executed, the output of the command executed, and a message about the
return value of the command to a log file in /var/ha/logs/<application_class>.log. The
command is the value of $EXEC, which you set in the takeback(), takeover(),
giveaway(), or giveback() function.

65

Chapter 5

5. Installing and Testing Scripts

This chapter describes how to name and install new scripts and how to test them. It also
provides tips on how to debug problems that you may encounter.

The major sections in this chapter are as follows:

• “Naming and Installing Monitoring Scripts” on page 65

• “Choosing the Execution Order of Failover Scripts for Each Operation” on page 66

• “Installing Failover Scripts” on page 67

• “Modifying Application Startup Procedures” on page 67

• “Testing New Scripts” on page 68

Naming and Installing Monitoring Scripts

Install monitoring scripts in the directory /var/ha/actions with owner root, group sys, and
mode 700. Local monitoring scripts have a name of this form:

ha_service_lmon

Remote monitoring scripts have a name of this form:

ha_service_rmon

66

Chapter 5: Installing and Testing Scripts

Choosing the Execution Order of Failover Scripts for Each Operation

The section “IRIS FailSafe Scripts” in Chapter 1 described the organization of the failover
scripts:

• The scripts are stored in /var/ha/resources.

• Each of the directories /var/ha/actions.d/giveaway, /var/ha/actions.d/giveback,
/var/ha/actions.d/takeback, and /var/ha/actions.d/takeover contains links to each of the
scripts.

• The link names begin with S and a three-digit number.

• Because the links (scripts) in each directory are executed in lexicographic order, the
ordering of the three-digit numbers is the order in which the scripts are executed.

In the giveaway and giveback directories, the order of execution of the standard, NFS, and
Web server scripts is webserver, interfaces, statd, nfs, filesystems, and volumes. In the takeback
and takeover directories, the order of execution is volumes, filesystems, nfs, interfaces, statd,
and webserver.

Based on the tasks performed by each of these scripts (see the section “Tasks Performed
by the Standard Failover Scripts” in Chapter 1) and the resources used by the
application, you must choose where in the sequence of execution to insert your new
script for each operation. For example, filesystems on which an application depends
must be mounted before the application is started up. Thus, for takeover and takeback
operations, the sequence number of the filesystem script
(/var/ha/actions.d/takeover/S100filesystem) must be smaller than that of your new highly
available service, so that filesystems are mounted before instances of the new highly
available service are started up. Similarly, the application sequence number must be
smaller than the filesystem sequence number for giveback and giveaway operations
because the application must be stopped before filesystems are unmounted.

For a failover script for named, good choices are as follows:

/var/ha/actions.d/takeback/S850named
/var/ha/actions.d/takeover/S850named
/var/ha/actions.d/giveback/S700named
/var/ha/actions.d/giveaway/S700named

This ordering was chosen because the named process has to be started after the interfaces
have been brought up and before NFS filesystems are mounted. It has to be stopped
before interfaces are stopped and after NFS filesystems are unmounted.

Installing Failover Scripts

67

For most applications it is best not to insert them into the middle of this application
order; they should be executed before the scripts provided by Silicon Graphics in the
giveaway and giveback directories and after the scripts provided by Silicon Graphics in the
takeback and takeover directories. Thus, for giveaway and giveback, applications are stopped
before stopping interfaces, filesystems, and volumes. For takeback and takeover,
applications are started after the volumes, filesystems, and interfaces are started.

Installing Failover Scripts

After deciding the execution order of your failover script in each of the actions.d
directories as described in the section “Choosing the Execution Order of Failover Scripts
for Each Operation” in this chapter, you can complete the installation of your script:

1. Copy the script to /var/ha/resources.

2. Change the owner and group of the script to root sys and the mode to 700.

3. Choose a three-digit number that will ensure that the script is executed in the
correct order in the giveaway and giveback directories.

