
Getting Started With Array Systems

Document Number 007-3058-003

CONTRIBUTORS

Updated by David Cortesi from earlier editions by David Cortesi and Carolyn Curtis
Illustrated by Dany Galgani and Brian Totty
Production by Cindy Stief
Engineering contributions by (in alphabetical order) Rob Bradshaw, John Brown, Ajit

Dandapani, Ira Pramanick, Lynd Stringer, Brian Totty, and Gary Walters
St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© 1996 - 1997, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, CHALLENGE, and IRIS are registered trademarks and
CHALLENGEcomplib, Developer Magic, Extreme Graphics, Indigo Magic, Indy,
InSight, IRISconsole, IRISconsole ST-1600,, ST-1616, IRIX, IRIXPro, NetVisualyzer,
Origin2000, Origin200, Onyx2, OCTANE, O2, Performance Co-Pilot, POWER
CHALLENGE, POWER CHALLENGEarray, POWER CHALLENGE R10000,
POWERnode, POWER Onyx, POWERpath-2, ProDev, RealityEngine2, and XFS are
trademarks of Silicon Graphics, Inc.

Getting Started With Array Systems
Document Number 007-3058-003

MIPSpro is a trademark of MIPS Technologies, Inc.
UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company, Ltd.
NFS is a trademark of Sun Microsystems, Inc.
ES-16 is a trademark of Essential Communications, Inc.
PerfAcct and Instrumental are trademarks of Instrumental, Inc.
Applied Parallel Research is a trademark of Applied Parallel Research, Inc.
Platform Computing and LSF are trademarks of Platform Computing Corporation.
SHARE II, Fair Share, and Hibernator II are trademarks of Softway Pty Ltd.
The Portland Group is a trademark of the Portland Group, Inc.
Applied Parallel Research and APR are trademarks of Applied Parallel Research, Inc.
Codine is a trademark of Genias Software, Inc.

v

Contents

List of Figures ix

List of Tables xi

About This Guide xiii
Audience xiii
Structure of This Guide xiv
Conventions Used in This Guide xv

1. Array System Components 1
Array Components 2

Array Hardware Components 2
Array Software Components 3

Array Architecture 5
Array Nodes 5
The HIPPI Interconnect 6
Visualization and Interactive Supercomputing 7
Centralized Console Management 9

Distributed Management Tools 10
Array Services 10
Performance Co-Pilot 11
SHARE II (Fair Share) Scheduling 12
Accounting With PerfAcct 12
Supporting Documentation 13

Job Execution Facilities 13
Interactive Processing 13
Batch Processing 14

vi

Contents

Compilation, Development, and Execution Facilities 16
Optimizing and Parallelizing Compilers 17
High Performance Fortran 18
Numerical Libraries 18
IRIX 6.2 and 6.4 19
Performance and Debugging Tools 20

Message-Passing Protocols 21

2. Using an Array 23
Using an Array System 24

Finding Basic Usage Information 24
Logging In to an Array 25
Invoking a Program 25

Managing Local Processes 26
Monitoring Processes and System Usage 26
Scheduling and Killing Local Processes 27
Summary of Process Management Commands 27

Managing Batch Jobs with NQE 28
Accessing the NQE Commands 28
Starting NQE 28
Checking Job Status with NQE 29
Submitting a Job with NQE 30
About NQE Command Line Interfaces 32

Using Array Services Commands 33
About Array Sessions 33
About Names of Arrays and Nodes 34
About Authentication Keys 34
Summary of Common Command Options 34
Common Environment Variables 36

Contents

vii

Interrogating the Array 37
Learning Array Names 37
Learning Node Names 37
Learning Node Features 38
Learning User Names and Workload 38
Browsing With ArrayView 40

Managing Distributed Processes 41
About Array Session Handles (ASH) 41
Listing Processes and ASH Values 42
Controlling Processes 42

3. Administering an Array 47
Using the IRISconsole Workstation 48

Using Other Tools With IRISconsole 52
About Array Configuration 53

About the Uses of the Configuration File 53
About Configuration File Format and Contents 54
Loading Configuration Data 54
About Substitution Syntax 55
Testing Configuration Changes 56

Configuring Arrays and Machines 57
Specifying Arrayname and Machine Names 57
Specifying IP Addresses and Ports 57
Specifying Additional Attributes 58

Configuring Authentication Codes 58
Configuring Array Commands 58

Operation of Array Commands 59
Summary of Command Definition Syntax 59
Configuring Local Options 62
Designing New Array Commands 62

viii

Contents

4. Performance-Driven Programming in Array 3.0 65
Basic Array Application Tuning Strategy 66

Tuning Single-Node Performance 66
Parallel Performance Goals 69
Designing Appropriate Parallel Algorithms 69
Test and Debug on a Single-node Server 70
Parallel Programming and Communication Paradigms 70
Shared-Memory Communication 71
Message-Passing IPC 71
Hybrid Models 72

Locality, Latency, and Bandwidth 73
MPI Communication Delays 74
TCP/IP Communication Delays 74
Reducing the Effect of Communication Delay 74

Array Services Library 76
Array Services Library Overview 76
Connecting to Array Services Daemons 78
Database Interrogation 80
Managing Array Service Handles 80
Executing an array Command 81
Executing a User Command 84

A. The RendAsunder Demo Program 85
Starting RendAsunder 86

Setting Up the Configuration File 86
Setting the Graphics Display 86

The Graphics Window 87
The Controls Window 88

Controls Window Menus 88
Controls Window Sliders 89

For More Information 90

B. Array Documentation Quick Reference 91

ix

List of Figures

Figure 1-1 Array System Schematic 3
Figure 1-2 Advanced Visualization With Arrays 8
Figure 1-3 Batch Processing on an Array System 15
Figure 2-1 NQE Top-level Window (Button Bar) 29
Figure 2-2 NQE Status Window 29
Figure 2-3 NQE Configuration Information Window 30
Figure 2-4 NQE Submit Window 31
Figure 2-5 Typical Display from ArrayView (aview) Command 40
Figure 3-1 IRISconsole Main Window 48
Figure 3-2 IRISconsole Systems Window 49
Figure 3-3 IRISconsole Hardware Status Window 50
Figure 3-4 IRISconsole System Console Window 51
Figure 4-1 Gaining Efficiency Through Asynchronous Communication 75
Figure A-1 RendAsunder Graphics Windows 87
Figure A-2 RendAsunder Controls Menu 88

xi

List of Tables

Table i Typographical Conventions xv
Table 1-1 Array Node System Selection 5
Table 1-2 Information Sources: Array Component Systems 6
Table 1-3 Information Sources: HIPPI Interconnect 7
Table 1-4 Information Sources: IRISconsole 9
Table 1-5 Information Sources: Management Tools 13
Table 1-6 Information Sources: Interactive Processing 14
Table 1-7 Information Sources: Batch Scheduling Products 16
Table 1-8 Information Sources: Compilers from SGI 17
Table 1-9 Information Sources: High Performance Fortran 18
Table 1-10 Information Sources: CHALLENGEcomplib 19
Table 1-11 Information Sources: IRIX and REACT 20
Table 1-12 Information Sources: Performance and Debugging Tools 20
Table 1-13 Information Sources: Parallel and Distributed Programming 22
Table 2-1 Information Sources: Invoking a Program 26
Table 2-2 Information Sources: Local Process Management 27
Table 2-3 NQE Command Line Interface Summary 32
Table 2-4 Information Sources: Array Services Commands 33
Table 2-5 Array Services Command Option Summary 35
Table 2-6 Array Services Environment Variables 36
Table 3-1 Information Sources: Console Management 52
Table 3-2 Information Sources: Array Configuration 53
Table 3-3 Subentries of a COMMAND Definition 60
Table 3-4 Substitutions Used in a COMMAND Definition 60
Table 3-5 Options of the COMMAND Definition 61
Table 3-6 Subentries of the LOCAL Entry 62
Table 4-1 Information Sources: General Numerical Libraries 67

xii

List of Tables

Table 4-2 Information Sources: Libraries for Parallel Computation 67
Table 4-3 Information Sources: Performance Analysis Tools 68
Table 4-4 Information Sources: Software Pipelining 68
Table 4-5 Information Sources: Parallel Computation Models 70
Table 4-6 Array Services Data Structures 77
Table 4-7 Error Message Functions 78
Table 4-8 Functions for Connections to Array Services Daemons 78
Table 4-9 Server Options Functions Can Query or Change 79
Table 4-10 Functions for Interrogating the Configuration 80
Table 4-11 Functions for Managing Array Service Handles 80
Table 4-12 Functions for ASH Interrogation 81
Table A-1 Information Sources 90
Table B-1 Information Sources 91

xiii

About This Guide

This guide introduces the administration and programming features of in the Silicon
Graphics, Inc.® Array 3.0 software product. Array 3.0 software supports Silicon Graphics,
Inc. Array systems. Array systems are affordable, scalable systems that are used both by
commercial users who require ultra-reliable database and file servers, and by scientific
users who require high performance.

An Array system, as supported by Array 3.0, is a cluster of Silicon Graphics, Inc. systems
connected by a network (for details, see “Array Nodes” on page 5). Array 3.0 software
can also run on individual multiprocessors.

Specific hardware packages that have been sold as Array systems include POWER
CHALLENGEarray™, CHALLENGE® DataArray, and other names. In this book, all
systems on which Array 3.0 can run are collectively called Array systems.

Array systems are marketed to different audiences and used for different kinds of work,
but the architectural concepts are the same, and so are the software tools used by system
administrators and by software developers.

Audience

This guide is written for three groups of people: users who want to run software on an
Array; administrators who need to configure an Array; and software developers who want
to write programs for an Array.

An Array system is composed of many layers of hardware and software features, and
each feature is documented separately. The main purpose of this guide is to help you
orient yourself amid the profusion of printed and online documentation that is available.

If you are a system administrator, this guide introduces you to the information and
software tools you use to configure an Array system, tune it, and keep it running.

xiv

About This Guide

If you are a software developer, this guide introduces you to the development tools and
libraries you use to write programs that do high-performance parallel computation on
an Array system.

Structure of This Guide

This guide contains the following chapters and appendices:

• Chapter 1, “Array System Components,” introduces the hardware and software
architecture of the Array systems.

• Chapter 2, “Using an Array,” shows how users log in to an array, learn the array
inventory and status, and manage interactive processes.

• Chapter 3, “Administering an Array,” covers the essential administrator tools for
configuring Array Services and managing the Array system.

• Chapter 4, “Performance-Driven Programming in Array 3.0,” introduces the
facilities for parallel programming including the MPI and PVM libraries.

• Appendix A, “The RendAsunder Demo Program,” describes and important
demonstration program included with Array systems.

• Appendix B, “Array Documentation Quick Reference,” is a quick reference to all
other Array information sources, including books, reference pages, and WWW sites.
Use it as your online hypertext directory to information.

About This Guide

xv

Conventions Used in This Guide

This manual uses the conventions and symbols shown in Table i.

Table i Typographical Conventions

Type of Information How It Appears in the Text

Filenames and pathnames This structure is declared in /usr/include/sys/time.h.

IRIX command names and options used in
normal text

Update these variables with systune; then build a
new kernel with autoconfig -vf.

Names of program variables, structures,
and data types

Global variable mainSema points to an IRIX
semaphore, which has type usema_t.

Names of IRIX kernel functions, library
functions, and functions in example code

Use mmap() to map an object into the address
space, and munmap() to remove it.

User input within a multiline example tokyo% ainfo ash

1

Chapter 1

1. Array System Components

An Array system is a complex system with layers of hardware and software components.
This chapter orients you to these components, working from the bottom up:

• “Array Components” on page 2 surveys the hardware parts—high performance
“nodes,” network switches, and so on—and software that compose an Array.

• “Array Architecture” on page 5 surveys the way the Array is connected into a single
system by a high-speed network and Array 3.0 software.

• “Distributed Management Tools” on page 10 lists the special tools that an
administrator can use to manage an Array, and also covers some tools that a system
programmer can use for performance analysis.

• “Job Execution Facilities” on page 13 surveys the job entry and job management
facilities available to Array system users.

• “Compilation, Development, and Execution Facilities” on page 16 describes the
programming tools an Array system can provide.

• “Message-Passing Protocols” on page 21 is a survey of the facilities for distributed
multiprocessing.

Each section contains a table of information sources—online and printed books,
reference pages, and WWW sites—related to the topic of that section. All such pointers
are reproduced in Appendix B, “Array Documentation Quick Reference.”

2

Chapter 1: Array System Components

Array Components

The performance and power of an Array system are the result of linking several
symmetric multiprocessor (SMP) computers by a high-performance interconnect, and
managing the combination with customized software and bundled application and
administrative software.

Array Hardware Components

An Array comprises the following hardware:

• From two to eight nodes, each of which is a Silicon Graphics, Inc. computer,
typically a multiprocessor such as:

– Origin2000™ or Origin200™

– Challenge®, POWER Challenge™, or POWER Challenge R10000™

– Onyx2™, Onyx™ or POWER Onyx™

• An interconnecting network, typically one, and as many as six, bidirectional HIPPI
network interfaces per node and a HIPPI crossbar switch.

• One IRISconsole™ as an administration console.

An IRISconsole is an O2™ or Indy™ workstation augmented with an IRISconsole
serial port multiplexer.

A complete Array system is shown schematically in Figure 1-1.

Array Components

3

Figure 1-1 Array System Schematic

Array Software Components

The Array 3.0 software binds the Array system hardware into a supercomputer that can
be programmed and administered as one system. An Array system using Array 3.0
software is based on the following major components:

Array diagnostics Diagnostics used by Silicon Graphics, Inc. system
engineers to verify installation and isolate faults.

IRIX™ 6.2 and IRIX 6.4 Multiprocessor operating systems including NFS™
version 3 network support.

XFS™ filesystem High-performance, ultra-high capacity, journaled
filesystem manages large RAID and disk farms.

Ethernet

HIPPI switchPOWERnode

POWERnode
Indy

workstation

Indy
workstation

Indy
administration
console

ST−1600

4

Chapter 1: Array System Components

Many optional software packages are available from Silicon Graphics, Inc. to extend
Array 3.0, including:

A variety of software packages from third parties also are available, including:

Most of these components are described at more length in following topics.

HIPPI software Support for high-performance network link,
including an SGI-proprietary fast path for minimum
overhead on short messages.

Array Services Integrated administration tools.

IRISconsole Permits centralized administration of all nodes in
the Array.

MPI (Message-Passing Interface)
3.0 and XMPI

Distributed programming environment with
support for HIPPI bypass, and visual monitor.

PVM (Parallel Virtual Machine)
1.2 and XPVM

Popular distributed programming environment and
visual monitor.

Network Queuing Environment
(NQE)

Load-balancing and scheduling facility that lets
users submit, monitor, and control workacross
machines in a network.

Performance Co-Pilot™ (PCP) Performance visualization facility.

ProDev™ WorkShop Suite of graphical tools for developing parallel
programs.

SHARE II™ Resource-centric Fair Share™ scheduler from
Softway (systems using IRIX 6.2 only).

PerfAcct™ Accounting software by Instrumental, Inc.

Codine™ Batch-scheduling facility by GENIAS Software.

LSF™ (Load Sharing Facility) Batch scheduling facility by Platform Computing.

High Performance Fortran (HPF) Compilers available from the Portland Group™

(PGI) and Applied Parallel Research™ (APR)

Array Architecture

5

Array Architecture

An Array system is a distributed-memory multiprocessor, scalable to several hundred
individual MIPS processors in as many as eight nodes, yielding a peak aggregate
computing capacity of many GFLOPS. The aggregation of nodes is connected by an
industry-standard, 1.0 Gbit per second HIPPI network.

This section examines the components of an Array system in detail.

Array Nodes

The basic computational building block of an Array is a Silicon Graphics, Inc.
multiprocessor. Any system running IRIX 6.2 can participate as a node in Array 3.0, but
normally a node is a multiprocessor system. Depending on the type of Array and
customer’s choices, a node can be any of the systems listed in Table 1-1.

Table 1-1 Array Node System Selection

System Processor
Complement

Graphics

Origin2000 2-128 R10000

Origin200 2 R10000

Onyx2 2-16 R10000 InfiniteReality™ or RealityMonster™

CHALLENGE 2-32 R4400

CHALLENGE 10000 2-36 R10000 Extreme™ Visualization Console

POWER Challenge 2-18 R8000 Extreme™ Visualization Console

POWER Challenge GR 2-24 R10000 Extreme™ Visualization Console, or InfiniteReality™,
or Reality Engine2™

POWER Onyx 1-12 R8000 1-3 RealityEngine2™

Onyx 10000 1-24 R10000 1-3 InfiniteReality™

6

Chapter 1: Array System Components

Table 1-2 lists information sources for the different types of systems.

