
MIPS Compiling and Performance
Tuning Guide

Document Number 007-2479-001

MIPS Compiling and Performance Tuning Guide
Document Number 007-2479-001

CONTRIBUTORS

Written by Arthur Evans, Wendy Ferguson, Jed Hartman, and Jackie Neider
Edited by Christina Cary
Production by Laura Cooper and Lorrie Williams
Engineering contributions by Dave Anderson, Dave Babcock, Jack Carter, Wei-Chau

Chang, Julia Chow, Jay Gischer, W. Wilson Ho, Bill Mannell, Bron Nelson, Andy
Palay, John Wilkinson

Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,
Erik Lindholm, and Kay Maitz

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and IRIS are registered trademarks and IRIX, CASEVision, IRIS IM,
IRIS Showcase, Impressario, Indigo Magic, Inventor, IRIS-4D, POWER Series,
RealityEngine, CHALLENGE, Onyx, and WorkShop are trademarks of Silicon
Graphics, Inc. UNIX is a registered trademark of UNIX System Laboratories. OSF/
Motif is a trademark of Open Software Foundation, Inc. The X Window System is a
trademark of the Massachusetts Institute of Technology. Ada is a registered
trademark of Ada Joint Program Office, U.S. Government. Post-It is a registered
trademark of Minnesota Mining and Manufacturing. PostScript is a registered
trademark and Display PostScript is a trademark of Adobe Systems, Inc. NFS is a
trademark of Sun Microsystems, Inc. Speedo is a trademark of Bitstream, Inc.

iii

 Contents

List of Figures ix

List of Tables xi

About This Guide xiii
What This Guide Contains xiii
What You Should Know Before Reading This Guide xiv
Suggestions for Further Reading xiv
Conventions Used in This Guide xv

1. About the Compiler System 1

2. Using the Compiler System 9
Object File Format and Dynamic Linking 10

Executable and Linking Format 10
Dynamic Shared Objects 11
Position-Independent Code 11

 Source File Considerations 12
Source File Naming Conventions 12
Header Files 13

Specifying a Header File 14
Creating a Header File for Multiple Languages 14

Compiler Drivers 15
Default Behavior for Compiler Drivers 16
General Options for Compiler Drivers 16

iv

Contents

Linking 19
Invoking the Linker Manually 20

Linker Syntax 21
Linker Example 22

Linking Assembly Language Programs 22
Linking Libraries 23

Specifying Libraries and DSOs 23
Examples of Linking DSOs 25

Linking to Dynamic Shared Objects 25
Linking Multilanguage Programs 26
Finding an Unresolved Symbol With ld 27

Debugging 28

Contents

v

Getting Information About Object Files 28
Disassembling Object Files with dis 29

dis Syntax 29
dis Options 30

Listing Selected Parts of Object Files and Libraries With elfdump 31
elfdump Syntax 31
elfump Options 31

Determining File Type With file 33
file Syntax 33
file Example 33

Listing Symbol Table Information: nm 33
nm Syntax 34
nm Options 34
nm Example 36
Finding a Symbol in an Unknown Library 37

Listing Selected Parts of COFF Files With odump 38
odump Syntax 38

Determining Section Sizes With size 40
size Syntax 40
size options 40
size Example 41

Removing Symbol Table and Relocation Bits with strip 41
strip Syntax 41
strip Options 41

Using the Archiver to Create Libraries 42
ar Syntax 43

Archiver Options 43
ar Examples 46

3. Dynamic Shared Objects 49
Benefits of Using DSOs 50

vi

Contents

Using DSOs 51
DSOs vs. Archive Libraries 51
Using QuickStart 52
Guidelines for Using Shared Libraries 53

Choosing Library Members 53
Tuning Shared Library Code 54

Taking Advantage of QuickStart 56
Building DSOs 58

Creating DSOs 59
Making DSOs Self-Contained 59
Controlling Symbols to be Exported or Loaded 60
Using DSOs With C++ 61
Using Registry Files 61

Registry File Format 62
Directive Lines 62
Shared Object Specification Lines 63

Runtime Linking 64
Searching for DSOs at Runtime 64
Runtime Symbol Resolution 65

Compiling with –Bsymbolic 66
Converting Libraries to DSOs 67

Dynamic Loading Under Program Control 69
Versioning of DSOs 71

The Versioning Mechanism of Silicon Graphics 71
What Is a Version? 71

4. Using the Performance Tools 77
Overview of Profiling 78
Profiling With prof 78

Running the Profiler 79
prof Syntax 79
prof Defaults 79

prof Options 80

Contents

vii

pc Sampling 81
Obtaining pc Sampling 82
Creating Multiple Profile Data Files 83
pc Sampling Frequency 84
Examples Using prof to Obtain pc Sampling 85

Example Using prof –pcsample 85
Example Using prof –pixie –dis 86

Basic Block Counting 88
Using pixie 89

pixie Syntax 89
pixie Options 89

Obtaining Basic Block Counts 90
Examples of Basic Block Counting 93

Example Using prof –pixie –invocations 94
Example Using prof –pixie –heavy 95
Example Using prof –pixie –lines 96
Example Using prof –pixie –quit 97
Example Using prof –pixie –procedures 98
Example Using prof –pixie –procedures –clock 99

Summing Basic Block Count Results 100
Using pixstats 100

pixstats Syntax 101
pixstats Options 101
Examples Using pixstats 103

Profiling Multiprocessed Executables 106
Rearranging Procedures With cord 107

cord Syntax 107
cord Options 108
Example Using cord 108

viii

Contents

5. Optimizing Program Performance 113
Optimization Overview 113

Global Optimizer 114
Benefits of Optimization 114
Optimization and Debugging 114

Using the Optimization Options 115
Compiler Optimization Options 115
Examples of Full Optimization 117

Loop Optimization 119
Unoptimized Code 120
Optimized Code 121
Loop Unrolling 121

Optimizing Separate Compilation Units 122
Optimizing Frequently Used Modules 122
Ucode Object Libraries 125

Building Ucode Object Libraries 125
Using Ucode Object Libraries 126

Improving Global Optimization 126
Optimizing C and Fortran Programs 127

C Programs Only 127
Example of Pointer Placement and Aliasing 128
Ada® Programs 130

Improving Other Optimization 130
C and Fortran Programs 130
C Programs Only 131

Register Allocation 132

A. Position-Independent Coding in Assembly Language 135
Examples 137

Index 141

ix

List of Figures

Figure 1-1 Compiler System Flowchart 5
Figure 2-1 Compilation Control Flow for Multilanguage Programs 27
Figure 3-1 An Application Linked with DSOs 57
Figure 4-1 How pc Sampling Works 83
Figure 4-2 How Basic Block Counting Works 93
Figure 4-3 How cord Works 109
Figure 5-1 Optimization Phases of the Compiler 117
Figure 5-2 Compiling with the –j Option 118
Figure 5-3 Executing Full Optimization 119
Figure 5-4 Optimization Process 124

xi

List of Tables

Table In-1 Suggestions for Further Reading xiv
Table 1-1 Compiler System Functional Components 1
Table 1-2 Compilers and Default Libraries 4
Table 2-1 Driver Input File Suffixes 12
Table 2-2 General Driver Options 17
Table 2-3 Linker Options 21
Table 2-4 Driver Options for Debugging 28
Table 2-5 dis Options 30
Table 2-6 elfdump Options 31
Table 2-7 Symbol Table Dump Options 34
Table 2-8 Character Code Meanings 35
Table 2-9 odump Options 38
Table 2-10 size Options 40
Table 2-11 strip Options 41
Table 2-12 Archiver Options 43
Table 2-13 Archiver Modifiers 44
Table 2-14 Archiver Suboptions 45
Table 3-1 libdl functions 69
Table 4-1 Options for prof 80
Table 4-2 Setting a PROFDIR Environment Variable 84
Table 4-3 Options for pixie 89
Table 4-4 Options for pixstats 101
Table 4-5 Options for cord 108
Table 5-1 Optimization Options 115

xiii

About This Guide

This guide discusses a variety of issues and tools involved in programming
under the IRIX™ operating system. It describes the components of the
compiler system, other programming tools, and dynamic shared objects. It
also explains ways to improve program performance.

What This Guide Contains

This guide consists of the following chapters:

• Chapter 1, “About the Compiler System,” provides a brief overview of
the compiler system.

• Chapter 2, “Using the Compiler System,” describes the components
and related tools of the compiler system and explains how to use them.

• Chapter 3, “Dynamic Shared Objects,” explains how to build and use
dynamic shared objects, which replace the static shared libraries used
by previous versions of IRIX.

• Chapter 4, “Using the Performance Tools,” describes how to use the
prof, pixie, and cord commands.

• Chapter 5, “Optimizing Program Performance,” covers how to reduce
program execution time by using optimization options and techniques.

• Appendix A, “Position-Independent Coding in Assembly Language,”
describes assembly language coding techniques required by this
version of IRIX.

For an overview of the IRIX programming environment and tools available
for application programming, see Programming on Silicon Graphics Computer
Systems: An Overview.

xiv

About This Guide

What You Should Know Before Reading This Guide

This guide is for anyone who wants to program effectively under the IRIX
operating system. We assume you are familiar with the IRIX (or UNIX®)
operating system and a programming language such as C. This guide does
not explain how to write or compile programs.

Suggestions for Further Reading

In addition to this guide, which describes general compilation issues for
MIPS compilers, refer toTable In-1 for a list of other Silicon Graphics
manuals you can consult for information about IRIX programming and
languages.

You can order a printed manual from Silicon Graphics by calling SGI Direct
at 1-800-800-SGI1 (800-7441). Outside the U.S. and Canada, contact your
local sales office or distributor.

Silicon Graphics also provides manuals online. To read an online manual
after installing it, type insight or double-click the InSight icon. It’s easy to
print sections and chapters of the online manuals from InSight.

Table In-1 Suggestions for Further Reading

Topic Document

IRIX programming Programming on Silicon Graphics Systems: An
Overview

Topics in IRIX Programming

Assembly language MIPSpro Assembly Language Programmer’s Guide

C language C Language Reference Manual

C++ language C++ Programming Guide

Fortran77 language Fortran77 Programmer’s Guide

Pascal language Pascal Programming Guide

Real-time programming REACT/Pro Release Notes

Conventions Used in This Guide

xv

You may also want to find out more about standard UNIX topics. For UNIX
information, consult a computer bookstore or one of the following:

• AT&T. UNIX System V Release 4 Programmer’s Guide. Englewood Cliffs,
NJ: Prentice Hall, 1990

• Levine, Mason, and Brown. lex & yacc. Sebastopol. CA: O’Reilly &
Associates, Inc., 1992

• Oram and Talbott. Managing Projects with make. Sebastopol. CA:
O’Reilly & Associates, Inc., 1991

IRIX executes all binaries that are compliant with the SVR4 ABI, as specified
in the System V Applications Binary Interface—Revised Edition and the System
V ABI MIPS Processor Supplement. Consult these manuals for details.

Conventions Used in This Guide

This guide uses these conventions and symbols:

Courier In text, the Courier font represents function names, file
names, and keywords. It is also used for command syntax,
output, and program listings.

bold Boldface is used along with Courier font to represent user
input.

italics Words in italics represent characters or numerical values
that you define. Replace the abbreviation with the defined
value. Also, italics are used for manual page names and
commands. The section number, in parentheses, follows the
name.

[] Brackets enclose optional items.

{ } Braces enclose two or more items; you must specify at least
one of the items.

| The OR symbol separates two or more optional items.

… A horizontal ellipsis in a syntax statement indicates that the
preceding optional items can appear more than once in
succession.

() Parentheses enclose entities and must be typed.

xvi

About This Guide

The following two examples illustrate the syntax conventions:

DIMENSION a(d) [,a(d)] …

indicates that the Fortran keyword DIMENSION must be typed as shown,
that the user-defined entity a(d) is required, and that one or more of a(d) can
be specified. The parentheses () enclosing d are required.

{STATIC | AUTOMATIC} v [,v] …

indicates that either the STATIC or AUTOMATIC keyword must be typed as
shown, that the user-defined entity v is required, and that one or more v
items can be specified.

This chapter provides a brief
description of the compiler system
and its components.

About the Compiler System

Chapter 1

1

Chapter 1

1. About the Compiler System

The IRIS-4D compiler system consists of a set of components that enable you
to create executable modules from programs written in languages such as C,
C++, Fortran 77, and Pascal.

The compiler system:

• uses Executable and Linking Format (ELF) for object files. ELF is the
format specified by System V Release 4 Applications Binary Interface
(SVR4 ABI). Refer to “Executable and Linking Format” for additional
information.

• uses shared libraries, called Dynamic Shared Objects (DSOs). DSOs are
loaded at run time instead of at linking time, by the run-time linker, rld.
The code for DSOs is not included in executable files; thus, executables
built with DSOs are smaller than those built with non-shared libraries,
and multiple programs can use the same DSO at the same time. For
more information, see Chapter 3, “Dynamic Shared Objects.”

• creates Position-Independent Code, (PIC) by default, to support dynamic
linking. See “Position-Independent Code,”for additional information.

Table 1-1 summarizes the IRIS-4D compiler system components and the task
each performs.

Table 1-1 Compiler System Functional Components

Tool Task Examples

Text editor Write and edit programs vi, jot, emacs

Compiler driver Compile and link programs cc, f77, pc, as

Object file analyzer Analyze object files elfdump, file, nm, odump,
size, strip

Profiler Analyze program
performance

prof, pixie

2

Chapter 1: About the Compiler System

A single program called a compiler driver (such as cc, f77, or pc) invokes the
following major components of the compiler system (refer to Figure 1-1).

• Macro preprocessor (cfe, cpp, acpp)

• Parallel analyzer (pca, pfa)

• Scalar optimizer (copt)

• Compiler front end (cfe, fcom, upas, accom_mp, ccom_mp)

• Ucode tools (ujoin, uld, umerge)

• Optimizer (uopt)

• Code generator (ugen)

• Assembler (as)

• Linker (ld)

Note: C++ has a specialized driver, CC, with slightly different options from
cc, f77, and pc. Refer to the C++ Programming Guide and C++ reference page
for details.

You can invoke a compiler driver with various options (described later in
this chapter) and with one or more source files as arguments. All specified
source files are automatically sent to the macro preprocessor.

Procedure rearranger Minimize paging/maximize
instruction cache hit rate

cord

Optimizer Improve program
performance

uopt

Archiver Produce object-file libraries ar

Run-time linker Link Dynamic Shared Objects
at run time

rld

Debugger Debug programs dbx

Table 1-1 (continued) Compiler System Functional Components

Tool Task Examples

3

Note: Preprocessing is done by cfe. The old preprocessors (cpp for
“traditional” Kernighan & Ritchie C, or acpp for ANSI C) are still available
for non-compilation preprocessing and preprocessing for copt, ccom_mp, and
accom_mp, in case you want to use them.

Although the macro preprocessor was originally designed for C programs,
it is now run by default as part of most compilations. To prevent the
preprocessor from being run, specify the –nocpp option on the driver
command line.

If available, the parallel analyzers pca and pfa produce parallelized source
code from standard source code. The result takes advantage of multiple
CPUs (when present) to achieve higher computation rates. pca and pfa are
part of the Power C and Power Fortran packages; for information about
these packages and how to obtain them, contact your dealer or sales
representative.

The compilers proper, often called “front ends,” translate source code into
intermediate code. The available compiler front ends are cfe (C), ccom_mp
and accom_mp (parallel C), fcom (Fortran 77), and upas (Pascal). ujoin, uld,
umerge, and uopt comprise the optimization subsystem of the compiler
system. (For more information about profiling, see Chapter 4, “Using the
Performance Tools.” For information about optimization, see Chapter 5,
“Optimizing Program Performance.”) ugen and as1 make up the code-
generation subsystem of the compiler system.

The linker ld combines several object files into one, performs relocation,
resolves external symbols, and merges symbol table information for
symbolic debugging. The driver automatically runs ld unless you specify the
–c option to skip the linking step.

To see the various utilities a program passes through during compilation,
invoke the appropriate driver with the –v option (or +v for the C++ driver
CC).

4

Chapter 1: About the Compiler System

When you compile or link programs, by default, the compiler searches
/usr/lib, /lib, and /usr/local/lib. Certain default libraries are automatically
linked. Drivers and their respective libraries are listed in Table 1-2.

Figure 1-1 shows compilation flow from source file to executable file (a.out).

Table 1-2 Compilers and Default Libraries

Compiler Default LIbraries

cc libc.so

CC libC.so, libc.so

f77 libftn.so, libc.so, libm.so

5

Figure 1-1 Compiler System Flowchart

−sopt

Driver
(cc, f77, or pc)

Source Files

.f

.c

.p

−mp

Macro Preprocessor
(cfe, cpp, acpp)

Scalar Optimizer
(copt)Parallel Analyzers

(pca, pfa)

−O1
or no optimization

Compiler Front End
(cfe, fcom, upas,

accom_mp, ccom_mp)

Ucode Link
(uld)

Procedure Merge
(umerge)

Optimizer
(uopt)

Code Generator
(ugen)

Assembler
(as1)

Link Editor
(ld)

.b

.u

.s

.o

a.out.a

Ucode Library

Assembler File

Assembled Object File

Linked Object File

−O3 or −j

−O2

−s

−c

This chapter describes the
components of the compiler system,
and explains how to use them.

Using the Compiler System

Chapter 2

9

Chapter 2

2. Using the Compiler System

This chapter provides information about the compiler system and includes
information about topics such as object file format and compiler options.
Specifically, this chapter contains these sections:

• “Object File Format and Dynamic Linking” discusses the major
differences between the latest version of IRIX and previous versions.

• “Source File Considerations” explains source file naming conventions
and the procedure for including header files.

• “Compiler Drivers” lists and explains the general compiler-driver
options.

• “Linking” explains how to manually link programs (using ld or a
compiler driver) and how to compile multilanguage programs. It also
describes Dynamic Shared Objects and how to link them into your
programs.

• “Debugging” explains the compiler-driver options for debugging.

• “Getting Information About Object Files” explains how to use the
object file tools to analyze object files.

• “Using the Archiver to Create Libraries” explains how to use the
archiver, ar.

For information about tools such as dis and size, see Chapter 4, “Using the
Performance Tools.” For information about optimizing your program, see
Chapter 5, “Optimizing Program Performance.”

10

Chapter 2: Using the Compiler System

Object File Format and Dynamic Linking

A new object file format was adopted in IRIX version 5.0. The major
differences between the current compiler system and pre-5.0 compiler
systems are summarized below:

• The compiler system uses “Executable and Linking Format” (ELF) for
object files.

• The compiler system uses shared libraries, called “Dynamic Shared
Objects” (DSOs).

• The compiler system creates “Position-Independent Code,” (PIC) by
default, to support dynamic linking.

Executable and Linking Format

Previous versions of IRIX used an extended version of the Common Object
File Format (COFF) for object files. The current compiler system produces
ELF object files instead. ELF is the format specified by the System V Release
4 Applications Binary Interface (the SVR4 ABI). In addition, ELF provides
support for Dynamic Shared Objects, described below. Types of ELF object
files include:

• Relocatable files contain code and data in a format suitable for linking
with other object files to make a shared object or executable.

• Dynamic Shared Objects contain code and data suitable for dynamic
linking. Relocatable files may be linked with DSOs to create a dynamic
executable. At run time, the run-time linker combines the executable
and DSOs to produce a process image.

• Executable files are programs ready for execution. They may or may
not be dynamically linked.

COFF executables continue to run on new releases of IRIX, but the current
compiler system has no facility for creating or linking COFF executables.
COFF and ELF object files may not be linked together. To take advantage of
new IRIX features, you must recompile your code.

IRIX executes all binaries that are compliant with the SVR4 ABI, as specified
in the System V Applications Binary Interface—Revised Edition and the System
V ABI MIPS Processor Supplement. However, binaries compiled under this

Object File Format and Dynamic Linking

11

version of the compiler system are not guaranteed to comply with the SVR4
ABI. The MIPS-specific version of the SVR4 ABI is referred to as the MIPS
ABI. Programs that comply with the MIPS ABI can be run on any machine
that supports the MIPS ABI.

Dynamic Shared Objects

IRIX 5.0 introduced a new kind of shared object called a Dynamic Shared
Object, or DSO. The object code of a DSO is position-independent code (PIC),
which can be mapped into the virtual address space of several different
processes at once. DSOs are loaded at run time instead of at linking time, by
the run-time loader, rld. As is true for static shared libraries, the code for
DSOs is not included in executable files; thus, executables built with DSOs
are smaller than those built with non-shared libraries, and multiple
programs may use the same DSO at the same time.

Static shared libraries are only supported under this release for the purposes
of running old (COFF) binaries. The current compiler system has no facilities
for generating static shared libraries.

You can find additional information about DSOs in Chapter 3, “Dynamic
Shared Objects.”

Position-Independent Code

Dynamic linking requires that all object code used in the executable be
position-independent code. For source files in high-level languages, you just
need to recompile to produce PIC. Assembly language files must be
modified to produce PIC; see Appendix A, “Position-Independent Coding
in Assembly Language,” for details.

Position-independent code satisfies references indirectly by using a global
offset table (GOT), which allows code to be relocated simply by updating the
GOT. Each executable and each DSO has its own GOT.

The compiler system now produces PIC by default when compiling higher-
level language files. All of the standard libraries are now provided as DSOs,
and therefore contain PIC code; if you compile a program into non-PIC, you
will be unable to use those DSOs. One of the few reasons to compile non-PIC

12

Chapter 2: Using the Compiler System

is to build a device driver, which doesn’t rely on standard libraries; in this
case, you should use the –non_shared option to the compiler driver to
negate the default option, –KPIC. For convenience, the C library and math
library are provided in non-shared format as well as in DSO format
(although the non-shared versions are not installed by default). These
libraries can be linked –non_shared with other non-PIC files.

When running position-independent code, the global pointer is used to
point to the global offset table, so you can no longer use the –G option to
store data in the global pointer region (that is, –KPIC, the default, implies –
G 0). The compiler ignores any user-specified –G number other than zero.
For more information about this option, see the ld(1) reference page.

You can find additional information about PIC in Appendix A, “Position-
Independent Coding in Assembly Language.”

 Source File Considerations

This section describes conventions for naming source files and including
header files. Topics covered include:

• “Source File Naming Conventions”

• “Header Files”

Source File Naming Conventions

Each compiler driver recognizes the type of an input file by the suffix
assigned to the file name. Table 2-1 describes the possible file name suffixes.

Table 2-1 Driver Input File Suffixes

 Suffix Description

.s Assembly source

.i Preprocessed source code in the language of the processing driver

.c C source

Source File Considerations

13

The following example compiles preprocessed source code:

f77 -c tickle.i

The Fortran compiler, f77, assumes the file tickle.i contains Fortran
statements (because the Fortran driver is specified). f77 also assumes the file
has already been preprocessed (because the suffix is .i), and therefore does
not invoke the preprocessor.

Header Files

Header files, also called include files, contain information about the libraries
they’re associated with. They define such things as data structures, symbolic
constants, and prototypes and parameters for the functions in the library.