4. Create links in the giveaway and giveback directories. In each of these directories,
enter this command:

ln -s ../resources/script Snnnscript

5. Choose a three-digit number that will ensure that the script is executed in the
correct order in the takeback and takeover directories.

6. Create links in the takeback and takeover directories. In each of these directories, enter
this command:

ln -s ../resources/script Smmmscript

Modifying Application Startup Procedures

Because highly available services are started up by IRIS FailSafe, rather than as a result
of executing scripts in /etc/init.d or other automatic, non IRIS FailSafe mechanism, you
must disable the normal startup procedure for the application you are making highly
available.

68

Chapter 5: Installing and Testing Scripts

For example, to turn off the automatic (non IRIS FailSafe) startup of named, use the
chkconfig command to turn named off:

chkconfig named off

Testing New Scripts

The subsections below describe strategies for testing new monitoring and failover
scripts. To prepare for testing, take these steps:

• Ensure that you have exclusive use of both nodes—users logged in during testing
could experience unavailability of highly available services.

• Generate additional debugging information in /var/adm/SYSLOG by setting the
variable TESTING in /var/ha/actions/common.vars:

TESTING=ok

General Testing and Debugging Techniques

Some general testing and debugging techniques you can use during testing are as
follows:

• While testing your scripts, you can get debugging information from these sources:

– IRIS FailSafe writes messages in /var/adm/SYSLOG, which can be useful in
debugging script problems. Running this command in a window dedicated to
this command can help you keep track of the messages as they occur:

tail -f /var/adm/SYLOG

– The ha_admin -i command reports the state of a node. Note that this command
hangs if a node is in transition from one state to another.

– The ha_admin -a command provides information about the cluster that includes
node states for each node, IP addresses and the node that owns them, XLV
volumes and the node that owns them, and filesystems and the node that owns
them.

Testing New Scripts

69

• If your testing causes repeated failovers, IRIS FailSafe is disabled (chkconfig failsafe
off), so that it is not started automatically at boot time. This is because IRIS FailSafe
software is designed so that repeated failures don’t result in repeated failovers. The
criterion for disabling IRIS FailSafe is two failures within a set period of time. This
period of time is specified by the variable MIN_UPTIME in the file /etc/init.d/failsafe.
During testing, you can set MIN_UPTIME = 0, with the result that IRIS FailSafe is
never disabled.

• The procedures in the following subsections assume that you are using csh. If you
are using sh, substitute echo $? for the echo $status commands that report the return
value of the previous command. The return value should always be zero, which
indicates success.

• To check that an application is running on a node, you may be able to use a
command provided by the application. For example, the IRIS FailSafe INFORMIX
option uses the INFORMIX command onstat.

• Another way to check that an application is running on a node, is to enter this
command on that node:

ps -ef | grep application

application is the name (or a portion of the name) of the executable for the
application.

Testing Monitoring Scripts

Monitoring scripts test the liveliness of applications and resources. The best way to test
them is to induce failures, one at a time, run the script, and check if this failure is detected
by the script. Test monitoring scripts without IRIS FailSafe running on either node.

Use this checklist for testing a monitoring script:

• Verify that the script detects failure of the application successfully.

• Verify that the script always exits with a return value. See the section
“Understanding the Monitoring Script Template” in Chapter 3 for a list of return
values.

• Verify that the script does not contain commands that can hang, such as using DNS
for name resolution, or those that continue forever, such as ping.

• Verify that the script completes before the timeout value specified in the
configuration file.

70

Chapter 5: Installing and Testing Scripts

• Verify that the script’s return codes are correct.

During testing, measure the time it takes for a script to complete and adjust the
monitoring times in the configuration file, /var/ha/ha.conf, accordingly. To get a good
estimate of the time required for the script to execute, run it under different system load
conditions.

Testing Failover Scripts Without Starting IRIS FailSafe

You can test the operations giveaway, giveback, takeback, and takeover manually using
the general procedure below. It refers to one node (either one) as Node A and the other
as Node B.

