
Software Packager
User’s Guide

Document Number 007-2503-003

Software Packager User’s Guide
Document Number 007-2503-003

CONTRIBUTORS

Written by Martha Levine and Terri Wanke
Production by Ruth Christian
Engineering contributions by Kirk Erickson and David Fenstemaker, and Richard

Wright
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© Copyright 1996, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and IRIS are registered trademarks, and IRIS and Indigo Magic are
trademarks of Silicon Graphics, Inc.

iii

Contents

List of Figures vii

List of Tables ix

About This Guide xi
What This Guide Contains xi
What You Should Know Before Reading This Guide xii
Font Conventions in this Guide xii

1. Packaging Software for Installation: An Overview 3
About swpkg 3
Running swpkg 4
Using the swpkg Worksheets 4
Using the swpkg Menus 5

Using the File Menu 5
Using the View Menu 7
Using the Help Menu 7

Using the Worksheet Selection Tabs 8
Using the Message Area 8

2. The swpkg Tutorial 13
Step One: Setting Up the Example Application Used by This Tutorial 13
Step Two: Running swpkg 14
Step Three: Creating a Product Hierarchy 16
Step Four: Tagging the Files 18
Step Five: Setting Permissions and Destinations 23
Step Six: Adding Attributes 27
Step Seven: Building the Product 31
Step Eight: Installing and Running the Product 33

iv

Contents

3. Creating a Product Hierarchy 37
Creating a Product Hierarchy: Before You Begin 37

Prerequisites 37
About Product Hierarchies 38
What’s a Spec File? 40

Creating a Product Hierarchy: The Basic Steps 41
Using the Create Product Hierarchy Worksheet 42

Creating a Product Structure 44
Entering Product Specifications 47
Entering Image Specifications 50
Entering Subsystem Specifications 55
Editing Mapping Expressions Directly 64
The Assign Arrow Button 64

4. Tagging the Files 69
Tagging the Files: Before You Begin 69

Prerequisites 69
What’s an IDB File? 69
What’s a Tag? 70

Tagging the Files: The Basic Steps 71
Using the Tag Files Worksheet 72

Selecting Product Files Using the File Browser 73
Accessing Your IDB File Using the IDB File Viewer 75
Selecting Tags Using the Tags Browser 78

5. Editing Permissions and Destinations 83
Editing Permissions and Destinations: Before You Begin 83

Prerequisites 83
What Are Permissions and Destinations? 84

Editing Permissions and Destinations: The Basic Steps 84
Using the Edit Permissions & Destinations Worksheet 85

Setting Source Tree Roots 86
Setting Permissions and Destination Directories 88
Resetting All Text Fields to the Default Values 91

Contents

v

6. Adding Attributes 95
Adding Attributes: Before You Begin 95

Prerequisites 95
What Are Attributes? 96

Adding Installation Attributes: The Basic Steps 96
Using the Add Attributes Worksheet 97

Selecting Software Installation Attributes 98
Selecting Hardware Installation Attributes 105
Assigning the Selected Attributes 108

7. Building the Product 111
Building the Product: Before You Begin 111

Prerequisites 111
How Does swpkg Build a Product? 112

Building the Product: The Basic Steps 112
Using the Build Product Worksheet 113

The Spec File Path Label 115
Setting Tree Root and the Distribution Directory 115
Selecting Build Options 116
Running a Test Build 118
Building the Product 118

After the First Build 118
Building the Product After the First swpkg Build 119
Combining Existing Products Into a Single Product 121
Incorporating the Help Subsystem into a Product 123
Breaking an Existing Product Into Two Products 123

8. Creating a Patch Product 127
Creating a Patch Product: The Basic Steps 127

Patch Product Requirements and Concepts 128

A. Writing Mapping Expressions 133
About Mapping Expressions 133
Variables and Data Types 134
Operators 134

vi

Contents

Built in Variables 135
Built-In Functions 136
Statements 137
Example 137

B. Troubleshooting 141
Checklist of Do’s and Don’ts 141
Error Messages 142
Other Problems 142

Index 145

vii

List of Figures

Figure 1-1 The swpkg File Menu 5
Figure 1-2 The swpkg View Menu 7
Figure 1-3 The swpkg Help Menu 7
Figure 1-4 The Worksheet Selection Tabs 8
Figure 1-5 The Message Area 9
Figure 2-1 The Create Product Hierarchy Worksheet 15
Figure 2-2 The Completed Product Hierarchy Worksheet 17
Figure 2-3 The Tag Files Worksheet 19
Figure 2-4 The Completed Tag Files Worksheet 22
Figure 2-5 The Edit Permissions & Destinations Worksheet 24
Figure 2-6 The Completed Worksheet for the Finance.ad File 26
Figure 2-7 The Add Attributes Worksheet 28
Figure 2-8 The Completed Add Attributes Worksheet 30
Figure 2-9 The Build Product Worksheet 31
Figure 3-1 Example Product Hierarchy 39
Figure 3-2 Example Product Hierarchy Names 40
Figure 3-3 The Create Product Hierarchy Worksheet 43
Figure 3-4 The Product Hierarchy Graph 44
Figure 3-5 Graph Display Controls 46
Figure 3-6 The Product Specification Sheet 48
Figure 3-7 The Image Specification Sheet 51
Figure 3-8 The Subsystem Specification Sheet 55
Figure 4-1 The Tag Files Worksheet 72
Figure 4-2 The File Browser 73
Figure 4-3 The IDB File Viewer 76
Figure 4-4 The Tags Browser 79
Figure 5-1 The Edit Permissions & Destinations Worksheet 86

viii

Figure 5-2 The Root Specification Sheet 87
Figure 5-3 The Permissions and Destinations Sheet 88
Figure 6-1 The Add Attributes Worksheet 97
Figure 6-2 The Attributes Specification Sheet: Software Attributes 98
Figure 6-3 The Attributes Specification Sheet: Hardware

Attributes 106
Figure 7-1 The Build Product Worksheet 114

ix

List of Tables

Table 2-1 Permissions and Destinations for Remaining Files 27
Table 6-1 Configuration Types 99

xi

About This Guide

This book describes how to use Software Packager (swpkg), a graphical tool
for packaging software for installation on Silicon Graphics® workstations.
Products packaged with Software Packager can be installed with Software
Manager (swmgr), an Indigo Magic™ Desktop utility for installing software.

What This Guide Contains

This book contains the following chapters:

Chapter 1, “Packaging Software for Installation: An Overview,” provides an
overview to Software Packager.

Chapter 2, “The swpkg Tutorial,” contains a brief tutorial of packaging an
application using Software Packager.

Chapter 3, “Creating a Product Hierarchy,” describes how to create a
product hierarchy.

Chapter 4, “Tagging the Files,” describes how to tag files for inclusion in the
product and assign the files to subsystems in your product.

Chapter 5, “Editing Permissions and Destinations,” describes how to set the
destination, names, and permissions of the files installed.

Chapter 6, “Adding Attributes,” describes how to set attributes for the files
installed, including how to execute commands before and after installation,
how to modify configuration files, and how to specify which files to install
on different hardware configurations.

xii

About This Guide

Chapter 7, “Building the Product,” shows how to build the installable
product. It also discusses how to change a product that you’ve built, how to
merge two or more existing products into a single product, and how to
divide an existing product into two or more separate products.

Chapter 8, “Creating a Patch Product,” shows how to package a patch
product.

Appendix A, “Writing Mapping Expressions,” describes how to create
optional mapping expression for complex cases of assigning files to
subsystems.

Appendix B, “Troubleshooting,” provides tips for troubleshooting common
Software Packager problems.

What You Should Know Before Reading This Guide

This guide assumes that you are familiar with installing software using
Software Manager. For more information on Software Manager and
software installation, see the Personal System Administration Guide and the
Software Installation Administrator’s Guide.

Silicon Graphics provides both these manuals online. You can view them
from the IRIS InSight Viewer. To use the IRIS InSight Viewer, select “On-line
Books” from the Help toolchest.

Font Conventions in this Guide

These style conventions are used in this guide:

• Boldfaced text indicates that a term is an option flag, a data type, a
keyword, a function, or an X resource.

• Italics indicates that a term is a file name, a button name, a variable, an
IRIX command, a document title, or an image or subsystem name.

• “Quoted text” indicates menu items.

Font Conventions in this Guide

xiii

• Screen type is used for code examples and screen displays.

• Bold screen type is used for user input and nonprinting keyboard
keys.

• Regular text is used for menu and window names.

xiv

About This Guide

Chapter 1

This chapter provides an overview to
using Software Packager to create
installable products. It introduces
basic concepts and terminology.

Packaging Software for Installation:
An Overview

3

Chapter 1

1. Packaging Software for Installation: An
Overview

This chapter provides a brief overview of Software Packager (swpkg), a
graphical tool for packaging software for installation on Silicon Graphics
workstations. It contains these sections:

• “About swpkg” on page 3 provides an overview of swpkg and the
Silicon Graphics installation process.

• “Running swpkg” on page 4 describes how to run swpkg.

• “Using the swpkg Worksheets” on page 4 gives an overview of the
swpkg worksheets.

• “Using the swpkg Menus” on page 5 describes the swpkg menus.

• “Using the Worksheet Selection Tabs” on page 8 describes how to select
swpkg worksheets.

• “Using the Message Area” on page 8 describes the use of the swpkg
message area.

Note: To package your application for installation, you must install the
inst_dev product, which contains swpkg, related utilities, and reference pages.

About swpkg

The swpkg application allows you to quickly and easily package your
application for Software Manager (swmgr(1M)), the Silicon Graphics
software installation program. swpkg takes your product’s files and, using
the additional information that you enter into the swpkg worksheets, creates
compressed software images, readable by Software Manager. swpkg also
creates the two other files required by Software Manager, called the spec and
IDB files. (spec and IDB files are the files in which swpkg stores all the
information about your product installation that you enter into the swpkg

4

Chapter 1: Packaging Software for Installation: An Overview

worksheets. For a definition of spec files, see “What’s a Spec File?” on
page 40. For a definition of IDB files, see “What’s an IDB File?” on page 69).

Running swpkg

Invoke swpkg by typing:

swpkg

Using the swpkg Worksheets

To use swpkg, you enter information about your product in a series of
worksheets. The swpkg window always displays one of the five available
worksheets. To see a worksheet other than the one currently displayed, use
the Worksheet Selection tabs, discussed in “Using the Worksheet Selection
Tabs” on page 8.

Here are the five swpkg worksheets, listed in the order in which you should
fill them out:

Create Product Hierarchy
“Creating a Product Hierarchy: The Basic Steps” on page 41
lists the steps for filling out this worksheet.

Tag Files “Tagging the Files: The Basic Steps” on page 71 lists the
steps for filling out this worksheet.

Edit Permissions and Destinations
“Editing Permissions and Destinations: The Basic Steps” on
page 84 lists the steps for filling out this worksheet.

Add Attributes “Adding Installation Attributes: The Basic Steps” on
page 96 lists the steps for filling out this worksheet.

Build Product “Building the Product: The Basic Steps” on page 112 lists the
steps for filling out this worksheet.

Work through the worksheets in order (beginning with the Create Product
Hierarchy worksheet, which is the worksheet that’s automatically selected
when you start up swpkg). Fill in all necessary information before moving to
the next worksheet. (It’s necessary to work through the worksheets in order

Using the swpkg Menus

5

because the later worksheets depend on information entered in the earlier
worksheets.)

If you’re new to packaging for Software Manager, you might want to read
Chapter 2, “The swpkg Tutorial,” before you try to use swpkg to package
your own application.

Using the swpkg Menus

swpkg has three pull-down menus located on the menu bar, the horizontal
bar at the top of the swpkg window.

The three pull-down menus are:

• The File Menu, which allows you to clear, open, save, and append spec
and IDB files or to quit swpkg

• The View Menu, which allows you to hide or show the Message Area

• The Help Menu, which provides your main entry point into swpkg’s
online help

The rest of this section explains each of the three menus in more detail.

Using the File Menu

The File pull-down menu, shown in Figure 1-1, provides menu items that
allow you to clear, open, save, and append spec and IDB files or to quit
swpkg. (spec and IDB files are the files in which swpkg stores all the
information about your product installation that you enter into the swpkg
worksheets.)

Each item on the File pull-down menu (except “Quit”) has a rollover menu
that allows you to choose whether you want the selected action performed
on the spec file, the IDB file, or both. All of the File menu items log a message
in the Message Area (located below the Worksheet Selection tabs).

Note: When creating or renaming spec and IDB files, make sure that your
spec filenames end with the .spec suffix and IDB filenames end with the .idb
suffix.

Figure 1-1 The swpkg File
Menu

6

Chapter 1: Packaging Software for Installation: An Overview

Here’s a brief description of each of the items on the File pull-down menu:

• Use the “New” menu item to clear the spec and or/IDB file(s) for the
current swpkg session of all entries. This overwrites any existing spec
and/or IDB files for the current session. (swpkg posts a dialog asking if
you want to abandon the current spec and IDB files before opening new
ones. If you click the Cancel button, swpkg aborts creating a new spec
and/or IDB file(s).)

• Use the “Open” menu item to open an existing spec and/or IDB file
and load the information from the opened file(s) into the current swpkg
session. This overwrites any existing spec and/or IDB files for the
current session. (swpkg posts a dialog asking if you want to abandon the
current spec and IDB files before opening new ones. If you click the
Cancel button, swpkg aborts creating a new spec and/or IDB file(s).)

• Use the “Append” menu item to append an existing spec and/or IDB
file onto the corresponding file(s) for the current swpkg session.

• Use the “Save” menu item to save the current spec file, IDB file, or both.
These files contain the information you’ve entered into swpkg’s
worksheets during the current session. If you haven’t yet opened or
saved the spec and/or IDB file(s) for the current product, swpkg asks
you to specify the filename(s).

• Use the “Save As” menu item to save all the information you’ve entered
into the current swpkg session. (This information is saved in the spec
and IDB files.) When you select the “Save As” menu item, brings up a
file selection box for specifying an arbitrary path and filename for your
files.

• Use the “Create Patch...” menu item to begin the process of creating a
patch product. When you select this item, a dialog opens in which you
name your patch product and select the files you want to include in the
product. Before using this item, you need to “Open” the spec and IDB
files for the original product. See Chapter 8, “Creating a Patch
Product.”

• Use the “Quit” menu item to quit swpkg.

Using the swpkg Menus

7

Using the View Menu

The View pull-down menu, shown in Figure 1-2, contains “Show Messages”
and “Show SGI Board Names.” Here’s a brief description:

• Check the “Show Messages” menu item when you want the Message
Area (shown in Figure 1-5) is displayed. When an important message is
logged, the Message Area appears automatically.

• Check the “Show SGI Board Names” when you want the board names
displayed in the Add Attributes worksheet.

Using the Help Menu

The Help pull-down menu, shown in Figure 1-3, provides easy access to
swpkg’s online help.

Figure 1-3 The swpkg Help Menu

To display help:

• Select the “Click for Help” menu item to get help on a specific area of a
worksheet. When you select “Click for Help” the cursor turns into a
question mark. Position this question-mark cursor over the area that
you want information about, then click the left mouse button. A help

Figure 1-2 The swpkg View
Menu

8

Chapter 1: Packaging Software for Installation: An Overview

card appears. If you prefer, you can get the question-mark cursor by
holding down the <Shift> key and pressing the <F1> key.