Hybrid Array

An Array that includes both Origin2000/Onyx2 systems and Challenge/Onyx systems
is called a hybrid array. Previous versions of Array software supported only uniform
Arrays composed of Challenge and Onyx systems. Array 3.0 software supports uniform
arrays of Origin2000/Onyx2 systems, uniform arrays of Challenge/Onyx systems, and
hybrid arrays.

The HIPPI Interconnect

Array nodes are normally connected by a high-performance, dual-channel HIPPI
network. Each node is equipped with one or more bidirectional HIPPI interfaces. Each
interface provides 100 MB per second of data bandwidth in either direction.

Table 1-2 Information Sources: Array Component Systems

Topic Book or URL Book Number

All SGI Servers http://www.sgi.com/Products/index.html?hardw
are

Origin2000 and
Origin200

http://www.sgi.com/Products/hardware/servers/inde
x.html

Onyx2 and
RealityMonster

http://www.sgi.com/Products/hardware/graphic
s/products/index.html

POWER CHALLENGE POWER CHALLENGE XL Rackmount Owner’s Guide 007-1735-xxx

POWER Onyx POWER Onyx and Onyx Rackmount Owner’s Guide 007-1736-xxx

CHALLENGE and
CHALLENGE 10000

POWER CHALLENGE XL Rackmount Owner’s Guide 007-1735-xxx

RealityEngine2 and
InfiniteReality

http://www.sgi.com/Products/hardware/Onyx/Tech/

Extreme Visualization
Console

POWER CHALLENGE XL Rackmount Owner’s Guide 007-1735-xxx

Array Architecture

7

The HIPPI interfaces are connected via a high-performance HIPPI crossbar switch
(optional in a two-node Array). The HIPPI switch is nonblocking, with sub-microsecond
connection delays. The network appears to be fully connected and contention occurs
only when two sources send data to the same destination at the same time.

IRIX 6.2 or IRIX 6.4 and the Array 3.0 software provide protocol layers and APIs to access
the HIPPI network, including direct physical layer, HIPPI framing protocol, and TCP/IP.
The HIPPI support includes special bypass capabilities to expedite transmission of short
messages. The bypass capability is transparent to the applications using it.

Table 1-3 lists information sources on HIPPI and the HIPPI crossbar (which is produced
by a third party, Essential Communications, Inc.).

Visualization and Interactive Supercomputing

Array nodes can be configured with hardware graphics support, to provide two and
three-dimensional visualization performance commensurate with the available compute
power. The available graphics options are listed in Table 1-1. Complex supercomputing
visualization architectures can be built by aggregating compute and graphics nodes, as
illustrated in Figure 1-2.

Table 1-3 Information Sources: HIPPI Interconnect

Topic Book or URL Book Number

HIPPI interface IRIS HIPPI Administrator’s Guide

IRIS HIPPI API Programmer’s Guide

007-2229-xxx

007-2227-xxx

HIPPI Crossbar Switch EPS-1 User’s Guide

http://www.esscom.com

09-9010

8

Chapter 1: Array System Components

Figure 1-2 Advanced Visualization With Arrays

HIPPI
switch

POWER CHALLENGE XL

POWER CHALLENGE XL

POWER Onyx

Array Architecture

9

Centralized Console Management

An IRISconsole serves as a single, centralized administrative console for Array
administration and maintenance. The IRISconsole consists of an O2 or Indy workstation,
an IRISconsole multiplexer box, and the IRISconsole graphical cluster management
software. From the IRISconsole, administrators can control, configure, monitor, and
maintain the individual Array nodes.

The O2 or Indy workstation serves as a virtual console for each node. The workstation is
connected to the multiplexer via a SCSI interface. The multiplexer in turn connects to the
Remote System Control port of each node. Commands from the console workstation are
routed to the appropriate node, and results from the nodes are routed back.

The IRISconsole graphical user interface provides a convenient graphic representation of
the array. Sets of nodes can be selected and operated upon. You can open a command
window directly to any node. You can use the IRISconsole graphical interface to

• Dynamically add and remove nodes in the array

• Display console messages or enter console commands to any node

• Interrupt, reset, or power-cycle any node

• Display and record real-time graphs of hardware operating statistics, including
voltage, temperature, and cooling status

• Enable monitors and alarms for conditions such as excessive temperature

• View activity logs and other system reports

For more about the features of IRISconsole and illustrations of its use, see “Using the
IRISconsole Workstation” on page 48. Table 1-4 lists other information sources for
IRISconsole and its hardware.

Table 1-4 Information Sources: IRISconsole

Topic Book or URL Book Number

IRISconsole IRISconsole Administrator’s Guide

http://www.sgi.com/Products/hardware/challenge
/IRISconsole.html

007-2872-xxx

IRISconsole
hardware

IRISconsole Installation Guide
Indy Workstation Owner’s Guide

007-2839-xxx
007-9804-xxx

10

Chapter 1: Array System Components

Distributed Management Tools

Array 3.0 makes an Array manageable by providing support for process execution,
program development, performance instrumentation, and system administration.

This section introduces many of the bundled and third-party tools in detail.

Array Services

Array Services includes administrator commands, libraries, daemons and kernel
extensions that support the execution of programs across an Array.

A central concept in Array Services is the array session handle (ASH), a number that is used
to logically group related processes that may be distributed across multiple systems. The
ASH creates a global process namespace across the Array, facilitating accounting and
administration.

Array Services also provides an array configuration database, listing the nodes comprising
an array. Array inventory inquiry functions provide a centralized, canonical view of the
configuration of each node. Other array utilities let the administrator query and
manipulate distributed array applications.

The Array Services package comprises the following primary components:

array daemon These daemon processes, one in each node, cooperate to allocate ASH
values and maintain information about node configuration and the
relation of process IDs to ASHes.

array configuration
database

One copy at each node, this file describes the Array configuration for
use by array daemons and user programs.

ainfo command Lets the user or administrator query the Array configuration database
and information about ASH values and processes.

array command Executes a specified command on one or more nodes. Commands are
predefined by the administrator in the configuration database.

arshell command Starts an IRIX command remotely on a different node using the current
ASH value.

aview command Displays a multiwindow, graphical display of each node’s status.

libarray library Library of functions that allow user programs to call on the services of
array daemons and the array configuration database.

Distributed Management Tools

11

The use of the ainfo, array, arshell, and aview commands is covered in Chapter 2, “Using
an Array.” The use of the libarray library is covered in Chapter 4, “Performance-Driven
Programming in Array 3.0.”

Performance Co-Pilot

Performance Co-Pilot (PCP) is a Silicon Graphics product for monitoring, visualizing,
and managing systems performance.

PCP has a distributed client-server architecture, with performance data collected from a
set of servers and displayed on visualization clients. Performance data can be obtained
from multiple sources, including the IRIX kernel and user applications. With support for
low-intrusion performance data collection, reduction, and analysis, PCP permits a
variety of metrics to be captured, correlated, reduced, recorded, and rendered.

PCP has been customized for Array systems to provide visualization of system-level and
job-level statistics across the array. An array user can view a variety of relevant
performance metrics on the array via the following utilities:

For more information about Performance Copilot, see The Performance Co-Pilot User’s and
Administrator’s Guide (007-2614-xxx).

mpvis Visualize CPU utilization of any node.

dkvis Visualize disk I/O rates on any node.

nfsvis Visualize NSF statistics on any node.

pmchart Plot performance metrics versus time for any node.

procvis Visualize CPU utilization across an array for tasks belonging to a
particular array session handle.

arrayvis Visualize aggregate Array performance.

ashtop List of top CPU-using processes under a given ASH.

arraytop List of top CPU-using processes in the array.

12

Chapter 1: Array System Components

SHARE II (Fair Share) Scheduling

SHARE II, a “Fair Share” scheduler, allows an organization to create its own resource
allocation policy based on its assessment of how resource usage should be fairly
distributed to individuals or arbitrarily grouped users. SHARE II is available only for
Arrays that use IRIX 6.2; it is not available for IRIX 6.4.

With SHARE II, users are grouped into a system-wide resource allocation and charging
hierarchy. The hierarchy can represent projects, divisions, or arbitrary sets of users.
Within this hierarchy, resource usage policy can be varied or delegated at any level
according to organizational priorities.

Users can be limited in consumption of renewable resources (such as printer pages) and
fixed resources (such as instantaneous memory use). Other limits are imposed during
periods of scarcity (for example, CPU run time during periods of contention). Thus,
SHARE II provides a fair share of the system resources during high-load periods without
overcommitment, wasteful static reservations, or expensive administrator intervention.

Accounting With PerfAcct

PerfAcct, a third-party software product, gathers system accounting data from all nodes
in a central location, where it is summarized and used to generate usage reports or
billing. PerfAcct exploits IRIX extended-session accounting data to provide true job
accounting. Job and project accounting permits usage tracking and billing by external or
internal contracts, departments, tasks, and projects.

PerfAcct features low-overhead data collection on the nodes being monitored. To
minimize system load on the monitored systems, archiving and summarization can be
put on a remote low-cost workstation. PerfAcct also includes aggregate accounting
statistics, as well as graphical user interface tools for measuring dynamic system load.

Job Execution Facilities

13

Supporting Documentation

Table 1-5 lists information sources for the management tool products.

Job Execution Facilities

An Array system can be used as an interactive system for real-time experimentation, as
a coupled multiprocessor for grand-challenge class applications, and as a throughput
compute engine for high-efficiency batch execution. This section introduces the job
scheduling features.

Interactive Processing

Users can log in to a node to execute jobs interactively using normal IRIX job-control
facilities. Interactive jobs can be command-line based, or can be X Windows applications
that execute on the node but display on the user’s workstation.

Jobs started interactively can be sequential programs, or multi-threaded programs
executing within a node, or distributed-memory parallel applications executing across
several nodes. Distributed programs using MPI or PVM can be started and monitored
using the graphical monitors XMPI and XPVM; these display job status graphically on
the user’s workstation screen. Table 1-6 lists information sources on interactive
processing.

Table 1-5 Information Sources: Management Tools

Topic Book, Cross-Reference, or URL Book Number

Array Services Chapter 2, “Using an Array”

array_services(5)

Performance Co-Pilot
data sheet

http://www.sgi.com/Products/hardware/challenge/
CoPilot/CoPilot.html

Performance Co-Pilot The Performance Co-Pilot User’s and Administrator’s Guide

Performance Co-Pilot for Informix-7 User’s Guide

007-2614-xxx

007-3007-xxx

PerfAcct http://www.instrumental.com

SHARE II Share II for IRIX Administrator’s Guide 007-2622-xxx

14

Chapter 1: Array System Components

Batch Processing

Batch processing allows off-line job scheduling. Batch processing is appropriate for
production environments, high job-load environments, and situations where program
results are not required immediately.

When an Array system is used for batch scheduling, users submit jobs to batch queues,
which contain ordered sets of waiting jobs. When sufficient compute resources become
available, and subject to tunable scheduling constraints, jobs are extracted from the batch
queues and scheduled on the nodes. Job results and termination status are recorded in
files or are electronically mailed to the user. See Figure 1-3.

Table 1-6 Information Sources: Interactive Processing

Topic Book, Cross-Reference, or URL Book Number

Logging in to a node Chapter 2, “Using an Array”

XMPI and XPVM MPI and PVM User’s Guide

mpirun(1)

007-3286-xxx

Job Execution Facilities

15

Figure 1-3 Batch Processing on an Array System

Several popular batch facilities are compatible with Array 3.0, including the Network
Queuing Environment (NQE) from Silicon Graphics, Inc.; the Codine™ Job-Management
System from Genias Software, Inc.; and Load Sharing Facility (LSF™) from Platform
Computing, Inc.

NQE consists of the following components that provide a seamless environment for
users of the Array:

• The NQE graphical interface allows users to submit batch requests to a central
database, and to monitor and control each request.

• The Network Load Balancer (NLB) routes jobs to available nodes according to their
current workload.

User

Job
submissions

Array

Queues

Results

16

Chapter 1: Array System Components

• The NQE scheduler determines when and on which node each request is to run.

• The File Transfer Agent (FTA) provides synchronous and asynchronous transfer of
files, including automatic retry when a network link fails.

IRIX Checkpoint and Restart (CPR) facility allows you to save the status of long-running
jobs and restart them easily.

Table 1-7 lists information sources on these products.

Compilation, Development, and Execution Facilities

Array 3.0 is complemented by development tools from Silicon Graphics, Inc. and other
companies to simplify creation of parallel applications using both shared-memory and
distributed-memory models. This section summarizes these tools. Additional discussion
of software development appears in Chapter 4, “Performance-Driven Programming in
Array 3.0.”

Table 1-7 Information Sources: Batch Scheduling Products

Topic Book or URL Book Number

IRIX Checkpoint and
Restart (CPR)

IRIX Checkpoint and Restart Operation Guide 007-3236-xxx

Network Queuing
Environment (NQE)
technical papers

http://wwwsdiv.cray.com/~nqe/nqe_external/ind
ex.html (pointers to technical papers)

http://www.cray.com/PUBLIC/product-info/sw/
nqe/nqe30.html (illustrated overview)

NQE User’s Guide

NQE Administrator’s Guide

SG-2148 3.2

SG-2150 3.2

Load Sharing Facility
(LSF)

http://www.platform.com

Codine http://www.instrumental.com

Compilation, Development, and Execution Facilities

17

Optimizing and Parallelizing Compilers

The MIPSpro™ compilers are the third-generation family of optimizing and parallelizing
compilers from Silicon Graphics, offering comprehensive support for parallel
application development.

Exploiting aggressive dependency analysis, the compilers perform automatic program
restructuring, software pipelining, and parallelization. The compilers also provide a
comprehensive set of comment directives that enable users to assist the compiler in the
parallelization process.

Silicon Graphics, Inc. offers MIPSpro compilers for Fortran 77, Fortran 90, and C; as well
as compilers for Ada 95, C++, assembly language, and Pascal. For detailed information
about each compiler see the sources listed in Table 1-8.

Table 1-8 Information Sources: Compilers from SGI

Topic Book or URL Book Number

MIPSpro compiler
features and use

MIPS Compiling and Performance Tuning Guide 007-2479-xxx

C language C Language Reference Manual 007-0701-xxx

MIPSpro Fortran 77 MIPSpro Fortran 77 Programmer’s Guide

MIPSpro Fortran 77 Language Reference Manual

007-2361-xxx

007-2362-xxx

MIPSpro Fortran 90 MIPSpro Fortran 90 Programmer’s Guide 007-2761-xxx

Automatic
parallelization of C and
Fortran code

MIPSpro Power Fortran 77 Programmer’s Guide

MIPSpro Power Fortran 90 Programmer’s Guide

IRIS Power C User’s Guide

007-2363-xxx

007-2760-xxx

007-0702-xxx

C++ language C++ Programmers Guide 007-0704-xxx

Assembly Language MIPSPro Assembly Language Programmer’s Guide 007-2418-xxx

Ada95 (GNU Ada
Translator, GNAT)

GNAT User’s Guide 007-2624-xxx

Pascal Pascal Programming Guide 007-0740-xxx

18

Chapter 1: Array System Components

High Performance Fortran

High Performance Fortran (HPF) is an extended version of Fortran 90 that is emerging as
a standard for programming of shared- and distributed-memory systems in the
data-parallel style. HPF incorporates a data-mapping model and associated directives
that allow a programmer to specify how data is logically distributed in an application.
An HPF compiler interprets these directives to generate code that minimizes
interprocessor communication in distributed systems and maximizes data reuse in all
types of systems.

HPF compilers are available for Array systems from the Portland Group, Inc. and
Applied Parallel Research, Inc. Table 1-9 lists information sources for these products.

Numerical Libraries

The compilers are complemented by CHALLENGEcomplib™, a comprehensive,
optimized collection of scientific and math subroutine libraries popular in scientific
computing. The library consists of two subcomponents: SGIMATH and SLATEC.

