
OpenGL® on Silicon Graphics Systems
007-2392-003

CONTRIBUTORS
Written by Renate Kempf and Jed Hartman. Revised by Ken Jones.
Illustrated by Dany Galgani, Martha Levine, and Chrystie Danzer
Production by Allen Clardy and Karen Jacobson
Engineering contributions by Allen Akin, Steve Anderson, David Blythe, Sharon Rose Clay, Terrence Crane, Kathleen Danielson, Tom Davis,

Celeste Fowler, Ziv Gigus, David Gorgen, Paul Hansen, Paul Ho, Simon Hui, George Kyriazis, Mark Kilgard, Phil Lacroute, Jon Leech, Mark
Peercy, Dave Shreiner, Chris Tanner, Joel Tesler, Gianpaolo Tommasi, Bill Torzewski, Bill Wehner, Nancy Cam Winget, Paula Womack, David
Yu, and others.

Some of the material in this book is from “OpenGL from the EXTensions to the SOLutions,” which is part of the developer’s toolbox.
St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower image courtesy of Xavier Berenguer, Animatica.

COPYRIGHT
© 1996, 1998, 2005 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein.
No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in
whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The software described in this document is "commercial computer software" provided with restricted rights (except as to included open/free
source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is a violation of
worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, the Silicon Graphics logo, Fuel, InfiniteReality, IRIS, IRIS Indigo, IRIX, OpenGL, and Tezro are registered
trademarks and Developer Magic, IMPACT, IRIS GL, IRIS InSight, IRIS ViewKit, Elan, Express, Indy, Indigo, Indigo2, Indigo2
IMPACT, Indigo2 High IMPACT, Indigo2 Maximum IMPACT, InfinitePerformance, O2, Onyx, Onyx4, Open Inventor,
OpenGL Performer, R8000, R10000, RapidApp, RealityEngine, SGI ProPack, Silicon Graphics Prism, UltimateVision, and VPro
are trademarks of Silicon Graphics, Inc.

ATI is a registered trademark of ATI Technologies, Inc. Extreme is a trademark used under license by Silicon Graphics Inc.
GNOME is a trademark of the GNOME Foundation. Intel and AGP are registered trademarks and Itanium is a trademark of Intel
Corporation. Linux is a registered trademark of Linus Torvalds. MIPS is a registered trademark of MIPS Technologies, Inc. OS/2
is a trademark of International Business Machines Corporation. Windows NT is a trademark and Microsoft and Windows are
registered trademarks of Microsoft Corporation. Motif and OSF/Motif are trademarks of Open Software Foundation. X Window
System is a trademark of The Open Group. XFree86 is a trademark of the XFree86 Project, Inc. All other trademarks mentioned
herein are the property of their respective owners.

New Features in This Guide

In addition to miscellaneous changes throughout, this revision includes the following
changes:

General Changes

The guide now reflects OpenGL 1.3, GLX 1.3, and GLU 1.3 and current Silicon Graphics
visualization systems. Many of the changes reflect support for Silicon Graphics Onyx4
UltimateVision systems on IRIX and Silicon Graphics Prism systems on Linux.

New Chapters

• Chapter 7, “Vertex Processing Extensions”

• Chapter 13, “Vertex and Fragment Program Extensions”

Extensions Deprecated

The functionality of the following extensions is now integrated into OpenGL, GLX, and
GLU but the extensions remain in this guide for reference by developers using older
Silicon Graphics systems—such as VPro, InfinitePerformance, and InfiniteReality:

Resource control extensions Make current read, framebuffer configuration, and
pixel buffer

Texturing extensions Texture objects, subtexture, copy texture, 3D texture,
texture edge/border clamp, texture LOD, texture
environment add, and texture LOD bias

Rendering extensions Blending extensions, multisample, point parameters,
shadow, and depth texture

Imaging extensions Blend logic op, convolution, histogram and minmax,
packed pixels, color matrix, and color table

Miscellaneous extensions Polygon offset, vertex array, NURBS tesselator, and
object space tesselator
007-2392-003 iii

New Features in This Guide
Extensions Added:

ARB_depth_texture ATI_envmap_bumpmap

ARB_fragment_program ATI_fragment_shader

ARB_imaging ATI_map_object_buffer

ARB_multisample ATI_separate_stencil

ARB_multitexture ATI_texture_env_combine3

ARB_point_parameters ATI_texture_float

ARB_shadow ATI_texture_mirror_once

ARB_shadow_ambient ATI_vertex_array_object

ARB_texture_border_clamp ATI_vertex_attrib_array_object

ARB_texture_compression ATI_vertex_streams

ARB_texture_cube_map EXT_bgra

ARB_texture_env_add EXT_blend_func_separate

ARB_texture_env_combine EXT_clip_volume_hint

ARB_texture_env_crossbar EXT_compiled_vertex_array

ARB_texture_env_dot3 EXT_copy_texture

ARB_texture_mirrored_repeat EXT_draw_range_elements

ARB_transpose_matrix EXT_fog_coord

ARB_vertex_blend EXT_multi_draw_arrays

ARB_vertex_buffer_object EXT_point_parameters

ARB_vertex_program EXT_polygon_offset

ARB_window_pos EXT_rescale_normal

ATIX_texture_env_combine3 EXT_secondary_color

ATIX_texture_env_route EXT_separate_specular_color

ATIX_vertex_shader_output_point_size EXT_stencil_wrap

ATI_draw_buffers EXT_subtexture

ATI_element_array EXT_texgen_reflection
iv 007-2392-003

New Features in This Guide
EXT_texture NV_texgen_reflection

EXT_texture3D S3_s3tc

EXT_texture_compression_s3tc SGIS_generate_mipmap

EXT_texture_cube_map SGIS_multitexture

EXT_texture_edge_clamp SGIS_pixel_texture

EXT_texture_env_add SGIS_texture_color_mask

EXT_texture_env_combine SGIS_texture_lod

EXT_texture_env_dot3 SGIX_async

EXT_texture_filter_anisotropic SGIX_async_pixel

EXT_texture_lod_bias SGIX_blend_alpha_minmax

EXT_texture_object SGIX_convolution_accuracy

EXT_texture_rectangle SGIX_fragment_lighting

EXT_vertex_array SGIX_resample

EXT_vertex_shader SGIX_scalebias_hint

HP_occlusion_test SGIX_subsample

INGR_interlace_read SGIX_texture_coordinate_clamp

NV_blend_square SGIX_vertex_preclip

NV_occlusion_query SUN_multi_draw_arrays

NV_point_sprite
007-2392-003 v

Record of Revision

Version Description

001 1996
Original publication.

002 1998
Updated to support OpenGL 1.1.

003 March 2005
Updated to support OpenGL 1.3 and extensions to support Onyx4 and
Silicon Graphics Prism systems.
007-2392-003 vii

Contents

Figures . . xxxi

Tables . xxxiii

Examples . xxxv

About This Guide. . xxxvii
Silicon Graphics Visualization Systems xxxvii
What This Guide Contains xxxviii
What You Should Know Before Reading This Guide xl
Background Reading . . xl
OpenGL and Associated Tools and Libraries xl
X Window System: Xlib, X Toolkit, and OSF/Motif xli
Other Sources . . xli
Obtaining Publications . xlii
Conventions Used in This Guide xlii

Typographical Conventions xlii
Function Naming Conventions xliii

Reader Comments . . xliv

1. OpenGL on Silicon Graphics Systems. 1
Using OpenGL with the X Window System 1

GLX Extension to the X Window System 2
Libraries, Tools, Toolkits, and Widget Sets 2

Open Inventor . 3
IRIS ViewKit . . 4
IRIS IM Widget Set 4
Xlib Library . 5

Porting Applications between IRIX and Linux 5
Extensions to OpenGL . 5
007-4075-001 ix

Contents
Debugging and Performance Optimization 6
Debugging Your Program 7
Maximizing Performance With OpenGL Performer 7

Location of Example Source Code (IRIX-Specific) 7

2. OpenGL and X: Getting Started 9
Background and Terminology 9

X Window System on Silicon Graphics Systems 9
Silicon Graphics X Servers 10
GLX Extension to X . 11
Compiling With the GLX Extension 11

X Window System Concepts 11
GLX and Overloaded Visuals 12
GLX Drawables—Windows and Pixmaps 13
Rendering Contexts 13
Resources As Server Data 13
X Window Colormaps 14

Libraries, Toolkits, and Tools 14
Widgets and the Xt Library 15

Xt Library . . 15
For More Information About Xt 16

Other Toolkits and Tools 16
Integrating Your OpenGL Program With IRIS IM 16

Simple Motif Example Program 16
Looking at the Example Program 19

Opening the X Display 20
Selecting a Visual . . 21
Creating a Rendering Context 23
Creating the Window. 23
Binding the Context to the Window 24
Mapping the Window 24

Integrating OpenGL Programs With X—Summary 25
x 007-4075-001

Contents
Compiling With OpenGL and Related Libraries 26
Link Lines for Individual Libraries 26
Link Lines for Groups of Libraries 27

3. OpenGL and X: Examples . 29
Using Widgets . . 29

About OpenGL Drawing-Area Widgets 30
Drawing-Area Widget Setup and Creation 31

Setting Up Fallback Resources 31
Creating the Widgets 32
Choosing the Visual for the Drawing-Area Widget 33
Creating Multiple Widgets With Identical Characteristics 33
Using Drawing-Area Widget Callbacks 34

Input Handling With Widgets and Xt 37
Background Information 37
Using the Input Callback 37
Using Actions and Translations 39

Creating Colormaps . . 40
Widget Troubleshooting 40

Keyboard Input Disappears 40
Inheritance Issues . 41

Using Xlib . . 42
Simple Xlib Example Program 43
Creating a Colormap and a Window 45

Installing the Colormap 47
Xlib Event Handling . . 48

Handling Mouse Events. 48
Exposing a Window 50

Using Fonts and Strings . . 51
007-4075-001 xi

Contents
4. OpenGL and X: Advanced Topics 55
Using Animations . . 55

Swapping Buffers . . 56
Controlling an Animation With Workprocs 57

General Workproc Information 57
Workproc Example . 58

Controlling an Animation With Timeouts 60
Using Overlays . . 62

Introduction to Overlays 63
Creating Overlays . . 65
Overlay Troubleshooting 67
Rubber Banding . 68
Using Popup Menus With the GLwMDrawingArea Widget 69

Using Visuals and Framebuffer Configurations 71
Some Background on Visuals 71
Running OpenGL Applications Using a Single Visual 72
Using Framebuffer Configurations 74

Describing a Drawable With a GLXFBConfig Construct (FBConfig) 75
Less-Rigid Similarity Requirements When Matching Context and Drawable 75
Less-Rigid Match of GLX Visual and X Visual 76
FBConfig Constructs 76
How an FBConfig Is Selected 82

Related Functions . . 83
Using Colormaps . 83

Background Information About Colormaps 83
Color Variation Across Colormaps 84
Multiple Colormap Issues 84

Choosing Which Colormap to Use 86
Colormap Example . 88

Stereo Rendering . 88
Stereo Rendering Background Information. 89
Performing Stereo Rendering 89
xii 007-4075-001

Contents
Using Pixel Buffers . 90
About GLXPbuffers . . 90

PBuffers and Pixmaps 90
Volatile and Preserved Pbuffers 91

Creating a Pbuffer . 91
Rendering to a Pbuffer . 93
Directing the Buffer Clobber Event 94
Related Functions . . 96

Using Pixmaps . . 96
Creating and Using Pixmaps 97
Direct and Indirect Rendering 98

Performance Considerations for X and OpenGL 99
Portability . . 99

5. Introduction to OpenGL Extensions 101
Determining Extension Availability102

How to Check for OpenGL Extension Availability 103
Example Program: Checking for Extension Availability104
Checking for GLX Extension Availability 105

ARB_get_proc_address—The Dynamic Query-Function-Pointer Extension 106
The glXGetProcAddressARB() Function 106
Extension Wrapper Libraries and Portability Notes 108

Finding Information About Extensions109
Man Pages . .109
Example Programs .110
Extension Specifications 110

6. Resource Control Extensions 111
EXT_import_context—The Import Context Extension 112

Importing a Context . .112
Retrieving Display and Context Information 113
New Functions .114
007-4075-001 xiii

SGI_make_current_read—The Make Current Read Extension 114
Read and Write Drawables 115
Possible Match Errors 116
Retrieving the Current Drawable’s Name 116
New Functions . . 116

EXT_visual_info—The Visual Info Extension 117
Using the Visual Info Extension 117
Using Transparent Pixels 119

EXT_visual_rating—The Visual Rating Extension 119
Using the Visual Rating Extension 120

SGIX_fbconfig—The Framebuffer Configuration Extension 120
SGIX_pbuffer—The Pixel Buffer Extension 121

7. Vertex Processing Extensions 123
ARB_vertex_buffer_object—The Vertex Buffer Object Extension. 123

Why Use Buffer Objects? 124
Alternatives to Buffer Objects 124
Disadvantages of Buffer Objects 125
Using Buffer Objects 125

Defining Buffer Objects 126
Defining and Editing Buffer Object Contents 126
Mapping Buffer Objects to Application Memory 129
Using Buffer Objects as Vertex Array Sources. 130
Using Buffer Objects as Array Indices 131
Querying Data in Buffer Objects 132
Sample Code . . 132

New Functions . . 134
ARB_window_pos—The Window-Space Raster Position Extension 135

Why Use the Window-Space Raster Position Extension? 135
Using the Window-Space Raster Position Extenstion 135
New Functions . . 136

EXT_clip_volume_hint—The Clip Volume Hint Extension 136
Why Use Clip Volume Hints? 137
Using Clip Volume Hints 137

Contents
EXT_compiled_vertex_array—The Compiled Vertex Array Extension137
Why Use Compiled Vertex Arrays? 137
Using Compiled Vertex Arrays138
New Functions .139

EXT_fog_coord—The Fog Coordinate Extension 139
Why Use Fog Coordinates? 139
Using Fog Coordinates 139
Querying the Fog Coordinate State140
New Functions .140

EXT_multi_draw_arrays—The Multiple Draw Arrays Extension 141
Why Use Multiple Draw Arrays? 141
Using Multiple Draw Arrays 141
New Functions .142

EXT_secondary_color—The Secondary Color Extension142
Why Use Secondary Color? 142
Using Secondary Color 143
Querying the Secondary Color State 144
New Functions .144

 The Vertex Array Object Extensions (Legacy)145
New Functions .146

The Texture Coordinate Generation Extensions (Legacy). 147

8. Texturing Extensions . .149
ATI_texture_env_combine3—New Texture Combiner Operations Extension 150

Why Use Texture Combiners? 150
Using The New Texture Combiner Operations 150

ATI_texture_float—The Floating Point Texture Extension 152
Why Use Floating Point Textures? 152
Using Floating Point Textures 153

ATI_texture_mirror_once—The Texture Mirroring Extension 154
Why Use Texture Mirroring? 154
Using Texture Mirroring155
007-4075-001 xv

Contents
EXT_texture_compression_s3tc—The S3 Compressed Texture Format Extension 155
Why Use S3TC Texture Formats? 155
Using S3TC Texture Formats 156
Constraints on S3TC Texture Formats 157

EXT_texture_filter_anisotropic—The Anisotropic Texture Filtering Extension 157
Why Use Anisotropic Texturing? 157
Using Anisotropic Texturing 158

EXT_texture_rectangle—The Rectangle Texture Extension 159
Why Use Rectangle Textures? 159
Using Rectangle Textures 160

EXT_texture3D—The 3D Texture Extension 161
Why Use the 3D Texture Extension? 161
Using 3D Textures . . 162
3D Texture Example Program 164
New Functions . . 167

SGI_texture_color_table—The Texture Color Table Extension 167
Why Use a Texture Color Table?. 167
Using Texture Color Tables 168
Texture Color Table and Internal Formats 169
Using Texture Color Table On Different Platforms 169

SGIS_detail_texture—The Detail Texture Extension 170
Using the Detail Texture Extension 171

Creating a Detail Texture and a Low-Resolution Texture 171
Detail Texture Computation 173
Customizing the Detail Function 174
Using Detail Texture and Texture Object 175

Detail Texture Example Program 175
New Functions . . 177

SGIS_filter4_parameters—The Filter4 Parameters Extension 177
Using the Filter4 Parameters Extension 178

SGIS_point_line_texgen—The Point or Line Texture Generation Extension 179
Why Use Point or Line Texture Generation 179
xvi 007-4075-001

Contents
SGIS_sharpen_texture—The Sharpen Texture Extension180
About the Sharpen Texture Extension 180

How to Use the Sharpen Texture Extension 181
How Sharpen Texture Works 181
Customizing the LOD Extrapolation Function 182
Using Sharpen Texture and Texture Object 183

Sharpen Texture Example Program. 183
New Functions .185

SGIS_texture_edge/border_clamp—Texture Clamp Extensions. 185
Texture Clamping Background Information 185
Why Use the Texture Clamp Extensions? 185
Using the Texture Clamp Extensions 186

SGIS_texture_filter4—The Texture Filter4 Extensions. 187
Using the Texture Filter4 Extension 187

Specifying the Filter Function 188
Determining the weights Array 188
Setting Texture Parameters189

New Functions .189
SGIS_texture_lod—The Texture LOD Extension 189

Specifying a Minimum or Maximum Level of Detail190
Specifying Image Array Availability 190

SGIS_texture_select—The Texture Select Extension 191
Why Use the Texture Select Extension? 191
Using the Texture Select Extension192
007-4075-001 xvii

Contents
SGIX_clipmap—The Clipmap Extension 193
Clipmap Overview . 194

Clipmap Constraints 195
Why Do the Clipmap Constraints Work? 196
Clipmap Textures and Plain Textures 196

Using Clipmaps From OpenGL 197
Setting Up the Clipmap Stack 197
Updating the Clipmap Stack 199

Clipmap Background Information 200
Moving the Clip Center 200
Invalid Borders . 201
Toroidal Loading 202

Virtual Clipmaps . . 203
SGIX_texture_add_env—The Texture Environment Add Extension 204
SGIX_texture_lod_bias—The Texture LOD Bias Extension 205

Background: Texture Maps and LODs 206
Why Use the LOD Bias Extension? 208
Using the Texture LOD Bias Extension 209

SGIX_texture_scale_bias—The Texture Scale Bias Extension 210

9. Rendering Extensions . . 211
ATI_draw_buffers—The Multiple Draw Buffers Extension 212

Why Use Multiple Draw Buffers? 212
Using Multiple Draw Buffers. 212
New Function . . 213

ATI_separate_stencil—The Separate Stencil Extension 213
Why Use the Separate Stencil Extension? 213
Using the Separate Stencil Extension 214
New Functions . . 215

NV_point_sprite—The Point Sprite Extension 215
Why Use Point Sprites? 215
Using Point Sprites . 216
xviii 007-4075-001

Contents
NV_occlusion_query—The Occlusion Query Extension 217
Why Use Occlusion Queries? 217
Using the NV_occlusion_query Extension218
New Functions .220

Blending Extensions . .221
Constant Color Blending Extension. 221

Using Constant Colors for Blending 222
New Functions . .223

Minmax Blending Extension. 223
Using a Blend Equation223
New Functions . .223

Blend Subtract Extension 224
SGIS_fog_function—The Fog Function Extension224

FogFunc Example Program 225
New Function . .228

SGIS_fog_offset—The Fog Offset Extension 228
The Multisample Extension 230

Introduction to Multisampling 232
When to Use Multisampling 232

Using the Multisample Extension 232
Using Advanced Multisampling Options 233

Color Blending and Screen Door Transparency 234
Using a Multisample Mask to Fade Levels of Detail235
Accumulating Multisampled Images 236

How Multisampling Affects Different Primitives237
Multisampled Points. 237
Multisampled Lines 237
Multisampled Polygons238
Multisample Rasterization of Pixels and Bitmaps 238

New Functions .239
007-4075-001 xix

Contents
The Point Parameters Extension 239
Using the Point Parameters Extension 240
Point Parameters Example Code. 241
Point Parameters Background Information. 242
New Procedures and Functions 243

SGIX_reference_plane—The Reference Plane Extension 243
Why Use the Reference Plane Extension? 244
Using the Reference Plane Extension 244
New Function . . 244

The Shadow Extensions . 245
Shadow Extension Overview. 246
Creating the Shadow Map 247
Rendering the Application From the Normal Viewpoint 248
Using the Shadow Ambient Extension 249

SGIX_sprite—The Sprite Extension 250
Available Sprite Modes 251
Using the Sprite Extension 253
New Function . . 255

10. Imaging Extensions . 257
Introduction to Imaging Extensions 257

Platform Dependencies 257
Where Extensions Are in the Imaging Pipeline 258
Pixel Transfer Paths . 259

Convolution, Histogram, and Color Table in the Pipeline 260
Interlacing and Pixel Texture in the Pipeline 261

Merging the Geometry and Pixel Pipeline 262
Pixel Pipeline Conversion to Fragments 263
Functions Affected by Imaging Extensions 264

EXT_abgr—The ABGR Extension 264
xx 007-4075-001

Contents
EXT_convolution—The Convolution Extension 265
Performing Convolution265
Retrieving Convolution State Parameters 266
Separable and General Convolution Filters 267
New Functions .268

EXT_histogram—The Histogram and Minmax Extensions 268
Using the Histogram Extension270
Using the Minmax Part of the Histogram Extension 271
Using Proxy Histograms272
New Functions .273

EXT_packed_pixels—The Packed Pixels Extension 273
Why Use the Packed Pixels Extension?. 274
Using Packed Pixels . .274
Pixel Type Descriptions 275

SGI_color_matrix—The Color Matrix Extension 276
SGI_color_table—The Color Table Extension 277

Why Use the Color Table Extension? 277
Specifying a Color Table277
Using Framebuffer Image Data for Color Tables 279
Lookup Tables in the Image Pipeline 279
New Functions .280

SGIX_interlace—The Interlace Extension 280
Using the Interlace Extension 281

SGIX_pixel_texture—The Pixel Texture Extension 282
Platform Issues .284
New Functions .285

11. Video Extensions . .287
SGI_swap_control—The Swap Control Extension287

New Functions .288
SGI_video_sync—The Video Synchronization Extension. 288

Using the Video Sync Extension 288
New Functions .289
007-4075-001 xxi

Contents
SGIX_swap_barrier—The Swap Barrier Extension 289
Why Use the Swap Barrier Extension? 289
Using the Swap Barrier Extension 290

Buffer Swap Conditions 291
New Functions . . 292

SGIX_swap_group—The Swap Group Extension 292
Why Use the Swap Group Extension? 292
Swap Group Details . 293
New Function . . 294

SGIX_video_resize—The Video Resize Extension 294
Controlling When the Video Resize Update Occurs 295
Using the Video Resize Extension 295
Example. . 297
New Functions . . 298

12. Miscellaneous OpenGL Extensions 299
GLU_EXT_NURBS_tessellator—The NURBS Tessellator Extension 299

Using the NURBS Tessellator Extension 300
Callbacks Defined by the Extension 301

GLU_EXT_object_space—The Object Space Tess Extension 303
SGIX_list_priority—The List Priority Extension 305

Using the List Priority Extension 306
New Functions . . 307

SGIX_instruments—The Instruments Extension 307
Why Use SGIX_instruments?. 307
Using the Extension . 308

Specifying the Buffer 308
Enabling, Starting, and Stopping Instruments. 309
Measurement Format. 309
Retrieving Information 310

Instruments Example Pseudo Code 311
New Functions . . 312
xxii 007-4075-001

Contents
13. Vertex and Fragment Program Extensions. 313
The Vertex and Fragment Program Extensions 314

Why Use Pipeline Programs? 314
Alternatives to Pipeline Programs 314
007-4075-001 xxiii

Contents
Using Pipeline Programs 316
Managing Pipeline Programs 316

Binding Programs. 317
Defining and Enabling Programs 317

How Programs Replace Fixed Functionality 318
Structure of Pipeline Programs 319

Program Options 320
Naming Statements 322
Program Instructions 326

Pipeline Program Input and Output. 329
Vertex and Fragment Attributes 329

Vertex Attributes 329
 Fragment Attributes 332

Vertex and Fragment Program Parameters 333
Program Environment and Local Parameters 334
OpenGL State Parameters 334

Vertex and Fragment Program Output 344
Vertex Program Output 345
Fragment Program Output 346

Program Parameter Specification 347
Generic Vertex Attribute Specification 348

Commands . 348
Attribute Aliasing. 350

Generic Program Matrix Specification 351
Program Instruction Summary 351

Fragment and Vertex Program Instructions 355
Fragment Program Instructions 365
Vertex Program Instructions. 370

Program Resource Limits and Usage 372
Other Program Queries 375

Program String Length, Program String Format, and Program String Name . . . 376
Source Text . 376
Parameters of the Generic Vertex Attribute Array Pointers 376
xxiv 007-4075-001

Contents
Sample Code . .377
Sample Vertex Program377
Sample Fragment Programs 378

Errors . .380
New Functions .381

The Legacy Vertex and Fragment Program Extensions 382
How to Use the Legacy Extensions383
New Functions .383

14. OpenGL Tools . .385
Platform Notes . .385
ogldebug—The OpenGL Debugger 386

ogldebug Overview . .386
How ogldebug Operates 387

Getting Started With ogldebug 387
Setting Up ogldebug387
ogldebug Command-Line Options 388
Starting ogldebug .389

Interacting With ogldebug 391
Commands for Basic Interaction 391
Using Check boxes 392

Creating a Trace File to Discover OpenGL Problems393
Using a Configuration File 395
Using Menus to Interact With ogldebug 395

Using the File Menu to Interact With ogldebug. 395
Using the Commands Menu to Interact With Your Program 396
Using the Information Menu to Access Information396
Using the References Menu for Background Information 399

The OpenGL Character Renderer (GLC) 400
The OpenGL Stream Utility (GLS) 400

OpenGL Stream Utility Overview 400
glscat Utility .401

glxinfo—The glx Information Utility402
007-4075-001 xxv

Contents
15. Tuning Graphics Applications: Fundamentals 403
General Tips for Debugging Graphics Programs 404
Specific Problems and Troubleshooting 405

Blank Window . . 405
Rotation and Translation Problems 406
Depth Buffering Problems 406
Animation Problems 407
Lighting Problems . . 407
X Window System Problems 408
Pixel and Texture Write Problems 408
System-Specific Problems. 409

About Pipeline Tuning. . 409
A Three-Stage Model of the Graphics Pipeline. 409
Isolating Bottlenecks in Your Application: Overview 411
Factors Influencing Performance 413

Taking Timing Measurements 413
Benchmarking Basics 414
Achieving Accurate Timing Measurements 414
Achieving Accurate Benchmarking Results 416

Tuning Animation . . 418
How Frame Rate Determines Animation Speed 419
Optimizing Frame Rate Performance 419

16. Tuning the Pipeline . 421
CPU Tuning: Basics . 421

Immediate Mode Drawing Versus Display Lists and Vertex Buffer Objects 422
CPU Tuning: Display Lists 424
CPU Tuning: Immediate Mode Drawing 425

Optimizing the Data Organization 426
Optimizing Database Rendering Code 427

Examples for Optimizing Data Structures for Drawing 428
Examples for Optimizing Program Structure 429
Using Specialized Drawing Subroutines and Macros. 431
Preprocessing Drawing Data (Meshes and Vertex Loops) 432
xxvi 007-4075-001

Contents
Optimizing Cache and Memory Use 435
Memory Organization .435
Minimizing Paging . .436

Minimizing Lookups 436
Minimizing Cache Misses 436
Measuring Cache-Miss and Page-Fault Overhead 437

CPU Tuning: Advanced Techniques 438
Mixing Computation With Graphics 438
Examining Assembly Code 439
Using Additional Processors for Complex Scene Management439
Modeling to the Graphics Pipeline 440

Tuning the Geometry Subsystem 440
Using Peak-Performance Primitives for Drawing. 441
Using Vertex Arrays . .442
Using Display Lists Appropriately442
Storing Data Efficiently 443
Minimizing State Changes 443
Optimizing Transformations 443
Optimizing Lighting Performance 444

Lighting Operations With Noticeable Performance Costs 445
Choosing Modes Wisely446
Advanced Transform-Limited Tuning Techniques 447

Tuning the Raster Subsystem 448
Using Backface/Frontface Removal 448
Minimizing Per-Pixel Calculations 448

Avoiding Unnecessary Per-Fragment Operations 449
Organizing Drawing to Minimize Computation449
Using Expensive Per-Fragment Operations Efficiently 449
Using Depth Buffering Efficiently 450
Balancing Polygon Size and Pixel Operations 451
Other Considerations 451

Using Clear Operations 451
Optimizing Texture Mapping 452
007-4075-001 xxvii

Contents
Tuning the Imaging Pipeline 453

17. Tuning Graphics Applications: Examples 457
Drawing Pixels Fast . 457
Tuning Example . 459

Testing for CPU Limitation 468
Using the Profiler 468

Testing for Fill Limitation. 471
Working on a Geometry-Limited Program 471

Smooth Shading Versus Flat Shading 472
Reducing the Number of Polygons 472

Testing Again for Fill Limitation. 473

18. System-Specific Tuning 475
Introduction to System-Specific Tuning 476
Optimizing Performance on InfiniteReality Systems 477

Managing Textures on InfiniteReality Systems 477
Offscreen Rendering and Framebuffer Management 478
Optimizing State Changes 480
Miscellaneous Performance Hints 481

Optimizing Performance on Onyx4 and Silicon Graphics Prism Systems 482
Geometry Optimizations: Drawing Vertices 482
Texturing Optimizations: Loading and Rendering Texture Images 483
Pixel Optimizations: Reading and Writing Pixel Data. 483
Differences Between Onyx4 and Silicon Graphics Prism Systems 484

A. Benchmarks. . 485

B. Benchmarking Libraries: libpdb and libisfast 493
Libraries for Benchmarking 494
Using libpdb . 495

Example for pdbReadRate() 497
Example for pdbMeasureRate() 499
Example for pdbWriteRate() 500

Using libisfast . . 500
xxviii 007-4075-001

Contents
C. System Support for OpenGL Versions and Extensions503
OpenGL Core Versions . .503
OpenGL Extensions . .504
GLX Extensions .510

D. XFree86 Configuration Specifics 511
Configuring a System for Stereo512

Example “Device” Section for Stereo 513
Sample Stereo Mode Entries513
Example “Monitor” Section for Stereo 514
Example “Screen” Section for Stereo 514

Configuring a System for Full-Scene Antialiasing515
Example “Device” Section for Full-Scene Antialiasing 516

Configuring a System for Dual-Channel Operation 517
Example “Device” Section for Dual Channel 518

Enabling Overlay Planes . .518
Example “Device” Section to Enable Overlay Planes518

Configuring a System for External Genlock or Framelock 519
Configuring Monitor Positions 521

Example “ServerLayout” Section for Four Monitors in a Line 521
Example “ServerLayout” Section for Four Monitors in a Square 522

Configuring Monitor Types 523
Example “Device” Section for Use With Two Analog Monitors. 523

Configuring a System for Multiple X Servers 524
Identifying Event Devices 525
Creating a Multi-Seat XF86Config File526

Creating a New XF86Config File 526
Configuring the Input Devices527
Configuring the New ServerLayout Sections529

Example “ServerLayout” Sections for Three X Servers 530
Pointing X to the New XF86Config-Nserver File 531
Example /etc/X11/xdm/gdm.conf Servers Section for Three X Servers 532

Index .533
007-4075-001 xxix

Figures

Figure 1-1 How X, OpenGL, and Toolkits Are Layered 3
Figure 2-1 Display From simplest.c Example Program. 17
Figure 4-1 Overlay Plane Used for Transient Information 64
Figure 4-2 X Pixmaps and GLX Pixmaps 96
Figure 8-1 3D Texture 161
Figure 8-2 Extracting a Planar Texture From a 3D Texture Volume 162
Figure 8-3 LOD Interpolation Curves. 174
Figure 8-4 LOD Extrapolation Curves 182
Figure 8-5 Clipmap Component Diagram 195
Figure 8-6 Moving the Clip Center 200
Figure 8-7 Invalid Border 202
Figure 8-8 Virtual Clipmap 203
Figure 8-9 Original Image 207
Figure 8-10 Image With Positive LOD Bias 207
Figure 8-11 Image with Negative LOD Bias 208
Figure 9-1 Sample Processing During Multisampling 234
Figure 9-2 Rendering From the Light Source Point of View 248
Figure 9-3 Rendering From Normal Viewpoint249
Figure 9-4 Sprites Viewed with Axial Sprite Mode 252
Figure 9-5 Sprites Viewed With Object Aligned Mode252
Figure 9-6 Sprites Viewed With Eye Aligned Mode 252
Figure 10-1 OpenGL Pixel Paths 258
Figure 10-2 Extensions that Modify Pixels During Transfer260
Figure 10-3 Convolution, Histogram, and Color Table in the Pipeline261
Figure 10-4 Interlacing and Pixel Texture in the Pixel Pipeline262
Figure 10-5 Conversion to Fragments 263
Figure 10-6 Convolution Equations 265
007-2392-003 xxxi

Figures
Figure 10-7 How the Histogram Extension Collects Information 269
Figure 10-8 Interlaced Video (NTSC, Component 525) 281
Figure 14-1 ogldebug Main Window 390
Figure 14-2 Setup Panel 393
Figure 14-3 ogldebug File Menu 395
Figure 14-4 ogldebug Commands Menu 396
Figure 14-5 Information Menu Commands (First Screen) 397
Figure 14-6 Information Menu Commands (Second Screen) 398
Figure 14-7 Enumerants Window 399
Figure 15-1 A Three-Stage Model of the Graphics Pipeline 410
Figure 15-2 Flowchart of the Tuning Process 418
Figure 17-1 Lighted Sphere Created by perf.c 459
Figure D-1 Four Monitors in a Line. 521
Figure D-2 Four Monitors in a Square 522
xxxii 007-2392-003

Tables

Table 2-1 Headers and Link Lines for OpenGL and Associated Libraries . . 11
Table 2-2 Integrating OpenGL and X 25
Table 4-1 X Visuals and Supported OpenGL Rendering Modes 71
Table 4-2 Visual Attributes Introduced by the FBConfigs 77
Table 4-3 FBConfig Attribute Defaults and Sorting Criteria 78
Table 6-1 Type and Context Information for GLX Context Attributes . . .113
Table 6-2 Heuristics for Visual Selection 117
Table 8-1 Additional Texture Combiner Operations 151
Table 8-2 New Arguments for Texture Combiner Operations 151
Table 8-3 New Arguments for Texture Combiner Operations (Alpha-Related) 152
Table 8-4 New Floating Point Internal Formats for Textures153
Table 8-5 S3TC Compressed Formats and Corresponding Base Formats . .156
Table 8-6 Modification of Texture Components 169
Table 8-7 Texture and Texture Color Tables on InfiniteReality Systems . .169
Table 8-8 Magnification Filters for Detail Texture 173
Table 8-9 How Detail Texture Is Computed 173
Table 8-10 Magnification Filters for Sharpen Texture 181
Table 8-11 Texture Select Host Format Components Mapping 193
Table 9-1 Blending Factors Defined by the Blend Color Extension 222
Table 9-2 Mapping of SGIS and ARB tokens for Multisampling230
Table 10-1 Types That Use Packed Pixels 274
Table 12-1 NURBS Tessellator Callbacks and Their Description 302
Table 12-2 Tessellation Methods 304
Table 13-1 Builtin and Generic Vertex Program Attributes 330
Table 13-2 Fragment Program Attributes 333
Table 13-3 Program Environment and Local Parameters 334
Table 13-4 Material Property Bindings 335
007-2392-003 xxxiii

Tables
Table 13-5 Light Property Bindings 336
Table 13-6 Texture Coordinate Generation Property Bindings 339
Table 13-7 Texture Environment Property Bindings 341
Table 13-8 Fog Property Bindings 341
Table 13-9 Clip Plane Property Bindings 342
Table 13-10 Point Property Bindings 342
Table 13-11 Depth Property Bindings 343
Table 13-12 Matrix Property Bindings 343
Table 13-13 Vertex Program Output 345
Table 13-14 Fragment Program Output. 346
Table 13-15 Program Instructions (Fragment and Vertex Programs) . . . 352
Table 13-16 Program Instructions (Fragment Programs Only) 353
Table 13-17 Program Instructions (Vertex Programs Only) 354
Table 13-18 Program Resource Limits 372
Table 13-19 Program Resource Usage 374
Table 14-1 Command-Line Options for ogldebug 388
Table 14-2 Command Buttons and Shortcuts 391
Table 14-3 ogldebug Check Boxes 392
Table 15-1 Factors Influencing Performance 413
Table B-1 Errors Returned by libpdb Routines 495
Table C-1 Support for OpenGL Core Versions 503
Table C-2 OpenGL Extensions on Different Silicon Graphics Systems . . 504
Table C-3 GLX Extensions on Different Silicon Graphics Systems . . . 510
Table D-1 Input Video Formats (Framelock) 520
Table D-2 Options for Monitor Layout 523
xxxiv 007-2392-003

Examples

Example 2-1 Simple IRIS IM Program 17
Example 3-1 Motif Program That Handles Mouse Events 38
Example 3-2 Simple Xlib Example Program 43
Example 3-3 Event Handling With Xlib 49
Example 3-4 Font and Text Handling 52
Example 4-1 Popup Code Fragment 69
Example 4-2 Retrieving the Default Colormap for a Visual 85
Example 5-1 Checking for Extensions 104
Example 5-2 Querying Extension Function Pointers 108
Example 8-1 Simple 3D Texturing Program 164
Example 8-2 Detail Texture Example 175
Example 8-3 Sharpen Texture Example183
Example 9-1 NV_occlusion_query Example 219
Example 9-2 Point Parameters Example 241
Example 9-3 Sprite Example Program 253
Example 11-1 Video Resize Extension Example297
Example 12-1 Instruments Example Pseudo Code 311
Example 17-1 Drawing Pixels Fast 457
Example 17-2 Example Program—Performance Tuning 459
007-2392-003 xxxv

About This Guide

OpenGL on Silicon Graphics Systems explains how to use the OpenGL graphics library on
Silicon Graphics systems. This guide expands the description of OpenGL programming
presented in the book OpenGL Programming Guide, which describes aspects of OpenGL
that are implementation-independent.

This guide describes the following major topics:

• Integrating OpenGL programs with the X Window System

• Using OpenGL extensions

• Debugging OpenGL programs

• Achieving maximum performance

Silicon Graphics Visualization Systems

Though some items in this guide apply to all Silicon Graphics visualization systems, this
guide explicitly addresses the following families of visualization systems:

• Silicon Graphics VPro systems (Fuel and Tezro systems)

• Silicon Graphics InfinitePerformance systems

• Silicon Graphics InfiniteReality systems

• Silicon Graphics Onyx4 UltimateVision systems

• Silicon Graphics Prism systems (Linux systems)
007-2392-003 xxxvii

About This Guide
What This Guide Contains

This guide consists of the following chapters and appendixes:

• Chapter 1, “OpenGL on Silicon Graphics Systems” introduces the major issues
involved in using OpenGL on Silicon Graphics systems.

• Chapter 2, “OpenGL and X: Getting Started” first provides background information
for working with OpenGL and the X Window System. You then learn how to
display some OpenGL code in an X window with the help of a simple example
program.

• Chapter 3, “OpenGL and X: Examples” first presents two example programs that
illustrate how to create a window using IRIS IM or Xlib. It then explains how to
integrate text with your OpenGL program.

• Chapter 4, “OpenGL and X: Advanced Topics” helps you refine your programs. It
discusses how to use overlays and popups. It also provides information about
pixmaps, visuals and colormaps, and animation.

• Chapter 5, “Introduction to OpenGL Extensions” explains what OpenGL extensions
are and how to check for OpenGL and GLX extension availability.

• Chapter 6, “Resource Control Extensions” describes extensions that facilitate
management of buffers and similar resources. Most of these extensions are GLX
extensions.

• Chapter 7, “Vertex Processing Extensions” explains how to use vertex processing
extensions.

• Chapter 8, “Texturing Extensions”explains how to use the texturing extensions,
providing example code as appropriate.

• Chapter 9, “Rendering Extensions” explains how to use extensions that allow you
to customize the system’s behavior during the rendering portion of the graphics
pipeline. This includes blending extensions; the sprite, point parameters, reference
plane, multisample, and shadow extensions; and the fog function and fog offset
extensions.

• Chapter 10, “Imaging Extensions” explains how to use extensions for color
conversion (abgr, color table, color matrix), the convolution extension, the
histogram/minmax extension, and the packed pixel extension.

• Chapter 11, “Video Extensions” discusses extensions that can be used to enhance
OpenGL video capabilities.
xxxviii 007-2392-003

About This Guide
• Chapter 12, “Miscellaneous OpenGL Extensions” explains how to use the
instruments and list priority extensions as well as two extensions to GLU.

• Chapter 13, “Vertex and Fragment Program Extensions” explains how to use the
programmable shading extensions introduced in Onyx4 and Silicon Graphics Prism
graphics systems.

• Chapter 14, “OpenGL Tools” explains how to use the OpenGL debugger
(ogldebug) and discusses the glc OpenGL character renderer and (briefly) the gls
OpenGL Streaming codec.

• Chapter 15, “Tuning Graphics Applications: Fundamentals” starts with a list of
general debugging hints. It then discusses basic principles of tuning graphics
applications: pipeline tuning, tuning animations, optimizing cache and memory
use, and benchmarking. You need this information as a background for the chapters
that follow.

• Chapter 16, “Tuning the Pipeline” explains how to tune the different parts of the
graphics pipeline for an OpenGL program. Example code fragments illustrate how
to write your program for optimum performance.

• Chapter 17, “Tuning Graphics Applications: Examples” provides a detailed
discussion of the tuning process for a small example program. It also provides a
code fragment that is helpful for drawing pixels fast.

• Chapter 18, “System-Specific Tuning” provides information on tuning some specific
Silicon Graphics systems: InfiniteReality, Onyx4, and Silicon Graphics Prism
systems.

• Appendix A, “Benchmarks” lists a sample benchmarking program.

• Appendix B, “Benchmarking Libraries: libpdb and libisfast” discusses two libraries
you can use for benchmarking drawing operations and maintaining a database of
the results.

• Appendix C, “System Support for OpenGL Versions and Extensions” list the
OpenGL core versions and all extensions currently supported on VPro,
InfinitePerformance, InfiniteReality, Onyx4, and Silicon Graphics Prism systems.

• Appendix D, “XFree86 Configuration Specifics” provides information about
customizing the XF86Config file for Silicon Graphics Prism systems.
007-2392-003 xxxix

About This Guide
What You Should Know Before Reading This Guide

To work successfully with this guide, you should be comfortable programming in ANSI
C or C++. You should have a fairly good grasp of graphics programming concepts (terms
such as “texture map” and “homogeneous coordinates” are not explained in this guide),
and you should be familiar with the OpenGL graphics library. Some familiarity with the
X Window System, and with programming for Silicon Graphics platforms in general, is
also helpful. If you are a newcomer to any of these topics, see the references listed in
section “Background Reading” on page xl.

Background Reading

The following books provide background and complementary information for this
guide. Bibliographical information or the SGI document number is provided. Books
available online from SGI are marked with (S). For access information, see section
“Obtaining Publications” on page xlii.

OpenGL and Associated Tools and Libraries
• Kilgard, Mark J. OpenGL Programming for the X Window System. Menlo Park, CA:

Addison-Wesley Developer’s Press, 1996. ISBN 0-201-48369-9.

Note that while still useful, this book does not describe the newer features of
GLX 1.3.

• Dave Shreiner, OpenGL Architecture Review Board, Mason Woo, Jackie Neider and
Tom Davis. OpenGL Programming Guide: The Official Guide to Learning OpenGL,
Version 1.4. Reading, MA: Addison Wesley Longman Inc., 2003. ISBN 0-321-17348-1.

• Dave Shreiner, OpenGL Architecture Review Board. OpenGL 1.4 Reference Manual
(4th Edition). The Official Reference Document for OpenGL, Version 1.4. Reading, MA:
Addison Wesley Longman Inc., 2004. ISBN 0-321-17383-X.

• OpenGL Porting Guide (007-1797-030) (S)

• Silicon Graphics Onyx4 UltimateVision User’s Guide (007-4634-xxx) (S)

• Silicon Graphics UltimateVision Graphics Porting Guide (007-4297-001) (S)

• Silicon Graphics Prism Visualization System User’s Guide (007-4701-xxx) (S)
xl 007-2392-003

About This Guide
• Obtaining Maximum Performance on Silicon Graphics Prism Visualization Systems
(007-4271-xxx) (S)

X Window System: Xlib, X Toolkit, and OSF/Motif
• O’Reilly X Window System Series, Volumes 1, 2, 4, 5, and 6 (referred to in the text as

“O’Reilly” with a volume number):

– Nye, Adrian. Volume One: Xlib Programming Manual. Sebastopol, CA: O’Reilly &
Associates, 1992. (S)

– Volume Two. Xlib Reference Manual. Sebastopol, CA: O’Reilly & Associates, 1992.

– Nye, Adrian, and Tim O’Reilly. Volume Four. X Toolkit Intrinsics Programming
Manual. Sebastopol, CA: O’Reilly & Associates, 1992. (S)

– Flanagan, David (ed). Volume Five. X Toolkit Intrinsics Reference Manual.
Sebastopol, CA: O’Reilly & Associates, 1992.

– Heller, Dan. Volume Six. Motif Programming Manual. Sebastopol, CA: O’Reilly &
Associates.

• Young, Doug. Application Programming with Xt: Motif Version

• Kimball, Paul E. The X Toolkit Cookbook. Englewood Cliffs, NJ: Prentice Hall, 1995.

• Open Software Foundation. OSF/Motif Programmer’s Guide, Revision 1.2. Englewood
Cliffs, NJ: Prentice Hall, 1993. (S)

• Open Software Foundation. OSF/Motif Programmer’s Reference, Revision 1.2.
Englewood Cliffs, NJ: Prentice Hall, 1993. (S)

• Open Software Foundation. OSF/Motif User’s Guide, Revision 1.2. Englewood Cliffs,
NJ: Prentice Hall, 1993.

• Open Software Foundation. OSF/Motif Style Guide. Englewood Cliffs, NJ: Prentice
Hall. (S)

Other Sources
• Kane, Gerry. MIPS RISC Architecture. Englewood Cliffs, NJ: Prentice Hall. 1989.

• MIPS Compiling and Performance Tuning Guide. 007-2479-001. (S)
007-2392-003 xli

About This Guide
Obtaining Publications

You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With an
IRIX system, select Help from the Toolchest, and then select InfoSearch. Or you can
type infosearch on a command line.

• On IRIX, you can also view release notes by typing either grelnotes or relnotes
on a command line.

• You can also view man pages by typing man <title> on a command line.

• SGI ProPack for Linux documentation and all other documentation included in the
RPMs on the distribution CDs can be found on the CD titled SGI ProPack 3 for Linux
- Documentation CD. To access the information on the documentation CD, open the
index.html file with a web browser. After installation, all SGI ProPack for Linux
documentation (including README.SGI) is in the directory
/usr/share/doc/sgi-propack-3.0.

Conventions Used in This Guide

This section explains the typographical and function-naming conventions used in this
guide.

Typographical Conventions

This guide uses the following typographical conventions:

Convention Meaning

command This fixed-space font denotes literal items such as commands, files,
routines, path names, signals, messages, and programming language
structures.

function This bold font indicates a function or method name. Parentheses are
also appended to the name.
xlii 007-2392-003

About This Guide
Function Naming Conventions

This guide refers to a group of similarly named OpenGL functions by a single name,
using an asterisk to indicate all the functions whose names start the same way. For
instance, glVertex*() refers to all functions whose names begin with “glVertex”:
glVertex2s(), glVertex3dv(), glVertex4fv(), and so on.

Naming conventions for X-related functions can be confusing, because they depend
largely on capitalization to differentiate between groups of functions. For systems on
which both OpenGL and IRIS GL are available, the issue is further complicated by the
similarity in function names. Here’s a quick guide to old and new function names:

GLX*() IRIS GL mixed-model support

Glx*() IRIS GL support for IRIS IM

glX*() OpenGL support for X

GLw*() OpenGL support for IRIS IM

Note that the OpenGL glX*() routines are collectively referred to as GLX.

variable Italic typeface denotes variable entries and words or concepts being
defined.

user input This bold, fixed-space font denotes literal items that the user enters in
interactive sessions. (Output is shown in nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or directive line.

... Ellipses indicate that a preceding element can be repeated.

manpage(x) Man page section identifiers appear in parentheses after man page
names.

GUI element This font denotes the names of graphical user interface (GUI) elements
such as windows, screens, dialog boxes, menus, toolbars, icons,
buttons, boxes, fields, and lists.

Convention Meaning
007-2392-003 xliii

About This Guide
Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number is located at the bottom of each
page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library webpage:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1500 Crittenden Lane, M/S 535
Mountain View, CA 94043-1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.
xliv 007-2392-003

Chapter 1

1. OpenGL on Silicon Graphics Systems

Silicon Graphics systems allow you to write OpenGL applications that are portable and
run well across the Silicon Graphics workstation product line. This chapter introduces
the basic issues you need to know about if you want to write an OpenGL application for
Silicon Graphics systems. The chapter contains the following topics, which are all
discussed in more detail elsewhere in this guide:

• “Using OpenGL with the X Window System” on page 1

• “Extensions to OpenGL” on page 5

• “Debugging and Performance Optimization” on page 6

• “Location of Example Source Code (IRIX-Specific)” on page 7

Using OpenGL with the X Window System

The OpenGL graphics library is not limited to a particular window system. The
platform’s window system determines where and how the OpenGL application is
displayed and how events (user input or other interruptions) are handled. Currently,
OpenGL is available for the X Window System, Microsoft Windows, Mac OS X, and other
major window systems. If you want your application to run under several window
systems, the application’s OpenGL calls can remain unchanged, but window system
calls are different for each window system.