• Select the “Overview” menu item to see a brief overview of swpkg.

• Select the “Tutorial” menu item to see the swpkg tutorial.

• Select any of the listed help topics for help on that topic.

• Select the “Index” menu item, to see a list of available help cards.

• Select the “Keys and Shortcuts” menu item, to see a list of swpkg’s keys
and shortcuts.

• Select the “Product Info” menu item to see a brief product information
message.

Using the Worksheet Selection Tabs

Use the five Worksheet Selection tabs, shown in Figure 1-4, to work through
swpkg’s five main worksheets. You can view only one worksheet at a time.
Access each worksheet by clicking the left mouse button on the tab
associated with that worksheet.

Figure 1-4 The Worksheet Selection Tabs

You can tell which worksheet you’re in by looking at which tab is selected.
In Figure 1-4, the Create Product Hierarchy tab is selected.

Using the Message Area

The Message Area, shown in Figure 1-5, is a scrollable text area containing
messages from swpkg. In particular, the Message Area shows you error
messages and provides feedback during the build process.

Using the Message Area

9

Figure 1-5 The Message Area

If you prefer not to see this window, use the View pull-down menu on the
menu bar to hide the Message Area.

Chapter 2

After going through this brief
tutorial, you should understand the
basic features of swpkg and how to
use it to create an installable product.

The swpkg Tutorial

13

Chapter 2

2. The swpkg Tutorial

This chapter provides a brief (ten-minute) tutorial that takes you through the
basic steps for installing a simple product. When you’ve finished, you’ll
have packaged an example application for installation. It’s best to work
along with the tutorial, completing the steps on your own workstation as
you read through them.

Note: swpkg is a versatile tool that allows you a great deal of freedom in
creating installable files. Many of swpkg’s features are not required to
package an average product for installation. Rather than present all the
features, this tutorial focuses on the basics needed to package an application.
Don’t worry that we don’t use some of the buttons and text entry fields that
appear in the worksheets. swpkg’s more advanced features are discussed in
the remaining chapters of this book.

Step One: Setting Up the Example Application Used by This Tutorial

Before you begin this tutorial, make sure you have the example application
on your system. The example application is a loan calculator called finance.
Given a term in years, the principle loan amount and interest rate, finance
computes the monthly payment.

The files you use for this sample application are part of the swpkg product
and include:

• Finance.ad—Application defaults file.

• Imakefile—System independent imake description file.

• Finance.ftr—File typing rules file.

• README.finance—File describing the finance tutorial.

• finance.man—Manual page (nroff source).

• main.c—Calculator source program.

14

Chapter 2: The swpkg Tutorial

Before you begin this tutorial, set up the finance application by following
these steps:

1. Become superuser:

% su

2. Change to the directory containing the finance files:

cd /usr/share/src/swpkg

3. To create the Makefile, enter:

xmkmf

4. To compile the finance application, enter:

make

Step Two: Running swpkg

To run swpkg, enter:

swpkg

A small dialog box appears with a copyright notice, requesting that you wait
while the system initializes. Then swpkg appears.

When swpkg first appears, it displays the first of its five main worksheets: the
Create Product Hierarchy worksheet, shown in Figure 2-1.

Step Two: Running swpkg

15

Figure 2-1 The Create Product Hierarchy Worksheet

16

Chapter 2: The swpkg Tutorial

Step Three: Creating a Product Hierarchy

The Create Product Hierarchy worksheet helps you structure your product
into three levels: product, images, and subsystems. This is called creating a
product hierarchy. swpkg stores this product structure information in the spec
file. (If you want more information now about spec files and product
hierarchies, see “What’s a Spec File?” on page 40, and “About Product
Hierarchies” on page 38.)

For our example program, finance, we’re just going to use the simplest
product hierarchy: a software image and a reference page image with one
subsystem each. We enter this information into the Create Product Hierarchy
worksheet and tell swpkg to save it in the spec file.

To create the product hierarchy, follow these steps:

1. In the text field labeled Product Name, replace “my_product” with
“finance.” (See “Setting the Product Name” on page 48 for more
detailed instructions on setting product names.)

2. In the text field labeled Product Description, replace “My Product
Description” with “Mortgage Calculation Program.” (See “Setting the
Product Description” on page 49 for more detailed information on
setting product descriptions.)

Note: Remember to enclose the description in quotes. You can use either
single or double quotes.

3. Click the Assign arrow button.

If you neglect to click the Assign arrow button, swpkg ignores your
changes. After you click the Assign arrow button, the name of the node
originally labeled “my_product” reads “finance.”

That’s it. You’ve created a product structure for your product. Your
completed worksheet should look like the one shown in Figure 2-2.

Step Three: Creating a Product Hierarchy

17

Figure 2-2 The Completed Product Hierarchy Worksheet

Note: The template in the Product Hierarchy graph follows Silicon Graphics
conventions for structuring and naming a product. Silicon Graphics strongly
recommends that you follow these conventions. Users are presented with

18

Chapter 2: The swpkg Tutorial

this structure when they use Software Manager. The descriptions you
provide for your product, images, and subsystems are the first information
about your product that users see.

Step Four: Tagging the Files

The next step is tagging the files, so that swpkg knows which files belong in
which subsystem. To keep track of this information, swpkg stores this
information in an installation database file (IDB file).

swpkg uses the IDB file to keep track of all sorts of information about the files
that comprise your product, such as which files are included in which
subsystem, where the files are located, and where Software Manager should
put the files when it installs them. (IDB files can include other information
too—for a more detailed explanation of IDB files, see “What’s an IDB File?”
on page 69). For now, we’ll use the Tag Files worksheet to create a simplest-
case IDB file.

First, switch to the Tag Files worksheet by clicking the tab labeled “Tag Files”
(the second of the five Worksheet Selection Tabs at the top of the worksheet).
When you do this, the Create Product Hierarchy worksheet is replaced by
the Tag Files worksheet, shown in Figure 2-3.

Step Four: Tagging the Files

19

Figure 2-3 The Tag Files Worksheet

20

Chapter 2: The swpkg Tutorial

To create a simple IDB file for the Finance product, follow these steps:

1. In the field labeled File Browser, replace the text in the text:

/usr/share/src/swpkg

2. Press the <Enter> key. The contents of the /usr/share/src/swpkg directory
appear in the File Browser.

3. Select the files named finance, Finance.ad, finance.ftr, and finance.man.

■ Using the scroll bar, scroll through the list of files until you find the
finance.

■ Click the left mouse button on finance.

The line listing finance is highlighted in black.

■ Hold down the <Ctrl> key and click the left mouse button on
Finance.ad, finance.ftr, and finance.man.

4. Click the Add arrow button (located just to the right of the File
Browser). These lines appear in the IDB File Viewer:

finance.sw.base usr/share/src/swpkg/Finance.ad
finance.sw.base usr/share/src/swpkg/finance
finance.sw.base usr/share/src/swpkg/finance.ftr
finance.sw.base usr/share/src/swpkg/finance.man

(Don’t worry about the lack of the slash before the usr directory. swpkg
strips the source root from the pathname and uses the root that you
specify in the Source Tree Root text field in the Edit Permissions &
Destinations worksheet. The default source root is slash [/].)

Notice that the lines listing the finance, Finance.ad, finance.ftr, and
finance.man files now appear in bold in the File Browser. Files that are
listed in the IDB File Viewer appear in bold in the File Browser so that
they’re easier to spot.

Notice also that swpkg has assigned all four of these files to the
finance.sw.base subsystem. This is because, when we added the files to
the IDB File Viewer, the tag finance.sw.base was selected in the Tags
Browser. The finance, finance.ftr, and Finance.ad files do belong in the
finance.sw.base subsystem, but we’ll need to switch the finance.man file to
the finance.man.manpages subsystem.

5. Click the left mouse button on the entry for finance.man in the IDB files
list.

Step Four: Tagging the Files

21

6. In the Tags Browser, click the left mouse button on the
finance.man.manpages tag. The line listing finance.man.manpages is
highlighted in black.

7. Click the left mouse button on the Assign arrow button.

The IDB File Viewer now shows this line for the finance.man file:

finance.man.manpages usr/share/src/swpkg/finance.man

Now the finance.man file is assigned to the finance.man.manpages
subsystem.

Now swpkg knows which files belong in which subsystems. Your completed
Tag Files worksheet should look like the one shown in Figure 2-4.

22

Chapter 2: The swpkg Tutorial

Figure 2-4 The Completed Tag Files Worksheet

Step Five: Setting Permissions and Destinations

23

Step Five: Setting Permissions and Destinations

swpkg now knows which files are in which subsystems and where to find
each file, but it doesn’t know where you want the files installed or what the
permissions should be. You provide this information using the Edit
Permissions & Destinations worksheet, and swpkg stores it in the IDB file.

Open the Edit Permissions & Destinations worksheet by clicking the
worksheet selection tab labeled “Edit Permissions & Destinations.” The Tag
Files worksheet is replaced by the Edit Permissions & Destinations
worksheet, shown in Figure 2-5.

24

Chapter 2: The swpkg Tutorial

Figure 2-5 The Edit Permissions & Destinations Worksheet

In the Edit Permissions & Destinations worksheet, you enter permissions
and destination information for each file in your product. swpkg stores the
information you enter in this worksheet in the IDB file. Later, when users
install your product, Software Manager uses these lines to figure out where
to install the files and how to set the file modes, owners, and groups.

Step Five: Setting Permissions and Destinations

25

To edit the permissions information for the Finance.ad file, follow these steps:

1. In the IDB File Viewer, double-click on the Finance.ad file. The current
values for all the fields in the worksheet appear.

2. In the Mode text field replace the value with:

444

3. In the Owner text field replace the value with:

root

4. In the Owner text field replace the value with:

sys

5. In the Destination Directory text field replace the value with:

usr/lib/X11/app-defaults

6. In the Destination Filename text field replace the value with:

Finance

7. Click the Assign arrow button.

We’re going to leave the Source Tree Root text field alone, since we want to
use the default value (/). For information on setting source roots, see
“Setting Source Tree Roots” on page 86.

You’ve finished filling in the worksheet for the Finance.ad file. The Edit
Permissions & Destinations worksheet should now look like the one shown
in Figure 2-6. For more detailed information on working with the text fields
in the Permissions and Destinations sheet, see “Setting Permissions and
Destination Directories” on page 88.

26

Chapter 2: The swpkg Tutorial

Figure 2-6 The Completed Worksheet for the Finance.ad File

Step Six: Adding Attributes

27

Now, using Table 2-1 as your guide, edit the permissions and destinations
information for each of the remaining files:

1. Double-click a file.

2. Complete its data as shown in Table 2-1:

3. Click the Assign arrow button.

You’ve finished filling in the Edit Permissions & Destinations worksheet,
now you’re ready to add installation attributes to your product.

Step Six: Adding Attributes

The next step is to add any necessary installation attributes to the product’s
files. To add an installation attribute, you need to switch from the Edit
Permissions & Destinations worksheet to the Add Attributes worksheet.
Click the left mouse button on the Worksheet Selection Tab labeled “Add
Attributes.” The Add Attributes worksheet, shown in Figure 2-7, appears.

Table 2-1 Permissions and Destinations for Remaining Files

File Mode Owner Group Destination Directory
Destination
Filename

finance 775 root sys usr/bin/X11 finance

finance.ftr 444 root sys usr/lib/filetype/install finance.ftr

finance.man 644 root sys usr/man/u_man/man1 finance.1

28

Chapter 2: The swpkg Tutorial

Figure 2-7 The Add Attributes Worksheet

This worksheet allows you to set up certain installation attributes for the
files in your product. In this example, we’ll go with the simplest case: we’ll
use the exitop installation attribute to tell Software Manager to install the
application’s icon in the Icon Catalog after the user gives the quit command.

Step Six: Adding Attributes

29

1. Double-click the left mouse button on the first item in the IDB File
Viewer, the Finance executable.

2. Click the left mouse button on the exitop check button under “Software
Attributes.”

3. In the text field under the exitop check button, type:

"tag 0x000101A0 /usr/bin/X11/finance
iconbookedit -add ’Category:File Name:/usr/bin/X11/finance’ -syspage DesktopTools
cd /usr/lib/filetype
make -u"

Note: The entire list of commands is enclosed in a pair of double-quotes
(" ").

4. Click the Assign arrow button.

For more information on the iconbookedit command, see section “Step Five:
Installing Your Application in the Icon Catalog,” and for more information
on updating the Desktop database, see section “Step Four: Compiling the
Source Files.” Both sections are in Chapter 11 of the Indigo Magic Desktop
Integration Guide.

You’ve finished filling in the Add Attributes worksheet. The worksheet
should now look like the one shown in Figure 2-8.

30

Chapter 2: The swpkg Tutorial

Figure 2-8 The Completed Add Attributes Worksheet

Step Seven: Building the Product

31

Step Seven: Building the Product

To build your product, you need to switch to the Build Product worksheet.
Click the left mouse button on the Worksheet Selection Tab labeled “Build
Product.” The Build Product worksheet, shown in Figure 2-9, appears.

Figure 2-9 The Build Product Worksheet

32

Chapter 2: The swpkg Tutorial

This worksheet lists the lines in the IDB file and shows the settings for the
source root and the distribution directory. (The distribution directory is the
directory where you want swpkg to put all the installable files it creates. This
directory is often named dist, which is short for distribution.)

For this simplest-case example, we’re going to stick with the default
distribution directory, /usr/dist and we won’t select any of the Build Options
check buttons (located below the distribution directory text field). For more
information on the build options, see “Selecting Build Options” on page 116.

Before building the product, it’s a good idea to try a test and see if any
problems crop up without having swpkg actually try to build the product.

1. Click the left mouse button on the button labeled Test Build at the
bottom right corner of the worksheet.

If you haven’t already saved your spec and idb files, swpkg displays a
Save dialog asking where you want them saved.

2. Click the OK button in the Save dialog for both files.

If swpkg runs into problems, it lists them in the Message Area near the top of
the worksheet.

If no problems are listed, you’re ready to build the product. To build the
product:

1. Click the left mouse button on the Build All button at the bottom of the
worksheet.

As swpkg builds your product, it displays any error messages in
Message Area. When it’s finished, it displays a message to that effect in
the Message Area. Now you’re ready to quit swpkg.

2. Quit by selecting the “Quit” menu item from the File pull-down menu
(described in “Using the File Menu” on page 5).

Step Eight: Installing and Running the Product

33

Step Eight: Installing and Running the Product

After you’ve built the product, use Software Manager to install it on your
local workstation. Look at the short and long names Software Manager lists
for your product, images, and subsystems—are they clear and distinct?
After your product is installed, quit Software Manager. Were all the files
installed in the correct places? Does the icon appear in the Icon Catalog?

Chapter 3

The first step in creating an
installable product is to define the
product’s hierarchy, the structure of
the subsystems within your product.