SGIMATH is hand-tuned, optimized, and parallelized, providing high-performance,
portable implementations of the following popular numerical facilities:

• Basic Linear Algebra Subprograms (BLAS), levels 1, 2, and 3

• 1D, 2D, and 3D Fast Fourier Transforms (FFT)

• convolutions and correlation routines

Table 1-9 Information Sources: High Performance Fortran

Topic Book or URL Book Number

High Performance
Fortran texbook

The High Performance Fortran Handbook, Koelbel,
Loveman, Schreiber, Steele Jr., and Zosel; MIT Press,
1994 (http://www-mitpress.mit.edu/)

ISBN
0-262-61094-9

High Performance
Fortran forum

http://www.crpc.rice.edu/HPFF/home.html

Portland Group, Inc. http://www.pgroup.com

Applied Parallel
Research

http://www.infomall.org/apri

Compilation, Development, and Execution Facilities

19

• LAPACK, LINPACK, and EISPACK

• SCIPORT (portable version of SCILIB)

• SOLVERS: pcg sparse solvers, direct sparse solvers, symmetric iterative solvers, and
solvers for special linear systems

A source for a more detailed overview of CHALLENGEcomplib is listed in Table 1-10.
Most of the functions within the library are documented in reference pages that install
with the product.

IRIX 6.2 and 6.4

The primary process control services of the Array are provided by the IRIX operating
system, a symmetric multiprocessing operating system based on UNIX SVR4 with
compatibility for BSD.

IRIX version 6.2 is required for Array 3.0 on Challenge/Onyx systems, and IRIX 6.4 on
Origin systems. This version provides fast, flexible support for shared-memory
interprocess communication, high-performance I/O, and performance-centric
scheduling. Within a node, related processes are gang-scheduled to prevent one process
from wasting time by spinning on locks held by blocked peers. Process placement
decisions incorporate cache affinity heuristics, which minimizes
multiprogramming-induced cache thrashing by tending to keep particular processes on
the same processor.

Real-time processing can be supported with the REACT facilities, including
nondegrading priorities, deadline scheduling, and reliably bounded kernel latencies.
Hooks to support optional SHARE II Fair Share Scheduling checkpoint-restart facilities
are also supported.

IRIX supports a variety of system functions to allow shared memory interprocess
communication (IPC) between processes within one node. SVR4-compatible library
functions for semaphores, message queues, and shared memory are supported.

Table 1-10 Information Sources: CHALLENGEcomplib

Topic Book or URL Book Number

CHALLENGEcomplib
overview

http://www.sgi.com/Products/hardware/Power/
ch_complib.html

20

Chapter 1: Array System Components

High-performance IRIX-unique facilities for shared memory, semaphores, and mutex
locks are included. POSIX-compatible library functions for semaphores, message
queues, and shared memory are integrated into IRIX 6.4 (available as a patch set for
IRIX 6.2).

Overview sources on IRIX and on the REACT real-time programming extensions are
listed in Table 1-11.

Performance and Debugging Tools

Silicon Graphics includes a powerful set of parallel debugging, profiling, and
visualization tools as part of the Developer Magic™ application development suite.
Systemic performance visualization is provided by the Performance Co-Pilot facility, and
array extensions.

In addition to these, IRIX 6.2 contains the interactive debugger dbx and profiling tools
pixie and prof. Information sources on developer tools are listed in Table 1-12.

Table 1-11 Information Sources: IRIX and REACT

Topic Book or URL Book Number

IRIX 6.2 Data Sheet http://www.sgi.com/Products/software/IRIX6.2/
IRIX62DS.html

IRIX 6.2 Specifications http://www.sgi.com/Products/software/IRIX6.2/
IRIX62specs.html

REACT/pro and
real-time programming

http://www.sgi.com/real-time/

IRIX IPC facilities Topics In IRIX Programming 007-2478-xxx

Table 1-12 Information Sources: Performance and Debugging Tools

Topic Book or URL Book Number

Developer Magic
overview

http://www.sgi.com/Products/DevMagic/

Developer Magic Developer Magic: ProDev WorkShop Overview

http://www.sgi.com/Products/WorkShop.html

007-2582-xxx

Message-Passing Protocols

21

Message-Passing Protocols

Parallel applications using IPC facilities execute within a single node. However, you can
create parallel applications that distribute across one or more nodes using a different
model of parallel computation, the message-passing model.

In the message-passing model, processes communicate by exchanging “messages” of
application data. The supporting library code chooses the fastest available means to pass
the messages—through shared memory IPC within a node, across the HIPPI
interconnect between nodes when available, or via TCP/IP.

Array 3.0 supports multiple message-passing protocols that are bundled in the separate
product, the Message-Passing Toolkit. This single product contains implementations of
three protocols: Two well-known, standardized, message-passing libraries, the Message
Passing Interface (MPI) and Parallel Virtual Machine (PVM), and the Cray-designed
SHMEM protocol.

MPI is the favored message-passing facility under Array 3.0. The MPI library exploits
low-overhead, shared-memory transfers whenever possible. Messages sent between
processes residing on different nodes use the HIPPI network; but the MPI library is
aware of, and uses, the proprietary HIPPI bypass in Array 3.0 to get higher bandwidth
when possible.

While Array 3.0 supports MPI as its native message-passing model, it also supports PVM
and SHMEM for portability. The PVM library support has been optimized to exploit
shared-memory transfers within a single node, but it does not take advantage of HIPPI
bypass, and thus may not achieve the inter-node bandwidth of MPI.

Performance Co-Pilot
data sheet

http://www.sgi.com/Products/hardware/challen
ge/CoPilot/CoPilot.html

Performance Co-Pilot The Performance Co-Pilot User’s and Administrator’s
Guide

Performance Co-Pilot for Informix-7 User’s Guide

007-2614-xxx

007-3007-xxx

dbx, prof, pixie dbx User’s Guide

MIPS Compiling and Performance Tuning Guide

007-0906-xxx

007-2479-xxx

Table 1-12 (continued) Information Sources: Performance and Debugging Tools

Topic Book or URL Book Number

22

Chapter 1: Array System Components

Table 1-13 lists information sources about parallel and distributed programming. This
subject is also explored in more detail in Chapter 4, “Performance-Driven Programming
in Array 3.0.”

Table 1-13 Information Sources: Parallel and Distributed Programming

Topic Book or URL Book Number

Parallel Programming
Models Compared

Topics In IRIX Programming 007-2478-xxx

Message Passing
Toolkit (MPT) in
general

http://www.cray.com/PUBLIC/product-info/sw/

MPI Overview mpi(5)

MPI References Using MPI, Gropp, Lusk, and Skjellum, MIT Press 1995
(http://www-mitpress.mit.edu/)

MPI, The Complete Reference, Snir, Otto, Huss-Lederman,
Walker, and Dongarra, MIT Press 1995

Using MPI (in IRIX Insight library)

ISBN 0-262-69184-1

ISBN 0-262-57104-8

007-2855-001

MPI Standard http://www.mcs.anl.gov/mpi

PVM Overview pvm(1PVM)

PVM Reference PVM: Parallel Virtual Machine, Geist, Beguelin, Dongarra,
Weicheng Jiang, Manchek, and Sunderam, MIT Press 1994

http://www.netlib.org/pvm3/book/pvm-book.html

ISBN 0-262-57108-0

PVM Home Page http://www.epm.ornl.gov/pvm/pvm_home.html

Porting PVM to MPI Topics In IRIX Programming 007-2478-xxx

23

Chapter 2

2. Using an Array

An Array system is an aggregation of nodes, which are IRIX servers bound together with
a high-speed network and Array 3.0 software. Array users are IRIX users who enjoy the
advantage of greater performance and additional services. Array users access the system
with familiar commands for job control, login and password management, and remote
execution.

Array 3.0 augments conventional IRIX facilities with additional services for array users
and for array administrators. The extensions include support for global session
management, array configuration management, batch processing, message passing,
system administration, and performance visualization.

This chapter introduces the extensions for Array use, with pointers to more detailed
information. (Appendix B, “Array Documentation Quick Reference,” summarizes all the
pointers for quick access.) The principal topics are as follows:

• “Using an Array System” on page 24 summarizes what a user needs to know, and
the main facilities a user has available.

• “Managing Local Processes” on page 26 reviews the conventional tools for listing
and controlling processes within one node.

• “Managing Batch Jobs with NQE” on page 28 summarizes the use of the Network
Queueing Environment.

• “Using Array Services Commands” on page 33 describes the common concepts,
options, and environment variables used by the Array Services commands.

• “Interrogating the Array” on page 37 summarizes how to use Array Services
commands to learn about the Array and its workload, with examples.

• “Managing Distributed Processes” on page 41 summarizes how to use Array
Services commands to list and control processes in multiple nodes.

24

Chapter 2: Using an Array

Using an Array System

As an ordinary user of an Array system you are an IRIX (that is, UNIX) user, with the
additional benefit of being able to run distributed sessions on multiple nodes of the
Array. You access the Array from either

• A workstation such as an SGI O2

• An X-terminal

• An ASCII terminal

In each case, you log in to one node of the Array in the way you would log in to any
remote UNIX host. From a workstation or an X-terminal you can of course open more
than one terminal window and log into more than one node.

Finding Basic Usage Information

In order to use an Array, you need the following items of information:

• The name of the Array.

You use this arrayname in Array Services commands.

• The login name and password you will use on the Array

You use these when logging in to the Array to use it.

• The hostnames of the array nodes.

Typically these names follow a simple pattern, often arrayname1, arrayname2, etc.

• Any special resource-distribution or accounting rules that may apply to you or your
group under a job scheduling system.

You can learn the hostnames of the array nodes if you know the array name, using the
ainfo command:

ainfo -a arrayname machines

Using an Array System

25

Logging In to an Array

Each node in an Array is a Silicon Graphics, Inc. multiprocessor system such as an
Origin2000. Each node has an associated hostname and IP network address. Typically,
you use an Array by logging in to one node directly, or by logging in remotely from
another host (such as the Array console or a networked workstation). For example, from
a workstation on the same network, this command would log you in to the node named
hydra6:

rlogin hydra6

For details of the rlogin command, see the reference page rlogin(1).

The system administrators of your Array may choose to disallow direct node logins in
order to schedule array resources. If your site is configured to disallow direct node
logins, your administrators will be able to tell you how you are expected to submit work
to the array—perhaps through remote execution software or batch queueing facilities.

Invoking a Program

Once you have access to an Array you can invoke programs of several classes:

• Ordinary (sequential) applications

• Parallel shared-memory applications within a node

• Parallel message-passing applications within a node

• Parallel message-passing applications distributed over multiple nodes (and
possibly other servers on the same network running Array 3.0)

If you are allowed to do so, you can invoke programs explicitly from a logged-in shell
command line; or you may use remote execution or a batch queueing system.

Programs that are X-windows clients must be started from an X server, either an
X-terminal or a workstation running X Windows.

Some application classes may require input in the form of command line options,
environment variables, or support files upon execution. For example:

• X client applications need the DISPLAY environment variable set to specify the X
server (workstation or X-terminal) where their windows will display.

The DISPLAY variable is normally set automatically when you use rlogin from an
SGI workstation.

26

Chapter 2: Using an Array

• A multithreaded program may require environment variables to be set describing
the number of threads.

For example, C and Fortran programs that use parallel processing directives test the
MP_SET_NUMTHREADS variable.

• MPI and PVM message-passing programs may require support files to describe
how many tasks to invoke on which nodes.

Some information sources on program invocation are listed in Table 2-1.

Managing Local Processes

Each IRIX process has a process identifier (PID), a number that identifies that process
within the node where it runs. It is important to realize that a PID is local to the node; so
it is possible to have processes in different nodes using the same PID numbers.

Within a node, processes can be logically grouped in process groups. A process group is
composed of a parent process together with all the processes that it creates. Each process
group has a process group identifier (PGID). Like a PID, a PGID is defined locally to that
node, and there is no guarantee of uniqueness across the Array.

Monitoring Processes and System Usage

You query the status of processes using the IRIX command ps. To generate a full list of all
processes on a local system, use a command such as

ps -elfj

You can monitor the activity of processes using the command top (an ASCII display in a
terminal window) or gr_top (displays in a graphical window).

Table 2-1 Information Sources: Invoking a Program

Topic Book, Reference Page, or URL Book Number

Remote login rlogin(1)

Setting environment
variables

environ(5), env(1)

Starting MPI and PVM
jobs

MPI and PVM User’s Guide 007-3286-xxx

Managing Local Processes

27

For a global picture of the state of one node you can use gr_osview. It displays a variety of
resource use values as histograms or bar-graphs in a graphical window. The command
gmemusage displays memory use by all applications in the node where you start it.

Scheduling and Killing Local Processes

You can start a process at a reduced priority, so that it interferes less with other processes,
using the nice command. If you use the csh shell, specify /usr/bin/nice to avoid the built-in
shell command nice. To start a whole shell at low priority, use a command like

/usr/bin/nice /bin/sh

You can schedule commands to run at specific times using the at command. You can kill
or stop processes using the kill command. To destroy the process with PID 13032, use a
command such as

kill -KILL 13032

Summary of Process Management Commands

Table 2-2 summarizes information about local process management.

Table 2-2 Information Sources: Local Process Management

Topic Book, Reference Page, or URL Book Number

Process ID and process
group

intro(2) — scan to the section headed “Definitions”

Listing and Monitoring
Processes

ps(1), top(1), and gr_top(1); gr_osview(1),
gmemusage(1)

Running programs at
low priority

nice(1), batch(1)

Running programs at a
scheduled time

at(1)

Terminating a process kill(1)

28

Chapter 2: Using an Array

Managing Batch Jobs with NQE

The Network Queueing Environment (NQE) is used to manage batch jobs. A batch job is
a set of commands—a shell script. You submit batch job requests from a workstation to
NQE, and NQE routes the jobs to an appropriate server. When a job completes, NQE
returns the standard output and standard error files to the workstation. You can monitor
the status of jobs, as well as delete or signal jobs.

NQE provides reliable file transfer with the File Transfer Agent (FTA), so that job scripts
can transfer files to and from remote systems. If a file transfer fails for a transient reason
such as a network link failing, FTA automatically requeues the transfer. This is useful in
job requests because a job does not abort if the file transfer fails on the first attempt. If
allowed by the site, a password is not required for the file transfer. This capability of FTA
is called Network Peer-to-Peer Authorization (NPPA).

Accessing the NQE Commands

NQE is usually installed in /usr/craysoft/nqe/bin on IRIX workstations. If that directory
doesn’t exist, contact your system administrator to see if NQE is installed and where it is
installed. If /usr/craysoft/nqe/bin does exit, add it to your PATH variable. For example:

% setenv PATH $PATH:/usr/craysoft/nqe/bin

 or

$ export PATH=$PATH:/usr/craysoft/nqe/bin

Starting NQE

The easiest way to start using NQE is through its graphical interface as implemented by
the nqe command (see the nqe(1) reference page). If you run nqe on your workstation,
you just start it. If you need to start nqe on an array node, with output to your
workstation, you may need to set your DISPLAY variable first, as shown in the following
example:

% setenv DISPLAY myworkstation:0
% nqe

Figure 2-1 shows the initial (top-level) NQE button bar window that should immediately
appear.

Managing Batch Jobs with NQE

29

Figure 2-1 NQE Top-level Window (Button Bar)

Checking Job Status with NQE

To see the status of jobs running under NQE, click on the Status button. Figure 2-2 shows
an example of the Status window.

Figure 2-2 NQE Status Window

The example Status Window displays two jobs. Both are executing on the server
homegrown and both are running (or will run) under the user account guest.

To refresh the status display, use the Refresh button in the Status window. You may also
have the display refreshed periodically by setting the refresh option in the NQE
Configuration Information Window, shown in Figure 2-3. Access the NQE Configuration
Information Window using the Config button on the NQE button bar.

30

Chapter 2: Using an Array

Figure 2-3 NQE Configuration Information Window

The slide bar titled “Status Refresh Rate” (in Figure 2-3) sets the refresh rate to a value
other than 0. If the rate is set to 60, the NQE status display will be refreshed every 60
seconds.

Submitting a Job with NQE

To submit a new batch job, display the Submit window (accessed using the Submit
button in the NQE button bar). Figure 2-4 shows an example of the Submit window with
a sample job script. To submit the job, click the Submit button.