For example, the stdio.h header file describes, among other things, the data
types of the parameters required by printf(). To use those definitions
without having to type them into each of your source files, you can use the
#include command to tell the macro preprocessor to include the complete
text of the given header file in the current source file. Including header files
in your source files allows you to specify such definitions conveniently and
consistently in each source file that uses any of the library routines.

.C, .cxx, .cc,

.c++
C++ source

.f, .F, .for. .FOR Fortran 77 source

.p Pascal source

.u Ucode object file

.b Ucode object library

.o Object file

.a Object library

.so Dynamic shared object library

Table 2-1 (continued) Driver Input File Suffixes

 Suffix Description

14

Chapter 2: Using the Compiler System

By convention, header file names have a .h suffix. Each programming
language handles these files the same way, via the macro preprocessor.

Note: Do not put any code other than definitions in an include file,
particularly if you intend to debug your program using dbx. The debugger
recognizes an include file as only one line of source code, so source lines in
an include file do not appear during debugging sessions.

Specifying a Header File

The #include command tells the preprocessor to replace the #include line with
the text of the indicated header file. The usual way to specify a header file is
with the line:

#include <filename>

where filename is the name of the header file to be included. The angle
brackets (< >) surrounding the file name tell the macro preprocessor to
search for the specified file only in directories specified by command-line
options and in the default header-file directory (/usr/include).

Another specification format exists, in which the file name is given between
double quotation marks:

#include “filename”

In this case, the macro preprocessor searches for the specified header file in
the current directory first, then (if it doesn’t find the requested file) goes on
and searches in the other directories as in the angle-bracket specification.

Note: When you specify header files in your source files, the #include
keyword should always start in column 1 (that is, the left-most column) to
be recognized by the preprocessor.

Creating a Header File for Multiple Languages

A single header file can contain definitions for multiple languages; this setup
allows you to use the same header file for all programs that use a given
library, no matter what language those programs are in.

Compiler Drivers

15

To set up a shareable header file, create a .h file and enter the definitions for
the various languages as follows:

#ifdef _LANGUAGE_C

C definitions

#endif

#ifdef _LANGUAGE_C_PLUS_PLUS

C++ definitions

#endif

#ifdef _LANGUAGE_FORTRAN

Fortran definitions

#endif

and so on for other language definitions

Note: To indicate C++ definitions you must use
_LANGUAGE_C_PLUS_PLUS, not _LANGUAGE_C++.

You can specify the various language definitions in any order, but you must
specify _LANGUAGE_ before the language name.

Compiler Drivers

The driver commands, such as cc, f77, and pc, call subsystems that compile,
optimize, assemble, and link your programs. This section describes:

• “Default Behavior for Compiler Drivers”

• “General Options for Compiler Drivers”

16

Chapter 2: Using the Compiler System

Default Behavior for Compiler Drivers

At compilation time, you can select one or more options that affect a variety
of program development functions, including debugging, optimization, and
profiling facilities. You can also specify the names assigned to output files.
However, some options have default values that apply if you do not specify
the option.

When you invoke a compiler driver with source files as arguments, the
driver calls other commands that compile your source code into object code.
It then optimizes the object code (if requested to do so) and links together the
object files, the default libraries, and any other libraries you specify.

Given a source file foo.c, the default name for the object file is foo.o. The
default name for an executable file is a.out. So the following example
compiles source files foo.c and bar.c with the default options:

cc foo.c bar.c

This example produces two object files (foo.o and bar.o), then links those
together with the default C library libc to produce an executable called a.out.

Note: If you compile a single source directly to an executable, the compiler
does not create an object file.

General Options for Compiler Drivers

The command-line options for IRIS-4D compiler drivers are listed and
explained in Table 2-2. The table lists only the most frequently used options;
for a list of all available options, refer to the appropriate compiler reference
page. Note that not all of the options work with every driver.

You can use the compiler system to generate profiled programs that, when
executed, provide operational statistics. To perform this procedure, use the
–p compiler option (for pc sampling information) and the pixie program (for
profiles of basic block counts). Refer to Chapter 4, “Using the Performance
Tools,” for details on prof and pixie.

In addition to the general options in Table 2-2, each driver has options that
you typically won’t use. These options primarily aid compiler development

Compiler Drivers

17

work. For information about nonstandard driver options, consult the
appropriate driver reference page.

Table 2-2 General Driver Options

Option Purpose

–ansi Strict ANSI/ISO C compilation mode. Preprocessing adds only
standard predefined symbols to the name space, and standard
include files declare only standard symbols.

–c Prevents the linker from linking your program after assembly
code generation. This option forces the driver to produce a .o
file after the assembler phase, and prevents the driver from
producing an executable file.

–C (C driver only) Used with the –P or –E option. Prevents the
macro preprocessor from stripping comments. Use this option
when you suspect the preprocessor is not producing the
intended code and you want to examine the code with its
comments. Note that –C is an option to cfe; this option is passed
along to cfe if you specify it with cc.

–C (Pascal and Fortran drivers only) Generates code that invokes
range checking for subscripts during program execution.

–cord Runs the procedure rearranger, cord(1) on the resulting file after
linking. Rearranging improves the paging and caching
performance of the program’s text. The output of cord is placed
in a.out, by default, or a file specified by the –o option. If you
don’t specify –feedback, then outfile.fb is used as the default.

–cckr K&R/Version7 C compatibility compilation mode.
Preprocessing may add more predefined symbols to the name
space than in –ansi mode. Compilation adheres to the K&R
language semantics.

–Dname[=def] Defines a macro name as if you had specified a #define in your
program. If you do not specify a definition with =def, name is set
to 1.

–E (C driver only) Runs only the macro preprocessor and sends
results to the standard output. To retain comments, use the –C
option as well. Use –E when you suspect the preprocessor is not
producing the intended code.

18

Chapter 2: Using the Compiler System

–feedback Use with the –cord option to specify feedback file(s). You can
produce this file by using prof with its –feedback option from an
execution of the instrumented program produced by pixie(1).
Specify multiple feedback files with multiple –feedback
options.

–g[num] Produces debugging information. The default is –g0: do not
produce debugging information.

–Idirname Adds dirname to the list of directories to be searched for
specified header files. These directories are always searched
before the default directory, /usr/include.

–KPIC Generates position-independent code. This is the default and is
required for programs linking with dynamic shared objects.
Specify –non_shared if you don’t want to generate PIC code.

–mips1 Generates code using the instruction set of the MIPS R2000/
R3000 RISC architecture. This is the default.

–mips2 Generates code using the MIPS II instruction set (MIPS I +
R4000 specific extensions). Note that code compiled with –
mips2 does not run on R2000/R3000 based machines.

–nocpp Suppresses running of the macro preprocessor on the source
files prior to processing.

–non_shared Turns off the default option, –KPIC, to produce non-shared
code. This code can be linked to only a few standard libraries
(such as libc.a and libm.a) that are provided in non-shared
format, in the directory /usr/lib/nonshared. You should use this
option only when building device drivers.

–nostdinc Suppresses searching of /usr/include for the specified header
files.

–o filename Names the result of the compilation filename. If an executable is
being generated, it is named filename rather than the default
name, a.out. If a single source file is compiled with –c, the object
is named filename (not, it should be noted, filename.o; if you want
the object file name to end with .o, you should specify that in the
argument to –o). Otherwise, this option is ignored.

Table 2-2 (continued) General Driver Options

Option Purpose

Linking

19

Note: To use 4.3 BSD extensions in C, compile using –xansi or by using the
–D__EXTENSIONS__ option on the command line. For example:
cc prog.c -ansi -prototypes -fullwarn -lm -D__EXTENSIONS__

Linking

The linker, ld, combines one or more object files and libraries (in the order
specified) into one executable file, performing relocation, external symbol
resolutions, and all other required processing. Unless directed otherwise, the
linker names the executable file a.out.

This section summarizes the functions of the linker. Also described here are
how to link a program manually (without using a compiler driver) and how
to compile multilanguage programs. Refer to the ld(1) reference page for
complete information on the linker.

–P Runs only the macro preprocessor on the files and puts the
result of each file in a .i file. Specify both –P and –C to retain
comments.

–S Similar to –c, except that it produces assembly code in a .s file
instead of object code in a .o file.

–Uname Overrides a definition of the macro name that you specified
with the –D option, or that is defined automatically by the
driver. Note that this option does not override a macro
definition in a source file, only on the command line.

–v Lists compiler phases as they are executed. Use this option to
see the default options for each compiler phase along with the
options you’ve specified.

–w Suppresses warning messages.

–xansi Compilation follows an extended ANSI/ISO C language
semantics, which is more lenient in terms of the forms of
expressions it allows. Preprocessing combines predefined
macros. This is the default C compilation mode.

Table 2-2 (continued) General Driver Options

Option Purpose

20

Chapter 2: Using the Compiler System

Specifically, this section explains:

• “Invoking the Linker Manually”

• “Linking Assembly Language Programs”

• “Linking Libraries”

• “Linking to Dynamic Shared Objects”

• “Linking Multilanguage Programs”

• “Finding an Unresolved Symbol With ld”

Invoking the Linker Manually

Usually the linker is invoked by the compiler driver as the final step in
compilation (as explained in “Compiler Drivers”). If you have object files
produced by previous compilations that you want to link together, you can
invoke the linker using a compiler driver instead of calling ld directly; just
pass the object-file names to the compiler driver in place of source-file
names. If the original source files were in a single language, simply invoke
the associated driver and specify the list of object files. (For information
about linking together objects derived from several languages, see “Linking
Multilanguage Programs.”)

A few command-line options to ld, such as –p, have different meanings
when used as command-line options to cc. To pass such options to ld through
an invocation of a compiler driver, use the –Wl option to the driver (see the
reference page for details).

Typically, the compiler driver invokes ld as necessary. Circumstances exist
under which you may need to invoke ld directly, such as when you’re
building a shared object or doing special linking not supported by compiler
drivers (such as building an embedded system). To build C++ shared
objects, use the CC driver.

Linking

21

Linker Syntax

A summary of ld syntax follows.

ld options object1 [object2...objectn]

options One or more of the options listed in Table 2-3.

object Specifies the name of the object file to be linked.

Table 2-3 contains only a partial list of linker options. Many options that
apply only to creating shared objects are discussed in the next chapter. For
complete information on options and libraries that affect linker processing,
refer to the ld(1) reference page.

Table 2-3 Linker Options

Option Purpose

–kllibname Similar to –llibname, but the library is a ucode library named
liblibname.b.

–llibname Specifies the name of a library, where libname is the library name.
The linker searches for a liblibname.so (and then liblibname.a)
first in any directories specified by –L dirname options, and then
in the standard directories: /lib, /usr/lib, and /usr/local/lib.

–L dirname Adds dirname to the list of directories to be searched for along
with libraries specified by subsequent –llibname options.

–m Produces a linker memory map, listing input and output
sections of the code, in System V format.

–M Produces a link map in BSD format, listing the names of files to
be loaded.

–nostdlib This option must be accompanied by the –L dirname option. If
the linker does not find the library in dirname, then it does not
search any of the standard library directories.

–o filename Specifies a name for your executable. If you do not specify
filename, the linker names the executable a.out.

–s Strips symbol table information from the program object,
reducing its size. This option is useful for linking routines that
are frequently linked into other program objects.

22

Chapter 2: Using the Compiler System

Linker Example

The following command tells the linker to search for the DSO libcurses.so in
the directory /lib. If it does not find that DSO, the linker then looks for
libcurses.a in /lib; then for libcurses.so in /usr/lib, then in the same directory for
libcurses.a. If it hasn’t found an appropriate library by then, it looks in /usr/
local/lib for libcurses.a. (Note that the linker does not look for DSOs in /usr/
local/lib, so don’t put shared objects there.) If found in any of those places, the
DSO or library is linked with the objects foiled.o and again.o:

ld foiled.o again.o -lcurses

Note: The –G option, which formerly allowed you to specify which data
items should be stored in the global pointer region, is no longer useful. –
KPIC, the default, implies –G 0, and the compiler ignores any user attempts
to specify otherwise. Compiling –non_shared (to avoid –KPIC) is primarily
useful only for creating device drivers, in which case there is no direct
linking step in which to specify a –G number. For more information, see the
cc and ld reference pages.

Linking Assembly Language Programs

The assembler driver as1 does not run the linker. To link a program written
in assembly language, use one of these procedures:

• Assemble and link using one of the other driver commands (cc, for
example). The .s suffix of the assembly language source file causes the
driver to invoke the assembler.

–v Prints the name of each file as it is processed by the linker.

–Xsortbss Sorts bss symbols (this is the default in C but not in Fortran).

–Xnobsschange Overrides defaults, eliminating all global bss reordering.

–ysymname Reports all references to, and definitions of, the symbol symname.
Useful for locating references to undefined symbols.

Table 2-3 (continued) Linker Options

Option Purpose

Linking

23

• Assemble the file using as; then link the resulting object file with the ld
command.

Linking Libraries

The linker ld processes its arguments from left to right as they appear on the
command line. Arguments to ld can be DSOs, object files, or libraries.

When ld reads a DSO, it adds all the symbols from that DSO to a cumulative
symbol table. If it encounters a symbol that’s already in the symbol table, it
does not change the symbol table entry. If you define the same symbol in
more than one DSO, only the first definition is used.

When ld reads an archive, usually denoted by a file name ending in .a, it uses
only the object files from that archive that can resolve currently unresolved
symbol references. (When a symbol is referred to but not defined in any of
the object files that have been loaded so far, it’s called unresolved.) Once a
library has been searched in this way, it is never searched again. Therefore,
libraries should come after object files on the command line in order to
resolve as many references as possible. Note that if a symbol is already in the
cumulative symbol table from having been encountered in a DSO, its
definition in any subsequent library is ignored.

Specifying Libraries and DSOs

You can specify libraries and DSOs either by explicitly stating a pathname or
by use of the library search rules. To specify a library or DSO by path, simply
include that path on the command line (relative to the current directory, or
else absolute):

ld myprog.o /usr/lib/libc.so.1 mylib.so

Note: libc.so.1 is the name of the standard C DSO, replacing the older libc.a.
Similarly, libX11.so.1 is the X11 DSO. Most other DSOs are simply named
name.so, without a .1 extension.

To use the linker’s library search rules, specify the library with the –llibname
option:

ld myprog.o -lmylib

24

Chapter 2: Using the Compiler System

When the –lmylib argument is processed, ld searches for a file called
libmylib.so. If it can’t find libmylib.so in a given directory, it tries to find
libmylib.a there; if it can’t find that either, it moves on to the next directory in
its search order. The default search order is to look first in /lib, then in /usr/
lib. After looking in both of those directories, ld looks in /usr/local/lib for
archives only (DSOs should not be installed in /usr/local/lib). You can modify
these defaults by specifying the –L dir and/or –nostdlib options. Directories
specified by –L dir before the –llibname argument are searched in the order
they appear on the command line, before the default directories are
searched. If –nostdlib is specified, then –L dir must also be specified because
the default directories aren’t searched at all.

If ld is invoked from one of the compiler drivers, all –L and –nostdlib options
are moved up on the command line so that they appear before any –llibname
option. For example:

cc file1.o -lm -L mydir

This command invokes, at the linking stage of compilation:

ld -L mydir file1.o -lm

Note: There are three different kinds of files that contain object code files:
non-shared libraries, PIC archives, and DSOs. Non-shared libraries are the
old-fashioned kind of library, built using ar from .o files that were compiled
with –non_shared. These archives must also be linked –non_shared. PIC
archives are the default in IRIX 5.0, built using ar from .o files compiled with
–KPIC (a default option); they can be linked with other PIC files. DSOs are
built from PIC .o files by using ld –shared; see Chapter 3 for details.

When compiling multilanguage programs, be sure to specify any required
run-time libraries using the –llibname option. For a list of the libraries that a
language uses, see the corresponding compiler driver reference page.

If the linker tells you that a reference to a certain function is unresolved,
check that function’s reference page to find out which library the function is
in. If it isn’t in one of the standard libraries (which ld links in by default), you
may need to specify the appropriate library on the command line. For an
alternative method of finding out where a function is defined, see “Finding
a Symbol in an Unknown Library.”

Linking

25

Note: Simply including the header file associated with a library routine is
not enough; you also must specify the library itself when linking (unless it’s
a standard library). There is no magical connection between header files and
libraries; header files only give prototypes for library routines, not the
library code itself.

Examples of Linking DSOs

To link a sample program foo.c with the math DSO, libm.so, enter:

cc foo.c -lm

To specify the appropriate DSOs for a graphics program foogl.c, enter:

cc foogl.c -lgl -lX11

Linking to Dynamic Shared Objects

This section describes how to link your source files with previously built
DSOs; for more information about how to build your own DSOs, see
Chapter 3, “Dynamic Shared Objects.”

Note: DSOs replace the older static shared libraries, which were named with
the extension _s.a. The _s.a libraries are no longer shipped with IRIX;
however, the run-time versions of those libraries, named with _s at the end
(and no .a), are still present under IRIX 5.0 for backward compatibility with
older executables that used static shared libraries.

To build an executable that uses a DSO, call a compiler driver just as you
would for a non-shared library. For instance,

cc needle.c -lthread

links the resulting object file (needle.o) with the previously built DSO
libthread.so (and the standard C DSO, libc.so.1), if available. If no libthread.so
exists, but a PIC archive named libthread.a exists, that archive is used with
libc.so.1, and you still get dynamic (run-time) linking. Note that even .a
libraries now contain position-independent code by default, though it is also
possible to build non-shared .a libraries that do not contain PIC.

26

Chapter 2: Using the Compiler System

Linking Multilanguage Programs

When the source language of the main program differs from that of a
subprogram, use the following steps to link (refer to Figure 2-1):

1. Compile object files from the source files of each language separately by
using the –c option.

For example, if the source consists of a Fortran main program (main.f)
and two files of C functions (more.c and rest.c), use the commands:

cc -c more.c rest.c

f77 -c main.f

These commands produce the object files main.o, more.o, and rest.o.

2. Use the driver associated with the language of the main program to link
the objects together:

f77 main.o more.o rest.o

The compiler drivers supply the default set of libraries necessary to produce
an executable from the source of the associated language. However, when
producing executables from source code in several languages, you may need
to explicitly specify the default libraries for one or more of the languages
used. For instructions on specifying libraries, see “Linking Libraries.”

Linking

27

Figure 2-1 Compilation Control Flow for Multilanguage Programs

For specific details about compiling multilanguage programs, refer to the
programming guides for the appropriate languages.

Finding an Unresolved Symbol With ld

You can use ld to locate unresolved symbols. For example, suppose you’re
compiling a program, and ld tells you that you’re using an unresolved
symbol. However, you don’t know where the unresolved symbol is
referenced.

C Preprocessor

C Front End

Code Generator

Assembler

rest.o more.o

rest.c more.c

C Preprocessor

Fortran Front End

Code Generator

Assembler

main.o

main.f

28

Chapter 2: Using the Compiler System

To find the unresolved symbol, enter:

ld -ysymbol file1... filen

The output lists the source file that references symbol.

Debugging

The compiler system provides a debugging tool, dbx, which is explained in
the dbx User’s Guide. In addition, CASEVision/WorkShop™ contains
debugging tools. For information about obtaining WorkShop for your
computer, contact your dealer or sales representative.

Before using a debugging tool, you must use one of the standard driver
options, listed in Table 2-4, to produce executables containing information
that the debugger can use.

Getting Information About Object Files

The following tools provide information on object files:

• dis disassembles an object file into machine instructions.

• elfdump lists the contents (including the symbol table and header
information) of an ELF-format object file.

Table 2-4 Driver Options for Debugging

Option Purpose

–g0 Produces a program object with a minimum of source-level
debugging information. This is the default. Reduces the size of the
program object but allows optimizations. Use this option with the –O
option after you finish debugging.

–g or –g2 Produces additional debugging information for full symbolic
debugging. This option overrides the optimization options (–Onum).

–g3 Produces additional debugging information for full symbolic
debugging of fully optimized code. This option makes the debugger
less accurate. You can use –g3 with an optimization option (–Onum).

Getting Information About Object Files

29

• file provides descriptive information on the general properties of the
specified file.

• nm lists symbol table information.

• odump lists the contents of a COFF-format object file.

• size prints the size of each section of an object file (some such sections
are named text, data, and sbss).

• strip removes symbol table and relocation bits from an object file.

Note that you can trace system call and scheduling activity by using the par
command. For more information, see the par(1) reference page.

Disassembling Object Files with dis

The dis tool disassembles object files into machine instructions. You can
disassemble an object, archive library, or executable file.

dis Syntax

The syntax for dis is:

dis options filename1 [filename2... filenamen]

options One or more of the options listed in Table 2-5.

filename Specifies the name of one or more files to disassemble.

30

Chapter 2: Using the Compiler System

dis Options

Table 2-5 lists dis options. For more information, see the dis(1) reference page.

Table 2-5 dis Options

Option Description

–b begin_address Starts disassembly at begin_address. You can specify the
address as decimal, octal (with a leading 0), or hexadecimal
(with a leading 0x).

–d section Disassembles the named section as data, and prints the offset
of the data from the beginning of the section.

–D section Disassembles the named section as data, and prints the
address of the data.

–e end_address Stops disassembly at end_address. You can specify the
address as decimal, octal (with a leading 0), or hexadecimal
(with a leading 0x).

–F function Disassembles the named function in each object file you
specify on the command line.

–h Substitutes the hardware register names for the software
register names in the output.

–H Removes the leading source line, and leaves the hex value
and the instructions.

–i Removes the leading source line and hexadecimal value of
disassembly, and leaves only the instructions.

–I directory Uses directory to help locate source code.

–l string Disassembles the archive file specified by string.

–L Looks up source labels for subsequent printing.

–o Prints numbers in octal. The default is hexadecimal.

–s Performs symbolic disassembly where possible. Prints
(using C syntax) symbol names on the line following the
instruction. Displays source code mixed with assembly code

–t section Disassembles the named section as text.

Getting Information About Object Files

31

Listing Selected Parts of Object Files and Libraries With
elfdump

The elfdump tool lists headers, tables, and other selected parts of an ELF-
format object file or archive file.

elfdump Syntax

The syntax for elfdump is:

elfdump options filename1 [filename2... filenamen]

options One or more of the options listed in Table 2-6.

filename Specifies the name of one or more object files whose
contents are to be dumped.

elfump Options

Table 2-6 lists elfdump options. For more information, see the elfdump(1)
reference page.

–T Specifies the trace flag for debugging the disassembler.

–V Prints (on stderr) the version number of the disassembler
being executed.

–w Prints source code to the right of assembly code (produces
wide output). Use this option with the –s option.

–x Prints offsets in hexadecimal (the default).

Table 2-6 elfdump Options

 Option Dumps

–c String table information

–cr Compact relocation information.

–Dc Conflict list (.conflict) in Dynamic Shared Objects.

Table 2-5 (continued) dis Options

Option Description

32

Chapter 2: Using the Compiler System

–Dg Global Offset Table (.got) in Dynamic Shared Objects.

–Dinfo The .MIPS.dclass section.

–Dinst The .MIPS.dinst section.

–Dl Library list (.liblist) in Dynamic Shared Objects.

–Dmsym The Msym table.

–dsym The .MIPS.dsym section.