Creating a Product Hierarchy

37

Chapter 3

3. Creating a Product Hierarchy

This chapter explains the first step for packaging your application for
installation: creating a product hierarchy—an installation structure—for
your product. This chapter contains these sections:

• “Creating a Product Hierarchy: Before You Begin” on page 37 provides
some background information and lists the prerequisites for creating a
product hierarchy.

• “Creating a Product Hierarchy: The Basic Steps” on page 41 lists the
basic steps for creating a product hierarchy and explains where to find
more detailed instructions for each step.

• “Using the Create Product Hierarchy Worksheet” on page 42 describes
the features of the worksheet and explains how to use these features to
create your product hierarchy.

Creating a Product Hierarchy: Before You Begin

This section lists the prerequisites for creating a product hierarchy and
defines spec files and product hierarchies.

Prerequisites

To package an application successfully, you need know

• what objects need to be built

• how these objects should be grouped within the product

• where the objects are located

• where they should be installed on the users’ workstations

• what permissions they should have on the users’ workstations

38

Chapter 3: Creating a Product Hierarchy

About Product Hierarchies

swpkg requires that you organize your application’s files into a three-level
hierarchy. The highest level is the product level, the second level is the image
level, and the third level is the subsystem level.

At the product level, software is grouped into distinct products. At the
image level, a single product’s files are grouped according to type: for
example, one image for the software, and another for reference pages. At the
subsystem level, the files in each image are organized into groups of files that
are installed as a unit.

The purpose is to create subsystems consisting of related files that your users
might want to install (or decline to install) as a group. For example, if your
application provides several optional templates, you might group them
together into a single subsystem. That way, users who are short on disk
space, or who don’t think they need the optional templates, can choose not
to install that particular subsystem. Similarly, if all your documentation files
(reference pages, release notes, online help, online books, and so on) are
grouped into a single image, users can choose to install them all together,
rather than subsystem by subsystem. So, if you choose your product
structure carefully, you can make the installation process much easier for
your users.

An Example Product Hierarchy

Here’s an example of how you might create a product hierarchy for a simple
application. Suppose you want to package a paint application called
magritte. Let’s say that the magritte application includes the basic application
software, some clip art, a reference page, and some release notes. Here’s a
good way to structure your files for installation:

1. Separate the software files (the application software and the clip art)
and the documentation (the reference page and release notes) into two
separate images, called sw and man, respectively.

2. Divide the software image (sw) into two subsystems: one, called base,
containing the base application software; and the other, called optional,
containing the clip art.

Creating a Product Hierarchy: Before You Begin

39

3. Divide your documentation image (man) into two subsystems: one,
called manpages, containing the reference page and the other, called
relnotes, containing the release notes.

In this example, our product hierarchy would be one product (magritte)
containing two images (sw and man), with each image containing two
subsystems (base and optional, and manpages and relnotes, respectively).
Figure 3-1 illustrates the structure of this example product hierarchy.

Figure 3-1 Example Product Hierarchy

Naming Images and Subsystems

Image and subsystem names must reflect the product hierarchy by following
these naming conventions:

• Each image has a name of the form:

product.image

For example, if the name of the product is magritte, and the image is sw,
then the full image name would be:

magritte.sw

• Each subsystem has a name of the form:

product.image.subsystem

For example, if the name of the product is magritte, the image is sw, and
the subsystem is base, then the full subsystem name would be:

magritte.sw.base

Figure 3-2 shows the correct product, image, and subsystem names, for the
example introduced in “About Product Hierarchies” on page 38.

magritte

sw man

base optional manpages relnotes

PRODUCT

IMAGES

SUBSYSTEM

:

40

Chapter 3: Creating a Product Hierarchy

Figure 3-2 Example Product Hierarchy Names

Silicon Graphics Conventions for Product Hierarchy

This section lists the Silicon Graphics conventions for structuring your
product hierarchy.

Silicon Graphics conventions strongly recommend that:

• Your product must contain an image named sw that contains all the
software subsystems for your product.

• The sw image must contain a subsystem named base that contains the
base software for your product. (You might put optional software in a
subsystem named optional, but this is not required.)

• If your product contains reference pages or release notes, it must also
include an image named man that contains the subsystems that include
the reference pages and release notes.

• The subsystem containing the reference pages must be named manpages
and the subsystem containing the release notes must be named relnotes.

You are not required to follow these conventions, but Silicon Graphics
strongly recommends that you do.

What’s a Spec File?

swpkg stores information about the product hierarchy in the product
specification (spec) file for your product. When you enter information about
your product hierarchy in the Create Product Hierarchy worksheet, you are
actually creating a spec file for your product.

magritte

magritte.sw magritte.man

magritte.sw.base magritte.sw.optional magritte.man.manpages magritte.man.relnotes

Creating a Product Hierarchy: The Basic Steps

41

In general, here’s what goes in a spec file:

• product, image, and subsystem names—these names appear in
Software Manager and versions listings

• product, image, and subsystem descriptions—these descriptions
appear in Software Manager and versions listings

• installation order

• initial installation information

• installation prerequisites and incompatibilities

• automatic removal of obsolete subsystems

• the version number

Creating a Product Hierarchy: The Basic Steps

These are the steps for creating a product hierarchy:

1. Edit the nodes in the template displayed in the Product Hierarchy
graph so that the graph has the right number of images, each
containing the right number of subsystems.

If the template in the Product Hierarchy graph does not provide the
right number of images and/or subsystems for your product hierarchy,
add or delete existing images or subsystems as necessary. (See “Adding
and Deleting Nodes” on page 45 for instructions.)

2. Edit the Product Specification sheet to set the product name and
description. (See “Entering Product Specifications” on page 47 for
instructions.)

3. Edit the Image Specification sheet to set image names and descriptions
and, if necessary, to specify any of these installation options:

• installation order

• version number (instead of using the default value)

(See “Entering Image Specifications” on page 50 for instructions.)

42

Chapter 3: Creating a Product Hierarchy

4. Edit the Subsystem Specification sheet to set subsystem names and
descriptions and, if necessary, to specify any of these installation
options:

• default installation

• reboot installation

You might also need to specify:

• prerequisite subsystems

• incompatible subsystems

• replacement subsystems

(See “Entering Subsystem Specifications” on page 55 for instructions.)

5. Save the spec file by selecting “Spec” from the “Save” rollover menu in
swpkg’s File menu.

Using the Create Product Hierarchy Worksheet

When swpkg first appears, it displays the Create Product Hierarchy
worksheet, shown in Figure 3-3. This section describes the features of the
worksheet and explains how to use it to create a product hierarchy.

Using the Create Product Hierarchy Worksheet

43

Figure 3-3 The Create Product Hierarchy Worksheet

Product Hierarchy
Graph

Product Specification
Sheet

44

Chapter 3: Creating a Product Hierarchy

Creating a Product Structure

The Product Hierarchy graph, shown in Figure 3-4, displays a template for a
standard product hierarchy. You can alter this template to reflect a new
product hierarchy. If you open an existing spec file, the Product Hierarchy
graph displays the product hierarchy for that spec file. (To open an existing
spec file, use the “Open” item in the File menu.)

Figure 3-4 The Product Hierarchy Graph

Use the Product Hierarchy graph to create a structure for your product
hierarchy—that is, arrange the nodes in the graph so that the graph has the
right number of images, each containing the right number of subsystems.
(For an explanation of nodes, see “Selecting Nodes” on page 45.) Add or
delete nodes as necessary (see “Adding and Deleting Nodes” on page 45 for
instructions).

Delete Button

Product Node

Image Nodes

Subsystem Node

Graph Control Area

Spec File Path

Add Button

Using the Create Product Hierarchy Worksheet

45

For a general discussion of product hierarchies, along with guidelines on
structuring your product, refer to “About Product Hierarchies” on page 38.

Selecting Nodes

The Product Hierarchy graph provides a graphical display of your product
hierarchy, in which products, images, and subsystems are shown as
rectangles (or nodes) and relationships as connecting lines (or arcs). (If the
graph is larger than the viewing area, scroll bars are enabled.)

When you select a node, the Specification sheet associated with that node
appears to the right of the Product Hierarchy Graph. (The Specification
sheets are groups of text fields and/or check buttons that you can use to
provide the relevant installation information about each product, image, and
subsystem in your installation plan.)

To select a node, click it with the left mouse button. The Specification sheet
for that node appears to the right of the Product Hierarchy Graph. The
Create Product Hierarchy worksheet has three different types of
Specification sheets: the Product Specification sheet (described in “Entering
Product Specifications”), the Image Specification sheet (described in
“Entering Image Specifications”), and the Subsystem Specification sheet
(described in“Entering Subsystem Specifications”).

The Spec File Path Label

The spec file path label shows the current spec file pathname. If no valid spec
file is identified, the path is left blank. For information on creating a spec file
or changing the spec file path, see “Using the File Menu” on page 5. For a
definition of a spec file, read “What’s a Spec File?” on page 40.

Adding and Deleting Nodes

Use the Add button (located at the top of the product hierarchy graph) to add
products, images, and subsystems to your product hierarchy (spec file):

• To add a new product, make sure no nodes are selected (by clicking the
background of the Product Hierarchy Graph), then click the Add
button.

46

Chapter 3: Creating a Product Hierarchy

• To add a new image, select the node for the product to which the image
will belong, then click the Add button.

• To add a new subsystem, select the node for the image to which the
subsystem will belong, then click the Add button.

Use the Delete button to delete a product, image or subsystem by selecting
the relevant node and clicking the Delete button.

Selecting Display Options for the Product Hierarchy Graph

The product hierarchy graph has a control area containing a row of graph
controls, shown in Figure 3-5.

Figure 3-5 Graph Display Controls

These graphical view controls are:

Zoom menu
Shows the current scale of the graph. If clicked, a popup
menu appears displaying other available scales. The scaling
range is between 15% and 300% of the normal (100%) size.

Zoom Out button
Resets the scale of the graph to the next available smaller
size in the range.

Zoom In button
Resets the scale of the graph to the next available larger size
in the range.

Note: If you drag a node into a new position and then use
one of the Zoom buttons, the node returns to its initial
position.

Zoom menu

Zoom Out button

Zoom In button

Overview button

Multiple Arcs button

Realign button

Rotate button

Using the Create Product Hierarchy Worksheet

47

Overview button
Displays the Overview window, which lets you view the
entire graph at a reduced scale. The Overview window has
a movable viewport that lets you select the portion of the
graph displayed in the main window. The Overview
window also has an Admin menu with these three
selections:

• “Scale to Fit” scales the graph to match the aspect ratio
of the overview window.

• “Show Arcs” displays or hides the arcs between the
nodes.

• “Close” closes the Overview window.

Multiple Arcs button
Toggles between single and multiple arc mode. (This button
is not useful in the Product Hierarchy Graph.)

Realign button Redraws the graph, restoring the positions of any nodes
that were repositioned.

Rotate button Flips the orientation of the graph between horizontal
(calling nodes at the left) and vertical (calling nodes at the
top).

Note: If you reposition the nodes by dragging and then
change orientation, the nodes will return to their initial
positioning relative to each other.

Entering Product Specifications

Use the Product Specification sheet to enter your product’s name and
description. The Product Specification sheet, shown in Figure 3-6, is visible
whenever a product node is selected in the Product Hierarchy graph. For
example, if you click the left mouse button on the node labeled my_product
in the product hierarchy graph, the Product Specification sheet for the
my_product product appears to the right of the product hierarchy graph.

48

Chapter 3: Creating a Product Hierarchy

Figure 3-6 The Product Specification Sheet

To enter information in the text fields, just delete the existing text, type in the
new text, and click the Assign arrow button. If you don’t click the Assign
arrow button, your changes will be lost when you select a different node.

Setting the Product Name

To name the product, follow these steps:

1. Delete the existing text in the Product Name text field.

2. Type in the new text.

3. Click the Assign arrow button.

The product name is the short name for the product—this is the “short”
name that appears in Software Manager listings (the “long” name is the

Using the Create Product Hierarchy Worksheet

49

product description). Because the display length for both long and short
names in Software Manager is typically 30 characters, the product name
should be short so that subsystem names are less likely to overflow their
column in versions and Software Manager listings. Short product names are
also easier for users to enter. Do not choose a product name that begins with
a digit.

Setting the Product Description

To change the product description, follow these steps:

1. Delete the existing text in the Product Description text field.

2. Type in the new description.

Note: Always enclose your description within quotes. You can use
either single or double quotes. You can use one type of quotes as part of
your description if you use the other type of quotes to quote the
description. For example, ‘Acme 1/2” Tape Support’ is a valid
description as long as you enclose it in single quotes.

3. Click the Assign arrow button.

The product description is a brief description of your product that begins
with the product name. This description is the “long” name that appears in
Software Manager listings (the description also appears in versions listings).
The description should be brief but informative, since this might be the only
information users have to help them to decide whether to install your
software.

In particular, the product description should begin with the marketing name
of the product. Do not use the words “option,” “version,” “system,” or
“release,” unless they are part of the name of the product (for example,
Maintenance Release and Network File System).

Here are some general guidelines for creating descriptions:

• Limit the string to 30 characters, if possible. Anything larger gets
wrapped or truncated by Software Manager and versions.

• When abbreviating words, use only standard, easily understood
abbreviations.

• Capitalize the first letter of each word, except prepositions.

50

Chapter 3: Creating a Product Hierarchy

• Do not use punctuation.

• Do not include part numbers or marketing codes

• Include a market version number (version 1.2, for example)

So, for example, assume your product is a mortgage calculation application
called Mortgage Calculator, that this is the first version of the product, and
that its marketing code is M3-486. A good product description would be:
“Mortgage Calculator 1.0”—a bad one would be: “Mort.Cal.M3-486.”

Entering Image Specifications

The Image Specification sheet, shown in Figure 3-7, is visible whenever an
image node is selected in the Product Hierarchy graph. For example, if you
click the left mouse button on the image labeled sw in the Product Hierarchy
Graph, the Image Specification sheet for the sw image appears to the right of
the Product Hierarchy Graph.

Using the Create Product Hierarchy Worksheet

51

Figure 3-7 The Image Specification Sheet

You can select any image in this Specification sheet by clicking the image
name in the list of images below the text fields.

Use the Image Specification sheet to enter the image’s name, description,
version number, and installation order (each of these text fields is discussed
in detail in this section).

To enter information in the text fields, delete the existing text, type in the
new text, and click the Assign arrow button. If you don’t click the Assign
arrow button, your changes will be lost when you select a different node.

52

Chapter 3: Creating a Product Hierarchy

Naming the Image

To change the name of an image, follow these steps:

1. Select the appropriate image node in the Product Hierarchy graph.

2. Delete the existing text in the Image Name text field.

3. Type in the new name for the image.

4. Click the Assign arrow button.

Refer to “Naming Images and Subsystems” on page 39 for guidelines.

Changing the Description of the Image

To change the description of an image, follow these steps:

1. Select the appropriate image node in the Product Hierarchy graph.

2. Delete the existing text in the Description text field.

3. Type in the new description for the image.

4. Click the Assign arrow button.

Note: Always enclose your description within quotes. You can use either
single or double quotes. You can use one type of quotes as part of your
description if you use the other type of quotes to quote the description. For
example, ‘Acme 1/2” Tape Support’ is a valid description as long as you
enclose it in single quotes.