Note: If you plan to run an application under different window systems, isolate the
windowing code to minimize the number of files that must be special for each system.

All Silicon Graphics systems use the X Window System. Applications on a Silicon
Graphics system rely on Xlib calls to manipulate windows and obtain input. An X-based
window manager (usually 4Dwm) handles iconification, window borders, and
overlapping windows. The IRIX Interactive Desktop environment is based on X, as is the
Silicon Graphics widget set, IRIS IM. IRIS IM is the Silicon Graphics port of OSF/Motif.
007-2392-003 1

1: OpenGL on Silicon Graphics Systems
A full introduction to X is beyond the scope of this guide; for detailed information about
X, see the sources listed in “Background Reading” on page xl.

GLX Extension to the X Window System

The OpenGL extension to the X Window System (GLX) provides a means of creating an
OpenGL context and associating it with a drawable window on a computer that uses the
X Window System. GLX is provided by Silicon Graphics and other vendors as an adjunct
to OpenGL.

For additional information on using GLX, see “GLX Extension to X” on page 11. More
detailed information is in Appendix D, “OpenGL Extensions to the X Window System”
of the OpenGL Programming Guide. The glxintro man page also provides a good
introduction to the topic.

Libraries, Tools, Toolkits, and Widget Sets

When you prepare a program to run with the X Window System, you can choose the level
of complexity and control that suits you best, depending on how much time you have
and how much control you need.

This section describes different tools and libraries for working with OpenGL in an X
Window System environment. It starts with easy-to-use toolkits and libraries with less
control and then describes the Xlib library, which is more primitive but offers more
control. Most application developers usually write at a higher level than Xlib, but you
may find it helpful to understand the basic facts about the lower levels of the X Window
System that are discussed in this guide.

Note that the different tools are not mutually exclusive: You may design most of the
interface with one of the higher-level tools, then use Xlib to fine-tune a specific aspect or
add something that is otherwise unavailable. Figure 1-1 illustrates the layering:

• IRIS ViewKit (only supported on IRIX systems) and Open Inventor are layered on
top of IRIS IM, which is on top of Xlib.

• GLX links Xlib and OpenGL.

• Open Inventor uses GLX and OpenGL.
2 007-2392-003

Using OpenGL with the X Window System
Figure 1-1 How X, OpenGL, and Toolkits Are Layered

Note: If you write an application on IRIX using IRIS Viewkit or Open Inventor, the
graphical user interface will be visually consistent with the IRIX Interactive Desktop.

Open Inventor

The Open Inventor library uses an object-oriented approach to make the creation of
interactive 3D graphics applications as easy as possible by letting you use its high-level
rendering primitives in a scene graph. It is a useful tool for bypassing the complexity of
X and widget sets, as well as many of the complex details of OpenGL.

Open Inventor provides prepackaged tools for viewing, manipulating, and animating
3D objects. It also provides widgets for easy interaction with X and Xt, and a full
event-handling system.

In most cases, you use Open Inventor, not the lower-level OpenGL library, for rendering
from Open Inventor. However, the Open Inventor library provides several widgets for

Xlib

Xt/IRIS IM Widgets

GLX
OpenGL

Open Inventor

Viewkit
007-2392-003 3

1: OpenGL on Silicon Graphics Systems
use with X and OpenGL (in subclasses of the SoXtGLWidget class) that you can use if
OpenGL rendering is desired. For instance, the SoXtRenderArea widget and its viewer
subclasses can all perform OpenGL rendering. SoXtGLWidget is, in turn, a subclass of
SoXtComponent, the general Open Inventor class for widgets that perform 3D editing.

Components provide functions to show and hide the associated widgets, set various
parameters (such as title and size of the windows), and use callbacks to send data to the
calling application. The viewer components based on SoXtRenderArea handle many
subsidiary tasks related to viewing 3D objects. Other components handle anything from
editing materials and lights in a 3D scene, to copying and pasting 3D objects.

Note that if you are using libInventorXt, you need only link with libInventorXt (it
automatically “exports” all of the routines in libInventor, so you never need to use
-lInventorXt -lInventor, you need only -lInventorXt).

For detailed information on Open Inventor, see The Inventor Mentor: Programming
Object-Oriented 3D Graphics with Open Inventor, Release 2, published by Addison-Wesley
and available online through IRIS InSight.

IRIS ViewKit

The IRIS ViewKit library is a C++ application framework designed to simplify the task
of developing applications based on the IRIS IM widget set. The ViewKit framework
promotes consistency by providing a common architecture for applications and
improves programmer productivity by providing high-level, and in many cases
automatic, support for commonly needed operations.

When you use Viewkit in conjunction with OpenGL, it provides drawing areas that
OpenGL can render to.

For more information, see the IRIS ViewKit Programmer’s Guide, available online through
IRIS InSight.

IRIS IM Widget Set

The IRIS IM widget set is an implementation of OSF/Motif provided by Silicon Graphics.
You are strongly encouraged to use IRIS IM when writing software for Silicon Graphics
systems. IRIS IM integrates your application with the desktop’s interface. If you use it,
your application conforms to a consistent look and feel for Silicon Graphics applications.
See the sources listed in “Background Reading” on page xl for further details.
4 007-2392-003

Extensions to OpenGL
Xlib Library

The X library, Xlib, provides function calls at a lower level than most application
developers want to use. Note that while Xlib offers the greatest amount of control, it also
requires that you attend to many details you could otherwise ignore. If you do decide to
use Xlib, you are responsible for maintaining the Silicon Graphics user interface
standards.

Porting Applications between IRIX and Linux

Not all of the toolkits just described are available on all Silicon Graphics platforms and if
you are targeting both IRIX and Linux, you should be aware of the differences. IRIS
ViewKit is only supported on IRIX systems, but Integrated Computer Solutions
Incorporated (ICS) makes a commercial version of ViewKit for Linux and other
platforms. The IRIS IM widget set includes widgets specific to SGI and supported only
on IRIX. However, the OSF/Motif implementation on Linux supports most of the same
functionality.

In addition to the toolkits and widget sets described earlier, similar GUI functionality is
available from open source packages such as the Gnome Toolkit (GTK), Qt from
Trolltech, and many others. SGI provides industry-standard versions of some of these
packages with SGI Linux systems, and some are also available prebuilt for IRIX through
the IRIX Freeware site, http://freeware.sgi.com/. Although SGI does not recommend
any specific alternative, you may find these toolkits useful.

Extensions to OpenGL

The OpenGL standard is designed to be as portable as possible and also to be expandable
with extensions. Extensions may provide new functionality, such as several video
extensions, or extend existing functionality, such as blending extensions.

An extension’s functions and tokens use a suffix that indicates the availability of that
extension. For example, the suffix ARB is used for extensions reviewed and approved by
the OpenGL Architecture Review Board. ARB extensions are likely to be more widely
supported on different vendor platforms than are any other type of extension, as they
represent a consensus of the graphics industry. For a complete listing of suffixes, see
Chapter 5, “Introduction to OpenGL Extensions”.
007-2392-003 5

1: OpenGL on Silicon Graphics Systems
The glintro man page provides a useful introduction to extensions; many extensions
are also discussed in detail in the following chapters in this guide:

• Chapter 5, “Introduction to OpenGL Extensions”

• Chapter 6, “Resource Control Extensions”

• Chapter 7, “Vertex Processing Extensions”

• Chapter 8, “Texturing Extensions”

• Chapter 9, “Rendering Extensions”

• Chapter 10, “Imaging Extensions”

• Chapter 11, “Video Extensions”

• Chapter 12, “Miscellaneous OpenGL Extensions”

• Chapter 13, “Vertex and Fragment Program Extensions”

Note that both the X Window System and OpenGL support extensions. GLX is an X
extension to support OpenGL. Keep in mind that OpenGL (and GLX) extensions are
different from X extensions.

Debugging and Performance Optimization

If you want a fast application, think about performance from the start. While making sure
the program runs reliably and bug-free is important, it is also essential that you think
about performance early on. Applications designed and written without performance
considerations can rarely be suitably tuned.

If you want high performance, read the following performance chapters in this guide
before you start writing the application:

• Chapter 15, “Tuning Graphics Applications: Fundamentals”

• Chapter 16, “Tuning the Pipeline”

• Chapter 17, “Tuning Graphics Applications: Examples”

• Chapter 18, “System-Specific Tuning”
6 007-2392-003

Location of Example Source Code (IRIX-Specific)
Debugging Your Program

Silicon Graphics provides a variety of debugging tools for use with OpenGL programs:

• The ogldebug tool helps you find OpenGL programming errors and discover
OpenGL programming style that may slow down your application. You can set
breakpoints, step through your program, and collect a variety of information.

• For general-purpose debugging, you can use standard UNIX debugging tools such
as dbx or gdb.

• The CASE tools are only available on IRIX for general-purpose debugging. For
more information on the CASE tools, see ProDev WorkShop and MegaDev Overview
and CASEVision/Workshop User’s Guide.

Maximizing Performance With OpenGL Performer

The OpenGL Performer application development environment from Silicon Graphics
automatically optimizes graphical applications on the full range of Silicon Graphics
systems without changes or recompilation. Performance features supported by
OpenGL Performer include data structures to use the CPU, cache, and memory system
architecture efficiently; tuned rendering loops to convert the system CPU into an
optimized data management engine; and state management control to minimize
overhead.

For OpenGL Performer documentation, see the SGI Technical Publications Library,
http://docs.sgi.com.

Location of Example Source Code (IRIX-Specific)

All complete example programs (though not the short code fragments) are available in
/usr/share/src/OpenGL if you have the ogl_dev.sw.samples subsystem
installed.
007-2392-003 7

Chapter 2

2. OpenGL and X: Getting Started

This chapter first presents background information that you will find useful when
working with OpenGL and the X Window System. Following the background
information is a simple example program that displays OpenGL code in an X window.
This chapter uses the following topics:

• “Background and Terminology” on page 9

• “Libraries, Toolkits, and Tools” on page 14

• “Integrating Your OpenGL Program With IRIS IM” on page 16

• “Integrating OpenGL Programs With X—Summary” on page 25

• “Compiling With OpenGL and Related Libraries” on page 26

Background and Terminology

To effectively integrate your OpenGL program with the X Window System, you need to
understand the basic concepts described in the following sections:

• “X Window System on Silicon Graphics Systems”

• “X Window System Concepts”

Note: If you are unfamiliar with the X Window System, you are urged to learn about it
using some of the material listed under “Background Reading” on page xl.

X Window System on Silicon Graphics Systems

The X Window System is the only window system provided for Silicon Graphics systems
running IRIX or Linux.
007-2392-003 9

2: OpenGL and X: Getting Started
X is a network-transparent window system: an application need not be running on the
same system on which you view its display. In the X client/server model, you can run
programs on the local workstation or remotely on other workstations connected by a
network. The X server handles input and output and informs client applications when
various events occur. A special client, the window manager, places windows on the
screen, handles icons, and manages titles and other window decorations.

When you run an OpenGL program in an X environment, window manipulation and
event handling are performed by X functions. Rendering can be done with both X and
OpenGL. In general, X is for the user interface and OpenGL is used for rendering 3D
scenes or for imaging.

Silicon Graphics X Servers

There are two different X servers provided depending on the operating system and type
of graphics supported:

• Xsgi

For traditional IRIX graphics systems such as VPro, InfinitePerformance, and
InfiniteReality, Silicon Graphics uses its own X server, called Xsgi.

• XFree86

For IRIX Oynx4 systems and all Linux systems, Silicon Graphics uses an X server
from the open source XFree86 project. This server contains newer X extensions such
as RENDER but does not support all of the extensions of the Xsgi server.

While both Xsgi and XFree86 are based on the X Consortium X11R6 source code base,
Xsgi includes some enhancements that not all servers have: support for visuals with
different colormaps, overlay windows, the Display PostScript extension, the Shape
extension, the X Input extension, the Shared Memory extension, the SGI video control
extensions, and simultaneous displays on multiple graphics monitors. Specifically for
working with OpenGL programs, Silicon Graphics offers the GLX extension described in
the next section.

To see what extensions to the X Window System are available on your current system,
execute xdpyinfo and check the extensions listed below the number of extensions
line.
10 007-2392-003

Background and Terminology
GLX Extension to X

The GLX extension, which integrates OpenGL and X, is used by X servers that support
OpenGL. The Xsgi and XFree86 servers shipped with Silicon Graphics systems all
support GLX. GLX is both an API and an X extension protocol for supporting OpenGL.
GLX routines provide basic interaction between X and OpenGL. Use them, for example,
to create a rendering context and bind it to a window.

Compiling With the GLX Extension

To compile a program that uses the GLX extension, include the GLX header file
(/usr/include/GL/glx.h), which includes relevant X header files and the standard
OpenGL header files. If desired, include also the GLU utility library header file
(/usr/include/GL/glu.h).

Table 2-1 provides an overview of the headers and libraries you need to include.

X Window System Concepts

To help you understand how to use your OpenGL program inside the X Window System
environment, this section describes the following concepts you will encounter
throughout this guide:

• “GLX and Overloaded Visuals”

• “GLX Drawables—Windows and Pixmaps”

• “Rendering Contexts”

• “Resources As Server Data”

• “X Window Colormaps”

Table 2-1 Headers and Link Lines for OpenGL and Associated Libraries

Library Header Link Line

OpenGL GL/gl.h -lGL

GLU GL/glu.h -lGLU

GLX GL/glx.h -lGL (includes GLX and OpenGL)

X11 X11/xlib.h -lX11
007-2392-003 11

2: OpenGL and X: Getting Started
GLX and Overloaded Visuals

A standard X visual specifies how the server should map a given pixel value to a color to
be displayed on the screen. Different windows on the screen can have different visuals.

Currently, GLX allows RGB rendering to TrueColor and DirectColor visuals and color
index rendering to StaticColor or PseudoColor visuals. See Table 4-1 on page 71 for
information about the visuals and their supported OpenGL rendering modes.
Framebuffer configurations, or FBConfigs, allow additional combinations. For details,
see the section “Using Visuals and Framebuffer Configurations” on page 71.

GLX overloads X visuals to include both the standard X definition of a visual and
information specific to OpenGL about the configuration of the framebuffer and ancillary
buffers that might be associated with a drawable. Only those overloaded visuals support
both OpenGL and X rendering. GLX, therefore, requires that an X server support a
high-minimum baseline of OpenGL functionality.

When you need visual information, do the following:

• Use xdpyinfo to display all the X visuals your system supports.

• Use glxinfo or findvis to find visuals that can be used with OpenGL.

The findvis command (only available on SGI IRIX systems) can actually look for
available visuals with certain attributes. See the xdpyinfo, glxinfo, and
findvis man pages for more information.

Not all X visuals support OpenGL rendering, but all X servers capable of OpenGL
rendering have at least two OpenGL capable visuals. The exact number and type vary
among different hardware systems. A Silicon Graphics system typically supports many
more than the two required OpenGL capable visuals. An RGBA visual is required for any
hardware system that supports OpenGL; a color index visual is required only if the
hardware requires color index. To determine the OpenGL configuration of a visual, you
must use a GLX function.

Visuals are discussed in some detail in “Using Visuals and Framebuffer Configurations”
on page 71. Table 4-1 on page 71 illustrates which X visuals support which type of
OpenGL rendering and whether the colormaps for those visuals are writable or not.
12 007-2392-003

Background and Terminology
GLX Drawables—Windows and Pixmaps

As a rule, a drawable is something into which X can draw, either a window or a pixmap.
An exception is a pixel buffer (pbuffer), which is a GLX drawable but cannot be used for
X rendering. A GLX drawable is something into which both X and OpenGL can draw,
either an OpenGL capable window or a GLX pixmap. (A GLX pixmap is a handle to an
X pixmap that is allocated in a special way; see Figure 4-2 on page 96.) Different ways of
creating a GLX drawable are discussed in “Drawing-Area Widget Setup and Creation”
on page 31, “Creating a Colormap and a Window” on page 45, and “Using Pixmaps” on
page 96.

Pbuffers were promoted from the SGIX_pbuffer extension to GLX 1.1 into a standard part
of GLX 1.3, which is supported on all current Silicon Graphics visualization systems. So,
the SGIX_pbuffer extension is no longer described in detail in this document.

Rendering Contexts

A rendering context (GLXContext) is an OpenGL data structure that contains the current
OpenGL rendering state, an instance of an OpenGL state machine. (For more
information, see the section “OpenGL as a State Machine” in Chapter 1, “Introduction to
OpenGL,” of the OpenGL Programming Guide.) Think of a context as a complete
description of how to draw what the drawing commands specify.

Only one rendering context can be bound to at most one window or pixmap in a given
thread. If a context is bound, it is considered the current context.

OpenGL routines do not specify a drawable or rendering context as parameters. Instead,
they implicitly affect the current bound drawable using the current rendering context of
the calling thread.

Resources As Server Data

Resources, in X, are data structures maintained by the server rather than by client
programs. Colormaps (as well as windows, pixmaps, and fonts) are implemented as
resources.

Rather than keeping information about a window in the client program and sending an
entire window data structure from client to server, for instance, window data is stored in
the server and given a unique integer ID called an XID. To manipulate or query the
007-2392-003 13

2: OpenGL and X: Getting Started
window data, the client sends the window’s ID number; the server can then perform any
requested operation on that window. This reduces network traffic.

Because pixmaps and windows are resources, they are part of the X server and can be
shared by different processes (or threads). OpenGL contexts are also resources. In
standard OpenGL, they can be shared by threads in the same or a different process
through the use of FBConfigs. For details, see the section “Using Visuals and Framebuffer
Configurations” on page 71.

Note: The term resource can, in other X-related contexts, refer to items handled by the
Resource Manager. They are items that users can customize for their own use. These
resources are user data in contrast to the server data described in this section.

X Window Colormaps

A colormap maps pixel values from the framebuffer to intensities on the screen. Each
pixel value indexes into the colormap to produce intensities of red, green, and blue for
display. Depending on hardware limitations, one or more colormaps may be installed at
one time so that windows associated with those maps display with the correct colors. If
there is only one colormap, two windows that load colormaps with different values look
correct only when they have their particular colormap installed. The X window manager
takes care of colormap installation and tries to make sure that the X client with input
focus has its colormaps installed. On all systems, the colormap is a limited resource.

Every X window needs a colormap. If you are using the OpenGL drawing-area widget
to render in RGB mode into a TrueColor visual, you may not need to worry about the
colormap. In other cases, you may need to assign one. For additional information, see
“Using Colormaps” on page 83. Colormaps are also discussed in detail in O’Reilly,
Volume One.

Libraries, Toolkits, and Tools

This section first describes programming with widgets and with the Xt (X Toolkit) library,
then briefly mentions some other toolkits that facilitate integrating OpenGL with the X
Window System.
14 007-2392-003

Libraries, Toolkits, and Tools
Widgets and the Xt Library

A widget is a piece of a user interface. Under IRIS IM, buttons, menus, scroll bars, and
drawing windows are all widgets.

It usually makes sense to use one of the standard widget sets. A widget set provides a
collection of user interface elements. A widget set may contain, for example, a simple
window with scrollbars, a simple dialog with buttons, and so on. A standard widget set
allows you to easily provide a common look and feel for your applications. The two most
common widget sets are OSF/Motif and the Athena widget set from MIT.

If you develop on IRIX, Silicon Graphics strongly encourages using IRIS IM, the Silicon
Graphics port of OSF/Motif, for conformance with Silicon Graphics user interface style
and integration with the IRIX Interactive Desktop. If you use IRIS IM, your application
follows the same conventions as other applications on the desktop and becomes easier to
learn and to use. If you develop for cross-platform environments or only for Linux
environments, use those features of OSF/Motif that are not specific to SGI or use other
toolkits such as GTK or Qt.

The examples in this guide use IRIS IM. Using IRIS IM makes it easier to deal with
difficult issues such as text management and cut and paste. IRIS IM makes writing
complex applications with many user interface components relatively simple. This
simplicity does not come free; an application that has minimal user interactions incurs a
performance penalty over the same application written in Xlib. For an introduction to
Xlib, see “Xlib Library” on page 5.

Xt Library

Widgets are built using Xt, the X Toolkit Intrinsics, a library of routines for creating and
using widgets. Xt is a “meta” toolkit used to build toolkits like Motif or IRIS IM; you can,
in effect, use it to extend the existing widgets in your widget sets. Xt uses a
callback-driven programming model. It provides tools for common tasks like input
handling and animation and frees you from having to handle a lot of the details of Xlib
programming.

Note that in most (but not all) cases, using Xlib is necessary only for colormap
manipulation, fonts, and 2D rendering. Otherwise, Xt and IRIS IM are enough, though
you may pay a certain performance penalty for using widgets instead of programming
directly in Xlib.
007-2392-003 15

2: OpenGL and X: Getting Started
For More Information About Xt

Standard Xt is discussed in detail in O’Reilly, Volume Four. Standard Motif widgets are
discussed in more detail in O’Reilly, Volume Six. See “Background Reading” on page xl
for full bibliographic information and for pointers to additional documents about Motif
and IRIS IM. The book on OpenGL and X (Kilgard 1996) is particularly helpful for
OpenGL developers.

Other Toolkits and Tools

Silicon Graphics makes several other tools and toolkits available that can greatly
facilitate designing your IRIS IM interface. For more information, see “Open Inventor”
on page 3, “IRIS ViewKit” on page 4, and “Porting Applications between IRIX and
Linux” on page 5.

Integrating Your OpenGL Program With IRIS IM

To help you get started, this section presents the simplest possible example program that
illustrates how to integrate an OpenGL program with IRIS IM. The program itself is
followed by a brief explanation of the steps involved and a more detailed exploration of
the steps to follow during integration and setup of your own program.

Window creation and event handling, either using Motif widgets or using the Xlib library
directly, are discussed in Chapter 3, “OpenGL and X: Examples.”

Simple Motif Example Program

The program in Example 2-1 (motif/simplest.c) performs setup, creates a window
using a drawing-area widget, connects the window with a rendering context, and
performs some simple OpenGL rendering (see Figure 2-1).
16 007-2392-003

Integrating Your OpenGL Program With IRIS IM
Figure 2-1 Display From simplest.c Example Program

Example 2-1 Simple IRIS IM Program

/*
 * simplest - simple single buffered RGBA motif program.
 */
#include <stdlib.h>
#include <stdio.h>
#include <Xm/Frame.h>
#include <X11/GLw/GLwMDrawA.h>
#include <X11/keysym.h>
#include <X11/Xutil.h>
#include <GL/glx.h>

static int attribs[] = { GLX_RGBA, None};

static String fallbackResources[] = {
 "*useSchemes: all", “*sgimode:True”,
 "*glxwidget*width: 300", "*glxwidget*height: 300",
 "*frame*shadowType: SHADOW_IN",
 NULL};
/*Clear the window and draw 3 rectangles*/

void
draw_scene(void) {
 glClearColor(0.5, 0.5, 0.5, 1.0);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0,0.0,0.0);
007-2392-003 17

2: OpenGL and X: Getting Started
 glRectf(-.5,-.5,.5,.5);
 glColor3f(0.0,1.0,0.0);
 glRectf(-.4,-.4,.4,.4);
 glColor3f(0.0,0.0,1.0);
 glRectf(-.3,-.3,.3,.3);
 glFlush();
}

/*Process input events*/

static void
input(Widget w, XtPointer client_data, XtPointer call) {
 char buffer[31];
 KeySym keysym;
 XEvent *event = ((GLwDrawingAreaCallbackStruct *) call)->event;

 switch(event->type) {
 case KeyRelease:
 XLookupString(&event->xkey, buffer, 30, &keysym, NULL);
 switch(keysym) {
 case XK_Escape :
 exit(EXIT_SUCCESS);
 break;
 default: break;
 }
 break;
 }
}

/*Process window resize events*/
 * calling glXWaitX makes sure that all x operations like *
 * XConfigureWindow to resize the window happen befor the *
 * OpenGL glViewport call.*/

static void
resize(Widget w, XtPointer client_data, XtPointer call) {
 GLwDrawingAreaCallbackStruct *call_data;
 call_data = (GLwDrawingAreaCallbackStruct *) call;
 glXWaitX();
 glViewport(0, 0, call_data->width, call_data->height);
}

/*Process window expose events*/

static void
18 007-2392-003

Integrating Your OpenGL Program With IRIS IM
expose(Widget w, XtPointer client_data, XtPointer call) {
 draw_scene();
}

main(int argc, char *argv[]) {
 Display *dpy;
 XtAppContext app;
 XVisualInfo *visinfo;
 GLXContext glxcontext;
 Widget toplevel, frame, glxwidget;

 toplevel = XtOpenApplication(&app, "simplest", NULL, 0, &argc,
 argv,fallbackResources, applicationShellWidgetClass,
 NULL, 0);
 dpy = XtDisplay(toplevel);

 frame = XmCreateFrame(toplevel, "frame", NULL, 0);
 XtManageChild(frame);

 /* specify visual directly */
 if (!(visinfo = glXChooseVisual(dpy, DefaultScreen(dpy), attribs)))
 XtAppError(app, "no suitable RGB visual");

 glxwidget = XtVaCreateManagedWidget("glxwidget",
 glwMDrawingAreaWidgetClass, frame, GLwNvisualInfo,
 visinfo, NULL);
 XtAddCallback(glxwidget, GLwNexposeCallback, expose, NULL);
 XtAddCallback(glxwidget, GLwNresizeCallback, resize, NULL);
 XtAddCallback(glxwidget, GLwNinputCallback, input, NULL);

 XtRealizeWidget(toplevel);

 glxcontext = glXCreateContext(dpy, visinfo, 0, GL_TRUE);
 GLwDrawingAreaMakeCurrent(glxwidget, glxcontext);

 XtAppMainLoop(app);
}

Looking at the Example Program

As the example program illustrates, integrating OpenGL drawing routines with a simple
IRIS IM program involves only a few steps. Except for window creation and event
007-2392-003 19

2: OpenGL and X: Getting Started
handling, these steps are actually independent of whether the program uses Xt and Motif
or Xlib.

The rest of this chapter looks at each step. Each step is described in a separate section:

• “Opening the X Display”

• “Selecting a Visual”

• “Creating a Rendering Context”

• “Creating the Window” (described with program examples in “Drawing-Area
Widget Setup and Creation” on page 31 and “Creating a Colormap and a Window”
on page 45)

• “Binding the Context to the Window”

• “Mapping the Window”

Note that event handling, which is different depending on whether you use Xlib or
Motif, is described in “Input Handling With Widgets and Xt” on page 37 and, for Xlib
programming, “Xlib Event Handling” on page 48.

Opening the X Display

Before making any GLX (or OpenGL) calls, a program must open a display (required)
and should find out whether the X server supports GLX (optional).

To open a display, use XOpenDisplay() if you are programming with Xlib, or
XtOpenApplication() if you are working with widgets as in Example 2-1 above.
XtOpenApplication() actually opens the display and performs some additional setup:

• Initializing Xt

• Opening an X server connection

• Creating an X context (not a GLX context) for the application

• Creating an application shell widget

• Processing command-line options

• Registering fallback resources

It is recommend (but not required) that you find out whether the X server supports GLX
by calling glXQueryExtension().
20 007-2392-003

Integrating Your OpenGL Program With IRIS IM
Bool glXQueryExtension (Display *dpy, int *errorBase, int *eventBase)

In most cases, NULL is appropriate for both errorBase and eventBase. See the
glXQueryExtension man page for more information.

Note: This call is not required (and therefore not part of motif/simplest.c), because
glXChooseVisual() simply fails if GLX is not supported. It is included here because it is
recommended for the sake of portability.

If glXQueryExtension() succeeds, use glXQueryVersion() to find which version of GLX
is being used; an older version of the extension may not be able to do everything your
version can do.The following pseudo code demonstrates checking for the version
number:

glXQueryVersion(dpy, &major, &minor);
if (((major == 1) && (minor == 0)){
 /*assume GLX 1.0, avoid GLX 1.1 functionality*/
 }
 else{
 /*can use GLX 1.1 functionality*/
 }
 }

GLX 1.3 is supported on all current Silicon Graphics platforms under IRIX 6.5 and Linux.
In addition to providing a few new functions and a mechanism for using extensions
(introduced in GLX 1.1), GLX 1.3 promoted the SGIX_fbconfig, SGIX_pbuffer, and
SGIX_make_current_read GLX extensions to become standard parts of the core 1.3 API.

Selecting a Visual

A visual determines how pixel values are mapped to the screen. The display mode of
your OpenGL program (RGBA or color index) determines which X visuals are suitable.
To find a visual with the attributes you want, call glXChooseVisual() with the desired
parameters. The following is the function’s format:

XVisualInfo* glXChooseVisual(Display *dpy, int screen, int *attribList)

• The first two parameters specify the display and screen. The display was earlier
opened with XtOpenApplication() or XOpenDisplay(). Typically, you specify the
default screen that is returned by the DefaultScreen() macro.
007-2392-003 21

2: OpenGL and X: Getting Started
• The third parameter is a list of the attributes you want your visual to have, specified
as an array of integers with the special value None as the final element in the array.
Attributes can specify the following:

– Whether to use RGBA or color-index mode (depending on whether GLX_RGBA
is True or False)

– Whether to use double-buffering or not (depending on the value of
GLX_DOUBLEBUFFER)

– How deep the depth buffer should be (depending on the value of
GLX_DEPTH_SIZE)

In Example 2-1 on page 17, the only attribute specified is an RGB display:

static int attribs[] = { GLX_RGBA, None};

The visual returned by glXChooseVisual() is always a visual that supports OpenGL. It
is guaranteed to have Boolean attributes matching those specified and integer attributes
with values at least as large as those specified. For detailed information, see the
glXChooseVisual man page.

Note: Be aware that Xlib provides these three different but related visual data types.
glXChooseVisual() actually returns an XVisualInfo*, which is a different entity from
a visual* or a visual ID. XCreateWindow(), on the other hand, requires a visual*, not
an XVisualInfo*.

The framebuffer capabilities and other attributes of a window are determined statically
by the visual used to create it. For example, to change a window from single-buffer to
double-buffer, you have to switch to a different window created with a different visual.

Note: In general, ask for one bit of red, green, and blue to get maximum color resolution.
Zero matches to the smallest available color resolution.

Instead of calling glXChooseVisual(), you can also choose a visual as follows:

• Ask the X server for a list of all visuals using XGetVisualInfo() and then call
glXGetConfig() to query the attributes of the visuals. Be sure to use a visual for
which the attribute GLX_USE_GL is True.
22 007-2392-003

Integrating Your OpenGL Program With IRIS IM
• If you have decided to use IRIS IM, call XtCreateManagedWidget(), provide
GLwDrawingAreaWidget as the parent, and let the widget choose the visual for
you.

GLX 1.3 allows you to create and choose a glXFBConfig construct, which packages GLX
drawable information, for use instead of a visual.

Creating a Rendering Context

Creating a rendering context is the application’s responsibility. Even if you choose to use
IRIS IM, the widget does no context management. Therefore, before you can draw
anything, you must create a rendering context for OpenGL using glXCreateContext(),
which has the following function format:

GLXContext glXCreateContext(Display *dpy, XVisualInfo *vis,
 GLXContext shareList, Bool direct)

The following describes the arguments:

dpy The display you have already opened.

vis The visual you have chosen with glXChooseVisual().

sharedList A context for sharing display lists or NULL to not share display lists.

direct Direct or indirect rendering. For best performance, always request direct
rendering. The OpenGL implementation automatically switches to
indirect rendering when direct rendering is not possible (for example,
when rendering remotely). See “Direct and Indirect Rendering” on
page 98.

Creating the Window

After picking a visual and creating a context, you need to create a drawable (window or
pixmap) that uses the chosen visual. How you create the drawable depends on whether
you use Xlib or Motif calls and is described, with program examples, in “Drawing-Area
Widget Setup and Creation” on page 31 and “Creating a Colormap and a Window” on
page 45.
007-2392-003 23

2: OpenGL and X: Getting Started
Binding the Context to the Window

If you are working with Xlib, bind the context to the window by calling
glXMakeCurrent(). Example 3-2 on page 43 is a complete Xlib program and illustrates
how the function is used.

If you are working with widgets and have an OpenGL context and a window, bind them
together with GLwDrawingAreaMakeCurrent(). This IRIS IM function is a front end to
glXMakeCurrent(); it allows you to bind the context to the window without having to
know the drawable ID and display.

If GLwDrawingAreaMakeCurrent() is successful, subsequent OpenGL calls use the
new context to draw on the given drawable. The call fails if the context and the drawable
are mismatched—that is, if they were created with different visuals.

Note: Do not make OpenGL calls until the context and window have been bound (made
current).

For each thread of execution, only one context can be bound to a single window or
pixmap.

Note: GLX 1.3 allows you to attach separate read and write drawables to a GLX context.
For details, see section “SGI_make_current_read—The Make Current Read Extension”
on page 114.

Mapping the Window

A window can become visible only if it is mapped and all its parent windows are
mapped. Note that mapping the window is not directly related to binding it to an
OpenGL rendering context, but both need to happen if you want to display an OpenGL
application.

Mapping the window or realizing the widget is not synchronous with the call that
performs the action. When a window is mapped, the window manager makes it visible
if no other actions are specified to happen before. For example, some window managers
display just an outline of the window instead of the window itself, letting the user
position the window. When the user clicks, the window becomes visible.
24 007-2392-003

Integrating OpenGL Programs With X—Summary
If a window is mapped but is not yet visible, you may already have set OpenGL state; for
example, you may load textures or set colors, but rendering to the window is discarded
(this includes rendering to a back buffer if you are doing double-buffering). You need to
get an Expose event—if using Xlib—or the expose() callback before the window is
guaranteed to be visible on the screen. The init() callback does not guarantee that the
window is visible, only that it exists.

How you map the window on the screen depends on whether you have chosen to create
an X window from scratch or to use a widget:

• To map a window created with Xlib functions, call XMapWindow().

• To map the window created as a widget, use XtRealizeWidget() and
XtCreateManagedChild(), which perform some additional setup as well. For more
information, see the XtRealizeWidget and XtCreateManagedChild man
pages.

Integrating OpenGL Programs With X—Summary

Table 2-2 summarizes the steps that are needed to integrate an OpenGL program with
the X Window System. While some functions differ in IRIS IM and Xlib, note that the GLX
functions are usually common.

Table 2-2 Integrating OpenGL and X

Step Using IRIS IM Using Xlib

“Opening the X Display” XtOpenApplication XOpenDisplay

Making sure GLX is supported
(optional)

glXQueryExtension

glXQueryVersion

glXQueryExtension

glXQueryVersion

“Selecting a Visual” glXChooseVisual glXChooseVisual

“Creating a Rendering Context” glXCreateContext glXCreateContext

“Creating the Window” (see Chapter 3,
“OpenGL and X: Examples”)

XtVaCreateManagedWidget, with
glwMDrawingAreaWidgetClass

XCreateColormap

XCreateWindow

“Binding the Context to the Window” GLwDrawingAreaMakeCurrent glXMakeCurrent

“Mapping the Window” XtRealizeWidget XMapWindow
007-2392-003 25

2: OpenGL and X: Getting Started
Additional example programs are provided in Chapter 3, “OpenGL and X: Examples.”

Compiling With OpenGL and Related Libraries

This section lists compiler options for individual libraries then lists groups or libraries
typically used together.

Link Lines for Individual Libraries

This sections lists link lines and the libraries that will be linked.

–lGL OpenGL and GLX routines.

–lX11 Xlib, X client library for X11 protocol generation.

–lXext The X Extension library provides infrastructure for X client-side libraries
(like OpenGL).

–lGLU OpenGL utility library.

–lXmu Miscellaneous utilities library (includes colormap utilities).

–lXt X toolkit library, infrastructure for widgets.

–lXm Motif widget set library.

–lGLw OpenGL widgets, Motif and core OpenGL drawing-area widgets.

–lXi X input extension library for using extra input devices.

–limage RGB file image reading and writing routines.
The image library is only supported under IRIX. Open source
alternatives like libjpeg and libpnm provide image I/O functions
and are better alternatives when writing code that must also run on
Linux and other platforms.

–lm Math library. Needed if your OpenGL program uses trigonometric or
other special math routines.
26 007-2392-003

Compiling With OpenGL and Related Libraries
Link Lines for Groups of Libraries

To use minimal OpenGL or additional libraries, use the following link lines:

Minimal OpenGL –lGL –lXext –lX11

With GLU –lGLU

With Xmu –Xmu

With Motif and OpenGL widget –lGLw –lXm –lXt
007-2392-003 27

Chapter 3

3. OpenGL and X: Examples

Some aspects of integrating your OpenGL program with the X Window System depend
on whether you choose IRIS IM widgets or Xlib. This chapter’s main focus is to help you
with those aspects by looking at example programs:

• “Using Widgets” on page 29 illustrates how to create a window using IRIS IM
drawing-area widgets and how to handle input and other events using callbacks.

• “Using Xlib” on page 42 illustrates how to create a colormap and a window for
OpenGL drawing. It also provides a brief discussion of event handling with Xlib.

This chapter also briefly describes fonts: “Using Fonts and Strings” on page 51 describes
a simple example of using fonts with the glXUseFont() function.

Note: All integration aspects that are not dependent on your choice of Xlib or Motif are
described in “Integrating Your OpenGL Program With IRIS IM” on page 16 in Chapter 2,
“OpenGL and X: Getting Started.”

Using Widgets

This section explains how to use IRIS IM widgets for creating windows, handling input,
and performing other activities that the OpenGL part of a program does not manage. The
section desribes the following topics:

• “About OpenGL Drawing-Area Widgets”

• “Drawing-Area Widget Setup and Creation”

• “Input Handling With Widgets and Xt”

• “Widget Troubleshooting”
007-2392-003 29

3: OpenGL and X: Examples
About OpenGL Drawing-Area Widgets

Using an OpenGL drawing-area widget facilitates rendering OpenGL into an X window.
The widget does the following:

• Provides an environment for OpenGL rendering, including a visual and a
colormap.

• Provides a set of callback routines for redrawing, resizing, input, and initialization
(see “Using Drawing-Area Widget Callbacks” on page 34).

OpenGL provides two drawing-area widgets: GLwMDrawingArea—note the M in the
name—for use with IRIS IM (or with OSF/Motif), and GLwDrawingArea for use with
any other widget sets. Both drawing-area widgets provide the following two
convenience functions:

• GLwMDrawingAreaMakeCurrent() and GLwDrawingAreaMakeCurrent()

• GLwMDrawingAreaSwapBuffers() and GLwDrawingAreaSwapBuffers()

The functions allow you to supply a widget instead of the display and window required
by the corresponding GLX functions glXMakeCurrent() and glXSwapBuffers().

Because the two widgets are nearly identical and because IRIS IM is available on all
Silicon Graphics systems, this chapter uses only the IRIS IM version, even though most
of the information also applies to the general version. Here are some of the
distinguishing characteristics of GLwMDrawingArea:

• GLwMDrawingArea understands IRIS IM keyboard traversal (moving around
widgets with keyboard entries rather than a mouse), although keyboard traversal is
turned off by default.

• GLwMDrawingArea is a subclass of the IRIS IM XmPrimitive widget, not a direct
subclass of the Xt Core widget. Therefore, it has various defaults such as
background and foreground colors. GLwMDrawingArea is not derived from the
standard Motif drawing-area widget class. For more information, see O’Reilly
Volume One or the man pages for Core and for XmPrimitive.

Note that the default background colors provided by the widget are used during X
rendering, not during OpenGL rendering. Therefore, it is not advisable to rely on
default background rendering from the widget. Even when the background colors
are not used directly, XtGetValues() can be used to query them to allow the
graphics to blend better with the program.
30 007-2392-003

Using Widgets
• GLwMDrawingArea has the creation function GLwCreateMDrawingArea() in the
style of IRIS IM. You can also create the widget directly through Xt.

For information specific to GLwDrawingArea, see the manpage.

Drawing-Area Widget Setup and Creation

Most of the steps for writing a program that uses a GLwMDrawingArea widget are
already described in “Integrating Your OpenGL Program With IRIS IM” on page 16. This
section explains how to initialize IRIS IM and how to create the drawing-area widget
using code fragments from the motif/simplest.c example program (Example 2-1 on
page 17). This section has the following topics:

• “Setting Up Fallback Resources”

• “Creating the Widgets”

• “Choosing the Visual for the Drawing-Area Widget”

• “Creating Multiple Widgets With Identical Characteristics”

• “Using Drawing-Area Widget Callbacks”

Setting Up Fallback Resources

This section briefly explains how to work with resources in the context of an OpenGL
program. In Xt, resources provide widget properties, allowing you to customize how
your widgets will look. Note that the term “resource” used here refers to window
properties stored by a resource manager in a resource database, not to the X server data
structures for windows, pixmaps, and context described earlier.

Fallback resources inside a program are used when a widget is created and the
application cannot open the class resource file when it calls XtOpenApplication() to
open the connection to the X server. (In the code fragment below, the first two resources
are specific to Silicon Graphics and give the application a Silicon Graphics look and feel.)

static String fallbackResources[] = {
 "*useSchemes: all",”*sgimode:True”,
 "*glxwidget*width: 300",
 "*glxwidget*height: 300",
 "*frame*shadowType: SHADOW_IN",
 NULL};
007-2392-003 31

3: OpenGL and X: Examples
Note: Applications ship with resource files installed in a resource directory (in
/usr/lib/X11/app-defaults). If you do install such a file automatically with your
application, there is no need to duplicate the resources in your program.

Creating the Widgets

Widgets always exist in a hierarchy with each widget contributing to what is visible on
screen. There is always a top-level widget and almost always a container widget (for
example, form or frame). In addition, you may decide to add buttons or scroll bars, which
are also part of the IRIS IM widget set. Therefore, creating your drawing surface consists
of the following two steps:

1. Create parent widgets, namely the top-level widget and a container widget. The
program motif/simplest.c, Example 2-1 on page 17, uses a Form container
widget and a Frame widget to draw the 3D box:

toplevel = XtOpenApplication(&app, "simplest", NULL, 0, &argc, argv,
fallbackResources, applicationShellWidgetClass, NULL, 0);

...
form = XmCreateForm(toplevel, "form", args, n);
XtManageChild(form);
....
frame = XmCreateFrame (form, "frame", args, n);
...

For more information, see the man pages for XmForm and XmFrame.

2. Create the GLwMDrawingArea widget itself in either of two ways:

• Call GLwCreateMDrawingArea(). You can specify each attribute as an
individual resource or pass in an XVisualInfo pointer obtained with
glXChooseVisual(). This is discussed in more detail in the next section,
“Choosing the Visual for the Drawing-Area Widget.”

n = 0
XSetArg(args[n] GLwNvisualinfo, (XtArgVal)visinfo);
n++;
glw = GLwCreateMDrawingArea(frame, "glwidget", args, n);

• Call XtVaCreateManagedWidget() and pass it a pointer to the visual you have
chosen. In that case, use glwMDrawingAreaWidgetClass as the parent and
GLwNvisualInfo to specify the pointer. The following is an example from
motif/simplest.c:
32 007-2392-003

Using Widgets
glxwidget = XtVaCreateManagedWidget
 ("glxwidget", glwMDrawingAreaWidgetClass, frame,
 GLwNvisualInfo, visinfo, NULL);

Note: Creating the widget does not actually create the window. An application must
wait until after it has realized the widget before performing any OpenGL operations to
the window, or use the ginit() callback to indicate when the window has been created.

Note that unlike most other Motif user interface widgets, the OpenGL widget explicitly
sets the visual. Once a visual is set and the widget is realized, the visual can no longer be
changed.

Choosing the Visual for the Drawing-Area Widget

When calling the widget creation function,there are three ways of configuring the
GLwMDrawingArea widget (all done through resources):

• Pass in separate resources for each attribute (for example GLwNrgba,
GLwNdoublebuffer).

• Pass in an attribute list of the type used by glXChooseVisual() using the
GLwNattribList resource.

• Select the visual yourself using glXChooseVisual() and pass in the returned
XVisualInfo* as the GLwNvisualInfo resource.

Appropriate error handling is critical to a robust program. If you wish to provide error
handling, call glXChooseVisual(), as all the example programs do (although for the sake
of brevity, none of the examples actually provides error handling). If you provide the
resources and let the widget choose the visual, the widget just prints an error message
and quits. Note that a certain visual may be supported on one system but not on another.

The advantage of using a list of resources is that you can override them with the
app-defaults file.

Creating Multiple Widgets With Identical Characteristics

Most applications have one context per widget, though sharing is possible. If you want
to use multiple widgets with the same configuration, you must use the same visual for
007-2392-003 33

3: OpenGL and X: Examples
each widget. Windows with different visuals cannot share contexts. To share contexts, do
the following:

1. Extract the GLwNvisualInfo resource from the first widget you create.

2. Use that visual in the creation of subsequent widgets.

Using Drawing-Area Widget Callbacks

The GLwMDrawingArea widget provides callbacks for redrawing, resizing, input, and
initialization, as well as the standard XmNdestroyCallback provided by all widgets.

Each callback must first be defined and then added to the widget. In some cases, this is
quite simple, as, for example, the resize callback from motif/simplest.c:

static void
resize(Widget w, XtPointer client_data, XtPointer call) {
 GLwDrawingAreaCallbackStruct *call_data;
 call_data = (GLwDrawingAreaCallbackStruct *) call;
 glXWaitX();

 glViewport(0, 0, call_data->width, call_data->height);
}

Note: The X and OpenGL command streams are asynchronous, meaning that the order
in which OpenGL and X commands complete is not strictly defined. In a few cases, it is
important to explicitly synchronize X and OpenGL command completion. For example,
if an X call is used to resize a window within a widget program, call glXWaitX() before
calling glViewport() to ensure that the window resize operation is complete.

Other cases are slightly more complex, such as the input callback from
motif/simplest.c, which exits when the user presses the Esc key:

static void
input(Widget w, XtPointer client_data, XtPointer call) {

char buffer[31];
KeySym keysym;
XEvent *event = ((GLwDrawingAreaCallbackStruct *)call) ->event;

switch(event->type) {
case KeyRelease:

XLookupString(&event->xkey, buffer, 30, &keysym, NULL);
switch(keysym) {
34 007-2392-003

Using Widgets
case XK_Escape :
exit(EXIT_SUCCESS);
break;

default: break;
}
break;

}
}

To add callbacks to a widget, use XtAddCallback(); for example:

XtAddCallback(glxwidget, GLwNexposeCallback, expose, NULL);
XtAddCallback(glxwidget, GLwNresizeCallback, resize, NULL);
XtAddCallback(glxwidget, GLwNinputCallback, input, NULL);

Each callback must ensure that the thread is made current with the correct context to the
window associated with the widget generating the callback. You can do this by calling
either GLwMDrawingAreaMakeCurrent() or glXMakeCurrent().

If you are using only one GLwMDrawingArea, you can call a routine to make the widget
“current” just once after initializing the widget. However, if you are using more than one
GLwMDrawingArea or rendering context, you need to make the correct context and the
window current for each callback (see “Binding the Context to the Window” on page 24).

The following callbacks are available:

Callback Description

GLwNginitCallback() Specifies the callbacks to be called when the widget is first
realized. You can use this callback to perform OpenGL
initialization, such as creating a context, because no
OpenGL operations can be done before the widget is
realized. The callback reason is GLwCR_GINIT.

Use of this callback is optional. Anything done in this
callback can also be done after the widget hierarchy has
been realized. You can use the callback to keep all the
OpenGL code together, keeping the initialization in the
same file as the widget creation rather than with widget
realization.

Note: If you create a GLwDrawingArea widget as a child
of an already realized widget, it is not possible to add the
007-2392-003 35

3: OpenGL and X: Examples
ginit() callback before the widget is realized because the
widget is immediately realized at creation. In that case,
you should initialize immediately after creating the
widget.

GLwNexposeCallback() Specifies the callbacks to be called when the widget
receives an Expose event. The callback reason is
GLwCR_EXPOSE. The callback structure also includes
information about the Expose event. Usually the
application should redraw the scene whenever this
callback is called.

Note:An application should not perform any OpenGL
drawing until it receives an expose callback, although it
may set the OpenGL state; for example, it may create
display lists and like items.

GLwNinputCallback() Specifies the callbacks to be called when the widget
receives a keyboard or mouse event. The callback
structure includes information about the input event. The
callback reason is GLwCR_INPUT.

The input callback is a programming convenience; it
provides a convenient way to catch all input events. You
can often create a more modular program, however, by
providing specific actions and translations in the
application rather than using a single catchall callback.
See “Input Handling With Widgets and Xt” on page 37 for
more information.

GLwNresizeCallback() Specifies the callbacks to be called when the
GLwDrawingArea is resized. The callback reason is
GLwCR_RESIZE. Normally, programs resize the OpenGL
viewport and possibly reload the OpenGL projection
matrix (see the OpenGL Programming Guide). An expose
callback follows. Avoid performing rendering inside the
resize callback.
36 007-2392-003

Using Widgets
Input Handling With Widgets and Xt

Using the following topics, this section explains how to perform input handling with
widgets and Xt:

• “Background Information”

• “Using the Input Callback”

• “Using Actions and Translations”

Background Information

Motif programs are callback-driven. They differ in that respect from IRIS GL programs,
which implement their own event loops to process events. To handle input with a
widget, you can either use the input callback built into the widget or use actions and
translations (Xt-provided mechanisms that map keyboard input into user-provided
routines). Both approaches have advantages:

• Input callbacks are usually simpler to write, and they are more unified; all input is
handled by a single routine that can maintain a private state (see “Using the Input
Callback”).

• The actions-and-translations method is more modular, because translations have
one function for each action. Also, with translations the system does the keyboard
parsing so your program does not have to do it. Finally, translations allow the user
to customize the application’s key bindings. See “Using Actions and Translations”
on page 39.

Note: To allow smooth porting to other systems, as well as for easier integration of X and
OpenGL, always separate event handling from the rest of your program.