–Dsymlib The library that resolves the symbols in the dynsym section.

–Dt String table entries (.dynsym) of the dynamic symbol table in
Dynamic Shared Objects.

–f The ELF file header.

–h All section headers in the file.

–hash Hash table (.hash) entries.

–info Library information (for example, QuickStart enabled).

–L Dynamic section (.dynamic) in Dynamic Shared Objects.

–o Optional program header.

–r Relocation information.

–reg Register information (.reginfo) section.

–rpt Runtime procedure table.

–t Symbol table (.symtab) entries.

Table 2-6 (continued) elfdump Options

 Option Dumps

Getting Information About Object Files

33

Determining File Type With file

The file tool lists the properties of program source, text, object, and other
files. This tool attempts to identify the contents of files using various
heuristics. It is not exact and is occasionally fooled. For example, it often
erroneously recognizes command files as C programs. For more
information, see the file(1) reference page.

file Syntax

The syntax for file is:

file filename1 [filename2... filenamen]

Each filename is the name of a file to be examined.

file Example

Information given by file is self-explanatory for most kinds of files. However,
using file on object files and executables gives somewhat cryptic output.

file test.o a.out /lib/libc.so.1
test.o: ELF 32-bit MSB relocatable MIPS - version 1
a.out: ELF 32-bit MSB dynamic executable (not stripped) MIPS - version 1
/lib/libc.so.1: ELF 32-bit MSB dynamic lib MIPS - version 1

In this example, MSB indicates Most Significant Byte, also called Big-Endian;
dynamic executable indicates the executable was linked with DSO
libraries; and (not stripped) indicates the executable contains at least
some symbol table information. Dynamic lib indicates a DSO.

Listing Symbol Table Information: nm

The nm tool lists symbol table information for object files and archive files.

34

Chapter 2: Using the Compiler System

nm Syntax

The syntax for nm is:

nm options filename1 [filename2... filenamen]

options One or more of the options listed in Table 2-7.

filename Specifies the object files or archive files from which symbol
table information is to be extracted. If you do not specify a
file name, nm assumes the file is called a.out.

nm Options

Table 2-7 lists symbol table dump options. For more information, see the
nm(1) reference page.

Table 2-7 Symbol Table Dump Options

Option Purpose

–a Prints debugging information. If used with –B, uses BSD ordering with
System V formatting.

–A Prints the listing in System V format (default).

–b Prints the value field in octal.

–B Prints the listing in BSD format.

–d Prints the value field in decimal (the default for System V output).

–e Prints only external and static variables.

–h Suppresses printing of headers.

–n Sorts external symbols by name for System V format. Sorts all symbols
by value for Berkeley format (by name is the BSD default output).

–o Prints value field in octal (System V output). Prints the file name
immediately before each symbol name (BSD output).

–p Lists symbols in the order they appear in the symbol table.

–r Reverses the sort that you specified for external symbols with the –n and
–v options.

Getting Information About Object Files

35

Table 2-8 defines the one-character codes shown in an nm listing. Refer to the
example that follows the table for a sample listing.

–T Truncates characters in exceedingly long symbol names; inserts an
asterisk as the last character of the truncated name. This option may
make the listing easier to read.

–u Prints only undefined symbols.

–v Sorts external symbols by value (default for Berkeley format).

–V Prints the version number of nm.

–x Prints the value field in hexadecimal.

Table 2-8 Character Code Meanings

Key Description

a Local absolute data

A External absolute data

b Local zeroed data

B External zeroed data

C Common data

d Local initialized data

D External initialized data

E Small common data

G External small initialized data

N Nil storage class (avoids loading of unused external references)

r Local read-only data

R External read-only data

s Local small zeroed data

Table 2-7 (continued) Symbol Table Dump Options

Option Purpose

36

Chapter 2: Using the Compiler System

nm Example

This example demonstrates how to obtain a symbol table listing. Consider
the following program, tnm.c:

#include <stdio.h>
#include <math.h>
#define LIMIT 12
int unused_item = 14;
double mydata[LIMIT];

main()
{
 int i;
 for(i = 0; i < LIMIT; i++) {
 mydata[i] = sqrt((double)i);
 }
 return 0;
}

Compile the program into an object file by entering:

cc -c tnm.c

To obtain symbol table information for the object file tnm.o in BSD format,
use the nm –B command:

nm -B tnm.o
0000000000 T main
0000000000 B mydata
0000000000 U sqrt
0000000000 D unused_item
00000000 N _bufendtab

S External small zeroed data

t Local text

T External text

U External undefined data

V External small undefined data

Table 2-8 (continued) Character Code Meanings

Key Description

Getting Information About Object Files

37

To obtain symbol table information for the object file tnm.o in System V
format use the nm command without any options:

nm tnm.o
Symbols from tnm.o:

[Index] Value Size Class Type Section Name

[0] | 0| |File |ref=4 |Text | tnm.c
[1] | 0| |Proc |end=3 int |Text | main
[2] | 116| |End |ref=1 |Text | main
[3] | 0| |End |ref=0 |Text | tnm.c
[4] | 0| |File |ref=6 |Text | /usr/include/math.h
[5] | 0| |End |ref=4 |Text | /usr/include/math.h
[6] | 0| |Global | |Data | unused_item
[7] | 0| |Global | |Bss | mydata
[8] | 0| |Proc |ref=1 |Text | main
[9] | 0| |Proc | |Undefined| sqrt
[10] | 0| |Global | |Undefined| _gp_disp

Finding a Symbol in an Unknown Library

When ld indicates that a symbol is undefined, you can use nm to figure out
which DSO or library needs to be linked in by piping nm’s output through
appropriate greps.

For example, you’re compiling a program, and ld tells you that you’re using
an undefined symbol:

cc prog.c -lgl
ld:
Unresolved:
XGetPixel

However, you don’t know where XGetPixel is defined. Use nm to list the
symbol tables for all of the available DSOs, and filter that output to find only
the places where XGetPixel is mentioned. Then filter the result to find the
places where XGetPixel is defined, as indicated by the T character code.

nm -Bo /usr/lib/lib*.so* | grep XGetPixel | grep T
/usr/lib/libX11.so.1: 0f790ff8 T XGetPixel

Some DSOs end in .so, while others end in .so.1, so we need to use multiple
wildcards to get all of them. Also, this command line has to be modified to

38

Chapter 2: Using the Compiler System

look in PIC archives or non-shared libraries; as written it only looks in
DSOs.Now that XGetPixel is defined in /usr/lib/libX11.so.1, the X11 DSO; use
the –l option to tell cc to link in that library, and ld won’t complain again.

cc prog.c -lgl -lX11

Listing Selected Parts of COFF Files With odump

The odump tool lists headers, tables, and other selected parts of a COFF-
format object or archive file. It is provided with this release of IRIX for
compatibility; use elfdump for ELF-format files.

odump Syntax

The syntax for odump is:

odump options filename1 [filename2... filenamen]

options One or more of the options listed in Table 2-9.

filename Specifies the name of one or more object files whose
contents are to be dumped.

Table 2-9 lists odump options. For more information, see the odump(1)
reference page.

Table 2-9 odump Options

Option Dumps

–a Archive header of each object file in the specified archive library
file.

–c String table.

–d number The section numbered number, or a range of sections starting
with number and ending with the last section number available
(or the number you specify with the +d auxiliary option).

+d number All sections starting with the first section (or with the section
specified with the –d option) and ending with the section
numbered number.

–f File header for each object file in the specified file.

Getting Information About Object Files

39

–F File descriptor table for each object file in the specified file.

–g Global symbols in the symbol table of an archive library file.

–h Section headers.

–i Symbolic information header.

–l Line number information.

–n name Information for section named name only. Use this option with
the –h, –s, –r, –l, or –t option.

–o Optional header for each object file.

–p Suppresses the printing of headers.

–P Procedure descriptor table.

–r Relocation information.

–R Relative file index table.

–s Section contents.

–t Symbol table entries.

–t index Only the indexed symbol table entry. Use the +t option with the
–t option to specify a range of table entries.

+t index Symbol table entries in a range that ends with the indexed entry.
The range begins with the first symbol table entry or with the
section that you specify with the –t option.

–v Information in symbolic rather than numeric representation.
This option may be used with any odump option except –s.

–z name, number Line number entry (or a range of entries starting at the specified
number) for the named function.

+z number Line number entries starting with the function name or line
number specified by the –z option and ending with number.

Table 2-9 (continued) odump Options

Option Dumps

40

Chapter 2: Using the Compiler System

Determining Section Sizes With size

The size tool prints information about the sections (such as text, rdata, and
sbss) of the specified object or archive files. The a.out(4) reference page
describes the format of these sections.

size Syntax

The syntax for size is:

size options [filename1 filename2... filenamen]

options Specifies the format of the listing (see Table 2-10).

filename Specifies the object or archive files whose properties are to
be listed. If you do not specify a file name, the default is
a.out.

size options

Table 2-10 lists size options. For more information, see the size(1) reference
page.

Table 2-10 size Options

Option Action

–A Prints data section headers in System V format.

–B Prints data section headers in Berkeley format.

–d Prints sizes in decimal (default).

–F Prints data on loadable segments.

–n Prints symbol table, global pointer, and more.

–o Prints sizes in octal.

–s Follows shared libraries, adding them as they’re encountered to the list
of files to be sized.

–V Prints the version of size that you are using.

–x Prints sizes in hexadecimal.

Getting Information About Object Files

41

size Example

Below are examples of the size command and the listings they produce:

size -B -o test.o
 text data bss rdata sdata sbss decimal hex
test.o 31250 2010 40470 550 210 50 31232 7a00

size -B -d test.o
 text data bss rdata sdata sbss decimal hex
test.o 12968 1032 16696 360 136 40 31232 7a00

Removing Symbol Table and Relocation Bits with strip

The strip tool removes symbol table and relocation bits that are attached to
the assembler and loader. Use strip to save space after you debug a program.
The effect of strip is the same as that of using the -s option to ld.

strip Syntax

The syntax for strip is:

strip options filename1 [filename2... filenamen]

options One or more of the options listed in Table 2-11.

filename Specifies the name of one or more object files whose
contents are to be stripped.

strip Options

Table 2-11 lists strip options. For more information, see the strip(1) reference
page.

Table 2-11 strip Options

Option Description

–l Strips line number information, and keeps the symbol table
and debugging information.

–o filename Puts the stripped information in the filename that you specify.

42

Chapter 2: Using the Compiler System

Using the Archiver to Create Libraries

An archive library is a file that includes the contents of one or more object
(.o) files. When the linker (ld) searches for a symbol in an archive library, it
loads only the code from the object file where that symbol was defined (not
the entire library) and links it with the calling program.

The archiver (ar) creates and maintains archive libraries and has the
following main functions:

• Copying new objects into the library

• Replacing existing objects in the library

• Moving objects around within the library

• Extracting individual objects from the library

The following section explains the syntax of the ar command and lists some
examples of how to use it. See the ar(1) reference page for details.

Note: ar simply strings together whatever object files you tell it to archive;
thus, it can be used to build either non-shared or PIC libraries, depending on
how the included .o files were built in the first place. If you do create a non-
shared library with ar, remember to link it –non_shared with your other
code. For information about building DSOs and converting libraries to
DSOs, see Chapter 3.

–V Prints the version number of strip.

–x Keeps symbol table information, but may strip debugging and
line number information.

Table 2-11 strip Options

Option Description

Using the Archiver to Create Libraries

43

ar Syntax

The syntax for ar is:

ar options [posObject] libName [object1... objectn]

options Specifies the action that the archiver is to take. Table 2-12,
Table 2-13, and Table 2-14 list the available options. To
specify more than one option, don’t use a dash or put spaces
between the options. For example, use ar ts, not ar –t –s.

posObject Specifies the name of an object within an archive library. It
specifies the relative placement (either before or after
posObject) of an object that is to be copied into the library or
moved within the library. This parameter is required when
the a, b, or i suboptions are specified with the m or r option.
The last example in “ar Examples,” shows the use of a
posObject parameter.

libName Specifies the name of the archive library you are creating,
updating, or extracting information from.

object Specifies the name(s) of the object file(s) to manipulate.

Archiver Options

When running the archiver, specify exactly one of the options d, m, p, q, r, t,
or x (listed in Table 2-12). In addition, you can optionally specify any of the
modifiers in Table 2-13, as well as any of the archiver suboptions listed in
Table 2-14.

Table 2-12 Archiver Options

Option Purpose

d Deletes the specified objects from the archive.

m Moves the specified files to the end of the archive. If you want to move the
object to a specific position in the archive library, specify an a, b, or i
suboption together with a posObject parameter.

p Prints the specified objects in the archive on the standard output device
(usually the terminal screen).

44

Chapter 2: Using the Compiler System

q Adds the specified object files to the end of the archive. This option is
similar to the r option (described below), but is faster and does not remove
any older versions of the object files that may already be in the archive.
Use the q option when creating a new library.

r Adds the specified object files to the end of the archive file. If an object file
with the same name already exists in the archive, the new object file
overwrites it. If you want to add an object at a specific position in the
archive library, specify an a, b, or i suboption together with a posObject
parameter. Use the r option when updating existing libraries.

t Prints a table of contents on the standard output (usually the screen) for
the specified object or archive file.

x Copies the specified objects from the archive and places them in the
current directory. Duplicate files are overwritten. The last modified date is
the current date (unless you specify the o suboption, in which case the date
stamp on the archive file is the last modified date). If no objects are
specified, x copies all the library objects into the current directory.

Table 2-13 Archiver Modifiers

Option Purpose

c Suppresses the warning message that the archiver issues when it discovers
that the archive you specified does not already exist.

C Makes an archive compatible with pre-SVR4 IRIX.

E The default; creates an archive matching the specifications given by the
SVR4 ABI.

l Puts the archiver’s temporary files in the current working directory.
Ordinarily, the archiver puts those files in /tmp (unless the STMDIR
environment variable is set, in which case ar stores temporary files in the
directory indicated by that variable). This option is useful when /tmp (or
STMDIR) is full.

Table 2-12 (continued) Archiver Options

Option Purpose

Using the Archiver to Create Libraries

45

Note: The a and b suboptions are only useful if the same symbol is defined
in two or more of the object files in the archive (in which case, the symbol
table shows the first definition listed in the archive). Under other
circumstances, order of object files in an archive is irrelevant (and the a and
b suboptions are useless), since ld uses the archive symbol table rather than
searching linearly through the file.

s Creates a symbol table in the archive. This modifier is rarely necessary
since the archiver updates the symbol table of the archive library
automatically. Options m, p, q, and r, in particular, create a symbol table
by default and thus do not require s to be specified.

v Lists descriptive information during the process of creating or modifying
the archive. When specified with the t option, produces a verbose table of
contents.

Table 2-14 Archiver Suboptions

Suboption Use with Option Purpose

a m or r Specifies that the object file being added should
follow the already-archived object file specified
by the posObject parameter on the command line.

b m or r Specifies that the object file precede the object file
specified by the posObject parameter.

i m or r Same as b.

o x Forces the last modified date of the extracted
object file to match that of the archive file.

u r Tells the archiver not to replace the existing
object file in the archive if the last modified date
indicates that the object file already in the archive
is newer (more recently modified) than the one
you’re adding.

Table 2-13 (continued) Archiver Modifiers

Option Purpose

46

Chapter 2: Using the Compiler System

ar Examples

Create a new library, libtest.a, and add object files to it by entering:

ar cq libtest.a mcount.o mon1.o string.o

The c option suppresses an archiver message during the creation process.
The q option creates the library and puts mcount.o, mon1.o, and string.o into
it.

An example of replacing an object file in an existing library:

ar r libtest.a mon1.o

The r option replaces mon1.o in the library libtest.a. If mon1.o does not already
exist in the library libtest.a, it is added.

Note: If you specify the same file twice in an argument list of files to be
added to an archive, that file appears twice in the archive.

To add a new file immediately before mcount.o in this library, enter:

ar rb mcount.o libtest.a new.o

The r option adds new.o to the library libtest.a. The b option followed by
mcount.o as the posObject causes the archiver to place new.o immediately
before mcount.o in the archive.

This chapter explains how to build
and use dynamic shared objects.

Dynamic Shared Objects

Chapter 3

49

Chapter 3

3. Dynamic Shared Objects

A dynamic shared object (DSO) is an object file that’s meant to be used
simultaneously—or shared—by multiple applications (a.out files) while
they’re executing. DSOs can be used in place of archive libraries, and they
replace static shared libraries provided with earlier releases of the IRIX
operating system.

As you read this chapter, you will learn how to build and use DSOs. This
chapter covers the following topics:

• “Benefits of Using DSOs” describes some benefits (such as minimizing
memory usage) of using DSOs.

• “Using DSOs” tells you how to obtain the most benefit from using
DSOs when creating your executable and covers a few guidelines for
using shared libraries.

• “Taking Advantage of QuickStart” explains how you can make sure
that DSOs load as quickly as possible.

• “Building DSOs” describes how to build a DSO.

• “Runtime Linking” discusses the run-time linker, and how it locates
DSOs at run time.

• “Dynamic Loading Under Program Control” explains the use of the
libdl library to control run-time linking.

• “Versioning of DSOs” discusses a versioning mechanism for DSOs that
allows binaries linked against different, incompatible versions of the
same DSO to run correctly.

50

Chapter 3: Dynamic Shared Objects

Benefits of Using DSOs

Since DSOs contain shared components, using them provides several
substantial benefits. Benefits include:

• DSOs minimize overall memory usage because code is shared. Two
executables that use the same DSO and that run simultaneously have
only one copy of the shared components loaded into memory.

For example, if executable A and executable B both link with the same
DSO C, and if A and B are both running at the same time, the total
memory used is what’s required for A, B, and C, plus some small
overhead. If C is an unshared library, the memory used is what’s
required for A, B, and two copies of C.

• A related benefit is that executables linked with DSOs are smaller than
those linked with unshared libraries because the shared objects aren’t
part of the executable file image, so disk usage is minimized.

• DSOs are much easier to use, build, and debug than static shared
libraries. Most of the libraries supplied by Silicon Graphics are
available as DSOs. (In the past, only a few static shared libraries were
available; most libraries were unshared.)

• Executables that use a DSO don’t have to be relinked if the DSO
changes; when the new DSO is installed, the executable automatically
starts using it. This feature makes it easier to update end users with
new software versions. It also allows you to create hardware-
independent software packages more easily.

You can design the hardware-dependent routines required by your
application so that they have the same interface across all platforms.
Then, you create different DSOs for each of the platforms, each DSO
containing the implementation of those routines for that particular
platform. The shrink-wrapped software package can then contain all
the DSOs and is able to run on all the platforms.

• DSOs and the executables that use them are mapped into memory by a
run-time loader, rld. It resolves external references between objects and
relocates objects at run time. (DSOs contain only position-independent
code (PIC), so they can be loaded at any virtual address at run time.)

With rld, the binding of symbols can be changed at run time at the
request of the executing program. You can use this feature to
dynamically change the feature set presented to a user of your

Using DSOs

51

application, for example, while minimizing start-up time. The
application can be started quickly, with a subset of the features
available and then, if the user needs other features, those can be loaded
in under programmatic control.

Naturally, some costs are involved with using DSOs, and these are explained
in the next section, “Using DSOs.” The sections after that explain how to
build and optimize DSOs and how rld works. The dso(5) reference page also
contains more information about DSOs.

Using DSOs

Using DSOs is easy—the syntax is the same as for an archive (.a) library. This
section explains how to use DSOs. Specific topics include:

• “DSOs vs. Archive Libraries,” which describes differences between
DSOs and archive libraries.

• “Using QuickStart,” which briefly explains how QuickStart minimizes
start-up times for executables.

• “Guidelines for Using Shared Libraries,” which lists points to consider
when you choose library members and tune shared library code.

DSOs vs. Archive Libraries

The following compile line creates the executable yourApp by linking with
the DSOs libyours.so and with libc.so.1:

cc yourApp.c -o yourApp -lyours

If libyours.so isn’t available, but the archive version libyours.a is available, that
archive version is used along with libc.so.1.

You should note that a significant difference exists between DSOs and
archive libraries in terms of what gets loaded into memory when an
application is executing. With an archive library, only the text portion of the
library that the application actually requires (and the data associated with
that text) gets loaded, not the entire library. In contrast, the entire DSO that’s

52

Chapter 3: Dynamic Shared Objects

linked gets loaded. Thus, to conserve memory, don’t link with DSOs unless
your application actually needs them.

Also, you should avoid listing any archive libraries on the compile line after
you list shared libraries; instead, list the archive libraries first and then list
the DSOs.

Using QuickStart

You may want to take advantage of the QuickStart optimization that
minimizes start-up times for executables. You can use QuickStart when
using or building DSOs. At link time, when an executable or a DSO is being
created, the linker ld assigns initial addresses to the object and attempts to
resolve all references. Since DSOs are relocatable, these initial address
assignments are really only guesses about where the object will be really
loaded. At run time, rld verifies that the DSO being used is the same one that
was linked with and what the real addresses are. If the DSOs are the same
and if the addresses match the initial assignments, rld doesn’t have to
perform any relocation work, and the application starts up quickly (or
QuickStarts). When an application QuickStarts, memory use is smaller since
rld doesn’t have to read in the information necessary to perform relocations.

To determine whether your application (or DSO) is able to do a QuickStart,
use the –quickstart_info flag when building the executable (or DSO). If the
application or DSO can’t do a QuickStart, you’ll be given information about
how what to do. The next section goes into more detail about why an
executable may not be able to use QuickStart.

In summary, when you use DSOs to build an executable:

• Link with only the DSOs that you need.

• Make sure that unshared libraries precede DSOs on the compile line.

• Use the –quickstart_info flag.

Using DSOs

53

Guidelines for Using Shared Libraries

When you’re working with DSOs, you can avoid some common pitfalls if
you adhere to the guidelines described in this section:

• “Choosing Library Members” explains what routines to include and
exclude when you choose library members.

• “Tuning Shared Library Code” covers how to tune shared library code
by minimizing global data, improving locality, and aligning for paging.

Choosing Library Members

This section covers some important considerations for choosing library
members. Specifically, it explains the following topics:

• Include large, frequently used routines

• Exclude infrequently used routines

• Exclude routines that use much static data

• Make libraries self-contained

Include Large, Frequently Used Routines. These routines are prime
candidates for sharing. Placing them in a shared library saves code space for
individual a.out files and saves memory, too, when several concurrent
processes need the same code. printf(3S) and related C library routines are
good examples of large, frequently used routines.

Exclude Infrequently Used Routines. Putting these routines in a shared
library can degrade performance, particularly on paging systems.
Traditional a.out files contain all code they need at run time. By definition,
the code in an a.out file is (at least distantly) related to the process. Therefore,
if a process calls a function, it may already be in memory because of its
proximity to other text in the process.

If the function is in the shared library, a page fault may be more likely to
occur, because the surrounding library code may be unrelated to the calling
process. Only rarely will any single a.out file use everything in the shared C
library. If a shared library has unrelated functions, and unrelated processes
make random calls to those functions, the locality of reference may be
decreased. The decreased locality may cause more paging activity and,
thereby, decrease performance.