If the image in question is the sw or man image, you can just leave the
description as it is in the corresponding (sw or man) template.

The image description is a brief description of the image. Since this
description appears in Software Manager listings, it’s important that the
description be informative and distinct from the product and subsystem
descriptions.

Like the product description, the image description should begin with the
marketing name of the product. This is because Software Manager lists the
products, images, and subsystem according to these descriptions—if your
product, image, and subsystem names begin differently, they aren’t listed
together.

Using the Create Product Hierarchy Worksheet

53

Image descriptions should include the product name and a description of
the image (for example, Software, Documentation, or Manual Pages). Do not
include a version or release number.

Here are some general guidelines for creating descriptions:

• Limit the string to 30 characters, if possible. Anything larger gets
wrapped or truncated by Software Manager and versions.

• When abbreviating words, use only standard, easily understood
abbreviations.

• Capitalize the first letter of each word, except prepositions.

• Do not use punctuation.

• Do not include part numbers or marketing codes.

Changing the Version Number of the Image

Choose a version number for your images. You can keep the existing, default
value for the version number or you can create a version number of your
own. Some rules and suggestions for selecting version numbers are:

• The version number can contain no more than ten digits.

• The version number cannot contain a decimal.

• Do not use your software release number as the version number.

• Start with a low version number. The version number of each software
distribution you create for your product is higher than the last value.
Over the lifetime of your product, 999999999 is the highest version
number you can use. After that, you must change product or image
names.

Type the version number directly into the text field labeled “Version,” then
click the Assign arrow button.

Changing the Installation Order of the Image

The number in the text field labeled Installation Order tells Software
Manager the order in which to install the various images. If you want to
specify that some of your images be installed before others, select the

54

Chapter 3: Creating a Product Hierarchy

installation order numbers accordingly. (Remember to click the Assign arrow
button after typing in each order number.)

Installation order is specified by numbers in the range of 0 to 9999. The lower
the order number, the earlier that image will be installed. If you do not
specify an order number, the default is 9999 (the highest order, meaning the
last to be installed). Images with equal order numbers are installed in
alphabetical order.

Software Manager installs products in alphabetical order by default. Within
each product, images are also installed in alphabetical order. Similarly, the
subsystems in each image are installed in alphabetical order. For example,
suppose there are two products, a and b. Each of them contains two images,
sw and man. Each image has two subsystems, x and y. The installation order
of these subsystems is:

a.man.x
a.man.y
a.sw.x
a.sw.y
b.man.x
b.man.y
b.sw.x
b.sw.y

You can control the order in which images are installed. In the example
above, for instance, when you package the b product you can specify that the
subsystems in the b.sw image should be installed before the subsystems in
the a.sw image.

In the example above, to force b.sw to be installed before a.sw, give the b.sw
image an order number less than 9999. The installation order of the
subsystems would then be:

b.sw.x
b.sw.y
a.man.x
a.man.y
a.sw.x
a.sw.y
b.man.x
b.man.y

Using the Create Product Hierarchy Worksheet

55

Entering Subsystem Specifications

The Subsystem Specification sheet, shown in Figure 3-8, is visible whenever
a subsystem node is selected in the Product Hierarchy Graph. For example,
if you click the left mouse button on the subsystem labeled optional in the
Product Hierarchy Graph, the Subsystem Specification sheet for the optional
subsystem appears to the right of the graph.

Figure 3-8 The Subsystem Specification Sheet

Use the Subsystem Specification sheet to enter the subsystem’s name,
description, installation options, and mapping and rules information (each
of these text fields is discussed in detail in this section).

To select installation options, just click the left mouse button on the check
button next to the option you want to select, then click the Assign arrow

56

Chapter 3: Creating a Product Hierarchy

button. If you don’t click the Assign arrow button, your changes will be
lost when you select a different node.

You can select as many installation options as you wish for each subsystem,
but be careful not to select any of these options unnecessarily. For more
information, see “Setting Basic Installation Options for the Subsystem.”

Naming the Subsystem

To change the name of the selected subsystem, follow these steps:

1. Delete the existing text in the Subsystem Name text field.

2. Type in the new text.

3. Click the Assign arrow button.

Refer to “Naming Images and Subsystems” on page 39 for guidelines.

Changing the Description of the Subsystem

To change the description of the selected subsystem, follow these steps:

1. Delete the existing text in the Description text field.

2. Type in the new description.

3. Click the Assign arrow button.

Note: Always enclose your description within quotes. You can use either
single or double quotes. You can use one type of quotes as part of your
description if you use the other type of quotes to quote the description. For
example, ‘Acme 1/2” Tape Support’ is a valid description as long as you
enclose it in single quotes.

The subsystem description is a brief description of the image. Since this
description appears in Software Manager listings, it’s important that the
description be informative and distinct from the product and image
descriptions.

Like the product and image descriptions, the subsystem description must
begin with the marketing name of the product. This is because Software
Manager lists the products, images, and subsystem according to these

Using the Create Product Hierarchy Worksheet

57

descriptions—if your product, image, and subsystem names begin
differently, they aren’t listed together. (The image description also appears
in versions listings.)

Here are some general guidelines for creating descriptions:

• Limit the string to 30 characters, if possible. Anything larger gets
wrapped or truncated by Software Manager and versions.

• When abbreviating words, use only standard, easily understood
abbreviations.

• Capitalize the first letter of each word, except prepositions.

• Do not use punctuation.

• Do not include part numbers or marketing codes.

Setting Basic Installation Options for the Subsystem

The Installation Options check buttons that appear in the Subsystem
Specification sheet represent three installation options. The first two
options—Default and reboot—are user selected. The third option—Patch—is
selected automatically when you create a patch through the “Create Patch...”
menu item in the File menu. You can select none, one, or all of these options.

The Default Option

The Default option specifies that each time a product is installed, some or all
of the subsystems are automatically selected for installation (these
subsystems are called “default” subsystems). Users can deselect these
subsystems if they choose. If you have a lot of subsystems, some of which
are not necessary for the average user, you might want to tag the essential
subsystems as default.

To set this option, click the left mouse button with the cursor over the option.
After making your selection, click the Assign button to assign the option(s)
to the selected subsystem.

The Reboot Option

The Reboot option specifies that the machine must be rebooted after
installation of the subsystem. This option is only for subsystems that involve

58

Chapter 3: Creating a Product Hierarchy

kernel code or other software that cannot be installed normally. Use the
Reboot button only when absolutely necessary!

To set this option, click the left mouse button with the cursor over the option.
After making your selection, click the Assign button to assign the option(s)
to the selected subsystem.

Note: When using Software Manager to install your product, this option is
shown as a flag type of ‘b’.

The Patch Option

The Patch option specifies that a subsystem is part of a patch product and
must have a follows rule. swpkg automatically assigns the Patch option to all
subsystems that are part of a patch product. This option is insensitive to user
selection. See Chapter 8, “Creating a Patch Product.”

Setting Installation Rules

The Rules text field allows you to specify, for each subsystem in your
product, those subsystems that:

• are prerequisites for installation

• are incompatible with the selected subsystem

• should be replaced by the selected subsystem

In order to make these specifications, you need to use the special syntax
required for writing these rules. The syntax is described in the sections
below and examples are provided.

To use the Rules text field, follow these steps:

1. Select the appropriate subsystem node in the Product Hierarchy Graph.

2. Type the correct rules specifications into the Rules text field. (The
syntax is described in the sections below.)

3. Click the Assign arrow button.

Using the Create Product Hierarchy Worksheet

59

Adding Replacement Statements

You can tell Software Manager to remove a specified subsystem when it
installs the currently selected subsystem. Essentially, this means telling
Software Manager to replace one subsystem with another, usually newer,
subsystem. You do this using the replaces statement.

Replaces statements are powerful and flexible—taking the time now to learn
how they work will help you later when you need to make changes to your
product. The replaces line is critical when a product is repackaged (for
example, when files in the product get moved around, when subsystems get
new names, and so on).

A replaces line simply specifies that you want to replace an older subsystem
with a newer subsystem. Specify the name of the subsystem and the range
of version numbers you want replaced. Here’s the format of the replaces
statement:

replaces name lowvers highvers

or

replaces self

where

name is the name of the subsystem that is going to be replaced.

lowvers is the lower boundary of the range of versions of name that
should be replaced. It can be 0, or any version number value
that you supply.

highvers is the higher boundary of the range of versions to be
replaced. highvers can be one of the following:

• oldvers, defined as the current version minus 1

• an actual version number that you supply

self Software Manager always assumes that a subsystem
replaces an older subsystem of the same name. Since this is
the default case, you do not need to specify it explicitly.

You can specify as many replaces statements as you need.

60

Chapter 3: Creating a Product Hierarchy

For each subsystem that has a replaces line, Software Manager looks to see
if the subsystem specified in the replaces line is installed and if its version
falls in the range given in the replaces line. If the installed version is in the
range, the new subsystem is selected for installation automatically. If the
new subsystem is installed, the old version is removed automatically.

There are four typical ways to use replaces:

1. Specify that a subsystem replaces older versions of itself.

2. Specify that a subsystem replaces maintenance versions of itself.

3. Specify that a subsystem replaces different subsystems that are now
obsolete.

4. Specify replacement directions in complex repackaging situations
where one subsystem has become several or several older subsystems
have been restructured into several new ones.

Here are some examples of replaces statements:

A subsystem gets a name change. Suppose that the subsystem rfind.man.rfind
is split into two subsystems, rfind.man.client and rfind.man.server. To make
sure that rfind.man.rfind is replaced properly, you could create a replaces
statement that looks like this:

replaces rfind.man.rfind 0 oldvers

Alternately, you could specify an exact old version number so that your
replaces statement would look something like this:

replaces rfind.man.rfind 0 1006000106

Or, suppose two or more subsystems get repackaged into a single
subsystem. For example, say the rfind.sw.client subsystem and the
rfind.sw.server subsystem are combined and the new subsystem is called
rfind.sw.rfind. To replace the old client and server, you would use these
replaces statements:

replaces rfind.sw.client 0 oldvers

replaces rfind.sw.server 0 oldvers

If either of the old subsystems rfind.sw.client or rfind.sw.server is installed,
rfind.sw.rfind will replace them.

Using the Create Product Hierarchy Worksheet

61

Finally, suppose you want to replace a maintenance release of rfind.sw.client
with a new base release. You need to replace both the maintenance release
and the previous base release. Your replacement statements would look like
this:

replaces maint.rfind_sw.client 0 oldvers

replaces rfind.sw.client 0 oldvers

Setting Incompatibilities

You can specify that a subsystem in your product can be installed on a user’s
workstation only if one or more other subsystems are not installed. This is
known as specifying incompatibilities.

Note: Do not specify incompatibilities unless absolutely necessary.

When incompatibilities are specified, Software Manager does not allow
users to install subsystems that are incompatible. It checks for
incompatibilities at two different times:

• When a subsystem is selected for installation, Software Manager
determines whether or not it is incompatible with something that has
already been installed.

• When the user quits, Software Manager checks again among the
subsystems it has just installed for incompatibilities.

The format for incompatibility statements is the same as for replaces
statements. Specify the name of the subsystem and the range of version
numbers you want to declare incompatible. The format of the
incompatibilities statement is:

incompat name lowvers highvers

where

name is the name of the subsystem that is incompatible.

lowvers is the lower boundary of the range of versions of name that
are incompatible. It can be 0, or any version number value
that you supply.

62

Chapter 3: Creating a Product Hierarchy

highvers is the higher boundary of the range of versions that are
incompatible. highvers can be one of the following:

• maxint, the maximum value that a long int can hold

• oldvers, defined as the current version minus 1

• an actual version number that you supply

Here are some examples of incompatibility statements:

To specify that the rfind.man.rfind subsystem is incompatible with the
selected subsystem, you could create a incompatibility statement that looks
like this:

incompat rfind.man.rfind 0 oldvers

Alternately, you could specify an exact old version number so that your
incompatibility statement would look something like this:

incompat rfind.man.rfind 0 1006000106

Setting Prerequisites

You can specify that a subsystem in your product can be installed on a user’s
workstation only if one or more other subsystems are also installed. That is,
you can set prerequisites for the installation of a subsystem.

Do not specify subsystems outside your product as prerequisites unless
absolutely necessary. Prerequisites can be a real problem, because the
prerequisite product can change names or versions, making your
prerequisite statement obsolete—which can prevent installation of your
product!

To set prerequisites for a subsystem, first select the appropriate subsystem
node in the Product Hierarchy Graph. Then type the text specifying the
prerequisites into the Rules text field.

You can specify a list of subsystems that must all be installed in order for
users to install the new subsystem:

prereq (
name lowvers highvers
name lowvers highvers

Using the Create Product Hierarchy Worksheet

63

name lowvers highvers
)

where

name is the name of the subsystem that is a prerequisite.

lowvers is the lower boundary of the range of versions of name. It can
be 0, or any version number value that you supply.

highvers is the higher boundary of the range of versions of name.
highvers can be one of the following:

• maxint, the maximum value that a long int can hold

• oldvers, defined as the current version minus 1

• an actual version number

You can also write a prereq that specifies that only one of the listed
subsystems must be installed for the new subsystem:

prereq (
name lowvers highvers
)

prereq (
name lowvers highvers
)

Remember to press the Assign arrow button to update the subsystem node
after filling in the text area.

Here are some examples of prerequisite statements:

To specify that the rfind.man.rfind subsystem is a prerequisite for the selected
subsystem, you could create a prerequisite statement that looks like this:

prereq rfind.man.rfind 0 oldvers

Alternately, you could specify an exact old version number so that your
prerequisite statement would look something like this:

prereq rfind.man.rfind 0 1006000106

64

Chapter 3: Creating a Product Hierarchy

To specify that the rfind.man.server subsystem and the rfind.man.client
subsystem must both be installed in order for the selected subsystem to be
installed, you could write a prerequisite statement that looks like this:

prereq (
rfind.sw.server 0 oldvers
rfind.sw.client 0 oldvers
)

To specify that either the rfind.man.server subsystem or the rfind.man.client
subsystem must be installed in order for the selected subsystem to be
installed, you would need to write two prerequisite statements. They might
look like this:

prereq (
rfind.sw.server 0 oldvers
)

prereq (
rfind.sw.client 0 oldvers
)

Editing Mapping Expressions Directly

This field allows you to write your own mapping expressions. It is highly
unlikely that you’ll need to use this field, since you can create almost any
product structure and mapping using the swpkg GUI. However, in cases
where you have very complicated existing IDB files that you need to modify,
you might find it easier to create mapping expressions rather than
restructure your product.

If you decide you want to write your own mapping expressions, refer to
Appendix A, “Writing Mapping Expressions.”

Note: If you use any mapping expression other than a single subsystem
name, enclose the expression within quotes. You can use either single or
double quotes.

The Assign Arrow Button

Clicking the Assign arrow button saves the changes you made in the
currently visible Product, Image, or Subsystem Specification sheet. If you

Using the Create Product Hierarchy Worksheet

65

switch to a different Specification sheet before clicking the Assign button,
your changes are lost.

For example, if you select a product node, then change the product name,
then click the Assign button, the new product name is applied to the product
node. On the other hand, if you select a product node, then change the
product name, then select an image node without first clicking the Assign
button, your new product name is not applied to the product node.