Managing Batch Jobs with NQE

31

Figure 2-4 NQE Submit Window

A few details of the example job script shown in Figure 2-4 are of interest. The #QSUB
string is an NQE directive, used to embed command line options within the script. (See
the cqsub(1) or qsub(1) reference page for more information on embedded options.) The
line

 #QSUB -a 8:05

 indicates to NQE that the job request should be started sometime after 8pm (20:00). The
line

#QSUB -A nqearray

 indicates to NQE that the job should run using the project “nqearray”. (See the
projects(5) reference page for more information on project names.)

32

Chapter 2: Using an Array

About NQE Command Line Interfaces

You can also operate NQE using a command-line interface. The NQE commands are
summarized in Table 2-3. For details of the command-line interface, see the NQE User’s
Guide.

Table 2-3 NQE Command Line Interface Summary

Command Name Purpose

cevent Posts, reads, and deletes information on job-dependency events.

cqdel Signals or deletes a job request.

cqstatl Displays the status of job requests.

cqsub Submits a job script.

ftua File transfer utility, similar to FTP but with file transfer queuing and recovery
(server command only).

ilb Executes commands interactively on a host chosen by NQE.

qalter Alters the attributes of a job request (server command only).

qchkpnt Checkpoints a job (may only be invoked within a job script).

qdel Signals or deletes a job request (server command only).

qlimit Displays the job limits that apply to an NQE server (server command only).

qmsg Writes messages to stderr, stdout, or the job log (server command only).

qping Determines if the local NQS daemon is running (server command only).

qstat Displays the status of job requests (server command only).

qsub Submits a job script (server command only).

rft File transfer command, suitable for use in job scripts (server command only).

Using Array Services Commands

33

Using Array Services Commands

When an application starts processes on more than one node, the PID and PGID are no
longer adequate to manage the application. The commands of the Array Services
component of Array 3.0 give you the ability to view the entire Array, and to control the
processes of multinode programs.

Tip: You can use Array Services commands from any workstation connected to an Array
system, for example from a workstation. You don’t have to be logged in to an Array node.

This topic introduces the terms, concepts, and command options that are common to all
Array Services commands. For details about any of the commands, see one of the
reference pages listed in Table 2-4.

About Array Sessions

As noted under “Distributed Management Tools” on page 10, Array Services is
composed of a daemon—a background process that is started at boot time in every
node—and a set of commands such as ainfo. The commands call on the daemon process
in each node to get the information they need.

One concept that is basic to Array Services is the array session, which is a term for all the
processes of one application, wherever they may execute. Normally, your login shell,
with the programs you start from it, constitutes an array session. A batch job is an array
session; and you can create a new shell with a new array session identity.

Table 2-4 Information Sources: Array Services Commands

Topic Book, Reference Page, or URL Book Number

Array Services
Overview

array_services(5)

ainfo command ainfo(1)

array command use: array(1); configuration: arrayd.conf(4)

arshell command arshell(1)

aview command aview(1)

newsess command newsess(1)

34

Chapter 2: Using an Array

Each session is identified by an array session handle (ASH), a number that identifies any
process that is part of that session. You use the ASH to query and to control all the
processes of a program, even when they are running in different nodes.

About Names of Arrays and Nodes

Each node is an IRIX server, and as such has a hostname. The hostname of a node is
returned by the hostname command executed in that node:

% hostname
tokyo

The command is simple and documented in the hostname(1) reference page. The more
complicated issues of hostname syntax, and of how hostnames are resolved to hardware
addresses are covered in hostname(5).

An Array system as a whole has a name too. In most installations there is only a single
Array, and you never need to specify which Array you mean. However, it is possible to
have multiple Arrays available on a network, and you can direct Array Services
commands to a specific Array.

About Authentication Keys

It is possible for the Array administrator to establish an authentication code, which is a
64-bit number, for all or some of the nodes in an array (see “Configuring Authentication
Codes” on page 58). When this is done, each use of an Array Services command must
specify the appropriate authentication key, as a command option, for the nodes it uses.
Your system administrator will tell you if this is necessary.

Summary of Common Command Options

The commands of Array Services—ainfo, array, arshell, aview, and newsess—have a
consistent set of command options. Table 2-5 is a summary of these options. Not all
options are valid with all commands; and each command has unique options besides
those shown. The default values of some options are set by environment variables listed
in the next topic.

Using Array Services Commands

35

Specifying a Single Node

The -l and -s options work together. The -l (letter ell for local) option restricts the scope of
a command to the node where the command is executed. By default, that is the node
where the command is entered. When -l is not used, the scope of a query command is all
nodes of the array. The -s (server, or node, name) option directs the command to be
executed on a specified node of the array. These options work together in query
commands as follows:

• To interrogate all nodes as seen by the local node, use neither option.

• To interrogate only the local node, use only -l.

• To interrogate all nodes as seen by a specified node, use only -s.

• To interrogate only a particular node, use both -s and -l.

Table 2-5 Array Services Command Option Summary

Option Used In Meaning

-a array ainfo, array, aview Specify a particular Array when more than one is accessible.

-D ainfo, array, arshell,
aview

Send commands to other nodes directly, rather than through
array daemon.

-F ainfo, array, arshell,
aview

Forward commands to other nodes through the array daemon.

-Kl number ainfo, array, aview Authentication key (a 64-bit number) for the local node.

-Kr number ainfo, array, aview Authentication key (a 64-bit number) for the remote node.

-l (letter ell) ainfo, array Execute in context of the destination node, not the current
node.

-p port ainfo, array, arshell,
aview

Nonstandard port number of array daemon.

-s hostname ainfo, array, aview Specify a destination node.

36

Chapter 2: Using an Array

Common Environment Variables

The Array Services commands depend on environment variables to define default values
for the less-common command options. These variables are summarized in Table 2-6.

Table 2-6 Array Services Environment Variables

Variable Name Use Default When Undefined

ARRAYD_FORWARD When defined with a string starting
with the letter y, all commands
default to forwarding through the
array daemon (option -F).

Commands default to direct
communication (option -D).

ARRAYD_PORT The port (socket) number monitored
by the array daemon on the
destination node.

The standard number of 5434,
or the number given with
option -p.

ARRAYD_LOCALKEY Authentication key for the local node
(option -Kl).

No authentication unless -Kl
option is used.

ARRAYD_REMOTEKEY Authentication key for the
destination node (option -Kr).

No authentication unless -Kr
option is used.

ARRAYD The destination node, when not
specified by the -s option.

The local node, or the node
given with -s.

Interrogating the Array

37

Interrogating the Array

Any user of an Array system can use Array Services commands to check the hardware
components and the software workload of the Array. The commands needed are ainfo,
array, and aview.

Learning Array Names

If your network includes more than one Array system, you can use ainfo arrays at one
array node to list all the Array names that are configured, as in the following example.

homegrown% ainfo arrays
Arrays known to array services daemon
ARRAY DevArray
 IDENT 0x3381
ARRAY BigDevArray
 IDENT 0x7456
ARRAY test
 IDENT 0x655e

Array names are configured into the array database by the administrator. Different
Arrays might know different sets of other Array names.

Learning Node Names

You can use ainfo machines to learn the names and some features of all nodes in the current
Array, as in the following example.

homegrown 175% ainfo -b machines
machine homegrown homegrown 5434 192.48.165.36 0
machine disarray disarray 5434 192.48.165.62 0
machine datarray datarray 5434 192.48.165.64 0
machine tokyo tokyo 5434 150.166.39.39 0

In this example, the -b option of ainfo is used to get a concise display.

38

Chapter 2: Using an Array

Learning Node Features

You can use ainfo nodeinfo to request detailed information about one or all nodes in the
array. To get information about the local node, use ainfo -l nodeinfo. However, to get
information about only a particular other node, for example node tokyo, use -l and -s, as
in the following example. (The example has been edited for brevity.)

homegrown 181% ainfo -s tokyo -l nodeinfo
Node information for server on machine "tokyo"
MACHINE tokyo

VERSION 1.2
8 PROCESSOR BOARDS

BOARD: TYPE 15 SPEED 190
CPU: TYPE 9 REVISION 2.4
FPU: TYPE 9 REVISION 0.0

...
16 IP INTERFACES HOSTNAME tokyo HOSTID 0xc01a5035

DEVICE et0 NETWORK 150.166.39.0 ADDRESS 150.166.39.39 UP
DEVICE atm0 NETWORK 255.255.255.255 ADDRESS 0.0.0.0 UP
DEVICE atm1 NETWORK 255.255.255.255 ADDRESS 0.0.0.0 UP

...
0 GRAPHICS INTERFACES
MEMORY

512 MB MAIN MEMORY
INTERLEAVE 4

If the -l option is omitted, the destination node will return information about every node
that it knows.

Learning User Names and Workload

The IRIX commands who, top, and uptime are commonly used to get information about
users and workload on one server. The array command offers Array-wide equivalents to
these commands.

Learning User Names

To get the names of all users logged in to the whole array, use array who. To learn the
names of users logged in to a particular node, for example tokyo, use -l and -s, as in the
following example. (The example has been edited for brevity and security.)

Interrogating the Array

39

homegrown 180% array -s tokyo -l who
joecd tokyo frummage.eng.sgi -tcsh
joecd tokyo frummage.eng.sgi -tcsh
benf tokyo einstein.ued.sgi. /bin/tcsh
yohn tokyo rayleigh.eng.sg vi +153 fs/procfs/prd
...

Learning Workload

Two variants of the array command return workload information. The array-wide
equivalent of uptime is array uptime, as follows:

homegrown 181% array uptime
homegrown: up 1 day, 7:40, 26 users, load average: 7.21, 6.35, 4.72
disarray: up 2:53, 0 user, load average: 0.00, 0.00, 0.00
datarray: up 5:34, 1 user, load average: 0.00, 0.00, 0.00

tokyo: up 7 days, 9:11, 17 users, load average: 0.15, 0.31, 0.29
homegrown 182% array -l -s tokyo uptime

tokyo: up 7 days, 9:11, 17 users, load average: 0.12, 0.30, 0.28

The command array top lists the processes that are currently using the most CPU time,
with their ASH values, as in the following example.

homegrown 183% array top
ASH Host PID User %CPU Command

--
0x1111ffff00000000 homegrown 5 root 1.20 vfs_sync
0x1111ffff000001e9 homegrown 1327 guest 1.19 atop
0x1111ffff000001e9 tokyo 19816 guest 0.73 atop
0x1111ffff000001e9 disarray 1106 guest 0.47 atop
0x1111ffff000001e9 datarray 1423 guest 0.42 atop
0x1111ffff00000000 homegrown 20 root 0.41 ShareII
0x1111ffff000000c0 homegrown 29683 kchang 0.37 ld
0x1111ffff0000001e homegrown 1324 root 0.17 arrayd
0x1111ffff00000000 homegrown 229 root 0.14 routed
0x1111ffff00000000 homegrown 19 root 0.09 pdflush
0x1111ffff000001e9 disarray 1105 guest 0.02 atopm

The -l and -s options can be used to select data about a single node, as usual.

40

Chapter 2: Using an Array

Browsing With ArrayView

The ArrayView, or aview, command is a graphical window on the status of an array. You
can start it with the command aview and it displays a window similar to the one shown
in Figure 2-5. The top window shows one line per node. There is a window for each node,
headed by the node name and its hardware configuration. Each window contains a
snapshot of the busiest processes in that node.

Figure 2-5 Typical Display from ArrayView (aview) Command

Managing Distributed Processes

41

Managing Distributed Processes

Using commands from the Array Services component of Array 3.0, you create and
manage processes that are distributed across multiple nodes of the Array system.

About Array Session Handles (ASH)

In an Array system you can start a program whose processes are in more than one node.
In order to name such collections of processes, Array 3.0 software assigns each process to
an array session handle (ASH).

An ASH is a number that is unique across the entire array (unlike a PID or PGID). An
ASH is the same for every process that is part of a single array session—no matter which
node the process runs in. You display and use ASH values with Array Services
commands. Each time you log in to an Array node, your shell is given an ASH, which is
used by all the processes you start from that shell.

The command ainfo ash returns the ASH of the current process on the local node, which
is simply the ASH of the ainfo command itself.

homegrown 178% ainfo ash
Array session handle of process 10068: 0x1111ffff000002c1
homegrown 179% ainfo ash
Array session handle of process 10069: 0x1111ffff000002c1

In the preceding example, each instance of the ainfo command was a new process: first
PID 10068, then PID 10069. However, the ASH is the same in both cases. This illustrates
a very important rule: every process inherits its parent’s ASH. In this case, each instance of
array was forked by the command shell, and the ASH value shown is that of the shell,
inherited by the child process.

You can create a new global ASH with the command ainfo newash, as follows:

homegrown 175% ainfo newash
Allocating new global ASH
0x11110000308b2f7c

This feature has little use at present. There is no existing command that can change its
ASH, so you cannot assign the new ASH to another command. It is possible to write a
program that takes an ASH from a command-line option and uses the Array Services
function setash() to change to that ASH (however such a program must be privileged).
No such program is distributed with Array 3.0 (but see “Managing Array Service
Handles” on page 80).

42

Chapter 2: Using an Array

Listing Processes and ASH Values

The command array ps returns a summary of all processes running on all nodes in an
array. The display shows the ASH, the node, the PID, the associated username, the
accumulated CPU time, and the command string.

To list all the processes on a particular node, use the -l and -s options. To list processes
associated with a particular ASH, or a particular username, pipe the returned values
through grep, as in the following example. (The display has been edited to save space.)

homegrown 182% array -l -s tokyo ps | fgrep wombat
0x261cffff0000054c tokyo 19007 wombat 0:00 -csh
0x261cffff0000054a tokyo 17940 wombat 0:00 csh -c (setenv...
0x261cffff0000054c tokyo 18941 wombat 0:00 csh -c (setenv...
0x261cffff0000054a tokyo 17957 wombat 0:44 xem -geometry 84x42
0x261cffff0000054a tokyo 17938 wombat 0:00 rshd
0x261cffff0000054a tokyo 18022 wombat 0:00 /bin/csh -i
0x261cffff0000054a tokyo 17980 wombat 0:03 /usr/gnu/lib/ema...
0x261cffff0000054c tokyo 18928 wombat 0:00 rshd

When you have Performance Co-Pilot installed (see “Performance Co-Pilot” on page 11)
you have two additional commands for listing processes: ashtop displays a continuously
updated list of the processes that are executing under a specified ASH (see the ashtop(1)
reference page, if installed). The arraytop command produces a similar display for the
entire array (see the arraytop(1) reference page, if installed). Both of these, and additional
features of Performance Co-Pilot, are described in the pcp_array(5) reference page.

Controlling Processes

The arshell command lets you start an arbitrary program on a single other node. The array
command gives you the ability to suspend, resume, or kill all processes associated with
a specified ASH.

Using arshell

The arshell command is an Array Services extension of the familiar rsh command; it
executes a single IRIX command on a specified Array node. The difference from rsh is
that the remote shell executes under the same ASH as the invoking shell (this is not true
of simple rsh). The following example demonstrates the difference.

Managing Distributed Processes

43

homegrown 179% ainfo ash
Array session handle of process 8506: 0x1111ffff00000425
homegrown 180% rsh guest@tokyo ainfo ash
Array session handle of process 13113: 0x261cffff0000145e
homegrown 181% arshell guest@tokyo ainfo ash
Array session handle of process 13119: 0x1111ffff00000425

You can use arshell to start a collection of unrelated programs in multiple nodes under a
single ASH; then you can use the commands described under “Managing Session
Processes” on page 44 to stop, resume, or kill them.

Both MPI and PVM use arshell to start up distributed processes.

Tip: The shell is a process under its own ASH. If you use the array command to stop or
kill all processes started from a shell, you will stop or kill the shell also. In order to create
a group of programs under a single ASH that can be killed safely, proceed as follows:

1. Create a nested shell with a new ASH using newsess. Note the ASH value.

2. Within the new shell, start one or more programs using arshell.

3. Exit the nested shell.

Now you are back to the original shell. You know the ASH of all programs started from
the nested shell. You can safely kill all jobs that have that ASH because the current shell
is not affected.

About the Distributed Example

The programs launched with arshell are not coordinated (they could of course be written
to communicate with each other, for example using sockets), and you must start each
program individually.

The array command is designed to permit the simultaneous launch of programs on all
nodes with a single command. However, array can only launch programs that have been
configured into it, in the Array Services configuration file. (The creation and
management of this file is discussed under “About Array Configuration” on page 53.)