54

Chapter 3: Dynamic Shared Objects

Exclude Routines that Use Much Static Data. These modules increase the
size of processes. Every process that uses a shared library gets its own
private copy of the library’s data, regardless of how much of the data is
needed.

Library data is static: it isn’t shared and can’t be loaded selectively with the
provision that unreferenced pages may be removed from the working set.

For example, getgrent(3C) is not used by many standard UNIX commands.
Some versions of the module define over 1400 bytes of unshared, static data.
It probably should not be included in a shared library. You can import global
data, if necessary, but not local, static data.

Make Libraries Self-Contained. It’s best to make the library self-contained.
You can do this by including routines in the shared object. For example,
printf(3S) requires much of the standard I/O library. A shared library
containing printf(3S), should also contain the rest of the standard I/O
routines. This is done with libc.so.1.

If your shared object calls routines from a different shared object, it is best to
build in this dependency by naming the needed shared objects on the link
line in the usual way. For example:

ld -shared -all mylib.a -o mylib.so -lfoo

This command line specifies that libfoo.so is needed by mylib.so. Thus, when
an application is linked against mylib.so, it is not necessary to specify -lfoo.

This guideline should not take priority over the others in this section. If you
exclude some routine that the library itself needs based on a previous
guideline, consider leaving the symbol out of the library and importing it.

Tuning Shared Library Code

This section explains a few things to consider in tuning shared library code:

• Minimize global data

• Organize to Improve locality

• Align for paging

Using DSOs

55

Minimize Global Data. All external data symbols are, of course, visible to
applications. This can make maintenance difficult. Therefore, you should try
to reduce global data.

1. Try to use automatic (stack) variables. Don’t use permanent storage if
automatic variables work. Using automatic variables saves static data
space and reduces the number of symbols visible to application
processes.

2. Determine whether variables really must be external. Static symbols are
not visible outside the library, so they may change addresses between
library versions. Only external variables must remain constant.

3. Allocate buffers at run time instead of defining them at compile time.
Allocating buffers at run time reduces the size of the library’s data
region for all processes and, thus, saves memory. Only processes that
actually need the buffers get them. It also allows the size of the buffer to
change from one release to the next without affecting compatibility.
Statically allocated buffers cannot change size without affecting the
addresses of other symbols and, perhaps, breaking compatibility.

Organize to Improve Locality. When a function is in a.out files, it typically
resides in a page with other code that is used more often (see “Exclude
Infrequently Used Routines”). Try to improve locality of reference by
grouping dynamically related functions. If every call of funcA generates
calls to funcB and funcC, try to put them in the same page.

The cord(1) command rearranges procedures to reduce paging and achieve
better instruction cache mapping. You can use cord to see the number of
cycles spent in a procedure and the number of times the procedure was
executed. The cflow(1) command generates static dependency information.
You can combine it with profiling to see what is actually called, as opposed
to what may be called.

Align for Paging. The key is to arrange the shared library target’s object files
so that frequently used functions don’t unnecessarily cross page boundaries.
When arranging object files within the target library, be sure to keep the text
and data files separate. You can reorder text object files without breaking
compatibility; the same is not true for object files that define global data.

56

Chapter 3: Dynamic Shared Objects

For example, the IRIX 5.x operating system currently uses 4Kb pages. Using
name lists and disassemblies of the shared library target file, the library
developers determined where the page boundaries fell.

After grouping related functions, they broke them into page-sized chunks.
Although some object files and functions are larger than a single page, most
of them are smaller. Then the developers used the infrequently called
functions as glue between the chunks. Because the glue between pages is
referenced less frequently than the page contents, the probability of a page
fault decreased.

After determining the branch table, they rearranged the library’s object files
without breaking compatibility. The developers put frequently used,
unrelated functions together, because they would be called randomly
enough to keep the pages in memory. System calls went into another page as
a group, and so on. For example, the order of the library’s object files became:

Before After

#objects #objects

 printf.o trcmp.o
 fopen.o malloc.o
 malloc.o printf.o
 strcmp.o fopen.o

Taking Advantage of QuickStart

QuickStart is an optimization designed to reduce start-up times for
applications that link with DSOs. Each time ld builds a DSO, it updates a
registry of shared objects. The registry contains the preassigned QuickStart
addresses of a group of DSOs that typically cooperate by having
nonoverlapping locations. (See “Using Registry Files” for more information
about how to use the registry when you’re building a DSO.) If you compile
your application by linking with registered DSOs, your application takes
advantage of QuickStart: all the DSOs are mapped at their QuickStart
addresses, and rld won’t need to move any of them to an unused address and
perform a relocation pass to resolve all references.

Taking Advantage of QuickStart

57

Suppose you compile your application using the –quickstart_info flag, and it
fails. QuickStart may fail because:

• Your application has directly or indirectly linked with two different
versions of the same DSO, as shown in Figure 3-1. In this example,
yourApp links with libyours.so, libmotif.so, and libc.so.1 on the compile
line. When the DSO libyours.so was built, however, it linked with
libmalloc.so, which in turn linked with libc.so.1 when it was created. If
the two versions of libc.so.1 aren’t identical, yourApp won’t be able to
QuickStart.

Figure 3-1 An Application Linked with DSOs

• You link with a DSO that can’t QuickStart. This may occur because the
DSO wasn’t registered and therefore was assigned a location that
overlaps with the location assigned another DSO.

• Your application pulls in incompatible shared objects (in a manner
similar to the example shown in Figure 3-1).

• Your application contains an unresolved reference to a function (where
it takes the address of the function).

• The DSO links with another DSO that can’t QuickStart.

Even if QuickStart officially succeeds, your application may have name
space collisions and therefore may not start up as fast as it should. This is
because rld has to bring in more information to resolve the conflicts. In
general, you should avoid having conflicts both because of the detrimental
effect on start-up time and because conflicts make it difficult to ensure the
correctness of an application over time.

yourApp

libyours.so libmotif.so libc.so.1

libmalloc.so

libc.so.1

58

Chapter 3: Dynamic Shared Objects

In the example shown in Figure 3-1, you may have written your own
functions to allocate memory in libmalloc.so for libyours.so to use. If you
didn’t use unique names for those functions (instead of malloc(), for
example) the way this particular compile and link hierarchy is set up, the
standard malloc() function defined in libc.so.1 is used instead of the one
defined in libmalloc.so. (Conflicts are resolved by proceeding through the
hierarchy from left to right and then moving to the next level. See “Searching
for DSOs at Runtime” for more information about how the run-time linker
searches for DSOs.)

Thus, it’s not a good idea to allow more than one DSO to define the same
function. Even if the DSOs are synchronized for their first release, one of
them may change the definition of the function in a subsequent release. Of
course, you can use conflicts to override function definitions intentionally,
but you should be sure you have control over what is overriding what over
time.

If you use the -quickstart_info option, ld tells you if conflicts arise. It also tells
you to run elfdump with the -Dc option to find the conflicts. See the elfdump(5)
reference page for more information about how to read the output produced
by elfdump.

Building DSOs

In most cases, you can build DSOs as easily as archive libraries. If your
library is written in a high-level language, such as C or Fortran, you won’t
have to make any changes to the source code. If your code is in assembly
language, you must modify it to produce PIC, as described in Appendix A,
“Position-Independent Coding in Assembly Language.”

This section covers procedures to use when you build DSOs, and includes
the following topics:

• “Creating DSOs”

• “Making DSOs Self-Contained”

• “Controlling Symbols to be Exported or Loaded”

• “Using DSOs With C++”

• “Using Registry Files”

Building DSOs

59

Creating DSOs

To create a DSO from a set of object files, use ld with the –shared option:

ld –shared stuff.o nonsense.o –o libdada.so

The above example creates a DSO, libdada.so, from two object files, stuff.o and
nonsense.o. Note that DSO names should begin with “lib” and end with “.so”,
for ease of use with the compiler driver’s –llib argument. If you’re already
building an archive library (.a file), you can create a DSO from the library by
using the –shared and –all arguments to ld:

ld –shared –all libdada.a –o libdada.so

The –all argument specifies that all of the object files from the library,
libdada.a, should be included in the DSO.

Making DSOs Self-Contained

When building a DSO, be sure to include any archives required by the DSO
on the link line so that the DSO is self-contained (that is, it has no unresolved
symbols). If the DSO depends on libraries not explicitly named on the link
line, subsequent changes to any of those libraries may result in name space
collisions or other incompatibilities that can prevent any applications that
use the DSO from doing a QuickStart. Such incompatibilities can also lead to
unpredictable results over time as the libraries change asynchronously. To
make the archive libmine.a into a DSO, for example, and libmine.a depends on
routines in another archive, libutil.a, include libutil.a on the link line:

ld –shared –all -no_unresolved libmine.a –o libmine.so -none libutil.a

This causes the modules in libutil.a that are referenced in libmine.a to be
included in the DSO, but these modules won’t be exported. See “Controlling
Symbols to be Exported or Loaded” for more information about exported
symbols. The –no_unresolved option causes a list of unresolved symbols to be
created; generally, this list should be empty to enable QuickStarting.

Similarly, if a DSO relies on another DSO, be sure to include that DSO on the
link line. For example:

ld –shared –all -no_unresolved libbtree.a –o libtree.so –lyours

60

Chapter 3: Dynamic Shared Objects

This example places libyours.so in the liblist of the new DSO, libtree.so. This
ensures that libyours.so is loaded whenever an executable that uses libtree.so
is launched. Again, symbols from libyours.so won’t be exported for use by
other libraries. (You can use the –exports flag to reverse this exporting
behavior; the –hides flag specifies the default exporting behavior.)

Controlling Symbols to be Exported or Loaded

By default, to help avoid conflicts, symbols defined in an archive or a DSO
that’s used to build another DSO aren’t externally visible. You can explicitly
export or hide symbols with the –exported_symbol and –hidden_symbol
options:

-exported_symbol name1, name2, name3

-hidden_symbol name4, name5

By default, if you explicitly export any symbols, all other symbols are
hidden. If you both explicitly export and explicitly hide the same symbol on
the link line, the first occurrence determines the behavior. You can also create
a file of symbol names (delimited by white space) that you want explicitly
exported or hidden, and then refer to the file on the link line with either the
-exports_file or -hiddens_file option:

-exports_file yourFile

-hiddens_file anotherFile

These files can be used in addition to explicitly naming symbols on the link
line.

Another useful option, –delay_load, prevents a library from being loaded
until it’s actually referenced. Suppose, for example, that your DSO contains
several functions that are likely to be used in only a few instances.
Furthermore, those functions rely on another library (archive or DSO). If you
specify –delay_load for this other library when you build your DSO, the run-
time linker loads that library only when those few functions that require it
are used. Note that if you explicitly export any symbols defined in a library
that the run-time linker is supposed to delay loading, the export behavior
takes precedence and the library is automatically loaded at run time.

Building DSOs

61

Note: You can build DSOs using cc. However, if you want to export
symbols/files or use –delay_load, use ld to build DSOs.

Using DSOs With C++

To make a DSO, build the C++ objects as you would normally:

CC -c

Then type:

CC -shared -o libmylib.so <list your objects here>

For example:

CC -shared -o libmylib.so a.o b.o c.o

In this instance, the –l and –L options to ld will work. However, most ld
options won’t work. If you want to specify other options, first determine the
options that you must pass to ld. These options include:

-init _main
-fini _fini
-hidden_symbol _main
-hidden_symbol _fini
-hidden_symbol __head
-hidden_symbol __endlink

Finally, link in /usr/lib/c++init.o.

Using Registry Files

You can make sure that your DSOs don’t conflict with each other by using a
QuickStart registry file. The registry files contain location information for
shared objects. When creating a shared object, you can specify a registry file
to ld, and ld ensures that your shared object doesn’t conflict with any of the
shared objects listed in the registry. A registry file containing the locations of
all the shared objects provided with the system is supplied in /usr/lib/
so_locations.

You can use two options to ld to specify a registry file: –check_registry and
–update_registry. When you invoke ld to build a shared object, with the

62

Chapter 3: Dynamic Shared Objects

argument –check_registry file, ld makes sure that the new shared object
doesn’t conflict with any of the shared objects listed in file. When invoked
with –update_registry file, ld checks the registry in the same way, but when
it’s done, it writes an entry in file for the DSO being built. If file isn’t writable,
–update_registry acts like –check_registry. If file isn’t readable, both –
update_registry and –check_registry are ignored.

By exchanging registry files, providers of DSOs can avoid collisions between
their shared objects. You should probably start out with a copy of /usr/lib/
so_locations, so that your shared objects won’t conflict with any of the
standard DSOs. However, you should remember that when collisions occur
between shared objects, the only effect is slowing program startup.

Registry File Format

Three types of lines in the registry file include:

• comment lines, which begin with a pound sign (#)

• directive lines, which begin with a dollar sign ($)

• shared object specification lines, which begin with the name of a shared
object

Comment lines are ignored by ld. Directive lines and shared object
specification lines are described below.

Directive Lines

Directive lines specify global parameters that apply to all the DSOs listed in
the registry.

$text_align_size=align padding=pad-size
$data_align_size=align padding=pad-size

These two directives specify the alignment and padding requirements for
text and data segments, respectively. The current default segment alignment
is 64K, which is the minimum permissible. The size value of a segment of a
DSO appearing in the registry file is calculated based on the actual section
size plus padding, and is aligned to the section align size (either the default
or the one specified by the above directive). The align values for text and
data as well as the padding values must be aligned to the minimum

Building DSOs

63

alignment size (64K). If not, ld generates a warning message and aligns these
values to the minimum alignment.

$start_address=addr

This directive specifies where to start looking for addresses to put shared
objects. The default start_address is 0x6000000.

$data_after_text={ 1 | 0 }

In this directive, a value of one instructs the linker to place data immediately
after the text at specified text and data alignment requirements. A value of
zero (the default) allows the linker to place these segments in different
portions of the address space.

Shared Object Specification Lines

Shared object specification lines have the format:

so_name [:st = {.text | .data | $range} base_addr,padded_size :] *

where:

so_name full path name (or trailing component) of a shared object

:st = literal string indicating the beginning of the segment
description

.text, .data segment types: text or data

$range range of addresses that can be used

base_addr address where the segment starts

padded_size padded size of the segment

: literal string indicating the end of the segment description

A shared object specification can span several lines by “escaping” the
newline character (using “\” as the last character on the line that is being
continued). The following is an example of a shared object specification line:

libc.so.1 \
 :st = $range 0x5fc00000, 0x00400000:\
 :st = .text 0x5fe40000, 0x000a0000:\
 :st = .data 0x5fee0000, 0x00030000:

64

Chapter 3: Dynamic Shared Objects

This specification instructs ld to relocate all segments of libc.so.1 in the range
0x5fc00000 to 0x5fc00000+0x0040000, and, if possible, to place the text
segment at 0x5fe40000 and the data segment at 0x5fee0000. The text segment
should be padded to 0xa0000 bytes and the data segment to 0x3000 bytes.
See /usr/lib/so_locations for examples of shared object specifications.

When building a DSO with the –check_registry or –update_registry flag, if
an entry corresponding to this DSO exists in the registry file, the linker tries
to assign the indicated addresses for text and data. However, if the size of the
DSO changes and no longer fits in the specified location, the linker searches
for another location that fits. If the $range option is specified, the linker
places the DSO only in the specified range of addresses. If there isn’t enough
room, an error is returned.

Runtime Linking

This section explains the search path followed by the run-time linker and
how you can cause symbols to be resolved at run time rather than link time.
Specifically, this section describes:

• “Searching for DSOs at Runtime”

• “Runtime Symbol Resolution”

Searching for DSOs at Runtime

When you run a dynamically linked executable, the run-time linker, rld,
identifies the DSOs required by the executable, loads the required DSOs, and
if necessary relocates DSOs within the process’s virtual address space, so
that no two DSOs occupy the same location.The program header of a
dynamically linked executable contains a field, the liblist, which lists the
DSOs required by the executable.

When looking for a DSO, rld searches directories in the following sequence:

1. the path of the DSO in the liblist (if an explicit path is given)

2. RPATH if it’s defined in the main executable

Runtime Linking

65

3. LD_LIBRARY_PATH if defined

4. the default path (/usr/lib:/lib)

RPATH is a colon-separated list of directories stored in the main executable.
You can set RPATH by using the –rpath argument to ld:

ld –o myprog myprog.c –rpath /d/src/mylib libmylib.so –lc

This example links the program against libmylib.so in the current directory,
and configures the executable such that rld searches the directory /d/src/mylib
when searching for DSOs.

The LD_LIBRARY_PATH environment variable is a colon-separated list of
directories to search for DSOs. This can be very useful for testing new
versions of DSOs before installing them in their final location. You can set the
environment variable _RLD_ROOT to a colon-separated list of directories.
The run-time linker prepends these to the paths in RPATH and the paths in
the default search path.

In all of the colon-separated directory lists, an empty field is interpreted as
the current directory. A leading or trailing colon counts as an empty field.
Thus, if you set LD_LIBRARY_PATH to:

/d/src/lib1:/d/src/lib2:

The run-time linker searches the directory /d/src/lib1, then the directory /d/
src/lib2, and then the current directory.

Note: For security reasons, if an executable has its set-user-ID or set-group-
ID bits set, the run-time linker ignores the environment variables
LD_LIBRARY_PATH and _RLD_ROOT. However, it still searches the
directories in RPATH and the default path.

Runtime Symbol Resolution

Dynamically linked executables can contain symbol references that aren’t
resolved before run time. Any symbol references in your main program or in
an archive must be resolved at link time, unless you specify the –
ignore_unresolved argument to cc. DSOs may contain references that aren’t
resolved at link time. All data symbols must be resolved at run time. If rld
finds an unresolvable data symbol at run time, it will cause the executable to

66

Chapter 3: Dynamic Shared Objects

exit with an error. Text symbols are resolved only when they’re used; so a
program can run with unresolved text symbols, as long as the unresolved
symbols aren’t used.

You can force rld to resolve text symbols at run time by setting the
environment variable LD_BIND_NOW. If unresolvable text symbols exist in
your executable and LD_BIND_NOW is set, the executable will exit with an
error, just as if there were unresolvable data symbols.

Compiling with –Bsymbolic

When you compile a DSO with –Bsymbolic, the dynamic linker resolves
referenced symbols from itself first. If the shared object fails to supply the
referenced symbol, then the dynamic linker searches the executable file and
other shared objects. For example:

main—defines x
x.so—defines and uses x

If you compile x.so with –Bsymbolic on, the linker tries to resolve the use of
x by looking first for the definition in x.so and then by looking in main.

In FORTRAN programs, the linker allocates space for COMMON symbols
and the compiler allocates space for BLOCK DATA. The first kind of symbol
(with COMMON blocks present) appears in the symbol table as
SHN_MIPS_ACOMMON (uninitialized DATA) whereas the second kind
of symbol (with BLOCK DATA present) appears as SHN_DATA (initialized
DATA). In general, initialized data takes precedence when the dynamic
linker tries to resolve a symbol. However, with –Bsymbolic, whatever is
defined in the current object takes precedence, whether it is initialized or
uninitialized.

Variables that are declared at file scope in C with –cckr are also treated this
way. For example:

int foo[100];

is COMMON if –cckr is used and DATA if –xansi or –ansi is used.

Runtime Linking

67

For example:

In main:

COMMON i, j /* definition of i, j with initial values */
DATA i/1/, j/1/
call junk
end

In x.so:

COMMON i, j
/* definition of i, j with NO initial values */
/* initialized by kernel to all zeros */
print *, i, j
end

When you build x.so using –Bsymbolic, this program prints:

0 0

When you build x.so without –Bsymbolic, this program prints:

1

Converting Libraries to DSOs

When you link a program with a DSO, all of the symbols in the DSO become
associated with the executable. This can cause unexpected results if archives
that contain unresolved externals are converted to DSOs. When linking with
a PIC archive, the linker links in only those object files that satisfy
unresolved references.

If an object file in an archive contains an unresolved external reference, the
linker tries to resolve the reference only when that object file is linked in to
your program. In contrast, a DSO containing an external data reference that
cannot be resolved at run time causes the program to fail. Therefore, you
should exercise caution when converting archives with external data
references to DSOs.

For example, suppose you have an archive, mylib.a, and one of the object files
in the archive, has_extern.o, references an external variable, foo. As long as
your program doesn’t reference any symbols in has_extern.o, the program
will link and run properly. If your program references a symbol in

68

Chapter 3: Dynamic Shared Objects

has_extern.o and doesn’t define foo, then the link will fail. However, if you
convert mylib.a to a DSO, then any program that uses the DSO and doesn’t
define foo will fail at run time, regardless of whether the program references
any symbols from has_extern.o.

Two possible solutions exist for this problem.

• Add a “dummy” definition of the data to the DSO. A data definition
appearing in the main executable preempts one appearing in the DSO
itself. This may, however, be misleading for executables that use the
portion of the DSO that needs the data, but that failed to define it in the
main program.

• Separate the routines that use the data definition into a second DSO,
and place dummy functions for them in the first DSO. The second DSO
can then be dynamically loaded the first time any of the dummy
functions is accessed. Each of the dummy functions must verify that the
second DSO was loaded before calling the real function (which must
have a unique name). This way, programs run whether or not they
supply the missing external data, as long as they don’t call any of the
functions that require the data. The first time one of the dummy
functions is called, it tries to dynamically load the second DSO.
Programs that do not supply the missing data fail at this point.

For more information on dynamic loading, see “Dynamic Loading Under
Program Control” below.

Dynamic Loading Under Program Control

69

Dynamic Loading Under Program Control

IRIX provides a library interface to the run-time linker that allows programs
to dynamically load and unload DSOs. This interface is called libdl, and it
consists of four functions listed in Table 3-1.

To load a DSO, call dlopen():

include <dlfcn.h>
void *dlhandle;
...
dlhandle = dlopen("/usr/lib/mylib.so", RTLD_LAZY);
if (dlhandle == NULL) {
/* couldn’t open DSO */
printf("Error: %s\n", dlerror());
}

The first argument to dlopen() is the pathname of the DSO to be loaded. This
may be either an absolute or a relative pathname. When you call this routine,
the run-time linker tries to load the specified DSO. If any unresolved
references exist in the executable that are defined in the DSO, the run-time
linker resolves these references on demand. You can also use dlsym() to
access symbols in the DSO, whether or not the symbols are referenced in
your executable.

When a DSO is brought into the address space of a process, it may contain
references to symbols whose addresses are not known until the object is
loaded. These references must be relocated before the symbols can be
accessed. The second argument to dlopen() governs when these relocations
take place.

Table 3-1 libdl functions

dlopen() load a DSO

dlsym() find a symbol in a loaded DSO

dlclose() unload a DSO

dlerror() report errors

70

Chapter 3: Dynamic Shared Objects

This argument can have the following values:

 RTLD_LAZY Under this mode, only references to data symbols are
relocated when the object is loaded. References to functions
are not relocated until a given function is invoked for the
first time. This mode should result in better performance,
since a process may not reference all of the functions in any
given shared object.

 RTLD_NOW Under this mode, all necessary relocations are performed
when the object is first loaded. This may result in some
wasted effort if relocations are performed for functions that
are never referenced. However, this option is useful for
applications that need to know as soon as an object is loaded
that all symbols referenced during execution will be
available.