Chapter 4

Once you have created your product
hierarchy, you need to tag the files
you want to install and assign them
to the different susbsystems.

Tagging the Files

69

Chapter 4

4. Tagging the Files

After you create a product hierarchy using the Create Product Hierarchy
worksheet, you need to assign each of your product’s files to a subsystem in
your product hierarchy. This is called tagging the files. You tag the files using
the Tag Files worksheet.

This chapter contains these sections:

• “Tagging the Files: Before You Begin” on page 69 provides some
background information and lists the prerequisites for tagging the files.

• “Tagging the Files: The Basic Steps” on page 71 lists the basic steps for
tagging your files.

• “Using the Tag Files Worksheet” on page 72 describes the features of
the Tag Files worksheet and explains how to use the worksheet to tag
your files.

Tagging the Files: Before You Begin

This section lists the prerequisites for tagging your files, and defines tags and
IDB files.

Prerequisites

Before you begin tagging the files, you must first create a product hierarchy
using the Create Product Hierarchy worksheet (see Chapter 3).

What’s an IDB File?

swpkg stores the information you enter in the Tag Files worksheet in an
installation database file (IDB file).

70

Chapter 4: Tagging the Files

The IDB file contains the following basic information for each file in your
product:

• its location in a built source tree

• its location after installation

• its owner, group, and mode

• what subsystem (group of files) it should be packaged in

An IDB file can include directories, links, and FIFOs as well as files.

The IDB file may also list certain attributes to be associated with each file,
including:

• the instruction that a binary file not be stripped before including it in
the software distribution (the default is to strip binaries automatically)

• shell commands that are to be executed just before or after installation
of the file (preops and postops)

• shell commands that are to be executed when exiting Software
Manager (exitops)

• a specification that this file is to be installed only on workstations that
have certain architectural characteristics, such as a particular type of
processor or graphics

• an indication that a previous version of this file may have been
modified by users, and if so, how to install this file

What’s a Tag?

swpkg requires that you tag each of your files with the name of the subsystem
to which you want that file to belong. swpkg stores all of these tags in the IDB
file and uses them to build the product.

Note: You can also create arbitrary tags, and map them to specific
subsystems using the mapping expressions described in Appendix A,
“Writing Mapping Expressions.” This is almost never a good idea, but it can
be useful when you need to modify extremely complicated IDB files.

Tagging the Files: The Basic Steps

71

Tagging the Files: The Basic Steps

You can add the following items to your IDB file:

• files

• directories (when you add a directory, all of its contents are added)

• linked files

• linked directories

Using the Tag Files worksheet, as shown in Figure 4-1, follow these steps to
enter files and directories into your product’s IDB file and to assign them a
subsystem:

1. Add all the files and directories in your product to your IDB file.
(Remember to add the .ftr and .fti files for your Desktop icon.)

■ Use the File Browser to select your file(s) and directory(ies).

■ Click the Add arrow button to add them to your IDB file.

The items appear in the IDB file list.

2. Select items from the IDB file list for tagging. You can select multiple
items, as long as you’re going to put them all in the same subsystem.

3. From the Tags Browser, select the subsystem in which you want the
selected items to appear. Then click the left mouse button on the Assign
arrow button.

4. Repeat Steps 2-3 until every item in your product is assigned to a
subsystem.

5. Save the IDB file by opening the File menu and selecting “Save IDB.”

Caution: Do not include two files with the same full pathname in two
different subsystems. If a file is included in two subsystems and both
subsystems are installed, and one of the subsystems is subsequently
removed, then the common file disappears, leaving a “hole” in the other
subsystem. This rule applies only to files, not directories.

:

72

Chapter 4: Tagging the Files

Using the Tag Files Worksheet

This section describes the features of the Tag Files worksheet, shown in
Figure 4-1, and explains how to use the worksheet to tag your files.

Figure 4-1 The Tag Files Worksheet

The File

The Tags
Browser

The IDB File
Viewer

Browser

Using the Tag Files Worksheet

73

Selecting Product Files Using the File Browser

The File Browser, shown in Figure 4-2, is a tool that lets you select directories
and files (including linked directories and files) to add to the IDB file. (You
must add all the files in your product to the IDB file.) Use the File Browser
to scroll through all the files in a directory and select the ones you need by
clicking the left mouse button on the filename. Once you’ve made your
selections, you add them to the IDB file by clicking the Add arrow button.
The directories and files appear in the IDB File Viewer. When you add a
directory, you add the directory and everything in it including
subdirectories.

Figure 4-2 The File Browser

The File Browser consists of the browsing directory text field (which
specifies the browsing directory), the file list (a list of all the files and
directories in the browsing directory), the Filter text field, and the All and
None buttons.

Setting the Browsing Directory

The File Browser lists the contents of the browsing directory, the directory that
is named in the text field at the top of the File Browser. The initial browsing
directory is the current directory, provided it’s within the source root
directory (the default is /).

Browsing Directory
Text Field

File List

74

Chapter 4: Tagging the Files

You can select a different directory either by typing it in the text field and
pressing <Enter> or, if you want to select a directory that is within the
current directory, by double-clicking the left mouse button on the directory
of your choice.

You can move up to the parent directory, by double-clicking the line with
two periods followed by a slash (../).

 You can enter your $HOME directory by typing:

~

in the File Browser text field and pressing <Enter>.

Selecting Files and Directories From the File List

To select a file or directory (which includes its contents) from the File
Browser’s file list, click the left mouse button on it. You can select multiple
contiguous entries by pressing and dragging the mouse before releasing the
left button. You can select multiple noncontiguous entries by holding down
the <Ctrl> key when pressing the left mouse button.

Selecting Files Using Filters

You can also select items in the file list by typing a pattern in the Filter text
field, then pressing <Enter>. You can specify any regular expression (see the
regcmp(3G) reference page for details).

For example, if you type:

.*

you select everything in the file list (this is equivalent to clicking the All
button).

If you type:

^$

you deselect everything in the file list (this is equivalent to clicking the None
button).

Using the Tag Files Worksheet

75

Selecting Files With the All and None Buttons

Click the All button to select all the files in the file list. Click the None button
to deselect all the files in the file list.

Adding Selected Files

Use the Add arrow button to add files and directories to the IDB file list. To
do this, select the files and directories from the File Browser’s file list, then
click the left mouse button on the Add arrow button.

Accessing Your IDB File Using the IDB File Viewer

The IDB File Viewer, shown in Figure 4-3, lets you easily scroll through a list
of all the files and directories in your product’s IDB file and allows you to
select and edit each item.

Symbolic links are followed in the Add operation; adding al link to a
directory adds the link, the directory and its contents. To avoid adding the
directory and its contents, rename the target directory for the duration of the
operation.

76

Chapter 4: Tagging the Files

Figure 4-3 The IDB File Viewer

The IDB File Viewer consists of the IDB file path label, the IDB file list, the
Filter text field, the All button, the None button, the Delete Selected Items
button, and the Undo Last Operation button.

When you first open the Tag Files worksheet, the IDB file list will probably
be empty. You must add each file and directory in your product to the IDB
file list by selecting the them from the File Browser, then clicking the Add
arrow button.

Once all the files and directories in your product are included in the IDB file
list, you need to:

• tag each file and directory, using the Tag Files worksheet

IDB File Path Label

IDB File List

Using the Tag Files Worksheet

77

• set permissions and destinations for each file and directory, using the
Edit Permissions & Destinations worksheet

• set installation attributes for each file and directory, if necessary, using
the Add Attributes worksheet

IDB File Path Label

The IDB file path label shows the current IDB file pathname. Until a valid
IDB file is identified, no path is listed. For information on creating an IDB file
or changing the IDB file path, see “Using the File Menu” on page 5. For a
definition of an IDB file, read “What’s an IDB File?” on page 69.

Interpreting the IDB File List

The IDB file list displays the contents of the current IDB file. It lists all the
files and directories that appear in your product’s IDB file and, for each file
and directory, it displays the associated tags, permissions, destinations, and
attributes.

Selecting Items From the IDB File List

To select an item from the IDB file list, click the left mouse button on it. You
can select multiple contiguous items by pressing and dragging the mouse
before releasing the left button. You can select multiple noncontiguous items
by holding down the <Ctrl> key when pressing the left mouse button.

Making an Item Current in the IDB File List

You can make an item in the IDB file list current, by double-clicking it. When
you make an item current, swpkg fills in the rest of the worksheet with the
current settings for that item. This allows you to examine the information
conveniently and to change some of the information for an item without
having to fill in all the fields manually.

Selecting Items Using Filters

You can select items in the IDB file list by typing a pattern in the Filter text
field, then pressing <Enter>. You can specify any regular expression (see the
regcmp(3G) reference page for details).

78

Chapter 4: Tagging the Files

Selecting Items Using the All and None Buttons

Click the All button to select all the items in the IDB file list. Click the None
button to deselect all the items in the IDB file list.

Deleting Items From the IDB File List

You can delete an item from the IDB file list by selecting the item, then
clicking the Delete Selected Items button. You can delete more than one item
at a time.

Undoing Operations

You can undo your last operation by clicking the Undo Last Operation button.
This restores the worksheet to the state it was in before you performed your
last operation. If you change your mind, you can redo the operation by
clicking the Undo Last Operation button again.

Selecting Tags Using the Tags Browser

The Tags Browser, shown in Figure 4-4, allows you to easily select a tag from
the list of available tags and assign it to any of the items listed in the IDB File
Viewer. Each tag corresponds to a subsystem in your product.

Basically, you first select a group of items from the list of items in the IDB File
Viewer, use the Tags Browser to select the subsystem to which those items
should belong, then click the Assign arrow button to assign the selected tag
to the selected items.

The Tags Browser consists of the tags list (which lists all the available tags),
the tag text field (which allows you to enter the name of a new tag), the Add
button, the Replace button, and the Delete button.

Using the Tag Files Worksheet

79

Figure 4-4 The Tags Browser

Selecting Tags From the Tags List

The tags list displays a list of all the tags defined in the spec file. These tags
correspond to the subsystems you created using the Create Product
Hierarchy worksheet. The selected tag appears in inverse video (the letters
are in the background color and surrounded by a black box). To select a tag,
click it with the left mouse button.

To select all the items in the IDB File List that are tagged with a particular
tag, double-click the left mouse button on that tag.

Editing the Tags List

You can edit the tags list using the tags text field in conjunction with the Add,
Replace, and Delete buttons.

It is almost never necessary or desirable to edit the tags list. Instead, change
the list of subsystems using the Create Product Hierarchy worksheet. In
general, you edit the tags list only when you need to set up a complex
mapping of files to subsystems. If you do edit the tags list, any new tag you
create must be mapped to one of the subsystems in your spec file. Refer to
Appendix A for instructions on creating such a mapping.

Here are the ways in which you can edit the tags list:

• To add a new tag, type the new tag into the tags text field, and click the
Add button (or just press <Enter>).

Tags List

Tags Text Field

80

Chapter 4: Tagging the Files

• To replace an existing tag with a new one, select the tag you want to
replace, type the new tag into the tags text field, and click the Replace
button.

• To remove a tag from the list, select it, then click the Delete button.

Chapter 5

After tagging your files, you need to
set the destination, names, and
permissions of the files installed.

Editing Permissions and Destinations

83

Chapter 5

5. Editing Permissions and Destinations

This chapter explains how to set the correct permissions for each file in your
product; how to specify where Software Manager should install each file in
your product; and how to specify the source tree root.

This chapter contains these sections:

• “Editing Permissions and Destinations: Before You Begin” on page 83
provides some background information and lists the prerequisites for
editing permissions and destinations.

• “Editing Permissions and Destinations: The Basic Steps” on page 84
lists the basic steps for editing permissions and destinations.

• “Using the Edit Permissions & Destinations Worksheet” on page 85
explains how to use the worksheet to edit the permissions and
destinations for the files in your product.

Editing Permissions and Destinations: Before You Begin

This section lists the prerequisites for editing permissions and destinations,
and briefly explains what is meant by “permissions and destinations” in the
context of this worksheet.

Prerequisites

Before you begin editing permissions and destinations for your files, you
must create a product hierarchy using the Create Product Hierarchy
worksheet (see Chapter 3) and tag the files using the Tag Files worksheet
(see Chapter 4).

In particular, make sure that all your product’s files are listed in the IDB
Viewer. If some are missing, go back to the Tag Files worksheet and add

84

Chapter 5: Editing Permissions and Destinations

them to the IDB file (see “Tagging the Files: The Basic Steps” on page 71 for
instructions). You can’t edit permissions and destinations unless your files
are listed in an IDB file because that is where swpkg stores them. (Every file
that is currently listed in your IDB file is listed in the IDB File Viewer.)

What Are Permissions and Destinations?

Permissions, in the context of this worksheet, means the permissions of the
files in your product as they are installed on your users’ workstations—how
you want Software Manager to set the file permissions when your users
install your product’s files.

Destinations refers to the pathnames of the files in your product as they are
installed on your users’ workstations—where you want Software Manager
to put the files when your users install them.

Editing Permissions and Destinations: The Basic Steps

By default, permissions and destinations are picked up from your source
files—if your source files have the same pathnames and permissions that
you want them to have when installed on the users workstations, then you
don’t need to edit the permissions and destinations fields. If there are
differences, or if you want to set a source tree root, then you need to edit this
worksheet.

To fill out the Edit Permissions & Destinations worksheet:

1. Set the source tree root for all your files, if you want it to be something
other than the default (/).

2. Click the Apply arrow button.

3. Select a file from the IDB file viewer by single-clicking it.

Tip: If you double-click a file, swpkg selects the file and also displays
current settings for permissions, source, and destinations.

4. Set the mode for the file.

5. Set the owner for the file.

6. Set the group for the file.

Using the Edit Permissions & Destinations Worksheet

85

7. Click the Assign arrow button.

8. Set the destination directory, if necessary. Click the Assign arrow button.

9. Set the destination filename, if necessary. Click the Assign arrow button.
(See “Setting the Destination Filename” for instructions.)

10. Repeat steps 3-8 for each file listed in the IDB File Viewer.

11. Save the IDB file by selecting Save IDB from swpkg’s File menu.

Caution: If you don’t click the Assign button after editing the text fields,
your changes will be lost when you select a new file from the IDB file list.

Using the Edit Permissions & Destinations Worksheet

This section provides an overview of the Edit Permissions & Destinations
worksheet, shown in Figure 5-1, and explains how to use the worksheet’s
features.

86

Chapter 5: Editing Permissions and Destinations

Figure 5-1 The Edit Permissions & Destinations Worksheet

Setting Source Tree Roots

The Root Specification sheet, shown in Figure 5-2, allows you to specify a
root for your source trees.

IDB File Viewer

Root Specification

Permissions and
Destinations
Specification Sheet

Sheet

Using the Edit Permissions & Destinations Worksheet

87

Figure 5-2 The Root Specification Sheet

The source tree contains all of the files that you want to include in your
packaged product. The source tree root is the directory relative to which
swpkg looks for your product’s files on your workstation (the workstation on
which you’re building your product). Changing the source tree root limits
the browsing area in the Tag Files view to the designated tree. swpkg strips
the source tree root from the pathnames of all files that you include in your
product.