44

Chapter 2: Using an Array

In order to demonstrate process management in a simple way from the command line,
the following command was inserted into the configuration file /usr/lib/array/arrayd.conf:

#
Local commands
#
command spin # Do nothing on multiple machines

invoke /usr/lib/array/spin
user %USER
group %GROUP
options nowait

The invoked command, /usr/lib/array/spin, is a shell script that does nothing in a loop, as
follows:

#!/bin/sh
Go into a tight loop
#
interrupted() {

echo "spin has been interrupted - goodbye"
exit 0

}
trap interrupted 1 2
while [! -f /tmp/spin.stop]; do

sleep 5
done
echo "spin has been stopped - goodbye"
exit 1

With this preparation, the command array spin starts a process executing that script on
every processor in the array. Alternatively, array -l -s nodename spin would start a process
on one specific node.

Managing Session Processes

The following command sequence creates and then kills a spin process in every node. The
first step creates a new session with its own ASH. This is so that later, array kill can be
used without killing the interactive shell.

homegrown 175% ainfo ash
Array session handle of process 8912: 0x1111ffff0000032d
homegrown 176% newsess
homegrown 175% ainfo ash
Array session handle of process 8941: 0x11110000308b2fa6

Managing Distributed Processes

45

In the new session with ASH 0x11110000308b2fa6, the command array spin starts the
/usr/lib/array/spin script on every node. In this test array, there were only two nodes on
this day, homegrown and tokyo.

homegrown 176% array spin

After exiting back to the original shell, the command array ps is used to search for all
processes that have the ASH 0x11110000308b2fa6.

homegrown 177% exit
homegrown 178% homegrown 177%
homegrown 177% ainfo ash
Array session handle of process 9257: 0x1111ffff0000032d
homegrown 179% array ps | fgrep 0x11110000308b2fa6
0x11110000308b2fa6 homegrown 9033 guest 0:00 /bin/sh /usr/lib/array/spin
0x11110000308b2fa6 homegrown 9618 guest 0:00 sleep 5
0x11110000308b2fa6 tokyo 26021 guest 0:00 /bin/sh /usr/lib/array/spin
0x11110000308b2fa6 tokyo 26072 guest 0:00 sleep 5
0x1111ffff0000032d homegrown 9642 guest 0:00 fgrep 0x11110000308b2fa6

There are two processes related to the spin script on each node. The next command kills
them all.

homegrown 180% array kill 0x11110000308b2fa6
homegrown 181% array ps | fgrep 0x11110000308b2fa6
0x1111ffff0000032d homegrown 10030 guest 0:00 fgrep 0x11110000308b2fa6

The command array suspend 0x11110000308b2fa6 would suspend the processes instead
(however, it is hard to demonstrate that a sleep command has been suspended).

47

Chapter 3

3. Administering an Array

An Array system is an aggregation of node, which are IRIX servers bound together with
a high-speed network and Array 3.0 software. Array administrators are IRIX system
administrators who must use additional tools to configure and manage the Array as an
Array.

This chapter surveys the tools that you as an administrator use, with pointers to more
detailed information. (Appendix B, “Array Documentation Quick Reference,”
summarizes all pointers for quick access.) The main topics covered include:

• “Using the IRISconsole Workstation” on page 48 summarizes the look and feel of
IRISconsole, and indicates some of the other tools you can also run at the console
workstation.

• “About Array Configuration” on page 53 describes the use and contents of the
Array Services database file, and the methods you use to change it and test the
changes.

• “Configuring Arrays and Machines” on page 57 details how you define the Array
and its nodes in the configuration files.

• “Configuring Authentication Codes” on page 58 summarizes authentication lines in
the configuration database.

• “Configuring Array Commands” on page 58 details the way you define new
subcommands for users to execute via the array command.

48

Chapter 3: Administering an Array

Using the IRISconsole Workstation

The Silicon Graphics, Inc. O2 or Indy workstation running IRISconsole is your primary
control point, from which you can manage the hardware and software of all nodes in the
array, performing all operator actions on every node, even including power-cycling and
rebooting. Figure 3-1 shows the IRISconsole main window.

Figure 3-1 IRISconsole Main Window

From the main window you can open the Systems window in which you find an icon for
each node in the selected Array. This is shown in Figure 3-2.

Using the IRISconsole Workstation

49

Figure 3-2 IRISconsole Systems Window

In the Systems window you can select one system icon and apply any of the functions
shown as buttons to that system. Several functions allow you to perform radical
hardware operations: power-cycle, reset, or cause a nonmaskable interrupt (NMI).

The HW Status function opens a hardware status window for the selected system, as
shown in Figure 3-3. From this window you can monitor power-supply voltages,
internal temperature, and fan RPM. (This feature is available only for nodes that are
Challenge or Onyx systems, not for Origin2000 systems.)

50

Chapter 3: Administering an Array

Figure 3-3 IRISconsole Hardware Status Window

The Get Console function opens an IRIX shell window that is the system console window
for the selected system. Figure 3-4 shows a system console window in the middle of a
reboot.

Using the IRISconsole Workstation

51

Figure 3-4 IRISconsole System Console Window

52

Chapter 3: Administering an Array

Using Other Tools With IRISconsole

The same workstation that runs IRISconsole can be used simultaneously to run other
administrative and diagnostic software such as Performance Co-pilot.

You or a system programmer can run Performance Co-Pilot in order to analyze the
performance of the Array. Performance Co-Pilot works well with IRISconsole: from
system console windows you can start and stop processes, and with PCP you can
observe the performance effects.

Other products for monitoring and analysis can be executed at the console workstation
so that all your display tools are on the same screen. For example, NetVisualyzer™ can
be used to monitor network traffic concurrently with IRISconsole and Performance
Co-Pilot.

You can also run the aview command at the console station, as another way of staying
aware of the system status (see “Browsing With ArrayView” on page 40).

Table 3-1 lists information sources for the console management aids.

Table 3-1 Information Sources: Console Management

Topic Book or URL Book Number

IRISconsole IRISconsole Administrator’s Guide

http://www.sgi.com/Products/hardware/challenge/
IRISconsole.html

007-2872-xxx

IRISconsole hardware IRISconsole ST-1600 Installation Guide

Indy Workstation Owner’s Guide

007-2839-xxx

007-9804-xxx

Performance Co-Pilot The Performance Co-Pilot User’s and Administrator’s Guide 007-2614-xxx

NetVisualyzer NetVisualyzer User’s Guide 007-0812-xxx

aview command aview(1) and “Browsing With ArrayView” on page 40

About Array Configuration

53

About Array Configuration

The system administrator has to initialize the Array configuration database, a file that is
used by the Array Services daemon in executing almost every ainfo and array command.
For details about array configuration, see the reference pages cited in Table 3-2.

About the Uses of the Configuration File

The configuration files are read by the Array Services daemon when it starts. Normally
it is started in each node during the system bootstrap. (You can also run the daemon from
a command line in order to check the syntax of the configuration files.)

The configuration files inform the daemon of the data needed by ainfo and array:

• The names of Array systems, including the current Array but also any other Arrays
on which a user could run an Array Services command (reported by ainfo).

• The names and types of the nodes in each named Array, especially the hostnames
that would be used in an Array Services command (reported by ainfo).

Table 3-2 Information Sources: Array Configuration

Topic Book, Reference Page, or URL Book Number

Array Services
overview

array_services(5)

Array Services user
commands

ainfo(1), array(1)

Array Services daemon
overview

arrayd(1m)

Configuration file
format

arrayd.conf(4), /usr/lib/array/arrayd.conf.template

Configuration file
validator

ascheck(1)

Array Services simple
configurator

arrayconfig(1m)

54

Chapter 3: Administering an Array

• The authentication keys, if any, that must be used with Array Services commands
(required as -Kl and -Kr command options, see “Summary of Common Command
Options” on page 34).

• The commands that are valid with the array command.

About Configuration File Format and Contents

A configuration file is a readable text file. The file contains entries of the following four
types, which are detailed in later topics.

Blank lines, white space, and comment lines beginning with “#” can be used freely for
readability. Entries can be in any order in any of the files read by arrayd.

Besides punctuation, entries are formed with a keyword-based syntax. Keyword
recognition is not case-sensitive; however keywords are shown in uppercase in this text
and in the reference page. The entries are primarily formed from keywords, numbers,
and quoted strings, as detailed in the reference page arrayd.conf(4).

Loading Configuration Data

The Array Services daemon, arrayd, one or more filenames as arguments. It reads them
all, and treats them like logical continuations (in effect, it concatenates them). If no
filenames are specified, it reads /usr/lib/array/arrayd.conf and /usr/lib/array/arrayd.auth.
A different set of files, and any other arrayd command-line options, can be written into
the file /etc/config/arrayd.options, which is read by the /etc/init.d/array script that launches
arrayd at boot time.

Array definition Describes this array and other known arrays, including array
names and the node names and types.

Command definition Specifies the usage and operation of a command that can be
invoked through the array command.

Authentication Specifies authentication numbers that must be used to access the
Array.

Local option Options that modify the operation of the other entries or arrayd.

About Array Configuration

55

Since configuration data can be stored in two or more files, you can combine different
strategies, for example:

• One file can have different access permissions than another. Typically,
/usr/lib/array/arrayd.conf is world-readable and contains the available array
commands, while /usr/lib/array/arrayd.auth is readable only by root and contains
authentication codes.

• One node can have different configuration data than another. For example, certain
commands might be defined only in certain nodes; or only the nodes used for
interactive logins might know the names of all other nodes.

• You can use NFS-mounted configuration files. You could put a small configuration
file on each machine to define the Array and authentication keys, but you could
have a larger file defining array commands that is NFS-mounted from one node.

After you modify the configuration files, you can make arrayd reload them by killing the
daemon and restarting it in each machine. The script /etc/init.d/array supports this
operation: execute

/etc/init.d/array stop

to kill the daemon, and

/etc/init.d/array restart

to kill and restart it in one operation.

The Array Services daemon in any node knows only the information in the configuration
files available in that node. This can be an advantage, in that you can limit the use of
particular nodes; but it does require that you take pains to keep common information
synchronized. (An automated way to do this is sketched under “Designing New Array
Commands” on page 62.)

About Substitution Syntax

The reference page arrayd.conf(4) details the syntax rules for forming entries in the
configuration files. An important feature of this syntax is the use of several kinds of text
substitution, by which variable text is substituted into entries when they are executed.

Most of the supported substitutions are used in Command entries. These substitutions
are performed dynamically, each time the array command invokes a subcommand. At
that time, substitutions insert values that are unique to the invocation of that

56

Chapter 3: Administering an Array

subcommand. For example, the value %USER inserts the user ID of the user who is
invoking the array command. Such a substitution has no meaning except during
execution of a command.

Substitutions in other configuration entries are performed only once, at the time the
configuration file is read by arrayd. Only environment variable substitution makes sense
in these entries. The environment variable values that are substituted are the values
inherited by arrayd from the script that invokes it, which is /etc/init.d/array.

Testing Configuration Changes

The configuration files contain many sections and options (detailed in the topics that
follow this one). The Array Services command ascheck performs a basic sanity check of
all configuration files in the Array.

After making a change, you can test an individual configuration file for correct syntax by
executing arrayd as a command with the -c and -f options. For example, suppose you have
just added a new command definition to /usr/lib/array/arrayd.local. You can check its
syntax with the command

arrayd -c -f /usr/lib/array/arrayd.local

When testing new commands for correct operation, you need to see the warning and
error messages produced by arrayd and processes that it may spawn. The stderr messages
from a daemon are not normally visible. You can make them visible by the following
procedure:

1. On one node, kill the daemon.

2. In one shell window on that node, start arrayd with the options -n -v. Instead of
moving into the background, it remains attached to the shell terminal.

Note: Although arrayd becomes functional in this mode, it does not refer to
/etc/config/arrayd.options, so you need to specify explicitly all command-line options,
such as the names of nonstandard configuration files.

3. From another shell window on the same or other nodes, issue ainfo and array
commands to test the new configuration data. Diagnostic output appears in the
arrayd shell window.

4. Terminate arrayd and restart it as a daemon (without -n).

During steps 1, 2, and 4, the test node may fail to respond to ainfo and array commands,
so users should be warned that the Array is in test mode.

Configuring Arrays and Machines

57

Configuring Arrays and Machines

Each ARRAY entry gives the name and composition of an Array system that users can
access. At least one ARRAY must be defined at every node, the Array in use.

Specifying Arrayname and Machine Names

A simple example of an ARRAY definition is a follows:

array simple
machine congo
machine niger
machine nile

The arrayname simple is the value the user must specify in the -a option (see “Summary
of Common Command Options” on page 34). One arrayname should be specified in a
DESTINATION ARRAY local option as the default array (reported by ainfo dflt). Local
options are listed under “Configuring Local Options” on page 62.

The MACHINE subentries of ARRAY define the nodenames that the user can specify
with the -s option. These names are also reported by the command ainfo machines.

Specifying IP Addresses and Ports

The simple MACHINE subentries shown in the example are based on the assumption
that the hostname is the same as the machine’s name to Domain Name Services (DNS).
If a machine’s IP address cannot be obtained from the given hostname, you must provide
a HOSTNAME subentry to specify either a completely-qualified domain name or an IP
address, as follows
array simple

machine congo
hostname congo.engr.hitech.com
port 8820

machine niger
hostname niger.engr.hitech.com

machine nile
hostname "198.206.32.85"

The preceding example also shows how the PORT subentry can be used to specify that
arrayd in a particular machine uses a different socket number than the default 5434.

58

Chapter 3: Administering an Array

Specifying Additional Attributes

Under both ARRAY and MACHINE you can insert “attributes,” which are named string
values. These attributes are not used by Array Services, but they are displayed by ainfo
and can be returned to programs using the Array Services library (“Array Services
Library” on page 76). Some examples of attributes would be as follows:

array simple
array_attribute config_date="04/03/96"
machine a_node

machine_attribute aka="congo"
hostname congo.engr.hitech.com

Tip: You can write code that fetches any arrayname, machine name, or attribute string
from any node in the array. See “Database Interrogation” on page 80.

Configuring Authentication Codes

In Array 3.0 only one type of authentication is provided: a simple numeric key that can
be required with any Array Services command. You can specify a single authentication
code number for each node. The user must specify the code with any command entered
at that node, or addressed to that node using the -s option (see “Summary of Common
Command Options” on page 34).

The arshell command is like rsh in that it runs a command on another machine under the
userid of the invoking user. Use of authentication codes makes Array Services somewhat
more secure than rsh.

Configuring Array Commands

The user can invoke arbitrary IRIX commands on single nodes using the arshell
command (see “Using arshell” on page 42). The user can also launch MPI and PVM
programs that automatically distribute over multiple nodes. However, the only way to
launch coordinated IRIX programs on all nodes at once is to use the array command. This
command does not accept any IRIX command; it only permits execution of commands
that the administrator has configured into the Array Services database.

Configuring Array Commands

59

You can define any set of commands that your users need. You have complete control
over how any single Array node executes a command (the definition can be different in
different nodes). A command can simply invoke a standard IRIX command, or, since you
can define a command as invoking a script, you can make a command arbitrarily
complex.

Operation of Array Commands

When a user invokes the array command, the subcommand and its arguments are
processed by the destination node specified by -s. Unless the -l option was given, that
daemon also distributes the subcommand and its arguments to all other array nodes that
it knows about (the destination node might be configured with only a subset of nodes).
At each node, arrayd searches the configuration database for a COMMAND entry with
the same name as the array subcommand.

For example, when the user enters

array -s tokyo uptime

the subcommand uptime is processed by arrayd in node tokyo. When it finds the
subcommand valid, it distributes it to every node that is configured in the default array
at node tokyo.

The COMMAND entry for uptime is distributed in this form (you can read it in the file
/usr/lib/array/arrayd.conf).

command uptime # Display uptime/load of all nodes in array
invoke /usr/lib/array/auptime %LOCAL

The INVOKE subentry tells arrayd how to execute this command. In this case, it executes
a shell script /usr/lib/array/auptime, passing it one argument, the name of the local node.
This command is executed at every node, with %LOCAL replaced by that node’s name.

Summary of Command Definition Syntax

Look at the basic set of commands distributed with Array 3.0 (/usr/lib/array/arrayd.conf).
Each COMMAND entry is defined using the subentries shown in Table 3-3. (These are
described in great detail in reference page arrayd.conf(4).)