Using the Input Callback

By default, the input callback is called with every key press and release, with every
mouse button press and release, and whenever the mouse is moved while a mouse
button is pressed. You can change this by providing a different translation table,
although the default setting should be suitable for most applications.

For example, to have the input callback called on all pointer motions, not just on mouse
button presses, add the following to the app-defaults file:
007-2392-003 37

3: OpenGL and X: Examples
*widgetname.translations : \
 <KeyDown>: glwInput() \n\
 <KeyUp>: glwInput() \n\
 <BtnDown>: glwInput() \n\
 <BtnUp>: glwInput() \n\
 <BtnMotion>: glwInput() \n\
 <PtrMoved>: glwInput()

When the callback is passed an X event, the callback interprets the X event and performs
the appropriate action. It is your application’s responsibility to interpret the event—for
example, to convert an X key code into a key symbol and to decide what to do with it.

Example 3-1 is from motif/mouse.c, a double-buffered RGBA program that uses
mouse motion events.

Example 3-1 Motif Program That Handles Mouse Events

static void
input(Widget w, XtPointer client_data, XtPointer call) {
 char buffer[31];
 KeySym keysym;
 XEvent *event = ((GLwDrawingAreaCallbackStruct *) call)->event;
 static mstate, omx, omy, mx, my;

 switch(event->type) {
 case KeyRelease:
 XLookupString(&event->xkey, buffer, 30, &keysym, NULL);
 switch(keysym) {
 case XK_Escape:
 exit(EXIT_SUCCESS);
 break;
 default: break;
 }
 break;
 case ButtonPress:
 if (event->xbutton.button == Button2) {
 mstate |= 2;
 mx = event->xbutton.x;
 my = event->xbutton.y;
 } else if (event->xbutton.button == Button1) {
 mstate |= 1;
 mx = event->xbutton.x;
 my = event->xbutton.y;
 }
 break;
38 007-2392-003

Using Widgets
 case ButtonRelease:
 if (event->xbutton.button == Button2)
 mstate &= ~2;
 else if (event->xbutton.button == Button1)
 mstate &= ~1;
 break;
 case MotionNotify:
 if (mstate) {
 omx = mx;
 omy = my;
 mx = event->xbutton.x;
 my = event->xbutton.y;
 update_view(mstate, omx,mx,omy,my);
 }
 break;
 }

Using Actions and Translations

Actions and translations provide a mechanism for binding a key or mouse event to a
function call. For example, you can structure your program to take the following actions:

• When you press the Esc key, the exit routine quit() is called.

• When you press the left mouse button, rotation occurs.

• When you press f, the program zooms in.

The translations need to be combined with an action task that maps string names like
quit() to real function pointers. Below is an example of a translation table:

program*glwidget*translations: #override \n
 <Btn1Down>: start_rotate() \n\
 <Btn1Up>: stop_rotate() \n\
 <Btn1Motion>: rotate() \n\
 <Key>f: zoom_in() \n\
 <Key>b: zoom_out() \n\
 <KeyUp>osfCancel: quit()

When you press the left mouse button, the start_rotate() action is called; when it is
released, the stop_rotate() action is called.

The last entry is a little cryptic. It specifies that when the user presses the Esc key, quit()
is called. However, OSF has implemented virtual bindings, which allow the same
programs to work on computers with different keyboards that may be missing various
007-2392-003 39

3: OpenGL and X: Examples
keys. If a key has a virtual binding, the virtual binding name must be specified in the
translation. Thus, the example above specifies osfCancel rather than Esc. To use the
above translation in a program that is not based on IRIS IM or OSF/Motif, replace
KeyUp+osfCancel with KeyUp+Esc.

The translation is only half of what it takes to set up this binding. Although the
translation table above contains apparent function names, they are really action names.
Your program must also create an action table to bind the action names to actual
functions in the program.

For more information on actions and translations, see O’Reilly, X Toolkit Intrinsics
Programming Manual (Volume Four), most notably Chapter 4, “An Example
Application,” and Chapter 8, “Events, Translations, and Accelerators.” You can view this
manual on the SGI Technical Publications Library.

Creating Colormaps

By default, a widget creates a colormap automatically. For many programs, this is
sufficient. However, it is occasionally necessary to create a colormap explicitly, especially
when using color index mode. See “Creating a Colormap and a Window” on page 45 and
“Using Colormaps” on page 83 for more information.

Widget Troubleshooting

This section provides troubleshooting information by describing some common pitfalls
when working with widgets.

Note: Additional debugging information is provided in “General Tips for Debugging
Graphics Programs” on page 404.

Keyboard Input Disappears

A common problem in IRIS IM programs is that keyboard input disappears. This is
caused by how IRIS IM handles keyboard focus. When a widget hierarchy has keyboard
focus, only one component of the hierarchy receives the keyboard events. The keyboard
input might be going to the wrong widget. The following are two solutions to this
problem:
40 007-2392-003

Using Widgets
• The easiest solution is to set the following resource for the application:

keyboardFocusPolicy: POINTER

This overrides the default traversal method (explicit traversal) where you can select
widgets with keyboard keys rather than the mouse so that input focus follows the
pointer only. The disadvantages of this method are that it eliminates explicit
traversal for users who prefer it and it forces a nondefault model.

• A better solution is to do the following:

1. Set the following resource:

*widget.traversalOn: TRUE

The field widget is the name of the widget.

2. Whenever mouse button 1 is pressed in the widget, call the following function:

XmProcessTraversal(widget, XmTRAVERSE_CURRENT);

Turning process traversal on causes the window to respond to traversal (it
normally does not), and calling XmProcessTraversal() actually traverses into
the widget when appropriate.

Inheritance Issues

In Xt, shell widgets include top-level windows, popup windows, and menus. Shell
widgets inherit their colormap and pixel depth from their parent widget and inherit their
visual from the parent window. If the visual does not match the colormap and depth, this
leads to a BadMatch X protocol error.

In a typical IRIS IM program, everything runs in the default visual, and the inheritance
from two different places does not cause problems. However, when a program uses both
OpenGL and IRIS IM, it requires multiple visuals, and you must be careful. Whenever
you create a shell widget as a child of a widget in a non-default visual, specify pixel
depth, colormap, and a visual for that widget explicitly. This happens with menus or
popup windows that are children of OpenGL widgets. See “Using Popup Menus With
the GLwMDrawingArea Widget” on page 69.
007-2392-003 41

3: OpenGL and X: Examples
If you do get a bad match error, follow these steps to determine its cause:

1. Run the application under a C debugger, such as dbx or cvd (the Case Vision
debugger) with the –sync flag.

The –sync flag tells Xt to call XSynchronize(), forcing all calls to be made
synchronously. If your program is not based on Xt, or if you are not using standard
argument parsing, call XSynchronize(display, TRUE) directly inside your program.

2. Using the debugger, set a breakpoint in exit() and run the program.

When the program fails, you have a stack trace you can use to determine what Xlib
routine caused the error.

Note: If you do not use the –sync option, the stack dump on failure is meaningless: X
batches multiple requests and the error is delayed.

Using Xlib

This section explains how to use Xlib for creating windows, handling input, and
performing other activities that the OpenGL part of a program does not manage. This
section has the following topics:

• “Simple Xlib Example Program” on page 43

• “Creating a Colormap and a Window” on page 45

• “Xlib Event Handling” on page 48
42 007-2392-003

Using Xlib
Simple Xlib Example Program

Because the complete example program in Chapter 2, “OpenGL and X: Getting Started”
used widgets, this section starts with a complete annotated example program for Xlib so
that you have both available as needed. Example 3-2 lists the complete
Xlib/simplest.c example program.

Example 3-2 Simple Xlib Example Program

/*
 * simplest - simple single buffered RGBA xlib program.
 */
/* compile: cc -o simplest simplest.c -lGL -lX11 */

#include <GL/glx.h>
#include <X11/keysym.h>
#include <stdlib.h>
#include <stdio.h>

static int attributeList[] = { GLX_RGBA, None };

static void
draw_scene(void) {
 glClearColor(0.5, 0.5, 0.5, 1.0);
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0,0.0,0.0);
 glRectf(-.5,-.5,.5,.5);
 glColor3f(0.0,1.0,0.0);
 glRectf(-.4,-.4,.4,.4);
 glColor3f(0.0,0.0,1.0);
 glRectf(-.3,-.3,.3,.3);
 glFlush();
}

static void
process_input(Display *dpy) {
 XEvent event;
 Bool redraw = 0;

 do {
 char buf[31];
 KeySym keysym;

 XNextEvent(dpy, &event);
007-2392-003 43

3: OpenGL and X: Examples
 switch(event.type) {
 case Expose:
 redraw = 1;
 break;
 case ConfigureNotify:
 glViewport(0, 0, event.xconfigure.width,
 event.xconfigure.height);
 redraw = 1;
 break;
 case KeyPress:
 (void) XLookupString(&event.xkey, buf, sizeof(buf),
 &keysym, NULL);
 switch (keysym) {

 case XK_Escape:
 exit(EXIT_SUCCESS);
 default:
 break;
 }
 default:
 break;
 }
 } while (XPending(dpy));
 if (redraw) draw_scene();
}

static void
error(const char *prog, const char *msg) {
 fprintf(stderr, “%s: %s\n”, prog, msg);
 exit(EXIT_FAILURE);
}
int
main(int argc, char **argv) {
 Display *dpy;
 XVisualInfo *vi;
 XSetWindowAttributes swa;
 Window win;
 GLXContext cx;

 /* get a connection */
 dpy = XOpenDisplay(0);
 if (!dpy) error(argv[0], “can’t open display”);

 /* get an appropriate visual */
 vi = glXChooseVisual(dpy, DefaultScreen(dpy), attributeList);
44 007-2392-003

Using Xlib
 if (!vi) error(argv[0], “no suitable visual”);

 /* create a GLX context */
 cx = glXCreateContext(dpy, vi, 0, GL_TRUE);
 /* create a colormap */
 swa.colormap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),
 vi->visual, AllocNone);
 /* create a window */
 swa.border_pixel = 0;
 swa.event_mask = ExposureMask | StructureNotifyMask | KeyPressMask;
 win = XCreateWindow(dpy, RootWindow(dpy, vi->screen), 0, 0, 300,
 300, 0, vi->depth, InputOutput, vi->visual,
 CWBorderPixel|CWColormap|CWEventMask, &swa);
 XStoreName(dpy, win, “simplest”);
 XMapWindow(dpy, win);

 /* connect the context to the window */
 glXMakeCurrent(dpy, win, cx);

 for(;;) process_input(dpy);
}

Creating a Colormap and a Window

A colormap determines the mapping of pixel values in the framebuffer to color values on
the screen. Colormaps are created with respect to a specific visual.

When you create a window, you must supply a colormap for it. The visual associated
with a colormap must match the visual of the window using the colormap. Most X
programs use the default colormap because most X programs use the default visual. The
easiest way to obtain the colormap for a particular visual is to call XCreateColormap():

Colormap XCreateColormap (Display *display, Window w, Visual *visual,
 int alloc)

Here’s how Example 3-2 calls XCreateColormap() in the following manner:

swa.colormap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),
 vi->visual, AllocNone);

The parameters specify the display, window, visual, and the number of colormap entries
to allocate. The alloc parameter can have the special value AllocAll or AllocNone.
007-2392-003 45

3: OpenGL and X: Examples
While it is easy to simply call XCreateColormap(), you are encouraged to share
colormaps. See Example 4-2 on page 85 for details on how to do this.

Note that you cannot use AllocAll if the colormap corresponds to a visual that has
transparent pixels, because the colormap cell that corresponds to the transparent pixel
cannot be allocated with AllocAll. For more information about colormaps, see “Using
Colormaps” on page 83. For information on overlays, which use a visual with a
transparent pixel, see “Using Overlays” on page 62.

After creating a colormap, you can create a window using XCreateWindow(). Before
calling XCreateWindow(), set the attributes you want in the attributes variable. When
you make the call, indicate valuemask by OR-ing the symbolic constants that specify the
attributes you have set. Here’s how Example 3-2 does it in the following way:

swa.background_pixmap = None;
swa.border_pixel = 0;
swa.event_mask = ExposureMask | StructureNotifyMask | KeyPressMask;
win = XCreateWindow(

dpy, /*display*/
RootWindow(dpy, vi->screen), /*parent*/
0, /*x coordinate*/
0, /*y coordinate*/
300, /*width*/
300, /*height*/
0, /*border width*/
vi->depth, /*depth*/
InputOutput, /*class*/
vi->visual, /*visual*/
CWBackPixmap|CWBorderPixel|CWColormap|CWEventMask,
 /*valuemask*/
&swa /*attributes*/

);

Most of the parameters are self-explanatory. However, the following three are
noteworthy:

class Indicates whether the window is InputOnly or InputOutput.

Note:InputOnly windows cannot be used with GLX contexts.

valuemask Specifies which window attributes are provided by the call.

attributes Specifies the settings for the window attributes. The
XSetWindowAttributes structure contains a field for each of the
allowable attributes.
46 007-2392-003

Using Xlib
Note: If the window’s visual or colormap does not match the visual or colormap of the
window’s parent, you must specify a border pixel to avoid a BadMatch X protocol
error. Most windows specify a border zero pixels wide. So, the value of the border pixel
is unimportant; zero works fine.

If the window you are creating is a top-level window (meaning it was created as a child
of the root window), consider calling XSetWMProperties() to set the window’s
properties after you have created it.

void XSetWMProperties(Display *display, Window w,
 XTextProperty *window_name, XTextProperty *icon_name,
 char **argv, int argc, XSizeHints *normal_hints,
 XWMHints *wm_hints, XClassHint *class_hints)

XSetWMProperties() provides a convenient interface for setting a variety of important
window properties at once. It merely calls a series of other property-setting functions,
passing along the values you pass in. For more information, see the man page.

Note that two useful properties are the window name and the icon name. The example
program calls XStoreName() instead to set the window and icon names.

Installing the Colormap

Applications should generally rely on the window manager to install the colormaps
instead of calling XInstallColormap() directly. The window manager automatically
installs the appropriate colormaps for a window whenever that window gets keyboard
focus. Popup overlay menus are an exception.

By default, the window manager looks at the top-level window of a window hierarchy
and installs that colormap when the window gets keyboard focus. For a typical X-based
application, this is sufficient, but an application based on OpenGL typically uses
multiple colormaps: the top-level window uses the default X colormap, and the Open GL
window uses a colormap suitable for OpenGL.

To address this multiple colormap issue, call the function XSetWMColormapWindows()
to pass the display, the top-level window, a list of windows whose colormaps should be
installed, and the number of windows in the list.

The list of windows should include one window for each colormap, including the
top-level window’s colormap (normally represented by the top-level window). For a
007-2392-003 47

3: OpenGL and X: Examples
typical OpenGL program that does not use overlays, the list contains two windows: the
OpenGL window and the top-level window. The top-level window should normally be
last in the list. Xt programs may use XtSetWMColormapWindows() instead of
XSetWMColormapWindows(), which uses widgets instead of windows.

Note: The program must call XSetWMColormapWindows() even if it is using a
TrueColor visual. Some hardware simulates TrueColor through the use of a colormap.
Even though the application does not interact with the colormap directly, it is still there.
If you do not call XSetWMColormapWindows(), your program may run correctly only
some of the time and only on some systems.

Use the xprop program to determine whether XSetWMColormapWindows() was
called. Click the window and look for the WM_COLORMAP_WINDOWS property. This
should be a list of the windows. The last one should be the top-level window. Use
xwininfo, providing the ID of the window as an argument, to determine what
colormap the specified window is using and whether that colormap is installed.

Xlib Event Handling

This section describes different kinds of user input and explains how you can use Xlib to
perform them. OpenGL programs running under the X Window System are responsible
for responding to events sent by the X server. Examples of X events are Expose,
ButtonPress, ConfigureNotify, and so on.

Note: In addition to mouse devices, Silicon Graphics systems support various other
input devices (for example, spaceballs). You can integrate them with your OpenGL
program using the X input extension. For more information, see the X Input Extension
Library Specification available on the SGI Technical Publications Library.

Handling Mouse Events

To handle mouse events, your program first has to request them and then use them in the
main (event handling) loop. Here is an example code fragment from Xlib/mouse.c, an
Xlib program that uses mouse motion events. Example 3-3 shows how the mouse
processing, along with the other event processing, is defined.
48 007-2392-003

Using Xlib
Example 3-3 Event Handling With Xlib

static int
process_input(Display *dpy) {
 XEvent event;
 Bool redraw = 0;
 static int mstate, omx, omy, mx, my;

 do {
 char buf[31];
 KeySym keysym;
 XNextEvent(dpy, &event);
 switch(event.type) {
 case Expose:
 redraw = 1;
 break;
 case ConfigureNotify:
 glViewport(0, 0, event.xconfigure.width,
 event.xconfigure.height);
 redraw = 1;
 break;
 case KeyPress:
 (void) XLookupString(&event.xkey, buf, sizeof(buf),
 &keysym, NULL);
 switch (keysym) {
 case XK_Escape:
 exit(EXIT_SUCCESS);
 default:
 break;
 }
 case ButtonPress:
 if (event.xbutton.button == Button2) {
 mstate |= 2;
 mx = event.xbutton.x;
 my = event.xbutton.y;
 } else if (event.xbutton.button == Button1) {
 mstate |= 1;
 mx = event.xbutton.x;
 my = event.xbutton.y;
 }
 break;
 case ButtonRelease:
 if (event.xbutton.button == Button2)
 mstate &= ~2;
 else if (event.xbutton.button == Button1)
007-2392-003 49

3: OpenGL and X: Examples
 mstate &= ~1;
 break;
 case MotionNotify:
 if (mstate) {
 omx = mx;
 omy = my;
 mx = event.xbutton.x;
 my = event.xbutton.y;
 update_view(mstate, omx,mx,omy,my);
 redraw = 1;
 }
 break;
 default:
 break;
 }
 } while (XPending(dpy));
 return redraw;
}

The process_input() function is then used by the main loop:

 while (1) {
 if (process_input(dpy)) {
 draw_scene();
 ...
 }
}

Exposing a Window

When a user selects a window that has been completely or partly covered, the X server
generates one or more Expose events. It is difficult to determine exactly what was drawn
in the now-exposed region and redraw only that portion of the window. Instead,
OpenGL programs usually just redraw the entire window.

If redrawing is not an acceptable solution, the OpenGL program can do all your
rendering into a GLXPixmap instead of directly to the window; then, any time the
program needs to redraw the window, you can simply copy the GLXPixmap’s contents
into the window using XCopyArea(). For more information, see “Using Pixmaps” on
page 96.
50 007-2392-003

Using Fonts and Strings
Note: Rendering to a GLXPixmap is much slower than rendering to a window and may
not allow access to many features of the graphics hardware.

When handling X events for OpenGL programs, remember that Expose events come in
batches. When you expose a window that is partly covered by two or more other
windows, two or more Expose events are generated, one for each exposed region. Each
one indicates a simple rectangle in the window to be redrawn. If you are going to redraw
the entire window, read the entire batch of Expose events. It is wasteful and inefficient to
redraw the window for each Expose event.

Using Fonts and Strings

The simplest approach to text and font handling in GLX is using the glXUseXFont()
function together with display lists. This section shows you how to use the function by
providing an example program. Note that this information is relevant regardless of
whether you use widgets or program in Xlib.

The advantage of glXUseXFont() is that bitmaps for X glyphs in the font match exactly
what OpenGL draws. This solves the problem of font matching between X and OpenGL
display areas in your application.

To use display lists to display X bitmap fonts, your code should do the following:

1. Use X calls to load information about the font you want to use.

2. Generate a series of display lists using glXUseXFont(), one for each glyph in the
font.

The glXUseXFont() function automatically generates display lists (one per glyph)
for a contiguous range of glyphs in a font.

3. To display a string, use glListBase() to set the display list base to the base for your
character series. Then pass the string as an argument to glCallLists().

Each glyph display list contains a glBitmap() call to render the glyph and update
the current raster position based on the glyph’s width.

The example code fragment provided in Example 3-4 prints the string “The quick brown
fox jumps over a lazy dog” in Times Medium. It also prints the entire character set, from
ASCII 32 to 127.
007-2392-003 51

3: OpenGL and X: Examples
Note: You can also use the glc library, which sits atop of OpenGL, for fonts and strings.
The library is not specific to GLX and provides other functions in addition to
glXUseXFont().

Example 3-4 Font and Text Handling

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glx.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>

GLuint base;

void makeRasterFont(Display *dpy)
{
 XFontStruct *fontInfo;
 Font id;
 unsigned int first, last;
 fontInfo = XLoadQueryFont(dpy,

 "-adobe-times-medium-r-normal--17-120-100-100-p-88-iso8859-1");

if (fontInfo == NULL) {
 printf ("no font found\n");
 exit (0);
 }

 id = fontInfo->fid;
 first = fontInfo->min_char_or_byte2;
 last = fontInfo->max_char_or_byte2;

 base = glGenLists(last+1);
 if (base == 0) {
 printf ("out of display lists\n");
 exit (0);
 }
 glXUseXFont(id, first, last-first+1, base+first);
}

void printString(char *s)
{
 glListBase(base);
52 007-2392-003

Using Fonts and Strings
 glCallLists(strlen(s), GL_UNSIGNED_BYTE, (unsigned char *)s);
}

void display(void)
{
 GLfloat white[3] = { 1.0, 1.0, 1.0 };
 long i, j;
 char teststring[33];

 glClear(GL_COLOR_BUFFER_BIT);
 glColor3fv(white);
 for (i = 32; i < 127; i += 32) {
 glRasterPos2i(20, 200 - 18*i/32);
 for (j = 0; j < 32; j++)
 teststring[j] = i+j;
 teststring[32] = 0;
 printString(teststring);
 }
 glRasterPos2i(20, 100);
 printString("The quick brown fox jumps");
 glRasterPos2i(20, 82);
 printString("over a lazy dog.");
 glFlush ();
}

007-2392-003 53

Chapter 4

4. OpenGL and X: Advanced Topics

This chapter helps you integrate your OpenGL program with the X Window System by
describing several advanced topics. While understanding the techniques and concepts
described here is not relevant for all applications, it is important that you master them
for certain special situations. The chapter covers the following topics:

• “Using Animations” on page 55

• “Using Overlays” on page 62

• “Using Visuals and Framebuffer Configurations” on page 71

• “Using Colormaps” on page 83

• “Stereo Rendering” on page 88

• “Using Pixel Buffers” on page 90

• “Using Pixmaps” on page 96

• “Performance Considerations for X and OpenGL” on page 99

• “Portability” on page 99

Using Animations

Animation in its simplest form consists of drawing an image, clearing it, and drawing a
new, slightly different one in its place. However, attempting to draw into a window while
that window is being displayed can cause problems such as flickering. The solution is
double buffering.

Providing example code as appropriate, this section uses the following topics to describe
double-buffered animation inside an X Window System environment:

• “Swapping Buffers”

• “Controlling an Animation With Workprocs”
007-2392-003 55

4: OpenGL and X: Advanced Topics
• “Controlling an Animation With Timeouts”

Xt provides two mechanisms that are suited for continuous animation:

• The section “Controlling an Animation With Workprocs” on page 57 describes the
fastest animation possible. If you use workprocs, the program swaps buffers as fast
as possible; this is useful if rendering speed is variable enough that constant speed
animation is not possible. Workproc animations also give other parts of the
application priority. The controls do not become less responsive just because the
animation is being done. The cost of this is that the animation slows down or may
stop when the user brings up a menu or uses other controls.

• The section “Controlling an Animation With Timeouts” on page 60 describes
constant-speed animation. Animations that use timeouts compete on even footing
with other Xt events; the animation will not stop because the user interacts with
other components of the animation.

Note: Controlling animations with workprocs and timeouts applies only to Xt-based
programs.

Swapping Buffers

A double-buffered animation displays one buffer while drawing into another
(undisplayed) buffer then swaps the displayed buffer with the other. In OpenGL, the
displayed buffer is called the front buffer, and the undisplayed buffer is called the back
buffer. This sort of action is common in OpenGL programs; however, swapping buffers
is a window-related function, not a rendering function; therefore, you cannot do it
directly with OpenGL.

To swap buffers, use glXSwapBuffers() or, when using the widget, the convenience
function GLwDrawingAreaSwapBuffers(). The glXSwapBuffers() function takes a
display and a window as input—pixmaps do not support buffer swapping—and swaps
the front and back buffers in the drawable. All renderers bound to the window in
question continue to have the correct idea of the front buffer and the back buffer. Note
that once you call glXSwapBuffers(), any further drawing to the given window is
suspended until after the buffers have been swapped.

Silicon Graphics systems support hardware double buffering; this means the buffer swap
is instantaneous during the vertical retrace of the monitor. As a result, there are no
56 007-2392-003

Using Animations
tearing artifacts; that is, you do not simultaneously see part of one buffer and part of the
next.

Note: If the window’s visual allows only one color buffer, or if the GLX drawable is a
pixmap, glXSwapBuffers() has no effect (and generates no error).

There is no need to worry about which buffer the X server draws into if you are using X
drawing functions as well as OpenGL; the X server draws only to the current front buffer
and prevents any program from swapping buffers while such drawing is going on. Using
the X double buffering extension (DBE), it is possible to render X into the back buffer.

Note that users like uniform frame rates such as 60 Hz, 30 Hz, or 20 Hz. Animation may
otherwise look jerky. A slower consistent rate is therefore preferable to a faster but
inconsistent rate. For additional information about optimizing frame rates, see
“Optimizing Frame Rate Performance” on page 419. See “SGI_swap_control—The Swap
Control Extension” on page 287 to learn how to set a minimum period of buffer swaps.

Controlling an Animation With Workprocs

A workproc (work procedure) is a procedure that Xt calls when the application is idle.
The application registers workprocs with Xt and unregisters them when it is time to stop
calling them.

Note that workprocs do not provide constant-speed animation but animate as fast as the
application can.

General Workproc Information

Workprocs can be used to carry out a variety of useful tasks: animation, setting up
widgets in the background (to improve application startup time), keeping a file up to
date, and so on.

It is important that a workproc executes quickly. While a workproc is running, nothing
else can run, and the application may appear sluggish or may even appear to hang.

Workprocs return Booleans. To set up a function as a workproc, first prototype the
function then pass its name to XtAppAddWorkProc(). Xt then calls the function
whenever there is idle time while Xt is waiting for an event. If the function returns True,
007-2392-003 57

4: OpenGL and X: Advanced Topics
it is removed from the list of workprocs; if it returns False, it is kept on the list and is
called again when there is idle time.

To explicitly remove a workproc, call XtRemoveWorkProc(). The following shows the
syntax for the add and remove functions:

XtWorkProcId XtAppAddWorkProc(XtAppContext app_context,
 XtWorkProc proc, XtPointer client_data)

void XtRemoveWorkProc(XtWorkProcId id)

Similar to the equivalent parameter used in setting up a callback, the client_data
parameter for XtAppAddWorkProc() lets you pass data from the application into the
workproc.

Workproc Example

This section illustrates the use of workprocs. The example, motif/animate.c, is a
simple animation driven by a workproc. When the user selects “animate” from the menu,
the workproc is registered, as follows:

static void
menu(Widget w, XtPointer clientData, XtPointer callData) {
 int entry = (int) clientData;

 switch (entry) {
 case 0:
 if (state.animate_wpid) {
 XtRemoveWorkProc(state.animate_wpid);
 state.animate_wpid = 0;
 } else {
 /* register workproc */
 state.animate_wpid = XtAppAddWorkProc(state.appctx,
 redraw_proc, &state.glxwidget);
 }
 break;
 case 1:
 exit(EXIT_SUCCESS);
 break;
 default:
 break;
 }
}

58 007-2392-003

Using Animations
The workproc starts executing if the window is mapped (that is, it could be visible but it
may be overlapped):

static void
map_change(Widget w, XtPointer clientData, XEvent *event, Boolean
 *cont) {
 switch (event->type) {
 case MapNotify:
 /* resume animation if we become mapped in the animated state */
 if (state.animate_wpid != 0)
 state.animate_wpid = XtAppAddWorkProc(state.appctx,
 redraw_proc, &state.glxwidget);
 break;
 case UnmapNotify:
 /* don’t animate if we aren’t mapped */
 if (state.animate_wpid) XtRemoveWorkProc(state.animate_wpid);
 break;
 }
}

If the window is mapped, the workproc calls redraw_proc():

static Boolean
redraw_proc(XtPointer clientData) {
 Widget *w = (Widget *)clientData;
 draw_scene(*w);
 return False;
 /*call the workproc again as possible*/
}

The redraw_proc() function, in turn, calls draw_scene(), which swaps the buffers. Note
that this program does not use glXSwapBuffers(), but instead the convenience function
GLwDrawingAreaSwapBuffers().

static void
draw_scene(Widget w) {
 static float rot = 0.;

 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(.1, .1, .8);
 glPushMatrix();
 if ((rot += 5.) > 360.) rot -= 360.;
 glRotatef(rot,0.,1.,0.);
 cube();
 glScalef(0.3,0.3,0.3);
 glColor3f(.8, .8, .1);
007-2392-003 59

4: OpenGL and X: Advanced Topics
 cube();
 glPopMatrix();
 GLwDrawingAreaSwapBuffers(w);
}

Note: If an animation is running and the user selects a menu command, the event
handling for the command and the animation may end up in a race condition.

Controlling an Animation With Timeouts

The program that performs an animation using timeouts is actually quite similar to the
one using workprocs. The main difference is that the timeout interval has to be defined
and functions that relied on the workproc now have to be defined to rely on the timeout.
Note especially that redraw_proc() has to register a new timeout each time it is called.

You may find it most helpful to compare the full programs using xdiff or a similar tool.
This section briefly points out the main differences between two example programs.

• The redraw procedure is defined to have an additional argument, an interval ID.

From work_animate: static Boolean redraw_proc(XtPointer clientData);

From time_animate: static Boolean redraw_proc(XtPointer clientData,
 XtIntervalId *id);

• In time_animate, a timeout has to be defined; the example chooses 10 ms:

#define TIMEOUT 10 /*timeout in milliseconds*/

• In the state structure, which defines the global UI variables, the interval ID instead
of the workproc ID is included.

From work_animate:

static struct { /* global UI variables; keep them together */
 XtAppContext appctx;
 Widget glxwidget;
 Boolean direct;
 XtWorkProcId animate_wpid;
} state;

From time_animate:

static struct { /* global UI variables; keep them together */
 XtAppContext appctx;
60 007-2392-003

Using Animations
 Widget glxwidget;
 Boolean direct;
 XtIntervalId animate_toid;
} state;

• The menu() function and the map_change() function are defined to remove or
register the timeout instead of the workproc. The following are the two menu()
functions as an example:

From work_animate:

static void
menu(Widget w, XtPointer clientData, XtPointer callData) {
 int entry = (int) clientData;

 switch (entry) {
 case 0:
 if (state.animate_wpid) {
 XtRemoveWorkProc(state.animate_wpid);
 state.animate_wpid = 0;
 } else {
 /* register work proc */
 state.animate_wpid = XtAppAddWorkProc(state.appctx,
 redraw_proc, &state.glxwidget);
 }
 break;
 case 1:
 exit(EXIT_SUCCESS);
 break;
 default:
 break;
 }
}

From time_animate:

static void
menu(Widget w, XtPointer clientData, XtPointer callData) {
 int entry = (int) clientData;

 switch (entry) {
 case 0:
 if (state.animate_toid) {
 XtRemoveTimeOut(state.animate_toid);
 state.animate_toid = 0;
 } else {
 /* register timeout */
007-2392-003 61

4: OpenGL and X: Advanced Topics
 state.animate_toid = XtAppAddTimeOut(state.appctx,
 TIMEOUT, redraw_proc, &state.glxwidget);
 }
 break;
 case 1:
 exit(EXIT_SUCCESS);
 break;
 default:
 break;
 }
}

• The redraw_proc() function has to register a new timeout each time it is called. Note
that this differs from the workproc approach, where the application automatically
continues animating as long as the system is not doing something else.

static void
redraw_proc(XtPointer clientData, XtIntervalId *id) {
 Widget *w = (Widget *)clientData;
 draw_scene(*w);
 /* register a new timeout */
 state.animate_toid = XtAppAddTimeOut(state.appctx, TIMEOUT,
 redraw_proc, &state.glxwidget);
}

Using Overlays

Overlays are useful in situations where you want to preserve an underlying image while
displaying some temporary information. Examples for this are popup menus,
annotations, or rubber banding. Using the following topics, this section explains overlays
and shows you how to use them:

• “Introduction to Overlays”

• “Creating Overlays”

• “Overlay Troubleshooting”

• “Rubber Banding”
62 007-2392-003

Using Overlays
Introduction to Overlays

An overlay plane is a set of bitplanes displayed preferentially to the normal planes.
Non-transparent pixels in the overlay plane are displayed in preference to the
underlying pixels in the normal planes. Windows in the overlay planes do not damage
windows in the normal plane.

If you have something in the main window that is fairly expensive to draw into and want
to have something else on top, such as an annotation, you can use a transparent overlay
plane to avoid redrawing the more expensive main window. Overlays are well-suited for
popup menus, dialog boxes, and “rubber-band” image resizing rectangles. You can also
use overlay planes for text annotations floating “over” an image and for certain
transparency effects.

Notes:

• Transparency discussed here is distinct from transparency effects based on alpha
buffer blending. See the section “Blending” in Chapter 7, “Blending, Anti-Aliasing,
and Fog,” in the OpenGL Programming Guide.

• On Silicon Graphics systems running the XFree86 server (for example, Onyx4 and
Silicon Graphics Prism systems), you must configure the XFree86 server to support
overlay planes. Refer to the platform-specific documentation for the details of
configuring XFree86.
007-2392-003 63

4: OpenGL and X: Advanced Topics
Figure 4-1 Overlay Plane Used for Transient Information

A special value in the overlay planes indicates transparency. On Silicon Graphics
systems, it is always the value zero. Any pixel with the value zero in the overlay plane is
not painted to allow the color of the corresponding pixel in the normal planes to show.

The concepts discussed in this section apply more generally to any number of
framebuffer layers, for example, underlay planes (which are covered up by anything in
equivalent regions of higher-level planes).

You can use overlays in the following two ways:

• To draw additional graphics in the overlay plane on top of your normal plane
OpenGL widget, create a separate GLwMDrawingArea widget in the overlay plane
and set the GLX_LEVEL resource to 1. Position the overlay widget on top of the
normal plane widget.

Normal planes Overlay planes

Normal & overlay planes
64 007-2392-003

Using Overlays
Note that since the GLwMDrawingArea widget is not a manager widget, it is
necessary to create both the normal and overlay widgets as children of some
manager widget—for example, a form—and have that widget position the two on
top of each other. Once the windows are realized, you must call XRaiseWindow() to
guarantee that the overlay widget is on top of the normal widget. Code fragments
in “Creating Overlays” on page 65 illustrate this. The whole program is included as
overlay.c in the source tree.

• To create menus, look at examples in /usr/src/X11/motif/overlay_demos.
They are present if you have the motif_dev.sw.demo subsystem installed.
Placing the menus in the overlay plane avoids the need for expensive redrawing of
the OpenGL window underneath them. While the demos do not deal specifically
with OpenGL, they do show how to place menus in the overlay plane.

Creating Overlays

This section explains how to create overlay planes, using an example program based on
Motif. If you create the window using Xlib, the same process is valid (and a parallel
example program is available in the example program directory).

The example program from which the code fragments are taken, motif/overlay.c,
uses the visual info extension to find a visual with a transparent pixel. See
“EXT_visual_info—The Visual Info Extension” on page 117 for more information.

Note: This example uses the visual info extension, which is supported on all current
Silicon Graphics graphics systems. The visual info extension has also been promoted to
a core feature of GLX 1.3. With new applications, use the GLX 1.3 interface instead of the
extension.

To create the overlay, follow these steps:

1. Define attribute lists for the two widgets (the window and the overlay). For the
overlay, specify GLX_LEVEL as 1 and GLX_TRANSPARENT_TYPE_EXT as
GLX_TRANSPARENT_RGB_EXT.

static int attribs[] = { GLX_RGBA, GLX_DOUBLEBUFFER, None};
static int ov_attribs[] = {
 GLX_BUFFER_SIZE, 2,
 GLX_LEVEL, 1,
 GLX_TRANSPARENT_TYPE_EXT, GLX_TRANSPARENT_RGB_EXT,
007-2392-003 65

4: OpenGL and X: Advanced Topics
 None };

2. Create a frame and form, create the window widget, and attach it to the form on all
four sides. Add expose, resize, and input callbacks.

/* specify visual directly */
if (!(visinfo = glXChooseVisual(dpy, DefaultScreen(dpy), attribs)))
XtAppError(appctx, "no suitable RGB visual");

/* attach to form on all 4 sides */
n = 0;
XtSetArg(args[n], XtNx, 0); n++;
XtSetArg(args[n], XtNy, 0); n++;
XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
XtSetArg(args[n], GLwNvisualInfo, visinfo); n++;
state.w = XtCreateManagedWidget("glxwidget",
 glwMDrawingAreaWidgetClass, form, args, n);
XtAddCallback(state.w, GLwNexposeCallback, expose, NULL);
XtAddCallback(state.w, GLwNresizeCallback, resize, &state);
XtAddCallback(state.w, GLwNinputCallback, input, NULL);
state.cx = glXCreateContext(dpy, visinfo, 0, GL_TRUE);

3. Using the overlay visual attributes specified in step 1 and attaching it to the same
form as the window, create the overlay widget. This assures that when the window
is moved or resized, the overlay is moved or resized as well.

if (!(visinfo = glXChooseVisual(dpy, DefaultScreen(dpy),
 ov_attribs)))
 XtAppError(appctx, "no suitable overlay visual");
XtSetArg(args[n-1], GLwNvisualInfo, visinfo);
ov_state.w = XtCreateManagedWidget("overlay",
 glwMDrawingAreaWidgetClass, form, args, n);

4. Add callbacks to the overlay.

XtAddCallback(ov_state.w, GLwNexposeCallback, ov_expose, NULL);
XtAddCallback(ov_state.w, GLwNresizeCallback, resize, &ov_state);
XtAddCallback(ov_state.w, GLwNinputCallback, input, NULL);
ov_state.cx = glXCreateContext(dpy, visinfo, 0, GL_TRUE);

Note that the overlay uses the same resize and input callback:

• For resize, you may or may not wish to share callbacks, depending on the
desired functionality; for example, if you have a weathermap with annotations,
both should resize in the same fashion.
66 007-2392-003

Using Overlays
• For input, the overlay usually sits on top of the normal window and receives the
input events instead of the overlay window. Redirecting both to the same
callback guarantees that you receive the events, regardless of which window
actually received them.

• The overlay has its own expose function: each time the overlay is exposed, it
redraws itself.

5. Call XRaiseWindow() to make sure the overlay is on top of the window.

 XRaiseWindow(dpy, XtWindow(ov_state.w));

Overlay Troubleshooting

This section gives some advice on issues that can easily cause problems in a program
using overlays:

• Colormaps

Overlays have their own colormaps. Therefore, you should call
XSetWMColormapWindows() to create the colormap, populate it with colors, and
to install it.

Note: Overlays on Silicon Graphics systems reserve pixel 0 as the transparent pixel.
If you attempt to create the colormap with AllocAll, the XCreateColormap()
function will fail with a BadAlloc X protocol error. Instead of AllocAll, use
AllocNone and allocate all the color cells except 0.

• Window hierarchy

Overlay windows are created like other windows; their parent window depends on
what you pass in at window creation time. Overlay windows can be part of the
same window hierarchy as normal windows and can be children of the normal
windows. An overlay and its parent window are handled as a single hierarchy for
events like clipping, event distribution, and so on.

• Color limitations

Most Silicon Graphics systems support 8-bit overlay planes. In some cases, as with
Onyx4 and Silicon Graphics Prism systems, overlay planes and stereo visuals may
be mutually exclusive, as chosen when the X server is initialized.

• Input events
007-2392-003 67

4: OpenGL and X: Advanced Topics
The overlay window usually sits on top of the normal window. Thus, it receives all
input events such as mouse and keyboard events. If the application is only waiting
for events on the normal window, it will not get any of those events. It is necessary
to select events on the overlay window as well.

• Missing overlay visuals

On Silicon Graphics systems running the XFree86 server (for example, Onyx4 and
Silicon Graphics Prism systems), there may be no overlay planes configured. Hence,
there will be no visuals at framebuffer levels other than 0. If glXChooseVisual()
returns no visuals when GLX_LEVEL is specified as 1 in the attribute list, the
application must use a different strategy to display content that would otherwise go
in the overlay planes.

• Not seeing the overlay

Although overlay planes are conceptually considered to be “above” the normal
plane, an overlay window can be below a normal window and thus clipped by it.
When creating an overlay and a normal window, use XRaiseWindow() to ensure
that the overlay window is on top of the normal window. If you use Xt, you must
call XRaiseWindow() after the widget hierarchy has been realized.

Rubber Banding

Rubber banding can be used for cases where applications have to draw a few lines over
a scene in response to a mouse movement. An example is the movable window outline
that you see when resizing or moving a window. Rubber banding is also used frequently
by drawing programs.

The 4Dwmwindow manager provides rubber banding for moving and resizing windows.
However, if you need rubber banding features inside your application, you must manage
it yourself.

The following procedure is the best way to perform rubber banding with overlays (this
is the method used by 4Dwm, the default Silicon Graphics window manager):

1. Map an overlay window with its background pixmap set to None (background is
passed in as a parameter to XCreateWindow()).

This window should be as large as the area over which rubber banding could take
place.

2. Draw rubber bands in the new overlay window.
68 007-2392-003

Using Overlays
Ignore resulting damage to other windows in the overlay plane.

3. Unmap the rubber band window.

This action causes Expose events to be sent to other windows in the overlay plane.

Using Popup Menus With the GLwMDrawingArea Widget

Popups are used by many applications to allow user input. A sample program,
simple-popup.c, is included in the source tree. It uses the function
XmCreateSimplePopupMenu() to add a popup to a drawing area widget.

Note that if you are not careful when you create a popup menu as a child of
GLwMDrawingArea widget, you may get a BadMatch X protocol error. The menu
(like all other Xt shell widgets) inherits its default colormap and depth from the
GLwMDrawingArea widget but its default visual from the parent (root) window.
Because the GLwMDrawingArea widget is normally not the default visual, the menu
inherits a nondefault depth and colormap from the GLwMDrawingArea widget but also
inherits its visual from the root window (that is, inherits the default visual); this leads to
a BadMatch X protocol error. For more details and for information on finding the
error, see “Inheritance Issues” on page 41.

The following are two ways to work around this problem:

• Specify the visual, depth, and colormap of the menu explicitly. If you do that,
consider putting the menu in the overlay plane.

• Make the menu a child of a widget that is in the default visual; for example, if the
GLwMDrawingArea widget is a child of an XmFrame, make the menu a child of
XmFrame as well. Example 4-1 provides a code fragment from
motif/simple-popup.c.

Example 4-1 Popup Code Fragment

static void
create_popup(Widget parent) {
 Arg args[10];
 static Widget popup;
 int n;
 XmButtonType button_types[] = {
 XmPUSHBUTTON, XmPUSHBUTTON, XmSEPARATOR, XmPUSHBUTTON, };

 XmString button_labels[XtNumber(button_types)];
007-2392-003 69

4: OpenGL and X: Advanced Topics
 button_labels[0] = XmStringCreateLocalized(“draw filled”);
 button_labels[1] = XmStringCreateLocalized(“draw lines”);
 button_labels[2] = NULL;
 button_labels[3] = XmStringCreateLocalized(“quit”);

 n = 0;
 XtSetArg(args[n], XmNbuttonCount, XtNumber(button_types)); n++;
 XtSetArg(args[n], XmNbuttonType, button_types); n++;
 XtSetArg(args[n], XmNbuttons, button_labels); n++;
 XtSetArg(args[n], XmNsimpleCallback, menu); n++;
 popup = XmCreateSimplePopupMenu(parent, “popup”, args, n);
 XtAddEventHandler(parent, ButtonPressMask, False, activate_menu,
 &popup);
 XmStringFree(button_labels[0]);
 XmStringFree(button_labels[1]);
 XmStringFree(button_labels[3]);
}
main(int argc, char *argv[]) {
 Display *dpy;
 XtAppContext app;
 XVisualInfo *visinfo;
 GLXContext glxcontext;
 Widget toplevel, frame, glxwidget;

 toplevel = XtOpenApplication(&app, “simple-popup”, NULL, 0, &argc,
 argv, fallbackResources, applicationShellWidgetClass,
 NULL, 0);
 dpy = XtDisplay(toplevel);

 frame = XmCreateFrame(toplevel, “frame”, NULL, 0);
 XtManageChild(frame);

 /* specify visual directly */
 if (!(visinfo = glXChooseVisual(dpy, DefaultScreen(dpy), attribs)))
 XtAppError(app, “no suitable RGB visual”);

 glxwidget = XtVaCreateManagedWidget(“glxwidget”,
 glwMDrawingAreaWidgetClass, frame, GLwNvisualInfo,
 visinfo, NULL);
 XtAddCallback(glxwidget, GLwNexposeCallback, expose, NULL);
 XtAddCallback(glxwidget, GLwNresizeCallback, resize, NULL);
 XtAddCallback(glxwidget, GLwNinputCallback, input, NULL);

 create_popup(frame);
70 007-2392-003

Using Visuals and Framebuffer Configurations
 XtRealizeWidget(toplevel);

 glxcontext = glXCreateContext(dpy, visinfo, 0, GL_TRUE);
 GLwDrawingAreaMakeCurrent(glxwidget, glxcontext);

 XtAppMainLoop(app);
}

Using Visuals and Framebuffer Configurations

This section explains how to choose and use visuals and on Silicon Graphics
workstations. It uses the following topics:

• “Some Background on Visuals”

• “Running OpenGL Applications Using a Single Visual”

• “Using Framebuffer Configurations”

Some Background on Visuals

An X visual defines how pixels in a window are mapped to colors on the screen. Each
window has an associated visual, which determines how pixels within the window are
displayed on screen. GLX overloads X visuals with additional framebuffer capabilities
needed by OpenGL.

Table 4-1 lists the X visuals supported for different types of OpenGL rendering,
indentifies the Silicon Graphics systems supporting the X visuals, and indicates whether
the colormaps for those visuals are writable or not.

Table 4-1 X Visuals and Supported OpenGL Rendering Modes

OpenGL Rendering Mode X Visual Writable Colormap? Supporting Systems

RGBA TrueColor No All

RGBA DirectColor Yes Onyx4 and Silicon Graphics
Prism systems

color index PseudoColor Yes All except Onyx4 and Silicon
Graphics Prism systems
007-2392-003 71

4: OpenGL and X: Advanced Topics
Depending on the available hardware and software, an X server can provide multiple
visuals. Each server has a default visual, which can be specified when the server starts.
You can determine the default visual with the Xlib macro DefaultVisual().

Because you cannot predict the configuration of every X server, and you may not know
the system configuration where your program will run , it is best to find out what visual
classes are available on a case-by-case basis.

• From the command line, use the xdpyinfo command for a list of all visuals the
server supports.

• Usethe glxinfo or findvis command to find visuals that are capable of OpenGL
rendering. The findvis command can actually look for available visuals with
attributes you specify. See the man page for more information.

• From within your application, use the Xlib functions XGetVisualInfo() and
XMatchVisualInfo()—or glXGetConfig()—or the GLX function
glXChooseVisual().

Note: For most applications, using OpenGL RGBA color mode and a TrueColor visual
is recommended.

Running OpenGL Applications Using a Single Visual

Note: This section applies only to IRIS IM.

In previous chapters, this guide has assumed separate visuals for the X and OpenGL
portions of the program. The top-level windows and all parts of the application that are
not written in OpenGL use the default visual (typically 8-bit PseudoColor, but it depends

color index StaticColor No Not supported

Not supported GrayScale Yes Not supported

Not supported StaticGray No Not supported

Table 4-1 X Visuals and Supported OpenGL Rendering Modes (continued)

OpenGL Rendering Mode X Visual Writable Colormap? Supporting Systems
72 007-2392-003

Using Visuals and Framebuffer Configurations
on the configuration of the server). OpenGL runs in a single window that uses an
OpenGL visual.

An alternative approach is to run the whole application using an OpenGL visual. To do
this, determine the suitable OpenGL visual (and colormap and pixel depth) at the start
of the program and create the top-level window using that visual (and colormap and
pixel depth). Other windows, including the OpenGL window, inherit the visual. When
you use this approach, there is no need to use the GLwMDrawingArea widget; the
standard IRIS IM XmDrawingArea works just as well.

The advantages of using a single visual include the following:

• Simplicity

Everything uses the same visual; so, you do not have to worry about things like
colormap installation more than once in the application. However, if you use the
GLwMDrawingArea widget, it does colormap installation for you; see
“Drawing-Area Widget Setup and Creation” on page 31.

• Reduced colormap flashing

Colormap flashing happens if several applications are running, each using its own
colormap, and you exceed the system’s capacity for installed hardware colormaps.
Flashing is reduced for a single visual because the entire application uses a single
colormap. The application can still cause other applications to flash, but all recent
Silicon Graphics systems have multiple hardware colormaps to reduce flashing.

• Easier mixing of OpenGL and X

If you run in a single visual, you can render OpenGL to any window in the
application, not just to a dedicated window. For example, you could create an
XmDrawnButton and render OpenGL into it.

The advantages of using separate visuals for X and OpenGL include the following:

• Consistent colors in the X visual

If the OpenGL visual has a limited number of colors, you may want to allow more
colors for X. For example, if you are using double buffering on an 8-bit machine,
you have only 4 bitplanes (16 colors) per buffer. You can have OpenGL dither in
such a circumstance to obtain approximations of other colors, but X will not dither;
so, if you are using the same visual for OpenGL and X, the X portion of your
application will be limited to 16 colors as well.
007-2392-003 73

4: OpenGL and X: Advanced Topics
This limiting of colors would be particularly unfortunate if your program uses the
Silicon Graphics color-scheme system. While X chooses a color as close as possible
to the requested color, the choice is usually noticeably different from the requested
color. As a result, your application looks noticeably different from the other
applications on the screen.