1. Before beginning this testing, ensure that the following are true:

• The failover script you are testing is installed.

• The configuration file (/var/ha/ha.conf) includes blocks for the application whose
script you are testing.

• IRIS FailSafe is not running on the cluster.

• The application you are testing starts and stops correctly on each node.

• The application you are testing is not running on either node in the cluster.

• The logical volumes used by the application are assembled.

• The filesystems used by the application are mounted.

• The network interfaces used the application are configured up.

2. On each node, enter this command and check the return value:

/var/ha/actions/takeback ‘/usr/etc/ha_cfgchksum‘
echo $status

See the section “General Testing and Debugging Techniques” for information about
the echo command.

3. On each node, verify that all instances of the application for which this node is the
primary node (server-node) have been started. See the section “General Testing and
Debugging Techniques” for information.

4. On Node A, enter this command and check the return value:

/var/ha/actions/giveaway ‘/usr/etc/ha_cfgchksum‘
echo $status

Testing New Scripts

71

5. Verify that no instances of the application are running on node A.

6. On Node B, enter this command and check the return value:

/var/ha/actions/takeover ‘/usr/etc/ha_cfgchksum‘
echo $status

7. Verify that all instances of the application for which node B is the backup node are
now running on Node B.

8. On Node B, enter this command and check the return value:

/var/ha/actions/giveback ‘/usr/etc/ha_cfgchksum‘
echo $status

9. Verify that Node B is running just the application instances for which it is the
primary node.

10. On Node A, enter this command and check the return value:

/var/ha/actions/takeback ‘/usr/etc/ha_cfgchksum‘
echo $status

11. Verify that Node A is running the application instances for which it is the primary
node.

12. On Node B, enter this command and check the return value:

/var/ha/actions/giveaway ‘/usr/etc/ha_cfgchksum‘
echo $status

13. Verify that no instances of the application are running on node B.

14. On Node A, enter this command and check the return value:

/var/ha/actions/takeover ‘/usr/etc/ha_cfgchksum‘
echo $status

15. Verify that all instances of the application for which node A is the primary or
backup node are now running on Node A.

16. On Node A, enter this command and check the return value:

/var/ha/actions/giveback ‘/usr/etc/ha_cfgchksum‘
echo $status

17. Verify that Node A is running just the application instances for which it is the
primary node.

18. On Node B, enter this command and check the return value:

/var/ha/actions/takeback ‘/usr/etc/ha_cfgchksum‘
echo $status

72

Chapter 5: Installing and Testing Scripts

19. Verify that Node B is running the application instances for which it is the primary
node.

Testing Failover Scripts While Running IRIS FailSafe

You can test the operations giveaway, giveback, takeback, and takeover while IRIS
FailSafe is running using the general procedure below. It refers to one node (either node)
as Node A and the other as Node B.

1. Before beginning this testing, ensure the following:

• The failover script you are testing is installed.

• The configuration file (/var/ha/ha.conf) includes blocks for the application whose
script you are testing.

• IRIS FailSafe is not running on the cluster.

• The application you are testing is not running on either node in the cluster.

2. Start up IRIS FailSafe and the applications whose script you are testing by entering
these commands on both nodes:

chkconfig failsafe on
/etc/init.d/failsafe start

3. Wait until both nodes reach normal state. You can verify this using this command on
each node:

/usr/etc/ha_admin -i
ha_admin: Node controller state normal

4. Verify that Node A and Node B are running the instances of all applications for
which they are the primary node.

5. On Node A, enter this command:

/usr/etc/ha_admin -s

6. Verify that no highly available applications are running on Node A, and that all
instances of the highly available applications are running on Node B. Node A must
be in standby state and Node B must be in degraded state.