To access symbols that are not referenced in your program, use dlsym():

#include <dlfcn.h>
void *dlhandle;
int (*funcptr)(int);
int i,j;
... load DSO ...
funcptr = (int (*)(int)) dlsym(dlhandle, "factorial");
if (funcptr == NULL) {
/* couldn’t locate the symbol */
}
i = (*funcptr)(j);

In this example, we look up the address of a function called factorial() and
assign it to the function pointer funcptr.

If you encounter an error (dlopen() or dlsym() returns NULL), you can get
diagnostic information by calling dlerror(). The dlerror() function returns a
string describing the cause of the latest error. You should only call dlerror()
after an error has occurred; at other times, its return value is undefined.

To unload a DSO, call dlclose():

#include <dlfcn.h>
void *dlhandle;
... load DSO, use DSO symbols ...
dlclose(dlhandle);

Versioning of DSOs

71

The dlclose function frees up the virtual address space mmaped by the
dlopen call of that file (similar to a munmap call). The difference, however,
is that dlclose on a file that has been opened multiple times (either through
dlopen or program startup) does not cause the file to be munmaped until the
file is no longer needed by the process.

Versioning of DSOs

This section describes the DSO version mechanism:

• “The Versioning Mechanism of Silicon Graphics”

• “What Is a Version?”

The Versioning Mechanism of Silicon Graphics

In the IRIX 5.0.1 release, a mechanism for the versioning of shared objects
was introduced for SGI-specific shared objects and executables. Note that
this mechanism is outside the scope of the ABI, and, thus, must not be relied
on for code that must be ABI-compliant and run on non-SGI platforms.
Currently, all executables produced on SGI systems are marked SGI_ONLY
to allow use of the versioning mechanism.

Versioning is mainly of interest to developers of shared objects. It may not be
of interest to you if you simply use shared objects. Versioning allows a
developer to update a shared object in a way that may be incompatible with
executables previously linked against the shared object. This is
accomplished by renaming the original shared object and providing it along
with the (incompatible) new version.

What Is a Version?

A version is part or all of an identifying version_string that can be associated
with a shared object by using the –set_version version_string option to ld(1)
when the shared object is created.

72

Chapter 3: Dynamic Shared Objects

A version_string consists of one or more versions separated by colons (:). A
single version has the form:

[comment#]sgimajor.minor

where:

comment is a comment string, which is ignored by the versioning
mechanism. It consists of any sequence of characters
followed by a pound sign (#). The comment is optional.

sgi is the literal string sgi.

major is the major version number, which is a string of digits [0-9].

. is a literal period.

minor is the minor version number, which is a string of digits [0-
9].

Follow these instructions when building your shared library:

When you first build your shared library, give it an initial version, for
example, sgi1.0. Add the option –set_version sgi1.0 to the command to build
your shared library (cc –shared, ld –shared).

Whenever you make a compatible change to the shared object, create another
version by changing the minor version number (for example, sgi1.1) and add
it to the end of the version_string. The command to set the version of the
shared library now looks like –set_version “sgi1.0:sgi1.1”.

When you make an incompatible change to the shared object:

1. Change the file name of the old shared object by adding a dot followed
by the major number of one of the versions to the file name of the
shared object. Do not change the soname of the shared object or its
contents. Simply rename the file.

2. Update the major version number and set the version_string of the
shared object (when you create it) to this new version; for example, –
set_version sgi2.0.

Versioning of DSOs

73

This versioning mechanism affects executables in the following ways:

• When an executable is linked against a shared object, the last version in
the shared object’s version_string is recorded in the executable as part of
the liblist. You can examine this using elfdump –Dl.

• When you run an executable, rld looks for the proper file name in its
usual search routine.

• If a file is found with the correct name, the version specified in the
executable for this shared object is compared to each of the versions in
the version_string in the shared object. If one of the versions in the
version_string matches the executable’s version exactly (ignoring
comments), then that library is used.

• If no proper match is found, a new file name for the shared object is
built by combining the soname specified in the executable for this shared
object and the major number found in the version specified in the
executable for this shared object (soname.major). Remember that you did
not change the soname of the object, only the file name. The new file is
searched for using rld’s usual search procedure.

For example, suppose you have a shared object foo.so with initial version
sgi10.0. Over time, you make two compatible changes for foo.so that result in
the following final version_string for foo.so:

initial_version#sgi10.0:upgrade#sgi10.1:new_devices#sgi10.2

You then link an executable that uses this shared object, useoldfoo. This
executable specifies version sgi10.2 for soname foo.so. (Remember that the
executable inherits the last version in the version_string of the shared object.)

The time comes to upgrade foo.so in an incompatible way. Note that the major
version of foo.so is 10, so you move the existing foo.so to the file name foo.so.10
and create a new foo.so with the version_string:

efficient_interfaces#sgi11.0

New executables linked with foo.so use it directly. Older executables, like
useoldfoo, attempt to use foo.so, but find that its version (sgi11.0) is not the

74

Chapter 3: Dynamic Shared Objects

version they need (sgi10.2). They then attempt to find a foo.so in the file name
foo.so.10 with version sgi10.2.

Note: When a needed DSO has its interface changed, then a new version is
created. If the interface change is not compatible with older versions, then a
consuming shared object needs incompatible versions in order to use the
new version, even if it doesn’t use that part of the interface that is changed.

This chapter describes how to use
performance tools such as prof, pixie,
and cord.

Using the Performance Tools

Chapter 4

77

Chapter 4

4. Using the Performance Tools

This chapter explains how to use performance tools to reduce the execution
time of your programs. This chapter describes prof, pixie, and cord. For
information about the compiler optimization options, see Chapter 5,
“Optimizing Program Performance.”

This chapter covers the following topics:

• “Overview of Profiling” explains how profiling can help you to analyze
your data.

• “Profiling With prof” describes how to run the profiler, prof and lists its
options.

• “pc Sampling” explains how to use prof to obtain program counter (pc)
sampling.

• “Basic Block Counting” covers how to use prof and pixie perform basic
block counting.

• “Profiling Multiprocessed Executables” describes how to profile
executables that use sproc and sprocsp system calls.

• “Rearranging Procedures With cord” explains how to rearrange
procedures to reduce paging and achieve better instruction cache
mapping.

Although it may be possible to obtain short-term speed increases by relying
on unsupported or undocumented quirks of the compiler system, it’s a bad
idea to do so. Any such “features” may break in future releases of the
compiler system.

The best way to produce efficient code that can be trusted to remain efficient
is to follow good programming practices; in particular, choose good
algorithms and leave the details to the compiler.

78

Chapter 4: Using the Performance Tools

The techniques described in this manual comprise only a part of
performance tuning. Other areas that you can tune, but are outside the scope
of this document, include graphics, I/O, the kernel, system parameters,
memory, and real-time system calls.

Overview of Profiling

Profiling is a three-step process that consists of compiling the source
program, executing the program, and then running the profiler, prof, to
analyze the data.

The compiler system provides two types of profiling:

• Program counter (pc) sampling, which measures the amount of execution
time spent in various parts of the program. This statistical data is
obtained by periodically sampling the program counter. For example,
cc –p interrupts the program ever 10 milliseconds, and records the value
of the program counter. By default, prof generates pc sampling data.

• Basic block counting, which counts the execution of basic blocks (a basic
block is a sequence of instructions that is entered only at the beginning
and exits only at the end). It produces an exact count of the number of
times each basic block is executed, thereby providing more detailed
information than pc sampling.

Profiling With prof

Profiling produces detailed information about program execution. You can
use profiling tools to find the areas of code where most of the execution time
is spent. In a typical program, a large part of the execution time is spent in
relatively few sections of code. It is a good idea to concentrate on improving
code efficiency in those sections first.

The topics covered below include:

• “Running the Profiler”

• “prof Options”

Profiling With prof

79

Running the Profiler

The profiler program, prof(1), analyzes raw profiling information and
produces a printed report. The program analyzes either pc sampling or basic
block counting data.

prof Syntax

The syntax for prof is:

prof [options] [prog_name] [profile_filename ...]

options One of the keywords or keyword abbreviations shown in
Table 4-1. (Specify either the entire name or the initial
character of the option, as indicated in the table.)

prog_name Specifies the name of the program whose profile data is to
be profiled.

profile_filename Specifies one or more files containing the profile data
gathered when the profiled program executed (defaults are
explained below). If you specify more than one file, prof
sums the statistics in the resulting profile listings.

prof Defaults

The prof program has these defaults:

• If you do not specify –pixie, prof assumes pc-sampling data is being
analyzed. If you do not specify profile_filename, the profiler looks for a
mon.out file. If this file does not exist in the current directory, prof looks
for profile input data files in the directory specified by the PROFDIR
environment variable (see “Creating Multiple Profile Data Files” for
information on PROFDIR).

You may want to use the –merge option when you have more than one
profile data file. This option merges the data from several profile files
into one file.

• If you specify –pixie and do not specify profile_filename, then prof looks
for prog_name.Counts and provides basic block count information if this
file is present.

80

Chapter 4: Using the Performance Tools

• If you specify profile_filename(s), prof determines the file type based on
its content: a prof- or pixie-mode file.

prof Options

Table 4-1 lists prof options. Options that apply to basic block counting are
indicated as such.

Table 4-1 Options for prof

Name Result

–c[lock] n A basic-block-counting option. This option lists the number of
seconds spent in each routine, based on the CPU clock frequency
n, expressed in megahertz.

–d[is] Disassembles and annotates the analyzed object code with cycle
times or number of pc samples.

–dso [dso_name] Applies prof analysis to only the named DSO. If you don’t
specify dso_name, prof prints a list of applicable DSO names.

–e[xclude]
procedure_name

Excludes information on the procedures specified by
procedure_name. If you specify uppercase –E, prof also omits that
procedure from the base upon which it calculates percentages.

–h[eavy] A basic-block-counting option. Same as the –lines option, but
sorts the lines by their frequency of use.

–i[nvocations] A basic-block-counting option. Lists the number of times each
procedure is invoked. The –exclude and –only options described
below apply to callees, but not to callers.

–l[ines] Lists statistics for each line of source code.

–m[erge] filename Merges the input files into filename (the default is mon.out),
allowing you to specify the name of the merged file (instead of
several filenames) on subsequent profiler runs. This option is
useful when using multiple input files of profile data.

–o[nly]
procedure_name

Reports information on only the procedure specified by
procedure_name rather than the entire program. You can specify
more than one –o option. If you specify uppercase –O, prof uses
only the named procedures, rather than the entire program, as
the base upon which it calculates percentages.

pc Sampling

81

pc Sampling

Program counter (pc) sampling reveals the amount of execution time spent
in various parts of a program. The count includes:

• CPU time and memory access time

• Time spent in user routines

The pc sampling does not count time spent swapping or time spent
accessing external resources.

This section explains how to obtain pc sampling and provides examples
showing the use of various prof options. Specifically, this section covers:

• “Obtaining pc Sampling”

• “Creating Multiple Profile Data Files”

–pcsample Tells prof that the data to be analyzed is from pc sampling. This
is the default. This option and –pixie are mutually exclusive.

–pixie A basic-block-counting option. Indicates that information is to
be generated on basic block counting, and that the
prog_name.Counts files produced by pixie are to be used by
default. This option and –pcsample are mutually exclusive.

–p[rocedures] Lists the time spent in each procedure.

–q[uit] n Condenses output listings by truncating unwanted lines. You
can specify n in three ways:
n, an integer, truncates everything after n lines;
n%, an integer followed by a percent sign, truncates everything
after the line containing n% calls in the %calls column;
ncum%, an integer, followed by cum%, truncates everything
after the line containing ncum% calls in the cum% column.

–t[estcoverage] A basic-block-counting option. Lists line numbers that contain
code that is never executed.

–z[ero] A basic-block-counting option. Lists the procedures that are
never invoked.

Table 4-1 (continued) Options for prof

Name Result

82

Chapter 4: Using the Performance Tools

• “pc Sampling Frequency”

• “Examples Using prof to Obtain pc Sampling”

Obtaining pc Sampling

Obtain pc sampling information by linking the desired source modules
using the –p option and then executing the resulting program object, which
generates raw profile data.

Use the procedure below to obtain pc sampling information. Also refer to
Figure 4-1, which illustrates how pc sampling works.

1. Compile the program using the appropriate compiler. For example, to
compile a C program myprog.c:

% cc -c myprog.c

2. Link the object file created in Step 1.

% cc -p -o myprog myprog.o

Note: You must specify the –p profiling option during this step to obtain
pc sampling information.

3. Execute the profiled program (just as you would execute an unprofiled
program).

% myprog

During execution, profiling data is saved in the file mon.out. You can
run the program several times, altering the input data, to create
multiple profile data files. You can also use the environment variable
PROFDIR as explained in “Creating Multiple Profile Data Files.”

4. Run the profile formatting program prof.

% prof -pcsample myprog mon.out

prof extracts information from mon.out and prints it in an easily readable
format. If mon.out exists, it is overwritten. Therefore, rename each
mon.out to save its output. For more information, see the prof(1)
reference page.

Include or exclude information on specific procedures within your program
by using the –only or –exclude profiler options (refer to Table 4-1).

pc Sampling

83

Figure 4-1 How pc Sampling Works

Creating Multiple Profile Data Files

When you run a program using pc sampling, raw data is collected and saved
in the profile data file mon.out. To collect profile data in several files, or to

Link with −p option

Compile

Execute program
to collect data

Execute prof (without
−pixie) to format data

progname.c

Data file
(mon.out)

Formatted listing of
profile statistics

84

Chapter 4: Using the Performance Tools

specify a different name for the profile data file, set the environment variable
PROFDIR, using the appropriate method from Table 4-2.

Setting the environment variable puts the raw profile data of each invocation
of progname in files named dirname/progname.mon.pid. (You must create a
directory named dirname before you run the program.) pid is the process ID
of the executing program; progname is the name of the program when
invoked.

pc Sampling Frequency

The default frequency of pc sampling is 10 milliseconds. You can change the
pc sampling to 1 millisecond by setting the environment variable:

PROF_SAMPLING=1

Since pc sampling is statistical, this provides more accurate profiling data.
However, be aware that considerable kernel overhead is incurred for every
process executing on the system while the profiled program is running.

Table 4-2 Setting a PROFDIR Environment Variable

C shell and tcsh Bourne shell and Korn shell

setenv PROFDIR dirname PROFDIR=dirname; export PROFDIR

pc Sampling

85

Examples Using prof to Obtain pc Sampling

The examples in this section illustrate how to use prof and its options to
obtain pc sampling data.

Example Using prof –pcsample

The following partial listing is an example of pc sampling output from a
profiled version of the program test.

--
Profile listing generated Tue Oct 4 14:16:30 1994
 with: prof -pcsample test test.mon.207
--
samples time CPU FPU Clock N-cpu S-interval Countsize
 7473 75s R4000 R4010 100.0MHz 0 10.0ms 0(bytes)
Each sample covers 4 bytes for every 10.0ms (0.01% of 74.7300sec)
--
 -p[rocedures] using pc-sampling.
 Sorted in descending order by the number of samples in each procedure.
 Unexecuted procedures are excluded.
--
samples time(%) cum time(%) procedure (file)

 3176 32s(42.5) 32s(42.5) _cerror (/usr/lib/libc.so.1:cerror.s)
 2564 26s(34.3) 57s(76.8) _doprnt (/usr/lib/libc.so.1:doprnt.c)
 578 5.8s(7.7) 63s(84.5) _isatty (/usr/lib/libc.so.1:isatty.c)
 441 4.4s(5.9) 68s(90.4) offtime (/usr/lib/libc.so.1:time_comm.c)
 217 2.2s(2.9) 70s(93.3) atoi (/usr/lib/libc.so.1:atoi.c)
...

In the above listing:

• The samples column reports the number of samples in each procedure,
sorted in descending order. For example, there were 3176 samples for
the procedure _cerror.

• The time(%) column lists the number of seconds and percentage of
execution time spent in each procedure. For example, there were 32
seconds (42.5% of execution time) spent in _cerror.

• The cum time(%) column lists the percentage of the total execution
time spent in each procedure. For example, there were 63 seconds (84.5%
of total execution time) were spent cumulatively in the _cerror,

86

Chapter 4: Using the Performance Tools

_doprnt, and _isatty procedures. Note that this does not imply that
these routines called each other; they may have executed sequentially.

• The procedure (file) column prints the procedure name and its
source file. For example, the source file containing the _cerror
procedure is /usr/lib/libc.so.1:cerror.s.

Example Using prof –pixie –dis

You can use the –dis option to prof to disassemble the analyzed object code
and see the number of cycles it takes to execute an instruction. Check the
disassembled code for stalls (wasted cycles) and the number of instructions
per cycle. For example, partial output looks like this:

Profile listing generated Tue Oct 4 13:43:41 1994
 with: prof -pixie -dis hello

Total cycles Total Time Instructions Cycles/inst Clock Target
 5005674 0.05006s 3003856 1.666 100.0MHz R4000

 28 cycles due to code that could not be
 assigned to any source procedure.

 1000547: Total number of Load Instructions executed.
 4001532: Total number of bytes loaded by the program.
 200261: Total number of Store Instructions executed.
 800774: Total number of bytes stored by the program.

 100223: Total number nops executed in branch delay slot.
 200558: Total number conditional branches executed.
 200418: Total number conditional branches actually taken.
 0: Total number conditional branch likely executed.
 0: Total number conditional branch likely actually taken.

 601965: Total cycles waiting for current instr to finish.
 4202824: Total cycles lost to satisfy scheduling constraints.
 3001119: Total cycles lost waiting for operands be available.

* -p[rocedures] using basic-block counts. *
* Sorted in descending order by the number of cycles executed in each *
* procedure. Unexecuted procedures are not listed. *
--

pc Sampling

87

 cycles(%) cum % secs instrns calls procedure(file)

 5000044(99.89) 99.89 0.05 3000032 1 main(hello:hello.c)
 1566(0.03) 99.92 0.00 985 3 fflush(/usr/lib/libc.so.1:flush.c)
 1332(0.03) 99.95 0.00 861 1 _doprnt(/usr/lib/libc.so.1:doprnt.c)
 1130(0.02) 99.97 0.00 1004 2 _dtoa(/usr/lib/libc.so.1:dtoa.s)
 320(0.01) 99.97 0.00 120 4_dwmultu(/usr/lib/libc.so.1:tenscale.s)
 302(0.01) 99.98 0.00 196 4 memcpy(/usr/lib/libc.so.1:bcopy.s)
...
--
* -dis[assemble] listing annotated with cycle counts. *
* Unexecuted procedures are excluded. *
--
crt1text.s
__start: <0x400900-0x400a08>
 77 total cycles(0.00%) invoked 1 times, average 77 cycles/invocation
 [91] 0x00400900 0x03e04025 or t0,ra,0 # 1
 [91] 0x00400904 0x04110001 bgezal zero,0x40090c # 2
 [91] 0x00400908 0000000000 nop # 3
 <2 cycle stall for following instruction>
 ̂ --- 5 total cycles(0.00%) executed 1 times, average 5 cycles.---̂
 [91] 0x0040090c 0x3c1c0fc0 lui gp,0xfc0 # 6
...

The previous listing shows statistics about the file hello. The statistics detail
procedures using basic-block counts and disassembled code. Information at
the top of the listing is self-explanatory. Of interest are cycles waiting and
cycles lost.

The –p[rocedures] information uses basic-block counts to sort in
descending order the number of cycles executed in each procedure.

• The cycles(%) column lists the number of cycles (and percentage of total
cycles) per procedure. For example, there were 5000044 cycles (or
99.89%) for the procedure main.

• The cum% column shows the cumulative percentage of cycles. For
example, main used 99.89% of all cycles.

• The secs column reports the number of seconds spent in the procedure.
For example, 0.05 seconds were spent in main.

• The instrns column lists the number of instructions executed in the
procedure. For example, 3000032 instructions were executed in main.

88

Chapter 4: Using the Performance Tools

• The calls procedure(file) column shows the number of calls in the
procedure. For example, there was 1 call in main.

The –dis[assemble] information provides a listing containing cycle counts.
It lists the beginning and ending addresses of crt1text.s __start:
<0x400900-0x400a08>. It also reports the total cycles for a procedure, number of
times invoked, and average number of cycles per invocation:
77 total cycles(0.00%) invoked 1 times, average 77 cycles/invocation

• The first column lists the line number of the instruction: [91]

• The second column lists the beginning address of the instruction:
0x00400900

• The third column shows the instruction in hexadecimal: 0x03e04025.

• The fourth column reports the assembler form (mnemonic) of the
instruction: or t0,ra,0

• The last column reports the cycle in which the instruction executed: # 1

Other information includes:

• The total number of cycles in a basic block and the percentage of the
total cycles for that basic block, the number of times the branch
terminating that basic block was executed, and the number of cycles for
one execution of that basic block:
5 total cycles(0.00%) executed 1 times, average 5 cycles.

• Any cycle stalls (cycles that were wasted):
<2 cycle stall for following instruction>

For information on cycle stalls and what causes them, see the MIPS
Microprocessor Chip Set User’s Guide for your architecture.

Basic Block Counting

Basic block counting, obtained using the program pixie, measures the
execution of basic blocks. A basic block is a sequence of instructions that is
entered only at the beginning and exits only at the end. This section covers:

• “Using pixie”

• “Obtaining Basic Block Counts”

Basic Block Counting

89

• “Summing Basic Block Count Results”

• “Profiling Multiprocessed Executables”

Using pixie

Use pixie(1) to measure the frequency of code execution. pixie reads an
executable program, partitions it into basic blocks, and writes (instruments)
an equivalent program containing additional code that counts the execution
of each basic block.

Note that the execution time of an instrumented program is two-to-five
times longer than an uninstrumented one. This timing change may alter the
behavior of a program that deals with a graphical user interface (GUI), or
depends on events such as SIGALARM that are based on an external clock.

pixie Syntax

The syntax for pixie is:

pixie prog_name [options]

prog_name Name of the input program.

options One of the keywords listed in Table 4-3.

pixie Options

Table 4-3 lists pixie options. For a complete list of options refer to the pixie(1)
reference page.

Table 4-3 Options for pixie

Name Result

–pixie_file out_file Specifies a name for the instrumented output file. The default
is to remove any leading directory names from the input
filename and append .pixie.

–counts_file file Specifies a name for the counts file that is generated while
running the instrumented program. The default is to remove
any leading directory names from the input filename and
append .Counts.

90

Chapter 4: Using the Performance Tools

Obtaining Basic Block Counts

Use this procedure to obtain basic block counts. Also refer to Figure 4-2,
which illustrates how basic block counting works.

1. Compile and link your program. Do not use the –p option. The
following example uses the input file myprog.c.

% cc -o myprog myprog.c

The cc compiler compiles myprog.c into an executable called myprog.

–[no]autopixie Permits (or prevents) a recursive instrumenting all dynamic
shared libraries used by the input file during run time. pixie
keeps the timestamp and checksum from the original
executable. Thus, before instrumenting a shared library, pixie
checks any lib.pixie files that it finds matching the lib it is to
instrument. If the fields match, they are not instrumented. pixie
cannot detect shared libraries opened with dlopen (and hence
does not instrument them). All used DSOs need to be
instrumented for the a.out to work. The default behavior for
shared libraries is –noautopixie, and can be overridden with
–autopixie, which is the default in all other cases.