• Memory savings

The amount of memory used by a pixmap within the X server depends on the depth
of the associated visual. Most applications use X pixmaps for shadows, pictures,
and so on that are part of the user interface widgets. If you are using a 12-bit or
24-bit visual for OpenGL rendering and your program also uses X pixmaps, those
pixmaps would use less memory in the default 8-bit visual than in the OpenGL
visual

• Easier menu handling in IRIS IM

If the top-level shell is not in the default visual, there will be inheritance problems
during menu creation (see “Inheritance Issues” on page 41). You must explicitly
specify the visual depth and colormap when creating a menu. For cascading menus,
specify depth and colormap separately for each pane.

Using Framebuffer Configurations

The framebuffer configuration functions in GLX 1.3 are analogous to GLX visuals but
provide the following additional features:

• They introduce a new way to describe the capabilities of a GLX drawable—that is,
to describe the resolution of color buffer components and the type and size of
ancillary buffers by providing a GLXFBConfig construct (also called an FBConfig).

• They relax the “similarity” requirement when associating a current context with a
drawable.

• They support RGBA rendering to one- and two-component windows (luminance
and luminance alpha rendering) and GLX pixmaps as well as pixel buffers
(pbuffers). Section “Using Pixel Buffers” on page 90 describes pbuffers.

The following are reasons to use framebuffer configurations:

• To use pbuffers.

• To render luminance data to a TrueColor visual.
74 007-2392-003

Using Visuals and Framebuffer Configurations
• To replace glXChooseVisual(), because framebuffer configurations provide visual
selection for all GLX drawables, including pbuffers, and incorporates the visual info
and visual rating extensions.

This section briefly describes the following features framebuffer configurations provide:

• “Describing a Drawable With a GLXFBConfig Construct (FBConfig)”

• “Less-Rigid Similarity Requirements When Matching Context and Drawable”

• “Less-Rigid Match of GLX Visual and X Visual”

Describing a Drawable With a GLXFBConfig Construct (FBConfig)

Currently, GLX overloads X visuals so that they have additional buffers and other
characteristics needed for OpenGL rendering. FBConfigs package GLX drawables by
defining a new construct, a GLXFBConfig, which encapsulates GLX drawable
capabilities and has the following properties:

• It may or may not have an associated X visual. If it does have an associated X visual,
then it is possible to create windows that have the capabilities described by the
FBConfig.

• A particular FBConfig is not required to work with all GLX drawables. For example,
it is possible for implementations to export FBConfigs that work only with GLX
pixmaps.

Less-Rigid Similarity Requirements When Matching Context and Drawable

In OpenGL without FBConfigs, if you associate a drawable with a GLX context by calling
glXMakeCurrent(), the two have to be similar—that is, created with the same visual.
FBConfigs relax the requirement; they only require the context and drawable to be
compatible. This is less restrictive and implies the following:

• The render_type attribute for the context must be supported by the FBConfig that
created the drawable. For example, if the context was created for RGBA rendering,
it can be used only if the FBConfig supports RGBA rendering.

• All color buffers and ancillary buffers that exist in both FBConfigs must have the
same size. For example, a GLX drawable that has a front left buffer and a back left
buffer with red, green, and blue sizes of 4 is not compatible with an FBConfig that
has only a front left buffer with red, green, and blue sizes of 8. However, it is
compatible with an FBConfig that has only a front left buffer if the red, green, and
blue sizes are 4.
007-2392-003 75

4: OpenGL and X: Advanced Topics
Note that when a context is created, it has an associated rendering type,
GLX_RGBA_TYPE or GLX_COLOR_INDEX_TYPE.

Less-Rigid Match of GLX Visual and X Visual

The current GLX specification requires that the GLX_RGBA visual attribute be associated
only with TrueColor and DirectColor X visuals. FBConfigs make it possible to do RGBA
rendering to windows created with visuals of type PseudoColor, StaticColor, GrayScale,
and StaticGray. In each case, the red component is used to generate the framebuffer
values and the green and blue fragments are discarded.

The OpenGL RGBA rendering semantics are more powerful than the OpenGL index
rendering semantics. By extending the X visual types that can be associated with an
RGBA color buffer, FBConfigs allow RGBA rendering semantics to be used with
pseudo-color and gray-scale displays. A particularly useful application of FBConfigs is
that they allow you to work with single-component images with texture mapping, then
use a pseudo-color visual to map the luminance values to color.

FBConfig Constructs

An FBConfig describes the format, type, and size of the color and ancillary buffers for a
GLX drawable. If the GLX drawable is a window, then the FBConfig that describes it has
an associated X visual; for a GLXPixmap or GLXPbuffer, there may or may not be an X
visual associated with the FBConfig.

Choosing an FBConfig Construct

Use glXGetFBConfigs() to get a list of all FBConfigs that are available on the specified
screen. The format of the function is as follows:

GLXFBConfig *glXGetFBConfigs(Display *dpy, int screen,int *nitems)

The number of FBConfigs returned is stored in the value nitems.

Use glXChooseFBConfig() to get FBConfig constructs that match a specified list of
attributes:

GLXFBConfig *glXChooseFBConfig(Display *dpy, int screen,
const int *attrib_list, int *nitems)

Like glXGetFBConfigs(), function glXChooseFBConfig() returns an array of FBConfigs
that are available on the specified screen if attrib_list is NULL; otherwise, this call returns
76 007-2392-003

Using Visuals and Framebuffer Configurations
an array of FBConfigs that match the specified attributes. Table 4-2 shows only attributes
specific to FBConfigs; additional attributes are listed on the glXChooseVisual man
page.

The attributes are matched in an attribute-specific manner. Some attributes, such as
GLX_LEVEL, must match the specified value exactly; others, such as GLX_RED_SIZE,
must meet or exceed the specified minimum values.

The sorting criteria are defined as follows:

smaller FBConfigs with an attribute value that meets or exceeds the specified
value are matched. Precedence is given to smaller values. When a value
is not explicitly requested, the default is implied.

larger When the value is requested explicitly, only FBConfigs with a
corresponding attribute value that meets or exceeds the specified value
are matched. Precedence is given to larger values. When the value is not
requested explicitly, larger behaves exactly smaller.

exact Only FBConfigs whose corresponding attribute value exactly matches
the requested value are considered.

mask For an FBConfig to be considered, all the bits that are set in the requested
value must be set in the corresponding attribute. Additional bits might
be set in the attribute.

Table 4-2 Visual Attributes Introduced by the FBConfigs

Attribute Type Description

GLX_DRAWABLE_TYPE bitmask Mask indicating which GLX drawables are
supported. Valid bits are GLX_WINDOW_BIT and
GLX_PIXMAP_BIT.

GLX_RENDER_TYPE bitmask Mask indicating which OpenGL rendering modes are
supported. Valid bits are GLX_RGBA_BIT and
GLX_COLOR_INDEX_BIT.

GLX_X_RENDERABLE boolean True if X can render to drawable.

GLX_FBCONFIG_ID XID XID of the FBConfig.
007-2392-003 77

4: OpenGL and X: Advanced Topics
Table 4-3 illustrates how each attribute is matched. Note that “No effect” means that the
default behavior is to have no preference when searching for a matching FBConfig.

Table 4-3 FBConfig Attribute Defaults and Sorting Criteria

Attribute Default Sorting Criteria

GLX_BUFFER_SIZE 0 Smaller

GLX_LEVEL 0 Smaller

GLX_DOUBLEBUFFER No effect Smaller

GLX_STEREO False Exact

GLX_AUX_BUFFERS 0 Smaller

GLX_RED_SIZE 0 Larger

GLX_GREEN_SIZE 0 Larger

GLX_BLUE_SIZE 0 Larger

GLX_ALPHA_SIZE 0 Larger

GLX_DEPTH_SIZE 0 Larger

GLX_STENCIL_SIZE 0 Larger

GLX_ACCUM_RED_SIZE 0 Larger

GLX_ACCUM_GREEN_SIZE 0 Larger

GLX_ACCUM_BLUE_SIZE 0 Larger

GLX_ACCUM_ALPHA_SIZE 0 Larger

GLX_SAMPLE_BUFFERS_ARB 0 if GLX_SAMPLES_ARB = 0;
otherwise, 1.

Smaller

GLX_SAMPLES_ARB 0 Smaller

GLX_X_VISUAL_TYPE No effect Exact

GLX_TRANSPARENT_TYPE GLX_NONE Exact

GLX_TRANSPARENT_INDEX_VALUE No effect Exact

GLX_TRANSPARENT_RED_VALUE No effect Exact
78 007-2392-003

Using Visuals and Framebuffer Configurations
There are several uses for the glXChooseFBConfig() function:

• Retrieve an FBConfig with a given ID specified with GLX_FBCONFIG_ID.

• Retrieve the FBConfig that is the best match for a given list of visual attributes.

• Retrieve first a list of FBConfigs that match some criteria—for example, each
FBConfig available on the screen or all double-buffered visuals available on the
screen. Then call glXGetFBConfigAttrib() to find their attributes and choose the
one that best fits your needs.

Once the FBConfig is obtained, you can use it to create a GLX pixmap, window, or
pbuffer (see “Using Pixel Buffers” on page 90).

Below is a description of what happens when you call glXChooseFBConfig():

• If no matching FBConfig exists or if an error occurs (that is, an undefined GLX
attribute is encountered in attrib_list, screen is invalid, or dpy does not support the
GLX extension), then NULL is returned.

• If attrib_list is not NULL and more than one FBConfig is found, then an ordered list is
returned with the FBConfigs that form the “best” match at the beginning of the list.
(“How an FBConfig Is Selected” on page 82 describes the selection process.) Use
XFree() to free the memory returned by glXChooseFBConfig().

GLX_TRANSPARENT_GREEN_VALUE No effect Exact

GLX_TRANSPARENT_BLUE_VALUE No effect Exact

GLX_TRANSPARENT_ALPHA_VALUE No effect Exact

GLX_VISUAL_CAVEAT GLX_NONE Exact if
specified;
otherwise,
minimum

GLX_DRAWABLE_TYPE GLX_WINDOW_BIT Mask

GLX_RENDER_TYPE GLX_RGBA_BIT Mask

GLX_X_RENDERABLE No effect Exact

GLX_FBCONFIG_ID No effect Exact

Table 4-3 FBConfig Attribute Defaults and Sorting Criteria (continued)

Attribute Default Sorting Criteria
007-2392-003 79

4: OpenGL and X: Advanced Topics
• If GLX_RENDER_TYPE is in attrib_list, the value that follows is a mask indicating
which types of drawables will be created with it. For example, if GLX_RGBA_BIT |
GLX_COLOR_INDEX_BIT is specified as the mask, then glXChooseFBConfig()
searches for FBConfigs that can be used to create drawables that work with both
RGBA and color index rendering contexts. The default value for
GLX_RENDER_TYPE is GLX_RGBA_BIT.

The attribute GLX_DRAWABLE_TYPE as as its value a mask indicating which
drawables to consider. Use it to choose FBConfigs that can be used to create and
render to a particular GLXDrawable. For example, if GLX_WINDOW_BIT |
GLX_PIXMAP_BIT is specified as the mask for GLX_DRAWABLE_TYPE then
glXChooseFBConfig() searches for FBConfigs that support both windows and GLX
pixmaps. The default value for GLX_DRAWABLE_TYPE is GLX_WINDOW_BIT.

If an FBConfig supports windows it has an associated X visual. Use the
GLX_X_VISUAL_TYPE attribute to request a particular type of X visual.

Note that RGBA rendering may be supported for any of the six visual types, but color
index rendering can be supported only for PseudoColor, StaticColor, GrayScale, and
StaticGray visuals (that is, single-channel visuals). The GLX_X_VISUAL_TYPE attribute
is ignored if GLX_DRAWABLE_TYPE is specified in attrib_list and the mask that follows
does not have GLX_WINDOW_BIT set.

GLX_X_RENDERABLE is a Boolean indicating whether X can be used to render into a
drawable created with the FBConfig. This attribute is always true if the FBConfig
supports windows and/or GLX pixmaps.

Retrieving FBConfig Attribute Values

To get the value of a GLX attribute for an FBConfig, call the following function:

int glXGetFBConfigAttrib(Display *dpy, GLXFBConfig config,
 int attribute, int *value)

If glXGetFBConfigAttrib() succeeds, it returns Success, and the value for the specified
attribute is returned in value; otherwise, it returns an error.

Note: An FBConfig has an associated X visual if and only if the GLX_DRAWABLE_TYPE
value has the GLX_WINDOW_BIT bit set.
80 007-2392-003

Using Visuals and Framebuffer Configurations
To retrieve the associated visual, call the following function:

XVisualInfo *glXGetVisualFromFBConfig(Display *dpy,
GLXFBConfig config)

If config is a valid FBConfig and it has an associated X visual, then information describing
that visual is returned; otherwise, NULL is returned. Use XFree() to free the returned data.

To create a GLX rendering context, a GLX window, or a GLX pixmap using an FBConfig,
call glXCreateNewContext(), glXCreateWindow(), or glXCreatePixmap(). Their formats
follow:

GLXContext glXCreateNewContext(Display *dpy, GLXFBConfig config,
int render_type, GLXContext share_list,
Bool direct)

GLXWindow glXCreateWindow(Display *dpy,GLXFBConfig config,
Window win, const int *attrib_list)

GLXPixmap glXCreatePixmap(Display *dpy,GLXFBConfig config,
Pixmap pixmap, const int *attrib_list)

The window passed to glXCreateWindow() must be created with an X visual
corresponding to config; that is, it should be created using the same visual returned by
glXGetVisualFromFBConfig() for that FBConfig. Similarly, the pixmap passed to
glXCreatePixmap() must have the same color depth as config. If these requirements are
not met, creating the window or pixmap will fail with an X BadMatch error.

The attrib_list argument specifies optional additional attributes to use in creating
windows or pixmaps. Currently no additional attributes are defined; so, this parameter
must always be NULL.

These functions are analogous to the glXCreateContext() and glXCreateGLXPixmap()
functions, but they use GLXFBConfigs instead of visuals. See the
glXCreateNewContext, glXCreateWindow, and glXCreatePixmapman pages for
detailed information.

To create a pixel buffer using an FBConfig, see “Using Pixel Buffers” on page 90.
007-2392-003 81

4: OpenGL and X: Advanced Topics
How an FBConfig Is Selected

If more than one FBConfig matches the specification, they are prioritized as follows
(Table 4-3 on page 78 summarizes this information):

• Preference is given to FBConfigs with the largest GLX_RED_SIZE,
GLX_GREEN_SIZE, and GLX_BLUE_SIZE.

• If the requested GLX_ALPHA_SIZE is zero, preference is given to FBConfigs that
have GLX_ALPHA_SIZE set to zero; otherwise, preference is given to FBConfigs that
have the largest GLX_ALPHA_SIZE value.

• If the requested number of GLX_AUX_BUFFERS is zero, preference is given to
FBConfigs that have GLX_AUX_BUFFERS set to zero; otherwise, preference is given
to FBConfigs that have the smallest GLX_AUX_BUFFERS value.

• If the requested size of a particular ancillary buffer is zero (for example,
GLX_DEPTH_BUFFER is zero), preference is given to FBConfigs that also have that
size set to zero; otherwise, preference is given to FBConfigs that have the largest
size.

• If the requested value of either GLX_SAMPLE_BUFFERS_ARB or
GLX_SAMPLES_ARB is zero, preference is given to FBConfigs that also have these
attributes set to zero; otherwise, preference is given to FBConfigs that have the
smallest size.

• If GLX_X_VISUAL_TYPE is not specified but there is an X visual associated with the
FBConfig, the visual type is used to prioritize the FBConfig.

• If GLX_RENDER_TYPE has GLX_RGBA_BIT set, the visual types are prioritized as
follows: TrueColor, DirectColor, PseudoColor, StaticColor, GrayScale, and
StaticGray.

• If only the GLX_COLOR_INDEX is set in GLX_RENDER_TYPE, visual types are
prioritized as PseudoColor, StaticColor, GrayScale, and StaticGray.

• If GLX_VISUAL_CAVEAT is set, the implementation for the particular system on
which you run determines which visuals are returned. See “EXT_visual_rating—
The Visual Rating Extension” on page 119 for more information.
82 007-2392-003

Using Colormaps
Related Functions

The FBConfig feature introduces the following functions:

• glXGetFBConfigAttrib()

• glXGetFBConfigs()

• glXChooseFBConfig()

• glXCreateWindow()

• glXCreatePixmap()

• glXCreateNewContext()

• glXGetVisualFromFBConfig()

Using Colormaps

This section describes the use of colormaps in some detail. Note that in many cases, you
will not need to worry about colormaps: just use the drawing area widget and create a
TrueColor visual for your RGBA OpenGL program. However, under certain
circumstances, for example, if the OpenGL program uses indexed color, the information
in this section is important. The section discusses these topics:

• “Background Information About Colormaps”

• “Choosing Which Colormap to Use”

• “Colormap Example”

Background Information About Colormaps

OpenGL supports two rendering modes: RGBA mode and color-index mode.

• In RGBA mode, color buffers store red, green, blue, and alpha components directly.

• In color-index mode, color buffers store indexes (names) of colors that are
dereferenced by the display hardware. A color index represents a color by name
rather than by value. A colormap is a table of index-to-RGB mappings.
007-2392-003 83

4: OpenGL and X: Advanced Topics
Note: Onyx4 and Silicon Graphics Prism systems do not support color index rendering;
only RGBA mode is available.

OpenGL color modes are described in some detail in the section “RGBA versus
Color-Index Mode” in Chapter 5, “Color,” of the OpenGL Programming Guide.

The X Window System supports six different types of visuals, with each type using a
different type of colormap (see Table 4-1 on page 71). Although working with X
colormaps may initially seem somewhat complicated, the X Window System does allow
you a great deal of flexibility in choosing and allocating colormaps. Colormaps are
described in detail with example programs in Chapter 7, “Color,” of O’Reilly
Volume One.

The rest of this section addresses some issues having to do with X colormaps.

Color Variation Across Colormaps

The same index in different X colormaps does not necessarily represent the same color.
Ensure that you have the correct color index values for the colormap you are using.

If you use a nondefault colormap, avoid color macros such as BlackPixel() and
WhitePixel(). As is required by X11, these macros return pixel values that are correct for
the default colormap but inappropriate for your application. The pixel value returned by
the macro is likely to represent a color different from black or white in your colormap, or
worse yet, be out of range for it. If the pixel value does not exist in your colormap (such
as any pixel greater than three for a 2-bit overlay colormap), an X protocol error results.

A “right index–wrong map” type of mistake is most likely if you use the macros
BlackPixel() and WhitePixel(). For example, the BlackPixel() macro returns zero, which
is black in the default colormap. That value is always transparent (not black) in a popup
or overlay colormap (if it supports transparent pixels).

You might also experience problems with colors not appearing correctly on the screen
because the colormap for your window is not installed in the hardware.

Multiple Colormap Issues

The need to deal with multiple colormaps of various sizes raises new issues. Some of
these issues do not have well-defined solutions.
84 007-2392-003

Using Colormaps
There is no default colormap for any visual other than the default visual. You must tell
the window manager which colormaps to install using XSetWMColormapWindows(),
unless you use the GLwMDrawingArea widget, which does this for you.

• With multiple colormaps in use, colormap flashing may occur if you exceed the
hardware colormap resources.

• An application has as many of its colormaps installed as possible only when it has
colormap focus.

– At that time, the window manager attempts to install all the application’s
colormaps, regardless of whether or not all are currently needed. These
colormaps remain installed until another application needs to have one of them
replaced.

– If another application gets colormap focus, the window manager installs that
application’s (possibly conflicting) colormaps. Some widgets may be affected
while other widgets remain unchanged.

– The window manager does not reinstall the colormaps for your application
until your application has the colormap focus again.

The getColormap() call defined in Example 4-2 returns a sharable colormap (the ICCCM
RGB_DEFAULT_MAP) for a TrueColor visual given a pointer to XVisualInfo. This is useful
to reduce colormap flashing for non-default visuals.

Example 4-2 Retrieving the Default Colormap for a Visual

Colormap
getColormap(XVisualInfo * vi)
{
 Status status;
 XStandardColormap *standardCmaps;
 Colormap cmap;
 int i, numCmaps;

 /* be lazy; using DirectColor too involved for this example */
 if (vi->class != TrueColor)
 fatalError(“no support for non-TrueColor visual”);
 /* if no standard colormap but TrueColor, make an unshared one */
 status = XmuLookupStandardColormap(dpy, vi->screen, vi->visualid,
 vi->depth, XA_RGB_DEFAULT_MAP,
 /* replace */ False, /* retain */ True);
 if (status == 1) {
 status = XGetRGBColormaps(dpy, RootWindow(dpy, vi->screen),
 &standardCmaps, &numCmaps,
007-2392-003 85

 XA_RGB_DEFAULT_MAP);
 if (status == 1)
 for (i = 0; i < numCmaps; i++)
 if (standardCmaps[i].visualid == vi->visualid) {
 cmap = standardCmaps[i].colormap;
 XFree(standardCmaps);
 return cmap;
 }
 }
 cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),
 vi->visual, AllocNone);
 return cmap;
}

Choosing Which Colormap to Use

When choosing which colormap to use, follow these heuristics:

1. Decide whether your program will use RGBA or color-index mode.

Some operations, such as texturing and blending, are not supported in color-index
mode; others, such as lighting, work differently in the two modes. Because of that,
RGBA rendering is usually the right choice. (See “Choosing between RGBA and
Color-Index Mode” in Chapter 5, “Color,” of the OpenGL Programming Guide).

OpenGL and GLX require an RGBA mode program to use a TrueColor or
DirectColor visual and require a color-index mode program to use a PseudoColor or
StaticColor visual.

Note: Remember that RGBA is usually the right choice for OpenGL on a Silicon
Graphics system. Onyx4 and Silicon Graphics Prism systems support only RGBA
mode.

2. Choose a visual.

If you intend to use RGBA mode, specify RGBA in the attribute list when calling
glXChooseVisual().

If RGBA is not specified in the attribute list, glXChooseVisual() selects a
PseudoColor visual to support color index mode (or a StaticColor visual if no
PseudoColor visual is available).

3. Create a colormap that can be used with the selected visual.

Using Colormaps
4. If a PseudoColor or DirectColor visual has been selected, initialize the colors in the
colormap.

Note: DirectColor visuals are not supported on Silicon Graphics systems.
Colormaps for TrueColor and StaticColor visuals are not writable.

5. Make sure the colormap is installed.

Depending on what approach you use, you may or may not have to install it
yourself:

• If you use the GLwMDrawingArea widget, the widget automatically calls
XSetWMColormapWindows() when the GLwNinstallColormap resource is
enabled.

• The colormap of the top-level window is used if your whole application uses a
single colormap. In that case, you have to make sure the colormap of the
top-level window supports OpenGL.

• Call XSetWMColormapWindows() to ensure that the window manager knows
about your window’s colormap. The following is the syntax for
XSetWMColormapWindows():

Status XSetWMColormapWindows(Display *display, Window w,
 Window *colormap_windows, int count)

Many OpenGL applications use a 24-bit TrueColor visual (by specifying GLX_RGBA in
the visual attribute list when choosing a visual). Colors usually look right in TrueColor,
and some overhead is saved by not having to look up values in a table. On some systems,
using 24-bit color can slow down the frame rate because more bits must be updated per
pixel, but this is not usually a problem.

If you want to adjust or rearrange values in a colormap, you can use a PseudoColor
visual.

Lighting and antialiasing are difficult in color-index mode, and texturing and
accumulation do not work at all. It may be easier to use double buffering and redraw to
produce a new differently colored image, or use the overlay plane. In general, avoid
using PseudoColor visuals if possible. Overlays, which always have PseudoColor
colormaps on current systems, are an exception to this.
007-2392-003 87

4: OpenGL and X: Advanced Topics
Colormap Example

The following is a brief example that demonstrates how to store colors into a given
colormap cell:

XColor xc;
display = XOpenDisplay(0);
visual = glXChooseVisual(display, DefaultScreen(display),
 attributeList);
context = glXCreateContext (display, visual, 0, GL_FALSE);
colorMap = XCreateColormap (display, RootWindow(display,
 visual->screen), visual->visual, AllocAll);
 ...
if (ind < visual->colormap_size) {
 xc.pixel = ind;
 xc.red = (unsigned short)(red * 65535.0 + 0.5);
 xc.green = (unsigned short)(green * 65535.0 + 0.5);
 xc.blue = (unsigned short)(blue * 65535.0 + 0.5);
 xc.flags = DoRed | DoGreen | DoBlue;
 XStoreColor (display, colorMap, &xc);
}

Note: Do not use AllocAll on overlay visuals with transparency. If you do,
XCreateColormap() fails because the transparent cell is read-only.

Stereo Rendering

Silicon Graphics systems and OpenGL both support stereo rendering. In stereo
rendering, the program displays a scene from two slightly different viewpoints to
simulate stereoscopic vision, resulting in a 3D image to a user wearing a special viewing
device. Various viewing devices exist. Most of them cover one eye while the computer
displays the image for the other eye and then cover the second eye while the computer
displays the image for the first eye.

This section describes the following topics:

• “Stereo Rendering Background Information”

• “Performing Stereo Rendering”
88 007-2392-003

Stereo Rendering
Stereo Rendering Background Information

Stereo rendering is done only using quad-buffered stereo. Legacy, low-end Silicon
Graphics systems support a different stereo interface referred to as divided-screen stereo,
which is no longer described in this document.

Quad-buffered stereo uses a separate buffer for the left and right eye; this results in four
buffers if the program is already using a front and back buffer for animation.
Quad-buffered stereo is supported on all current Silicon Graphics systems .

For more information on stereo rendering, see the man pages for the following functions:

• XSGIStereoQueryExtension()

• XSGIStereoQueryVersion()

• XSGIQueryStereoMode()

• XSGISetStereoMode()

• XSGISetStereoBuffer()

Note: The stereo man page includes sample code fragments and pointers to sample
code as well as general information on stereo rendering.

Performing Stereo Rendering

To perform stereo rendering, follow these steps:

1. Perform initialization; that is, make sure the GLX extension is supported and so on.

2. Put the monitor in stereo mode with the setmon command.

3. Choose a visual with front left, front right, back left, and back right buffers.

4. Perform all other setup operations illustrated in the examples in Chapter 2,
“OpenGL and X: Getting Started” and Chapter 3, “OpenGL and X: Examples”.

Create a window, create a context, make the context current, and so on.

5. Start the event loop.

6. Draw the stereo image as shown in the following code:

glDrawBuffer(GL_BACK_LEFT);
007-2392-003 89

4: OpenGL and X: Advanced Topics
< draw left image >
glDrawBuffer(GL_BACK_RIGHT);
< draw right image >
glXSwapBuffers(...);

For more information, see the glDrawBuffer() man page.

Using Pixel Buffers

In addition to rendering on windows and GLX pixmaps, you can render to a pixel buffer
(GLXPbuffer or pbuffer for short). This section describes the GLX features that allow you
render to pbuffers.

About GLXPbuffers

A GLXPbuffer or pbuffer is an additional non-visible rendering pbuffer for an OpenGL
renderer. A pbuffer has the following distinguishing characteristics:

• Support hardware-accelerated rendering

Pbuffers support hardware-accelerated rendering in an off-screen buffer unlike
pixmaps, which typically do not allow accelerated rendering.

• Window-independent

Pbuffers differ from auxiliary buffers (aux buffers) because they are not related to
any displayable window; so, a pbuffer may not be the same size as the application’s
window while an aux buffer must be the same size as its associated window.

PBuffers and Pixmaps

A pbuffer is equivalent to a GLXPixmap with the following exceptions:

• There is no associated X pixmap. Also, since pbuffers are a GLX resource, it may not
be possible to render to them using X or an X extension other than GLX.

• The format of the color buffers and the type and size of associated ancillary buffers
for a pbuffer can be described only with an FBConfig; an X visual cannot be used.

• It is possible to create a pbuffer whose contents may be arbitrarily and
asynchronously lost at any time.
90 007-2392-003

Using Pixel Buffers
• A pbuffer works with both direct and indirect rendering contexts.

A pbuffer is allocated in non-visible framebuffer memory—that is, areas for which
hardware-accelerated rendering is possible. Applications include additional color
buffers for rendering or image processing algorithms.

Volatile and Preserved Pbuffers

Pbuffers can be either volatile—that is, their contents can be destroyed by another
window or pbuffer—or preserved—that is, their contents are guaranteed to be correct and
are swapped out to virtual memory when other windows need to share the same
framebuffer space. The contents of a preserved pbuffer are swapped back in when the
pbuffer is needed. The swapping operation incurs a performance penalty. Therefore, use
preserved pbuffers only if re-rendering the contents is not feasible.

A pbuffer is intended to be a static resource: a program typically allocates it only once,
rather than as a part of its rendering loop. The framebuffer resources that are associated
with a pbuffer are also static. They are deallocated only when the pbuffer is destroyed or,
in the case of volatile pbuffers, as the result of X server activity that changes framebuffer
requirements of the server.

Creating a Pbuffer

To create a pbuffer, call glXCreatePbuffer():

GLXPbuffer glXCreatePbuffer(Display *dpy, GLXFBConfig config,
int attrib_list)

This call creates a single pbuffer and returns its XID.

The parameter attrib_list specifies a list of attributes for the pbuffer. Note that the
attribute list is defined in the same way as the list for glXChooseFBConfig(): attributes
are immediately followed by the corresponding desired value and the list is terminated
with None.

The following attributes can be specified in attrib_list:

GLX_PBUFFER_WIDTH Determines the pixel width of the rectangular
pbuffer. This token must be followed by an integer
specifying the desired width. If not specified, the
default value is 0.
007-2392-003 91

4: OpenGL and X: Advanced Topics
GLX_PBUFFER_HEIGHT Determines the pixel height of the rectangular
pbuffer. This token must be followed by an integer
specifying the desired height. If not specified, the
default value is 0.

GLX_PRESERVED_CONTENTS If specified with a value of False, an volatile pbuffer
is created, and its contents may be lost at any time. If
this attribute is not specified or if it is specified with a
value of True, the contents of the pbuffer are
preserved, typically, by swapping out portions of the
pbuffer to main memory when a resource conflict
occurs. In either case, the client can register to receive
a buffer clobber event and be notified when the
pbuffer contents have been swapped out or have been
damaged.

GLX_LARGEST_PBUFFER If specified with a value of True, the largest available
pbuffer (not exceeding the requested size specified by
the values of GLX_PBUFFER_WIDTH and
GLX_PBUFFER_HEIGHT) will be created when
allocation of the pbuffer would otherwise fail due to
lack of graphics memory. If this attribute is not
specified or is specified with a value of False,
allocation will fail if the requested size is too large
even if a smaller pbuffer could be successfully
created. The glXQueryDrawable() function may be
used to determine the actual allocated size of a
pbuffer.

The resulting pbuffer contains color buffers and ancillary buffers as specified by config. It
is possible to create a pbuffer with back buffers and to swap the front and back buffers
by calling glXSwapBuffers(). Note that a pbuffer uses framebuffer resources; so,
applications should deallocate it when not in use—for example, when the application
windows are iconified.

If glXCreatePbuffer() fails to create a pbuffer due to insufficient resources, a BadAlloc
X protocol error is generated and NULL is returned. If config is not a valid FBConfig,
then a GLXBadFBConfig error is generated; if config does not support pbuffers, a
BadMatch X protocol error is generated.
92 007-2392-003

Using Pixel Buffers
Rendering to a Pbuffer

Any GLX rendering context created with an FBConfig or X visual that is compatible with
an FBConfig may be used to render into the pbuffer. For the definition of compatible, see
the man pages for glXCreateNewContext(), glXMakeCurrent(), and
glXMakeCurrentReadSGI().

If a pbuffer is created with GLX_PRESERVED_CONTENTS set to false, the storage for the
buffer contents—or a portion of the buffer contents—may be lost at any time. It is not an
error to render to a pbuffer that is in this state, but the effect of rendering to it is
undefined. It is also not an error to query the pixel contents of such a pbuffer, but the
values of the returned pixels are undefined.

Because the contents of a volatile pbuffer can be lost at any time with only asynchronous
notification (using the buffer clobber event), the only way a client can guarantee that
valid pixels are read back with glReadPixels() is by grabbing the X server. Note that this
operation is potentially expensive and you should not do it frequently. Also, because
grabbing the X server locks out other X clients, you should do it only for short periods of
time. Clients that do not wish to grab the X server can check whether the data returned
by glReadPixels() is valid by calling XSync() and then checking the event queue for
“buffer clobber events (assuming that any previous clobber events were pulled off of the
queue before the glReadPixels() call).

To destroy a pbuffer call glXDestroyPbuffer(), whose format follows:

void glXDestroyPbuffer(Display *dpy, GLXPbuffer pbuf)

To query an attribute associated with a GLX drawable (GLXWindow, GLXPixmap, or
GLXPbuffer), call glXQueryDrawable(), whose format follows:

void glXQueryDrawable(Display *dpy, GLXDrawable drawable, int attribute
 unsigned int *value)

The GLX_WIDTH, GLX_HEIGHT, and GLX_FBCONFIG_ID attributes may be queried for
all types of drawables. The query returns respectively the allocated pixel width, pixel
height, and the XID of the FBConfig with respect to which the drawable was created.

The GLX_PRESERVED_CONTENTS and GLX_LARGEST_PBUFFER attributes are
meaningful only for GLXPbuffer drawables and return the values specified when the
pbuffer was created. The values returned when querying these attributes for
GLXWindow or GLXPixmap drawables are undefined.
007-2392-003 93

4: OpenGL and X: Advanced Topics
To find the FBConfig for a drawable, first retrieve the ID for the FBConfig using
glXQueryDrawable() and then call glXChooseFBConfig() with that ID specified as the
GLX_FBCONFIG_ID attribute value in the attribute list. For more details, see “Using
Framebuffer Configurations” on page 74.

Directing the Buffer Clobber Event

An X client can ask to receive GLX events on a GLXWindow or GLXPbuffer by calling
glXSelectEvent():

void glXSelectEvent(Display *dpy, GLXDrawable drawable,
 unsigned long event_mask)

Currently, you can only select the GLX_BUFFER_CLOBBER_MASK GLX event bit in
event_mask. The event structure is as follows:

typedef struct {
 int event_type; /* GLX_DAMAGED or GLX_SAVED */
 int draw_type; /* GLX_WINDOW or GLX_PBUFFER */
 unsigned long serial; /* Number of last request processed */
 /* by server */
 Bool send_event; /* True if event was generated by a */
 /* SendEvent request */
 Display *display; /* Display the event was read from */
 GLXDrawable drawable; /* XID of Drawable */
 unsigned int buffer_mask; /* Mask indicating which buffers are */
 /* affected */
 unsigned int aux_buffer; /* Which aux buffer was affected */
 int x, y;
 int width, height;
 int count; /* If nonzero, at least this many more */
 /* events*/
} GLXPbufferClobberEvent;

A single X server operation can cause several buffer clobber events to be sent; for
example, a single pbuffer may be damaged and cause multiple buffer clobber events to
be generated. Each event specifies one region of the GLXDrawable that was affected by
the X server operation.

Events are sent to the application and queried using the normal X event commands
(XNextEvent(), XPending(), and so on). The event_mask value returned in the event
structure indicates which color and ancillary buffers were affected. The following values
can be set in the event structure:
94 007-2392-003

Using Pixel Buffers
GLX_FRONT_LEFT_BUFFER_BIT
GLX_FRONT_RIGHT_BUFFER_BIT
GLX_BACK_LEFT_BUFFER_BIT
GLX_BACK_RIGHT_BUFFER_BIT
GLX_AUX_BUFFERS_BIT
GLX_DEPTH_BUFFER_BIT
GLX_STENCIL_BUFFER_BIT
GLX_ACCUM_BUFFER_BIT

All the buffer clobber events generated by a single X server action are guaranteed to be
contiguous in the event queue. The conditions under which this event is generated and
the event type vary, depending on the type of the GLXDrawable:

• For a preserved pbuffer, a buffer clobber event with event_type GLX_SAVED is
generated whenever the contents of the pbuffer are swapped out to host memory.
The event(s) describes which portions of the pbuffer were affected. Clients that
receive many buffer clobber events referring to different save actions should
consider freeing the pbuffer resource to prevent the system from thrashing due to
insufficient resources.

• For a volatile pbuffer, a buffer clobber event with event_type GLX_DAMAGED is
generated whenever a portion of the pbuffer becomes invalid. The client may wish
to regenerate the invalid portions of the pbuffer.

• For a window, a clobber event with event_type GLX_SAVED is genererated whenever
an ancillary buffer associated with the window is moved out of off-screen memory.
The event indicates which color or ancillary buffers and which portions of those
buffers were affected. Windows do not generate clobber events when clobbering
each other’s ancillary buffers—only standard X damage events.

Calling glXSelectEvent() overrides any previous event mask that was set by the client for
the drawable. Note that it does not affect the event masks that other clients may have
specified for a drawable, because each client rendering to a drawable has a separate event
mask for it.

To find out which GLX events are selected for a window or pbuffer, call
glXGetSelectedEvent():

void glXSelectEvent(Display *dpy, GLXDrawable drawable,
unsigned long event_mask)
007-2392-003 95

4: OpenGL and X: Advanced Topics
Related Functions

The GLX pbuffer feature provides the following functions:

• glXCreatePbuffer()

• glXDestroyPbuffer()

• glXQueryDrawable()

• glXSelectEvent()

• glXGetSelectedEvent()

Using Pixmaps

An OpenGL program can render to three kinds of drawables: windows, pbuffers, and
pixmaps. A pixmap is an offscreen rendering area. On Silicon Graphics systems, pixmap
rendering is not hardware-accelerated. Furthermore, pixmap rendering does not support
all features and extensions of the underlying graphics hardware.

Figure 4-2 X Pixmaps and GLX Pixmaps

In contrast to windows, where drawing has no effect if the window is not visible, a
pixmap can be drawn to at any time because it resides in memory. Before the pixels in the

glxpixmap

Image buffer

OpenGL ancillary buffers

pixmap
96 007-2392-003

Using Pixmaps
pixmap become visible, they have to be copied into a visible window. The unaccelerated
rendering for pixmap pixels has performance penalties.

This section explains how to create and use a pixmap and identifies some related issues:

• “Creating and Using Pixmaps” provides basic information about working with
pixmaps.

• “Direct and Indirect Rendering” provides some background information; it is
included here because rendering to pixmaps is always indirect.

Creating and Using Pixmaps

Integrating an OpenGL program with a pixmap is very similar to integrating it with a
window. The following steps describe how you create and use pixmaps.

Note: Steps 1–3 and step 6 are described in detail in “Integrating Your OpenGL Program
With IRIS IM” on page 16.

1. Open the connection to the X server.

2. Choose a visual.

3. Create a rendering context with the chosen visual.

This context must be indirect.

4. Create an X pixmap using XCreatePixmap().

5. Create a GLX pixmap using glXCreateGLXPixmap(), whose syntax is shown in the
following:

GLXPixmap glXCreateGLXPixmap(Display *dpy, XVisualInfo *vis,
 Pixmap pixmap)

The GLX pixmap “wraps” the pixmap with ancillary buffers determined by vis (see
Figure 4-2).

The pixmap parameter must specify a pixmap that has the same depth as the visual
to which vis points (as indicated by the visual’s GLX_BUFFER_SIZE value).
Otherwise, a BadMatch X protocol error results.

6. Use glXMakeCurrent() to bind the pixmap to the context.

You can now render into the GLX pixmap.
007-2392-003 97

4: OpenGL and X: Advanced Topics
Direct and Indirect Rendering

OpenGL rendering is done differently in different rendering contexts (and on different
platforms).

• Direct rendering

Direct rendering contexts support rendering directly from OpenGL using the
hardware, bypassing X entirely. Direct rendering is much faster than indirect
rendering, and all Silicon Graphics systems can do direct rendering to a window.

• Indirect rendering

In indirect rendering contexts, OpenGL calls are passed by GLX protocol to the X
server, which does the actual rendering. Remote rendering has to be done
indirectly; pixmap rendering is implemented to work only indirectly.

Note: As a rule, use direct rendering unless you are using pixmaps. If you ask for direct
and your DISPLAY is remote, the library automatically switches to indirect rendering.

In indirect rendering, OpenGL rendering commands are added to the GLX protocol
stream, which in turn is part of the X protocol stream. Commands are encoded and sent
to the X server. Upon receiving the commands, the X server decodes them and dispatches
them to the GLX extension. Control is then given to the GLX process (with a context
switch) so that the rendering commands can be processed. The faster the graphics
hardware, the higher the overhead from indirect rendering.

You can obtain maximum indirect-rendering speed by using display lists; they require a
minimum of interaction with the X server. Unfortunately, not all applications can take
full advantage of display lists; this is particularly a problem in applications using
rapidly-changing scene structures. Display lists are efficient because they reside in the X
server.

You may see multiple X processes on your workstation when you are running indirect
rendering OpenGL programs.
98 007-2392-003

Performance Considerations for X and OpenGL
Performance Considerations for X and OpenGL

Due to synchronization and context switching overhead, there is a possible performance
penalty for mixing OpenGL and X in the same window. GLX does not constrain the order
in which OpenGL commands and X requests are executed. To ensure a particular order,
use the GLX commands glXWaitGL() and glXWaitX(). Use the following guidelines:

• glXWaitGL() prevents any subsequent X calls from executing until all pending
OpenGL calls complete. When you use indirect rendering, this function does not
contact the X server and is therefore more efficient than glFinish().

• glXWaitX(), when used with indirect rendering, is just the opposite: it ensures that
all pending X calls complete before any further OpenGL calls are made. Also, giving
this function an advantage over XSync() when rendering indirectly, glXWaitX()
does not need to contact the X server.

• Remember also to batch Expose events. See “Exposing a Window” on page 50.

• Make sure no additional Expose events are already queued after the current one.
You can discard all but the last event.

Portability

If you expect to port your program from X to other windowing systems (such as
Microsoft Windows), certain programming practices make porting easier. The following
is a partial list:

• Isolate your windowing functions and calls from your rendering functions. The
more modular your code is in this respect, the easier it is to switch to another
windowing system.

• For Microsoft Windows porting only, avoid naming variables with any variation of
the words “near” and “far”. They are reserved words in Intel xx86 compilers. For
instance, you should avoid the names _near, _far, __near, __far, near, far,
Near, Far, NEAR, FAR, and so on.

• Microsoft Windows does not have an equivalent to glXCopyContext().
007-2392-003 99

Chapter 5

5. Introduction to OpenGL Extensions

OpenGL extensions introduce new features and enhance performance. Some extensions
provide completely new functionality; for example, the convolution extension allows
you to blur or sharpen images using a filter kernel. Other extensions enhance existing
functionality; for example, the fog function extension enhances the existing fog
capability.

Many features initially introduced as extensions are promoted to become core features of
later releases of OpenGL. When an extension is promoted in this fashion, it is
documented as part of the core OpenGL 1.x API and usually will not be described in
detail in this document.

Using the following topics, this chapter provides basic information about OpenGL
extensions:

• “Determining Extension Availability” on page 102

• “ARB_get_proc_address—The Dynamic Query-Function-Pointer Extension” on
page 106

• “Finding Information About Extensions” on page 109
007-2392-003 101

5: Introduction to OpenGL Extensions
Determining Extension Availability

Function names and tokens for OpenGL extensions have a suffix describing the source of
the extension—for example, glConvolutionFilter2DEXT() or glColorTableSGI(). The
names of the extensions themselves (the extension strings) use prefixes—for example,
SGI_color_table. The following is a detailed list of all suffixes and prefixes:

ARB Used for extensions that have been developed and adopted by the
OpenGL Architecture Review Board, the standards body controlling the
OpenGL API.

EXT Used for extensions that have been reviewed and approved by more
than one OpenGL vendor.

SGI Used for extensions that are available across the Silicon Graphics
product line, although the support for all products may not appear in
the same release.

Not all SGI extensions are supported on Silicon Graphics Onyx4 and
Silicon Graphics Prism systems.

SGIS Used for extensions that are found only on a subset of Silicon Graphics
platforms.

SGIX Used for extensions that are experimental: In future releases, the API for
these extensions may change, or they may not be supported at all.

ATI Used for extensions that have been developed by ATI Technologies.
These extensions are found only on platforms using ATI graphics
processor units (GPUs), including Silicon Graphics Onyx4 and Silicon
Graphics Prism graphics systems.

ATIX Used for experimental ATI extensions in the same fashion as SGIX.

HP, NV, etc. Used for extensions that were initially developed by other vendors.
These extensions are included for compatibility with code ported from
those vendors’ platforms and are not available on all Silicon Graphics
platforms.
102 007-2392-003

Determining Extension Availability
Note: When an extension is promoted to the OpenGL core, the function names and
tokens have the extension suffix removed. Unless otherwise documented, the suffixed
and non-suffixed forms of the functions and tokens have exactly the same meaning and
use. Extensions that are promoted typically are available in both suffixed and
non-suffixed forms for backwards compatibility.

How to Check for OpenGL Extension Availability

All supported extensions have a corresponding definition in gl.h or glext.h (a
companion header included by gl.h) and a token in the extensions string returned by
glGetString(). For example, if the ABGR extension (EXT_abgr) is supported, it is defined
in gl.h as follows:

#define GL_EXT_abgr 1

GL_EXT_abgr appears in the extensions string returned by glGetString(). Use the
definitions in gl.h at compile time to determine if procedure calls corresponding to an
extension exist in the library.

Note: In this document, OpenGL extensions are listed by name without the GL_ prefix.
For example, the ABGR extension is listed under a section heading of “EXT_abgr”.
However, when testing for the presence of an OpenGL extension in the extensions string
or in the OpenGL header files, you must use the GL_ prefix. Note that extensions for the
GLX and GLU APIs have names similarly prefixed by GLX_ and GL_, and you must use
these prefixes when testing for run-time or compile-time support of those extensions.

Applications should do compile-time checking—for example, making sure
GL_EXT_abgr is defined; and run-time checking—for example, making sure
GL_EXT_abgr is in the extension string returned by glGetString().

• Compile-time checking ensures that entry points such as new functions or new
enums are supported. You cannot compile or link a program that uses a certain
extension if the client-side development environment does not support it.

• Run-time checking ensures that the extension is supported for the OpenGL server
and run-time library you are using.
007-2392-003 103

5: Introduction to OpenGL Extensions
Note that availability depends not only on the operating system version but also on
the particular hardware you are using: even though the OpenGL library supports
GL_CONVOLUTION_2D_EXT, you get an GL_INVALID_OPERATION error if you call
glConvolutionFilter2DEXT() on a Silicon Graphics Prism system.

Note that libdl interface allows users to dynamically load their own shared objects as
needed. Applications can use this interface, particularly the dlsym() function, to compile
their application on any system, even if some of the extensions used are not supported.

Example Program: Checking for Extension Availability

In Example 5-1, the function QueryExtension() checks whether an extension is available.

Example 5-1 Checking for Extensions

main(int argc, char* argv[]) {
...
 if (!QueryExtension("GL_EXT_texture_object")) {
 fprintf(stderr, "texture_object extension not supported.\n");

exit(1);
 }
...
}

static GLboolean QueryExtension(char *extName)
{
 /*
 ** Search for extName in the extensions string. Use of strstr()
 ** is not sufficient because extension names can be prefixes of
 ** other extension names. Could use strtok() but the constant
 ** string returned by glGetString might be in read-only memory.
 */
 char *p;
 char *end;
 int extNameLen;

 extNameLen = strlen(extName);

 p = (char *)glGetString(GL_EXTENSIONS);
 if (NULL == p) {
 return GL_FALSE;
 }
104 007-2392-003

Determining Extension Availability
 end = p + strlen(p);

 while (p < end) {
 int n = strcspn(p, " ");
 if ((extNameLen == n) && (strncmp(extName, p, n) == 0)) {
 return GL_TRUE;
 }
 p += (n + 1);
 }
 return GL_FALSE;

}

As an alternative to checking for each extension explicitly, you can make the following
calls to determine the system and graphics driver release on which your program is
running:

glGetString(GL_RENDERER)
...
glGetString(GL_VERSION)

Given a list of extensions supported on that system for that release, you can usually
determine whether the particular extension you need is available. For this to work on all
systems, a table of different systems and the extensions supported has to be available.
Some extensions have been included in patch releases; so, be careful when using this
approach.

Checking for GLX Extension Availability

If you use any of the extensions to GLX, described in Chapter 6, “Resource Control
Extensions,” you also need to check for GLX extension availability.

Querying for GLX extension support is similar to querying for OpenGL extension
support with the following exceptions:

• Compile-time defines are found in glx.h or glxext.h (a companion header
included by glx.h).

• Prefix the names of GLX extensions with GLX_ when testing for run-time or
compile-time support, just as you must prefix the names of OpenGL extensions
with GL_.

• To get the list of supported GLX extensions, call glXQueryExtensionsString().

• GLX versions must be 1.1 or greater (no extensions to GLX 1.0 exist).
007-2392-003 105

5: Introduction to OpenGL Extensions
• All current Silicon Graphics platforms (Fuel, Tezro, InfiniteReality,
InfinitePerformance, Onyx4, and Silicon Graphics Prism systems) support GLX 1.3.
Most GLX extensions were promoted to the GLX 1.3 core, in some cases with minor
changes in functionality. For maximum portability, applications should use the GLX
1.3 core functions and tokens instead of the extensions.

Taking these exceptions into account, adapt the process described in “How to Check for
OpenGL Extension Availability” on page 103.