60

Chapter 3: Administering an Array

The IRIX commands called by INVOKE and MERGE must be specified as full
pathnames, because arrayd has no defined execution path. As with a shell script, these
IRIX commands are often composed from a few literal values and many substitution
strings. The substitutions that are supported (which are documented in detail in the
arrayd.conf(4) reference page) are summarized in Table 3-4.

Table 3-3 Subentries of a COMMAND Definition

Keyword Meaning of Following Values

COMMAND The name of the command as the user gives it to array.

INVOKE An IRIX command to be executed on every node. The argument values can be
literals, or arguments given by the user, or other substitution values.

MERGE An IRIX command to be executed only on the distributing node, to gather the
streams of output from all nodes and combine them into a single stream.

USER The userid under which the INVOKE and MERGE commands run. Usually given
as USER %USER, so as to run as the user who invoked array.

GROUP The groupname under which the INVOKE and MERGE commands run. Usually
given as GROUP %GROUP, so as to run in the group of the user who invoked
array (see reference page groups(1)).

PROJECT The project under which the INVOKE and MERGE commands run. Usually
given as PROJECT %PROJECT, so as to run in the project of the user who invoked
array (see reference page projects(5)).

OPTIONS A variety of options to modify this command; see Table 3-5.

Table 3-4 Substitutions Used in a COMMAND Definition

Substitution Replacement Value

%1..%9; %ARG(n);
%ALLARGS;
%OPTARG(n)

Argument tokens from the user’s subcommand. %OPTARG does not
produce an error message if the specified argument is omitted.

%USER,
%GROUP,
%PROJECT

The effective userid, effective groupid, and project of the user who invoked
array.

Configuring Array Commands

61

The OPTIONS subentry permits a number of important modifications of the command
execution; these are summarized in Table 3-5.

%REALUSER,
%REALGROUP

The real userid and real groupid of the user who invoked array.

%ASH The ASH under which the INVOKE or MERGE command is to run.

%PID(ash) List of PID values for a specified ASH. %PID(%ASH) is a common use.

%ARRAY The arrayname, either default or as given in the -a option.

%LOCAL The hostname of the executing node.

%ORIGIN The full domain name of the node where the array command ran and the
output is to be viewed.

%OUTFILE List of names of temporary files, each containing the output from one node’s
INVOKE command (valid only in the MERGE subentry).

Table 3-5 Options of the COMMAND Definition

Keyword Effect on Command

LOCAL Do not distribute to other nodes (effectively forces the -l option).

NEWSESSION Execute the INVOKE command under a newly-minted ASH. %ASH in the
INVOKE line is the new ASH. The MERGE command runs under the
original ASH, and %ASH substitutes as the old ASH in that line.

SETRUID Set both the real and effective user ID from the USER subentry (normally
USER only sets the effective UID).

SETRGID Set both the real and effective group ID from the GROUP subentry (normally
GROUP sets only the effective GID).

QUIET Discard output of INVOKE, unless if MERGE subentry is given, pass
INVOKE output to MERGE as usual and discard the MERGE output.

NOWAIT Discard output and return as soon as the processes are invoked; do not wait
for completion (a MERGE subentry is ineffective).

Table 3-4 (continued) Substitutions Used in a COMMAND Definition

Substitution Replacement Value

62

Chapter 3: Administering an Array

Configuring Local Options

The LOCAL entry specifies options to arrayd itself. The most important options are
summarized in Table 3-6.

If you do not supply LOCAL USER, GROUP, and PROJECT values, the default values for
USER and GROUP are “guest.”

Note: The HOSTNAME entry is needed whenever the IRIX hostname command does not
return a node name as specified in the ARRAY MACHINE entry. In order to supply a
LOCAL HOSTNAME entry unique to each node, each node needs an individualized
copy of at least one configuration file.

Designing New Array Commands

A basic set of commands is distributed in the file /usr/lib/array/arrayd.conf.template. You
should examine this file carefully before defining commands of your own. You can define
new commands which then become available to the users of the Array system.

Typically, a new command will be defined with an INVOKE subentry that names a script
written in sh, csh, or perl syntax. You use the substitution values to set up arguments to
the script. You use the USER, GROUP, PROJECT, and OPTIONS subentries to establish
the execution conditions of the script. For one example of a command definition using a
simple script, see “About the Distributed Example” on page 43.

Table 3-6 Subentries of the LOCAL Entry

Subentry Purpose

DIR Pathname for the arrayd working directory, which is the initial,
current working directory of INVOKE and MERGE commands.
The default is /usr/lib/array.

DESTINATION ARRAY Name of the default array, used when the user omits the -a option.
When only one ARRAY entry is given, it is the default destination.

USER, GROUP, PROJECT Default values for COMMAND execution when USER, GROUP, or
PROJECT are omitted from the COMMAND definition.

HOSTNAME Value returned in this node by %LOCAL. Default is the hostname.

PORT Socket to be used by arrayd.

Configuring Array Commands

63

Within the invoked script you can write any amount of logic to verify and validate the
arguments, and to execute any sequence of commands. For an example of a script in perl,
see /usr/lib/array/aps, which is invoked by the array ps command.

Tip: perl is a particularly interesting choice for array commands, since perl has native
support for socket I/O. In principle at least, you could build a distributed application in
perl in which multiple instances are launched by array and coordinate and exchange data
using sockets. Performance would not rival the highly tuned MPI and PVM libraries, but
development would be simpler.

The administrator has need for distributed applications as well, since the configuration
files are distributed over the Array. Here is an example of a distributed command to
reinitialize the Array Services database on all nodes at once. The script to be executed at
each node, called /usr/lib/array/arrayd-reinit would read as follows:

#!/bin/sh
Script to reinitialize arrayd with a new configuration file
Usage: arrayd-reinit <hostname:new-config-file>
sleep 10 # Let old arrayd finish distributing
rcp $1 /usr/lib/array/
/etc/init.d/array restart
exit 0

The script uses rcp to copy a specified file (presumably a configuration file such as
arrayd.conf) into /usr/lib/array (this will fail if %USER is not privileged). Then the script
restarts arrayd (see /etc/init.d/array) to reread configuration files.

The command definition would be as follows:

command reinit
invoke /usr/lib/array/arrayd-reinit %ORIGIN:%1
user %USER
group %GROUP
options nowait # Exit before restart occurs!

The INVOKE subentry calls the restart script shown above. The NOWAIT option
prevents the daemon’s waiting for the script to finish, since the script will kill the
daemon.

65

Chapter 4

4. Performance-Driven Programming in Array 3.0

Array 3.0 offers developers a rich set of compilers, libraries, system services, and
development tools. Most of these facilities are documented separately. This chapter
surveys the development tools and provides pointers to their documentation, as well as
taking a deeper look at the Array Services library functions. The main topics include:

• “Basic Array Application Tuning Strategy” on page 66 includes some advice on
performance tuning.

• “Locality, Latency, and Bandwidth” on page 73 discuses performance values for
MPI and TCP/IP.

• “Array Services Library” on page 76 details the use of the Array Services functions.

66

Chapter 4: Performance-Driven Programming in Array 3.0

Basic Array Application Tuning Strategy

Quite often, new applications developed for an Array system run with satisfactory job
execution time. When execution times are not satisfactory, the developer must tune the
application for improved performance.

An efficient, systematic tuning strategy helps you achieve the best possible performance
in the minimum development time. One such tuning strategy is outlined in this section.

Tuning Single-Node Performance

The first step in tuning a parallel application—and it is a large step—is to tune it for best
performance on a single node. Tuning any program begins with instrumenting the
program to identify the parts where it spends excess time. Analyze these parts to
determine whether algorithmic changes are possible. Optimizations of program logic
and algorithms, when they are possible, always yield the largest improvements at the
lowest cost.

When you are sure the algorithm is optimal and its coding is logically correct, examine
the program for library use, cache use, software pipelining, and SMP performance.

Library Selection

There are many numerical libraries available, some from Silicon Graphics, Inc. and some
from other sources both commercial and public domain. Every implementation of a
standard algorithm has different characteristics for accuracy bounds and error
propagation, raw speed, and speed as a ratio of the problem set size.

SGI Cray Scientific Library (SCSL) includes algorithms that are carefully coded and
optimized to Silicon Graphics, Inc. hardware. The SCSL supercedes the older
CHALLENGEcomplib™ product. But by all means have a selection of libraries available
and try them all.Some library sources are listed in Table 4-1.

Basic Array Application Tuning Strategy

67

Some library collections (including CHALLENGEcomplib) are specifically tuned for
parallel execution. Pointers to some sources of parallel libraries are listed in Table 4-2.

Table 4-1 Information Sources: General Numerical Libraries

Topic Book or URL Book Number

Directory of WWW
software sources

http://www.yahoo.com/Science/Mathematics/Software/

Vast collection of
numerical software

http://www.netlib.org/

Index to math and
statistical software

http://gams.nist.gov/

Visualization tools for
physics

http://www.lassp.cornell.edu/LASSPTools/LASSPTools.html

Volume Renderer and
other tools

http://www.arc.umn.edu/gvl-software/gvl-software.html

Table 4-2 Information Sources: Libraries for Parallel Computation

Topic Book, Reference Page, or URL Book Number

CHALLENGEcomplib
overview

http://www.sgi.com/Products/Challengecomplib.html

Center for Research in
Parallel Computation

http://www.crpc.rice.edu/

HPPC software
collection

http://www.netlib.org/nhse/home.html

HPCC Vendors “Mall” http://www.npac.syr.edu/infomall/

68

Chapter 4: Performance-Driven Programming in Array 3.0

Tuning Information

Information sources about performance tuning and the Workshop tools are listed in
Table 4-3.

Pipelining

The MIPSpro compilers sold by Silicon Graphics, Inc. support software pipelining, in
which the compiler structures the machine code of compute-intensive loops to optimally
schedule operations through the R8000 or R10000 CPU. The proper use of software
pipelining can make immense differences in the speed of execution of certain loops.
However, you must sometimes adjust the source code of a loop in order for the compiler
to recognize it as eligible for pipeline treatment.

Software pipelining is discussed in the books shown in Table 4-4.

Table 4-3 Information Sources: Performance Analysis Tools

Topic Book, Reference Page, or URL Book Number

Developer Magic
overviews

Developer Magic: ProDev WorkShop Overview

http://www.sgi.com/Products/WorkShop.html

007-2582-xxx

Debugger Developer Magic: Debugger User’s Guide 007-2579-xxx

Performance Analysis Developer Magic: Performance Analyzer User’s Guide 007-2581-xxx

Performance Analysis Developer Magic: Static Analyzer User’s Guide 007-2580-xxx

Performance Analysis
(command-line tools)

MIPSpro Compiling and Performance Tuning Guide 007-2360-xxx

Performance Tuning on
Origin2000 and Onyx2

Performance Tuning Optimization for Origin2000 and
Onyx2, online only at http://www.sgi.com/techpubs/
lib/makepage.cgi?007-3430-001

007-3430-xxx

Table 4-4 Information Sources: Software Pipelining

Topic Book, Reference Page, or URL Book Number

Software pipelining MIPSpro 64-Bit Porting and Transition Guide 007-2391-xxx

Software pipelining MIPSpro Compiling and Performance Tuning Guide 007-2360-xxx

Basic Array Application Tuning Strategy

69

SMP Performance

You can make a computation-intensive program faster by applying multiple CPUs in
parallel, within a single node of an array (within any Challenge-class server). You should
explore single-node parallelism carefully before you even consider multinode parallel
execution. The reasons are, first, the extensive support for parallel execution provided by
software such as Power Fortran (77 and 90) and IRIS Power C; second, the relative ease
of starting, running, and testing a program within one node; and finally the fact that a
multinode program must be written to use the more complex model provided by
High-Performance Fortran (HPF), by MPI, or by PVM.

If you are sure that a program will be a multinode program, or it you are working on a
program that is already written to use MPI or PVM, you can still consider some parallel
execution within each node. The parallelizing directives of Power Fortran or Power C can
be applied in the context of a single source module. For example, you might use MPI to
distribute an array in 1 MB sections to each node, but use single-node parallelism in the
DO-loop that processes one section.

Parallel Performance Goals

When a program runs efficiently on a single node, but you find you still need to recruit
more CPU cycles to it, you can look for further performance gains through multinode
parallelism.

Be aware first that multiparallelism is far from a panacea. It is important to consider
Amdahl’s Law. If the code that can be run in parallel consumes less than 95% of the total
execution time, targeting fewer than 18 processors is sufficient to realize any potential
benefit from parallelization. When this is the case, parallelism within a single node is the
most appropriate strategy (presuming at least one node has sufficient CPUs installed).

When the parallelization potential is above 96%, then parallelizing across the nodes of
the Array can result in a performance speedup.

Designing Appropriate Parallel Algorithms

When designing a multinode application, your basic strategy should be to maximize the
work done on the data within any node before communication between nodes is
required. In general, aim to communicate between nodes as rarely as possible, and when
communication is needed, to use the largest message units possible. This strategy
maximizes the use of the high bandwidth and lower latencies of the bus within a node,
as compared to the relatively slower communications of the HIPPI network.

70

Chapter 4: Performance-Driven Programming in Array 3.0

While the implementation of your internode parallel algorithms may use a shared
memory model (HPF) or message-passing model (MPI, PVM), the design of the
fundamental algorithms is conceptually similar to the design of good parallel algorithms
for a single-node program. To achieve the performance advantages of distributed
multiprocessing, you must

• Partition the application into concurrent processes

• Implement efficient communication between the parallel processes to synchronize
and exchange data

• Balance the workload among the parallel processes

• Minimize communication overhead, so that processors are well utilized

Test and Debug on a Single-node Server

If you design your applications to accept variable numbers of processors and problem
sizes, often you can debug your fundamental program logic within a single node. When
executing within one node you can apply all the debugging and visualization tools of the
Workshop suite.

Parallel Programming and Communication Paradigms

Several models of parallel computation are available for the IRIX and Array 3.0. These
models are discussed and compared in detail in the book listed in Table 4-5.

The models are summarized here, but read the chapter of the book shown for details and
the latest version information.

Table 4-5 Information Sources: Parallel Computation Models

Topic Book, Reference Page, or URL Book Number

Models of Parallel
Computation

Topics In IRIX Programming 007-2478-xxx

Basic Array Application Tuning Strategy

71

Shared-Memory Communication

IRIX provides several facilities that permit parallel processes to communicate by directly
reading and writing the same address space.

Shared Memory within One Node

Three different interfaces provide shared-memory facilities within a single node.

• IRIX native shared memory

• POSIX 1003.1b shared memory (available as a patch to IRIX 6.2)

• System V Release 4 compatible shared memory

A variety of coordination primitives are available for synchronization and mutual
exclusion within nodes:

• IRIX native mutual exclusion locks, semaphores, and barriers

• POSIX 1003.1b semaphores (available as a patch to IRIX 6.2)

• System V Release 4 compatible semaphores

You can call on these facilities directly in C programs. The POWER C and POWER
Fortran runtime modules for parallel execution use the IRIX native shared memory to
communicate, since IRIX shared-memory support is closely integrated with IRIX
lightweight processes.

Shared Memory Between Nodes

The current Array architecture restricts direct shared memory IPC to only intranode
communications. High Performance Fortran (HPF) provides a form of indirect shared
memory for internode communications.

Message-Passing IPC

The message-passing communication model provides a “mail delivery” paradigm for
interprocess communication. A collection of data items is given an identifier and
“mailed” to a destination process, which subsequently receives it.

72

Chapter 4: Performance-Driven Programming in Array 3.0

The message-passing model makes a clean separation between program modules,
affording some protection from accidental changes to shared memory. However, any
message-passing facility must incur some delay compared to shared memory, due to
buffering, abstraction, and (sometimes) copying and transmission overheads.

Message Passing within a Node

In a C program, you can call on either of two interfaces for queue-based message passing
within one node:

• System V Release 4 message queues

• POSIX 1003.1b message queues

The POSIX implementation (available as a patch for IRIX 6.2) uses shared memory and
operates primarily in user space for minimal overhead. The SVR4 library is included
primarily for compatibility, and incurs the overhead of a kernel calls.

Distributed Message Passing

Three abstract models are supported to allow the exchange of arbitrary messages
between processes operating in the same or different nodes of an array:

• MPI (Message Passing Interface) is the preferred message-passing facility for Silicon
Graphics, Inc. Array systems. The version of MPI distributed with Array 3.0 is
carefully tuned to take maximum advantage of the HIPPI interconnect, and of
shared memory within a node.