Caution: swpkg does not save source tree roots for you from session to
session. It uses the specified root when you build the product (by clicking the
Build All button in the Build Product worksheet), but when you quit swpkg,
the tree root is not saved. Next time you run swpkg, you have to set the tree
root again. If you forget, then swpkg assumes the tree root should be set to /
and it will not be able to find your files.

Setting a Source Tree Root

Roots are always applied to all entries in the IDB file. To set a source tree root
for all the files in your product, type the desired source tree root path in the
Source Tree Root text field and click the Apply arrow button.

If the source tree root you specify is invalid, then you will see one of the
following dialogs when you build the product:

• No files found under Source Root /newroot.

• 10 (of 20 entries) not found under Source Root /root.

Note: Instead of the numbers 10 and 20, you see numbers appropriate for
your product. The number of files found varies—swpkg might think it has
found some files but they are probably the wrong ones.

88

Chapter 5: Editing Permissions and Destinations

Setting Permissions and Destination Directories

Use the Permissions and Destinations Specification sheet, shown in Figure 5-
3, to set the mode, owner, group, destination directory, and destination
filename for each file in your product.

Figure 5-3 The Permissions and Destinations Sheet

Note: If your source files have the same pathnames and permissions that
you want them to have when installed on the users workstations, then you
don’t need to edit the permissions and destinations fields.

Specifying the Mode

Use the Mode text field to set the mode of a file as it will be installed on your
users’ workstations. To set the mode for a file, first make the file current by
double-clicking it in the IDB file list. The current settings for the file appear
in the text fields. Edit the text in the Mode text field. When you’ve finished
editing, click the Assign arrow button.

The mode of a file is an octal number that represents the permissions of the
file. An ASCII representation of the mode is displayed to the right of the text
area for reference.

Briefly, an absolute mode is given as an octal number constructed from the
OR of the following modes:

04000 set user ID on execution

Using the Edit Permissions & Destinations Worksheet

89

020#0 set group ID on execution if # is 7, 5, 3, or 1, enable
mandatory locking if # is 6, 4, 2, or 0. This bit is ignored if
the file is a directory; it can be set or cleared only by using
the symbolic mode.

01000 sticky bit

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner

0070 read, write, execute (search) by group

0007 read, write, execute (search) by others

See chmod(1) and ls(1) for more details on modes.

Specifying the Owner

Use the Owner text field to specify the owner of a file as it will be installed
on your users’ workstations. To set the owner for a file, first make the file
current by double-clicking it in the IDB file list. The current settings for the
file appear in the text fields. Edit the text in the Owner text field. When
you’ve finished editing, click the Assign arrow button.

You can use the login ID (for example: root, sysadm, diag, adm, daemon,
uucp, nuucp, bin, and guest) or the numerical user ID (uid) to identify who
Software Manager should make owner of the file.

For example, entering nothing or 0 is the same as typing in:

root

In the Owner text field, the uid automatically appears to the right of the login
ID for reference.

Specifying the Group

Use the Group text field to specify the group of a file as it will be installed on
your users’ workstations.

90

Chapter 5: Editing Permissions and Destinations

To set the group for a file, first make the file current by double-clicking it in
the IDB file list. The current settings for the file appear in the text fields. Edit
the text in the Group text field. When you’ve finished editing, click the
Assign arrow button.

You can use the group ID (for example: sys, root, daemon, bin, adm, mail,
uucp, lp, user, and guest) or the numerical group ID (gid) to identify the
group to which Software Manager should assign the file.

For example, entering nothing or 0 is the same as typing in:

sys

In the Group text field, the gid automatically appears to the right of the
group ID for reference.

Setting the Destination Directory

Use the Destination Directory text field to set the directory in which Software
Manager should install the selected file(s) on your users’ workstations.

To set the destination directory for a file, follow these steps:

1. Make the file current by double-clicking it in the IDB file list. The
current settings for the file appear in the text fields.

2. Edit the text in the Destination Directory text field. Click the Assign
arrow button.

Setting the Destination Filename

Use the Destination Filename text field to set the name of each file in your
product as you want Software Manager to install it on your users’
workstations.

To set the destination filename for a file, follow these steps:

1. Make the file current by double-clicking it in the IDB file list. The
current settings for the file appear in the text fields.

2. Edit the text in the Destination Filename text field.

3. Click the Assign arrow button.

Using the Edit Permissions & Destinations Worksheet

91

Resetting All Text Fields to the Default Values

Click the Reset All Values button, to reset all the text fields in the worksheet
to their default values.

Chapter 6

Software Packager allows you to set
attributes for the files installed,
including commands to execute
before or after installation,
modifying configuration files, and
installing specific files on systems
with only certain hardware
configurations.

Adding Attributes

95

Chapter 6

6. Adding Attributes

This chapter explains how to set certain installation options, called
attributes, for the files in your product. It contains these sections:

• “Adding Attributes: Before You Begin” on page 95 provides some
background information and lists the prerequisites for adding
installation attributes.

• “Adding Installation Attributes: The Basic Steps” on page 96 lists the
basic steps for adding attributes.

• “Using the Add Attributes Worksheet” on page 97 describes the
features of the worksheet and explains how to use it to add installation
attributes to your product’s files.

Adding Attributes: Before You Begin

This section lists the prerequisites for adding installation attributes, and
explains what installation attributes are.

Prerequisites

Before you begin specifying attributes for your products files, you must first
have created a product hierarchy using the Create Product Hierarchy
worksheet (see Chapter 3), tagged the files using the Tag Files worksheet
(see Chapter 4), and edited permissions and destinations for the files using
the Edit Permissions & Destinations worksheet (see Chapter 5).

In particular, make sure that all your product’s files are listed in the IDB
Viewer. If some are missing, go back to the Tag Files worksheet to tag them
and include them in the IDB file (see “Tagging the Files: The Basic Steps” on
page 71 for instructions). You can’t add attributes to your product’s files
unless they are listed in the IDB file, because that is where swpkg stores them.

96

Chapter 6: Adding Attributes

(Every file that is currently listed in your IDB file is listed in the IDB File
Viewer.)

What Are Attributes?

For each file in your product, you can specify certain attributes—installation
options that govern the installation of that file. For example, you can specify

• that the installation occur during the next boot

• shell commands for Software Manager to run automatically at different
points in the installation

• that a separate copy of your application be installed for diskless client

• that a binary not be stripped

• on which hardware configurations your application can be installed

swpkg stores attributes information in your product’s IDB file.

Adding Installation Attributes: The Basic Steps

To specify attributes for your product’s files, follow these steps:

1. Select a file or files from the IDB file list.

2. Select the desired attributes from the Attributes Specification sheet.

3. Click the Assign arrow button.

4. Repeat Steps 1-3 for each file or group of files for which you wish to
specify attributes.

5. Save the IDB file by selecting Save IDB from swpkg’s File menu. (This
step is optional; you can wait and save the IDB file when you build the
product.)

Using the Add Attributes Worksheet

97

Using the Add Attributes Worksheet

This section describes the features of the Add Attributes worksheet, shown
in Figure 6-1, and explains how to use the worksheet to add installation
attributes to your product’s files.

Figure 6-1 The Add Attributes Worksheet

IDB File Viewer

Attributes
Specification Sheet

98

Chapter 6: Adding Attributes

Selecting Software Installation Attributes

Figure 6-2, lists the for Software Installation Attributes. To the left of each
attribute is a check button. You select (or deselect) the attribute by clicking
the check button. When the attribute is selected, a red check mark appears
over the button.

Figure 6-2 The Attributes Specification Sheet: Software Attributes

The config Attribute

Users sometimes modify the configuration files for your product. Typically,
these modifications are made to reflect site- and machine-specific
information. It’s important that you identify all the configuration files in

Using the Add Attributes Worksheet

99

your product so that modifications users made to older versions of these files
are not lost during installation on the new versions.

By checking the config attribute check button, you identify the selected file
as a configuration file. You must then specify a configuration type to specify
how to deal with each configuration file. There are three configuration types.
The first configuration type, update, is listed on the large button located to
the right of the config attribute. Click this button to see all three choices, then
select the appropriate configuration type from the list.

After you’ve selected a configuration type, click the Assign arrow button to
assign the attribute to the selected file.

Here are the three configuration types:

update Software Manager automatically installs the new
configuration file, but saves the old file as filename.O, where
filename is the name of the configuration file.

noupdate Software Manager retains the existing (old) file, if it exists.

suggest Software Manager retains the existing file, if it exists, and
install the new configuration file as filename.N, where
filename is the name of the configuration file.

The configuration types are listed below in a table that describes what
Software Manager does with each type of configuration file.

Table 6-1 Configuration Types

Configuration File Type Before installation After installation

update No previous version was
installed.

The new version is
installed.

A previous version was
installed, but not
modified.

The new version is
installed.

A previous version was
installed and modified.

The older version is
filename.O and the new
version is installed.

noupdate No previous version was
installed.

The new version is
installed.

100

Chapter 6: Adding Attributes

The shadow Attribute

Very few applications need this attribute—in general, don’t select it.
Selecting the shadow attribute delays the installation of the specified file
until the next time the workstation is booted. So, Software Manager does not
immediately install the file on the users’ workstations.

This attribute is useful for products that might be used by a variety of
applications at any given time—such as shared libraries—where a
replacement of the existing product files might affect those applications that
are using the product at the time a new version of the product is installed.

After selecting this attribute, click the Assign arrow button to assign the
attribute to the selected file.

The preop Attribute

Use the preop attribute when you want swpkg to execute a list of commands
before installing a selected file.

See the following sections:

• Steps for Using an Ops Command

A previous version was
installed, but not
modified.

The previous version is
still installed.

A previous version was
installed and modified.

The previous version is
still installed.

suggest No previous version was
installed.

The new version is
installed.

A previous version was
installed, but not
modified.

The new version is
installed.

A previous version was
installed and modified.

The new version is
installed as filename.N.

Table 6-1 (continued) Configuration Types

Configuration File Type Before installation After installation

Using the Add Attributes Worksheet

101

• Example: Send Email Before Installing Executable

• Ops Limitations

Example: Send Email Before Installing Executable

The following example sends email to the developer (you) just before the
executable is installed by the user:

"echo $USER@‘hostname‘.‘domainname‘ installed my_product| Mail developer@abc.com"

You can cut, paste, and edit this example.

The postop Attribute

Use the postop attribute when you want swpkg to execute a list of commands
after installing a selected file. Configuration files cannot have postops.

See the following sections:

• Steps for Using an Ops Command

• Example: Send Email After Installing Executable

• Ops Limitations

Example: Send Email After Installing Executable

The following example sends email to the developer (you) after the
executable is installed by the user:

"echo $USER@‘hostname‘.‘domainname‘ installed my_product| Mail developer@abc.com"

You can cut, paste, and edit this example.

The exitop Attribute

Use the exitop attribute when you want to execute a list of commands after
the user quits Software Manager (assuming the user is installing the selected
file).

See the following sections:

• Steps for Using an Ops Command

102

Chapter 6: Adding Attributes

• Example: Installing an Application Icon

• Ops Limitations

Example: Installing an Application Icon

The following example installs your application’s icon into the Icon Catalog:

"if [-x \$$rbase/usr/sbin/iconbookedit]; then
chroot \$$rbase /usr/sbin/iconbookedit -add \"Category:File
Name:/usr/bin/X11/my_product " -syspage Application; fi"

You can cut, paste, and edit this example.

For a more detailed discussion of the iconbookedit command, see the
iconbookedit(1M) reference page or Chapter 11, “Creating Desktop Icons: An
Overview” in the Indigo Magic Desktop Integration Guide.

Caution: Do not use exitop to add directories. Doing so can cause the size of
your product to change, and because inst doesn’t know about directories
created through exitop, it cannot account for the size change. Add
directories through the Tag Files worksheet.

The removeop Attribute

Use the removeop attribute to specify a list of command for swpkg to execute
after a file is removed. removeops are executed only when a subsystem is
removed (not during an upgrade).

See the following sections:

• Steps for Using an Ops Command

• Example: Send Email After Removing Executable

• Ops Limitations

Example: Send Email After Removing Executable

The following example sends email to the developer (you) after the user
removes the executable (e.g. versions remove my_product).

Using the Add Attributes Worksheet

103

"echo $USER@‘hostname‘.‘domainname‘ removed my_product| Mail developer@abc.com"

You can cut, paste, and edit this example.

Steps for Using an Ops Command

To use an ops command, follow these steps:

1. Select a file from the IDB file list.

2. Select the ops attribute.

3. Type commands into the ops text field.

–or–

Cut and paste the example code found in the specific ops section, and
replace code as necessary.

If you type the commands, be sure to

• enclose the list of commands in a pair of double quotes

• precede semicolons with a backslash, if you want them taken
literally

• press <Enter> after each separate command

4. Click the Assign arrow button.

Note: When saving your ops commands into the IDB file, swpkg converts
new lines into semicolons. When you start a new session with this IDB file,
swpkg converts the semicolons back to new lines. To tell swpkg that you really
do want a semicolon and not a new line, put a backslash in front of all “real”
semicolons.

Ops Limitations

Although an ops attribute provides the flexibility to perform many types of
processing at installation time, you should limit its use for these reasons:

• If the commands in the list do any type of processing that increases the
use of disk space, such as uncompressing files, the user could run out of
disk space during installation because Software Manager has no way of
knowing how much disk space is required.

104

Chapter 6: Adding Attributes

• If files in the software product are modified during installation, the
versions -m command reports them as being modified. This can be
confusing for users because they have no way of finding out what the
changes were and in many cases won’t know that they were done
during installation.

• Extensive processing in an ops command makes installations take
longer.

• Errors that occur while running an ops command are very hard for
users to diagnose and correct.

The noshare Attribute

When your software product is “installed” on a diskless workstation, each
file is installed on a server in the share tree by default. This means that just
one copy of each file is installed on the server and that copy is used by all
diskless clients of that server. Your product may contain files that need to be
duplicated for each client, typically because they are configuration files that
must be modified for each client workstation.

To indicate that a file is to be replicated for each diskless client, select the
noshare attribute from the Attribute Viewer. After selecting this attribute,
click the Assign arrow button to assign the attribute to the selected file.

The nostrip Attribute

By default, swpkg automatically strips all binaries. You can override this
behavior by selecting the nostrip attribute from the Attribute Viewer. After
selecting this attribute, click the Assign arrow button to assign the attribute
to the selected file. (See the strip(1) reference page for more information.)

The norqs Attribute

Use the norqs attribute when you don’t want an executable to be included
on the list for rqsall (see the manpage for rqsall). For example, add this
attribute to any executable you don’t want modified as a result of a
quickstart.

Using the Add Attributes Worksheet

105

The stripdso Attribute

Use the stripdso attribute to strip symbolic information from shared library
objects.

Selecting Hardware Installation Attributes

The lower portion of the Add Attributes worksheet (see Figure 6-3) titled
Hardware Attributes, provides a list of the model names for selection.
Clicking on a name selects/deselects it for assignment. Click the Clear All
Values button to deselect all items.