ARB_get_proc_address—The Dynamic Query-Function-Pointer
Extension

On SGI IRIX systems, all functions defined by OpenGL and GLX extensions are exported
statically from the OpenGL link library so that they may be called directly. This is also
true on SGI Linux systems. However, the OpenGL application binary interface (ABI) for
Linux does not guarantee that extension functions or core functions beyond the set of
functions defined in OpenGL 1.2 and GLX 1.3 can be called statically on all Linux
environments. This is because the OpenGL library, which defines static entry points, and
the OpenGL hardware drivers, which define extensions, may come from different
sources and, therefore, not always be compatible with each other. This is also true on
Microsoft Windows systems.

As a result, the following applications must access extension functions and newer core
functions, those beyond OpenGL 1.2 and GLX 1.3, dynamically at run time:

• Applications written to be portable to Linux systems by other vendors

• Applications written to be portable to Microsoft Windows systems

• Applications originally written on Linux systems by other vendors or Microsoft
Windows systems and ported to SGI Linux systems

The GLX_ARB_get_proc_address extension allows dynamic access to these functions at
run time by providing the glXGetProcAddressARB() function.

The glXGetProcAddressARB() Function

Function glXGetProcAddressARB() is called with the name of another OpenGL or GLX
extension function or a newer core function and has the following format:
106 007-2392-003

ARB_get_proc_address—The Dynamic Query-Function-Pointer Extension
void (*glXGetProcAddress(const GLubyte *procname))(void)

The value procname is a string such as “glIsObjectBufferATI” or
“glCompressedTexImage2DARB”. If the OpenGL or GLX function corresponding to
procname exists, glXGetProcAddressARB() returns a function pointer to the
corresponding function. Because the signatures of extension functions differ, the type of
the pointer returned by glXGetProcAddressARB() is the generic (void (*)(void)).
The pointer must be mapped to an appropriate function pointer type corresponding to
the extension and then used to call the extension function when required.

The standard headers GL/glext.h and GL/glxext.h define, respectively, OpenGL
and GLX interfaces (formats and token values) for extensions and newer core functions.
In addition to defining formats, the headers also define C typedefs for these functions to
ease the process of storing return values from glXGetProcAddressARB(). The following
is a consistent convention for deriving a typedef for such a function:

1. Convert the name of the function to upper case.

2. Prefix the result with “PFNGL” (meaning “pointer to GL function”).

3. Suffix the result with “PROC”.

For example, consider the following extension function:

GLboolean glIsObjectBufferATI(GLuint buffer);

Its corresponding typedef in glext.h would be the following:

typedef GLboolean (*PFNGLISOBJECTBUFFERATIPROC)(GLuint buffer);

The typedef names for GLX extension functions are defined similarly, but using the
prefix “PFNGLX” instead of “PFNGL”.

Example 5-2 shows how to query and use an extension function pointer. The example
uses the glIsObjectBufferATI function(), which is part of the
GL_ATI_vertex_array_object extension, supported on Onyx4 and Silicon Graphics Prism
systems. The example assumes that the application has already checked the
GL_EXTENSIONS string to confirm that the extension is supported and that all references
to functions, typedefs, or tokens used by the extension are wrapped in a #ifdef
GL_ATI_vertex_array_object/#endif block so that the application using this
code compiles correctly on platforms not supporting the extension. For clarity, these
compile- and run-time checks are not included in the example.
007-2392-003 107

5: Introduction to OpenGL Extensions
Example 5-2 Querying Extension Function Pointers

/* Declare global variable containing the extension function pointer */
PFNGLISOBJECTBUFFERATIPROC IsObjectBufferATI = NULL;

/* Query the function pointer */
IsObjectBufferATI = (PFNGLISOBJECTBUFFERATIPROC)
 glXGetProcAddressARB(“glIsObjectBufferATI”);

/* This should never happen if the extension is supported;
 * but sanity check anyway, for robustness. */
if (IsObjectBufferATI == NULL) {
 error(“Cannot obtain extension function pointer.”);
}

...

/* Later in the program, call the extension function as needed */
GLuint buffer = bufferID; /* A buffer ID to be queried */

/* Equivalent to calling
 * if (glIsObjectBufferATI(buffer) == GL_TRUE) { ...
 */
if ((*IsObjectBufferATI)(buffer) == GL_TRUE) {
 /* buffer is indeed a vertex array buffer ID */
}

Note: Calling glXGetProcAddressARB() is an expensive operation. Do not call it every
time an extension is to be called. Instead, query function pointers once after creating a
context and cache the resulting pointers for future use.

Extension Wrapper Libraries and Portability Notes

Using the GLX_ARB_get_proc_address extension directly, as described in Example 5-2,
can be tedious and intrusive on application code by causing many GL function calls to
be performed indirectly through function pointers. Instead, use one of the many
available open source extension wrapper libraries, which hide most of the details.

SGI does not currently recommend or support a specific wrapper library, because there
are many popular libraries and they are frequently updated to keep track of new vendor
and ARB-approved OpenGL extensions. Consult the the developer and support forums
108 007-2392-003

Finding Information About Extensions
area of the OpenGL website, http://www.opengl.org/ (which is also a good place to
look for information about many other OpenGL programming topics).

As a starting point, consider the following extension wrapper libraries:

Wrapper Library Website

GLEW (The OpenGL Extension Wrangler library)
http://glew.sourceforge.net/

GLee (The OpenGL Easy Extension library)
http://elf-stone.com/downloads.php#GLee

extglgen http://trenki.50free.org/extgl/

OglExt http://www.julius.caesar.de/oglext/

Note that most of these libraries run on Microsoft Windows as well as Linux (and
sometimes other operating systems with OpenGL support as well).

Finding Information About Extensions

You can find information about the extensions through man pages, example programs,
and extension specifications.

Man Pages

For the most up-to-date information on extensions, see the following man pages:

glintro Information about the current state of extensions on your system.

glXintro Information on GLX extensions.

Note that individual OpenGL man pages have a MACHINE DEPENDENCIES section that
lists the systems on which certain extension functions or options are implemented.

Multisampling is supported on all current Silicon Graphics systems with the exception
of Fuel, Tezro, and InfinitePerformance systems. Currently, it can be used with windows
or pixel buffers of multisampling-capable visual types, but not with pixmaps.
007-2392-003 109

5: Introduction to OpenGL Extensions
Example Programs

All complete example programs included in this guide (though not the short code
fragments) are available on IRIX systems in /usr/share/src/OpenGL if you have the
ogl_dev.sw.samples subsystem installed. You can also find example programs
through the Silicon Graphics Developer Toolbox, http://toolbox.sgi.com/.

Extension Specifications

Extension specifications describe extension functionality from the implementor’s point
of view. They are prepared to fit in with the OpenGL specification. Specification contain
detailed information that goes beyond what developers usually need to know. If you
need more details on any of the extensions, search for its specification in the OpenGL
Extenstion Registry, http://oss.sgi.com/projects/ogl-sample/registry/.
110 007-2392-003

Chapter 6

6. Resource Control Extensions

This chapter describes resource control extensions, which are extensions to GLX. GLX is
an extension to the X Window System that makes OpenGL available in an X Window
System environment. All GLX functions and other elements have the prefix glX (just as
all OpenGL elements have the prefix gl).

You can find information on GLX in several places, including the following:

• Introductory information—See the glxintro man page.

• In-depth coverage—See Appendix C, “OpenGL and Window Systems,” of the
OpenGL Programming Guide and OpenGL Programming for the X Window System.

See “OpenGL and Associated Tools and Libraries” on page xl for bibliographical
information.

This chapter explains how to use extensions to GLX. The following extensions are
presented in alphabetical order:

• “EXT_import_context—The Import Context Extension” on page 112

• “SGI_make_current_read—The Make Current Read Extension” on page 114

• “EXT_visual_info—The Visual Info Extension” on page 117

• “EXT_visual_rating—The Visual Rating Extension” on page 119

The following sections describe extensions that are experimental:

• “SGIX_fbconfig—The Framebuffer Configuration Extension” on page 120

• “SGIX_pbuffer—The Pixel Buffer Extension” on page 121
007-2392-003 111

6: Resource Control Extensions
Using OpenGL in an X Window System environment is described in the following
chapters of this guide:

• Chapter 2, “OpenGL and X: Getting Started”

• Chapter 3, “OpenGL and X: Examples”

• Chapter 4, “OpenGL and X: Advanced Topics”

EXT_import_context—The Import Context Extension

The import context extension, EXT_import_context, allows multiple X clients to share an
indirect rendering context. The extension also adds some query routines to retrieve
information associated with the current context.

To work effectively with this extension, you must first understand direct and indirect
rendering. See “Direct and Indirect Rendering” on page 98 for some background
information.

Importing a Context

You can use the extension to import another process’ OpenGL context, as follows:

• To retrieve the XID for a GLX context, call glXGetContextIDEXT():

GLXContextID glXGetContextIDEXT(const GLXContext ctx)

This function is client-side only. No round trip is forced to the server; unlike most X
calls that return a value, glXGetContextIDEXT() does not flush any pending events.

• To create a GLX context, given the XID of an existing GLX context, call
glXImportContextEXT(). You can use this function in place of glXCreateContext()
to share another process’ indirect rendering context:

GLXContext glXImportContextEXT(Display *dpy, GLXContextID contextID)

Only the server-side context information can be shared between X clients;
client-side state, such as pixel storage modes, cannot be shared. Thus,
glXImportContextEXT() must allocate memory to store client-side information.
112 007-2392-003

EXT_import_context—The Import Context Extension
A call to glXImportContextEXT() does not create a new XID. It merely makes an
existing XID available to the importing client. The XID goes away when the creating
client drops its connection or the ID is explicitly deleted. The object goes away when
the XID goes away and the context is not current to any thread.

• To free the client-side part of a GLX context that was created with
glXImportContextEXT(), call glXFreeContextEXT():

void glXFreeContextEXT(Display *dpy, GLXContext ctx)

glXFreeContextEXT() does not free the server-side context information or the XID
associated with the server-side context.

Retrieving Display and Context Information

Use the extension to retrieve the display of the current context or other information about
the context, as follows:

• To retrieve the current display associated with the current context, call
glXGetCurrentDisplayEXT(), which has the following format:

Display * glXGetCurrentDisplayEXT(void);

If there is no current context, NULL is returned. No round trip is forced to the server;
unlike most X calls that return a value, glXGetCurrentDisplayEXT() does not flush
any pending events.

• To obtain the value of a context’s attribute, call glXQueryContextInfoEXT():

int glXQueryContextInfoEXT(Display *dpy, GLXContext ctx,
int attribute,int *value)

The values and types corresponding to each GLX context attribute are listed in
Table 6-1.

Table 6-1 Type and Context Information for GLX Context Attributes

GLX Context Attribute Type Context Information

GLX_SHARE_CONTEXT_EXT XID XID of the share list context

GLX_VISUAL_ID_EXT XID Visual ID

GLX_SCREEN_EXT int Screen number
007-2392-003 113

6: Resource Control Extensions
New Functions

The EXT_import_context extension introduces the following new functions:

• glXGetCurrentDisplayEXT()

• glXGetContextIDEXT()

• glXImportContextEXT()

• glXFreeContextEXT()

• glXQueryContextInfoEXT()

SGI_make_current_read—The Make Current Read Extension

Note: The functionality of SGI_make_current_read was promoted to a standard part of
GLX 1.3. For new applications, use the GLX 1.3 glXMakeContextCurrent() and
glXGetCurrentReadDrawable() functions instead of this extension.

The make current read extension, SGI_make_current_read, allows you to attach separate
read and write drawables to a GLX context by calling glXMakeCurrentReadSGI(),
which has the following prototype:

Bool glXMakeCurrentReadSGI(Display *dpy,GLXDrawable draw,
GLXDrawable read, GLXContext gc)

The variable items are defined as follows:

dpy Specifies the connection to the X server.

draw Specifies a GLX drawable that receives the results of OpenGL drawing
operations.

read Specifies a GLX drawable that provides pixels for glReadPixels() and
glCopyPixels() operations.

gc Specifies a GLX rendering context to be attached to draw and read.
114 007-2392-003

SGI_make_current_read—The Make Current Read Extension
Read and Write Drawables

In GLX 1.1, you associate a GLX context with one drawable (window or pixmap) by
calling glXMakeCurrentSGI().The function glXMakeCurrentReadSGI() lets you attach
a GLX context to two drawables: you draw to the first one and the second serves as a
source for pixel data.

In effect, the following calls are equivalent:

glXMakeCurrentSGI(context, win)
glXMakeCurrentReadSGI(context, win, win)

Having both a read and a write drawable is useful—for example, to copy the contents of
a window to another window, to stream video to a window, and so on.

The write drawable is used for all OpenGL operations. Accumulation buffer operations
fetch data from the write drawable and are not allowed when the read and write
drawable are not identical.

The read drawable is used for any color, depth, or stencil values that are retrieved by
glReadPixels(), glCopyPixels(), glCopyTexImage(), or glCopyTexSubImage(). It is also
use by any OpenGL extension that sources images from the framebuffer in the manner
of glReadPixels(), glCopyPixels(), glCopyTexImage(), or glCopyTexSubImage().

The following is some additional information about the two drawables:

• The two drawables do not need to have the same ancillary buffers (depth buffer,
stencil buffer, and so on).

• The read drawable does not have to contain a buffer corresponding to the current
GL_READ_BUFFER of a GLX context. For example, the current GL_READ_BUFFER
may be GL_BACK, and the read drawable may be single-buffered.

If a subsequent command sets the read buffer to a color buffer that does not exist on
the read drawable—even if set implicitly by glPopAttrib()—or if an attempt is
made to source pixel values from an unsupported ancillary buffer, a
GL_INVALID_OPERATION error is generated.

• If the current GL_READ_BUFFER does not exist in the read drawable, pixel values
extracted from that drawable are undefined, but no error is generated.

• Operations that query the value of GL_READ_BUFFER use the value set last in the
context, regardless of whether the read drawable has the corresponding buffer.
007-2392-003 115

6: Resource Control Extensions
Possible Match Errors

When glXMakeCurrentReadSGI() associates two GLX drawables with a single GLX
context, a BadMatch X protocol error is generated if either drawable was not created
with the same X screen.

The color, depth, stencil, and accumulation buffers of the two drawables do not need to
match. Some implementations may impose additional constraints, such as requiring that
the color component resolution of both drawables be the same. In such cases, a
BadMatch X protocol error will be generated.

Retrieving the Current Drawable’s Name

The function glXGetCurrentReadDrawableSGI() returns the name of the GLXDrawable
currently being used as a pixel query source.

• If glXMakeCurrent() specified the current rendering context, then
glXGetCurrentReadDrawableSGI() returns the drawable specified as draw by that
glXMakeCurrent call.

• If glXMakeCurrentReadSGI() specified the current rendering context, then
glXGetCurrentReadDrawableSGI() returns the drawable specified as read by that
glXMakeCurrentReadSGI() call.

If there is no current read drawable, glXGetCurrentReadDrawableSGI() returns None.

New Functions

The SGI_make_current_read extension introduces the following functions:

• glXMakeCurrentReadSGI()

• glXGetCurrentReadDrawableSGI()
116 007-2392-003

EXT_visual_info—The Visual Info Extension
EXT_visual_info—The Visual Info Extension

Note: The functionality of EXT_visual_info was promoted to a standard part of GLX 1.3,
which is supported on all current Silicon Graphics visualization systems. For new
applications, use the GLX 1.3 glXChooseFBConfig() function and select framebuffer
configurations based on the GLX_X_VISUAL_TYPE attribute instead of the
GLX_X_VISUAL_TYPE_EXT attribute defined by this extension.

The visual info extension, EXT_visual_info, enhances the standard GLX visual
mechanism as follows:

• You can request that a particular X visual type be associated with a GLX visual.

• You can query the X visual type underlying a GLX visual.

• You can request a visual with a transparent pixel.

• You can query whether a visual supports a transparent pixel value and query the
value of the transparent pixel.

Note that the notions of level and transparent pixels are orthogonal as both level 1
and level 0 visuals may or may not support transparent pixels.

Using the Visual Info Extension

To find a visual that best matches specified attributes, call glXChooseVisual():

XVisualInfo* glXChooseVisual(Display *dpy, int screen, int *attrib_list)

The following heuristics determine which visual is chosen:

Table 6-2 Heuristics for Visual Selection

If... And GLX_X_VISUAL_TYPE_EXT is... The result is...

GLX_RGBA is in
attrib_list.

GLX_TRUE_COLOR_EXT TrueColor visual

GLX_DIRECT_COLOR_EXT DirectColor visual
007-2392-003 117

6: Resource Control Extensions
If an undefined GLX attribute, or an unacceptable enumerated attribute value is
encountered, NULL is returned.

More attributes may be specified in the attribute list. If a visual attribute is not specified,
a default value is used. For more details, see the man page for glXChooseVisual().

To free the data returned from glXChooseVisual(), use XFree().

Note that GLX_VISUAL_TYPE_EXT can also be used with glXGetConfig().

GLX_PSEUDO_COLOR_EXT,
GLX_STATIC_COLOR_EXT,
GLX_GRAY_SCALE_EXT, or
GLX_STATIC_GRAY_EXT

Visual Selection fails

Not in attrib_list, and if all other
attributes are equivalent...

A TrueColor visual
(GLX_TRUE_COLOR_EXT) is chosen in
preference to a DirectColor visual
(GLX_DIRECT_COLOR_EXT)

GLX_RGBA is
not in
attrib_list.

GLX_PSEUDO_COLOR_EXT PseudoColor visual

GLX_STATIC_COLOR_EXT StaticColor visual

GLX_TRUE_COLOR_EXT,
GLX_DIRECT_COLOR_EXT,
GLX_GRAY_SCALE_EXT, or
GLX_STATIC_GRAY_EXT

Visual selection fails

Not in attrib_list and if all other
attributes are equivalent...

A PseudoColor visual
(GLX_PSEUDO_COLOR_EXT) is chosen in
preference to a StaticColor visual
(GLX_STATIC_COLOR_EXT)

Table 6-2 Heuristics for Visual Selection (continued)

If... And GLX_X_VISUAL_TYPE_EXT is... The result is...
118 007-2392-003

EXT_visual_rating—The Visual Rating Extension
Using Transparent Pixels

How you specify that you want a visual with transparent pixels depends on the existing
attributes:

Do not specify one of the following values in attrib_list because typically only one
transparent color or index value is supported:

• GLX_TRANSPARENT_INDEX_VALUE_EXT

• GLX_TRANSPARENT_{RED|GREEN|BLUE|ALPHA}_VALUE_EXT

Once you have a transparent visual, you can query the transparent color value by calling
glXGetConfig(). To get the transparent index value for visuals that support index
rendering, use GLX_TRANSPARENT_INDEX_VALUE_EXT. For visuals that support
RGBA rendering, use GLX_TRANSPARENT_{RED|GREEN|BLUE}_VALUE_EXT. The
visual attribute GLX_TRANSPARENT_ALPHA_VALUE_EXT is included in the extension
for future use.

“Creating Overlays” on page 65 presents an example program that uses a transparent
visual for the overlay window.

EXT_visual_rating—The Visual Rating Extension

Note: The functionality of EXT_visual_rating was promoted to a standard part of
GLX 1.3, which is supported on all current Silicon Graphics visualization systems. For
new applications, use the GLX 1.3 glXChooseFBConfig() function and select framebuffer
configurations based on the GLX_CONFIG_CAVEAT attribute instead of the
GLX_VISUAL_CAVEAT_EXT attribute defined by this extension.

The visual rating extension, EXT_visual_rating, allows servers to export visuals with
improved features or image quality but with lower performance or greater system
burden. The extension allows this without having to have these visuals selected

If ... Then call glXChooseVisual() and specify as the value
of GLX_TRANSPARENT_TYPE_EXT ...

GLX_RGBA is in attrib_list. GLX_TRANSPARENT_RGB_EXT

GLX_RGBA is not in attrib_list. GLX_TRANSPARENT_INDEX_EXT
007-2392-003 119

6: Resource Control Extensions
preferentially. It is intended to ensure that most—but possibly not all—applications get
the “right” visual.

You can use this extension during visual selection. While you will get a good match for
most systems, you may not get the best match for all systems.

Using the Visual Rating Extension

To determine the rating for a visual, call glXGetConfig() with attribute set to
GLX_VISUAL_CAVEAT_EXT. The function glXGetConfig() returns the rating of the
visual in the parameter value, which will be either GLX_NONE_EXT or GLX_SLOW_EXT.

If the GLX_VISUAL_CAVEAT_EXT attribute is not specified in the attrib_list parameter of
glXChooseVisual(), preference is given to visuals with no caveats (that is, visuals with
the attribute set to GLX_NONE_EXT). If the GLX_VISUAL_CAVEAT_EXT attribute is
specified, then glXChooseVisual() matches the specified value exactly. For example, if
the value is specified as GLX_NONE_EXT, only visuals with no caveats are considered.

SGIX_fbconfig—The Framebuffer Configuration Extension

Note: The functionality of SGIX_fbconfig was promoted to a standard part of GLX 1.3,
which is supported on all current Silicon Graphics visualization systems. For new
applications, use the GLX 1.3 equivalent functions and tokens instead of this extension.
For a description of framebuffer configurations in GLX 1.3, see section “Using Visuals
and Framebuffer Configurations” on page 71. Since the GLX 1.3 features are similar to
this extension, the lengthy description is not repeated here.
120 007-2392-003

SGIX_pbuffer—The Pixel Buffer Extension
SGIX_pbuffer—The Pixel Buffer Extension

Note: The functionality of SGIX_pbuffer was promoted to a standard part of GLX 1.3,
which is supported on all current Silicon Graphics visualization systems. For new
applications, use the GLX 1.3 equivalent functions and tokens instead of this extension.
For a description of pixel buffers in GLX 1.3, see section “Using Pixel Buffers” on page 90.
Since the GLX 1.3 features are similar to this extension, the lengthy description is not
repeated here.
007-2392-003 121

Chapter 7

7. Vertex Processing Extensions

This chapter describes how to use the following OpenGL vertex processing extensions:

• “ARB_vertex_buffer_object—The Vertex Buffer Object Extension” on page 123

• “ARB_window_pos—The Window-Space Raster Position Extension” on page 135

• “EXT_clip_volume_hint—The Clip Volume Hint Extension” on page 136

• “EXT_compiled_vertex_array—The Compiled Vertex Array Extension” on page 137

• “EXT_fog_coord—The Fog Coordinate Extension” on page 139

• “EXT_multi_draw_arrays—The Multiple Draw Arrays Extension” on page 141

• “EXT_secondary_color—The Secondary Color Extension” on page 142

The following groups of obsolete (legacy) vertex processing extensions are also briefly
described:

• “The Vertex Array Object Extensions (Legacy)” on page 145

• “The Texture Coordinate Generation Extensions (Legacy)” on page 147

The legacy extensions are supported for compatibility and are not fully documented in
this guide.

ARB_vertex_buffer_object—The Vertex Buffer Object Extension

The ARB_vertex_buffer_object extension allows applications to store buffers containing
application-defined data in graphics memory and to draw vertex arrays using data
contained in those buffers, instead of the usual vertex array usage where array data is
taken from application memory.
007-2392-003 123

7: Vertex Processing Extensions
Why Use Buffer Objects?

When drawing vertex arrays using unextended OpenGL 1.3, all data in the arrays must
be transferred from application memory to the graphics processor. In Onyx4 and Silicon
Graphics Prism systems (as well as all other modern graphics systems), the bandwidth
between application memory and the graphics processor (typically over an interface like
PCI-X or AGP) is substantially lower than the bandwidth between the graphics processor
and its own local graphics memory. Therefore, when drawing vertex array data
repeatedly with no changes or only small changes relative to the size of the arrays,
substantial performance increases can be realized by storing vertex arrays in graphics
memory. It is impossible to reach the maximum vertex transformation rates supported
by the graphics processor unless vertex data is being supplied from graphics memory.

This extension provides an explicit mechanism for creating and managing data buffers
in graphics memory by defining portions of those buffers as vertex arrays and drawing
vertices using those arrays.

Alternatives to Buffer Objects

In the past, optimization advice often included the use of OpenGL display lists to
encapsulate drawing commands. Display lists can also be stored in graphics memory
and provide similar performance benefits. However, display lists cannot be modified
once they are created; even the simplest change to a list requires destroying and
re-creating its entire contents. Also, it is considerably more difficult for the graphics
library to recognize and optimize display lists, because they can contain arbitrary
sequences of OpenGL commands, not just array data.

While Onyx4 and Silicon Graphics Prism systems do perform display list optimizations,
new applications should use buffer objects if possible. Buffer objects are more easily
optimized, and individual elements of a buffer object can be modified without needing
to re-create the entire buffer in graphics memory.

Another approach to high-performance drawing operations used in the past is for the
application to hint to the graphics library that its vertex arrays will not be modified for
some period of time by locking portions of the currently bound vertex arrays (see section
“EXT_compiled_vertex_array—The Compiled Vertex Array Extension” on page 137).
Locking allows the graphics library to copy vertex array data into graphics memory for
the duration of the lock. However, any changes to vertex array data requires the
expensive operations of unlocking, changing, and re-locking the array. Also, only a single
124 007-2392-003

ARB_vertex_buffer_object—The Vertex Buffer Object Extension
set of vertex arrays can be locked at a time; therefore, if multiple arrays are used for
drawing, the performance benefits of locking are lost.

While Onyx4 and Silicon Graphics Prism systems do support locking vertex arrays, new
applications should use buffer objects if possible. Multiple buffer objects can be defined
and switched without swapping buffer data out of graphics memory and, as just
described, individual elements of buffer objects can easily be modified.

Disadvantages of Buffer Objects

While buffer objects are the easiest and most reliable way to achieve maximum geometry
throughput, graphics memory is usually a much more limited resource than application
memory. Typically graphics processors have only 256–512 MB of graphics memory, and
that memory must be shared among the framebuffer, texture, display lists, and buffer
object storage.

If an application’s use of graphics memory exceeds the amount physically present in the
system, data may be automatically swapped out when not in use. This can result in
greatly reduced performance and, in extreme cases, may result in applications
terminating due to excessive graphics memory use. Examples where such situations are
likely to arise include applications using many 2D image textures, using large 3D
textures for volume rendering, or using large vertex arrays for drawing high-complexity
models. In such cases, applications can achieve better performance by managing the
swapping of texture and buffer data into graphics memory manually instead of relying
on the automatic algorithms supported within the graphics library. However, such buffer
management can be difficult to tune. A recommended alternative is to use higher-level
scene graph APIs built on OpenGL, like OpenGL Performer and OpenGL Volumizer.
These software layers are optimized to achieve maximum performance on
Silicon Graphics systems while still supporting very large datasets.

Using Buffer Objects

As shown in the following code lines, buffer objects are represented by object names (of
type GLuint) which are managed in exactly the same fashion as texture and display list
names with routines for allocating unused buffer object names, deleting named buffer
objects, and testing if a name refers to a valid buffer object:

void glGenBuffersARB(GLsizei n, GLuint *buffers);
void glDeleteBuffersARB(GLsizei n, const GLuint *buffers);
GLboolean glIsBufferARB(GLuint buffer);
007-2392-003 125

7: Vertex Processing Extensions
Note that when deleting a buffer object with glDeleteBuffersARB(), all data in graphics
memory associated with that buffer object will be freed as well. Because graphics
memory is usually a scarce resource compared to application memory, it is important to
delete buffer objects if they are no longer needed or to reuse the memory associated with
buffer objects.

Defining Buffer Objects

Once a buffer object name has been obtained from glGenBuffers(), the corresponding
buffer object can be created by making the following call:

void glBindBufferARB(GLenum target, GLuint buffer);

The argument buffer is the buffer object name, and target is either
GL_ARRAY_BUFFER_ARB (for vertex array data) orGL_ELEMENT_ARRAY_BUFFER_ARB
(for array index data). The newly created buffer object is initially defined with a size of
zero.

You can also use glBindBufferARB() to bind an existing buffer object. If the bind is
successful, no change is made to the state of the newly bound buffer object and any
previous binding to target is broken.

While a buffer object is bound, operations on the target to which it is bound affect that
object, and queries of the target return information about that object.

Initially, the reserved buffer object name 0 is bound to each of GL_ARRAY_BUFFER_ARB
and GL_ELEMENT_ARRAY_BUFFER_ARB. However, there is no buffer object
corresponding to the name 0, and any attempt to operate on or query the
GL_ARRAY_BUFFER_ARB or GL_ELEMENT_ARRAY_BUFFER_ARB target when it is
bound to zero will generate errors. This is because binding to zero is used to indicate that
normal vertex array behavior should apply, as described further later in section “Using
Buffer Objects as Vertex Array Sources” on page 130.

Defining and Editing Buffer Object Contents

Buffer objects contain the same data that a normal OpenGL vertex array would contain,
and the data is laid out in the same fashion. However, instead of simply providing a
pointer to vertex array data in application memory, the contents of buffer objects must be
explicitly defined.
126 007-2392-003

ARB_vertex_buffer_object—The Vertex Buffer Object Extension
Once a valid buffer object has been bound, define its contents by making the following
call:

void glBufferDataARB(GLenum target, GLsizeiptrARB size, const void *data,
GLenum usage);

target If the buffer contents are to be used for vertex array data (for example,
vertices, normals, texture coordinates, etc.), then target must be
GL_ARRAY_BUFFER_ARB. If the contents are to be used for vertex index
data (for example, indices into vertex array data), then target must be
GL_ELEMENT_ARRAY_BUFFER_ARB. This target is described further
later in the section “Using Buffer Objects as Vertex Array Sources” on
page 130.

data A pointer to the buffer data in application memory. The argument data
may be NULL, in which case the buffer object size is set as specified, but
its contents remain undefined.

size The length of data in basic machine units (bytes). The type of size is the
new C type GLsizeiptrARB. This type is an unsigned integer type
guaranteed to be large enough to represent the largest possible object in
application memory.

usage Provides a hint as to the expected usage pattern of the buffer being
defined. The following are the valid usage hints:

GL_STREAM_DRAW_ARB
Buffer contents will be specified once by the application and
used at most a few times as the source of a drawing
command.

GL_STREAM_READ_ARB
Buffer contents will be specified once by reading data from
OpenGL and queried at most a few times by the application.

GL_STREAM_COPY_ARB
Buffer contents will be specified once by reading data from
OpenGL and used at most a few times as the source of a
drawing command.

GL_STATIC_DRAW_ARB
Buffer contents will be specified once by the application and
used many times as the source for drawing commands.
007-2392-003 127

7: Vertex Processing Extensions
GL_STATIC_READ_ARB
Buffer contents will be specified once by reading data from
OpenGL and queried many times by the application.

GL_STATIC_COPY_ARB
Buffer contents will be specified once by reading data from
OpenGL and used many times as the source for drawing
commands.

GL_DYNAMIC_DRAW_ARB
Buffer contents will be respecified repeatedly by the
application and used many times as the source for drawing
commands.

GL_DYNAMIC_READ_ARB
Buffer contents will be respecified repeatedly by reading
data from OpenGL and queried many times by the
application.

GL_DYNAMIC_COPY_ARB
Buffer contents will be respecified repeatedly by reading
data from OpenGL and used many times as the source for
drawing commands.

The most common usage patterns for buffer objects being used as vertex array or element
sources are the following:

GL_STATIC_DRAW_ARB
Used for unchanging objects. This usage is similar to creating display
lists that will be called many times.

GL_DYNAMIC_DRAW_ARB
Used for objects whose contents may be edited repeatedly.

Many of the usage patterns are only expected to be relevant for future extensions built
on ARB_vertex_buffer_object that use the same buffer object mechanism for other
purposes, such as pixel or video data.

To edit (update) the contents of an existing buffer object by changing only part of the
buffer contents, make the following call:

void glBufferSubDataARB(GLenum target, GLintptrARB offset, GLsizeiptrARB
size, const void *data);
128 007-2392-003

ARB_vertex_buffer_object—The Vertex Buffer Object Extension
The arguments target, data, and size specify the buffer object target to be affected, a
pointer to the updated data block in application memory, and the length of the data block
to replace in the buffer in the same fashion as the corresponding parameters of
glBufferDataARB().

The argument offset specifies the start of the range of data to replace in the buffer object
in basic machine units relative to the beginning of the buffer being modified. The type of
offset is the new C type GLintptrARB. This type is an integer type guaranteed to be large
enough to represent the largest possible offset to an element of a buffer in application
memory.

Elements offset through (offset + size – 1) in the buffer object bound to target are replaced
by the corresponding elements in application memory starting at data. An error is
generated if offset is less than zero, or if (offset + size) is greater than the size of the buffer
object.

Mapping Buffer Objects to Application Memory

An alternate method for editing buffer objects is to map them into application memory
by making the following call:

void *glMapBufferARB(GLenum target, GLenum access);

If the buffer object bound to target can be successfully mapped, a pointer to the buffer
contents is returned; otherwise, a GL_OUT_OF_MEMORY error will be generated.

The argument access must be one of GL_READ_ONLY_ARB, GL_WRITE_ONLY_ARB, or
GL_READ_WRITE_ARB. It specifies which operations may be performed on the buffer
while it is mapped. The most common access pattern for buffer objects being used as
vertex array sources is GL_WRITE_ONLY_ARB. It indicates that small parts of the buffer
may be updated, but nothing will be read from the buffer.

While a buffer object is mapped, no OpenGL operations may refer to the mapped data
either by issuing drawing commands that would refer to data in the mapped buffer
object or by passing pointers within the mapped region to other OpenGL commands.
Also, glBufferSubData() may not be called while the corresponding buffer object is
mapped.

After modifying mapped buffer object contents and before using that buffer object as a
source or sink for OpenGL, unmap the buffer object by making the following call:

GLboolean glUnmapBufferARB(GLenum target);
007-2392-003 129

7: Vertex Processing Extensions
If glUnmapBufferARB() returns GL_FALSE, it indicates that values in the buffer object’s
data have become corrupted (usually as the result of a screen resolution change or
another event that affects graphics memory). In this case, the buffer object contents are
undefined.

Note: Mapping buffer objects into application memory may be a very inefficient way to
modify their contents especially when performing indirect rendering, and such mapping
has several possible failure modes caused by external events such as resolution changes.
If possible, use glBufferSubData() to update buffer contents instead.

Using Buffer Objects as Vertex Array Sources

Once you create a buffer object and define its contents, you can use it as a source for array
drawing operations. When any of the commands defining an array pointer (including
those in the following list) is called while a buffer object is bound, the interpretation of
the pointer argument to that command is changed:

• glColorPointer()

• glEdgeFlagPointer()

• glIndexPointer()

• glNormalPointer()

• glTexCoordPointer()

• glVertexPointer()

• glFogCoordPointerEXT(), if the EXT_fog_coord extension is supported

• glSecondaryColorPointerEXT(), if the EXT_secondary_color extension is
supported

• glVertexAttribPointerARB(), if the ARB_vertex_program extension is supported

• glWeightPointerARB(), if the ARB_vertex_blend extension is supported

Instead of being interpreted as a pointer to data in application memory, the pointer is
interpreted as an offset within the currently bound buffer object.

After defining a particular array pointer in this fashion and when the corresponding
array is enabled, all vertex array drawing operations (for example, those in the following
130 007-2392-003

ARB_vertex_buffer_object—The Vertex Buffer Object Extension
list) will read data from the corresponding buffer object instead of from application
memory:

• glArrayElement()

• glDrawArrays()

• glDrawElements()

• glDrawRangeElements()

• glMultiDrawArrays()

• glMultiDrawElementsEXT()

Once an array pointer is defined as an offset within a buffer object, the buffer object may
be unbound, but the array pointer will continue to refer to that buffer object until it is
redefined. This allows different array pointers to refer to different buffer objects, as well
as to application memory. However, for maximum performance, all enabled array
pointers should refer to buffer objects, both because any access to application memory
while drawing is likely to limit performance due to bandwidth constraints and the
complexity of mixing arrays from application and buffer object memory may throw the
OpenGL implementation onto a slower and more complex code path.

When specifying array pointers as offsets within buffer objects, the application must
convert an integer offset, expressed in basic machine units into a pointer argument. For
this purpose, it is useful to define a macro like the following:

#define BUFFER_OFFSET(offset) ((char *)NULL + (offset))

For example, suppose that the bound buffer object contains an array of packed
3-component, floating point normal data and you wish to set the normal pointer to the
64th element of this array. In this case, the offset in basic machine units would be
64 * 3 * sizeof(GLfloat). Therefore, you would make the following call:

glNormalPointer(3, GL_FLOAT, 0,
BUFFER_OFFSET(64 * 3 * sizeof(GLfloat)));

Using Buffer Objects as Array Indices

In addition to storing vertex array data in buffer objects, array indices may also be stored.
These indices are normally specified as pointer arguments to the array drawing
commands glDrawElements(), glDrawRangeElements(), and (if the
EXT_multi_draw_arrays extension is supported) glMultiDrawElementsEXT(). By
storing both array data and array indices in buffer objects, indexed drawing operations
007-2392-003 131

7: Vertex Processing Extensions
do not need to refer to application memory ever once they are set up. This enables
maximum performance.

Array indices in buffer objects are defined using the same calls as for array data—for
example, glBindBufferARB(), glBufferDataARB(), etc. However, the target
GL_ELEMENT_ARRAY_BUFFER_ARB must be used for indices instead of
GL_ARRAY_BUFFER_ARB.

In the same fashion as the array pointer calls, if glDrawElements() or
glDrawRangeElements() is called while a buffer object is bound to
GL_ELEMENT_ARRAY_BUFFER_ARB, the indices argument to these calls is interpreted as
an offset into the buffer object, rather than a pointer to index data in application memory.
If glMultiDrawElementsEXT() is called, the indices argument is still interpreted as a
pointer into application memory; however, the contents of the memory located at that
pointer are then interpreted as an array of offsets into the buffer object, rather than an
array of pointers into application memory.

Querying Data in Buffer Objects

To query part or all of the contents of a buffer object, make the following call:

void glGetBufferSubDataARB(GLenum target, GLintptrARB offset,
GLsizeiptrARB size, void *data);

The argumemts target, offset, and size have the same meaning as the corresponding
arguments of glBufferSubDataARB(); they specify the target to be queried and the range
of data within the buffer object bound to that target to return. The returned data is copied
to the region of application memory referenced by data.

Buffer object contents may not be queried while an object is mapped; calls to
glGetBufferSubDataARB() will generate a GL_INVALID_OPERATION error in this case.

Sample Code

The following code fragment defines two buffer objects, fills them with data interpreted
respectively as vertex coordinates and vertex colors, and draws a triangle using the data
contained in the buffer objects.

#define BUFFER_OFFSET(offset) ((char *)NULL + (offset))

/* Vertex coordinate and color data to place in buffer objects */
GLfloat vertexData[] = { -1.0, 1.0, 0.0,
132 007-2392-003

ARB_vertex_buffer_object—The Vertex Buffer Object Extension
 -1.0, -1.0, 0.0,
 1.0, -1.0, 0.0 };
GLfloat colorData[] = { 0.0, 0.0, 0.0,
 1.0, 0.0, 0.0,
 1.0, 1.0, 0.0 };

/* Names of the vertex and color buffer objects */
GLuint vertexBuffer, colorBuffer;

/* Generate two unused buffer object names */
glGenBuffersARB(1, &vertexBuffer);
glGenBuffersARB(1, &colorBuffer);

/* Bind the first buffer object and fill it with vertex data */
glBindBufferARB(GL_ARRAY_BUFFER, vertexBuffer);
glBufferDataARB(GL_ARRAY_BUFFER, sizeof(vertexData), vertexData,
GL_STATIC_DRAW);

/* Bind the second buffer object and fill it with color data */
glBindBufferARB(GL_ARRAY_BUFFER, colorBuffer);
glBufferDataARB(GL_ARRAY_BUFFER, sizeof(colorData), colorData,
GL_STATIC_DRAW);

/* Enable vertex and color arrays for drawing */
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);

/* Set the vertex array pointer to the start of the vertex buffer
object */
glBindBufferARB(GL_ARRAY_BUFFER, vertexBuffer);
glVertexPointer(3, GL_FLOAT, 0, BUFFER_OFFSET(0));

/* Set the color array pointer to the start of the color buffer object
*/
glBindBufferARB(GL_ARRAY_BUFFER, colorBuffer);
glColorPointer(3, GL_FLOAT, 0, BUFFER_OFFSET(0));

/* Unbind the array buffer target, since all enabled array
 * pointers have now been set.
 */
glBindBufferARB(GL_ARRAY_BUFFER, 0);

/*
 * Everything up to this point is initialization. Now the application
 * can enter its drawing loop.
007-2392-003 133

7: Vertex Processing Extensions
 */

while (!drawingLoopDone()) {
 /* Perform input and per-loop processing, if required */
 doLoopProcessing();

/* Draw the triangle defined by the vertex and color buffer objects
*/
 glDrawArrays(GL_TRIANGLE_STRIP, 0, 3);
}

/*
 * When the drawing loop is complete, buffer objects should be deleted.
 */

/* Disable the vertex and color arrays */
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);

/* Free data contained in the buffer objects, and delete the objects */
glDeleteBuffersARB(1, vertexBuffer);
glDeleteBuffersARB(1, colorBuffer);

New Functions

The ARB_vertex_buffer_object extension introduces the following functions:

• glBindBufferARB()

• glBufferDataARB()

• glBufferSubDataARB()

• glDeleteBuffersARB()

• glGenBuffersARB()

• glGetBufferSubDataARB()

• glIsBufferARB()

• glMapBufferARB()

• glUnmapBufferARB()
134 007-2392-003

ARB_window_pos—The Window-Space Raster Position Extension
ARB_window_pos—The Window-Space Raster Position Extension

The ARB_window_pos extension provides a set of functions to directly set the raster
position in window coordinates. This extension bypasses the model-view and projection
matrices and the viewport-to-window mapping.

Why Use the Window-Space Raster Position Extension?

When drawing two-dimensional geometry, applications often want to have pixel-precise
control of where pixels are drawn on the screen. Normally when specifying the current
raster position, the raster position specified by the application is treated in the same
fashion as a vertex: it is transformed by the model-view and projection matrices and then
sent through the viewport-to-window mapping to arrive at a window-space raster
position.

While it is possible to set the raster position to a specific window-space location using the
conventional mechanism, doing so requires careful setup of the transformation matrices
and viewport mapping. Also, if the projected window-space raster position is outside the
window bounds, it may be marked invalid so that nothing will be drawn by
glDrawPixels(), even though this effect may be desirable (for drawing pixel images that
are partially outside the window but whose visible regions are still drawn).

This extension introduces a mechanism for directly setting the raster position in
window-space coordinates and ensuring that the resulting raster position will always be
valid even if it is outside the window.

Using the Window-Space Raster Position Extenstion

The current raster position may be defined in window space with any of the following
calls:

void glWindowPos2sARB(GLshort x, GLshort y);
void glWindowPos2iARB(GLint x, GLint y);
void glWindowPos2fARB(GLfloat x, GLfloat y);
void glWindowPos2dARB(GLdouble x, GLdouble y);
void glWindowPos3sARB(GLshort x, GLshort y, GLshort z);
void glWindowPos3iARB(GLint x, GLint y, GLint z);
void glWindowPos3fARB(GLfloat x, GLfloat y, GLfloat z);
void glWindowPos3dARB(GLdouble x, GLdouble y, GLdouble z);
007-2392-003 135

7: Vertex Processing Extensions
In the glWindowPos2*() forms of this call, only the x and y raster position coordinates
are specified, and raster position z is always set to zero. In the glWindowPos3*() forms,
x, y, and z are all specified.

The following are the vector forms of these calls;

void glWindowPos2svARB(const GLshort *pos);
void glWindowPos2ivARB(const GLint *pos);
void glWindowPos2fvARB(const GLfloat *pos);
void glWindowPos2dvARB(const GLdouble *pos);
void glWindowPos3svARB(const GLshort *pos);
void glWindowPos3ivARB(const GLint *pos);
void glWindowPos3fvARB(const GLfloat *pos);
void glWindowPos3dvARB(const GLdouble *pos);

In the glWindowPos2*vARB() forms of this call, the argument is a pointer to a
two-element vector specifying x and y, and the raster position z is always set to zero. In
the glWindowPos3*vARB() forms, the argument is a pointer to a three-element vector
specifying x, y, and z.

For all forms of glWindowPos*(), associated data (raster color, texture coordinates, etc.)
for the current raster position is taken from the current state values in the same fashion
as for glRasterPos*(). However, lighting, texture coordinate generation, and clipping are
not performed by glWindowPos*().

New Functions

The ARB_window_pos extesnion introduces the 16 functions listed in preceding section.

EXT_clip_volume_hint—The Clip Volume Hint Extension

The EXT_clip_volume_hint extension provides a mechanism for applications to indicate
that they do not require clip volume clipping for primitives. It allows applications to
maximize performance in situations where they know that clipping is unnecessary.
136 007-2392-003

EXT_compiled_vertex_array—The Compiled Vertex Array Extension
Why Use Clip Volume Hints?

Clipping geometry to the clip volume can decrease performance, and is not always
needed. In many situations, applications can determine that part or all of the geometry
being rendered lies entirely inside the clip volume; in other words, that such geometry
will never be clipped. This is typically done by testing bounding boxes around
application geometry against the clip volume. While such tests might in principle be
done using OpenGL features such as the NV_occlusion_query extension, it is usually
best to simply compare bounding boxes against the plane equations defining the clip
volume entirely in the application code.

Using Clip Volume Hints

To hint that clip volume clipping does not need to be performed, call glHint() with a
target of CLIP_VOLUME_CLIPPING_HINT_EXT and a mode of GL_FASTEST. To hint
that clip volume clipping must be performed, use a mode of GL_NICEST instead.

As with all hints, the clip volume hint is only an indication and the OpenGL
implementation may not respect the hint when set to GL_FASTEST. However, if large
amounts of geometry can easily be tested to confirm that they need not be clipped, then
there may be performance gains in using the hint particularly when using multiple
user-defined clipping planes.

EXT_compiled_vertex_array—The Compiled Vertex Array Extension

The EXT_compiled_vertex_array extension defines an interface which allows static
(unchanging) vertex arrays in application memory to be cached, pre-transformed, or
pre-compiled.

Why Use Compiled Vertex Arrays?

Compiled vertex arrays may be used to cache the transformed results of array data for
reuse by several glDrawArrays(), glArrayElement(), or glDrawElements() commands.
For example, you might get better performance when drawing a large mesh of
quadrilaterals one strip at a time, where each successive strip shares half its vertices with
the previous strip. It also allows transferring array data to faster memory for more
efficient processing.
007-2392-003 137

7: Vertex Processing Extensions
Using compiled vertex arrays is an optimization technique that should be used only
when porting old code that already uses client-side vertex arrays for drawing. Whenever
possible in new applications, use buffer objects instead (see
“ARB_vertex_buffer_object—The Vertex Buffer Object Extension” on page 123).

Compiled vertex arrays should be used only when executing multiple vertex array
drawing commands that collectively refer multiple times to most of the elements in the
locked range. The performance benefits of using compiled vertex arrays with very small
vertex arrays (consequently, not reusing many elements) are unlikely to be worthwhile.

Using Compiled Vertex Arrays

To use compiled vertex arrays, follow these steps:

1. Identify the range of elements of the currently bound vertex arrays that may be
reused in subsequent drawing operations

2. Make the following call:

void glLockArraysEXT(GLint first, GLsizei count);

The argument first specifies a starting element index and count specifies the number
of elements to lock. Elements first through (first + count – 1) of all enabled vertex
arrays will be locked.

3. Render geometry using glDrawArrays(), glDrawElements(), or other vertex array
drawing commands.

While vertex arrays are locked, changes made to array contents by an application
may not be reflected in any vertex array drawing commands. Furthermore, vertex
array drawing commands that refer to array elements outside the locked range have
undefined results.

4. When finished drawing data in the locked ranges, make the following call:

void glUnlockArraysEXT(void);

This unlocks all arrays; subsequent changes to vertex arrays are properly reflected
by drawing commands, and the restriction of drawing only elements within the
locked range is lifted.
138 007-2392-003

EXT_fog_coord—The Fog Coordinate Extension
New Functions

The EXT_compiled_vertex_array extension introduces the following functions:

• glLockArraysEXT()

• glUnlockArraysEXT()

EXT_fog_coord—The Fog Coordinate Extension

The EXT_fog_coord extension introduces the fog coordinate, a new per-vertex attribute,
which may be used in fog computation in place of the fragment’s eye distance.

Why Use Fog Coordinates?

Normally, when fog is enabled, the fog factor computed for each fragment is based on
the distance from the camera to the fragment. This distance is fed into one of three
parameterized fog models (linear, exponential, or exponential-squared), as selected by
parameters to glFog*().

Fog models based only on fragment distance do not provide a level of control sufficient
for effects such as patchy fog. By specifying arbitrary per-vertex values as input to the
fog model rather than fragment distance, applications can produce more sophisticated
and realistic fog models.

Using Fog Coordinates

To select use of either the fog coordinate or the fragment eye distance when computing
fog, specify the fog coordinate source by making the following call:

glFogi(GL_FOG_COORDINATE_SOURCE_EXT, param);

If param is GL_FOG_COORDINATE_EXT, the fog coordinate is used in fog computations.
If param is GL_FRAGMENT_DEPTH_EXT, the fragment eye distance is used. Initially
fragment eye distance is used.
007-2392-003 139

7: Vertex Processing Extensions
Fog coordinates are interpolated over primitives in the same fashion as colors, texture
coordinates, and other vertex attributes. When drawing immediate-mode geometry, the
current fog coordinate is specified by calling one of the following functions:

void glFogCoordfEXT(GLfloat coord);
void glFogCoorddEXT(GLdouble coord);
void glFogCoordfvEXT(GLfloat *coord);
void glFogCoorddvEXT(GLdouble *coord);

The fog coordinate may also be specified when drawing using vertex arrays. An array of
per-vertex fog coordinates is defined by making the following call:

void glFogCoordPointerEXT(GLenum type, GLsizei stride, const GLvoid *ptr);

The argument type specifies the type of data in the array and must be either GL_FLOAT
or GL_DOUBLE. The argument stride specifies the offset in basic machine units from one
fog coordinate to the next in the array starting at ptr. As with other vertex array
specification calls, a stride of zero indicates that fog coordinates are tightly packed in the
array.