7. On Node A, enter this command:

/usr/etc/ha_admin -fr

8. Verify that Node A and Node B are running the instances of all applications for
which they are the primary node and both nodes are in normal state.

Testing New Scripts

73

9. On Node B, enter this command:

/usr/etc/ha_admin -s

10. Verify that no highly available applications are running on Node B, and that all
instances of the highly available applications are running on Node A. Node B must
be in standby state and Node A must be in degraded state.

11. On Node B, enter this command:

/usr/etc/ha_admin -fr

12. Verify that Node A and Node B are running the instances of all applications for
which they are the primary node and both nodes are in normal state.

75

Appendix A

A. Names Used in Template Configuration Files

This appendix describes each of the names—block names, section names, and parameter
names—used in the sample configuration files included with the IRIS FailSafe product
and the IRIS FailSafe options.

When you are developing scripts for failing over a new highly available service, you can
use these names (for ease of maintenance you should use them for the purpose described
here) or you can define new names. Defining new names is described in Chapter 2,
“Modifying the Configuration File for a New Highly Available Service.”

The sections in this appendix are as follows:

• “Block Names” on page 76

• “Section Names” on page 77

• “Parameter Names” on page 78

76

Appendix A: Names Used in Template Configuration Files

Block Names

Table A-1 lists the blocks in configuration file templates included in IRIS FailSafe
products and summarizes their contents.

Table A-1 Major Blocks in the Configuration File

Name Description

action appclass Describes the scripts that are to be executed for the highly available
service appclass. An action block exists for each highly available
service. For all highly available services the action block specifies the
local and monitor scripts if used. For the “main” highly available
service, it also specifies the giveaway, giveback, takeback, takeover, and
kill scripts.

action-timer appclass Describes the various timers that are used by the application monitor
to decide when to execute and time out a monitoring script. The
values can be adjusted based upon the expected response times of
instances of the highly available service appclass.

application-class appclass Describes one highly available service that is failed over by this IRIS
FailSafe cluster. These blocks identify the nodes that provide the
highly available service appclass in normal state.

filesystem label Each filesystem block describes a single filesystem on a shared disk.
For each filesystem, it specifies the primary and backup nodes and
mount information. There should be one filesystem block for each
filesystem on a shared disk in the cluster.

informix label An informix section is present for each INFORMIX database failed
over in this cluster.

interface-pair label Contains IP addresses to be failed over and the primary interface and
backup interface for the IP addresses.

internal Describes the various timeout values that are used by IRIS FailSafe
daemons. The values in this block, except for long-timeout, must not
be changed.

nfs label nfs blocks are present if NFS is failed over in this cluster. Each nfs
block describes the NFS export information associated with a single
exported filesystem.

node label Each node block describes the network interface configuration and
heartbeat and serial information for a node in the cluster.

Section Names

77

Section Names

Table A-2 lists the section names in the configuration file templates.

oracle label An oracle section is present for each Oracle database failed over in
this cluster.

sybase label A sybase section is present for each Sybase Server failed over in this
cluster.

system-configuration Describes global variables for the IRIS FailSafe cluster as a whole.

volume label Each volume block describes the ownership and location of one XLV
volume.

webserver label webserver blocks are present if any of the nodes in this cluster are
Netscape servers. Each webserver block describes the Netscape
configurations of one node.

Table A-2 Section Names in Template Configuration Files

Section Name Description

heartbeat This section specifies heartbeat monitoring parameters.

interface label A node network interface that is to be monitored. The interface label is
created from the ip-address and name parameters and must be unique in the
configuration file. There is one interface section for each public interface in
the node that is part of IRIS FailSafe. Not all public interfaces need to be part
of IRIS FailSafe.

mount-info Contains filesystem mounting information.

web-confign Describes one Web server instance on a node.

Table A-1 (continued) Major Blocks in the Configuration File

Name Description

78

Appendix A: Names Used in Template Configuration Files

Parameter Names

Table A-3 lists the parameters used in the configuration file templates provided with IRIS
FailSafe software options. Additional parameters can be defined as needed when failover
of other applications is added.