106

Chapter 6: Adding Attributes

Figure 6-3 The Attributes Specification Sheet: Hardware Attributes

In most cases, the files you include in your software product are applicable
to all models of Silicon Graphics workstations. However, swpkg does provide
a mechanism for restricting the installation of files to particular models on a
per-file basis. You can use this mechanism to prevent users from installing
files on a workstation that can’t run them (which is better than allowing
users to install files that won’t work properly).

Using the Add Attributes Worksheet

107

You’ll need to set up installation restrictions if:

• your application doesn’t run on all Silicon Graphics workstations

• different versions of a file are required for different models

• a file in your product doesn’t apply to particular models

You can restrict installation by specifying model or board names.

Restricting Installation to Specific Models

The lower section of the Add Attributes view labeled Hardware Attributes
presents a list of model names for selection. Clicking on a name selects or
deselects it for assignment. Clicking on the Clear All Values button deselects
all items.

To see a list of boards used with specific models, choose “Show SGI Board
Names” from the View menu.

To restrict installation to specific models:

1. Select the file(s) from the IDB File List.

2. Select the models on which the selected file(s) can be installed.

3. Click the Assign arrow button.

Restricting Installation to Specific Boards

You can restrict installation to specific boards in three categories;
CPUBOARD (Central Processing Unit Board), GFXBOARD (Graphics
Board), and SUBGR (Subgraphics Board).

Model and board names are interdependent. swpkg references a matrix (/
var/inst/machfile) of legitimate model and board combinations. For example,
pressing the R3k Boards Only button selects all of the R3000 based cpuboards,
and makes R4000 based models insensitive. You can still make further CPU
board selections and deselections by clicking the check button
corresponding to a particular CPU board.

Note: The R4000 boards include derivatives of the R4000 architecture, such
as R4400.

108

Chapter 6: Adding Attributes

To get the values for CPUBOARD, GFXBOARD, and SUBGR for a particular
workstation, use the hinv(1M) command. From the output, to find out
whether the workstation has an R3k or an R4k processor, look at the line that
starts with “CPU.” For more information on the type of CPU board, look at
the first line of the hinv output.

The hinv output provides graphics board and subgraphics board
information using a different terminology than is used in the GFXBOARD
and SUBGR sublists. To determine the values for GFXBOARD and SUBGR
from hinv output, first look at the line labeled “Graphics board.” The IRIS
Software installation Guide provides a table that maps the hinv output for each
type of graphics board to the corresponding GFXBOARD and SUBGR
values.

Since new values of CPUBOARD, GFXBOARD, and SUBGR may have been
added for new models of workstations released after the IRIS Software
Installation Guide was published, always check the most recent Release Notes
for System Software for a current list of possible values.

Assigning the Selected Attributes

Use the Assign arrow button to assign selected attributes to a file or files in
the IDB file list. To do this, select the file(s) from the IDB file list, make your
selections from the Attributes Specification sheet, then click the left mouse
button on the Assign arrow button.

Chapter 7

This chapter describes how to build
the installable product. It also
discusses how to change a product
that you’ve built, how to merge two
or more existing products into a
single product, and how to divide an
exisiting product into two or more
separate products.

Building the Product

111

Chapter 7

7. Building the Product

This chapter explains how to build your product. It contains these sections:

• “Building the Product: Before You Begin” on page 111 provides some
background information and lists the prerequisites for building your
product.

• “Building the Product: The Basic Steps” on page 112 lists the basic steps
for building your product.

• “Using the Build Product Worksheet” on page 113 describes the
features of the worksheet and explains how to use it to build your
product.

• “After the First Build” on page 118 describes how to change a product
that you’ve built, how to merge two or more existing products into a
single product, and how to divide an existing product into two or more
separate products.

Building the Product: Before You Begin

This section lists the prerequisites for building a product and explains how
swpkg builds a product.

Prerequisites

Before you build your product, you must first create a product hierarchy
using the Create Product Hierarchy worksheet (see Chapter 3), tag the files
using the Tag Files worksheet (see Chapter 4), and edit permissions and
destinations for the files using the Edit Permissions & Destinations
worksheet (see Chapter 5). Also, you must specify installation attributes, if
any, for each file in your product (see Chapter 6).

112

Chapter 7: Building the Product

In particular, make sure that all your product’s files are listed in the IDB
Viewer. If some are missing, go back to the Tag Files worksheet to tag them
and include them in the IDB file (see “Tagging the Files: The Basic Steps” on
page 71 for instructions).

Note: You only need to complete the above steps once for each product
(unless you need to change the product hierarchy). After that, you can use
the Build Product worksheet to build the product as often as necessary.

How Does swpkg Build a Product?

swpkg builds a product using the gendist command, which generates the
primary components for software products: the product descriptor, the
product IDB, and the images.

To build a product, gendist needs three things:

• a tree containing all the files to be shipped

• a master IDB file containing a description of each file or directory to be
included in the product

• a distribution specification (spec) file that describes the product
structure

swpkg takes your selections and input for each worksheet and uses them to
create the required spec and IDB files for gendist. You can generate and/or
edit these files by hand, if you like.

For more information on the gendist command, see the gendist(1M) reference
page.

Building the Product: The Basic Steps

To build a product, follow these steps:

1. Select one or more items from the IDB file list.

2. Specify the desired build options for the selected item(s) by clicking the
appropriate Build Options check buttons. (See “Selecting Build
Options” on page 116 for descriptions of the build options.)

Using the Build Product Worksheet

113

3. Save the spec and IDB files using the “Save” menu item from the File
pull-down menu.

4. Try a test of the build by clicking the Test Build button.

5. Resolve any error messages that appear in the Message Area during the
test. Appendix B, “Troubleshooting,” provides some troubleshooting
information.

6. Build the product by clicking the Build All button.

Using the Build Product Worksheet

This section describes the features of the Build Product worksheet, shown in
Figure 7-1, and explains how to use the worksheet to build a product.

114

Chapter 7: Building the Product

Figure 7-1 The Build Product Worksheet

The Build Product worksheet contains these major parts:

• Worksheet Selection Tabs (described in “Using the Worksheet Selection
Tabs” on page 8)

• Message Area (described in “Using the Message Area” on page 8)

Using the Build Product Worksheet

115

• The IDB File Viewer (described in “Accessing Your IDB File Using the
IDB File Viewer” on page 75)

• The Spec File Path Label (described in “The Spec File Path Label” on
page 115)

• The Source, Destination, and Distribution text fields (described in
“Setting Tree Root and the Distribution Directory” on page 115)

• The Build Options check buttons (described in “Selecting Build
Options” on page 116)

• The Test Build button (described in “Running a Test Build” on page 118)

• The Build All button (described in “Building the Product” on page 118)

The Spec File Path Label

The spec file path label shows the current spec file pathname. Until a valid
spec file is identified, no path is listed. For information on creating a spec file
or changing the spec file path, see “Using the File Menu” on page 5. For a
definition of a spec file, read “What’s a Spec File?” on page 40.

Setting Tree Root and the Distribution Directory

If you haven’t already specified a source root in the Edit Permissions &
Destinations worksheet, you can do so using the Source Tree Root text field.
It is not necessary to specify this tree root. You do, however, need to specify
the distribution directory for your product. This section explains how to set
the tree root and the distribution directory.

Setting a Source Tree Root

Typically, you’ll have already specified the source tree root in the Edit
Permissions & Destinations worksheet. You can also set the source tree root
here. Before changing the source tree root, you should read “Setting Source
Tree Roots” on page 86, which tells you what the source tree root is and
warns you of the risks involved.

To set a source tree root, type the source tree root path in the Source Tree Root
text field and press <Enter>.

116

Chapter 7: Building the Product

If the source tree root you specify is invalid, then you will see one of the
following dialogs when you build the product:

• No files found under Source Root /newroot.

• 10 (of 20 entries) not found under Source Root /root.

Note: Instead of the numbers 10 and 20, you see numbers appropriate for
your product. The number of files found varies—swpkg might think it has
found some files but they are probably the wrong ones.

Setting the Distribution Directory

The distribution directory is the directory in which swpkg puts the built,
installable product files. The default distribution directory is /usr/dist.

To set a distribution directory for all the files in your product, first select all
the files in your product by clicking the All button in the IDB File Viewer).
Then type your desired distribution directory path in the Distribution
Directory text field and press <Enter>.

Selecting Build Options

The Build Options check buttons allow you to select any or all of these four
build options for each of your product’s files:

• Verbose

• Maint

• No Compress

• No Strip

To select an option, just click the left mouse button on the appropriate option
check button. The option is selected when a red check mark appears on the
button.

Using the Build Product Worksheet

117

The Verbose Build Option

Check the Verbose button when you want swpkg to work in verbose mode—
providing more output as the distribution is created. This output appears in
the Message Area.

The Maint Build Option

Checking the Maint button tells swpkg to generate a maintenance product.
Silicon Graphics recommends that you do not use this option at this time. It
is included in swpkg for compatibility with the previous tools, but it might be
replaced in future releases. In general, rather than creating a maintenance
product, it’s better to create a new version of your product.

A maintenance product contains only files that include bug fixes, new
features, or support for new hardware. When users install a maintenance
release, the files in the maintenance release overwrite existing versions of
those files. If a previously installed file does not have a replacement file in
the maintenance release, it is not removed.

A maintenance release can include files from many products, but is
packaged as one or sometimes two products. Product names for
maintenance releases are usually of the form “maint” followed by a digit
(this digit has no inherent meaning). Image names are created by taking the
original product names and image names and joining them with an
underscore (_) rather than a period. Subsystem names remain the same. For
example, the maintenance version of the subsystem eoe1.sw.unix is named
maint1.eoe1_sw.unix.

The No Compress Build Option

Check the No compress button to tell swpkg not to compress the images being
built.

The No Strip Build Option

Check the No Strip button to tell swpkg not to strip any of the executables.

118

Chapter 7: Building the Product

Running a Test Build

The Test Build button initiates a dry run, which reads the files and checks
their validity without writing anything. Error messages, if any, appear in the
Message Area.Appendix B, “Troubleshooting” provides some
troubleshooting information.

Building the Product

The Build All button builds the product—creating the files in the Distribution
Directory. These include binary versions of the IDB and spec files. Error
messages, if any, appear in the Message Area.

After the First Build

After you’ve built your product the first time, subsequent builds for that
product are much easier, since you already have a spec and IDB file. This
section discusses subsequent swpkg builds. It contains these sections:

• “Building the Product After the First swpkg Build” explains how to
build a product that’s been built (using swpkg) before.

• “Combining Existing Products Into a Single Product” explains how to
take two existing products that have both been built using swpkg and
merge them into a single product.

• “Incorporating the Help Subsystem into a Product” on page 123
describes how to merge an online help subsystem with your product.

• “Breaking an Existing Product Into Two Products” explains how to
break apart an existing product (that’s been built with swpkg) into two
or more products.

Note: If you have existing spec and IDB files that were not generated with
swpkg, you can use them with swpkg. However, you’ll have to remove any
includes or defines from the IDB file, because swpkg doesn’t handle them.

After the First Build

119

Warning: Do not copy files from the source directory into the
distribution directory: you will be overwriting important files. Your spec
and idb files are saved in the source directory. When your product is built,
gendist saves files of the same name in the distribution directory. Though
these files are identically named, they are not the same.

Building the Product After the First swpkg Build

This section explains what to do under these circumstances:

• You’ve already built your product at least once using swpkg and you
don’t want to make any changes to the spec and IDB files (for example,
changing filenames, adding new files, or changing the product
hierarchy).

• You’ve used swpkg to build your product once, but you want to make
some changes to the spec and IDB files.

The first case is the easiest. After making changes to the files that comprise
your product (fixing bugs, adding features, and so on), you want to build the
product again. Since you haven’t changed any of the filenames and you
don’t want to alter the product hierarchy, you can go straight to the Build
Product Worksheet. Follow these steps:

1. Start swpkg and open the Build Product worksheet.

2. From the File menu, open the “Open” cascade menu and select “Both.”
The Open Spec window appears.

3. Use the file browser and text field to select the spec file for your product
and click the OK button. The Open Idb window appears.

4. Use the file browser and text field to select the IDB file for your product
and click the OK button.

5. If, in the previous build of your product, you specified a source tree
root, enter the root in the corresponding text field now. Source roots are
discussed in “Setting Source Tree Roots” on page 86. (swpkg does not
save the source tree root in the spec and IDB files, so you have to re-
enter this information each time you build the product.)

120

Chapter 7: Building the Product

6. Select the desired build options. The build options are described in
“Selecting Build Options” on page 116. (swpkg does not save build
option selections in the spec and IDB files, so you have to re-enter this
information each time you build the product.)

7. Try a test of the build by clicking the Test Build button.

8. Resolve any error messages that appear in the Message Area during the
test. Appendix B, “Troubleshooting,” provides some troubleshooting
information.

9. Build the product by clicking the Build All button.

If you do need to change the spec and/or IDB file, then you’ll have to make
those changes before you build the product again. The exact steps depend on
the changes you want to make, but in general:

1. Start swpkg.

2. From the File menu, open the “Open” cascade menu and select “Both.”
The Open Spec window appears.

3. Use the file browser and text field to select the spec file for your product
and click the OK button. The Open Idb window appears.

4. Use the file browser and text field to select the IDB file for your product
and click the OK button.

5. Use whatever worksheets you need in order to make the desired
changes. For example, if you just want to change installation attributes
for a particular file or files, then open the Add Attributes worksheet,
make your changes, and build the product.

If you also need to add a new file, then you’ll need to open the Tag Files
worksheet to tag the file and the Edit Permissions and Destinations
worksheet to set the permissions and destinations for the new file.

If you need to set installation attributes for the new file, you’ll need to
use the Add Attributes worksheet as well.

6. Open the Build Product worksheet.

7. If, in the previous build of your product, you specified a source tree
root, enter that root in the corresponding text field now. Source tree
roots are discussed in “Setting Source Tree Roots” on page 86. (swpkg
does not save the source tree root in the spec and IDB files, so you have
to re-enter this information each time you build the product.)

After the First Build

121

8. Select the desired build options. The build options are described in
“Selecting Build Options” on page 116. (swpkg does not save build
option selections in the spec and IDB files, so you have to re-enter this
information each time you build the product.)

9. Try a test of the build by clicking the Test Build button.

10. Resolve any error messages that appear in the Message Area during the
test. Appendix B, “Troubleshooting,” provides some troubleshooting
information.

11. Build the product by clicking the Build All button.

Combining Existing Products Into a Single Product

This section explains how to merge two existing products (that were both
originally built with swpkg) into a single product. You can merge more than
two products, if you like, by appending more than one spec and IDB file to
the spec and IDB files for the first product (see Step 2). To merge two existing
products into a single product, follow these steps:

1. Start swpkg.

2. From the File menu, open the “Open” cascade menu and select “Both.”
The Open Spec window appears.

3. Use the file browser and text field to select the spec file for the first
product and click the OK button. The Open Idb window appears.

4. Use the file browser and text field to select the IDB file for the first
product and click the OK button.

5. From the File menu, open the “Append” cascade menu and select
“Spec.” The Open Spec window appears. Use the file browser and text
field to select the spec file for the second product and click the OK
button.

6. From the File menu, open the “Append” cascade menu and select
“Idb.” The Open Idb window appears. Use the file browser and text
field to select the IDB file for the second product and click the OK
button.