To enable or disable fog coordinates when drawing vertex arrays, call
glEnableClientState() or glDisableClientState() with parameter
GL_FOG_COORDINATE_ARRAY_EXT.

Querying the Fog Coordinate State

The current fog coordinate can be queried by calling glGetFloatv() with parameter name
GL_CURRENT_FOG_COORDINATE_EXT. Parameters of the fog coordinate vertex array
pointer can be queried by calling glGetIntegerv() with parameter name
GL_FOG_COORDINATE_ARRAY_TYPE_EXT or
GL_FOG_COORDINATE_ARRAY_STRIDE_EXT and calling glGetPointerv() with
parameter name GL_FOG_COORDINATE_ARRAY_POINTER_EXT.

New Functions

The EXT_fog_coord extension introduces the following functions:

• glFogCoordfEXT()

• glFogCoorddEXT()

• glFogCoordfvEXT()
140 007-2392-003

EXT_multi_draw_arrays—The Multiple Draw Arrays Extension
• glFogCoorddvEXT()

• glFogCoordPointerEXT()

EXT_multi_draw_arrays—The Multiple Draw Arrays Extension

The EXT_multi_draw_arrays extension defines two functions that allow multiple groups
of primitives to be rendered from the same vertex arrays.

Why Use Multiple Draw Arrays?

When drawing many small, disjoint geometric primitives from a single set of vertex
arrays, a separate call to glDrawArrays() or glDrawElements() is required for each
primitive. This can be inefficient due to the setup required for each call. Using this
extension, multiple disjoint ranges of vertex arrays can be drawn in a single call. This
reduces the setup overhead and code complexity.

Using Multiple Draw Arrays

When drawing more than one range of data from a set of vertex arrays, where each such
range is a contiguous group of elements in the arrays, make the following call:

void glMultiDrawArraysEXT(GLenum mode, const GLint *first,
const GLsizei *count, GLsizei primcount);

This is equivalent to the following multiple calls to glDrawArrays():

for (int i = 0; i < primcount; i++) {
 if (count[i]) > 0)
 glDrawArrays(mode, first[i], count[i]);
}

When drawing more than one range of data, where each range is defined by a contiguous
range of indices, make the following call:

void glMultiDrawElementsEXT(GLenum mode, const GLsizei *count,
GLenum type, const GLvoid **indices, GLsizei primcount);

 This is equivalent to the following multiple calls to glDrawElements();

for (int i = 0; i < primcount; i++) {
007-2392-003 141

7: Vertex Processing Extensions
 if (count[i]) > 0)
 glDrawElements(mode, count[i], type, indices[i]);
}

The ith element of the count array is the number of array indices to draw, and the ith
element of the index array is a pointer to the array indices. All indices must be of the same
specified type.

New Functions

The EXT_multi_draw_arrays extension introduces the following functions:

• glMultiDrawArraysEXT()

• glMultiDrawElementsEXT()

EXT_secondary_color—The Secondary Color Extension

The EXT_secondary_color extension introduces the secondary color, a new per-vertex
attribute. When lighting is disabled, the secondary color may be added to the color
resulting from texturing. In unextended OpenGL 1.3, this color sum computation is only
possible when lighting is enabled, and the secondary color used in this situation is based
on the specular term of lighting equations rather than being explicitly defined by the
application.

Why Use Secondary Color?

Many rendering algorithms use texture-based lighting computations rather than the
builtin vertex lighting of OpenGL. While texture-based lighting is more difficult to
specify, it supports arbitrary lighting models. In unextended OpenGL 1.3, the color sum
hardware is not available to texture-based lighting. By introducting an explicit secondary
color attribute, lighting effects such as non-textured specular highlights can easily be
produced even when using texture-based lighting.
142 007-2392-003

EXT_secondary_color—The Secondary Color Extension
Using Secondary Color

To control the use of secondary color and color sum when OpenGL lighting is disabled,
call glEnable() or glDisable() with parameter GL_COLOR_SUM_EXT.

Only the red, green, and blue components of the secondary color can be controlled; the
alpha component is unused in the color sum and is assumed to be zero. Initially, the
secondary color is (0,0,0).

Secondary color is interpolated over primitives in the same fashion as color. When
drawing immediate-mode geometry, the current secondary color is specified by calling
one of the following functions:

void glColor3bEXT(GLbyte red, GLbyte green, GLbyte blue);
void glColor3ubEXT(GLubyte red, GLubyte green, GLubyte blue);
void glColor3sEXT(GLshort red, GLshort green, GLshort blue);
void glColor3usEXT(GLushort red, GLushort green, GLushort blue);
void glColor3iEXT(GLint red, GLint green, GLint blue);
void glColor3uiEXT(GLuint red, GLuint green, GLuint blue);
void glColor3fEXT(GLfloat red, GLfloat green, GLfloat blue);
void glColor3dEXT(GLdouble red, GLdouble green, GLdouble blue);
void glColor3bvEXT(GLbyte *coords);
void glColor3ubvEXT(GLubyte *coords);
void glColor3svEXT(GLshort *coords);
void glColor3usvEXT(GLushort *coords);
void glColor3ivEXT(GLint *coords);
void glColor3uivEXT(GLuint *coords);
void glColor3fvEXT(GLfloat *coords);
void glColor3dvEXT(GLdouble *coords);

In the vector forms of these calls, coords is a three-element array containing red, green,
and blue secondary color components in order. The data formats supported and
interpretation of parameter values as color components are identical to the
three-component glColor*() commands.

Secondary color may also be specified when drawing using vertex arrays. An array of
per-vertex secondary colors is defined by making the following call:

void glSecondaryColorPointerEXT(GLint size, GLenum type, GLsizei stride,
const GLvoid *ptr);
007-2392-003 143

7: Vertex Processing Extensions
 The arguments are defined as follows:

size Specifies the number of components per color value and must always be
3.

type Specifies the type of data in the array and must be one of GL_BYTE,
GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT,
GL_UNSIGNED_INT, GL_FLOAT, or GL_DOUBLE.

stride Specifies the offset in basic machine units from one secondary color to
the next in the array starting at ptr. As with other vertex array
specification calls, a stride of zero indicates that secondary colors are
tightly packed in the array.

To enable or disable secondary colors when drawing vertex arrays, call
glEnableClientState() or glDisableClientState() with parameter
GL_SECONDARY_COLOR_ARRAY_EXT.

Querying the Secondary Color State

The current secondary color can be queried by calling glGetFloatv() with parameter
name GL_CURRENT_SECONDARY_COLOR_EXT. Parameters of the secondary color
vertex array pointer can be queried by calling glGetIntegerv() with one of the following
parameter names and calling glGetPointerv() with parameter name
GL_SECONDARY_COLOR_ARRAY_POINTER_EXT:

• GL_SECONDARY_COLOR_ARRAY_SIZE_EXT

• GL_SECONDARY_COLOR_ARRAY_TYPE_EXT

• GL_SECONDARY_COLOR_ARRAY_STRIDE_EXT

New Functions

The EXT_secondary_color extension introduces the list of functions defined in section
“Using Secondary Color” on page 143.
144 007-2392-003

The Vertex Array Object Extensions (Legacy)
 The Vertex Array Object Extensions (Legacy)

In addition to the ARB_vertex_buffer_object extension, Onyx4 and Silicon Graphics
Prism systems also support the following set of ATI vendor extensions that were
developed prior to ARB_vertex_buffer_object and were the basis on which
ARB_vertex_buffer_object was specified:

• ATI_element_array

• ATI_map_object_buffer

• ATI_vertex_array_object

• ATI_vertex_attrib_array_object

Note: These four extensions are included only for support of legacy applications being
ported from other platforms. They supply no functionality beyond that of
ARB_vertex_buffer_object and are not as widely used. Whenever writing new code
using buffer objects, always use the ARB extension.

Since these are legacy extensions, they are not documented in detail in this guide. The
following table briefly describes each extension in terms of how it maps onto
ARB_vertex_buffer_object:

ATI_vertex_array_object
Defines the base functionality for creating array objects: defining usage
modes and contents of array objects and defining specific vertex arrays
as portions of array objects.

ATI_vertex_attrib_array_object
Defines additional APIs for creating array objects that can contain vertex
attribute data for use with the ARB_vertex_program and
ARB_fragment_program extensions.

ATI_element_array
Allows drawing array objects using arrays of indices also in array
objects, analogous to the ELEMENT_ARRAY_BUFFER_ARB target
supported by ARB_vertex_buffer_object.

ATI_map_object_buffer
Allows mapping array objects into application memory, analogous to
the glMapBufferARB() functionality of ARB_vertex_buffer_object.
007-2392-003 145

7: Vertex Processing Extensions
New Functions

The legacy vertex array objects extensions introduce the following functions:

• glArrayObjectATI()

• glDrawElementArrayATI()

• glDrawRangeElementArrayATI()

• glElementPointerATI()

• glFreeObjectBufferATI()

• glGetArrayObjectfvATI()

• glGetArrayObjectivATI()

• glGetObjectBufferfvATI()

• glGetObjectBufferivATI()

• glGetVariantArrayObjectfvATI()

• glGetVariantArrayObjectivATI()

• glGetVertexAttribArrayObjectfvATI()

• glGetVertexAttribArrayObjectivATI()

• glIsObjectBufferATI()

• glMapObjectBufferATI()

• glNewObjectBufferATI()

• glUnmapObjectBufferATI()

• glUpdateObjectBufferATI()

• glVariantArrayObjectATI()

• glVertexAttribArrayObjectATI()
146 007-2392-003

The Texture Coordinate Generation Extensions (Legacy)
The Texture Coordinate Generation Extensions (Legacy)

There are two legacy texture coordinate generation extensions:

• EXT_texgen_reflection

• NV_texgen_reflection

The EXT_texgen_reflection extension provides two new texture coordinate generation
modes that are useful in texture-based lighting and environment mapping. Differing
only in the token names used, the NV_texgen_reflection provides identical functionality.

Note: The functionality defined by these extensions was later promoted into a standard
part of OpenGL 1.3, and these extensions are included only for support of legacy
applications being ported from other platforms. Whenever writing new code, always use
the OpenGL 1.3 interface.

Since these are legacy extensions, they are not documented in detail here; only the
mapping from the extension tokens to the OpenGL 1.3 tokens is defined.

EXT_texgen_reflection defines the following two new texture generation modes,
according to the value of param to glTexGeni() when its pname argument is
GL_TEXTURE_GEN_MODE:

• GL_NORMAL_MAP_EXT

• GL_REFLECTION_MAP_EXT

NV_texgen_reflection uses the following token names to define the same modes,
respectively:

• GL_NORMAL_MAP_NV

• GL_REFLECTION_MAP_NV

In OpenGL 1.3, the mode defined by GL_NORMAL_MAP_EXT and GL_NORMAL_MAP_NV
may instead be defined by GL_NORMAL_MAP. Likewise, the the mode defined by
GL_REFLECTION_MAP_EXT and GL_REFLECTION_MAP_NV may instead be defined by
GL_REFLECTION_MAP.
007-2392-003 147

Chapter 8

8. Texturing Extensions

This chapter explains how to use the following OpenGL texturing extensions:

• “ATI_texture_env_combine3—New Texture Combiner Operations Extension” on
page 150

• “ATI_texture_float—The Floating Point Texture Extension” on page 152

• “ATI_texture_mirror_once—The Texture Mirroring Extension” on page 154

• “EXT_texture_compression_s3tc—The S3 Compressed Texture Format Extension”
on page 155

• “EXT_texture_filter_anisotropic—The Anisotropic Texture Filtering Extension” on
page 157

• “EXT_texture_rectangle—The Rectangle Texture Extension” on page 159

• “EXT_texture3D—The 3D Texture Extension” on page 161

• “SGI_texture_color_table—The Texture Color Table Extension” on page 167

• “SGIS_detail_texture—The Detail Texture Extension” on page 170

• “SGIS_filter4_parameters—The Filter4 Parameters Extension” on page 177

• “SGIS_sharpen_texture—The Sharpen Texture Extension” on page 180

• “SGIS_texture_edge/border_clamp—Texture Clamp Extensions” on page 185

• “SGIS_texture_filter4—The Texture Filter4 Extensions” on page 187

• “SGIS_texture_lod—The Texture LOD Extension” on page 189

• “SGIS_texture_select—The Texture Select Extension” on page 191
007-2392-003 149

8: Texturing Extensions
This chapter also describe the following extensions that are experimental:

• “SGIX_clipmap—The Clipmap Extension” on page 193

• “SGIX_texture_add_env—The Texture Environment Add Extension” on page 204

• “SGIX_texture_lod_bias—The Texture LOD Bias Extension” on page 205

• “SGIX_texture_scale_bias—The Texture Scale Bias Extension” on page 210

ATI_texture_env_combine3—New Texture Combiner Operations
Extension

The OpenGL 1.3 core provides texture combiner operations. These operations are a
powerful set of functions that can be applied at each texture unit and exceed the simpler
OpenGL 1.0 texture environment functions, such as ADD. The extension
ATI_texture_env_combine3 defines several additional combiner operations.

This section assumes familiarity with the basic texture combiner interface and only
describes the new operations added by the extension.

Why Use Texture Combiners?

Texture combiners allow a greatly increased range of texturing functionality (per-pixel
lighting, bump mapping, and other advanced rendering effects) while still using the
OpenGL fixed-function pipeline. This extension increases that range even further
compared to base OpenGL 1.3. For an even broader range of functionality, consider using
fragment programs instead.

Using The New Texture Combiner Operations

When glTexEnvi() or glTexEnvf() is called with a parameter name of GL_COMBINE_RGB
or GL_COMBINE_ALPHA, this extension allows the corresponding parameter to take on
one of the following values:

• GL_MODULATE_ADD_ATI

• GL_MODULATE_SIGNED_ADD_ATI

• GL_MODULATE_SUBTRACT_ATI
150 007-2392-003

ATI_texture_env_combine3—New Texture Combiner Operations Extension
Table 8-1 shows the texture functions corresponding to these operations.

In Table 8-1, Arg0, Arg1, and Arg2 represent values determined by the values set for
GL_SOURCE(0,1,2)_(RGB,ALPHA) and GL_OPERAND(0,1,2)_(RGB,ALPHA)with
glTexEnv*(). In addition to the values defined by OpenGL 1.3 (GL_TEXTURE,
GL_CONSTANT, GL_PRIMARY_COLOR, and GL_PREVIOUS), this extension allows
GL_SOURCE(0,1,2)_(RGB,ALPHA) to take on the values GL_ZERO and GL_ONE. In
this case, the values generated for the corresponding Arg(0,1,2) are shown in
Table 8-2 and Table 8-3.

Table 8-1 Additional Texture Combiner Operations

GL_COMBINE_RGB or GL_COMBINE_ALPHA Operation Texture Function

GL_MODULATE_ADD_ATI Arg0 * Arg2 + Arg1

GL_MODULATE_SIGNED_ADD_ATI Arg0 * Arg2 + Arg1 – 0.5

GL_MODULATE_SUBTRACT_ATI Arg0 * Arg2 – Arg1

Table 8-2 New Arguments for Texture Combiner Operations

GL_SOURCE(0,1,2)_RGB GL_OPERAND(0,1,2)_RGB
Resulting Arg(0,1,2) RGB Value
(for each component)

GL_ZERO GL_SRC_COLOR 0

GL_ZERO GL_ONE_MINUS_SRC_COLOR 1

GL_ZERO GL_SRC_ALPHA 0

GL_ZERO GL_ONE_MINUS_SRC_ALPHA 1

GL_ONE GL_SRC_COLOR 1

GL_ONE GL_ONE_MINUS_SRC_COLOR 0

GL_ONE GL_SRC_ALPHA 1

GL_ONE GL_ONE_MINUS_SRC_ALPHA 0
007-2392-003 151

8: Texturing Extensions
ATI_texture_float—The Floating Point Texture Extension

The ATI_texture_float extension defines new, sized texture internal formats with 32- and
16-bit floating point components. The 32-bit floating point components are stored in
standard IEEE single-precision float format. The 16-bit floating point components have 1
sign bit, 5 exponent bits, and 10 mantissa bits. Floating point components are clamped to
the limits of the range representable by their format.

Why Use Floating Point Textures?

Floating point textures support greatly increased numerical range and precision
compared to fixed-point textures, which can only represent values in the range [0,1]. This
is important for many purposes, such as high dynamic range imaging, performing
general-purpose numerical computations in the graphics processor, and representing
input data naturally without needing to scale and bias it to fit in the limited range of
fixed-point textures.

Floating point textures are especially useful when using fragment shaders, where a much
wider range of computations can be performed than in the fixed-function graphics
pipeline.

Table 8-3 New Arguments for Texture Combiner Operations (Alpha-Related)

GL_SOURCE(0,1,2)_ALPHA GL_OPERAND(0,1,2)_ALPHA
Resulting Arg(0,1,2) Alpha
Value

GL_ZERO GL_SRC_ALPHA 0

GL_ZERO GL_ONE_MINUS_SRC_ALPHA 1

GL_ONE GL_SRC_ALPHA 1

GL_ONE GL_ONE_MINUS_SRC_ALPHA 0
152 007-2392-003

ATI_texture_float—The Floating Point Texture Extension
Using Floating Point Textures

The new formats defined by this extension may be used as the internalformat
parameter when specifying textures with one of the following:

• glTexImage1D()

• glTexImage2D()

• glTexImage3D()

• glCopyTexImage1D()

• glCopyTexImage2D()

The names of the new formats, the corresponding base internal format, and the precision
of each component in a texture stored with those formats are shown in Table 8-4. In the
table, “f32” means the component is stored as a 32-bit IEEE floating point number and
“f16” means the component is stored as a 16-bit floating point number.

Table 8-4 New Floating Point Internal Formats for Textures

Sized Internal Format Base Internal Format Red
Bits

Green
Bits

Blue
Bits

Alpha
Bits

Lum
Bits

Inten
Bits

RGBA_FLOAT32_ATI RGBA f32 f32 f32 f32

RGB_FLOAT32_ATI RGB f32 f32 f32

ALPHA_FLOAT32_ATI ALPHA f32

INTENSITY_FLOAT32_ATI INTENSITY f32

LUMINANCE_FLOAT32_ATI LUMINANCE f32

LUMINANCE_ALPHA_FLOAT32
_ATI

LUMINANCE_ALPHA f32 f32

RGBA_FLOAT16_ATI RGBA f16 f16 f16 f16

RGB_FLOAT16_ATI RGB f16 f16 f16

ALPHA_FLOAT16_ATI ALPHA f16

INTENSITY_FLOAT16_ATI INTENSITY f16
007-2392-003 153

8: Texturing Extensions
ATI_texture_mirror_once—The Texture Mirroring Extension

The ATI_texture_mirror_once extension introduces new texture coordinate wrap modes
that effectively use a texture map twice as large as the specified texture image. The
additional half of the new image is a mirror image of the original.

This behavior is similar to the GL_MIRRORED_REPEAT wrap mode of OpenGL 1.4, but
mirroring is done only once rather than repeating. That is, input texture coordinates
outside the range [–1,1] are clamped to this range. After clamping, values in the range
[0,1] are used unchanged while values in the range [–1,0] are negated before sampling
the texture.

The extension supports the following two wrap modes:

GL_MIRROR_CLAMP_ATI Texture filtering may include texels from the
texture border, like the core GL_CLAMPmode.

GL_MIRROR_CLAMP_TO_EDGE_ATI Texture coordinates are clamped such that
the texture filter never samples texture
borders, like the core GL_CLAMP_TO_EDGE
mode.

Why Use Texture Mirroring?

For textures that are symmetrical about one or more axes, texture mirroring reduces the
amount of texture memory required by not storing the redundant symmetric portion of
the texture. The choice of using GL_MIRRORED_REPEAT or the modes introduced by
ATI_texture_mirror_once depends on whether or not an infinitely extended texture
image is desired (as may be the case for synthetic textures used for backgrounds or
high-frequency noise).

LUMINANCE_FLOAT16_ATI LUMINANCE f16

LUMINANCE_ALPHA_FLOAT16
_ATI

LUMINANCE_ALPHA f16 f16

Table 8-4 New Floating Point Internal Formats for Textures (continued)

Sized Internal Format Base Internal Format Red
Bits

Green
Bits

Blue
Bits

Alpha
Bits

Lum
Bits

Inten
Bits
154 007-2392-003

EXT_texture_compression_s3tc—The S3 Compressed Texture Format Extension
Using Texture Mirroring

To specify texture mirroring, call glTexParameteri() with the following parameter
specifications:

target GL_TEXTURE_1D,GL_TEXTURE_2D, or GL_TEXTURE_3D

pname GL_TEXTURE_WRAP_S,GL_TEXTURE_WRAP_T, or
GL_TEXTURE_WRAP_R

param GL_MIRROR_CLAMP_ATI for mirroring or
GL_MIRROR_CLAMP_TO_EDGE_ATI for mirroring without sampling
texture borders

EXT_texture_compression_s3tc—The S3 Compressed Texture Format
Extension

The EXT_texture_compression_s3tc extension builds on the compressed texture interface
in core OpenGL by adding external and internal compressed formats in the popular
S3TC formats. S3TC formats are also sometimes referred to as DXTC, in the Microsoft
DirectX terminology. These formats are only supported for 2D textures.

Why Use S3TC Texture Formats?

Depending on the nature of the textures, compressed textures can provide dramatic
savings in texture memory at a relatively small cost in texture quality. Natural imagery
tends to compress with fewer detectable artifacts than synthetic images, but it is always
important to test and make sure that compressed image quality is adequate, particularly
in high-fidelity domains such as flight simulation.

The core OpenGL compressed texture interface allows compressing textures to a internal
format whose exact nature is unspecified. This format may differ between OpenGL
implementations, and potentially even between driver releases on the same platform.
This variance makes it difficult to ensure that the quality and size of images so
compressed are adequate. It is also difficult to store or transport compressed images
without knowing their exact format.

S3TC overcomes these constraints by defining specific formats for compressed images of
several types, and these formats may be used by other tools such as image viewers and
007-2392-003 155

8: Texturing Extensions
artwork creation applications. S3TC is a widely used informal standard for texture
compression.

Using S3TC Texture Formats

This extension introduces four new compressed texture formats, with corresponding
RGB or RGBA base formats as shown in Table 8-5.

The new compressed formats may be used as the internalformat parameter of
glTexImage2D(), glCopyTexImage2D(), and glCompressedTexImage2D() when
specifying a 2D texture, and as the format parameter of
glCompressedTexSubImage2D() when respecifying a part of a texture.

When specifying a texture in already-compressed S3TC format—for example, when
calling glCompressedTexImage2D() or glCompressedTexSubImage2D()—the required
format of the input image is fully defined by the extension specification for
EXT_texture_compression_s3tc. The specification is located on the following webpage:

Table 8-5 S3TC Compressed Formats and Corresponding Base Formats

Compressed Internal Format

Base
Internal
Format Description

GL_COMPRESSED_RGB_S3TC_DXT1_EXT GL_RGB Each 4x4 block of texels consists of
64 bits of RGB image data.

GL_COMPRESSED_RGBA_S3TC_DXT1_EXT GL_RGBA Each 4x4 block of texels consists of
64 bits of RGB image data and
minimal alpha information (1
bit/texel corresponding to 0.0 or
1.0).

GL_COMPRESSED_RGBA_S3TC_DXT3_EXT GL_RGBA Each 4x4 block of texels consists of
64 bits of uncompressed alpha
image data followed by 64 bits of
compressed RGB image data.

GL_COMPRESSED_RGBA_S3TC_DXT5_EXT GL_RGBA Each 4x4 block of texels consists of
64 bits of compressed alpha image
data followed by 64 bits of
uncompressed RGB image data.
156 007-2392-003

EXT_texture_filter_anisotropic—The Anisotropic Texture Filtering Extension
http://oss.sgi.com/projects/ogl-sample/registry/EXT/texture_compression_s3tc.txt

Constraints on S3TC Texture Formats

Due to the definition of the formats, the following constraints on specifying texture
images and subimages in the S3TC formats:

• S3TC formats support only 2D images without borders. The function
glCompressedTexImage2DARB() will generate a GL_INVALID_OPERATION error
if the parameter border is nonzero.

• S3TC formats are block-encoded in 4x4 texel blocks and can be easily edited along
block boundaries. The function glCompressedTexSubImage2D() will generate a
GL_INVALID_OPERATION error if any one of the following conditions occurs:

– The value of width is not a multiple of four or not equal to the value of
GL_TEXTURE_WIDTH for the mipmap level being specified.

– The value of height is not a multiple of four or not equal to the value of
GL_TEXTURE_HEIGHT for the mipmap level being specified.

– Either the value of xoffset or yoffset is not a multiple of four.

Note that these constraints represents a relaxation of the tighter constraints on generic
compressed texture formats.

EXT_texture_filter_anisotropic—The Anisotropic Texture Filtering
Extension

The EXT_texture_filter_anisotropic extension supports improved texture sampling
compared to the standard mipmapping technique.

Why Use Anisotropic Texturing?

Texture mapping as defined in core OpenGL assumes that the projection of the pixel filter
footprint into texture space is a square (that is, isotropic). In practice, however, the
footprint may be long and narrow (that is, anisotropic). Consequently, mipmap filtering
severely blurs images on surfaces angled obliquely away from the viewer. For example,
007-2392-003 157

8: Texturing Extensions
in flight simulations, views of the runway during approaches are likely to be
oversampled across the runway and undersampled along its length.

There are several approaches for improving texture sampling by accounting for the
anisotropic nature of the pixel filter footprint into texture space. This extension provides
a general mechanism for supporting such filtering schemes without specifying a
particular formulation of anisotropic filtering.

The maximum degree of anisotropy to account for in texture filtering may be defined per
texture object, subject to a global upper bound determined by the implementation.

Increasing the degree of anisotropy will generally improve texture filtering quality, but
at the cost of reducing the texture fill rate. Rather than setting the maximum possible
anisotropy, choose the smallest degree of anisotropy that will provide the desired level
of image quality and performance and consider providing interactive controls to allow
users to adjust the anisotropy level further at run time.

Using Anisotropic Texturing

To specify the degree of texture anisotropy, call glTexParameterf() with the following
parameter specifications:

target GL_TEXTURE_1D, GL_TEXTURE_2D, or GL_TEXTURE_3D

pname GL_TEXTURE_MAX_ANISOTROPY_EXT

param A value between 2.0 and the implementation-dependent maximum
(which may be determined by calling glGetFloatv() with pname set to
GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT)

When the specified value of GL_TEXTURE_MAX_ANISOTROPY_EXT is 1.0, standard
mipmap texture sampling is used as defined in core OpenGL. When the value is greater
than 1.0, a texture filtering scheme that accounts for a degree of anisotropy defined by the
minimum of the specified value and the value of
GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT is used.

While the exact anisotropic filtering scheme may vary, it will satisfy the following
conditions:

• Mipmap levels will only be accessed if the texture minification filter is one that
requires mipmaps.
158 007-2392-003

EXT_texture_rectangle—The Rectangle Texture Extension
• Anisotropic texturing will only access texture mipmap levels between the values of
GL_TEXTURE_BASE_LEVEL and GL_TEXTURE_MAX_LEVEL.

• The values specified for GL_TEXTURE_MAX_LOD and GL_TEXTURE_MIN_LOD will
be honored if the anisotropic scheme allows such.

• When the value of GL_TEXTURE_MAX_ANISOTROPY_EXT is N, the anisotropic
filter will try to sample N texels within the texture footprint of the fragment being
textured, where mipmapping would only sample one texel. For example, if N is 2.0
and the GL_LINEAR_MIPMAP_LINEAR filter is being used, the anisotropic filter will
sample 16 texels, rather than the 8 samples used by mipmapping. However, subject
to the constraints of the particular anisotropic filter being used, N may be rounded
up at sampling time.

EXT_texture_rectangle—The Rectangle Texture Extension

OpenGL texturing is normally limited to images with power-of-two dimensions and an
optional one-texel border. The EXT_texture_rectangle extension adds a new texture
target that supports 2D textures without requiring power-of-two dimensions and
accesses the texture by texel coordinates instead of the normalized [0,1] access used for
other texture targets.

Why Use Rectangle Textures?

Rectangle (non-power-of-two) textures are useful whenever working with texture
images that have such dimensions. Representing such images at their natural resolutions
avoids resampling artifacts and saves texture memory. Examples include (but are not
limited to) video images, shadow maps, window-space texturing, and data arrays for
general-purpose computation in fragment programs.

However, rectangle textures have the following additional constraints that may restrict
their applicability relative to power-of-two textures:

• Mipmaps are not supported. Rectangle textures may only define a base level image,
and the minification filter must be GL_NEAREST or GL_LINEAR.

• Only the clamped texture coordinate wrap modes are allowed for the s and t
coordinates: GL_CLAMP, GL_CLAMP_TO_EDGE, and GL_CLAMP_TO_BORDER.
Repeated and/or mirrored wrap modes are not supported.

• Texture border images are not supported (border must be zero).
007-2392-003 159

8: Texturing Extensions
Using Rectangle Textures

To enable or disable rectangle texture mapping, call glEnable() or glDisable() with
parameter GL_TEXTURE_RECTANGLE_EXT. When several types of of textures are
enabled, the precedence order is the following:

1. GL_TEXTURE_2D

2. GL_TEXTURE_RECTANGLE_EXT

3. GL_TEXTURE_3D

This means that if both 2D and rectangle texturing are enabled, the currently bound
rectangle texture will be used. If both 3D and rectangle texturing are enabled, the
currently bound 3D texture will be used.

To define a rectangle texture, call glTexImage2D() or glCopyTexImage2D() with the
parameter target set to GL_TEXTURE_RECTANGLE_EXT. The mipmap level and border
size must both be zero. The dimensions of rectangle textures are not restricted to powers
of two but are limited to the implementation-dependent maximum rectangle texture
size, which can be queried by calling glGetIntegerv() with parameter
GL_MAX_RECTANGLE_TEXTURE_SIZE_EXT.

Using a texture target of GL_TEXTURE_RECTANGLE_EXT, you can perform all other
operations on rectangle textures (binding texture objects, specifying subimages,
querying texture images, setting texture and texture level parameters). Using target
GL_PROXY_TEXTURE_RECTANGLE_EXT, you can perform proxy texture queries on
rectangle textures. The currently bound rectangle texture object may be queried by
calling glGetIntegerv() with the parameter GL_TEXTURE_BINDING_RECTANGLE_EXT.

When rendering with a rectangle texture, texture coordinates are interpreted differently.
Rather than clamping to the range [0,1], the s coordinate is clamped to the range [0,w] and
the t coordinate is clamped to the range [0,h], where w and h are respectively the width
and height of the rectangle texture. After clamping, you access texels directly using the
clamped texture coordinates as indices into the rectangle texture, instead of first scaling
them by the dimensions of the texture image as you do for normal power-of-two 2D
textures.
160 007-2392-003

EXT_texture3D—The 3D Texture Extension
EXT_texture3D—The 3D Texture Extension

Note: This extension was promoted to a standard part of OpenGL 1.2. For new
applications, use the equivalent OpenGL 1.2 interface (for example, with the EXT suffix
removed), unless they must run on InfiniteReality systems.

The 3D texture extension, EXT_texture3D, defines 3D texture mapping and in-memory
formats for 3D images and adds pixel storage modes to support them.

3D textures can be thought of as an array of 2D textures, as illustrated in Figure 8-1.

Figure 8-1 3D Texture

A 3D texture is mapped into (s,t,r) coordinates such that its lower left back corner is
(0,0,0) and its upper right front corner is (1,1,1).

Why Use the 3D Texture Extension?

3D textures are useful for the following:

• Volume rendering and examining a 3D volume one slice at a time

• Animating textured geometry (for example, people that move)

• Solid texturing (for example, wood, marble and so on)

• Eliminating distortion effects that occur when you try to map a 2D image onto 3D
geometry

0,0,1

0,1,1

1,0,1

1,1,1

0,0,0

0,1,0

1,0,0

1,1,0

S

T

R

007-2392-003 161

8: Texturing Extensions
Texel values defined in a 3D coordinate system form a texture volume. You can extract
textures from this volume by intersecting it with a plane oriented in 3D space, as shown
in Figure 8-2.

Figure 8-2 Extracting a Planar Texture From a 3D Texture Volume

The resulting texture, applied to a polygon, is the intersection of the volume and the
plane. The orientation of the plane is determined from the texture coordinates of the
vertices of the polygon.

Using 3D Textures

To create a 3D texture, use glTexImage3DEXT(), which has the following format:

void glTexImage3DEXT(GLenum target,
 GLint level,
 GLenum internalformat,
 GLsizei width,
 GLsizei height,
 GLsizei depth,
 GLint border,
 GLenum format,
 GLenum type,
 const GLvoid *pixels)

The function is defined like glTexImage2D() but has a depth argument that specifies the
number of “slices” in the texture.
162 007-2392-003

EXT_texture3D—The 3D Texture Extension
The extension provides the following additional features:

• Pixel storage modes

The extension extends the pixel storage modes by adding eight state variables:

– GL_(UN)PACK_IMAGE_HEIGHT_EXT defines the height of the image the
texture is read from, analogous to the GL_(UN)PACK_LENGTH variable for
image width.

– GL_(UN)PACK_SKIP_IMAGES_EXT determines an initial skip analogous to
GL_(UN)PACK_SKIP_PIXELS and GL_(UN)PACK_SKIP_ROWS.

The eight state variables default to zero.

• Texture wrap modes

The functions glTexParameter*() accept the additional token value
GL_TEXTURE_WRAP_R_EXT. The value GL_TEXTURE_WRAP_R_EXT affects the R
coordinate in the same way that GL_TEXTURE_WRAP_S affects the S coordinate and
GL_TEXTURE_WRAP_T affects the T coordinate. The default value is GL_REPEAT.

• Mipmapping

Mipmapping for two-dimensional textures is described in the section “Multiple
Levels of Detail,” on page 338 of the OpenGL Programming Guide. Mipmapping for
3D textures works the same way. A 3D mipmap is an ordered set of volumes
representing the same image; each volume has a resolution lower than the previous
one.

The filtering options GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR, and GL_LINEAR_MIPMAP_NEAREST apply to
subvolumes instead of subareas. GL_LINEAR_MIPMAP_LINEAR results in two
trilinear blends in two different volumes followed by an LOD blend.

• Proxy textures

Use the proxy texture GL_PROXY_TEXTURE_3D_EXT to query an implementation’s
maximum configuration. For more information on proxy textures, see “Texture
Proxy” on page 330 of the OpenGL Programming Guide, Second Edition.

You can also call glGetIntegerv() with argument
GL_MAX_TEXTURE_SIZE_3D_EXT.

• Querying

Use the following call to query the 3D texture:

glGetTexImage(GL_TEXTURE_3D_EXT, level, format, type, pixels)
007-2392-003 163

8: Texturing Extensions
• Replacing texture images

Subvolumes of the 3D texture can be replaced using glTexSubImage3DEXT() and
glCopyTexSubImage3DEXT() (see “Replacing All or Part of a Texture Image,” on
pages 332 - 335 of the OpenGL Programming Guide, Second Edition).

3D Texture Example Program

The code fragment presented in this section illustrates the use of the extension. The
complete program is included in the example source tree.

Example 8-1 Simple 3D Texturing Program

/*
* Shows a 3D texture by drawing slices through it.
 */
/* compile: cc -o tex3d tex3d.c -lGL -lX11 */

#include <GL/glx.h>
#include <GL/glu.h>
#include <X11/keysym.h>
#include <stdlib.h>
#include <stdio.h>

static int attributeList[] = { GLX_RGBA, None };

unsigned int tex[64][64][64];

/* generate a simple 3D texture */
static void
make_texture(void) {
 int i, j, k;
 unsigned int *p = &tex[0][0][0];

 for (i=0; i<64; i++) {
 for (j=0; j<64; j++) {
 for (k=0; k<64; k++) {
 if (i < 10 || i > 48 ||
 j < 10 || j > 48 ||
 k < 10 || k > 48) {
 if (i < 2 || i > 62 ||
 j < 2 || j > 62 ||
 k < 2 || k > 62) {
 *p++ = 0x00000000;
164 007-2392-003

EXT_texture3D—The 3D Texture Extension
 } else {
 *p++ = 0xff80ffff;
 }
 } else {
 *p++ = 0x000000ff;
}
 }
 }
 }
}

static void
init(void) {
 make_texture();
 glEnable(GL_TEXTURE_3D_EXT);
 glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
 glClearColor(0.2,0.2,0.5,1.0);
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

 glMatrixMode(GL_PROJECTION);
 gluPerspective(60.0, 1.0, 1.0, 100.0);
 glMatrixMode(GL_MODELVIEW);
 glTranslatef(0.,0.,-3.0);
 glMatrixMode(GL_TEXTURE);

 /* Similar to defining a 2D texture, but note the setting of the */
 /* wrap parameter for the R coordinate. Also, for 3D textures */
 /* you probably won't need mipmaps, hence the linear min filter. */
 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
 glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);
 glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_3D_EXT, GL_TEXTURE_WRAP_R_EXT,
 GL_CLAMP);
 glTexImage3DEXT(GL_TEXTURE_3D_EXT, 0, 4, 64, 64, 64, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, tex);
}

#define NUMSLICES 256

static void
draw_scene(void) {
007-2392-003 165

8: Texturing Extensions
 int i;
 float r, dr, z, dz;

 glColor4f(1, 1, 1, 1.4/NUMSLICES);
 glClear(GL_COLOR_BUFFER_BIT);

/* Display the entire 3D texture by drawing a series of quads */
 /* that slice through the texture coordinate space. Note that */
 /* the transformations below are applied to the texture matrix, */
 /* not the modelview matrix. */

 glLoadIdentity();
 /* center the texture coords around the [0,1] cube */
 glTranslatef(.5,.5,.5);
 /* a rotation just to make the picture more interesting */
 glRotatef(45.,1.,1.,.5);

 /* to make sure that the texture coords, after arbitrary */
 /* rotations, still fully contain the [0,1] cube, make them span */
 /* a range sqrt(3)=1.74 wide */
 r = -0.87; dr = 1.74/NUMSLICES;
 z = -1.00; dz = 2.00/NUMSLICES;
 for (i=0; i < NUMSLICES; i++) {
 glBegin(GL_TRIANGLE_STRIP);
 glTexCoord3f(-.87,-.87,r); glVertex3f(-1,-1,z);
 glTexCoord3f(-.87, .87,r); glVertex3f(-1, 1,z);
 glTexCoord3f(.87,-.87,r); glVertex3f(1,-1,z);
 glTexCoord3f(.87, .87,r); glVertex3f(1, 1,z);
 glEnd();
 r += dr;
 z += dz;
 }
}

/* process input and error functions and main(), which handles window
 * setup, go here.
 */
166 007-2392-003

SGI_texture_color_table—The Texture Color Table Extension
New Functions

The EXT_texture3D extension introduces the following functions:

• glTexImage3DEXT()

• glTexSubImage3DEXT()

• glCopyTexImage3DEXT()

SGI_texture_color_table—The Texture Color Table Extension

Note: This extension is not supported on Onyx4 and Silicon Graphics Prism systems.
Applications can achieve similar functionality by writing fragment programs using 1D
textures as lookup tables for the texel values returned by sampling an image texture.

The texture color table extension, SGI_texture_color_table, adds a color lookup table to
the texture mechanism. The table is applied to the filtered result of a texture lookup
before that result is used in the texture environment equations.

Why Use a Texture Color Table?

The following are two example situations in which the texture color table extension is
useful:

• Volume rendering

You can store something other than color in the texture (for example, a physical
attribute like bone density) and use the table to map that density to an RGB color.
This is useful if you want to display just that physical attribute and also if you want
to distinguish between that attribute and another (for example, muscle density).
You can selectively replace the table to display different features. Note that
updating the table can be faster than updating the texture. (This technique is also
called false color imaging or segmentation.

• Representing shades (gamut compression)

If you need to display a high color-resolution image using a texture with low
color-component resolution, the result is often unsatisfactory. A 16-bit texel with 4
bits per component doesn’t offer a lot of shades for each color, because each color
007-2392-003 167

8: Texturing Extensions
component has to be evenly spaced between black and the strongest shade of the
color. If an image contains several shades of light blue but no dark blue, for
example, the on-screen image cannot represent that easily because only a limited
number of shades of blue, many of them dark, are available. When using a color
table, you can “stretch” the colors.

Using Texture Color Tables

To use a texture color table, define a color table, as described in “SGI_color_table—The
Color Table Extension” on page 277. UseGL_TEXTURE_COLOR_TABLE_SGI as the value
for the target parameter of the various commands. Note the following points:

• The table size, specified by the width parameter of glColorTableSGI(), is limited to
powers of two.

• Each implementation supports a at least a maximum size of 256 entries. The actual
maximum size is implementation-dependent; it is much larger on most Silicon
Graphics systems.

• Use GL_PROXY_TEXTURE_COLOR_TABLE_SGI to determine whether there is
enough room for the texture color table in exactly the manner described in “Texture
Proxy,” on page 330 of the OpenGL Programming Guide.

The following code fragment loads a table that inverts a texture. It uses aGL_LUMINANCE
external format table to make identical R, G, and B mappings.

loadinversetable()
{
 static unsigned char table[256];
 int i;

 for (i = 0; i < 256; i++) {
 table[i] = 255-i;
 }

 glColorTableSGI(GL_TEXTURE_COLOR_TABLE_SGI, GL_RGBA8_EXT,
 256, GL_LUMINANCE, GL_UNSIGNED_BYTE, table);
 glEnable(GL_TEXTURE_COLOR_TABLE_SGI);
}

168 007-2392-003

SGI_texture_color_table—The Texture Color Table Extension
Texture Color Table and Internal Formats

The contents of a texture color table are used to replace a subset of the components of
each texel group, based on the base internal format of the table. If the table size is zero,
the texture color table is effectively disabled. The texture color table is applied to the
texture components Red (Rt), Green (Gt), Blue (Bt), and Alpha(At) texturing components
according to Table 8-6.

Using Texture Color Table On Different Platforms

The texture color table extension is currently implemented on Fuel, Infinite Performance,
and InfiniteReality systems. For a detailed discussion of machine-dependent issues, see
the glColorTableParameterSGI man page. This section summarizes the most
noticeable restrictions.

InfiniteReality systems reserve an area of 4K 12-bit entries for texture color tables.
Applications can use four 1KB tables, two 2KB tables, or one 4KB table. Not all
combinations of texture and texture color tables are valid. InfiniteReality systems
support the combinations shown in Table 8-7.

Table 8-6 Modification of Texture Components

Base Table Internal Format Rt Gt Bt At

GL_ALPHA Rt Gt Bt A(At)

GL_LUMINANCE L(Rt) L(Gt) L(Bt) At

GL_LUMINANCE_ALPHA L(Rt) L(Gt) L(Bt) A(At)

GL_INTENSITY I(Rt) I(Gt) I(Bt) I(At)

GL_RGB R(Rt) G(Gt) B(Bt) At

GL_RGBA R(Rt) G(Gt) B(Bt) A(At)

Table 8-7 Texture and Texture Color Tables on InfiniteReality Systems

TCT size TCT Format Texture

>=1024 Any Any
007-2392-003 169

8: Texturing Extensions
SGIS_detail_texture—The Detail Texture Extension

Note: This extension is not supported on Onyx4 and Silicon Graphics Prism systems.
Applications can achieve similar functionality using fragment programs.

This section describes the detail texture extension, SGIS_detail_texture, which like the
sharpen texture extension (see “SGIS_sharpen_texture—The Sharpen Texture
Extension” on page 180) is useful in situations where you want to maintain good image
quality when a texture is magnified for close-up views.

Ideally, programs should always use textures that have high enough resolution to allow
magnification without blurring. High-resolution textures maintain realistic image
quality for both close-up and distant views. For example, in a high-resolution road
texture, the large features—such as potholes, oil stains, and lane markers that are visible
from a distance—as well as the asphalt of the road surface look realistic no matter where
the viewpoint is.

Unfortunately, a high-resolution road texture with that much detail may be as large as
2K x 2K, which may exceed the texture storage capacity of the system. Making the image
close to or equal to the maximum allowable size still leaves little or no memory for the
other textures in the scene.

The detail texture extension provides a solution for representing a 2K x 2K road texture
with smaller textures. Detail texture works best for a texture with high-frequency
information that is not strongly correlated to its low-frequency information. This occurs
in images that have a uniform color and texture variation throughout, such as a field of
grass or a wood panel with a uniform grain. If high-frequency information in your
texture is used to represent edge information (for example, a stop sign or the outline of a
tree) consider the sharpen texture extension (see “SGIS_sharpen_texture—The Sharpen
Texture Extension” on page 180).

2048 L, I, LA L, I, LA

4096 I, L I, L

Table 8-7 Texture and Texture Color Tables on InfiniteReality Systems (continued)

TCT size TCT Format Texture
170 007-2392-003

SGIS_detail_texture—The Detail Texture Extension
Using the Detail Texture Extension

Because the high-frequency detail in a texture (for example, a road) is often
approximately the same across the entire texture, the detail from an arbitrary portion of
the texture image can be used as the detail across the entire image.

When you use the detail texture extension, the high-resolution texture image is
represented by the combination of a low-resolution texture image and a small
high-frequency detail texture image (the detail texture). OpenGL combines these two
images during rasterization to create an approximation of the high-resolution image.

This section first explains how to create the detail texture and the low-resolution texture
that are used by the extension ,then briefly describes how detail texture works and how
to customize the LOD interpolation function, which controls how OpenGL combines the
two textures.

Creating a Detail Texture and a Low-Resolution Texture

This section explains how to convert a high-resolution texture image into a detail texture
and a low-resolution texture image. For example, for a 2K x 2K road texture, you may
want to use a 512 x 512 low-resolution base texture and a 256 x 256 detail texture. Follow
these steps to create the textures:

1. Make the low-resolution image using izoom or another resampling program by
shrinking the high-resolution image by 2n.

In this example, n is 2; so, the resolution of the low-resolution image is 512 x 512.
This band-limited image has the two highest-frequency bands of the original image
removed from it.

2. Create the subimage for the detail texture using subimage or another tool to select
a 256 x 256 region of the original high-resolution image, whose n highest-frequency
bands are characteristic of the image as a whole. For example, rather than choosing
a subimage from the lane markings or a road, choose an area in the middle of a lane.

3. Optionally, make this image self-repeating along its edges to eliminate seams.

4. Create a blurry version of the 256 × 256 subimage as follows:

■ First shrink the 256 × 256 subimage by 2n, to 64 × 64.

■ Then scale the resulting image back up to 256 × 256.

The image is blurry because it is missing the two highest-frequency bands present
in the two highest levels of detail.
007-2392-003 171

8: Texturing Extensions
5. Subtract the blurry subimage from the original subimage. This difference image—
the detail texture—has only the two highest frequency bands.

6. Define the low-resolution texture (the base texture created in step 1) with the
GL_TEXTURE_2D target and the detail texture (created in step 5) with the
GL_DETAIL_TEXTURE_2D_SGIS target.

In the road example, you would use the following:

GLvoid *detailtex, *basetex;
glTexImage2D(GL_DETAIL_TEXTURE_2D_SGIS, 0, 4, 256, 256, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, detailtex);
glTexImage2D(GL_TEXTURE_2D, 0, 4, 512, 512, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, basetex);

The internal format of the detail texture and the base texture must match exactly.

7. Set the GL_DETAIL_TEXTURE_LEVEL_SGIS parameter to specify the level at
which the detail texture resides. In the road example, the detail texture is level -2
(because the original 2048 x 2048 texture is two levels below the 512 x 512 base
texture):

glTexParameteri(GL_TEXTURE_2D, GL_DETAIL_TEXTURE_LEVEL_SGIS, -2);

Because the actual detail texture supplied to OpenGL is 256 x 256, OpenGL
replicates the detail texture as necessary to fill a 2048 x 2048 texture. In this case, the
detail texture repeats eight times in S and in T.

Note that the detail texture level is set on the GL_TEXTURE_2D target, not on
GL_DETAIL_TEXTURE_2D_SGIS.

8. Set the magnification filter to specify whether the detail texture is applied to the
alpha or color component, or both. Use one of the filters in Table 8-8. For example,
to apply the detail texture to both alpha and color components, use the following:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR_DETAIL_SGIS);

Note that the magnification filter is set on the GL_TEXTURE_2D target, not on
GL_DETAIL_TEXTURE_2D_SGIS.
172 007-2392-003

SGIS_detail_texture—The Detail Texture Extension
Detail Texture Computation

For each pixel that OpenGL textures, it computes an LOD-based factor that represents
the amount by which the base texture (that is, level 0) is scaled. LOD n represents a
scaling of 2-n. Negative values of LOD correspond to magnification of the base texture.

To produce a detailed textured pixel at level of detail n, OpenGL uses one of the two
formulas shown in Table 8-9, depending on the detail texture mode.

The variables in the formulas are defined as follows:

n Level of detail

weight(n) Detail function

LOD0 Base texture value

DET Detail texture value

For example, to specify GL_ADD as the detail mode, use

glTexParameteri(GL_TEXTURE_2D, GL_DETAIL_TEXTURE_MODE_SGIS, GL_ADD);

Note that the detail texture level is set on the GL_TEXTURE_2D target, not on
GL_DETAIL_TEXTURE_2D_SGIS.

Table 8-8 Magnification Filters for Detail Texture

GL_TEXTURE_MAG_FILTER Alpha Red, Green, Blue

GL_LINEAR_DETAIL_SGIS Detail Detail

GL_LINEAR_DETAIL_COLOR_SGIS Bilinear Detail

GL_LINEAR_DETAIL_ALPHA_SGIS Detail Bilinear

Table 8-9 How Detail Texture Is Computed

GL_DETAIL_TEXTURE_MODE_SGIS Formula

GL_ADD LODn = LOD0 + weight(n) ∗ DET

GL_MODULATE LODn = LOD0 + weight(n) * DET * LOD0
007-2392-003 173

8: Texturing Extensions
Customizing the Detail Function

In the road example, the 512 x 512 base texture is LOD 0. The detail texture combined
with the base texture represents LOD -2, which is called the maximum-detail texture.