–[no]liblist Prevents (or permits) printing the names and paths of dynamic
shared libraries used by the input program during run time.
This uses the same default search path as rld and prof. This list
is useful to build a dependency list for makefiles and shell
scripts. pixie removes any leading directory names from the
input filename and appends .liblist. pixie cannot detect libraries
opened with dlopen. The default is –noliblist.

–[no]pids Appends the process ID number on the end of the .Counts file.
This is useful if you want to run the program instrumented
with pixie through a variety of tests. This option is only needed
for the main program. It will be transferred automatically to the
instrumented DSOs during run time. The default is –nopids.

–[no]verbose Suppresses (or prints) messages summarizing the
binary-to-binary translation process. The default is –noverbose.

Table 4-3 (continued) Options for pixie

Name Result

Basic Block Counting

91

2. Run pixie to generate the equivalent program containing
basic-block-counting code.

% pixie myprog

pixie takes myprog and writes an equivalent program, myprog.pixie,
containing additional code that counts the execution of each basic
block. pixie also writes an equivalent program for each shared object
used by the program (in the form: libname.so.pixie), containing
additional code that counts the execution of each basic block. For
example, if myprog uses libc.so.1, pixie generates libc.so.1.pixie.

3. Set the path for your .pixie files. pixie uses the rld search path for
libraries (see rld(1) for the default paths). If the .pixie files are in your
local directory, set the path as:

% setenv LD_LIBRARY_PATH .

4. Execute the file(s) generated by pixie (myprog.pixie) in the same way you
executed the original program.

% myprog.pixie

This program generates a list of basic block counts in files named
myprog.Counts. If the program executes a fork/sproc, a process ID is
appended to the end of the filename (for example, myprog.Counts.345)
for each process.

5. Run the profile formatting program prof specifying the –pixie option
and the name of the original program.

% prof -pixie myprog myprog.Counts

prof extracts information from myprog.Counts and prints it in an easily
readable format. If multiple .Counts files exist, you can use the wildcard
character (*) to specify all of the files.

% prof -pixie myprog myprog.Counts*

Note: Specifying myprog.Counts is optional; prof searches by default for
names having the form prog_name.Counts.

You can run the program several times, altering the input data, to create
multiple profile data files. See “Example Using prof –pixie –procedures
–clock” later in this section for an example.

92

Chapter 4: Using the Performance Tools

The time computation assumes a “best case” execution; actual execution
may take longer. This is because the time includes predicted stalls within a
basic block, but not actual stalls that may occur entering a basic block. Also
it assumes that all instructions and data are in cache (for example, it excludes
the delays due to cache misses and memory fetches and stores).

The complete output of the –pixie option is often extremely large. Use the
–quit option with prof to restrict the size of the output. Refer to “Running the
Profiler” for details about prof options.

Include or exclude information on specific procedures in your program by
using the prof options –only or –exclude (explained in Table 4-1). prof timings
reflect only time spent in a specific procedure, not time spent including
procedures called by that procedure. The CASEVision/WorkShop toolset, an
optional software product, can show an estimate of inclusive times.

Basic Block Counting

93

Figure 4-2 How Basic Block Counting Works

Examples of Basic Block Counting

 The examples in this section illustrate how to use prof –pixie to obtain basic
block counting information from a profiled version of a C file, espresso.

Execute pixie to create
an instrumented

program

Compile

progname.c

Data files
(progname.Counts)

Execute prof −pixie to
format data

Formatted listing of
profile statistics

Execute instrumented
program

(progname.pixie) to
collect data

94

Chapter 4: Using the Performance Tools

Example Using prof –pixie –invocations

The partial listing below illustrates the use of the –i[nvocations] option. For
each procedure, prof reports the number of times it was invoked from each
of its possible callers and lists the procedure(s) that called it.

% prof -pixie -i espresso

Profile listing generated Fri May 13 14:25:19 1994
 with: prof -pixie -i espresso
...
* Sorted in descending order by number of calls per procedure.
* Unexecuted procedures are excluded.
* The inst column is a static number of instructions.
* %coverage column contains the percent inst executed.

Total procedure invocations: 12113082

 calls(%) cum% inst %coverage procedure (file)

 3055229(25.22) 25.22 26 25.00 full_row
(espresso:/usr/people/guest/enjoy/008.espresso/setc.c)
 966541(7.98) 33.20 26 25.00 set_or
(espresso:/usr/people/guest/enjoy/008.espresso/set.c)
 772942(6.38) 39.58 26 25.00 cleanfree
(espresso:/work/irix/lib/libc/gen/malloc.c)
 611793(5.05) 44.63 26 25.00 setp_implies
...

The above listing shows the total procedure invocations (calls) during the
run: 12113082.

• The calls(%) column reports the number of calls (and the percentage
of total calls) per procedure. For example, there were 3055229 calls (or
25.22% of the total) spent in the procedure full_row.

• The cum% column shows the cumulative percentage of calls. For
example, 25.22% of all calls were spent in full_row.

• The inst column shows the number of instructions executed for a
procedure. For example, there were 26 instructions in the procedure
full_row.

• The %coverage column reports the percentage of instructions executed.
For example, 25.00% of instructions were executed in full_row.

Basic Block Counting

95

• The procedure (file) column lists the procedure and its file. For
example, the first line reports statistics for the procedure full_row in
the file setc.c.

Example Using prof –pixie –heavy

The following partial listing shows the source code lines responsible for the
largest portion of execution time produced with the –heavy option.

% prof -pixie -heavy espresso

Profile listing generated Fri May 13 14:28:56 1994
 with: prof -pixie -heavy espresso

...
* -h[eavy] using basic block counts.
* Sorted in descending order by number of cycles per line.
* Unexecuted lines are excluded.
* The insts column contains distinct executed instructions for this line.

 cycles(%) cum % line insts procedure (file)
 77948528(4.95%) 4.95% 57 40 cofactor
(espresso:/usr/people/guest/enjoy/008.espresso/cofactor.c)
 73800963(4.69%) 9.65% 213 67 essen_parts
(espresso:/usr/people/guest/enjoy/008.espresso/expand.c)
 53399667(3.39%) 13.04% 48 29 full_row
(espresso:/usr/people/guest/enjoy/008.espresso/setc.c)
 44723520(2.84%) 15.88% 137 22 massive_count
(espresso:/usr/people/guest/enjoy/008.espresso/cofactor.c)
 38032848(2.42%) 18.30% 257 39 taut_special_cases
(espresso:/usr/people/guest/enjoy/008.espresso/irred.c)
...

The previous partial listing shows basic block counts sorted in descending
order. The most heavily used line (57) was in procedure cofactor.

• The cycles(%) column shows the total number of program cycles (and
percentage of the total number). For example, there were 77948528
cycles (4.95% of the total number) for the procedure cofactor.

• The cum% column shows the cumulative percentage of the total
program cycles. For example, 4.95% of all program cycles were spent
in cofactor. The first three procedures used 13.04% of the total cycles.

96

Chapter 4: Using the Performance Tools

• The line column lists the line number of the procedure: 57.

• The insts column reports the number of distinct instructions that were
executed at least once. For example, line 57 had 40 instructions.

Example Using prof –pixie –lines

The following partial listing, produced using the –lines option, shows the
execution time spent on each line of code, grouped by procedure.

% prof -pixie -lines espresso

Profile listing generated Fri May 13 14:30:49 1994
 with: prof -pixie -lines espresso

...
* -l[ines] using basic-block counts.
* Grouped by procedure.
* Major sort on cycles executed per procedure.
* Minor sort on line numbers within procedure.
* Unexecuted procedures are execluded.

 cycles(%) cum % line insts procedure (file)
 856768(0.05%) 0.05% 121 12 massive_count
(espresso:/usr/people/guest/enjoy/008.espresso/cofactor.c)
 25235712(1.60%) 1.66% 128 12 massive_count
(espresso:/usr/people/guest/enjoy/008.espresso/cofactor.c)
 934656(0.06%) 1.72% 134 16 massive_count
(espresso:/usr/people/guest/enjoy/008.espresso/cofactor.c)
 5963136(0.38%) 2.10% 135 7 massive_count
(espresso:/usr/people/guest/enjoy/008.espresso/cofactor.c)
 20870976(1.33%) 3.42% 136 13 massive_count
(espresso:/usr/people/guest/enjoy/008.espresso/cofactor.c)
...

In the above listing:

• The cycles(%) column lists the number of program cycles (and the
percentage of the total cycles) for each procedure. For example, there
were 856768 program cycles (0.05% of the total) for massive_count.

• The cum% column shows the cumulative percentage of the total
program cycles. For example, 0.05% of all program cycles were spent
in massive_count.

Basic Block Counting

97

• The line and insts columns report the procedure’s line number, and
number of distinct instructions. For example, for the procedure
massive_count, lines 121 and 128 each generated 12 instructions that
were executed at least once, and line 134 generated 16 instructions that
were executed at least once.

Example Using prof –pixie –quit

You can limit the output of prof to information on only the most
time-consuming parts of the program by specifying the –quit option. You can
instruct prof to quit after a particular number of lines of output, after listing
the elements consuming more than a certain percentage of the total, or after
the portion of each listing whose cumulative use is a certain amount.

Consider the following sample listing:

 cycles(%) cum % seconds cycles bytes procedure(file)
 /call /line

 360331656(22.90) 22.90 4.80 4626 93
massive_count(espresso:/usr/people/guest/enjoy/008.espresso/cofactor.c)
 174376925(11.08) 33.99 2.33 15479 108
cofactor(espresso:/usr/people/guest/enjoy/008.espresso/cofactor.c)
 157700711(10.02) 44.01 2.10 43817 123
elim_lowering(espresso:/usr/people/guest/enjoy/008.espresso/expand.c)
 155670642(9.89) 53.91 2.08 49216 156
essen_parts(espresso:/usr/people/guest/enjoy/008.espresso/expand.c)
 66835754(4.25) 58.15 0.89 691 76
scofactor(espresso:/usr/people/guest/enjoy/008.espresso/cofactor.c)
 66537017(4.23) 62.38 0.89 21 156
full_row(espresso:/usr/people/guest/enjoy/008.espresso/setc.c)
 57747597(3.67) 66.05 0.77 1670 87
taut_special_cases(espresso:/usr/people/guest/enjoy/008.espresso/irred.c)

Any one of the following commands eliminates everything from the line
starting with 66835754 to the end of the listing:

prof -quit 4
prof -quit 5%
prof -quit 53cum%

98

Chapter 4: Using the Performance Tools

Example Using prof –pixie –procedures

The following partial listing, produced with the –procedures option, shows
the percentage of execution time spent in each procedure.

% prof -pixie -procedures espresso

Profile listing generated Fri May 13 14:33:00 1994
 with: prof -pixie -procedures espresso

...
* -p[rocedures] using basic-block counts.
* Sorted in descending order by the number of cycles executed in each
* procedure. Unexecuted procedures are not listed.

 cycles(%) cum % seconds cycles bytes procedure(file)
 /call /line

 360331656(22.90) 22.90 4.80 4626 93
massive_count(espresso:/usr/people/guest/enjoy/008.espresso/cofactor.c)
 174376925(11.08) 33.99 2.33 15479 108
cofactor(espresso:/usr/people/guest/enjoy/008.espresso/cofactor.c)
 157700711(10.02) 44.01 2.10 43817 123
elim_lowering(espresso:/usr/people/guest/enjoy/008.espresso/expand.c)
 155670642(9.89) 53.91 2.08 49216 156
essen_parts(espresso:/usr/people/guest/enjoy/008.espresso/expand.c)
 66835754(4.25) 58.15 0.89 691 76
scofactor(espresso:/usr/people/guest/enjoy/008.espresso/cofactor.c)

In the above listing:

• The cycles(%) column lists the number of program cycles (and
percentage of the total) used. For example, massive_count used
360331656 program cycles (22.90% of the total cycles).

• The cum% column reports the cumulative total of all cycles used. For
example, massive_count, cofactor, and elim_lowering used 44.01%

of the cycles.

• The seconds column lists the time used by the procedure (the clock
rate, 75 megahertz, is omitted in this example). For example, there were
4.80 seconds used by massive_count.

• The cycles/call and bytes/line columns report the average cycles
per call, and the bytes of code per line of source text, respectively. For

Basic Block Counting

99

example, massive_count used an average of 4626 cycles per call, and
had 93 bytes of generated code per line of source text.

• The procedure (file) column lists the procedure, massive_count,
and its source file, cofactor.c.

Example Using prof –pixie –procedures –clock

You can add absolute time information to the output by specifying the clock
rate, in megahertz, with the –clock option. Partial output looks like this:

% prof -pixie -procedures -clock 20 espresso

Profile listing generated Fri May 13 14:34:55 1994
 with: prof -pixie -procedures -clock 20 espresso

...
* -p[rocedures] using basic-block counts.
* Sorted in descending order by the number of cycles executed in each
* procedure. Unexecuted procedures are not listed.

 cycles(%) cum % seconds cycles bytes procedure(file)
 /call /line

 360331656(22.90) 22.90 18.02 4626 93
massive_count(espresso:/usr/people/guest/enjoy/008.espresso/cofactor.c)
 174376925(11.08) 33.99 8.72 15479 108
cofactor(espresso:/usr/people/guest/enjoy/008.espresso/cofactor.c)
 157700711(10.02) 44.01 7.89 43817 123
elim_lowering(espresso:/usr/people/guest/enjoy/008.espresso/expand.c)
...

In the previous listing, the seconds column lists the number of seconds
spent in each procedure. For example 18.02 seconds were spent in the
procedure massive_count. The time (computed by the profiler), in seconds,
is based on the machine speed specified with the –clock option (in
megahertz). In this example, the speed specified is 20 megahertz.

100

Chapter 4: Using the Performance Tools

Summing Basic Block Count Results

Sometimes a single run of a program does not produce the results you
require. You can repeatedly run the version of a program created by pixie and
vary the input with each run, then use the resulting .Counts files to produce
a consolidated report.

Use the following procedure to average prof results:

1. Compile and link the input file. Do not use the –p option. For example,
consider the input file myprog.c:

% cc -o myprog myprog.c

The cc compiler compiles myprog.c and saves the executable as myprog.

2. Run the profiling program pixie.

% pixie myprog -pids

pixie generates the modified program myprog.pixie.

3. Run the profiled program as many times as desired. Each time you run
the program, pixie creates a myprog.Counts.pid file, with the process ID
appended.

% myprog.pixie < input1 > output1
% myprog.pixie < input2 > output2
% myprog.pixie < input3 > output3

4. Create the report.

% prof -pixie myprog myprog.Counts*

prof sums the basic block data in the .Counts files to produce the profile
report.

Using pixstats

Use pixstats(1) to get more architectural details of a program’s execution than
are available from prof. The –op option to pixstats produces low-level
information on bus issue, various kinds of stalls that prof doesn’t provide.
Prof also requires more memory to operate, so in situations where not
enough memory exists for prof to function correctly, you can use pixstats.

Basic Block Counting

101

You can also use pixstats to look for write buffer stalls and to produce
disassembled code listings.

Note: In subsequent releases, pixstats will be removed and its functionality
will be moved into prof.

The disadvantages to using pixstats are that it:

• Does not provide a line-by-line count

• Profiles only one .Counts file at a time (no averaging)

• Provides very little documentation

• Does not show time spent in floating point exceptions

pixstats Syntax

The syntax for pixstats is:

pixstats program [options]

program Specifies the name of the program to be analyzed.

options One of the keywords shown in Table 4-4.

pixstats Options

Table 4-4 lists and briefly describes pixstats options. For details, see the
pixstats(1) reference page.

Table 4-4 Options for pixstats

Name Result

–cycle ns Assumes an ns cycle time when converting cycle counts to
seconds.

–dis Disassembles and annotates the analyzed object code.

–dso [dso_name] Analyzes only the named DSO(s).

–only
procedure_name

Analyzes only the named procedure(s).

102

Chapter 4: Using the Performance Tools

Other options are explained in the pixstats(1) reference page.

Use the following procedure to run pixstats:

1. Compile and link the input file myprog.c. Do not use the –p option. For
example, using the input file myprog.c:

% cc -c myprog.c

% cc -o myprog myprog.o

The cc compiler driver compiles myprog.c and saves the object file as
myprog.o. The second command links myprog.o and saves the executable
as myprog.

2. Run the profiling program pixie.

% pixie myprog

pixie generates the modified program myprog.pixie.

3. Set the path, so pixie knows where to find the .pixie files.

% setenv LD_LIBRARY_PATH .

4. Execute the file generated by pixie, myprog.pixie, in the same way you
would execute the original program.

% myprog.pixie

–op Produces a detailed listing about instructions and operations
and procedure usage. Information includes instruction
distribution, stall distribution, basic block size distribution, and
register usage.

–r2010 Uses r2010 floating point chip operation times and overlap
rules. This option is the default.

–r2360 Uses r2360 floating point board operation times and overlap
rules.

–r4000 Uses the r4000 operation times and overlap rules. This is the
default if the program’s magic number indicates it is a mips2 or
mips3 executable.

Table 4-4 (continued) Options for pixstats

Name Result

Basic Block Counting

103

This program generates the file myprog.Counts which contains the basic
block counts.

5. Run pixstats to generate a detailed report.

% pixstats myprog

Examples Using pixstats

The following example shows the default listing generated by pixstats:

pixstats espresso:

1588254395 (1.357/inst) cycles (15.88s @ 100.0MHz)
1170355761 (1.000/inst) instructions

 2397 (0.000/inst) floating point ops (0.000151 MFLOPS @ 100.0MHz)
Procedures ordered by execution time:
 cycles %cycles cum% instrs cycles calls cycles procedure
 /inst /call
 382093989 24.1% 24.1% 278174631 1.4 77888 4906 massive_count
 194452825 12.2% 36.3% 130750578 1.5 11265 17262 cofactor
 146765915 9.2% 45.5% 104525532 1.4 3599 40780 elim_lowering
 144704109 9.1% 54.7% 113501194 1.3 3163 45749 essen_parts
 65043668 4.1% 58.7% 51198838 1.3 96713 673 scofactor
 57256404 3.6% 62.4% 41920736 1.4 34564 1657 taut_special_cases
 54258762 3.4% 65.8% 43594130 1.2 1632626 33 full_row
 43947988 2.8% 68.5% 32692126 1.3 72095 610 sccc_special_cases
 42611632 2.7% 71.2% 27971390 1.5 2370 17980 setup_BB_CC
 35769668 2.3% 73.5% 26776245 1.3 528962 68 __malloc
 29107500 1.8% 75.3% 24012582 1.2 333396 87 cdist01
 28840766 1.8% 77.1% 23333068 1.2 235410 123 force_lower
 27458158 1.7% 78.8% 21150937 1.3 447933 61 realfree
 26682338 1.7% 80.5% 21303304 1.3 407124 66 cleanfree
 21207623 1.3% 81.9% 16338599 1.3 528945 40 __free
 19991078 1.3% 83.1% 13678106 1.5 526081 38 _malloc
 19464960 1.2% 84.3% 13152000 1.5 526080 37 _free
 17434271 1.1% 85.4% 15501189 1.1 485880 36 set_or
 14574313 0.9% 86.4% 9466949 1.5 725 20103 expand1_gasp
 13115606 0.8% 87.2% 9753942 1.3 336135 39 _smalloc
 10646822 0.7% 87.9% 7928278 1.3 316901 34 setp_implies
 9812911 0.6% 88.5% 7858695 1.2 50103 196 binate_split_select
 9487312 0.6% 89.1% 7085744 1.3 908 10449 compl_lift
 9342972 0.6% 89.7% 6531388 1.4 567 16478 cb_consensus
 8825424 0.6% 90.2% 7330700 1.2 55166 160 consensus

104

Chapter 4: Using the Performance Tools

 8353958 0.5% 90.7% 7474594 1.1 219841 38 set_diff
 7858360 0.5% 91.2% 6439566 1.2 32735 240cb_consensus_dist0
 7670120 0.5% 91.7% 5122330 1.5 72095 106 sccc
 7606139 0.5% 92.2% 6589200 1.2 66552 114 cactive
 6833384 0.4% 92.6% 4754352 1.4 105270 65 t_delete
 6561606 0.4% 93.0% 4923904 1.3 274750 24 set_clear
 6065768 0.4% 93.4% 4007453 1.5 44414 137 sm_insert
 5738712 0.4% 93.8% 4397726 1.3 95491 60 sf_addset
 5477719 0.3% 94.1% 3639951 1.5 117592 47 t_splay
 5162590 0.3% 94.5% 3351656 1.5 789 6543 essen_raising
 5134827 0.3% 94.8% 3968016 1.3 1 5134827 rm_contain
 4737968 0.3% 95.1% 4006370 1.2 34838 136 sccc_merge
 4611671 0.3% 95.4% 3079225 1.5 2120 2175 intcpy
 3868020 0.2% 95.6% 3438240 1.1 107445 36 set_and
 3862752 0.2% 95.9% 3338484 1.2 66552 58 sccc_cube

In the above listing, the first line shows the total cycles used and the second
line shows the total instructions. The third line shows the number of floating
point operations.

You can use pixstats –op to generate a detailed listing about instructions and
operations. Information includes instruction distribution, stall distribution,
basic block size distribution, and register usage.

The following example shows a partial listing generated by executing
pixstats –op on the C file, espresso.

% pixstats -op espresso

1588254395 (1.357/inst) cycles (15.88s @ 100.0MHz)
1170355761 (1.000/inst) instructions
 12892539 (0.011/inst) instructions annulled by untaken branch likely
 250767706 (0.214/inst) cycles lost on non-sequential fetch
 152077341 (0.130/inst) alu/shift/load result interlock cycles
 689848 (0.001/inst) multiply interlock cycles (12 cycles)
 692925 (0.001/inst) divide interlock cycles (75 cycles)
 513369 (0.000/inst) variable shift extra issue cycles (2 total issue)
 29852 (0.000/inst) floating point result interlock cycles
 48 (0.000/inst) floating point compare interlock cycles
 71323 (0.000/inst) interlock cycles due to basic block boundary

 42595822 (0.036/inst) nops
 570540263 (0.487/inst) alu (including logicals, shifts, traps)
 185728252 (0.159/inst) logicals (including moves and li)
 72264550 (0.062/inst) shifts

Basic Block Counting

105

 294103332 (0.251/inst) loads
 70309957 (0.060/inst) stores
 364413289 (0.311/inst) loads+stores
 120292374 (0.103/inst) load followed by load
 364415843 (0.311/inst) data bus use
 77171 (0.000/inst) partial word references
 117123216 (0.100/inst) sp+gp load/stores

 2397 (0.000/inst) floating point ops (0.000151 MFLOPS @ 100.0MHz)
 48 (0.000/inst) floating point compares
 0 (0.000/inst) overlapped floating point cycles
 168207521 (0.144/inst) conditional branches
 35852721 (0.031/inst) branch likelies
 32916066 (0.028/inst) load in branch delay slot
 20834011 (0.018/inst) branch to branch
 13630671 (0.012/inst) branch to branch taken
 5836780 (0.005/inst) branch to branch untaken
 41296177 (0.035/inst) branch delay filled with target-1 instruction
 67419786 (0.058/inst) untaken conditional branches
 100787735 (0.086/inst) taken conditional branches
 17365744 (0.015/inst) taken conditional branches with bnop
 7598403 (0.006/inst) untaken conditional branches with bnop
 15749049 (0.013/inst) direction-predicted conditional branches with bnop
 125383991 (0.107/inst) non-sequential fetches
 236116938 (0.202/inst) basic blocks
 8578595 (0.007/inst) calls
 8594643 (0.007/inst) non-R31 JR
 3511926 (0.003/inst) addui opportunities
 0 (0.000/inst) fp multiply/add opportunities
 2220801 (0.002/inst) skip

You can use pixstats to disassemble and annotate the analyzed object code.
The next example shows pixstats –dis[assemble]. The file, espresso, was
executed on an R4000 CPU; results will differ on other CPUs.