Table A-3 Parameters in Template Configuration Files

Parameter Name Possible Values Description

agent pathname The pathname of the agent for the highly available
service.

backup-node label nodename is a name returned by hostname.

For volume blocks: The backup node for this XLV
logical volume. The value assigned to backup-node
must match the label for a node block.

For webserver blocks: The backup node for the
Netscape server. The value must match the label for a
node block.

backup-server string The name of the Backup Server for this SQL Server.

broadcast-addr X.X.X.X For node blocks: The broadcast address for the
subnet.

For interface-pair blocks: The subnet broadcast IP
address for the IP aliases in X.X.X.X notation.

config-file string The INFORMIX configuration file for this node. Its
value is the value of the ONCONFIG environment
variable.

controlled-failback true
false
(not set)

Controls whether this node automatically moves to
normal state after a failure. If controlled-failback is set
to true, the node doesn’t move to normal state after
failure; it moves to controlled failback state. If set to
false or not set, the node moves to normal state.

db-avail high
low

If the value is high (the default value), a database
server (INFORMIX, Oracle, or Sybase) failure forces a
failover. If the value is low, a failure of the database
server doesn’t force a failover, but the failover is
reported.

Parameter Names

79

db-probe-time integer Specifies the length of time (in seconds) between the
completion of one probe of the database by the
database agent and the beginning of the next probe.

db-shutdown-
timeout

integer The timeout for the Oracle shutdown script specified
by shutdown-script. If the shutdown script doesn’t
complete in this many seconds, IRIS FailSafe
performs an abort shutdown of the Oracle instance.

db-retry-count integer The number of monitoring retries by the database
agent before a failure is declared.

db-timeout integer Defines (in seconds) the time the database agent waits
for a response to its probe from the database instance.

devname pathname The device filename for the XLV logical volume.

devname-group string The group of the device name for the XLV logical
volume (reported by ls -l). The default value is sys.

devname-mode fs_mode The access mode of the device name for the XLV
logical volume (reported by ls -l). The default value is
0600.

devname-owner string The user ID of owner of the device name for the XLV
logical volume (reported by ls -l). The default value is
root.

export-info export_mode Filesystem export options (see the exports(4)
reference page and the section “Wsync Filesystem
Options” in Chapter 4 of the IRIS FailSafe
Administrator’s Guide).

export-point pathname The pathname of an exported filesystem.

filesystem label A filesystem to be exported. The value of this
parameter must match the label of a filesystem block
and the label of the block.

fs-type xfs The filesystem type. Only xfs filesystems are
supported.

giveaway pathname The pathname of the giveaway script in /var/ha/actions.

Table A-3 (continued) Parameters in Template Configuration Files

Parameter Name Possible Values Description

80

Appendix A: Names Used in Template Configuration Files

giveback pathname The pathname of the giveback script in /var/ha/actions.

hb-lost-count integer Specifies how many heartbeat probe failures must
occur to declare a heartbeat failure. The
recommended value is 3.

hb-private-ipname string
X.X.X.X

This node’s IP address for the private network used
by heartbeat and control messages.

hb-probe-time integer Heartbeat messages begin this many seconds after the
node controller tells the application monitor to start
monitoring. Also, this value specifies how long to
wait (in seconds) after completion of the last heartbeat
message to begin the next heartbeat message. The
recommended value is 5.

hb-public-ipname hostname
X.X.X.X

This node’s IP address for the public network that is
used for heartbeat messages if the private network
fails. This IP address is a fixed IP address.

hb-timeout integer Specifies how long (in seconds) to wait for a heartbeat
response before declaring a failure. The
recommended value is 5.

httpd-dir pathname-port The Netscape® server root location.

httpd-options-file string The Netscape configuration file that starts multiple
Netscape servers. The value is not a full pathname; it
is a file in the directory /etc/config. The default value is
ns_httpd.options, which is the configuration file for
the Netscape Communications server.

httpd-restart false
true

If the two nodes have identical Netscape server
configurations (a dual-active configuration with the
same configuration information, log locations, and
document root), then the Netscape server doesn’t
need to be restarted after failover (because an
identical server is already running) and httpd-restart
should be set to true. Otherwise, the Netscape server
needs to be started on the backup node after failover
and httpd-restart should be set to false.