By default, OpenGL performs linear interpolation between LOD 0 and LOD -2 when a
pixel’s LOD is between 0 and -2. Linear interpolation between more than one LOD can
result in aliasing. To minimize aliasing between the known LODs, OpenGL lets you
specify a nonlinear LOD interpolation function.

Figure 8-3 shows the default linear interpolation curve and a nonlinear interpolation
curve that minimizes aliasing when interpolating between two LODs.

Figure 8-3 LOD Interpolation Curves

The basic strategy is to use very little of the detail texture until the LOD is within one
LOD of the maximum-detail texture. More of the information from the detail texture can
be used as the LOD approaches LOD -2. At LOD -2, the full amount of detail is used, and
the resultant texture exactly matches the high-resolution texture.

Use glDetailTexFuncSGIS() to specify control points for shaping the LOD interpolation
function. Each control point contains a pair of values; the first value specifies the LOD,
and the second value specifies the weight for that magnification level. Note that the LOD
values are negative.

n
0

0 -1 -2 -3 -4

1

LOD

Weight Values of
TX_CONTROL_POINTs

(-1, .3) (-3, 1.1)

Default LOD interpolation Custom LOD interpolation

(-2, 1)

n
0

0 -1 -2 -3 -4

1

LOD

Weight
174 007-2392-003

SGIS_detail_texture—The Detail Texture Extension
The following control points can be used to create a nonlinear interpolation function (as
shown above in Figure 8-3):

GLfloat points[] = {
 0.0, 0.0,
 -1.0, 0.3,
 -2.0, 1.0,
 -3.0, 1.1
};
glDetailTexFuncSGIS(GL_TEXTURE_2D, 4, points);

Note that how these control points determine a function is system-dependent. For
example, your system may choose to create a piecewise linear function, a piecewise
quadratic function, or a cubic function. However, regardless of which kind of function is
chosen, the function passes through the control points.

Using Detail Texture and Texture Object

If you are using texture objects, the base texture and the detail texture are separate texture
objects. You can bind any base texture object to GL_TEXTURE_2D and any detail texture
object to GL_DETAIL_TEXTURE_2D_SGIS. You cannot bind a detail texture object to
GL_TEXTURE_2D.

Each base texture object contains its own detail mode, magnification filter, and LOD
interpolation function. Setting these parameters therefore affects only the texture object
that is currently bound to GL_TEXTURE_2D. If you set these parameters on the detail
texture object, they are ignored.

Detail Texture Example Program

Example 8-2 is a code fragment taken from a simple detail texture example program. The
complete example is included in the source tree as detail.c. It is also available
through the developer toolbox under the same name. For information on toolbox access,
see http://www.sgi.com/Technology/toolbox.html.

Example 8-2 Detail Texture Example

unsigned int tex[128][128];
unsigned int detailtex[256][256];

static void
make_textures(void) {
007-2392-003 175

8: Texturing Extensions
 int i, j;
 unsigned int *p;

 /* base texture is solid gray */
 p = &tex[0][0];
 for (i=0; i<128*128; i++) *p++ = 0x808080ff;

 /* detail texture is a yellow grid over a gray background */
 /* this artificial detail texture is just a simple example */
 /* you should derive a real detail texture from the original */
 /* image as explained in the text. */
 p = &detailtex[0][0];
 for (i=0; i<256; i++) {
 for (j=0; j<256; j++) {
 if (i%8 == 0 || j%8 == 0) {
 *p++ = 0xffff00ff;
 } else {
 *p++ = 0x808080ff;
 }
 }
 }
}

static void
init(void) {
 make_textures();

 glEnable(GL_TEXTURE_2D);
 glMatrixMode(GL_PROJECTION);
 gluPerspective(90.0, 1.0, 0.3, 10.0);
 glMatrixMode(GL_MODELVIEW);
 glTranslatef(0.,0.,-1.5);

 glClearColor(0.0, 0.0, 0.0, 1.0);
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

 /* NOTE: parameters are applied to base texture, not the detail */
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR_DETAIL_SGIS);
 glTexParameteri(GL_TEXTURE_2D, GL_DETAIL_TEXTURE_LEVEL_SGIS, -1);
 glTexImage2D(GL_TEXTURE_2D,
 0, 4, 128, 128, 0, GL_RGBA, GL_UNSIGNED_BYTE, tex);
 glTexImage2D(GL_DETAIL_TEXTURE_2D_SGIS,
176 007-2392-003

SGIS_filter4_parameters—The Filter4 Parameters Extension
 0, 4, 256, 256, 0, GL_RGBA, GL_UNSIGNED_BYTE,
 detailtex);
}

static void
draw_scene(void) {
 glClear(GL_COLOR_BUFFER_BIT);
 glBegin(GL_TRIANGLE_STRIP);
 glTexCoord2f(0, 0); glVertex3f(-1,-0.4, 1);
 glTexCoord2f(0, 1); glVertex3f(-1,-0.4,-1);
 glTexCoord2f(1, 0); glVertex3f(1,-0.4, 1);
 glTexCoord2f(1, 1); glVertex3f(1,-0.4,-1);
 glEnd();
 glFlush();
}

New Functions

The SGIS_detail_texture extension introduces the following functions:

• glDetailTexFuncSGIS()

• glGetDetailTexFuncSGIS()

SGIS_filter4_parameters—The Filter4 Parameters Extension

Note: This extension is part of GLU and is only supported on InfiniteReality systems.
Applications can achieve higher-quality texture filtering on Onyx4 and Silicon Graphics
Prism systems using anisotropic texture filtering.

The filter4 parameters extension, SGIS_filter4_parameters, provides a convenience
function that facilitates generation of values needed by the Texture Filter4 extension (see
“SGIS_texture_filter4—The Texture Filter4 Extensions” on page 187).

Applications can derive 4 x 4 and 4 x 4 x 4 interpolation coefficients by calculating the
cross product of coefficients in 2D or 3D, using the two-pixel-wide span of filter function.

The coefficients are computed in one of two ways:
007-2392-003 177

8: Texturing Extensions
• Using the Mitchell-Netravali scheme

Many of the desired characteristics of other 4x1 interpolation schemes can be
accomplished by setting B and C in their piecewise cubic formula. Notably, the
blurriness or sharpness of the resulting image can be adjusted with B and C. See
Mitchell, Don. and Netravali, Arun, “Reconstruction Filters for Computer
Graphics,” SIGGRAPH '88, pp. 221-228.

• Using Lagrange interpolation

Four piecewise cubic polynomials (two redundant ones) are used to produce
coefficients resulting in images at a high sharpness level. See Dahlquist and Bjorck,
“Numerical Methods”, Prentice-Hall, 1974, pp 284-285.

To choose one of the two schemas, set the filtertype parameter of gluTexFilterFuncSGI()
to GLU_LAGRANGIAN_SGI or GLU_MITCHELL_NETRAVALI_SGI.

Using the Filter4 Parameters Extension

Applications use the Filter4 Parameter extension in conjunction with the Texture Filter4
extension to generate coefficients that are then used as the weights parameter of
glTexFilterFuncSGIS().

To generate the coefficients, call gluTexFilterFuncSGI() with the following argument
values:

Argument Value

target GL_TEXTURE_1D or GL_TEXTURE_2D

filterype GLU_LAGRANGIAN_SGI or GLU_MITCHELL_NETRAVALI_SGI

params The value appropriate for the chosen filtertype:

If filtertype is GLU_LAGRANGIAN_SGI, parms must be NULL.

If filtertype is GLU_MITCHELL_NETRAVALI_SGI, parms may point to a
vector of two floats containing B and C control values or parms may be
NULL in which case both B and C default to 0.5.

n A power of two plus one and must be less than or equal to 1025.

weights Pointing to an array of n floating-point values generated by the function.
It must point to n values of type GL_FLOAT worth of memory.
178 007-2392-003

SGIS_point_line_texgen—The Point or Line Texture Generation Extension
Note that gluTexFilterFuncSGI() and glTexFilterFuncSGI() only customize filter4
filtering behavior; texture filter4 functionality needs to be enabled by calling
glTexParameter*() with pname set to TEXTURE_MIN_FILTER or
TEXTURE_MAG_FILTER, and params set to GL_FILTER4_SGIS. See “Using the Texture
Filter4 Extension” on page 187 for more information.

SGIS_point_line_texgen—The Point or Line Texture Generation Extension

Note: This extension is only supported on InfiniteReality systems. Applications can
achieve similar functionality on Onyx4 and Silicon Graphics Prism systems by writing
fragment programs.

The point or line texgen extension, SGIS_point_line_texgen, adds two texture coordinate
generation modes, which both generate a texture coordinate based on the minimum
distance from a vertex to a specified line.

The section “Automatic Texture-Coordinate Generation” in Chapter 9, “Texture
Mapping” of the OpenGL Programming Guide, Second Edition, describes how applications
can use glTexGen() to have OpenGL automatically generate texture coordinates.

This extension adds two modes to the existing three. The two new modes are different
from the other three. To use them, the application uses one of the newly defined constants
for the pname parameter and another one matching the param (or params) parameter. For
example:

glTexGeni(GL_S, GL_EYE_POINT_SGIS, EYE_DISTANCE_TO_POINT_SGIS)

Why Use Point or Line Texture Generation

The extension is useful for certain volumetric rendering effects. For example,
applications could compute fogging based on distance from an eyepoint.
007-2392-003 179

8: Texturing Extensions
SGIS_sharpen_texture—The Sharpen Texture Extension

Note: This extension is not supported on Onyx4 and Silicon Graphics Prism systems.
Applications can achieve similar functionality using fragment programs.

This section describes the sharpen texture extension, SGIS_sharpen_texture. This
extension and the detail texture extension (see “SGIS_detail_texture—The Detail Texture
Extension” on page 170) are useful in situations where you want to maintain good image
quality when a texture must be magnified for close-up views.

When a textured surface is viewed close up, the magnification of the texture can cause
blurring. One way to reduce blurring is to use a higher-resolution texture for the close-up
view at the cost of extra storage. The sharpen texture extension offers a way to keep the
image crisp without increasing texture storage requirements.

Sharpen texture works best when the high-frequency information in the texture image
comes from sharp edges. The following are two examples:

• In a stop sign, the edges of the letters have distinct outlines, and bilinear
magnification normally causes the letters to blur. Sharpen texture keeps the edges
crisp.

• In a tree texture, the alpha values are high inside the outline of the tree and low
outside the outline (where the background shows through). Bilinear magnification
normally causes the outline of the tree to blur. Sharpen texture, applied to the alpha
component, keeps the outline crisp.

Sharpen texture works by extrapolating from mipmap levels 1 and 0 to create a
magnified image that has sharper features than either level.

About the Sharpen Texture Extension

This section first explains how to use the sharpen texture extension to sharpen the
component of your choice. It then gives some background information about how the
extension works and explains how you can customize the LOD extrapolation function.
180 007-2392-003

SGIS_sharpen_texture—The Sharpen Texture Extension
How to Use the Sharpen Texture Extension

You can use the extension to sharpen the alpha component, the color components, or
both, depending on the magnification filter. To specify sharpening, use one of the
magnification filters in Table 8-10.

For example, suppose that a texture contains a picture of a tree in the color components
and the opacity in the alpha component. To sharpen the outline of the tree, use the
following:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR_SHARPEN_ALPHA_SGIS);

How Sharpen Texture Works

When OpenGL applies a texture to a pixel, it computes a level of detail (LOD) factor that
represents the amount by which the base texture (that is, level 0) must be scaled. LOD n
represents a scaling of 2-n. For example, if OpenGL needs to magnify the base texture by
a factor of 4 in both S and T, the LOD is -2. Note that magnification corresponds to
negative values of LOD.

To produce a sharpened texel at level-of-detail n, OpenGL adds the weighted difference
between the texel at LOD 0 and LOD 1 to LOD 0, as expressed in the following formula:

LODn = LOD0 + weight(n) * (LOD0 - LOD1)

The variables are defined as follows:

n Level-of-detail

weight(n) LOD extrapolation function

LOD0 Base texture value

LOD1 Texture value at mipmap level 1

Table 8-10 Magnification Filters for Sharpen Texture

GL_TEXTURE_MAG_FILTER Alpha Red, Green, Blue

GL_LINEAR_SHARPEN_SGIS sharpen sharpen

GL_LINEAR_SHARPEN_COLOR_SGIS bilinear sharpen

GL_LINEAR_SHARPEN_ALPHA_SGIS sharpen bilinear
007-2392-003 181

8: Texturing Extensions
By default, OpenGL uses a linear extrapolation function, where weight(n) = -n/4. You
can customize the LOD extrapolation function by specifying its control points, as
described in the next section.

Customizing the LOD Extrapolation Function

With the default linear LOD extrapolation function, the weight may be too large at high
levels of magnification, that is, as n becomes more negative. This can result in so much
extrapolation that noticeable bands appear around edge features, an artifact known as
“ringing.” In this case, it is useful to create a nonlinear LOD extrapolation function.

Figure 8-4 shows LOD extrapolation curves as a function of magnification factors. The
curve on the left is the default linear extrapolation, where weight(n) = -n/4. The curve on
the right is a nonlinear extrapolation, where the LOD extrapolation function is modified
to control the amount of sharpening so that less sharpening is applied as the
magnification factor increases. The function is defined for n less than or equal to 0.

Figure 8-4 LOD Extrapolation Curves

Use glSharpenTexFuncSGIS() to specify control points for shaping the LOD
extrapolation function. Each control point contains a pair of values; the first value
specifies the LOD, and the second value specifies a weight multiplier for that
magnification level. Remember that the LOD values are negative.

n
0

0 -1 -2 -3 -4

1

2

LOD

Weight

n
0

0 -1 -2 -3 -4

1

2

Default LOD extrapolation

LOD

Custom LOD extrapolationWeight
182 007-2392-003

SGIS_sharpen_texture—The Sharpen Texture Extension
For example, to gradually ease the sharpening effect, use a nonlinear LOD extrapolation
curve—as shown on the right in Figure 8-4—with these control points:

GLfloat points[] = {
0., 0.,
-1., 1.,
-2., 1.7,
-4., 2.

};
glSharpenTexFuncSGIS(GL_TEXTURE_2D, 4, points);

Note that how these control points determine the function is system-dependent. For
example, your system may choose to create a piecewise linear function, a piecewise
quadratic function, or a cubic function. However, regardless of the kind of function you
choose, the function will pass through the control points.

Using Sharpen Texture and Texture Object

If you are using texture objects, each texture object contains its own LOD extrapolation
function and magnification filter. Setting the function or the filter, therefore, affects only
the texture object that is currently bound to the texture target.

Sharpen Texture Example Program

Example 8-3 illustrates the use of sharpen texture. Because of space limitations, the
sections dealing with X Window System setup and some of the keyboard input are
omitted. The complete example is included in the source tree as sharpen.c. It is also
available through the developer toolbox under the same name. See
http://www.sgi.com/Technology/toolbox.html for information on toolbox access.

Example 8-3 Sharpen Texture Example

/* tree texture: high alpha in foreground, zero alpha in background */
#define B 0x00000000
#define F 0xA0A0A0ff
unsigned int tex[] = {
 B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,
 B,B,B,B,B,B,B,F,F,B,B,B,B,B,B,B,
 B,B,B,B,B,B,B,F,F,B,B,B,B,B,B,B,
 B,B,B,B,B,B,F,F,F,F,B,B,B,B,B,B,
 B,B,B,B,B,B,F,F,F,F,B,B,B,B,B,B,
 B,B,B,B,B,F,F,F,F,F,F,B,B,B,B,B,
007-2392-003 183

8: Texturing Extensions
 B,B,B,B,B,F,F,F,F,F,F,B,B,B,B,B,
 B,B,B,B,F,F,F,F,F,F,F,F,B,B,B,B,
 B,B,B,B,F,F,F,F,F,F,F,F,B,B,B,B,
 B,B,B,F,F,F,F,F,F,F,F,F,F,B,B,B,
 B,B,B,F,F,F,F,F,F,F,F,F,F,B,B,B,
 B,B,F,F,F,F,F,F,F,F,F,F,F,F,B,B,
 B,B,F,F,F,F,F,F,F,F,F,F,F,F,B,B,
 B,B,B,B,B,B,F,F,F,F,B,B,B,B,B,B,
 B,B,B,B,B,B,F,F,F,F,B,B,B,B,B,B,
 B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,B,
};

static void
init(void) {
 glEnable(GL_TEXTURE_2D);
 glMatrixMode(GL_PROJECTION);
 gluPerspective(60.0, 1.0, 1.0, 10.0);
 glMatrixMode(GL_MODELVIEW);
 glTranslatef(0.,0.,-2.5);

 glColor4f(0,0,0,1);
 glClearColor(0.0, 0.0, 0.0, 1.0);
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 /* sharpening just alpha keeps the tree outline crisp */
 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR_SHARPEN_ALPHA_SGIS);
 /* generate mipmaps; levels 0 and 1 are needed for sharpening */
 gluBuild2DMipmaps(GL_TEXTURE_2D, 4, 16, 16, GL_RGBA,
 GL_UNSIGNED_BYTE, tex);
}

static void
draw_scene(void) {
 glClear(GL_COLOR_BUFFER_BIT);
 glBegin(GL_TRIANGLE_STRIP);
 glTexCoord2f(0, 1); glVertex2f(-1,-1);
 glTexCoord2f(0, 0); glVertex2f(-1, 1);
 glTexCoord2f(1, 1); glVertex2f(1,-1);
 glTexCoord2f(1, 0); glVertex2f(1, 1);
 glEnd();
 glFlush();
}

184 007-2392-003

SGIS_texture_edge/border_clamp—Texture Clamp Extensions
New Functions

The SGIS_sharpen_texture extension introduces the following functions:

• glSharpenTexFuncSGIS()

• glGetSharpenTexFuncSGIS()

SGIS_texture_edge/border_clamp—Texture Clamp Extensions

Note: These extensions were promoted to standard parts of OpenGL 1.2 and OpenGL
1.3, respectively. Use the equivalent OpenGL interfaces (for example, with the SGIS
suffixes removed) with new applications, unless they must run on InfiniteReality or
InfinitePerformance systems.

This section first provides some background information on texture clamping. It then
identifies reasons for using the following texture clamping extensions and explains how
to use them:

• The texture edge clamp extension, SGIS_texture_edge_clamp

• The texture border clamp extension, SGIS_texture_border_clamp

Texture clamping is especially useful for nonrepeating textures.

Texture Clamping Background Information

OpenGL provides clamping of texture coordinates: any values greater than 1.0 are set to
1.0, any values less than 0.0 are set to 0.0. Clamping is useful for applications that want
to map a single copy of the texture onto a large surface. Clamping is discussed in detail
in the section “Repeating and Clamping Textures” on page 360 of the OpenGL
Programming Guide, Second Edition.

Why Use the Texture Clamp Extensions?

When a texture coordinate is clamped using the default OpenGL algorithm and a
GL_LINEARfilter or one of the LINEARmipmap filters is used, the texture sampling filter
007-2392-003 185

8: Texturing Extensions
straddles the edge of the texture image. This action takes half its sample values from
within the texture image and the other half from the texture border.

It is sometimes desirable to alter the default behavior of OpenGL texture clamping
operations as follows:

• Clamp a texture without requiring a border or a constant border color. This is
possible with the texture clamping algorithm provided by the texture-edge-clamp
extension. GL_CLAMP_TO_EDGE_SGIS clamps texture coordinates at all mipmap
levels such that the texture filter never samples a border texel.

When used with a GL_NEAREST or a GL_LINEAR filter, the color returned when
clamping is derived only from texels at the edge of the texture image.

• Clamp a texture to the border color rather than to an average of the border and edge
colors. This is possible with the texture-border-clamp extension.
GL_CLAMP_TO_BORDER_SGIS clamps texture coordinates at all mipmap levels.

GL_NEAREST and GL_LINEAR filters return the color of the border texels when
the texture coordinates are clamped.

This mode is well-suited for using projective textures such as spotlights.

Both clamping extensions are supported for 1D, 2D, and 3D textures. Clamping always
occurs for texture coordinates less than zero and greater than 1.0.

Using the Texture Clamp Extensions

To specify texture clamping, call glTexParameteri() with the following specifications:

Parameter Value

target GL_TEXTURE_1D, GL_TEXTURE_2D, or GL_TEXTURE_3D_EXT

pname GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, or
GL_TEXTURE_WRAP_R_EXT

param GL_CLAMP_TO_EDGE_SGIS for edge clamping
GL_CLAMP_TO_BORDER_SGIS for border clamping
186 007-2392-003

SGIS_texture_filter4—The Texture Filter4 Extensions
SGIS_texture_filter4—The Texture Filter4 Extensions

Note: This extension is only supported on InfiniteReality systems. Applications can
achieve higher quality texture filtering on Onyx4 and Silicon Graphics Prism systems
using anisotropic texture filtering.

The texture filter4 extension, SGIS_texture_filter4, allows applications to filter 1D and 2D
textures using an application-defined filter. The filter has to be symmetric and separable
and have four samples per dimension. In the most common 2D case, the filter is bicubic.
This filtering can yield better-quality images than mipmapping and is often used in
image processing applications.

The OpenGL Programming Guide, Second Edition, describes texture filtering in the section
“Filtering” on page 345, as follows:

“Texture maps are square or rectangular, but after being mapped to a
polygon or surface and transformed into screen coordinates, the
individual texels of a texture rarely correspond to individual pixels
of the final screen image. Depending on the transformation used and the
texture mapping applied, a single pixel on the screen can correspond to
anything from a small portion of a texel (magnification) to a large
collection of texels (minification).”

Several filters are already part of OpenGL; the extension allows you to define your own
custom filter. The custom filter cannot be a mipmapped filter and must be symmetric and
separable (in the 2D case).

Using the Texture Filter4 Extension

To use Filter4 filtering, you have to first define the filter function. Filter4 uses an
application-defined array of weights (see “Determining the weights Array” on
page 188). There is an implementation-dependent default set of weights.
007-2392-003 187

8: Texturing Extensions
Specifying the Filter Function

Applications specify the filter function by calling glTexFilterFuncSGIS() (see also the
glTexFilterFuncSGIS man page) with the following specifications:

Parameter Value

target GL_TEXTURE_1D or GL_TEXTURE_2D

filter GL_FILTER4_SGIS

weights Pointing to an array of n floating-point values. The value n must equal
2**m + 1 for some nonnegative integer value of m.

Determining the weights Array

The weights array contains samples of the filter function expressed as follows:

f(x), 0<=x<=2

Each element weights[i] is the value of the following expression:

f((2*i)/(n-1)), 0<=i<=n-1

OpenGL stores and uses the filter function as a set of samples, expressed as follows:

f((2*i)/(Size-1)), 0<=i<=Size-1

The Size variable is the implementation-dependent constant
GL_TEXTURE_FILTER4_SIZE. If n equals Size, the array weights is stored directly in
OpenGL state. Otherwise, an implementation-dependent resampling method is used to
compute the stored samples.

Note: “SGIS_filter4_parameters—The Filter4 Parameters Extension” on page 177
provides interpolation coefficients just as they are required for GL_FILTER4_SGIS
filtering.

The variable Size must equal 2**m + 1 for some integer value of m greater than or equal
to 4. The value Size for texture target is returned by params when glGetTexParameteriv()
or glGetTexParameterfv() is called with pname set to TEXTURE_FILTER4_SIZE_SGIS.
188 007-2392-003

SGIS_texture_lod—The Texture LOD Extension
Setting Texture Parameters

After the filter function has been defined, call glTexParameter*() with the following
specifications:

Parameter Value

pname GL_TEXTURE_MIN_FILTER or GL_TEXTURE_MAG_FILTER

param or params FILTER4_SGIS

param(s) The function you just defined

Because filter4 filtering is defined only for non-mipmapped textures, there is no
difference between its definition for minification and magnification.

New Functions

The SGIS_texture_filter4 extension introduces the following functions:

• glTexFilterFuncSGIS()

• glGetTexFilterFuncSGIS()

SGIS_texture_lod—The Texture LOD Extension

Note: This extension was promoted to a standard part of OpenGL 1.2. Use the equivalent
OpenGL 1.2 interface (for example, with the SGIS suffix removed) with new applications,
unless they must run on InfiniteReality systems.

The texture LOD extension, SGIS_texture_lod, imposes constraints on the texture LOD
parameter. Together these constraints allow a large texture to be loaded and used initially
at low resolution and to have its resolution raised gradually as more resolution is desired
or available. By providing separate, continuous clamping of the LOD parameter, the
extension makes it possible to avoid “popping” artifacts when higher-resolution images
are provided.

To achieve this, the extension imposes the following constraints:

• It clamps LOD to a specific floating point range.
007-2392-003 189

8: Texturing Extensions
• It limits the selection of mipmap image arrays to a subset of the arrays that would
otherwise be considered.

To understand the issues described in this section, you should be familiar with the issues
described in the sections “Multiple Levels of Detail” on page 338 and “Filtering” on page
344 of the OpenGL Programming Guide.

Specifying a Minimum or Maximum Level of Detail

To specify a minimum or maximum level of detail for a specific texture, call
glTexParameter*() with the following specifications:

Parameter Value

target GL_TEXTURE_1D, GL_TEXTURE_2D, or
GL_TEXTURE_3D_EXT

pname GL_TEXTURE_MIN_LOD_SGIS or
GL_TEXTURE_MAX_LOD_SGIS

param (or params pointing to) The new value

LOD is clamped to the specified range before it is used in the texturing process. Whether
the minification or magnification filter is used depends on the clamped LOD.

Specifying Image Array Availability

The OpenGL Specification describes a “complete” set of mipmap image arrays at levels 0
(zero) through p, where p is a well-defined function of the dimensions of the level 0
image.

This extension lets you redefine any image level as the base level (or maximum level).
This is useful, for example, if your application runs under certain time constraints, and
you want to make it possible for the application to load as many levels of detail as
possible but stop loading and continue processing while choosing from the available
levels after a certain period of time has elapsed. Availability in that case does not depend
on what is explicitly specified in the program but on what could be loaded in a specified
time.

To set a new base (or maximum) level, call glTexParameteri(), glTexParemeterf(),
glTexParameteriv(), or glTexParameterfv() and use the following specifications:
190 007-2392-003

SGIS_texture_select—The Texture Select Extension
Parameter Value

target GL_TEXTURE_1D, GL_TEXTURE_2D, or
GL_TEXTURE_3D_EXT

pname GL_TEXTURE_BASE_LEVEL_SGIS to specify a base
level or
GL_TEXTURE_MAX_LEVEL_SGIS to specify a
maximum level

param to (or params pointing to) The desired value

Note that the number used for the maximum level is absolute, not relative to the base
level.

SGIS_texture_select—The Texture Select Extension

Note: This extension is only supported on InfiniteReality systems. Applications
requiring efficient use of texture memory on Onyx4 and Silicon Graphics Prism systems
should use the OpenGL 1.3 texture compression interface together with the compressed
texture format defined by the EXT_texture_compression_s3tc extension. Alternatively,
these systems may support automatic texture compression on a per-application basis by
setting environment variables; see the platform release notes for more details.

The texture select extension, SGIS_texture_select, allows for more efficient use of texture
memory by subdividing the internal representation of a texel into one, two, or four
smaller texels. The extension may also improve performance of texture loading.

Why Use the Texture Select Extension?

On InfiniteReality graphics systems, the smallest texel supported by the hardware is 16
bits. The extension allows you to pack multiple independent textures together to
efficiently fill up space in texture memory. The extension itself refers to each of the
independent textures as component groups.

• Two 8-bit textures can be packed together. Examples include 8-bit luminance, 8-bit
intensity, 8-bit alpha, and 4-bit luminance-alpha.
007-2392-003 191

8: Texturing Extensions
• Four 4-bit textures can be packed together. Examples include 4-bit luminance, 4-bit
intensity, and 4-bit alpha.

The extension allows developers to work with these components by providing several
new texture internal formats. For example, assume that a texture internal format of
GL_DUAL_LUMINANCE4_SGIS is specified. Now there are two component groups,
where each group has a format of GL_LUMINANCE4. One of the two GL_LUMINANCE
groups is always selected. Each component can be selected and interpreted as a
GL_LUMINANCE texture.

Note: The point of this extension is to save texture memory. Applications that need only
8-bit or 4-bit texels would otherwise use half or one quarter of texture memory. However,
applications that use 16-bit or larger texels (such as RGBA4, LA8) will not benefit from
this extension.

Using the Texture Select Extension

To use the texture select extension, first call glTexImage*D() to define the texture using
one of the new internal formats as follows:

glTexImage[n]D[EXT] (/* Definition */
 internalFormat =
 GL_DUAL_{ ALPHA, LUMINANCE, INTENSITY * }{4, 8, 12, 16 }_SGIS
 GL_DUAL_LUMINANCE_ALPHA{ 4, 8 } _SGIS
 GL_QUAD_{ ALPHA, LUMINANCE, INTENSITY*}{ 4, 8 }_SGIS
);

The system then assigns parts of the texture data supplied by the application to parts of
the 16-bit texel, as illustrated in Table 8-11.

To select one of the component groups for use during rendering, the application then
calls glTexParameter*() as follows:

glTexParameteri (/* Selection & Usage */
target = GL_TEXTURE_[n]D[_EXT],
param = GL_DUAL_TEXTURE_SELECT_SGIS GL_QUAD_TEXTURE_SELECT_SGIS
value = { 0, 1 },

{ 0, 1, 2, 3 }
);
192 007-2392-003

SGIX_clipmap—The Clipmap Extension
There is always a selection defined for both DUAL_TEXTURE_SELECT_SGIS and
QUAD_TEXTURE_SELECT_SGIS formats. The selection becomes active when the current
texture format becomes one of the DUAL* or QUAD* formats, respectively. If the current
texture format is not one of DUAL* or QUAD* formats, this extension has no effect.

Component mapping from standard RGBA to the new internal formats is as follows:

The interpretation of the bit resolutions of the new internal formats is
implementation-dependent. To query the actual resolution that is granted, call
glGetTexLevelParameter() with pname set appropriately—for example,
GL_TEXTURE_LUMINANCE_SIZE. The bit resolution of similar type components in a
group, such as multiple LUMINANCE components, is always the same.

SGIX_clipmap—The Clipmap Extension

Note: This extension is only supported on InfiniteReality systems. However,
OpenGL Performer implements an emulation of clipmapping; therefore, applications
using OpenGL Performer will be able to use extremely large textures even on systems
not supporting the clipmap extension.

The clipmap extension, SGIX_clipmap, allows applications to use dynamic texture
representations that efficiently cache textures of arbitrarily large size in a finite amount
of physical texture memory. Only those parts of the mipmapped texture that are visible

Table 8-11 Texture Select Host Format Components Mapping

Format Grouping

DUAL* formats that are groups of
ALPHA, LUMINANCE, and INTENSITY

RED component goes to the first group.

ALPHA component goes to the second group.

DUAL* formats that are groups of
LUMINANCE_ALPHA

RED and GREEN components go to the first group.

BLUE and ALPHA go to the second group.

QUAD* formats RED component goes to the first group.

GREEN component goes to the second group.

BLUE component goes to the third group.

ALPHA component goes to the fourth group.
007-2392-003 193

8: Texturing Extensions
from a given application-specified location are stored in system and texture memory. As
a result, applications can display textures too large to fit in texture memory by loading
parts on the texture into texture memory only when they are required.

Full clipmap support is implemented in OpenGL Performer 2.2 (or later). Applications
can also use this extension on the appropriate hardware (currently InfiniteReality only)
for the same results. In that case, the application has to perform memory management
and texture loading explicitly.

This section explains how clipmaps work and how to use them in the following sections:

• “Clipmap Overview” on page 194 explains the basic assumptions behind clipmaps.

• “Using Clipmaps From OpenGL” on page 197 provides step-by-step instructions
for setting up a clipmap stack and for using clipmaps. Emphasis is on the steps with
references to the background information as needed.

• “Clipmap Background Information” on page 200 explains in more detail some of
the concepts behind the steps in clipmap creation.

• “Virtual Clipmaps” on page 203 describes how to work with a virtualized clipmap,
which is the appropriate solution if some levels of the clipmap do not fit.

Note: For additional conceptual information, see the specification for the clipmap
extension, which is available through the developer’s toolbox.

Clipmap Overview

Clipmaps avoid the size limitations of normal mipmaps by clipping the size of each level
of a mipmap texture to a fixed area called the clip region (see Figure 8-5). A mipmap
contains a range of levels, each four times the size of the previous one. Each level (size)
determines whether clipping occurs as follows:

• For levels smaller than the clip region—that is, for low-resolution levels that have
relatively few texels—the entire level is kept in texture memory.

• Levels larger than the clip region are clipped to the clip region’s size. The clip region
is set by the application, trading off texture memory consumption against image
quality. The image may become blurry because texture accesses outside the clip
region are forced to use a coarse LOD.
194 007-2392-003

SGIX_clipmap—The Clipmap Extension
Figure 8-5 Clipmap Component Diagram

Clipmap Constraints

The clipmap algorithm is based on the following constraints:

• The viewer can see only a small part of a large texture from any given viewpoint.

• The viewer looks at a texture from only one location.

• The viewer moves smoothly relative to the clipmap geometry (no teleporting).

• The textured geometry must have a reasonable, relatively flat topology.

Given these constraints, applications can maintain a high-resolution texture by keeping
only those parts of the texture closest to the viewer in texture memory. The remainder of
the texture is on disk and cached in system memory.

Clip size

Clip region

Entire level in
texture memory
007-2392-003 195

8: Texturing Extensions
Why Do the Clipmap Constraints Work?

The clipmap constraints work because only the textured geometry closest to the viewer
needs a high-resolution texture. Distant objects are smaller on the screen; so, the texels
used on that object also appear smaller (cover a small screen area). In normal
mipmapping, coarser mipmap levels are chosen as the texel size gets smaller relative to
the pixel size. These coarser levels contain fewer texels because each texel covers a larger
area on the textured geometry.

Clipmaps store only part of each large (high-resolution) mipmap level in texture
memory. When the user looks over the geometry, the mipmap algorithm starts choosing
texels from a lower level before running out of texels on the clipped level. Because
coarser levels have texels that cover a larger area, at a great enough distance, texels from
the unclipped, smaller levels are chosen as appropriate.

When a clip size is chosen, the mipmap levels are separated into the following two
categories:

• Clipped levels, which are texture levels that are larger than the clip size.

• Nonclipped levels, which are small enough to fit entirely within the clip region.

The nonclipped levels are viewpoint-independent; each nonclipped texture level is
complete. Clipped levels, however, must be updated as the viewer moves relative to the
textured geometry.

Clipmap Textures and Plain Textures

Clipmaps are not completely interchangeable with regular OpenGL textures. The
following are some differences:

• Centering

In a regular texture, every level is complete in a regular texture. Clipmaps have
clipped levels, where only the portion of the level near the clipmap center is
complete. In order to look correct, a clipmap center must be updated as the
viewport of the textured geometry moves relative to the clipmap geometry. As a
result, clipmaps require functionality that recalculates the center position whenever
the viewer moves (essentially each frame). This means that the application has to
update the location of the clip center as necessary.

• Texel data
196 007-2392-003

SGIX_clipmap—The Clipmap Extension
A regular texture is usually only loaded once when the texture is created. The texel
data of a clipmap must be updated by the application each time the clipmap center
is moved. This is usually done by calling glTexSubImage2D() and using the
toroidal loading technique (see “Toroidal Loading” on page 202).

Using Clipmaps From OpenGL

To use clipmaps, an application has to take care of the following two distinct tasks,
described in this section:

• “Setting Up the Clipmap Stack”

• “Updating the Clipmap Stack”

Setting Up the Clipmap Stack

To set up the clipmap stack, an application has to follow these steps:

1. As shown in the following, call glTexParameter*() with the
GL_TEXTURE_MIN_FILTER_SGIX parameter set to
GL_LINEAR_CLIPMAP_LINEAR_SGIX to let OpenGL know that clipmaps, not
mipmaps, will be used:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR_CLIPMAP_LINEAR);

GL_TEXTURE_MAG_FILTER can be anything but GL_FILTER4_SGIS.

2. Set the GL_TEXTURE_CLIPMAP_FRAME_SGIX parameter to establish an invalid
border region of at least eight pixels.

The frame is the part of the clip that the hardware should ignore. Using the frame
avoids certain sampling problems; in addition, the application can load into the
frame region while updating the texture. See “Invalid Borders” on page 201 for
more information.

In the following code fragment, size is the fraction of the clip size that should be part
of the border; that is, .2 would mean 20 percent of the entire clip size area would be
dedicated to the invalid border along the edge of the square clip size region.

GLfloat size = .2f; /* 20% */
/* can range from 0 (no border) to 1 (all border) */
glTexParameterf(GL_TEXTURE_2D,GL_TEXTURE_CLIPMAP_FRAME_SGIX,size);
007-2392-003 197

8: Texturing Extensions
3. Set GL_TEXTURE_CLIPMAP_CENTER_SGIX to set the center texel of the
highest-resolution texture, specified as an integer. The clip center is specified in
terms of the top (highest-resolution) level of the clipmap, level 0. OpenGL
automatically adjusts and applies the parameters to all of the other levels.

The position of the center is specified in texel coordinates. Texel coordinate are
calculated by taking the texture coordinates (which range from 0 to 1 over the
texture) and multiplying them by the size of the clipmap’s top level. See “Moving
the Clip Center” on page 200 for more information.

The following code fragment specifies the location of the region of interest on every
clipped level of clipmap. The location is specified in texel coordinates; so, texture
coordinates must be multiplied by the size of the top level in each dimension. In this
example, center is at the center of texture (.5, .5). Assume this clipmap is 4096 (s
direction) by 8192 (t direction) at level 0.

int center[3];
center[0] = .5 * 4096;
center[1] = .5 * 8192;
center[2] = 0; /* always zero until 3d clipmaps supported */

glTexParameteriv(GL_TEXTURE_2D,
GL_TEXTURE_CLIPMAP_CENTER_SGIX,center);

4. Set GL_TEXTURE_CLIPMAP_OFFSET_SGIX to specify the offset. The offset
parameter allows applications to offset the origin of the texture coordinates so that
the incrementally updated texture appears whole and contiguous.

Like the center, the offset is supplied in texel coordinates. In the code fragment
below, clip size is the size of the region of interest.

int offset[2];

offset[0] = (center[0] + clipsize/2) % clipsize;
offset[1] = (center[1] + clipsize/2) % clipsize;

glTexParameteriv(GL_TEXTURE_2D,
GL_TEXTURE_CLIPMAP_OFFSET_SGIX,offset);

5. Call glTexImage2D() to define the highest-resolution level that contains the entire
map. This indirectly tells OpenGL what the clip size is and which level of the
clipmap contains the largest clipped level. OpenGL indirectly calculates the clip size
of a clipmap by the size of the texture levels. Although the clipmap levels can be
loaded in any order, it is most efficient for the current clipmap system if the top of
198 007-2392-003

SGIX_clipmap—The Clipmap Extension
the pyramid is loaded first. Note that a clipmap’s clip size level is at some level
other than zero. Otherwise, there would be no levels larger than the clip size—that
is, no clipped levels.

In the following code fragment, the clipmap is RGB with a top level of dimensions
8192 by 8192 and a clip size of 512 by 512. There will be 12 levels total, and the last
level at which the whole mipmap is in memory (512 level) is level 4.

GLint pyramid_level, border = 0;
GLsizei clipsize_wid, clipsize_ht;
clipsize_wid = clipsize_ht = 512;
pyramid_level = 4; /* 8192 = 0, 4096 = 1, 2048 = 2, 1024 = 3, ... */

glTexImage2D(GL_TEXTURE_2D,
 pyramid_level,
 GL_RGB, /* internal format */
 clipsize_wid,
 clipsize_ht,
 border, /* not invalid border! */,
 GL_RGB, /* format of data being loaded */
 GL_BYTE, /* type of data being loaded */
 data); /* data can be null and subloaded later if desired */

6. Create the clipmap stack by calling glTexImage2D() repeatedly for each level.

If you want to use a virtual clipmap, you can use the texture_LOD extension (see
“SGIS_texture_lod—The Texture LOD Extension” on page 189) to specify the
minimum and maximum LOD. See “Virtual Clipmaps” on page 203.

After the application has precomputed all mipmaps, it stores them on disk for easy
access. Note that it is not usually possible to create the stack in real time.

Updating the Clipmap Stack

As the user moves through the scene, the center of the clipmap usually changes with each
frame. Applications, therefore, must update the clipmap stack with each frame by
following these steps:

1. Compute the difference between the old and new center.

See “Moving the Clip Center” on page 200 for background information.

2. Determine the incremental texture load operations needed for each level.

3. Perform toroidal loads by calling glTexSubImage2D() to load the appropriate texel
regions.
007-2392-003 199

8: Texturing Extensions
“Toroidal Loading” on page 202 discusses this in more detail.

4. Set the parameters forthe center and the offset for the next move.

Clipmap Background Information

The following sections provide background information for the steps in “Using
Clipmaps From OpenGL” on page 197.

Moving the Clip Center

Only a small part of each clipped level of a clipmap actually resides in texture memory.
As a result, moving the clip center requires updating the contents of texture memory so
it contains the pixel data corresponding to the new location of the region of interest.

Updates must usually happen every frame, as shown in Figure 8-6. Applications can
update the clipmaps to the new center using toroidal loading (see “Toroidal Loading” on
page 202).

Figure 8-6 Moving the Clip Center

The clip center is set by the application for level 0, the level with the highest resolution.
The clipmap code has to derive the clip center location on all levels. As the viewer roams
over a clipmap, the centers of each mipmap level move at a different rate. For example,

Centered Center moves Texture coordinates wrap

Toroidal loads Same as centered
200 007-2392-003

SGIX_clipmap—The Clipmap Extension
moving the clip center one unit corresponds to the center moving one half that distance
in each dimension in the next-coarser mipmap level.

When applications use clipmaps, most of the work consists of updating the center
properly and updating the texture data in the clipped levels reliably and efficiently for
each frame.To facilitate loading only portions of the texture at a time, the texture data
should first be subdivided into a contiguous set of rectangular areas called tiles. These
tiles can then be loaded individually from disk into texture memory.

Invalid Borders

Applications can improve performance by imposing alignment requirements to the
regions being downloaded to texture memory. Clipmaps support the concept of an
invalid border to provide this feature. The border is an area around the perimeter of a clip
region that is guaranteed not to be displayed. The invalid border shrinks the usable area
of the clip region and can be used to dynamically change the effective size of the clip
region.

When texturing requires texels from a portion of an invalid border at a given mipmap
level, the texturing system moves down a level and tries again. It keeps going down to
coarser levels until it finds texels at the proper coordinates that are not in the invalid
region. This is always guaranteed to happen, because each level covers the same area
with fewer texels. Even if the required texel is clipped out of every clipped level, the
unclipped pyramid levels will contain it.

The invalid border forces the use of lower levels of the mipmap. As a result, it

• Reduces the abrupt discontinuity between mipmap levels if the clip region is small.

Using coarser LODs blends mipmap levels over a larger textured region.

• Improves performance when a texture must be roamed very quickly.

Because the invalid border can be adjusted dynamically, it can reduce the texture and
system memory loading requirements at the expense of a blurrier textured image.
007-2392-003 201

8: Texturing Extensions
Figure 8-7 Invalid Border

Toroidal Loading

To minimize the bandwidth required to download texels from system to texture memory,
the image cache’s texture memory should be updated using toroidal loading, which
means the texture wraps upon itself. (see Figure 8-6).

A toroidal load assumes that changes in the contents of the clip region are incremental,
such that the update consists of the following:

• New texels that need to be loaded

• Texels that are no longer valid

• Texels that are still in the clip region but have shifted position

Toroidal loading minimizes texture downloading by updating only the part of the
texture region that needs new texels. Shifting texels that remain visible is not necessary,
because the coordinates of the clip region wrap around to the opposite side.

As the center moves, only texels along the edges of the clipmap levels change. To allow
for incremental loading only of these texels using glTexSubImage2D(), toroidal offset
values must be added to the texture addresses of each level. The offset is specified by the

Required texel

Invalid border

Clip region

Clip center

Clip center

Required texel

Fine

Coarser
202 007-2392-003

SGIX_clipmap—The Clipmap Extension
application (see “Setting Up the Clipmap Stack” on page 197). The offsets for the top
level define the offsets for subsequent levels by a simple shift, just as with the center.

Virtual Clipmaps

You can use the texture LOD extension in conjunction with mipmapping to change the
base level from zero to something else. Using different base levels results in clipmaps
with more levels than the hardware can store at once when texturing.

These larger mipmapped textures can be used by only accessing a subset of all available
mipmap levels in texture memory at any one time. A virtual offset is used to set a virtual
“level 0” in the mipmap while the number of effective levels indicates how many levels
starting from the new level 0 can be accessed. The minLOD and maxLOD are also used
to ensure that only valid levels are accessed. Using the relative position of the viewer and
the terrain to calculate the values, the application typically divides the clipmapped
terrain into pieces and sets the values as each piece is traversed.

Figure 8-8 Virtual Clipmap

Clip size

Clip region

Clipmap depth

Clipmap LOD
offset

Virtual clipmap
depth
007-2392-003 203

8: Texturing Extensions
To index into a clipmap of greater thanGL_MAX_CLIPMAP_DEPTH_SGIX levels of detail,
additional parameters are provided to restrictively index a smaller clipmap of (N+1)
levels located wholly within a complete, larger clipmap. Figure 8-8 illustrates how a
virtual clipmap fits into a larger clipmap stack. The clipmap extension specification
explains the requirements for the larger and smaller clipmap in more detail.

When creating a virtual clipmap, an application calls glTexParameteriv() or
glTexParameterfv() with the following specifications:

Parameter Value

target GL_TEXTURE_2D

pname GL_TEXTURE_CLIPMAP_VIRTUAL_DEPTH_SGIX

params (D,N+1,V+1)
The value D is the finest level of the clipmap, N+1 is the depth of the
clipmap, and V+1 is the depth of the virtual clipmap.

If the depth of the virtual clipmap is zero, clipmap virtualization is ignored, and
texturing proceeds as with a non-virtual clipmap.

If you have virtualized the clipmap, you will be adjusting the LOD offset and possibly
the number of displayable levels as you render each chunk of polygons that need a
different set of clipmap levels to be rendered properly. The application has to compute
the levels needed.

SGIX_texture_add_env—The Texture Environment Add Extension

Note: This extension is not supported on Onyx4 and Silicon Graphics Prism systems.
Applications can achieve similar functionality by using the OpenGL 1.3 ADD texture
environment mode, although the constant color scale and bias provided by this extension
are not supported by base OpenGL 1.3. Alternatively, the OpenGL 1.3 texture combiner
interface can be set up to match the effects of this extension.

The texture environment add extension, SGIX_texture_add_env, defines a new texture
environment function, which scales the texture values by the constant texture
environment color, adds a constant environment bias color, and finally adds the resulting
texture value on the in-coming fragment color. The extension can be used to simulate
204 007-2392-003

SGIX_texture_lod_bias—The Texture LOD Bias Extension
highlights on textures (although that functionality is usually achieved with multipass
rendering) and for situations in which it has to be possible to make the existing color
darker or lighter—for example, for simulating an infrared display in a flight simulator.

OpenGL supports the following four texture environment functions:

• GL_DECAL

• GL_REPLACE

• GL_MODULATE

• GL_BLEND

The extension provides an additional environment, GL_ADD, which is supported with
the following equation:

Cv = Cf + CcCt + Cb

Variable Value

Cf Fragment color

Cc Constant color set by calling glTexEnv() with pname set to
GL_TEXTURE_ENV_COLOR

Ct Texture color

Cb Bias color set by calling glTexEnv() with pname set to
GL_TEXTURE_ENV_BIAS_SGIX and param set to a value greater than -1
and less than 1.

The new function works just like the other functions described in the section “Texture
Functions” on page 354 of the OpenGL Programming Guide, Second Edition.

SGIX_texture_lod_bias—The Texture LOD Bias Extension

Note: This extension is not supported on Onyx4 and Silicon Graphics Prism systems.
Applications can achieve similar functionality by using the OpenGL 1.4
TEXTURE_LOD_BIAS parameter, although the numerical meaning of the bias is not
identical between this extension and the OpenGL 1.4 feature because the bias is added at
different stages of computing the level of detail.
007-2392-003 205

8: Texturing Extensions
The texture LOD bias extension, SGIX_texture_lod_bias, allows applications to bias the
default LOD to make the resulting image sharper or more blurry. This can improve image
quality if the default LOD is not appropriate for the situation in question.

Background: Texture Maps and LODs

If an application uses an image as a texture map, the image may have to be scaled down
to a smaller size on the screen. During this process the image must be filtered to produce
a high-quality result. Nearest-neighbor or linear filtering do not work well when an
image is scaled down; for better results, an OpenGL program can use mipmapping. A
mipmap is a series of prefiltered texture maps of decreasing resolution. Each texture map
is referred to as one level of detail (LOD). Applications create a mipmap using the
routines gluBuild1DMipmaps() or gluBuild2DMipmaps(). Mipmaps are discussed
starting on page 338 of the OpenGL Programming Guide, Second Edition.

Graphics systems from Silicon Graphics automatically select an LOD for each textured
pixel on the screen. However, in some situations the selected LOD results in an image
that is too crisp or too blurry for the needs of the application. For example, 2D
mipmapping works best when the shape of the texture on the screen is a square. If that
is not the case, then one dimension of the texture must be scaled down more than the
other to fit on the screen. By default, the LOD corresponding to the larger scale factor is
used; so, the dimension with the smaller scale factor will appear too blurry.