122

Chapter 7: Building the Product

7. Now you have a single spec file and a single IDB file. Each file contains
everything that was in each of the corresponding files for the two
original products. Use the Create Product Hierarchy to set up a product
hierarchy for the new product, choose a new product name, and so on.

8. Use the Tag Files worksheet to make sure each filename is tagged
correctly.

9. If the two original products used different source tree roots, open the
Edit Permissions and Destinations worksheet and correct the
pathnames so that they agree with whatever source tree root you’re
going to use for the new product. Set the source tree root for the
product, if you don’t plan to use the default values (/).

10. If you want to change permissions, destinations, or installation
attributes for a particular file, open the appropriate worksheet and
make your changes.

11. Open the Build Product worksheet. If the two original products used
the same source tree root, enter that root in the corresponding text field
now (if you didn’t already do this in Step 9). Source tree roots are
discussed in “Setting Source Tree Roots” on page 86. (swpkg does not
save the source tree root in the spec and IDB files, so you have to re-
enter this information each time you build the product.)

12. Select the desired build options. The build options are described in
“Selecting Build Options” on page 116. (swpkg does not save build
option selections in the spec and IDB files, so you have to re-enter this
information each time you build the product.)

13. Try a test of the build by clicking the Test Build button. When you’re
asked where to save the Spec and IDB files, choose new filenames so
that you don’t overwrite the spec and IDB files for the original
products.

14. Resolve any error messages that appear in the Message Area during the
test. Appendix B, “Troubleshooting,” provides some troubleshooting
information.

15. Build the product by clicking the Build All button.

After the First Build

123

Incorporating the Help Subsystem into a Product

If you’ve created online help for your product as described in Chapter 9,
“Providing Online Help With SGIHelp,” in the Indigo Magic Desktop
Integration Guide, you should incorporate the help into your installable
images. “Producing the Final Product” in that chapter describes how to
create an installable help subsystem, which you should do before
incorporating it with the rest of your product. That process automatically
creates appropriate spec and IDB files for the help subsystem; tags the files;
sets the permissions and destinations; and assigns the necessary attributes.
The tools that create the online help subsystem use “/” as the Source Tree
Root directory.

If you’ve already created the spec and IDB files for your product using
swpkg, you can merge the help subsystem with the existing files as described
in “Combining Existing Products Into a Single Product” on page 121.

If you’ve not already created the spec and IDB files for your product, you can
open the existing help subsystem spec and IDB files, and expand them as
needed to handle the rest of your product.

Breaking an Existing Product Into Two Products

To break apart an existing product (built with swpkg) into two or more
products, follow these steps:

1. Start swpkg.

2. From the File menu, open the “Open” cascade menu and select “Both.”
The Open Spec window appears. Use the file browser and text field to
select the spec file for the product and click the OK button. The Open
Idb window appears. Use the file browser and text field to select the
IDB file for the product and click the OK button.

3. Open the Create Product Hierarchy worksheet and delete nodes from
the Product Hierarchy graph until you have the structure you want for
the first of your two “new” products.

4. Open the Tag Files worksheet and delete all the files that don’t belong
in the first product. Re-tag any remaining files, if necessary.

124

Chapter 7: Building the Product

5. Use the other worksheets to make any other changes necessary to the
remaining files (such as changing the product name, changing
installation attributes, and so on).

6. If, in the previous build of the (whole) product, you specified a source
tree root, enter that root in the corresponding text field now. Source tree
roots are discussed in “Setting Source Tree Roots” on page 86. (swpkg
does not save the source tree root in the spec and IDB files, so you have
to re-enter this information each time you build the product.)

7. Select the desired build options. The build options are described in
“Selecting Build Options” on page 116. (swpkg does not save build
option selections in the spec and IDB files, so you have to re-enter this
information each time you build the product.)

8. Try a test of the build by clicking the Test Build button. When you’re
asked where to save the Spec and IDB files, choose new filenames so
that you don’t overwrite the spec and IDB files for the original product.

9. Resolve any error messages that appear in the Message Area during the
test. Appendix B, “Troubleshooting,” provides some troubleshooting
information.

10. Build the first of the two new products by clicking the Build All button.

11. Go back to the Create Product Hierarchy worksheet and open the Spec
and IDB files for the original (whole) product.

12. Repeat Steps 2 through 10 for the second of your two “new” products.

Chapter 1

This chapter describes how to create
a patch product.

Creating a Patch Product

127

Chapter 8

8. Creating a Patch Product

This chapter explains how to create a patch product.

Creating a Patch Product: The Basic Steps

The following steps show you how to create a patch product. For more
information about a patch product, see “Patch Product Requirements and
Concepts.”

1. Open the existing product files — both the spec and idb files.

■ From the File menu, select “Open.”

■ From the rollover menu, select “Both.”

2. Create the patch.

■ From the File menu, select “Create Patch...”

■ Provide a product name, or keep the default.

■ In the Tag/Source list, select the files to be included in the patch.
Use <Shift>click for continuous selection and <Ctrl>click for
random selection.

■ Click OK.

This step creates both the spec and idb files for the patch product.

3. Keep or edit the follow rule.

■ Click on a subsystem in the Create Product Hierarchy worksheet.

■ Keep or edit the follows rule in the Subsystem Specification sheet
(see “Patch Product Requirements and Concepts”)

4. Keep or edit the permissions, destinations, and attributes using the
appropriate worksheets.

128

Chapter 8: Creating a Patch Product

Note: When you create a patch through the “Create Patch...” menu item
in the File menu, swpkg automatically copies all of the permissions,
destinations, and attributes from the original files into the patch product
and eliminates the need to reset these items.

5. Build the patch product (see Chapter 7, “Building the Product”).

6. If you’ve forgotten to add a subsystem, begin the process again.

Because all of the settings in the original files are automatically copied
when you create a patch through the “Create Patch...” menu item on
the File menu, you may find it easiest to start the process over in order
to include additional subsystems.

If you choose to add a subsystem through the Create Product Hierarchy
worksheet, you must write a follows rule for the subsystem and set the
permissions, destinations, and attributes.

Patch Product Requirements and Concepts

A patch product involves the following concepts and requirements.

• The patch product is separate from the original product.

• The original product files are not modified.

– Even though you open the original product files, they are not
modified when you create the patch. Just before opening the Create
Patch window, swpkg closes the original files.

• The default name for the patch product is the original product name
followed by _patch# where # is a number that increments with each
patch created for the product.

Warning: You can edit this name. However, SGI recommends that
you use the provided name which allows swpkg to increment patches
appropriately.

• All subsystems in the patch product are automatically assigned a
follows rule. This rule is mandatory (only one is allowed) and can be
edited in the Create Product Hierarchy worksheet by clicking on a
subsystem node. It has the following format:

follows name lowvers highvers

Creating a Patch Product: The Basic Steps

129

where

name Is the name of the subsystem being replaced.

lowvers Is the lower boundary range of the product versions to
be replaced. Use 0 or higher.

highvers Is the higher boundary range of the product versions to
be replaced. Use one of the following:

oldvers, interpreted as the current version minus 1

an actual version number that you supply

For example:

If your original product name is finance, and you’ve written a patch for
the base software subsystem, version 2, the follows rule would read
something like:

follows finance.sw.base 2 2

• When you save the patch product, you are provided with the default
names of product_patch#.spec and product_patch#.idb

where

product Is the name of the original product

Is a number that increments with each patch created for
the product.

You can edit this name.

Appendix A

In most cases, you can simply assign
files directly to subsystems using the
Tag Files worksheet. Occasionally,
though, you might have complex
cases where it’s simplest to create
mapping expressions for assigning files
to subsystems.

Writing Mapping Expressions

133

Appendix A

A. Writing Mapping Expressions

This appendix contains these sections:

• “About Mapping Expressions” on page 133

• “Variables and Data Types” on page 134

• “Operators” on page 134

• “Built in Variables” on page 135

• “Built-In Functions” on page 136

• “Statements” on page 137

• “Example” on page 137

About Mapping Expressions

By writing effective expressions, you can gather files with different names
from anywhere and pull them together into one subsystem, or qualify which
files with a particular IDB tag go into a subsystem.

Although you can usually make these changes by changing your product
structure and tags using the swpkg worksheets, you might occasionally
prefer instead to add mapping expressions directly to the spec file. Mapping
expressions are typically used when you have a very complex existing spec
file in which you need to change the file-to-subsystem mappings—but you
do not want to completely overhaul the spec file.

You can change the file-to-subsystem mappings by typing valid mapping
expressions into the Mappings text field in the Complete Product Hierarchy
worksheet. This appendix explains the “expressions language” used to
create valid mapping expressions.

134

Appendix A: Writing Mapping Expressions

Note: Using expressions can cause problems because subsystem names can
change, breaking the intended behavior. Silicon Graphics recommends that
you introduce expressions carefully, and only when absolutely necessary.

Variables and Data Types

Values are typed as integer or string—non-zero integers and non-null strings
are considered “true” in boolean tests. A reference to an IDB attribute is
“true” if the IDB attribute is present in the database record being operated
on.

References to IDB attribute arguments are made with a form of subscripting
after the argument name, where a list of integers (or integers separated by
‘‘..’’ indicating a range) selects specific arguments. The variable argc within
brackets refers to the last argument. The selected arguments are
concatenated with separating spaces and returned as a string value. (Note
that the mechanisms of IDB attribute reference just described are likely to
change. They are not terribly useful as is.)

Integer and string variables and constants are available, with single and
double quotes being entirely equivalent around string constants.

Operators

The primary values may be combined with most of the usual operators,
which behave as in C unless otherwise noted:

+ add

- subtract

* multiply

/ divide

=~ pattern match

!= pattern not match

// substring

:: concatenation

Built in Variables

135

Parenthesis for grouping are also available.

Built in Variables

type The file type as a one-character string; the first character of
file, directory, block device, character device, (symbolic)
link, or (named) pipe (that is, FIFO).

mode Permission bits. The type of this value is integer, but is
converted to a string according to context (though it’s a
decimal integer, which is probably not what you want).

owner The name of the owner. The UID is mapped through etc/
passwd.

& bitwise and

| bitwise or

^ bitwise exclusive or

~ bitwise (unary) not

&& logical and

|| logical or

! logical not

!= not equal comparison (on integers or strings)

== equal comparison (on integers or strings)

<= less than or equal comparison (on integers or
strings)

>= greater than or equal comparison (on integers or
strings)

< less than comparison (on integers or strings)

> greater than comparison (on integers or strings)

? : conditional

= assignment

, expression list

136

Appendix A: Writing Mapping Expressions

group The name of the group. The GID is mapped through etc/
group.

dstpath The relative (to root) pathname of the file in the software
product destination tree.

srcpath The relative pathname of the file in the source tree.

nattr The integer number of IDB attributes associated with the
record being operated on.

argc (Defined only within IDB attribute argument list
references.) The number of arguments for the current IDB
attribute.

sbase The pathname of the root of the source tree.

rbase The pathname of the root of the destination tree.

IDB The pathname of the primary IDB file. When files are
accessed, the mapping between user and group integer IDs
and the owner and group string values in the IDB are based
on the etc/passwd and etc/group files, respectively. These are
first sought under sbase, then under rbase, then under /.

Built-In Functions

spath(s) Returns an absolute pathname for the argument; if the
given value is relative, it is concatenated with the value of
sbase. This is useful in converting a srcpath value into an
absolute pathname.

rpath(s) Returns an absolute destination pathname, concatenated
with the value of rbase.

putrec() Prints the current record in standard format (that is, on one
line, packed).

printf(f,a...) Formatted print (subset of stdio printf). Recognizes field
widths with leading zero pad indicator, types %s, %d, %o.

print(a...) Unformatted print. Prints values as decimal integers or
strings, separated by spaces, terminated with newline.

bytes(s) Returns the size, in bytes, of the given file, or -1 if not found.

Statements

137

blocks(s) Returns the size, in blocks, of the given file, or -1 if not
found.

access(s,m) Returns the value of the access(2) system call.

Statements

The following statements are implemented as in C: if [else], while, for,
break, continue, return, grouping with braces, and expressions.

Example

The basic spec file for rfind doesn’t follow the recommendation that each
software subsystem have a matching reference page system. Instead, a single
IDB tag was used for all reference pages. You could use this expression to put
the .1 reference pages into one subsystem and the .1m reference pages into
another:

exp ’rfind.man.rfind && srcpath =~ "*.1"’

exp ’rfind.man.rfind && srcpath =~ "*.1m"’

Appendix B

This chapter provides tips for
troubleshooting common Software
Packager problems.

Troubleshooting

141

Appendix B

B. Troubleshooting

This chapter provides these sections:

• “Checklist of Do’s and Don’ts” contains a list of requirements for
successful packaging of software.

• “Error Messages” lists some common error messages and makes
suggestions for finding and fixing the problems.

• “Other Problems” discusses other problems that you might have when
trying to build your product.

Checklist of Do’s and Don’ts

Recommendations for successful packaging of software have been included
throughout this guide. Recommendations that should not be violated are
repeated in the list below so that you can easily verify that you haven’t
violated important recommendations.

• Don’t include hard links in your product.

• Don’t put a file in more than one subsystem.

• Don’t begin any subsystem name with a digit.

• Begin all product, image, and subsystem descriptions with the
marketing name of your product.

• Do not select the Required subsystem installation option unless the
subsystem is truly required for operation of the workstation.

• Parens are illegal.

142

Appendix B: Troubleshooting

Error Messages

Here’s a list of possible errors and problems:

• An error in the spec file prevented gendist from parsing it.

• A failure might be a sign that the IDB file was not sorted. It can also
mean that swpkg cannot read the spec file properly.

• Warnings about duplicate files indicate that there are two or more files
with identical pathnames in a subsystem and these files don’t have
“mach” dependent attributes that specify that there are machine-
specific versions of this file. Fix these warnings by making the
pathnames for each of the files in your subsystem unique.

• Invalid IDB attributes result in messages.

• Error messages might indicate that you have empty products, images,
or subsystems. Check to determine whether or not they need to exist. If
not, you can just comment them out temporarily in the spec file.

Other Problems

This section addresses some of the problems you are most likely to
encounter and presents approaches to solving the problem.

Problem

Obsolete subsystems or older versions of subsystems show up in a versions -a
listing after installation.

Meaning

If you install all of the subsystems in a product and a versions -a listing shows
multiple lines for products, images, and subsystems, then the new version of
your product doesn’t completely remove the old version of your product.

Corrective Action

Add replaces statements to the spec file that get rid of older versions and
obsolete subsystems. See “Setting Installation Rules” on page 58 for
instructions.

Other Problems

143

Problem

Files are missing from subsystems.

Meaning

Somewhere along the way, some part of the process failed.

Corrective Action

For each file that is missing, check for these conditions:

• The file is listed in the IDB file.

• The IDB tag for the file mapped to a valid subsystem.

• The file doesn’t have a mach tag for a machine other than the one you
installed on.

Problem

Syntax error message.

Possible Meaning

You started with an existing product that had includes or defines in the IDB
file. swpkg doesn’t understand these, so you see a syntax error.

Corrective Action

Remove any includes or defines from the IDB file.