Table A-3 (continued) Parameters in Template Configuration Files

Parameter Name Possible Values Description

Parameter Names

81

httpd-script pathname The full pathname of the script used to start and stop
the Netscape server. The default value is
/etc/init.d/ns_httpd, which is the configuration file for
the Netscape Communications server.

instance-id string The value of $ORACLE_SID for the Oracle instance
that IRIS FailSafe is monitoring.

interface-probe-
interval

integer The length of time (in seconds) between the
completion of one probe of the local interfaces and the
beginning of the next probe. The value is rounded to
the nearest five-second increment.

interface-probe-
timeout

integer The length of time (in seconds) that the interface agent
waits after probing the local interfaces without a
response before declaring a failure.

ip-address string
X.X.X.X

For node blocks: The fixed IP address of this network
interface. It can be a name (string) or an address
(X.X.X.X).

For nfs blocks: One (any one) of the IP addresses or IP
aliases on the node that is primary for this filesystem,
preferably in the form X.X.X.X. A good choice is the IP
address or IP alias used by clients to mount the
filesystem. If an IP name is used, the length of time
required to resolve the name to an address could
require that the lmon-timeout value for NFS be
increased.

For webserver blocks: The high availability IP address
used by clients to access the Netscape server. An IP
address of the form X.X.X.X is recommended.

ip-aliases (string)
(str1 str2 str3)

For interface-pair blocks: Specifies the list of IP
addresses to be failed over using IP aliasing.

For application-class nfs blocks: Specifies a list of IP
aliases. This parameter, with at least one IP alias, is
required if NFS file locking is used (listing at least one
IP aliases is recommended). Each IP alias that is used
for NFS should be listed.

Table A-3 (continued) Parameters in Template Configuration Files

Parameter Name Possible Values Description

82

Appendix A: Names Used in Template Configuration Files

kill /usr/etc/ha_kill The pathname of the ha_kill command.

lmon-probe-time integer The probe interval (in seconds) for local monitoring of
this highly available service.

lmon-timeout integer Local monitoring of this highly available service times
out in integer seconds if no response is received.

local-monitor pathname The pathname of the local monitoring script for this
highly available service.

long-timeout integer The maximum time taken by the takeover, takeback,
giveaway, and giveback scripts. If these scripts cannot
be executed in this length of time, the value should be
increased. This value is also used as the maximum
time taken by several types of internal IRIS FailSafe
communications.

MAC-address X:X:X:X:X:X MAC addresses are required only if the network
interfaces have to use MAC address impersonation.
See the section “Network Interfaces and IP
Addresses” in Chapter 1 of the IRIS FailSafe
Administrator’s Guide.

mail-dest-addr user@host
(not set)

Mail is sent to this address when private network
failure has been detected, the local node controller
process appears to be hung or dead, the cluster is
transitioning to degraded state, the cluster is
transitioning to standby state, killing of a node fails,
the ha_killd daemon has died, the ha_killd daemon
could not be started, or the reset device monitor has
failed. Do not set if mail is not configured on this
node.

master-db-fs label label is the filesystem label for the filesystem of the
master database.

master-db-vol label label is the volume label for the volume of the master
database.

mode fs_mode Filesystem mount options (see the fstab(4) reference
page) and the section “Wsync Filesystem Options” in
Chapter 4 of the IRIS FailSafe Administrator’s Guide.