% pixstats -dis espresso

 0 43 404618 8fbc0020 lw gp,32(sp)
 ̂ ---11265 total cycles. Executed 11265 times, avg 1 (0.00107% of inst.)---̂
 0 43 40461c 0040f825 move ra,v0
 1 43 404620 afa20030 sw v0,48(sp)
 2 43 404624 8f858574 lw a1,-31372(gp)
 << 2 cycle interlock >>
 5 43 404628 8ca50000 lw a1,0(a1)
 << 2 cycle interlock >>

106

Chapter 4: Using the Performance Tools

 8 46 40462c 28a10021 slti at,a1,33
 9 46 404630 10200003 beq at,zero,0x404640
 10 46 404634 24a2ffff addiu v0,a1,-1
 << branch taken 11265 times (100%) >>
 << possible 2 cycles branch penalty, total 22530, avg 2 >>
 ̂ ---146445 total cycles. Executed 11265 times, avg 13 (0.0075% of inst.)---̂
 0 46 404638 10000003 b 0x404648
 1 46 40463c 24020002 li v0,2
 ̂ --- 0 total cycles. Executed 0 times, avg 4 (0% of inst.)---̂
 0 46 404640 00021143 sra v0,v0,5
 1 46 404644 24420002 addiu v0,v0,2
 ̂ ---22530 total cycles. Executed 11265 times, avg 2 (0.00214% of inst.)---̂

The second line lists the total number of cycles for basic block 8fbc0020,
(listed in the previous line). Line six shows a 2-cycle interlock because of a
load of register a1 (referenced in line seven).

Line 12 shows that a branch was taken 11,265 times, and that branches were
taken 100% of the time. A possible branch penalty exists for every branch.
Line 13 shows an average of 2 penalties occurred for a total of 22,530
penalties (a large number because the branch was always taken).

Profiling Multiprocessed Executables

You can gather either basic block and pc sampling profile data from
executables that use the sproc and sprocsp system calls, such as those
executables generated by POWER Fortran and POWER C. Prepare and run
the job using the same method as for uniprocessed executables. For
multiprocessed executables, each thread of execution writes its own separate
profile data file. View these data files with prof like any other profile data
files.

The only difference between multiprocessed and regular executables is the
way in which the data files are named. When using pc sampling, the data
files for multiprocessed executables are named process_id.prog_name. When
using pixie, the data files are named prog_name.Counts.process_id. This
naming convention avoids the potential conflict of multiple threads
attempting to write simultaneously to the same file.

Rearranging Procedures With cord

107

Rearranging Procedures With cord

The cord(1) command rearranges procedures in an executable object to
reduce paging and achieve better instruction cache mapping. This section
describes cord and covers the following topics:

• “cord Syntax”

• “cord Options”

• “Example Using cord”

cord Syntax

The syntax for cord is:

cord prog_name [reorder_file ...]

Use cord to rearrange procedures in an executable to correspond with an
ordering provided in a reorder_file. Typically, the ordering is arranged either
to minimize paging and/or to maximize the instruction cache hit rate.

The reorder file is produced by the –feedback option to prof (for information
on prof and the –feedback option, see Table 4-1, Options for prof, or the prof(1)
reference page). The default reorder file is named prog.fb, if you do not
specify reorder_file.

You can specify multiple reorder files on the command line; the first reorder
file has the highest priority in rearranging the order. Thus you can improve
paging in different program phases providing that multiple feedback files
are generated by executing different phases of the program or by executing
the program with distinct input data that cause different regions of the
program to be executed.

108

Chapter 4: Using the Performance Tools

cord Options

Table 4-5 lists and describes cord options. For details, refer to the cord(1)
reference page.

Example Using cord

The example below shows how to use pixie, prof, and cord to rearrange the
procedures in the program xlisp (refer to Figure 4-3).

% pixie xlisp # generates xlisp.pixie
% xlisp.pixie li-input.lsp # generates xlisp.Counts
% prof xlisp -pixie -feedback # generates xlisp.fb and
 # libc.so.1.fb
% cord xlisp # generates xlisp.cord

First, the program xlisp is executed by pixie, which generates an
instrumented executable, xlisp.pixie. Next, the instrumented executable is
run (with an input file to xlisp, li-input.lsp). Then prof is used to produce
feedback files from the output data. Finally, cord is executed (and uses the
order in the feedback file) to reorder the procedures in xlisp, generating a
new binary, xlisp.cord. Figure 4-3 shows this procedure.

Table 4-5 Options for cord

Name Result

–o out_file Specifies a name for the output file. The default file is prog.cord.

–v Prints verbose information. Lists procedures considered part of
other procedures that cannot be rearranged. These procedures
are typically assembler procedures that may contain relative
branches to other procedures rather than relocatable ones. Lists
conflicts of procedures in the binary and the reorder files.

Rearranging Procedures With cord

109

Figure 4-3 How cord Works

The procedure rearrangement depends on the data produced by the profiled
runs of the executable. If these profiled runs approximate the actual use of

Execute instrumented
program

(progname.pixie) to
collect data

Execute pixie to create
an instrumented

program

Compile

progname.c

Feedback file
(progname.fb)

Execute prof −pixie
−feedback to

generate feedback file

Rearranged procedures
in new executable
(progname.cord)

Execute cord to
rearrange procedures

Data files
(progname.Counts)

110

Chapter 4: Using the Performance Tools

the executable, the resultant binary is close to being optimally rearranged.
Design your profiled runs accordingly.

You can also manually optimize your reorder file by rearranging the
procedure entries in the reorder file.

For example, after running cord xlisp -pixie -feedback, the feedback
file xlisp.fb looks like this:

$magic 0x10130000
$version 2
$name xlisp
$kind procedure
$start
generated by prof -feedback
procedure_name file_name freq
 xlminit xldmem.c 651846882
 xlxgetvalue xlsym.c 564706014
 xlabind xleval.c 368782916
 xleval xleval.c 360302271
 mark xldmem.c 353045832
 xlgetvalue xlsym.c 341400298
 xlsend xlobj.c 306873567
 sweep xldmem.c 232575506
 evalhook xleval.c 227803590
 gc xldmem.c 216458905
 addseg xldmem.c 174118911
 evform xleval.c 161070071
 xlygetvalue xlsym.c 133714210
 xlevlist xleval.c 119441482
 xlmakesym xlsym.c 117704318
 xldinit xldbug.c 117010681
 newvector xldmem.c 113412102
 iskeyword xleval.c 105730347 ...

The procedure_name column indicates the name of the procedure and the
file_name column lists the name of the file that contains the procedure. The
freq column can be the number of cycles spent in the procedure, the number
of times the procedure was executed, or the density (total cycles divided by
the procedure size). The cord command places procedures based on the order
specified in the feedback file and does not use frequency to determine
procedure placement.

This chapter explains how to reduce
program execution time by using
optimization techniques.

Optimizing Program Performance

Chapter 5

113

Chapter 5

5. Optimizing Program Performance

This chapter describes the compiler optimization facility and how to use it.
The section also contains examples demonstrating optimization techniques.

• “Optimization Overview” describes the global optimizer, benefits of
optimization, and debugging and optimization

• “Using the Optimization Options” lists compiler optimization options
and provides examples of full optimization

• “Loop Optimization” explains how you can decrease execution time by
optimizing loops.

• “Optimizing Separate Compilation Units” covers optimization of
modules

• “Optimizing Frequently Used Modules” shows how optimizing
frequently used modules reduces the compile and optimization time
required when the modules are called

• “Ucode Object Libraries” covers building and using ucode object
libraries

• “Improving Global Optimization” provides tips on improving
optimization with examples in Fortran and C.

Optimization Overview

This section describes the compiler optimization facilities and explains their
benefits, the implications of optimizing and debugging, and the major
optimizing techniques. Specifically, this section explains:

• “Global Optimizer”

• “Benefits of Optimization”

• “Optimization and Debugging”

114

Chapter 5: Optimizing Program Performance

Global Optimizer

The global optimizer is a single program that improves the performance of
object programs by transforming existing code into more efficient coding
sequences. The optimizer distinguishes between C, Pascal, and Fortran
programs to take advantage of the various language semantics involved.

Silicon Graphics compilers perform both machine-independent and
machine-dependent optimizations. Silicon Graphics machines and other
machines with reduced instruction set computing (RISC) architectures
provide a good target for both machine-independent and
machine-dependent optimizations. The low-level instructions of RISC
machines provide more optimization opportunities than the high-level
instructions in complex instruction set computing (CISC) machines. Even
optimizations that are machine-independent have been found to be more
effective on machines with RISC architectures. Although most optimizations
performed by the global optimizer are machine-independent, they have
been specifically tailored to the Silicon Graphics environment.

Benefits of Optimization

The primary benefits of optimization are faster running programs and
smaller object code size. However, the optimizer can also speed up
development time. For example, your coding time can be reduced by leaving
it up to the optimizer to relate programming details to execution time
efficiency. You can focus on the more crucial global structure of your
program. Moreover, programs often yield optimizable code sequences
regardless of how well you write your source program.

Optimization and Debugging

Optimize your programs only when they are fully developed and debugged.
The optimizer may move operations around so that the object code does not
correspond to the source code. These changed sequences of code can create
confusion when using a debugger.

Using the Optimization Options

115

Using the Optimization Options

This section lists compiler options you can use for optimization and
provides examples of full optimization. Specifically, this section covers:

• “Compiler Optimization Options”

• “Examples of Full Optimization”

Compiler Optimization Options

Invoke the optimizer by specifying a compiler driver, such as cc(1), with any
of the options listed in Table 5-1.

Table 5-1 Optimization Options

Option Result

–O0 No optimization. Prevents all optimizations, including the minimal
optimization normally performed by the code generator and
assembler. uld, umerge, and uopt are bypassed, and the assembler
bypasses certain optimizations it normally performs.

–O1 (Default) The assembler and code generator perform as many
optimizations as possible without affecting compile time
performance. Bypasses uld, umerge, and uopt. However, the code
generator and the assembler perform basic optimizations in a more
limited scope.

116

Chapter 5: Optimizing Program Performance

Note: Refer to the applicable cc(1), CC(1), pc(1), or f77(1) reference pages for
details on the –O3 option and the input/output files related to this option.

Figure 5-1 shows the major processing phases of the compiler and how the
compiler –On option determines the execution sequence.

–O2 Specifies global optimization. Optimizes within the bounds of
individual compilation units. This option executes the global
optimizer (uopt) phase. uld and umerge are bypassed, and only the
uopt phase executes. It performs optimization only within the
bounds of individual compilation units.

–O3 Specifies using all optimizations, including procedure inlining.
This option must precede all source file arguments. It creates a
ucode object file, which remains a .u file, for each source file. The
run-time start-up routine, run-time libraries, and ucode versions of
the run-time libraries are linked, as well as newly created ucode
object files and any ucode object files specified on the command
line. Procedure inlining is done on the resulting linked file. This file
is then compiled as usual into an executable.

The uld and umerge phases process the output from the compilation
phase of the compiler, which produces symbol table information
and the program text in an internal format called ucode. The uld
phase combines all the ucode files and symbol tables, and passes
control to umerge. umerge reorders the ucode for optimal processing
by uopt. Upon completion, umerge passes control to uopt, which
performs global optimizations on the program.

Table 5-1 (continued) Optimization Options

Option Result

Using the Optimization Options

117

Figure 5-1 Optimization Phases of the Compiler

Examples of Full Optimization

This section provides examples of full optimization using the –O3 option.
Although the examples are in C, you can substitute the C files and driver
command for another source language. The following examples assume that
the program foo consists of three files: a.c, b.c, and c.c.

−O1
or no optimization

Compilation

Ucode Link
(uld)

Procedure Merge
(umerge)

Global Optimizer
(uopt)

Code Generator
(ugen)

Assembler
(as1)

Link Editor
(ld)

.b

.u

.s

.o

a.out

Ucode Library

Assembler File

Assembled Object File

Linked Object File

−O3 or −j

−O2

−s

−c

118

Chapter 5: Optimizing Program Performance

To perform procedure merging optimizations (–O3) on all three files, enter
the following:

IRIS% cc -O3 -non_shared -o foo a.c b.c c.c

If you normally use the –c option to compile the .o object file, follow these
steps:

1. Compile each file separately using the –j option by typing in the
following:

IRIS% cc -j a.c

IRIS% cc -j b.c

IRIS% cc -j c.c

The –j option produces a .u file (the standard compiler front-end output
made up of ucode; ucode is an internal language used by the compiler).
None of the remaining compiling phases are executed, as illustrated in
Figure 5-2.

Figure 5-2 Compiling with the –j Option

2. Enter the following statement to perform optimization and complete
the compilation process.

IRIS% cc -O3 -non_shared -o foo a.u b.u c.u

Figure 5-3 illustrates the results of executing the above statement.

C Compiler

a.u

b.u

c.u

a.c

b.c

c.c

Loop Optimization

119

Figure 5-3 Executing Full Optimization

Loop Optimization

Optimizations are most useful in program areas that contain loops. The
optimizer moves loop-invariant code sequences outside loops so that they
are performed only once instead of multiple times. Apart from
loop-invariant code, loops often contain loop-induction expressions that can
be replaced with simple increments. In programs composed of mostly loops,
global optimization can often reduce the running time by half.

Ucode Link
(uld)

Procedure Merge
(umerge)

Global Optimizer
(uopt)

Code Generator
(ugen)

Assembler
(as1)

Link Editor
(ld) a.out

−O3

a.u b.u c.u

120

Chapter 5: Optimizing Program Performance

Consider the source code below.

void left (a, distance)
 char a[];
 int distance;
{
 int j, length;
 length = strlen(a) - distance;
 for (j = 0; j < length; j++)
 a[j] = a[j + distance];
}

The following code samples show the unoptimized and optimized code
produced by the compiler. The optimized version (compiled with the –O
option) contains fewer total instructions and fewer instructions that
reference memory. Wherever possible, the optimizer replaces load and store
instructions (which reference memory) with the faster computational
instructions that perform operations only in registers.

Unoptimized Code

The loop is 13 instructions long and uses eight memory references.

8 for (j=0; j<length; j++)
 sw $0, 36($sp) # j = 0
 ble $24, 0, $33 # length >= j
$32:
9 a[j] = a[j+distance];
 lw $25, 36($sp) # j
 lw $8, 44($sp) # distance
 addu $9, $25, $8 # j+ distance
 lw $10, 40(4sp) # address of a
 addu $11, $10, $25 # address of a[j+distance]
 lbu $12, 0($11) # a[j+distance]
 addu $13, $10, $25 # address of a[j]
 sb $12, 0($13) # a[j]
 lw $14, 36($sp) # j
 addu $15, $14, 1 # j+1
 sw $15, 36($sp) # j++
 lw $3, 32($sp) # length
 blt $15, $3, $32 # j < length
$33:

Loop Optimization

121

Optimized Code

The loop is six instructions long and uses two memory references.

8 for (j=0; j<length; j++)
 move $5,$0 # j = 0
 ble $4, 0, $33 # length >= j
 move $2, $16 # address of a[j]
 addu $6, $16, $1 # address of a[j+distance]
$32:
9 a[j] = a[j+distance];
 lbu $3, 0($6) # a[j+distance]
 sb $3, 0($2) # a[j]
 addu $5, $5, 1 # j++
 addu $2, $2, 1 # address of next a[j]
 addu $6, $6, 1 # address of next a[j+distance]
 blt $5, $4, $32 # j < length
$33: # address of next a[j+distance]

Loop Unrolling

The optimizer performs loop unrolling to improve performance in two
ways:

• Reduces loop overhead.

• Increases work performed in the larger loop body allowing more
opportunity for optimization and register usage.

For example, the Fortran loop:

do i=1,100
 sum = sum + a(i)*b(i)
enddo

when unrolled four times looks like

do i=1,100,4
 sum = sum + a(i)*b(i)
 sum = sum + a(i+1)*b(i+1)
 sum = sum + a(i+2)*b(i+2)
 sum = sum + a(i+3)*b(i+3)
enddo

122

Chapter 5: Optimizing Program Performance

The unrolled version runs much faster than the original. Most of the increase
in execution speed is due to the overlapping of multiplication and addition
operations. The optimizer performs this transformation on its own internal
representation of the program, not by rewriting the original source code.

Note: If the number of iterations of the loop is not an exact multiple of the
unrolling factor (or if the number of iterations is unknown), the optimizer
still performs this transformation even though the resultant code is more
complicated than the original code.

Optimizing Separate Compilation Units

The uld and umerge phases of the compiler permit global optimization
among code from separate files (or “modules”) in the same compilation.
Traditionally, program modularity restricted the optimization of code to a
single compilation unit at a time rather than over the full breadth of the
program. For example, it was impossible to fully optimize calling code along
with the procedures called if those procedures resided in other modules.

The uld and umerge phases of the compiler system overcome this deficiency.
The uld phase links multiple modules into a single unit. Then, umerge orders
the procedures for optimal processing by the global optimizer, uopt.

Optimizing Frequently Used Modules

Compiling and optimizing frequently used modules reduces the compile
and optimization time required when the modules are called.

The following procedure explains how to compile two frequently used
modules, b.c and c.c, while retaining all the necessary information to link
them with future programs; future.c represents one such program.

1. Compile b.c and c.c separately by entering the following statements:

IRIS% cc -j b.c

IRIS% cc -j c.c

The –j option causes the front end (first phase) of the compiler to
produce two ucode files: b.u and c.u.

Optimizing Frequently Used Modules

123

2. Using an editor, create a file containing the external symbols in b.c and
c.c to which future.c will refer. Each symbolic name must be separated
by at least one blank. Consider the skeletal contents of b.c and c.c:
File b.c File c.c

foo() x()
 { {
 . .
 . .
 } }

bar() help()
 { {
 . .
 . .
 zot() }
 {
 . struct
 . {
 } .
 .
 struct } ddata;
 {
 . y()
 . {
 } work; .
 } .
 }

In this example, future.c calls or references only foo, bar, x, ddata, and y in
the b.c and c.c procedures. A file (named extern for this example) must
be created containing the following symbolic names:

foo bar x ddata y

The structure work, and the procedures help and zot are used internally
only by b.c and c.c, and thus are not included in extern.

If you omit an external symbolic name, an error message is generated
(see Step 4 below).

3. Optimize the b.u and c.u modules (created in Step 1) using the extern file
(created in Step 2) as follows:

IRIS% cc -O3 -non_shared -rm_dead_code -kp extern b.u c.u
-o keep.o -c

124

Chapter 5: Optimizing Program Performance

The –rm_dead_code option tells the linker to assume names not specified
in the extern file as internal names. In the –kp option, k indicates that the
linker option –p is to be passed to the ucode loader. The –c option
suppresses the a.out file.

Figure 5-4 illustrates the optimization process in Step 3.

Figure 5-4 Optimization Process

4. Create a ucode file and an optimized object code file (foo) for future.c as
follows:

IRIS% cc -j future.c

IRIS% cc -O3 -non_shared future.u keep.o -o foo

Ucode Link
(uld)

Procedure Merge
(umerge)

Global Optimizer
(uopt)

Code Generator
(ugen)

Assembler
(as1) keep.o

−O3

b.u c.u

extern

(hand−created
symbol list file)

Ucode Object Libraries

125

If the following message appears it means that the code in future.c is
using a symbol from the code in b.c or c.c that was not specified in the
file extern (go to Step 5 if this message appears.)

zot: multiply defined hidden external (should have been
preserved)

5. Include zot, which the message indicates is missing, in the file extern
and recompile as follows:

IRIS% cc -O3 -non_shared -kp extern b.u c.u -o keep.o

IRIS% cc -O3 -non_shared future.u keep.o -o foo

Ucode Object Libraries

This section describes how to build and use ucode object libraries.

Building Ucode Object Libraries

Building ucode object libraries is similar to building coff(5) object libraries.
First, compile the source files into ucode object files using the compiler
driver option –j and using the archiver just as you would for coff object
libraries.

Using the above example, to build a ucode library (libfoo.b) of a source file,
enter the following:

IRIS% cc -j a.c

IRIS% cc -j b.c

IRIS% cc -j c.c

IRIS% ar crs libfoo.b a.u b.u c.u

Conventional names exist for ucode object libraries (libname.b) just as they
do for coff object libraries (libname.a).

126

Chapter 5: Optimizing Program Performance

Using Ucode Object Libraries

Using ucode object libraries is similar to using coff(5) object files. To load
from a ucode library, specify a –klname option to the compiler driver or the
ucode loader. For example, to load the file created in the previous example
from the ucode library (assuming libfoo.a was placed in the /usr/lib directory),
enter the following:

IRIS% cc -O3 -non_shared file1.u file2.u -klfoo -o output

Remember that libraries are searched as they are encountered on the
command line, so the order in which you specify them is important. If a
library is made from both assembly and high-level language routines, the
ucode object library contains code only for the high-level language routines.
The library does not contain all the routines, as does a coff object library or a
DSO. In this case, specify to the ucode loader first the ucode object library
and then the coff object library or DSO to ensure that all modules are loaded
from the proper library.

If the compiler driver is to perform both a ucode load step and a final load
step, the object file created after the ucode load step is placed in the position
of the first ucode file specified or created on the command line in the final
load step.

Improving Global Optimization

This section describes coding hints that increase optimizing opportunities
for the global optimizer (uopt). Apply these recommendations to your code
whenever possible. Topics include:

• “Optimizing C and Fortran Programs”

• “Improving Other Optimization”

• “Register Allocation”

Improving Global Optimization

127

Optimizing C and Fortran Programs

The following suggestion applies to both C and Fortran programs:

Do not use indirect calls (calls that use routines or pointers to functions as
arguments). Indirect calls cause unknown side effects (that is, they change
global variables) that can reduce the amount of optimization possible.

C Programs Only

The following suggestions apply to C programs only:

Return values. Use functions that return values instead of pointer
parameters.

Do while. When possible, use do while instead of while or for. For do while, the
optimizer does not have to duplicate the loop condition in order to move
code from within the loop to outside the loop.

Unions. Avoid unions that cause overlap between integer and floating point
data types. The optimizer does not assign such fields to registers.