• PVM (Portable Virtual Machine) is supported for compatibility, and has been tuned
to some extent to work correctly in an Array system.

• IRIX contains standard support for sockets, with which you can write programs that
communicate between any two nodes on the internet. Array Services uses sockets to
pass commands and messages between nodes (see “Using Array Services
Commands” on page 33).

Hybrid Models

If you are preparing a new application, Silicon Graphics, Inc. recommends that you plan
as follows:

• For implicit parallelism within a node, use the compiler facilities of the MIPSpro
Fortran and C compilers, aided by Power Fortran and IRIS Power C.

Locality, Latency, and Bandwidth

73

• For explicit communication within a node, use either IRIX native shared memory,
POSIX shared memory, or POSIX message queues.

• For distributed parallel execution, use MPI.

There is no requirement that applications use any one set of facilities exclusively. For
example, the following common models are possible, among others:

• Shared-memory program with n processes in one node.

• Message-passing program with n processes in one node.

• Hybrid application with n processes in one node, using a combination of message
passing and shared memory.

• Message-passing program with n processes distributed over p nodes, n>p.

• Hybrid application with n processes over p nodes, communicating between nodes
via MPI but using shared memory to coordinate multiple processes within each
node.

However, when designing a program to use a hybrid model, you must be aware that the
MPI library is not “thread-safe,” that is, it has global variables with values that can be
destroyed if it is executed by two lightweight processes concurrently. The MPI library
should be entered by only one process in any share group. This is discussed in more
detail in the MPI and PVM User’s Guide, 007-3286-xxx.

Locality, Latency, and Bandwidth

All forms of interprocess communication incur some delay. The time t(s) required to
communicate a message containing s bytes of data to another process can be roughly
separated into a fixed overhead latency L that is independent of message size, and a
size-dependent overhead, which represents the message size divided by the
communication bandwidth B. The following formula is often used to approximate the
time to transmit a message of length s:

t s() L
1
B

s⋅+=

74

Chapter 4: Performance-Driven Programming in Array 3.0

MPI Communication Delays

Array 3.0 contains an optimized protocol stack supporting MPI protocols on HIPPI.
Separate design approaches have been implemented for short messages and long ones.
Special attention is paid to latency for shorter messages, which are more common. The
advice given in “Reducing the Effect of Communication Delay” on page 74, to use fewer,
longer messages, is valid, but the reduced latency from prior versions should improve
the performance of many programs.

 Other conditions can affect the use of HIPPI by MPI. When four or more applications are
contending for the use of an adapter, MPI does not use that adapter. (The limit is 8
applications per adapter on an Origin2000 node). When a node does not have a HIPPI
adapter, or when the maximum MPI jobs are contending for all available adapters, an
internode MPI transfer uses a socket instead. This case is not optimized and will be
slower.

TCP/IP Communication Delays

The basic IRIX support for TCP/IP is not changed for Array 3.0, and does not take
advantage of the special MPI tuning. As a result, you are strongly advised to construct a
distributed application using MPI, not sockets.

When you must use sockets, be aware that the bandwidth you can achieve can vary over
an extremely wide range depending on several factors. The most important are: the size
of the socket buffer (the SO_SNDBUF and SO_RCVBUF options of setsockopt()) and the
size of the message.

Typical performance with a 62 KB socket buffer and a stream of 16 KB messages is
approximately 15 MB/second. Much higher speeds, up to 60 MB/sec and more, can be
achieved using larger, page-aligned transfers, with buffer pages locked in memory. Rates
of 90 MB/sec can be achieved by highly-tuned benchmark programs.

Reducing the Effect of Communication Delay

To effectively exploit the memory hierarchy of the Array, you must be aware of the effects
of communication latency and bandwidth while designing your program. Your best
strategy is to send fewer, longer messages, and to overlap communication with useful
work when possible.

Locality, Latency, and Bandwidth

75

Do Not Use Message Aggregation

You can sometimes reduce message count by aggregating small messages to the same
destination into one larger message. You may find an existing MPI program going to
some effort to block, or aggregate, messages. This is no longer recommended.

The HIPPI support in Array 3.0 is designed to incur low latency for small messages. The
extra program logic needed to block and unblock messages will likely cost as much time
as it saves. It is true in general that the fewer the messages, the better; but with Array 3.0
you should simply send a small message as soon as it is ready.

Overlap Processing with Communication

Try to design the application to overlap message delays with computation. MPI permits
a process to send messages asynchronously. The MPI_Isend() function returns from the
immediately, before the message has been sent. MPI also permits asynchronous receipt;
the MPI_Irecv() function tests for available data without waiting when none is ready.

Asynchronous communication permits the sender or receiver to continue computation
while data is transferred by the system. Figure 4-1 shows the potential performance
advantages of asynchronous communication. Figure 4-1a is a time line of two standard
communicating processes. Figure 4-1b is a time line of the same two processes using
asynchronous sends and receives. Here, much of the communication time is hidden
behind computation.

Figure 4-1 Gaining Efficiency Through Asynchronous Communication

send 1 compute 1 send 2 compute 2 send 3 compute 3

receive 1 receive 2 receive 3compute 1 compute 2 compute 3

compute 1 compute 2 compute 3

send 1 send 2 send 3

receive 1
compute 1 compute 2 compute 3

receive 2 receive 3

(a)

(b)

time

time

time

time

76

Chapter 4: Performance-Driven Programming in Array 3.0

When implementing asynchronous communication in MPI, it i s important to use both
MPI_Isend() and MPI_Irecv(). Neither MPI_Send() nor MPI_Isend can begin to
transfer data until a matching receive has been posted. Using MPI_Irecv() allows your
program to post a receive earlier rather than later.

Asynchronous communication can in practice hide most communication delays, but it
can require program restructuring. Optimize an existing program in other ways first;
possibly the increased complexity in program logic will not be necessary.

Array Services Library

Array Services consists of a configuration database, a daemon (arrayd) that runs in each
node to provide services, and several user-level commands. The facilities of Array
Services are also available to developers through the Array Services library, a set of
functions through which you can interrogate the configuration database and call on the
services of arrayd.

The commands of Array Services are covered in “Using Array Services Commands” on
page 33. The administration of Array Services is described in “About Array
Configuration” on page 53 and topics that follow it. These topics are useful background
information for understanding the Array Services library.

Array Services Library Overview

The programming interface to Array Services is declared in the header file
/usr/include/arraysvcs.h. The object code is located in /usr/lib/libarray.so, included in a
program by specifying -larray during compilation. The library is distributed in o32, n32,
and 64-bit versions (not all need to be installed). The functions are documented in
reference pages in volume 3.

The library functions can be grouped into these categories:

• Functions to connect to Array Services daemons in the local or other nodes, and to
get and set arrayd options.

• Functions to interrogate the Array Services configuration database, listing arrays,
nodes, and attributes of arrays and nodes.

• Functions to allocate Array Session Handles (ASHs), to query active ASHs and to
change the relationship between PIDs and ASHs.

Array Services Library

77

• A function to execute a command as for the array command (see “Operation of
Array Commands” on page 59).

• A function to execute any arbitrary user command on an array node.

These functions are examined in following topics.

Data Structures

The Array Services functions work with a number of data structures that are declared in
arraysvcs.h. In general, each data structure is allocated by one particular function, which
returns a pointer to the structure as the function’s result. Your code uses the returned
structure, possibly passing it as an argument to other functions.

When your code is finished with a structure, it is expected to call a specific function that
frees that type of structure. If your code does not free each structure, a memory leak
results.

The data structures and their contents are summarized in Table 4-6.

Table 4-6 Array Services Data Structures

Structure Contents Freed By Function

asarray_t Name and attributes of an Array. asfreearray()

asarraylist_t List of asarray_t structures. asfreearraylist()

asashlist_t List of ASH values. asfreeashlist()

ascmdrslt_t Describes output of executing an array command on
one node, including temporary files and socket
numbers.

freed as part of a list

ascmdrsltlist_t List of command results, one ascmdrslt_t per node
where an array command was executed.

asfreecmdrsltlist()

asmachine_t Configuration data about one node: machine name
and attributes.

freed as part of a list

asmachinelist_t List of asmachine_t structures, one per machine in the
queried array

asfreemachinelist() f

aspidlist_t List of PID values. asfreepidlist()

78

Chapter 4: Performance-Driven Programming in Array 3.0

Error Message Conventions

The functions of the Array Services library have a complicated convention for error
return codes. The reference pages related to this convention are listed in Table 4-7.

In general, each function sets a value in the global aserrorcode, which has type aserror_t
(not necessarily an int). An error code is a structured value with these parts:

• aserrno is a general error number similar to those declared in sys/errno.h.

• aserrwhy documents the cause of the error.

• aserrwhat documents the component that detected the error.

• aserrextra may give additional information.

Macro functions to extract these subfields from the global aserrorcode are provided.

Connecting to Array Services Daemons

The functions listed in Table 4-8 are used to open a connection between the node where
your program runs and an instance of arrayd in the same or another node.

Table 4-7 Error Message Functions

Function Operation

aserrorcode(3X) Discusses the error code conventions and some macro functions used to
extract subfields from an error code.

asmakeerror(3X) Constructs an error code value from its component parts.

asstrerror(3X) Returns a descriptive string for a given error code value.

asperror(3X) Prints a descriptive string, with a specified heading string, on stderr.

Table 4-8 Functions for Connections to Array Services Daemons

Function Operation

asopenserver(3X) Establishes a logical connection to arrayd in a specified node, returning
a token that represents that connection for use in other functions.

ascloseserver(3X) Close an arrayd connection created by asopenserver().

Array Services Library

79

The key function is asopenserver(). It takes a nodename as a character string (as a user
would give it in the -s option; see “Summary of Common Command Options” on
page 34), and optionally a socket number to override the default arrayd socket number.
This function opens a socket connection to the specified instance of arrayd. The returned
token (type asserver_t) stands for that connection and is passed to other functions.

The functions for getting and setting server options can change the configured options
shown in Table 4-9. To set these options is the programmatic equivalent of passing
command line options in an Array Services command (see “About Array Configuration”
on page 53 and “Summary of Common Command Options” on page 34).

asgetserveropt(3X) Return the local options currently in use by an instance of arrayd.

asdfltserveropt(3X) Return the default options in effect at an instance of arrayd.

assetserveropt(3X) Set new options for an instance of arrayd.

Table 4-9 Server Options Functions Can Query or Change

Constant Changeable? Meaning

AS_SO_TIMEOUT yes Timeout interval for any request to this server.

AS_SO_CTIMEOUT yes Timeout interval for connecting to this server.

AS_SO_FORWARD yes Whether or not Array Services requests should be
forwarded through the local arrayd, or sent directly
(the -F option).

AS_SO_LOCALKEY yes The local authentication key (the -Kl command option).

AS_SO_REMOTEKEY yes The remote authentication key (-Kr command option).

AS_SO_PORTNUM no In default options only, the default socket number.

AS_SO_HOSTNAME no The hostname for this connection.

Table 4-8 (continued) Functions for Connections to Array Services Daemons

Function Operation

80

Chapter 4: Performance-Driven Programming in Array 3.0

Database Interrogation

The functions summarized in Table 4-10 are used to interrogate the configuration
database used by arrayd in a specified node (see “About Array Configuration” on
page 53).

Using these functions you can extract any arrayname, nodename, or attribute that is
known to an arrayd instance you have opened.

Managing Array Service Handles

The functions summarized in Table 4-11 are used to create and interrogate ASH values.

Table 4-10 Functions for Interrogating the Configuration

Function Operation

asgetdfltarray(3X) Return the array name and all attributes strings for the default array
known to a specified server, in an asarray_t structure.

aslistarrays(3X) Return the names of all arrays, with their attribute strings, from a
specified server, as an asarraylist_t structure.

aslistmachines(3X) Return the names of all machines, with their attribute strings, from a
specified server, as an asmachinelist_t structure.

asgetattr(3X) Search for a particular attribute name in a list of attribute strings, and
return its value.

Table 4-11 Functions for Managing Array Service Handles

Function Operation

asallocash(3X) Allocate a new ASH value. The value is only created, it is not applied to
any process.

aspidsinash(3X) Returns a list of PID values associated with an ASH at a specified server,
as an aspidlist_t structure.

asashofpid(3X) Returns the ASH associated with a specified PID.

setash(2) Change the ASH of the calling process.

Array Services Library

81

The asallocash() function is like the command ainfo newash (see “About Array Session
Handles (ASH)” on page 41). Only a program with root privilege can use the setash()
system function to change the ASH of the current process. Unprivileged processes can
create new ASH values but cannot change their ASH.

The functions summarized in Table 4-12 are used to enumerate the active ASH values at
a specified node. In each case, the list of ASH values is returned in an asashlist_t structure.

Executing an array Command

The ascommand() function is the programmatic equivalent of the array command (see
“Operation of Array Commands” on page 59 and the array(1) reference page). This
command has many options and can be used to execute commands in three distinct
modes.

The command to be executed must be prepared in an ascmdreq_t structure, which
contains the following fields:

typedef struct ascmdreq {
char *array; /* Name of target array */
int flags; /* Option flags */
int numargs; /* Number of arguments */
char **args; /* Cmd arguments (ala argv) */
int ioflags; /* I/O flags for interactive commands */
char rsrvd[100]; /* reserved for expansion: init to 0’s */

} ascmdreq_t;

Table 4-12 Functions for ASH Interrogation

Function Operation

aslistashs(3X) Return active ASH values from one node or all nodes of a specified
Array via a specified server.

aslistashs_array(3X) Return active ASH values from an Array by name.

aslistashs_server(3X) Return active ASH values known to a specified server node.

aslistashs_local(3X) Return active ASH values in the local node.

asashisglobal(3X) Test to see if an ASH is global.

82

Chapter 4: Performance-Driven Programming in Array 3.0

Your program must prepare this structure in order to execute a command. The option
flags allow for the same controls as the command line options of array.

The result of the command is returned as an ascmdrsltlist_t structure, which is a vector of
ascmdrslt_t structures, one for each node at which the command was executed. Each
ascmdrslt_t contains the following fields:

typedef struct ascmdrslt {
char *machine; /* Name of responding machine */
ash_t ash; /* ASH of running command */
int flags; /* Result flags */
aserror_t error; /* Error code for this command */
int status; /* Exit status */
char *outfile; /* Name of output file */
int ioflags; /* I/O connections (see ascmdreq_t) */
int stdinfd; /* File descriptor for command’s stdin */
int stdoutfd; /* File descriptor for command’s stdout */
int stderrfd; /* File descriptor for command’s stderr */
int signalfd; /* File descriptor for sending signals */

} ascmdrslt_t;

The fields machine, ash, flags, error, and status reflect the result of the command execution
in that machine. The other fields depend on the mode of execution.

Normal Batch Execution

To execute a command in the normal way, waiting for it to complete and collecting its
output, you do not set either ASCMDREQ_NOWAIT or ASCMDREQ_INTERACTIVE in
the command option flags.

Control returns from ascommand() when the command is complete on all nodes. If the
ASCMDREQ_OUTPUT flag was specified, and if the command definition does not
specify a MERGE subentry (see “Summary of Command Definition Syntax” on page 59),
the outfile result field contains the name of a temporary file containing one node’s output
stream.

When the command is implemented with a MERGE subentry, there is only one output
file no matter how many nodes are invoked. In this case, the returned list contains only
one ascmdrslt_t structure. It contains the ASCMDRSLT_MERGED and
ASCMDREQ_OUTPUT flags, and the outfile result field contains the name of a
temporary file containing the merged output.

Array Services Library

83

Immediate Execution

When a command has no useful output and should execute concurrently with the calling
program, you specify the ASCMDREQ_NOWAIT option. In this case, output cannot be
collected because no program will be waiting to use it. Control returns as soon as the
command has been distributed. The result structures do not reflect the command’s result
but only the result of trying to start it.

Interactive Execution

You can start a command in such a way that your program has direct interaction with the
input and output streams of the command process in every node. When you do this, your
program can supply input and inspect output in near real time.

To establish interactive execution, specify ASCMDREQ_INTERACTIVE in the command
option flag. Also set one or more of the following flags in the ioflags field:

As with ASCMDREQ_NOWAIT, control returns as soon as the command has been
distributed. Each result structure contains file descriptors for the requested sockets for
the command process in that node.

Your program writes data into the stdinfd file descriptor of one node in order to send data
to the stdin stream in that node. Your program reads data from the stdoutfd file descriptor
to read one node’s output stream.