Table A-3 (continued) Parameters in Template Configuration Files

Parameter Name Possible Values Description

Parameter Names

83

monitoring-level 1
2

For informix blocks: Defines which test is done to
determine if INFORMIX is up. If the value is 1, the
database agent executes the onstat command and
searches the output for the pattern specified by
running-indicator-strings. If there is a match, the
database is up. If the value is 2, the database agent
uses a database call to determine if INFORMIX is up.

For webserver blocks: Defines which test is done to
determine if Netscape is up. If the value is 1, the ps
command is used to check if the httpd process is
running on the node. If the value is 2, an http request
is sent to the httpd process to determine if the
Netscape server is running. The value 2 is a stricter
check. If the value 1 is specified, the parameter
search-string in the webserver block is used.

mount-point pathname The pathname of a filesystem mount point. Both
nodes use the same mount point.

name interface interface is a network interface. Each node has several
network interfaces. For example, a CHALLENGE S
node has the network interfaces ec0, ec2, and ec3.

netmask X.X.X.X For node blocks: The netmask used to identify this
node on the subnet.

For interface blocks: The netmask for the IP aliases.

port-num integer The Netscape server port number.

primary-interface label A name for an interface on which the IP aliases are
configured in normal state, typically created by
combining the hostname and interface name. The
value must match an interface section label in a node
block.

Table A-3 (continued) Parameters in Template Configuration Files

Parameter Name Possible Values Description

84

Appendix A: Names Used in Template Configuration Files

pwrfail true
false
(not set)

This parameter does not apply to CHALLENGE S
nodes. When set to true (the default), it allows the
surviving node to attempt to go to degraded state
after it detects a power failure on the other node (or
the private network, public network, and serial
connections are broken). If pwrfail is set to false or not
set, the node goes to standby state after it detects a
power failure on the other node.

re-mac true
false
(not set)

If the IP address and the physical address of the
primary interface are to be transferred to the backup
interface when a failover occurs, set re-mac to true.
Otherwise set it to false or leave it undefined.

release-dir pathname For informix blocks: The INFORMIX release directory
specified in the INFORMIX configuration. This value
is the value of the environment variable
INFORMIXDIR.

For Sybase blocks: The Sybase release directory
specified in the Sybase configuration, which is also
the value of the Sybase environment variable.

remote-send-probe-
interval

integer The frequency (in seconds) of messages to the
interface agent on the other node. This parameter
must be less than the value of
interface-probe-interval, but should be only slightly
less. The value is rounded to the nearest five seconds.

remote-send-timeout integer The length of time (in seconds) between the
completion of one probe of the other node’s highly
available interfaces and the beginning of the next
probe. This parameter must be less than the value of
interface-probe-interval, but should be only slightly
less. The value is rounded to the nearest five seconds.

Table A-3 (continued) Parameters in Template Configuration Files

Parameter Name Possible Values Description

Parameter Names

85

reset-host hostname Applies only to nodes running the Silicon Graphics
Oracle Parallel Server product. If an IRISconsole is
used to provide reset functionality, hostname is the
hostname of the Indy running IRISconsole software.
reset-host is ignored if reset-tty is set. Do not set
reset-host if you are not running OPS in the IRIS
FailSafe cluster.

reset-tty serial_devicename The device filename of the serial port on this node that
is used by the serial cable connected to the system
controller port on the other node or to the remote
power control unit.

retry-count integer Determines the number of retries done by the local
monitoring script. The application monitor declares a
local monitor failure after lmon-timeout seconds
independent of the retry-count value.

running-indicator-
strings

string A string that is used as a search pattern in
determining if On-Line is up. The output of the onstat
command is searched. The string must begin and end
with double-quotes. An OR symbol (|) can be used in
the string to separate multiple search patterns. The
string cannot contain any blanks and the search is case
sensitive.

sa-passwd string The unencrypted password of the database system
administrator (sa-user). This parameter should be
omitted if there is no password.

sa-user string For informix blocks: The INFORMIX login name of
the INFORMIX database system administrator.