Use local variables. Avoid global variables. In C programs, declare any
variable outside of a function as static, unless that variable is referenced by
another source file. Minimizing the use of global variables increases
optimization opportunities for the compiler.

Value parameters. Pass parameters by value instead of passing by reference
(pointers) or using global variables. Reference parameters have the same
degrading effects as the use of pointers (see below).

Pointers and aliasing. Aliases occur when there are multiple ways to
reference the same data object. For instance, when the address of a global
variable is passed as a subprogram argument, it may be referenced either
using its global name, or via the pointer. The compiler must be conservative
when dealing with objects that may be aliased, for instance keeping them in
memory instead of in registers, and carefully retaining the original source
program order for possibly aliased references.

Pointers in particular tend to cause aliasing problems, since it is often
impossible for the compiler to identify their target objects. Therefore, you

128

Chapter 5: Optimizing Program Performance

can help the compiler avoid possible aliases by introducing local variables to
store the values obtained from dereferenced pointers. Indirect operations
and calls affect dereferenced values, but do not affect local variables.
Therefore, local variables can be kept in registers. The following example
shows how the proper placement of pointers and the elimination of aliasing
produces better code.

Example of Pointer Placement and Aliasing

In the example below, if len>10 (for instance because it is changed in another
function before calling zero), *p++ = 0 will eventually modify len.
Therefore, the compiler cannot place len in a register for optimal
performance. Instead, the compiler must load it from memory on each pass
through the loop.

Consider the following source code:

char a[10];
int len = 10;

void
zero()
{
 char *p;
 for (p= a; p != a + len;) *p++ = 0;
}

The generated assembly code looks like this:

#8 for (p = a; p!= a + len;) *p++ = 0;
 move $2, $4
 lw $3, len
 addu $24, $4, $3
 beq $24 $4 $33 # a + len != p
$32:
 sb $0, 0($2) # *p = 0
 addu $2, $2, 1 # p++
 lw $25, len
 addu $8, $4, $25
 bne $8, $2, $32 # a + len != p
$33:

You can increase the efficiency of this example by using subscripts instead of
pointers, or by using local variables to store unchanging values.

Improving Global Optimization

129

Using subscripts instead of pointers. Using subscripts in the procedure
azero (as shown below) eliminates aliasing. The compiler keeps the value of
len in a register, saving two instructions. It still uses a pointer to access a
efficiently, even though a pointer is not specified in the source code. For
example, consider the following source code:

char a[10];
int len = 10;
void azero()
{
 int i;
 for (i = 0; i != len; i++)

 a[i] = 0;
}

The generated assembly code looks like this:

 for (i = 0; i != len; i++) a[i] = 0;
 move $2, $0 # i = 0
 beq $4, 0, $37 # len != a
 la $5, a
$36:
 sb $0, 0($5) # *a = 0
 addu $2, $2, 1 # i++
 addu $5, $5, 1 # a++
 bne $2, $4, $36 # i != len
$37:

Using local variables. Using local (automatic) variables or formal
arguments instead of static or global prevents aliasing and allows the
compiler to allocated them in registers.

For example, in the following code fragment, the variables loc and form are
likely to be more efficient than ext* and stat*.

extern int ext1;
static int stat1;

void p (int form)
{
 extern int ext2;
 static int stat2;
 int loc;
 ...
}

130

Chapter 5: Optimizing Program Performance

Write straightforward code. For example, do not use ++ and -- operators
within an expression. Using these operators for their values, rather than for
their side-effects, often produces bad code.

Addresses. Avoid taking and passing addresses (& values). Using addresses
creates aliases, makes the optimizer store variables from registers to their
home storage locations, and significantly reduces optimization
opportunities that would otherwise be performed by the compiler.

VARARG/STDARG. Avoid functions that take a variable number of
arguments. The optimizer saves all parameter registers on entry to VARARG
or STDARG functions. If you must use these functions, use the ANSI
standard facilities of stdarg.h. These produce simpler code than the older
version of varargs.h

Ada® Programs

This suggestion applies to Ada programs:

Use of pragma inline. Use pragma inline to inline short subroutines and
avoid the overhead associated with procedure calls.

Improving Other Optimization

The global optimizer processes programs only when you specify the –O2 or
–O3 option at compilation. However, the code generator and assembler
phases of the compiler always perform certain optimizations (certain
assembler optimizations are bypassed when you specify the –O0 option at
compilation).

This section contains coding hints that increase optimizing opportunities for
the other passes of the compiler.

C and Fortran Programs

The following suggestions apply to both C and Fortran programs:

• Use tables rather than if-then-else or switch statements. For example:

typedef enum { BLUE, GREEN, RED, NCOLORS } COLOR;

Improving Global Optimization

131

Instead of:

switch (c) {
 case CASE0: x = 5; break;
 case CASE1: x = 10; break;
 case CASE2: x = 1; break;
}

Use:

static int Mapping[NCOLORS] = { 5, 10, 1 };
...
x = Mapping[c];

• As an optimizing technique, the compiler puts the first eight
parameters of a parameter list into registers where they may remain
during execution of the called routine. Therefore, always declare, as the
first eight parameters, those variables that are most frequently
manipulated in the called routine.

• Use word-size scalar variables instead of smaller ones. This practice can
take more data space, but produces more efficient code.

C Programs Only

The following suggestions apply to C programs only:

• Rely on libc.so functions (for example, strcpy, strlen, strcmp, bcopy, bzero,
memset, and memcpy). These functions were carefully coded for
efficiency.

• Use the unsigned data type for variables wherever possible (see next
bulleted item for an exception to this rule, though). The compiler
generates fewer instructions for multiplying and dividing unsigned
numbers by a power of two. Consider the following example:

int i;
unsigned j;
...
return i/2 + j/2;

132

Chapter 5: Optimizing Program Performance

The compiler generates six instructions for the signed i/2 operation:

000000 20010002 li r1,2
000004 0081001a div r4,r1
000008 14200002 bne r1,r0,0x14
00000c 00000000 nop
000010 03fe000d break 1022
000014 00001812 mflo r3

The compiler generates only one instruction for the unsigned j/2
operation:

000018 0005c042 srl r24,r5,1 # j / 2

In this example, i/2 is an expensive expression, while j/2 is inexpensive.

• Use a signed data type, or cast to a signed data type, for any variable
which must be converted to floating-point.

double d;
unsigned int u;
int i;
/* fast */ d = i;
/* fast */ d = (int)u;
/* slow */ d = u;

Converting an unsigned type to floating-point takes significantly
longer than converting signed types to floating-point; additional
software support must be generated in the instruction stream for the
former case.

Register Allocation

The MIPS architecture emphasizes the use of registers. Therefore, register
usage has a significant impact on program performance.

The optimizer allocates registers for the most suitable data items, taking into
account their frequency of use and their locations in the program structure.
Also, the optimizer assigns values to registers in such a way as to minimize
movement of values among registers during procedure invocations.

This appendix describes assembler
directives that support generation of
PIC.

Position-Independent Coding in
Assembly Language

Appendix A

135

Appendix A

A. Position-Independent Coding in Assembly
Language

Several new assembler directives have been added to support generation of
PIC. For more information on PIC, refer to the MIPS ABI Supplement and the
PIC coding model it describes. For information on assembly language, refer
to the MIPSpro Assembly Language Programmer’s Guide.

The assembler generates PIC if either of two things occur:

• the directive .option pic2 appears in the assembler file

• the assembler, as, is invoked with the –KPIC argument in the absence of
an explicit .option pic0 directive in the file

Unless PIC is being generated, the other options in this section are ignored
by the assembler, with the exception of .gpword, which becomes .word.
Thus, you may easily use the same assembler file for generating PIC and
non-PIC (i.e., non-shared) objects by not placing .option pic0 or .option pic2
in the assembler file and invoking the assembler without –KPIC (for non-
shared) or with –KPIC (for PIC).

• .option pic2

This directive forces the assembler to mark the output object file “PIC”
and activates the following directives. It overrides the command line
argument. Normally, you don’t need to specify this directive.
Instead, you should use the –KPIC or –non_shared options to toggle
between generating PIC or non-PIC.

Even though –KPIC will be made the default for the high-level
language drivers (such as cc, f77, and pc) in future releases, it will not be
the default for assembly sources. You must explicitly specify –KPIC for
compiling .s files.

136

Appendix A: Position-Independent Coding in Assembly Language

• .cpload reg

This directive expands into three instructions that sets the gp register to
the context pointer value for the current function. The three instructions
are:

 lui gp,_gp_disp
 addui gp,gp,_gp_disp
 addu gp,gp,reg

_gp_disp is a reserved symbol that the linker sets to the distance
between the lui instruction and the context pointer. This directive is
required at the beginning of each subroutine that uses the gp register.

You must add this directive at the beginning of every procedure, with
the exception of leaf-procedures that do not access any global variables,
and procedures that are static (i.e., not marked .globl or .extern).

• .cprestore offset

This directive causes the assembler to issue:

 sw gp,offset(sp)

at the point where it appears. Additionally, it causes the assembler to
emit:

 lw gp,offset(sp)

after every jump-and-link (jal) operation (but not after a branch-and-
link (bal) operation), thereby restoring the gp register after function
calls. The programmer is responsible for allocating the stack space for
the gp. This space should be in the saved register area of the stack frame
to remain consistent with MIPS’ calling and debugger conventions.

• .gpword local-sym

This directive is similar to .word except that the relocation entry for
local-sym has the R_MIPS_GPREL32 type. After linkage, this results in
a 32-bit value that is the distance between local-sym and the context
pointer (that is, the gp). local-sym must be local. It is currently used for
PIC switch tables.

• .cpadd reg

This directive adds the value of the context pointer (gp) to reg.

137

Examples

This following is a simplified version of the hello world program.

 .option pic2
 .data
 .align 2
$$5:
 .ascii "hello world\X0A\X00"
 .text
 .align 2
main:
 .set noreorder
 .cpload $25
 .set reorder
 subu $sp, 40
 sw $31, 36($sp)
 .cprestore 32
 la $4, $$5
 jal printf
 move $2, $0
 lw $31, 36($sp)
 addu $sp, 40
 j $31

The actual instructions generated by the assembler are:

 lui gp,0 #
 addiu gp,gp,0 # generated by .cpload
 addu gp,gp,t9 #
 lw a0,0(gp) # gp-relative addressing used
 lw t9,0(gp) # t9 is used for func. call
 addiu sp,sp,-40
 sw ra,36(sp)
 sw gp,32(sp) # from .cprestore
 jalr ra,t9 # jal is changed to jalr
 addiu a0,a0,0
 lw ra,36(sp)
 lw gp,32(sp) # activated by .cprestore
 move v0,zero
 jr ra
 addiu sp,sp,40
 nop

138

Appendix A: Position-Independent Coding in Assembly Language

Note: The MIPS ABI requires that register t9 ($25) be used for indirect
function call, so .cpload should always use $25. No reorder mode should
also be used. Also, programmers should make sure that t9 is dead before any
function call.

If your program uses an indirect jump (jalr), you must also use t9 as the jump
register.

If you have an unconditional jump to an external label:

j _cerror

you have to rewrite it into indirect jump via t9:

la t9,_cerror
j t9

If you use branch-and-link (bal) instruction, and if the target procedure
begins with a .cpload, you have to specify an alternate entry point:

foo: .set noreorder # callee
 .cpload $25
 .set reorder
$$1: ... # alternate entry point
 ...
 j $31 # foo returns
bar: ... # caller
 ...
bal $$1 # by-pass the .cpload
 ...

 This is very important because .cpload assumes register $25 contains the
address of foo, but in this case $25 is not set up. Note that since both foo and
bar reside in the same file, they must have the same value for gp. So the
.cpload instructions can be and must be bypassed. However, since foo can
still be called from outside, the .cpload is still required.

Alternatively (and less efficiently), if you don’t want to have an alternate
entry point, you can set up register $25 before the bal:

la t9,foo
bal foo

139

.gpword and .cpadd are used together to implement position-independent
jump table (or any table of text addresses). Entries of the address table
created by .gpword are converted into displacement from the context
pointer. To get the correct text address, use .cpadd to add the value of gp
back to them. Since the gp is updated by the run-time linker, the correct text
address can be reconstructed regardless of the location of the DSO.

141

–Bsymbolic, compiling, 66
building ucode object library, 125

C

C++
building DSOs, 61
compiler, 3
language definitions, 15
ld options, 61

cache mapping, improve, 107
cc compiler. See drivers
–cckr option, 17
ccom_mp preprocessor, 2
cfe preprocessor, 2
code generator, 2
COFF, 10
Common Object File Format, 10
COMMON symbols, 66
compiler drivers. See drivers
compiler front end, 2
compiler options. See drivers
compiler system

components, 1
overview, 1

compiling with –Bsymbolic, 66
conventions, syntax, xv
copt optimizer, 2

A

accom_mp preprocessor, 2
acpp preprocessor, 2
Ada

optimization, 130
addresses, optimization, 130
address space, 71
aliasing, optimization, 127
analyzer, parallel, 2
–ansi option, 17
a.out files, 19
archive libraries, 49
archiver. See ar command
ar command, 42-46

command syntax, 43
options, 43

as1 assembler, 2, 22
assembler, 2, 135-139
assembly language programs

linking, 22
position-independent coding, 135

B

bal operation, 136
basic block counting. See profiling
BLOCK DATA, 66
branch-and-link instruction, 138

Index

142

Index

cord, 107-110
command options, 108
command syntax, 107
example, 108
feedback files, 107
–feedback option, 108
–o out_file option, 108
–v option, 108

.Counts file, 91

.cpadd reg directive, 136

.cpload reg directive, 136
cpp preprocessor, 2
.cprestore offset directive, 136
.cpword local-sym directive, 136

D

data type
signed, 132
unsigned, 131

dbx. See debugging
debugging

and include files, 14
and optimization, 119
driver options, 28

disassemble object file, 28
dis command, 28, 29

command syntax, 29
options, 30

dlclose(), 70
dlerror(), 70
dlopen(), 69
dlsym(), 70
do while, optimization, 127
drivers

as1 assembler, 22
bypassing, 3

drivers
C++ compiler, 3
cc compiler, 2
cfe preprocessor, 3
defaults, 16
f77 compiler, 2
file name suffixes, 12
input file suffixes, 12
–KPIC, 11, 135
–nocpp, 3
– non_shared, 11
options, 16, 135

–KPIC, 135
–non_shared, 135
passing options to ld, 20

pc compiler, 2
–v option, 3

DSOs, 1, 10, 11, 49-73
archive libraries, 51
building new DSOs, 58
C++, 61
converting libraries, 67
creating DSOs, 58
dlclose(), 70
dlerror(), 70
dlopen(), 69
dlsym(), 70
dynamic loading diagnostics, 70
exporting symbols, 60
guidelines, 53
hiding symbols, 60
libraries, shared, 53
linking, 25
loading dynamically, 69
mmap() system call, 71
munmap() system call, 71
naming conventions, 59
QuickStart, 56-58
QuickStart registry file, 61
registry files, 61-64
search path, 64

143

Index

DSOs
shared libraries, 53
starting quickly, 56
unloading dynamically, 70
versioning, 71

dynamic linking, 1, 10, 69
Dynamic Shared Objects. See DSOs

E

elfdump command, 28, 31
command syntax, 31
options, 31

ELF. See executable and linking format
executable and linking format, 1, 10
exporting symbols, 60

F

f77 compiler. See drivers
fcom preprocessor, 2
file command, 29, 33

command syntax, 33
files

header, 13
include, 13
listing properties, 29
naming conventions, 12

file type, determining, 33
floating point data, 102
format

object file, 1, 10
Fortran

optimization, 130

G

global offset table, 11
global optimizer, 114-132
–g option, 18
GOT, 11
.gpword, 136
.gpword directive, 135

H

header files, 13
multiple languages, 14

I

if-then-else statements
optimization, 130

include files, 13
debugging, 14
multiple languages, 14

indirect
calls, using, 127
function call, 138
jump instruction, 138

internationalization
C++, 15
multilanguage programs, 24

J

jal operation, 136

144

Index

K

–KPIC
See also drivers

–KPIC option, 11, 18

L

ld
and assembly language programs, 22
C++, 61
command syntax, 21
DSOs, 61
dynamic linking, 1, 10
example, 22
libraries, default search path, 24
libraries, specifying, 23
link editor, 2
multilanguage programs, 26
options, 61
registry files, 61
–shared option, 59

LD_BIND_NOW, 66
LD_LIBRARY_PATH, 91
libdl, 69
libraries

and multilanguage programs, 24
archive, 49
global data, 54
libdl, 69
locality, 54
non-shared, converting to DSOs, 67
paging, 54
routines to exclude, 53
routines to include, 53
self-contained, 53
shared, 1, 10
shared, static, 11, 25, 49
specifying, 23

libraries
static data, 53
tuning, 54

lib.so functions
optimization, 131

linking
dynamic. See ld

linking. See ld
loader

runtime. See rld
loading

symbols, 60
local variables

optimization, 127
loop unrolling, 121

M

machine instructions, 28
macro preprocessors, 2
mmap() system call, 71
mon.out file. See profiling, pc sampling
multilanguage programs

and ld, 26
and libraries, 24
header files, 14

multiprocessed executables, profiling, 106
munmap() system call, 71

N

naming source files, 12
nm command, 29, 33-38

command syntax, 34
example, 36
example of undefined symbol, 27
undefined symbol, 27

145

Index

– non_shared option, 135

O

–O0 compiler option, 115
–O1 compiler option, 115
–O2 compiler option, 116
–O3 compiler option, 116

example, 118
object code library

building, 125
object file information

disassemble, 28
format, 1, 10
listing section sizes, 29, 40
symbol table information, 29, 33
tools, 28
using elfdump, 28, 31
using odump, 29, 38

odump command, 29, 38-39
command syntax, 38

optimization
Ada, 130
addresses, 130
aliasing, 127
and debugging, 119
and loop unrolling, 121
and register allocation, 132
C, 127-132
do while, 127
example, 128
Fortran, 127, 130
frequently used modules, 122
full, 118
function return values, 127
global, 114-132
if-then-else statements, 130
libc.so functions, 131
loop, 119

optimization
machine-dependent, 114
machine-independent, 114
–O0 compiler option, 115
–O1 compiler option, 115
–O2 compiler option, 116
–O3 compiler option, 116, 118
options, 115
pointers, 127
pragma inline, 130
separate compilation units, 122
signed data types, 132
STDARG, 130
subscripts, 129
switch statements, 130
tables, 130
tips for improving, 126
unions, 127
unsigned data type, 131
value parameters, 127
VARARG, 130
variables, global vs. local, 127

optimizer, 2
copt optimizer, 2

optimizing programs
benefits, 114
debugging, 114

.option pic0 directive, 135

.option pic2 directive, 135

P

page size, 54
paging

alignment, 54
paging, reduce, 107
parallel analyzer, 2
parameters

optimization, 127

146

Index

pca analyzer, 2
pc compiler. See drivers
pc sampling. See profiling
pfa analyzer, 2
PIC. See position-independent code
pixie, 89-100

and prof –clock example, 99
and prof –heavy example, 95
and prof –i example, 94
and prof –lines example, 96
and prof –pids, 100
and prof –procedures example, 98
–autopixie option, 90
command options, 89
command syntax, 89
.Counts file, 91, 100
–counts option, 89
examples, 90
–liblist option, 90
output size, 92
–pids option, 90
restricting output, 92
setting search path, 91
–verbose option, 90

pixstats, 100-106
command syntax, 101
–disassemble option, example, 105
example, 103
–op option, example, 104
profiling, 102

pointers
optimization, 127

position-independent code, 1, 10, 11, 58
assembly language, 135-139
branch-and-link instruction, 138
.cpadd reg directive, 136
.cpload reg directive, 136
.cprestore offset directive, 136
.cpword local-sym directive, 136
examples, 137

position-independent code
indirect function call, 138
indirect jump instruction, 138
.option pic0 directive, 135
.option pic2 directive, 135
register t9, 138
switch tables, 136

pragma inline
optimization, 130

preprocessing, 2
preprocessors

macro, 2
procedures, rearrange, 107
prof

Also see profiling
–clock example, 99
–heavy example, 95
–invocations example, 94
–lines example, 96
–procedures example, 98

PROFDIR environment variable, 83
profiling, 78-106

Also see prof, 79
basic block counting, 88-100
–clock option, 79, 80

example, 99
command options, 79
command syntax, 79
–dis option, 80
–dso option, 79, 80
–exclude option, 79, 80, 82, 92
floating point, 102
–g option, 92
–heavy option, 79, 80

example, 95
instruction distribution, 104
–invocations option, 79, 80

example, 94
–lines option, 79, 80

example, 96

147

Index

profiling
–merge option, 79, 80
multiple data files, 83
multiprocessed executables, 106
–only option, 80, 82, 92
overview, 78
–pcsample option, 81
pc sampling, 81-84

example, 85
–pids option, 100
–pixie option, 81
pixstats, 102
–p option, 82
procedure invocation example, 93
–procedures option, 81

example, 98
–quit option, 81, 92, 97
register usage, 104
stall distribution, 104
summing results, 100
–testcoverage option, 81
–zero option, 81

Q

QuickStart DSOs. See DSOs, QuickStart

R

rearrange procedures, 107
reduce paging, 107
register

allocation, 132
usage, 104

register t9, 138
registry file. See DSOs
relocation bits, removing, 29

remove
relocation bits, 29
symbol table, 29

reorder procedures, 107
resolve text symbols, 66
return values, optimization, 127
rld, 50

dynamic linking, 69
libdl, 69
search path, 64, 91

runtime linker. See rld

S

scalar optimizer, copt, 2
scalar variables

word size, 131
search path

rld, 64, 91
shared libraries, static, 25, 49
shared library, 1, 10
shared objects, dynamic, 49
signed data type

optimization, 132
size command, 29, 40, 40-41

command syntax, 40
example, 41

source file names, 12
STDARG. See optimization
strip command, 29, 41

command syntax, 41
subscripts

optimization, 129
switch statements

optimization, 130
switch tables, 136
symbol resolution, 66

148

Index

symbols
exporting, 60
loading, 60

symbol table
removing, 29

symbol table information, listing, 29
syntax, conventions, xv

T

tables, switch, 136
tools

basic block counting, 88
optimization, 115
performance, 77
procedure rearranger, 107
profiling, 78
ucode, 2

type, determining for files, 33
typographical conventions, xv

U

ucode
object library, building, 125
object library, using, 126
tools, 2

ugen code generator, 2
ujoin, 2
uld, 2
umerge, 2
unassigned data type

optimization, 131
unions

optimization, 127
uopt optimizer, 2
upas preprocessor, 2

V

VARARG. See optimization
variables

scalar, 131
virtual address space, 71

W

.word directive, 135
word-size scalar variables, 131

X

–xansi option, 19

We'd Like to Hear From You

As a user of Silicon Graphics documentation, your comments are important
to us. They help us to better understand your needs and to improve the
quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested
topics to comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please include the title and part number of the document you are
commenting on. The part number for this document is
007-2479-001.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your
comments on the postage-paid card for your country, then detach and mail
it. If your country is not listed, either use the international card and apply the
necessary postage or use electronic mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail
message and mail it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of manual pages) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