You will typically use either the select() or the poll() system function to learn when one
of the sockets is ready for use. You may choose to start one or more subprocesses using
fork() to handle I/O to the sockets of each node (see the select(2), poll(2) and sproc(2)
reference pages). (You may also use sproc() to make subprocesses, but keep in mind that
the libarray is not thread-safe, so it should only be used from one process in a share
group.)

ASCMDIO_STDIN Requests a socket attached to the command’s stdin.

ASCMDIO_STDOUT Requests a socket attached to the command’s stdout.

ASCMDIO_STDERR Requests a socket attached to the command’s stderr.

ASCMDIO_SIGNAL Requests a socket that can be used to deliver signals.

84

Chapter 4: Performance-Driven Programming in Array 3.0

Executing a User Command

The asrcmd() function allows a program to initiate any user command string on a
specified node. This provides a powerful facility for remote execution that does not
require root privilege, as the standard rcmd() function does (compare the asrcmd(3) and
rcmd(3) reference pages).

The asrcmd() function takes arguments specifying:

• The array node to use, as returned by asopenserver() (see “Connecting to Array
Services Daemons” on page 78).

• The user name to use on the remote node.

• The command line to be executed.

The returned value (as with rcmd()) is a socket that represents the standard input and
output streams of the executing command. Optionally, a separate socket for the standard
error stream can be obtained.

85

Appendix A

A. The RendAsunder Demo Program

This appendix describes the RendAsunder demonstration program that is supplied with
Array 3.0 software.

RendAsunder is an interactive parallel software volume renderer. During the process of
volume rendering, a three-dimensional array of data elements (each assigned a
corresponding color and transparency) is rendered to a two-dimensional image, from a
user-defined viewpoint.

A 375 MB volumetric data set from the National Library of Medicine’s Visible Human
Project is provided with RendAsunder. The data set consists of a 584 x 1878 x 341 element
volume of eight-bit samples of a cryosectioned human male.

Note: Use of this demonstration implies agreement with the terms of the contract
described in the file /usr/array/gifts/RendAsunder/Readme. Read this file before executing
the demonstration.

86

Appendix A: The RendAsunder Demo Program

Starting RendAsunder

Install the component RendAsunder.sw.base from the array CD on any node of the array.
Execute /usr/sbin/RendAsunder on that same node to begin execution of RendAsunder on
the entire array.

Setting Up the Configuration File

RendAsunder keeps a configuration file of its own to describe the array. When you
launch /usr/sbin/RendAsunder, it uses Array Services to generate a configuration file in
/usr/array/gifts/RendAsunder/config/curr.config. It then runs the executable
/usr/array/gifts/RendAsunder/start to launch the demo.

Once you have started the program this way, you can later use
/usr/array/gifts/RendAsunder/start directly to start without regenerating the configuration.

Setting the Graphics Display

The graphics appear as determined by the standard X Windows environment variable
DISPLAY. For best results, output should be displayed on a graphics device directly
attached to a node. DISPLAY should be set to select a graphics-equipped node, for
example

setenv DISPLAY bitblaster:0

If no node is graphics-equipped, you can display graphics on a remote host, although at
some cost in performance. To do so, set DISPLAY to select the remote host.

The Graphics Window

87

The Graphics Window

When started, RendAsunder opens a control panel and a graphics window, as depicted in
Figure A-1.

Figure A-1 RendAsunder Graphics Windows

The Graphics Window contains a rendering of the data from the current viewpoint,
overlaid by rectangles that delineate the areas of the screen rendered by each processor.
Different colored lines delineate areas that are rendered by different nodes. During
execution, RendAsunder dynamically adjusts the regions of the image rendered by each
node and processor to balance the workload.

88

Appendix A: The RendAsunder Demo Program

The Controls Window

Figure A-2 shows the Controls menu.

Figure A-2 RendAsunder Controls Menu

Controls Window Menus

The Controls Window contains the following menus:

• File menu

– Home View option, which takes you back to the default view, in case you get
lost

The Controls Window

89

– five Save and Restore options, which allow you to save and restore five
viewpoints

The viewpoints are not saved between sessions. If you restore a particular
viewpoint before you have saved to it, RendAsunder displays one of the five
default viewpoints.

You may find it interesting to look at these five default positions before you
save over them. If you have saved over them and want to reset them to the
defaults, use the Reset Default Stored Positions option.

– Record Movie and Play Movie options, which allow you to record a sequence of
viewpoints, and play them back.

– Quit option, the best way to exit cleanly

• Class menu, which lets you select classes of data to be displayed by changing the
color map in use. Select All Classes to render all data visibly. The other Class
settings omit one or more types of data to produce different displays.

• Help menu, which displays information about the program (later versions will
contain more extensive help)

Controls Window Sliders

The Controls Window contains a number of sliders that let you navigate around the data.
Click on a slider to highlight it, and then use the left and right arrow keys to move the
slider.

The sliders provide a convenient way to get smooth animated motion. Select one slider,
scroll it with repeated key taps to the position you want, and then select another slider.
For big jumps, drag the slider with the mouse.

Refresh the display by clicking on the currently highlighted slider.

The demo uses a geographical metaphor to navigate around the data. From any position
you choose, you are always looking towards a center focus point in the middle of the
data.

Latitude and Longitude

These two sliders allow you to move across lines of latitude in the north and south
directions until you reach the poles, or move east and west across lines of longitude.

90

Appendix A: The RendAsunder Demo Program

These controls allow you to reach any point on the surface of a sphere; recall that from
the surface of this sphere you are always looking in the direction of the center focus point.

Elevation of Center Point

The center focus point is initially in the middle of the body. Use the elevation of center
point control to raise and lower the center focus point.

For example, if you raise it to about 2.8, you will be looking at the head from the surface
of a sphere centered about the head. If you lower it to about -3.0, you are centered about
the feet. Any movement about the sphere orbits around this center point.

Radius From Center Point and Near Clipping Plane

Use the radius from center point control to zoom in and out from the center focus point.
This control is often used in conjunction with the Near Clipping Plane control, which
determines the distance of the near clipping plane from your eye.

If the value of the near clipping plane is much larger than the radius from center point,
you might not be able to see anything because the entire volume will be clipped.

Opacity

Use this control to vary the opacity of the entire dataset. For low-opacity values, this
control yields an X-ray effect.

For More Information

To learn more about RendAsunder, see the sources listed in X.

Table A-1 Information Sources

Topic Book, Reference Page, or URL Book Number

RendAsunder http://www.scp.caltech.edu:80/~mep/work.html

RendAsunder http://www.nlm.nih.gov/research/visible/visible_human
.html

91

Appendix B

B. Array Documentation Quick Reference

This appendix lists all the information sources cited in the preceding chapters for
convenient reference. The rows of the table are sorted alphabetically by the first column.

Table B-1 Information Sources

Topic Book or URL Book Number

Ada95 (GNU Ada
Translator, GNAT)

GNAT User’s Guide 007-2624-002

ainfo command ainfo(1) and “Interrogating the Array” on page 37

Applied Parallel
Research

http://www.infomall.org/apri

array command use: array(1); configuration: arrayd.conf(4); “Using
Array Services Commands” on page 33

Array Services Chapter 2, “Using an Array”

array_services(5)

Array Services simple
configurator

arrayconfig(1m)

Array Services daemon
overview

arrayd(1m)

Array Services
Overview

array_services(5)

arshell command arshell(1) and “Using arshell” on page 42

Assembly Language MIPSPro Assembly Language Programmer’s Guide 007-2418-002

Automatic
parallelization of C and
Fortran code

MIPSpro Power Fortran 77 Programmer’s Guide

MIPSpro Power Fortran 90 Programmer’s Guide

IRIS Power C User’s Guide

007-2363-001

007-2760-001

007-0702-030

aview command aview(1) and “Browsing With ArrayView” on page 40

92

Appendix B: Array Documentation Quick Reference

C language C Language Reference Manual 007-0701-090

C++ language C++ Programmers Guide 007-0704-090

Center for Research in
Parallel Computation

http://www.crpc.rice.edu/

CHALLENGE and
CHALLENGE 10000

POWER CHALLENGE XL Rackmount Owner’s Guide 007-1735-040

CHALLENGEcomplib
overview

http://www.sgi.com/Products/Challengecomplib.html

IRIX Checkpoint and
Restart (CPR)

IRIX Checkpoint and Restart Operation Guide 007-3236-xxx

Codine http://www.instrumental.com

Configuration file
format

arrayd.conf(4), /usr/lib/array/arrayd.conf.template

dbx, prof, pixie dbx User’s Guide

MIPS Compiling and Performance Tuning Guide

007-0906-100

007-2479-001

Debugger Developer Magic: Debugger User’s Guide 007-2579-002

Developer Magic Developer Magic: ProDev WorkShop Overview

http://www.sgi.com/Products/WorkShop.html

007-2582-003

Developer Magic
overviews

Developer Magic: ProDev WorkShop Overview

http://www.sgi.com/Products/WorkShop.html

007-2582-003

Directory of WWW
software sources

http://www.yahoo.com/Computers_and_Internet/Softwa
re/Mathematics/

Extreme Visualization
Console

POWER CHALLENGE XL Rackmount Owner’s Guide 007-1735-040

High Performance
Fortran forum

http://www.crpc.rice.edu/HPFF/home.html

High Performance
Fortran texbook

The High Performance Fortran Handbook, Koelbel, Loveman,
Schreiber, Steele Jr., and Zosel; MIT Press, 1994
(http://www-mitpress.mit.edu/)

ISBN
0-262-61094-9

Table B-1 (continued) Information Sources

Topic Book or URL Book Number

93

HIPPI Crossbar Switch EPS-1 User’s Guide

http://www.esscom.com

09-9010

HIPPI interface IRIS HIPPI Administrator’s Guide

IRIS HIPPI API Programmer’s Guide

007-2229-003

007-2227-002

HPPC software
collection

http://www.netlib.org/nhse/home.html

HPCC Vendors “Mall” http://www.npac.syr.edu/infomall/

Index to math and
statistical software

http://gams.nist.gov/

IRISconsole IRISconsole Administrator’s Guide

http://www.sgi.com/Products/hardware/challenge/IRIS
console.html

007-2872-001

IRISconsole hardware IRISconsole Installation Guide

Indy Workstation Owner’s Guide

007-2839-001

007-9804-040

IRIX 6.2 Data Sheet http://www.sgi.com/Products/software/IRIX6.2/IRIX62
DS.html

IRIX 6.2 Specifications http://www.sgi.com/Products/software/IRIX6.2/IRIX62s
pecs.html

IRIX IPC facilities Topics In IRIX Programming 007-2478-003

HIPPI Interconnect IRIS HIPPI API Programmer’s Guide 007-2229-003

Listing and Monitoring
Processes

ps(1), top(1), and gr_top(1); gr_osview(1),
gmemusage(1)

Load Sharing Facility http://www.platform.com

Logging in to a node Chapter 2, “Using an Array”

Memory hierarchies;
locality of reference

Computer Architecture: A Quantitative Approach ISBN
1-55860-069-8

MIPSpro compiler
features and use

MIPS Compiling and Performance Tuning Guide 007-2479-001

Table B-1 (continued) Information Sources

Topic Book or URL Book Number

94

Appendix B: Array Documentation Quick Reference

MIPSpro Fortran 77 MIPSpro Fortran 77 Programmer’s Guide

MIPSpro Fortran 77 Language Reference Manual

007-2361-002

007-2362-002

MIPSpro Fortran 90 MIPSpro Fortran 90 Programmer’s Guide 007-2761-001

Models of Parallel
Computation

Topics In IRIX Programming 007-2478-003

XMPI and XPVM MPI and PVM User’s Guide

mpirun(1)
007-3286-xxx

Message Passing
Toolkit (MPT) in
general

http://www.cray.com/PUBLIC/product-info/sw/

MPI Overview mpi(5)

MPI References Using MPI, Gropp, Lusk, and Skjellum, MIT Press 1995
(http://www-mitpress.mit.edu/)

Using MPI (in IRIX Insight library)

MPI, The Complete Reference, Snir, Otto, Huss-Lederman,
Walker, and Dongarra, MIT Press 1995

ISBN
0-262-69184-1007-
2855-001

ISBN
0-262-57104-8

MPI Standard http://www.mcs.anl.gov/mpi

MPI and PVM jobs MPI and PVM User’s Guide 007-3286-001

newsess command newsess(1)

NetVisualyzer NetVisualyzer User’s Guide 007-0812-040

Network Queuing
Environment (NQE)
technical papers

http://wwwsdiv.cray.com/~nqe/nqe_external/index.html
 (pointers to technical papers)

http://www.cray.com/PUBLIC/product-info/sw/nqe/nq
e30.html (illustrated overview)

NQE User’s Guide

NQE Administrator’s Guide

SG-2148 3.2

SG-2150 3.2

Numerical software http://www.netlib.org/

Origin2000 and
Origin200

http://www.sgi.com/Products/hardware/servers/index.
html

Table B-1 (continued) Information Sources

Topic Book or URL Book Number

95

Onyx2 and
RealityMonster

http://www.sgi.com/Products/hardware/graphics
/products/index.html

Parallel Programming
Models Compared

Topics In IRIX Programming 007-2478-003

Pascal Pascal Programming Guide 007-0740-030

PerfAcct http://www.instrumental.com

Performance Analysis Developer Magic: Performance Analyzer User’s Guide 007-2581-002

Performance Analysis Developer Magic: Static Analyzer User’s Guide 007-2580-002

Performance Analysis
(command-line tools)

MIPSpro Compiling and Performance Tuning Guide 007-2360-003

Performance Co-Pilot The Performance Co-Pilot User’s and Administrator’s Guide

Performance Co-Pilot for Informix-7 User’s Guide

007-2614-001

007-3007-001

Performance Co-Pilot
data sheet

http://www.sgi.com/Products/hardware/challenge/CoP
ilot/CoPilot.html

Performance Tuning on
Origin2000 and Onyx2

Performance Tuning Optimization for Origin2000 and Onyx2,
online only at
http://www.sgi.com/techpubs/lib/makepage.cgi?007-343
0-001

007-3430-xxx

Portland Group, Inc. http://www.pgroup.com

POWER CHALLENGE POWER CHALLENGE XL Rackmount Owner’s Guide 007-1735-040

POWER Onyx POWER Onyx and Onyx Rackmount Owner’s Guide 007-1736-060

Process ID and process
group

intro(2) — scan to the section headed “Definitions”

prof, pixie dbx User’s Guide

MIPS Compiling and Performance Tuning Guide

007-0906-100

007-2479-001

PVM Home Page http://www.epm.ornl.gov/pvm/pvm_home.html

PVM Overview pvm(1PVM)

PVM to MPI Topics In IRIX Programming 007-2478-003

Table B-1 (continued) Information Sources

Topic Book or URL Book Number

96

Appendix B: Array Documentation Quick Reference

PVM Reference PVM: Parallel Virtual Machine, Geist, Beguelin, Dongarra,
Weicheng Jiang, Manchek, and Sunderam, MIT Press 1994

http://www.netlib.org/pvm3/book/pvm-book.html

ISBN
0-262-57108-0

PVM and MPI jobs MPI and PVM User’s Guide 007-3286-001

REACT/pro and
real-time programming

http://www.sgi.com/real-time/

RealityEngine2 and
InfiniteReality

http://www.sgi.com/Products/hardware/Onyx/Tech/

Remote login rlogin(1)

RendAsunder http://www.scp.caltech.edu:80/~mep/work.html

RendAsunder http://www.nlm.nih.gov/research/visible/visible_human
.html

Running programs at
low priority

nice(1), batch(1)

Running programs at a
scheduled time

at(1)

Setting environment
variables

environ(5), env(1)

SGI Servers http://www.sgi.com/Products/index.html?hardware

Shared-memory
communication

Topics in IRIX Programming (chapter 1 and 2) 007-2478-003

Software pipelining MIPSpro 64-Bit Porting and Transition Guide 007-2391-002

Software pipelining MIPSpro Compiling and Performance Tuning Guide 007-2360-003

Terminating a process kill(1)

Visualization tools for
physics

http://www.lassp.cornell.edu/LASSPTools/LASSPTools.h
tml

Volume Renderer and
other tools

http://www.arc.umn.edu/gvl-software/gvl-software.html

Table B-1 (continued) Information Sources

Topic Book or URL Book Number

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3058-003.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