For sybase blocks: The Sybase login name of the
Sybase database system administrator.

search-string string Specifies the string to be searched for in the output of
the ps command to verify that the httpd process is
running, for example ns-httpd. This parameter is
required if the monitoring-level parameter in a
webserver block has the value 1.

Table A-3 (continued) Parameters in Template Configuration Files

Parameter Name Possible Values Description

86

Appendix A: Names Used in Template Configuration Files

secondary-interface label A name for the backup interface, an interface on the
other node that replaces the primary interface on
failover. It is typically created by concatenating the
hostname and interface name. The value must match
an interface section label in a node block.

server-node label For application-class blocks: The primary node for
instances of the highly available service. Server-node
is listed twice if each of the nodes in a cluster serves as
the primary node for some instances. The values
assigned to server-node must match the labels for
node blocks.

For volume blocks: The primary node for this XLV
logical volume. The value assigned to server-node
must match the label for a node block.

For webserver blocks: The primary node for this
Netscape server. The value must match the label for a
node block.

short-timeout integer The maximum length of time (in seconds) for certain
IRIS FailSafe internal communications tasks to
complete. Do not change this value.

shutdown-script pathname The pathname of a custom Oracle shutdown script
that replaces the standard Oracle shutdown script.

shutdown-options integer Defines how the database is shut down on a failover.
The possible values are: 0—normal shutdown, 1—
shutdown with nowait and no checkpointing, and 2—
shutdown with nowait with checkpointing.

Table A-3 (continued) Parameters in Template Configuration Files

Parameter Name Possible Values Description

Parameter Names

87

start-monitor-time integer For application-class blocks: This parameter specifies
how long (in seconds) after a node releases this highly
available service (giveaway) that the application
monitor waits before starting monitoring of the
highly available service. It is required.

For an action-timer block for a highly available
service that has an agent (for example interfaces,
sybase, informix, or oracle): The length of time (in
seconds) that the interface agent waits after it is told
by the application monitor to start monitoring the
local interfaces before beginning to monitor. This wait
ensures that the database instance has had time to
start up and must be greater than or equal to the value
of long-timeout.

For an action-timer block for a highly available
service that doesn’t have an agent: The length of time
(in seconds) that the monitoring script waits after it is
told by the application monitor to start monitoring
before it begins monitoring. The value must be greater
than or equal to the value of long-timeout and is
required.

startup-script pathname The pathname of a custom Oracle startup script that
replaces the standard Oracle startup script.

statmon-dir pathname Specifies the pathname of a directory on a shared
filesystem belonging to its server-node where NFS
locking information is stored. The basename of this
directory must be statmon.

takeback pathname The pathname of the takeback script in /var/ha/actions.

takeover pathname The pathname of the takeover script in /var/ha/actions.

unix-user login_id The IRIX login name of the owner of the release
directory for the database software.

version-major 1 A version number that, along with version-minor,
specifies the configuration file format used in this file.
It is 1 for IRIS FailSafe 1.0 and IRIS FailSafe 1.1.

Table A-3 (continued) Parameters in Template Configuration Files

Parameter Name Possible Values Description

88

Appendix A: Names Used in Template Configuration Files

version-minor 0
1

A version number that, along with version-major,
specifies the configuration file format used in this file.
It is 0 for IRIS FailSafe 1.0 configuration files (which
can run on IRIS FailSafe 1.1 as well) and 1 for IRIS
FailSafe 1.1 configuration files.

volume-name label volname must match a volume block label.

webserver-num integer The number of Netscape servers configured on this
node (server-node). This is the number of web-config
sections for this Netscape server.

Table A-3 (continued) Parameters in Template Configuration Files

Parameter Name Possible Values Description

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3298-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