Figure 8-9 shows an image that is too blurry with the default LOD bias. You can see that
the marker in the middle of the road is blurred out. In Figure 8-10, this effect is
exaggerated by a positive LOD bias. Figure 8-11 shows how the markers become visible
with a negative LOD bias.
206 007-2392-003

SGIX_texture_lod_bias—The Texture LOD Bias Extension
Figure 8-9 Original Image

Figure 8-10 Image With Positive LOD Bias
007-2392-003 207

8: Texturing Extensions
Figure 8-11 Image with Negative LOD Bias

As another example, the texture data supplied by the application may be slightly
oversampled or undersampled; so, the textured pixels drawn on the screen may be
correspondingly blurry or crisp.

Why Use the LOD Bias Extension?

The texture LOD bias extension allows applications to bias the default LOD to make the
resulting image sharper or more blurry. An LOD of 0 corresponds to the most-detailed
texture map, an LOD of 1 corresponds to the next smaller texture map, and so on. The
default bias is zero, but if the application specifies a new bias, that bias will be added to
the selected LOD. A positive bias produces a blurrier image, and a negative bias
produces a crisper image. A different bias can be used for each dimension of the texture
to compensate for unequal sampling rates.
208 007-2392-003

SGIX_texture_lod_bias—The Texture LOD Bias Extension
Examples of textures that can benefit from this LOD control include the following:

• Images captured from a video source. Because video systems use non-square pixels,
the horizontal and vertical dimensions may require different filtering.

• A texture that appears blurry because it is mapped with a nonuniform scale, such as
a texture for a road or runway disappearing toward the horizon. The vertical
dimension must be scaled down a lot near the horizon, the horizontal dimension
need not to be scaled down as much.

• Textures that do not have power-of-two dimensions and, therefore, they had to be
magnified before mipmapping. The magnification may have resulted in a
nonuniform scale.

Using the Texture LOD Bias Extension

To make a mipmapped texture sharper or blurrier, applications can supply a negative or
positive bias by calling glTexParameter*() with the following specifications:

Parameter Value

target TEXTURE_1D, TEXTURE_2D, or TEXTURE_3D_EXT

pname GL_TEXTURE_LOD_BIAS_S_SGIX,
GL_TEXTURE_LOD_BIAS_T_SGIX, or
GL_TEXTURE_LOD_BIAS_R_SGIX

param (or params pointing to) The desired bias value, which may be any integer or
floating-point number. The default value is 0.

You can specify a bias independently for one or more texture dimensions. The final LOD
is at least as large as the maximum LOD for any dimension; that is, the texture is scaled
down by the largest scale factor, even though the best scale factors for each dimension
may not be equal.

Applications can also call glGetTexParameter*() to check whether one of these values
has been set.
007-2392-003 209

8: Texturing Extensions
SGIX_texture_scale_bias—The Texture Scale Bias Extension

Note: This extension is not supported on Onyx4 and Silicon Graphics Prism systems.
Applications can achieve similar functionality by setting up the OpenGL 1.3 texture
combiner interface to match the effects of this extension or by using fragment programs.

The texture_scale_bias extension, SGIX_texture_scale_bias, allows applications to
perform scale, bias, and clamp operations as part of the texture pipeline. By allowing
scale or bias operations on texels, applications can make better utilization of the color
resolution of a particular texture internal format by performing histogram normalization
or gamut expansion, for example. In addition, some color remapping may be performed
with this extension if a texture color lookup table is not available or too expensive.

The scale, bias, and clamp operations are applied in that order directly before the texture
environment equations or if the SGI_texture_color_table extension exists, directly before
the texture color lookup table. The four values for scale (or bias) correspond to the R, G,
B, and A scale (or bias) factors. These values are applied to the corresponding texture
components, Rt, Gt, Bt, and At. Following the scale and bias is a clamp to the range [0, 1].

To use the extension, an application calls glTexParameter*() with the following
specifications:

Parameter Value

pname GL_POST_TEXTURE_FILTER_BIAS_SGIX or
GL_POST_TEXTURE_FILTER_SCALE_SGIX

params An array of four values

The scale or bias values can be queried using glGetTexParameterfv() or
glGetTexParameteriv(). The scale, bias, and clamp operations are effectively disabled by
setting the four scale values to 1 and the four bias values to 0. There is no specific enable
or disable token for this extension.

Because an implementation may have a limited range for the values of scale and bias (for
example, due to hardware constraints), this range can be queried. To obtain the scale or
bias range, call glGet*() with GL_POST_TEXTURE_FILTER_SCALE_RANGE_SGIX or
GL_POST_TEXTURE_FILTER_BIAS_RANGE_SGIX, respectively, as the value parameter.
An array of two values is returned: the first is the minimum value and the second is the
maximum value.
210 007-2392-003

Chapter 9

9. Rendering Extensions

This chapter explains how to use the different OpenGL rendering extensions. Rendering
refers to several parts of the OpenGL pipeline: the evaluator stage, rasterization, and
per-fragment operations. The following extenstions are described in this chapter:

• “ATI_draw_buffers—The Multiple Draw Buffers Extension” on page 212

• “ATI_separate_stencil—The Separate Stencil Extension” on page 213

• “NV_point_sprite—The Point Sprite Extension” on page 215

• “NV_occlusion_query—The Occlusion Query Extension” on page 217

• “Blending Extensions” on page 221

• “SGIS_fog_function—The Fog Function Extension” on page 224

• “SGIS_fog_offset—The Fog Offset Extension” on page 228

• “The Multisample Extension” on page 230

• “The Point Parameters Extension” on page 239

• “SGIX_reference_plane—The Reference Plane Extension” on page 243

• “The Shadow Extensions” on page 245

• “SGIX_sprite—The Sprite Extension” on page 250
007-2392-003 211

9: Rendering Extensions
ATI_draw_buffers—The Multiple Draw Buffers Extension

The ATI_draw_buffers extension allows fragment programs to generate multiple output
colors, and provides a mechanism for directing those outputs to multiple color buffers.

Why Use Multiple Draw Buffers?

Multiple draw buffers are typically useful when generating an image and auxiliary data,
multiple versions of an image, or multiple computed results from a fragment program
being used for general-purpose computation.

Using Multiple Draw Buffers

Normally, a fragment program will generate a single output color, result.color,
which is written to the color buffer defined by glDrawBuffer(). When a fragment
program specifies the option “ATI_draw_buffers”, an implementation-dependent
number of output colors, named result.color[n], may be generated, where n ranges
from 0 up to the number of draw buffers minus one. The number of draw buffers
supported is implementation-dependent, and may be queried by calling glGetIntegerv()
with the parameter GL_MAX_DRAW_BUFFERS_ATI. Typically, at least four draw buffers
are supported by this extension.

To define the color buffers to which multiple output colors are written, make the
following call:

void glDrawBuffersATI(GLsizei n, const GLenum *bufs);

The parameter n specifies the number of buffers in bufs and bufs is a pointer to an array
of symbolic constants specifying the buffer to which each output color is written. The
constants may be one of the following:

• GL_NONE

• GL_FRONT_LEFT

• GL_FRONT_RIGHT

• GL_BACK_LEFT

• GL_BACK_RIGHT
212 007-2392-003

ATI_separate_stencil—The Separate Stencil Extension
• GL_AUX0 through GL_AUXn, where n + 1 is the number of available auxiliary
buffers.

The draw buffers being defined correspond in order to the respective output colors. The
draw buffer for output colors beyond n is set to GL_NONE.

The constants GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT, and GL_FRONT_AND_BACK,
which may refer to multiple color buffers, are not valid elements of bufs, and their use
will generate a GL_INVALID_OPERATION error.

If the “ATI_draw_buffers” fragment program option is not used by a fragment
program or if fixed-function fragment processing is being used, then
glDrawBuffersATI() specifies a set of draw buffers for the writing of the output color 0
or the output color from fixed-function fragment processing.

The draw buffer corresponding to output color i may be queried by calling
glGetIntegerv() with the parameter GL_DRAW_BUFFERi_ATI.

New Function

The ATI_draw_buffers extension introduces the function glDrawBuffersATI().

ATI_separate_stencil—The Separate Stencil Extension

The ATI_separate_stencil extension provides the ability to modify the stencil buffer
based on the orientation of the primitive that generated a fragment.

Why Use the Separate Stencil Extension?

When performing stencil buffer computations which differ for fragments generated by
front-facing and back-facing primitives, applications typically must render geometry
twice. They use face culling to discard front-facing primitives with one pass and
back-facing primitives on the second and change stencil buffer settings prior to each
pass. A common example is stencil shadow volumes, where the stencil buffer is to be
incremented for front-facing fragments and decremented for back-facing fragments.
007-2392-003 213

9: Rendering Extensions
By using independent stencil tests and operations depending on fragment orientation,
such computations can be performed in a single pass, which may significantly increase
performance for geometry-limited applications.

Using the Separate Stencil Extension

To set the stencil function separately for front-facing and back-facing fragments, make the
following call:

void glStencilFuncSeparateATI(GLenum frontfunc, GLenum backfunc, GLint ref,
GLuint mask);

The parameters frontfunc and backfunc respectively specify the stencil test function used
for front-facing and back-facing fragments. The values accepted are the same as for
glStencilFunc(), and the initial value of each function is GL_ALWAYS.

The parmater ref specifies the reference value used for both front-facing and back-facing
fragments. It is clamped to the range [0, pow(2,s) – 1], where s is the number of bits in the
stencil buffer.

The s least significant bits of the mask value are bitwise ANDed with ref and then with
the stored stencil value, and the resulting masked value is used in the comparison
controlled by {\em func}.

To set the stencil operation separately for front-facing and back-facing fragments, make
the following call:

void glStencilOpSeparateATI(GLenum face, GLenum fail, GLenum zfail,
GLenum zpass);

The parameter face specifies the orientation for the stencil operation and must be
GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK to set both stencil operations to the
same values.

The parameters fail, zfail, and zpass respectively specify the operations to perform when
the stencil test fails, stencil test passes but depth test fails, and stencil and depth tests both
pass. The values accepted are the same as for glStencilOp().

Use the core OpenGL tokens to query for the front-facing stencil state. To query for the
back-facing stencil state, call glGetIntegerv() with the following tokens:

• GL_STENCIL_BACK_FUNC_ATI
214 007-2392-003

NV_point_sprite—The Point Sprite Extension
• GL_STENCIL_BACK_FAIL_ATI

• GL_STENCIL_BACK_PASS_DEPTH_FAIL_ATI

• GL_STENCIL_BACK_PASS_DEPTH_PASS_ATI

New Functions

The ATI_separate_stencil extension introduces the following functions:

• glStencilFuncSeparateATI()

• glStencilOpSeparateATI()

NV_point_sprite—The Point Sprite Extension

The NV_point_sprite extension supports application of texture maps to point primitives
instead of using a single texture coordinate for all fragments generated by the point. Note
that NV_point_sprite is not related to the SGIX_sprite extension described in section
“SGIX_sprite—The Sprite Extension” on page 250.

Why Use Point Sprites?

When rendering effects such as particle systems, applications often want to draw a small
texture (such as a shaded sphere) to represent each particle rather than the set of
uniformly shaded fragments normally generated by a GL_POINTS primitive. This can
easily be done by rendering a GL_QUADS primitive for each point but at the cost of
quadrupling the amount of geometry transferred to the graphics pipeline for each point
and of performing additional work to compute the location of each vertex of the quad.
Since particle systems typically involves thousands or tens of thousands of particles, this
can translate to a large geometry load.

Point sprites allow producing these effects using point primitives instead of quads. Each
texture unit can be modified to replace the single S and T texture coordinate for each
fragment generated by a point with S and T point sprite coordinates, which are
interpolated across the fragments generated by a point. Finally, a global parameter
controls the R texture coordinate for point sprites to allow applications to animate slices
of a single 3D texture during the lifetime of a point. For example, it allows an application
to represent a particle that glows and then fades.
007-2392-003 215

9: Rendering Extensions
Using Point Sprites

Point sprites are enabled by calling glEnable(GL_POINT_SPRITE_NV). When point
sprites are enabled, the state of point antialiasing is ignored so that fragments are
generated for the entire viewport square occupied by the point instead of just fragments
in a circle filling that viewport square.

When point sprites are enabled, each texture unit may independently determine whether
or not the single point texture coordinate is replaced by point sprite texture coordinates
by making the following call:

glTexEnvi(GL_POINT_SPRITE_NV, GL_COORD_REPLACE_NV, flag);

The active texture unit will generate point sprite coordinates if flag is GL_TRUE or will
use the point texture coordinate if flag is GL_FALSE.

The point sprite texture coordinates generated for fragments by a point will be the
following:

s = 1/2 + ((xf - xw + 1/2) / size)

t = 1/2 + ((yf - yw + 1/2) / size)

The variable items are defined as follows:

(xf, yf) Specifies the window coordinates of a fragment generated by the point.

(xw, yw) Specifies the floating point coordinates of the point center.

size Specifies the screen-space point width, which depends on the current
point width as well as the scaling determined by the current point
parameters.

When 3D texturing is enabled, the R value generated for point sprite coordinates is
determined by making the following call:

glPointParameteriNV(GL_POINT_SPRITE_R_MODE_NV, GLint param);

The following are possible values of param:

GL_ZERO The R coordinate generated for all fragments will be zero. This is
typically the fastest mode. GL_ZERO is the default.

GL_S The R coordinate generated for all fragments will be taken from the S
coordinate of the point before point sprite coordinates are generated.
216 007-2392-003

NV_occlusion_query—The Occlusion Query Extension
GL_R The R coordinate generated for all fragments will be taken from the R
coordinate of the point before point sprite coordinates are generated.

NV_occlusion_query—The Occlusion Query Extension

The NV_occlusion_query extension provides a high-level mechanism to query the
visibility of an object and returns a count of the number of pixels that pass the depth test.

Why Use Occlusion Queries?

Occlusion queries are primarily used to help applications avoid rendering objects that
are completely occluded (blocked from visibility) by other objects closer to the viewer.
This can result in a significantly reduced geometry load.

Typically, this test consists of the following steps:

1. Drawing large foreground objects (occluders) that are expected to block background
objects

2. Starting the occlusion test

3. Drawing simple primitives representing the bounding box of background objects
that may be occluded

4. Ending the occlusion test

5. Reading back the number of pixels of the bounding box that passed the depth test

If the number of pixels that passed the depth test is zero, then the objects represented by
this bounding box are completely occluded and do not need to be drawn. Otherwise, at
least some of the objects within the bounding box may be visible and can either be drawn
or finer-detailed occlusion queries can be performed on smaller components of the
objects. In addition, if the number of pixels is small relative to the size of the bounding
box, it may be possible to represent the objects with lower-detailed models.

Some other possible uses for occlusion queries include depth peeling techniques like as
order-independent transparency, where an application can stop rendering when further
layers will be invisible, and as a replacement for glReadPixels() when performing
operations like reading the depth buffer to determine fractional visibility of a light source
for lens flare or halo effects.
007-2392-003 217

9: Rendering Extensions
Use occlusion queries with care, however. Naive use of a query may stall the graphics
pipeline and CPU while waiting for query results. To avoid this problem,
NV_occlusion_query supports a simple test for the availability of query results. If the
query results are not available, the application can do other drawing or compute tasks
while waiting for the results to become available.

In addition, the expense of rendering bounding boxes for an occlusion test, while
typically small compared to the expense of rendering the objects themselves, can become
significant if done too finely (for example, rendering bounding boxes for small objects)
or if done frequently when it is unlikely that the bounding boxes will actually be
occluded.

Using the NV_occlusion_query Extension

Occlusion queries depend on occlusion query objects. As shown in the following code,
these objects are represented by object names (of type GLuint), which are managed in
exactly the same fashion as texture and display list names—that is, with routines for
allocating unused query names, deleting query names, and testing if a name is a valid
occlusion query:

void glGenOcclusionQueriesNV(GLsizei n, GLuint *ids);
void glDeleteOcclusionQueriesNV(GLsizei n, const GLuint *ids);
GLboolean glIsOcclusionQueryNV(GLuint id);

Occlusion query objects contain a pixel counter, which is initially set to zero. The size (in
bits) of this counter is the same for all queries and may be determined by calling
glGetIntegerv() with parameter GL_PIXEL_COUNTER_BITS_NV. An occlusion query
counter is guaranteed to contain at least 24 bits, supporting pixels counts of at least
16777215, but it may be larger.

To perform occlusion queries, first acquire an unused query name using
glGenOcclusionQueriesNV(). Begin the query by making the following call:

void glBeginOcclusionQueryNV(GLuint id);

The parameter id specifies the name of the query to be created. Then render the geometry
to be queried. Whenever a fragment being rendered passes the depth test while an
occlusion query is being performed, the pixel counter is incremented by one. In a
multisampling situation, the pixel counter is incremented once for each sample whose
coverage bit in the fragment is set.
218 007-2392-003

NV_occlusion_query—The Occlusion Query Extension
Typically, when rendering bounding boxes for an occlusion test, the color and depth
masks are set to GL_FALSE so that the bounding boxes themselves are not drawn to the
framebuffer.

To end an occlusion query, make the following call:

void glEndOcclusionQueryNV(void);

To retrieve the count of pixels that passed the occlusion query, make the following call:

void glGetOcclusionQueryuivNV(GLuint id, GLenum pname, GLuint *params);

Set the parameter pname to GL_PIXEL_COUNT_NV. The count is returned in the variable
pointed to by params. However, as noted earlier, calling glGetOcclusionQueryNV()
immediately after ending a query may cause the graphics pipeline to stall.

To avoid stalling, first determine whether the query count is available by calling
glGetOcclusionQueryuiNV() with a pname of GL_PIXEL_COUNT_AVAILABLE_NV. If
the value returned in params is GL_TRUE, then the count is available, and a query of
GL_PIXEL_COUNT_NV may be performed without stalling. Otherwise, the application
may perform additional work unrelated to the occlusion query and test periodically for
the result. Note that the first call to determine GL_PIXEL_COUNT_AVAILABLE_NV for a
query should be preceded by glFlush() to ensure that the glEndOcclusionQueryNV()
operation for that query has reached the graphics pipeline. Otherwise, it is possible to
spin indefinitely on the query.

Example 9-1 shows a simple use of NV_occlusion_query.

Example 9-1 NV_occlusion_query Example

GLuint occlusionQuery[numQuery]; /* names for each query to perform */

glGenOcclusionQueriesNV(numQuery, occlusionQuery);

/* Prior to this point, first render the foreground occluders */
/* Disable color and depth mask writes while rendering bounding boxes
*/
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
glDepthMask(GL_FALSE);
/* Also disable texturing, fragment shaders, and any other
 * unneccessary functionality, since nothing will actually be
 * written to the screen.
 */
007-2392-003 219

9: Rendering Extensions
/* Now loop over numQuery objects, performing an occlusion query for
each */
for (i = 0; i < numQuery; i++) {
 glBeginOcclusionQueryNV(occlusionQuery[i]);
 /* Render bounding box for object i */
 glEndOcclusionQueryNV();
}

/* Enable color and depth mask writes, and any other state disabled
 * above prior to the occlusion queries
 */
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
glDepthMask(GL_TRUE);

/* If possible, perform other computations or rendering at this
 * point, while waiting for occlusion results to become available.
 */

/* Now obtain pixel counts for each query, and draw objects based
 * on those counts.
 */
for (i = 0; i < numQuery; i++) {
 GLuint pixelCount;

 glGetOcclusionQueryuivNV(occlusionQuery[i], GL_PIXEL_COUNT_NV,
&pixelCount);

 if (pixelCount > 0) {
 /* Render geometry for object i here */
 }

New Functions

The NV_occlusion_query extension introduces the following functions:

• glGenOcclusionQueriesNV()

• glDeleteOcclusionQueriesNV()

• glIsOcclusionQueryNV()

• glBeginOcclusionQueryNV()

• glEndOcclusionQueryNV()
220 007-2392-003

Blending Extensions
• glGetOcclusionQueryuivNV()

Blending Extensions

Blending refers to the process of combining color values from an incoming pixel
fragment (a source) with current values of the stored pixel in the framebuffer (the
destination). The final effect is that parts of a scene appear translucent. You specify the
blending operation by calling glBlendFunc(), then enable or disable blending using
glEnable() or glDisable() with GL_BLEND specified.

Blending is described in the first section of Chapter 7, “Blending, Antialiasing, Fog, and
Polygon Offset” of the OpenGL Programming Guide. The section also lists a number of
sample uses of blending.

This section explains how to use extensions that support color blending for images and
rendered geometry in a variety of ways:

• “Constant Color Blending Extension”

• “Minmax Blending Extension”

• “Blend Subtract Extension”

Note: These three extensions were promoted to a standard part of OpenGL 1.2. Use the
equivalent OpenGL 1.2 interfaces (for example, with the EXT suffixes removed) with
new applications, unless they must run on InfiniteReality, InfinitePerformance, or Fuel
systems. The extensions are supported on all current Silicon Graphics systems.

Constant Color Blending Extension

The standard blending feature allows you to blend source and destination pixels. The
constant color blending extension, EXT_blend_color, enhances this capability by
defining a constant color that you can include in blending equations.

Constant color blending allows you to specify input source with constant alpha that is
not 1 without actually specifying the alpha for each pixel. Alternatively, when working
with visuals that have no alpha, you can use the blend color for constant alpha. This also
allows you to modify a whole incoming source by blending with a constant color (which
007-2392-003 221

9: Rendering Extensions
is faster than clearing to that color). In effect, the image looks as if it were viewed through
colored glasses.

Using Constant Colors for Blending

To use a constant color for blending, follow these steps:

1. Call glBlendColorEXT(), whose format follows, to specify the blending color:

void glBlendColorEXT(GLclampf red, GLclampf green, GLclampf blue,
 GLclampf alpha)

The four parameters are clamped to the range [0,1] before being stored. The default
value for the constant blending color is (0,0,0,0).

2. Call glBlendFunc() to specify the blending function, using one of the tokens listed
in Table 9-1 as source or destination factor, or both.

Rc, Gc, Bc, and Ac are the four components of the constant blending color. These
blend factors are already in the range [0,1].

You can, for example, fade between two images by drawing both images with
Alpha and 1-Alpha as Alpha goes from 1 to 0, as in the following code fragment:

glBlendFunc(GL_ONE_MINUS_CONSTANT_COLOR_EXT, GL_CONSTANT_COLOR_EXT);
for (alpha = 0.0; alpha <= 1.0; alpha += 1.0/16.0) {
 glClear(GL_COLOR_BUFFER_BIT);
 glDrawPixels(width, height, GL_RGB, GL_UNSIGNED_BYTE, image0);
 glEnable(GL_BLEND);
 glBlendColorEXT(alpha, alpha, alpha, alpha);
 glDrawPixels(width, height, GL_RGB, GL_UNSIGNED_BYTE, image1);
 glDisable(GL_BLEND);

Table 9-1 Blending Factors Defined by the Blend Color Extension

Constant Computed Blend Factor

GL_CONSTANT_COLOR_EXT (Rc, Gc, Bc, Ac)

GL_ONE_MINUS_CONSTANT_COLOR_EXT (1, 1, 1, 1) – (Rc, Gc, Bc, Ac)

GL_CONSTANT_ALPHA_EXT (Ac, Ac, Ac, Ac)

GL_ONE_MINUS_CONSTANT_ALPHA_EXT (1, 1, 1, 1) – (Ac, Ac, Ac, Ac)
222 007-2392-003

Blending Extensions
 glXSwapBuffers(display, window);
}

New Functions

The EXT_blend_color extension introduces the function glBlendColorEXT().

Minmax Blending Extension

The minmax blending extension, EXT_blend_minmax, extends blending capability by
introducing two new equations that produce the minimum or maximum color
components of the source and destination colors. Taking the maximum is useful for
applications such as maximum intensity projection (MIP) in medical imaging.

This extension also introduces a mechanism for defining alternate blend equations. Note
that even if the minmax blending extension is not supported on a given system, that
system may still support the logical operation blending extension or the subtract
blending extension. When these extensions are supported, the glBlendEquationEXT()
function is also supported.

Using a Blend Equation

To specify a blend equation, call glBlendEquationEXT(), whose format follows:

void glBlendEquationEXT(GLenum mode)

The mode parameter specifies how source and destination colors are combined. The blend
equations GL_MIN_EXT, GL_MAX_EXT, and GL_LOGIC_OP_EXT do not use source or
destination factors; that is, the values specified with glBlendFunc() do not apply.

If mode is set to GL_FUNC_ADD_EXT, then the blend equation is set to GL_ADD, the
equation used currently in OpenGL 1.0. The glBlendEquationEXT() reference page lists
other modes. These modes are also discussed in “Blend Subtract Extension” on page 224.
While OpenGL 1.0 defines logic operation only on color indices, this extension extends
the logic operation to RGBA pixel groups. The operation is applied to each component
separately.

New Functions

The EXT_BLEND_MINMAX extension introduces the function glBlendEquationEXT().
007-2392-003 223

9: Rendering Extensions
Blend Subtract Extension

The blend subtract extension, EXT_blend_subtract, provides two additional blending
equations that can be used by glBlendEquationEXT(). These equations are similar to the
default blending equation but produce the difference of its left- and right-hand sides,
rather than the sum. See the man page for glBlendEquationEXT() for a detailed
description.

Image differences are useful in many image-processing applications; for example,
comparing two pictures that may have changed over time.

SGIS_fog_function—The Fog Function Extension

Standard OpenGL defines three fog modes: GL_LINEAR, GL_EXP (exponential), and
GL_EXP2 (exponential squared). Visual simulation systems can benefit from more
sophisticated atmospheric effects, such as those provided by the fog function extension.

Note: The fog function extension is supported only on InfiniteReality,
InfinitePerformance, and Fuel systems. Applications can achieve similar functionality on
Onyx4 and Silicon Graphics Prism systems using fragment programs.

The fog function extension, SGIS_fog_function, allows you to define an
application-specific fog blend factor function. The function is defined by a set of control
points and should be monotonic. Each control point is represented as a pair of the
eye-space distance value and the corresponding value of the fog blending factor. The
minimum number of control points is 1. The maximum number is
implementation-dependent.

To specify the function for computing the blending factor, call glFogFuncSGIS() with
points pointing at an array of pairs of floating point values and n set to the number of
value pairs in points. The first value of each value pair in points specifies a value of
eye-space distance (should be nonnegative), and the second value of each value pair
specifies the corresponding value of the fog blend factor (should be in the [0.0, 1.0]
range). If there is more than one point, the order in which the points are specified is based
on the following requirements:

• The distance value of each point is not smaller than the distance value of its
predecessor.
224 007-2392-003

SGIS_fog_function—The Fog Function Extension
• The fog factor value of each point is not bigger than the fog factor value of its
predecessor.

Replacing any previous specification that may have existed, the n value pairs in points
completely specify the function. At least one control point should be specified. The
maximum number of control points is implementation-dependent and may be retrieved
by calling glGetIntegerv() with a pname of GL_MAX_FOG_FUNC_POINTS_SGIS while
the number of points actually specified for the current fog function may be retrieved with
a pname of FOG_FUNC_POINTS_SGIS.

Initially the fog function is defined by a single point (0.0, 1.0). The fog factor function is
evaluated by fitting a curve through the points specified by glFogFuncSGIS(). This curve
may be linear between adjacent points, or it may be smoothed, but it will pass exactly
through the points, limited only by the resolution of the implementation. The value pair
with the lowest distance value specifies the fog function value for all values of distance
less than or equal to that pair’s distance. Likewise, the value pair with the greatest
distance value specifies the function value for all values of distance greater than or equal
to that pair’s distance.

If pname is GL_FOG_MODE and param is, or params points to an integer
GL_FOG_FUNC_SGIS, then the application-specified fog factor function is selected for
the fog calculation.

FogFunc Example Program

The following simple example program for the fog function extension can be executed
well only on those platforms where the extension is supported (VPro and InfiniteReality
systems).

#include <stdio.h>
#include <stdlib.h>
#include <GL/gl.h>
#include <GL/glut.h>

/* Simple demo program for fog-function. Will work only on machines
 * where SGIS_fog_func is supported.
 *
 * Press ‘f’ key to toggle between fog and no fog
 * Pres ESC to quit
 *
 * cc fogfunc.c -o fogfunc -lglut -lGLU -lGL -lXmu -lX11
007-2392-003 225

9: Rendering Extensions
 */

#define ESC 27

GLint width = 512, height = 512;
GLint dofog = 1; /* fog enabled by default */
GLfloat fogfunc[] = { /* fog-function profile */
 6.0, 1.0,/* (distance, blend-factor) pairs */
 8.0, 0.5,
 10.0, 0.1,
 12.0, 0.0,
};

void init(void)
{
 GLUquadric *q = gluNewQuadric();
 GLfloat ambient[] = {0.3, 0.3, 0.2, 1.0};
 GLfloat diffuse[] = {0.8, 0.7, 0.8, 1.0};
 GLfloat specular[] = {0.5, 0.7, 0.8, 1.0};
 GLfloat lpos[] = {0.0, 10.0, -20.0, 0.0}; /* infinite light */
 GLfloat diff_mat[] = {0.1, 0.2, 0.5, 1.0};
 GLfloat amb_mat[] = {0.1, 0.2, 0.5, 1.0};
 GLfloat spec_mat[] = {0.9, 0.9, 0.9, 1.0};
 GLfloat shininess_mat[] = {0.8, 0.0};
 GLfloat amb_scene[] = {0.2, 0.2, 0.2, 1.0};
 GLfloat fog_color[] = {0.0, 0.0, 0.0, 1.0};

 glClearColor(0.0, 0.0, 0.0, 1.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glFrustum(-4.0, 4.0, -4.0, 4.0, 4.0, 30.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 /* Setup lighting */

 glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);
 glLightfv(GL_LIGHT0, GL_SPECULAR, specular);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
 glLightfv(GL_LIGHT0, GL_POSITION, lpos);
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, amb_scene);
226 007-2392-003

SGIS_fog_function—The Fog Function Extension
 glMaterialfv(GL_FRONT, GL_DIFFUSE, diff_mat);
 glMaterialfv(GL_FRONT, GL_AMBIENT, amb_mat);
 glMaterialfv(GL_FRONT, GL_SPECULAR, spec_mat);
 glMaterialfv(GL_FRONT, GL_SHININESS, shininess_mat);

 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHTING);

 /* Setup fog function */

 glFogfv(GL_FOG_COLOR, fog_color);
 glFogf(GL_FOG_MODE, GL_FOG_FUNC_SGIS);
 glFogFuncSGIS(4, fogfunc);
 glEnable(GL_FOG);

 /* Setup scene */

 glTranslatef(0.0, 0.0, -6.0);
 glRotatef(60.0, 1.0, 0.0, 0.0);

 glNewList(1, GL_COMPILE);
 glPushMatrix();
 glTranslatef(2.0, 0.0, 0.0);
 glColor3f(1.0, 1.0, 1.0);
 gluSphere(q, 1.0, 40, 40);
 glTranslatef(-4.0, 0.0, 0.0);
 gluSphere(q, 1.0, 40, 40);
 glTranslatef(0.0, 0.0, -4.0);
 gluSphere(q, 1.0, 40, 40);
 glTranslatef(4.0, 0.0, 0.0);
 gluSphere(q, 1.0, 40, 40);
 glTranslatef(0.0, 0.0, -4.0);
 gluSphere(q, 1.0, 40, 40);
 glTranslatef(-4.0, 0.0, 0.0);
 gluSphere(q, 1.0, 40, 40);
 glPopMatrix();
 glEndList();
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 (dofog) ? glEnable(GL_FOG) : glDisable(GL_FOG);
 glCallList(1);
 glutSwapBuffers();
007-2392-003 227

9: Rendering Extensions
}

void kbd(unsigned char key, int x, int y)
{
 switch (key) {
 case ‘f’: /* toggle fog enable */
 dofog = 1 - dofog;
 glutPostRedisplay();
 break;

 case ESC:/* quit!! */
 exit(0);
 }
}

main(int argc, char *argv[])
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);
 glutInitWindowSize(width, height);
 glutCreateWindow(“Fog Function”);
 glutKeyboardFunc(kbd);
 glutDisplayFunc(display);

 init();
 glutMainLoop();
}

New Function

The SGIS_fog_function extension introduces the function glFogFuncSGIS().

SGIS_fog_offset—The Fog Offset Extension

Note: This extension is not supported on Onyx4 and Silicon Graphics Prism systems.
Applications can achieve similar functionality using fragment programs.

The fog offset extension, SGIX_fog_offset, allows applications to make objects look
brighter in a foggy environment.
228 007-2392-003

SGIS_fog_offset—The Fog Offset Extension
When fog is enabled, it is equally applied to all objects in a scene. This can create
unrealistic effects for objects that are especially bright (light sources like automobile
headlights, runway landing lights, or florescent objects, for instance). To make such
objects look brighter, fog offset may be subtracted from the eye distance before it is used
for the fog calculation. This works appropriately because the closer an object is to the eye,
the less obscured by fog it is.

To use fog with a fog offset, follow these steps:

1. Call glEnable() with the GL_FOG argument to enable fog.

2. Call glFog*() to choose the color and the equation that controls the density.

The above two steps are explained in more detail in “Using Fog” on page 240 of the
OpenGL Programming Guide, Second Edition.

3. Call glEnable() with argument GL_FOG_OFFSET_SGIX.

4. Call glFog*() with a pname value of GL_FOG_OFFSET_VALUE_SGIX and four
params. The first three parameters are point coordinates in the eye space and the
fourth parameter is an offset distance in the eye space.

The GL_FOG_OFFSET_VALUE_SGIX value specifies point coordinates in eye space
and offset amount toward the viewpoint. It is subtracted from the depth value to
make objects closer to the viewer right before fog calculation. As a result, objects
look less foggy. Note that these point coordinates are needed for OpenGL
implementations that use z-based fog instead of eye space distance. The
computation of the offset in the z dimension is accurate only in the neighborhood of
the specified point.

If the final distance is negative as a result of offset subtraction, it is clamped to 0. In
the case of perspective projection, fog offset is properly calculated for the objects
surrounding the given point. If objects are too far away from the given point, the fog
offset value should be defined again. In the case of ortho projection, the fog offset
value is correct for any object location.

5. Call glDisable() with argument GL_FOG_OFFSET_SGIX to disable fog offset.
007-2392-003 229

9: Rendering Extensions
The Multisample Extension

There are two version of the multisample extension:

• ARB_multisample

• SGIS_multisample

Note: Functionality-wise, the ARB and SGIS versions of this extension are very similar
but not identical. The SGIS version is only supported on InfiniteReality systems. The
extension has been promoted to a standard ARB extension, and new applications should
use the equivalent ARB interface, unless they must run on InfiniteReality systems. The
ARB version of this extension is only supported on Silicon Graphics Prism systems.

SGIS_multisample differs from ARB_multisample in the following respects:

• All SGIS suffixes on function and token names are changed to ARB.

• The term mask is changed to coverage in token and function names.

• The ability to change the sample pattern between rendering passes, described in
section “Accumulating Multisampled Images” on page 236, is only supported by
the SGIS version of the extension.

Table 9-2 shows the overall mapping between SGIS and ARB tokens and functions.

Table 9-2 Mapping of SGIS and ARB tokens for Multisampling

SGIS_multisample Token ARB_multisample Token

SampleMaskSGIS SampleCoverageARB

GLX_SAMPLE_BUFFERS_SGIS GLX_SAMPLE_BUFFERS_ARB

GLX_SAMPLES_SGIS GLX_SAMPLES_ARB

MULTISAMPLE_SGIS MULTISAMPLE_ARB

SAMPLE_ALPHA_TO_MASK_SGIS SAMPLE_ALPHA_TO_COVERAGE_ARB

SAMPLE_ALPHA_TO_ONE_SGIS SAMPLE_ALPHA_TO_ONE_ARB

SAMPLE_MASK_SGIS SAMPLE_COVERAGE_ARB

MULTISAMPLE_BIT_EXT MULTISAMPLE_BIT_ARB
230 007-2392-003

The Multisample Extension
The multisample extension, SGIS_multisample, provides a mechanism to antialias all
OpenGL primitives: points, lines, polygons, bitmaps, and images.

This section explains how to use multisampling and explores what happens when you
use it. It describes the following topics:

• “Introduction to Multisampling” on page 232

• “Using the Multisample Extension” on page 232 and “Using Advanced
Multisampling Options” on page 233

• “How Multisampling Affects Different Primitives” on page 237

SAMPLE_BUFFERS_SGIS SAMPLE_BUFFERS_ARB

SAMPLES_SGIS SAMPLES_ARB

SAMPLE_MASK_VALUE_SGIS SAMPLE_COVERAGE_VALUE_ARB

SAMPLE_MASK_INVERT_SGIS SAMPLE_COVERAGE_INVERT_ARB

SamplePatternSGIS Not supported

SAMPLE_PATTERN_SGIS Not supported

1PASS_SGIS Not supported

2PASS_0_SGIS Not supported

2PASS_1_SGIS Not supported

4PASS_0_SGIS Not supported

4PASS_1_SGIS Not supported

4PASS_2_SGIS Not supported

4PASS_3_SGIS Not supported

Table 9-2 Mapping of SGIS and ARB tokens for Multisampling (continued)

SGIS_multisample Token ARB_multisample Token
007-2392-003 231

9: Rendering Extensions
Introduction to Multisampling

Multisampling works by sampling all primitives multiple times at different locations
within each pixel; in effect, multisampling collects subpixel information. The result is an
image that has fewer aliasing artifacts.

Because each sample includes depth and stencil information, the depth and stencil
functions perform equivalently in the single-sample mode. A single pixel can have 4, 8,
16, or even more subsamples, depending on the platform.

When you use multisampling and read back color, you get the resolved color value (that
is, the average of the samples). When you read back stencil or depth, you typically get
back a single sample value rather than the average. This sample value is typically the one
closest to the center of the pixel.

When to Use Multisampling

Multisample antialiasing is most valuable for rendering polygons because it correctly
handles adjacent polygons, object silhouettes, and even intersecting polygons. Each time
a pixel is updated, the color sample values for each pixel are resolved to a single,
displayable color.

For points and lines, the “smooth” antialiasing mechanism provided by standard
OpenGL results in a higher-quality image and should be used instead of multisampling
(see “Antialiasing” in Chapter 7, “Blending, Antialiasing, Fog, and Polygon Offset” of
the OpenGL Programming Guide).

The multisampling extension lets you alternate multisample and smooth antialiasing
during the rendering of a single scene; so, it is possible to mix multisampled polygons
with smooth lines and points. See “Multisampled Points” on page 237 and
“Multisampled Lines” on page 237 for more information.

Using the Multisample Extension

To use multisampling in your application, select a multisampling-capable visual by
calling glXChooseVisual() with the following items in attr_list:

GLX_SAMPLES_SGIS
Must be followed by the minimum number of samples required in
multisample buffers. The function glXChooseVisual() gives preference
232 007-2392-003

The Multisample Extension
to visuals with the smallest number of samples that meet or exceed the
specified number. Color samples in the multisample buffer may have
fewer bits than colors in the main color buffers. However, multisampled
colors maintain at least as much color resolution in aggregate as the
main color buffers.

GLX_SAMPLE_BUFFERS_SGIS
This attribute is optional. Currently there are no visuals with more than
one multisample buffer; so, the returned value is either zero or one.
When GLX_SAMPLES_SGIS is non-zero, this attribute defaults to 1.
When specified, the attribute must be followed by the minimum
acceptable number of multisample buffers. Visuals with the smallest
number of multisample buffers that meet or exceed this minimum
number are preferred.

Multisampling is enabled by default. To query whether multisampling is enabled, make
the following call:

glIsEnabled(MULTISAMPLE_SGIS)

To turn off multisampling, make the following call:

glDisable(MULTISAMPLE_SGIS)

Using Advanced Multisampling Options

Advanced multisampling options provide additional rendering capabilities. This section
describes the following features:

• Using a multisample mask to choose how many samples are writable

• Using alpha values to feather-blend texture edges

• Using the accumulation buffer with multisampling

The following steps, illustrated in Figure 9-1, shows how the subsamples in one pixel are
turned on and off.
007-2392-003 233

9: Rendering Extensions
1. The primitive is sampled at the locations defined by a sample pattern. If a sample is
inside the polygon, it is turned on; otherwise, it is turned off. This produces a
coverage mask.

2. The coverage mask is then ANDed with a user-defined sample mask, defined by a
call to glSampleMaskSGIS() (see “Using a Multisample Mask to Fade Levels of
Detail” on page 235).

3. You may also choose to convert the alpha value of a fragment to a mask and AND it
with the coverage mask from step 2.

Enable GL_SAMPLE_ALPHA_TO_MASK_SGIS to convert alpha to the mask. The
fragment alpha value is used to generate a temporary mask, which is then ANDed
with the fragment mask.

Figure 9-1 Sample Processing During Multisampling

The two processes—using a multisample mask created by glSampleMaskSGIS() and
using the alpha value of the fragment as a mask—can both be used for different effects.

When GL_SAMPLE_ALPHA_TO_MASK_SGIS is enabled, it is usually appropriate to
enable GL_SAMPLE_ALPHA_TO_ONE_SGIS to convert the alpha values to 1 before
blending. Without this option, the effect would be colors that are twice as transparent.

Note: When you use multisampling, blending reduces performance. Therefore, when
possible, disable blending and instead use GL_SAMPLE_MASK_SGIS or
GL_ALPHA_TO_MASK.

Color Blending and Screen Door Transparency

Multisampling can be used to solve the problem of blurred edges on textures with
irregular edges, such as tree textures, that require extreme magnification. When the
texture is magnified, the edges of the tree look artificial, as if the tree were a paper cutout.

Find samples
inside polygon

AND with user-defined
sample mask...

AND with optional
alpha-to-mask mask
234 007-2392-003

The Multisample Extension
To make them look more natural by converting the alpha to a multisample mask, you can
obtain several renderings of the same primitive, each with the samples offset by a specific
amount. See “Accumulating Multisampled Images” on page 236 for more information.

The same process can be used to achieve screen door transparency. If you draw only
every other sample, the background shines through for all other samples. This results in
a transparent image. This is useful because it does not require the polygons to be sorted
from back to front. It is also faster because it does not require blending.

Using a Multisample Mask to Fade Levels of Detail

You can use a mask to specify a subset of multisample locations to be written at a pixel.
This feature is useful for fading the level of detail in visual simulation applications. You
can use multisample masks to perform the blending from one level of detail of a model
to the next by rendering the additional data in the detailed model using a steadily
increasing percentage of subsamples as the viewpoint nears the object.

To achieve this blending between a simpler and a more detailed representation of an
object or to achieve screen door transparency (described in the previous section), either
call glSampleMaskSGIS() or use the alpha values of the object and call
glSampleAlphaToMaskSGIS().

The following is the format for glSampleMaskSGIS():

void glSampleMaskSGIS (GLclampf value, boolean invert)

The parameters are defined as follows:

value Specifies coverage of the modification mask clamped to the range [0, 1].
0 implies no coverage, and 1 implies full coverage.

invert Should be GL_FALSE to use the modification mask implied by value or
GL_TRUE to use the bitwise inverse of that mask.

To define a multisample mask using glSampleMaskSGIS(), follow these steps:

1. Enable GL_SAMPLE_MASK_SGIS.

2. Call glSampleMaskSGIS() with, for example, value set to .25 and invert set to
GL_FALSE.

3. Render the object once for the more complex level of detail.
007-2392-003 235

9: Rendering Extensions
4. Call glSampleMaskSGIS() again with, for example, value set to .25 and invert set to
GL_TRUE.

5. Render the object for the simpler level of detail.

This time, the complementary set of samples is used because of the use of the
inverted mask.

6. Display the image.

7. Repeat the process for larger sample mask values of the mask as needed (as the
viewpoint nears the object).

Accumulating Multisampled Images

You can enhance the quality of the image even more by making several passes and
adding the result in the accumulation buffer. The accumulation buffer averages several
renderings of the same primitive. For multipass rendering, different sample locations
need to be used in each pass to achieve high quality.

When an application uses multisampling in conjunction with accumulation, it should
call glSamplePatternSGIS() with one of the following patterns as an argument:

• GL_1PASS_SGIS is designed to produce a well-antialiased result in a single
rendering pass (this is the default).

• GL_2PASS_0_SGIS and GL_2PASS_1_SGIS together specify twice the number of
sample points per pixel. You should first completely render a scene using pattern
GL_2PASS_0_SGIS, then completely render it again using GL_2PASS_1_SGIS.
When the two images are averaged using the accumulation buffer, the result is as if
a single pass had been rendered with 2×GL_SAMPLES_SGIS sample points.

• GL_4PASS_0_SGIS, GL_4PASS_1_SGIS, GL_4PASS_2_SGIS, and
GL_4PASS_3_SGIS together define a pattern of 4×GL_SAMPLES_SGIS sample
points. They can be used to accumulate an image from four complete rendering
passes.

Accumulating multisample results can also extend the capabilities of your system. For
example, if you have only enough resources to allow four subsamples, but you are
willing to render the image twice, you can achieve the same effect as multisampling with
eight subsamples. Note that you do need an accumulation buffer, which also takes space.
236 007-2392-003

The Multisample Extension
To query the sample pattern, call glGetIntegerv() with pname set to
GL_SAMPLE_PATTERN_SGIS. The pattern should be changed only between complete
rendering passes.

For more information, see “The Accumulation Buffer,” on page 394 of the OpenGL
Programming Guide.

How Multisampling Affects Different Primitives

This section briefly describes multisampled points, lines, polygons, pixels, and bitmaps.

Multisampled Points

If you are using multisampling, the value of the smoothing hint
(GL_POINT_SMOOTH_HINT or GL_LINE_SMOOTH_HINT) is ignored. Because the
quality of multisampled points may not be as good as that of antialiased points,
remember that you can turn multisampling on and off as needed to achieve
multisampled polygons and antialiased points.

Note: On InfiniteReality systems, you achieve higher-quality multisampled points by
setting GL_POINT_SMOOTH_HINT to GL_NICEST (though this mode is slower and
should be used with care).

glHint(GL_POINT_SMOOTH_HINT, GL_NICEST)

The result is round points. Points may disappear or flicker if you use them without this
hint. See the next section for caveats on using multisampling with smooth points and
lines.

Multisampled Lines

Lines are sampled into the multisample buffer as rectangles centered on the exact
zero-area segment. Rectangle width is equal to the current line width. Rectangle length
is exactly equal to the length of the segment. Rectangles of colinear, abutting line
segments abut exactly so that no subsamples are missed or drawn twice near the shared
vertex.
007-2392-003 237

9: Rendering Extensions
Just like points, lines on InfiniteReality systems look better when drawn “smooth” than
they do with multisampling.

Note: If you want to draw smooth lines and points by enabling
GL_LINE_SMOOTH_HINT or GL_POINT_SMOOTH_HINT, you need to disable
multisampling and then draw the lines and points. The trick is that you need to do this
after you have finished doing all of the multisampled drawing. If you try to re-enable
multisampling and draw more polygons, those polygons will not necessarily be
antialiased correctly if they intersect any of the lines or points.

Multisampled Polygons

Polygons are sampled into the multisample buffer much as they are into the standard
single-sample buffer. A single color value is computed for the entire pixel, regardless of
the number of subsamples at that pixel. Each sample is then written with this color if and
only if it is geometrically within the exact polygon boundary.

If the depth buffer is enabled, the correct depth value at each multisample location is
computed and used to determine whether that sample should be written or not. If stencil
is enabled, the test is performed for each sample.

Polygon stipple patterns apply equally to all sample locations at a pixel. All sample
locations are considered for modification if the pattern bit is 1. None is considered if the
pattern bit is 0.

Multisample Rasterization of Pixels and Bitmaps

If multisampling is on, pixels are considered small rectangles and are subject to
multisampling. When pixels are sampled into the multisample buffer, each pixel is
treated as an xzoom-by-yzoom square, which is then sampled just like a polygon.
238 007-2392-003

The Point Parameters Extension
New Functions

The SGIS_multisample extension introduces the following functions:

• glSampleMaskSGIS()

• glSamplePatternSGIS()

The Point Parameters Extension

There are two versions of the point parameters extension:

• ARB_point_parameters

• SGIS_point_parameters

Note: Functionality-wise, the ARB and SGIS versions of this extension are identical. The
SGIS version is only supported on InfiniteReality systems. The extension has been
promoted to a standard ARB extension, and new applications should use the equivalent
ARB interface, unless they must run on InfiniteReality systems. The ARB version of this
extension is only supported on Silicon Graphics Prism systems.

The following descriptions refer to the SGIS version of the extension. When using the
ARB version, simply replace the SGIS suffix on function and token names with ARB,
except (as noted later) for GL_DISTANCE_ATTENUATION_SGIS. In this case, use
GL_POINT_DISTANCE_ATTENUATION_ARB instead.

The point parameter extension, SGIS_point_parameters can be used to render tiny light
sources, commonly referred to as light points. The extension is useful, for example, in an
airport runway simulation. As the plane moves along the runway, the light markers
grow larger as they approach.

By default, a fixed point size is used to render all points, regardless of their distance from
the eye point. Implementing the runway example or a similar scene would be difficult
with this behavior. This extension is useful in the following two ways:

• It allows the size of a point to be affected by distance attenuation; that is, the point
size decreases as the distance of the point from the eye increases.
007-2392-003 239

9: Rendering Extensions
• It increases the dynamic range of the raster brightness of points. In other words, the
alpha component of a point may be decreased (and its transparency increased) as its
area shrinks below a defined threshold. This is done by controlling the mapping
from the point size to the raster point area and point transparency.

The new point size derivation method applies to all points while the threshold applies to
multisample points only. The extension makes this behavior available with the following
constants:

GL_POINT_SIZE_MIN_SGIS and GL_POINT_SIZE_MAX_SGIS
Define upper and lower bounds, respectively, for the derived point size.

GL_POINT_FADE_THRESHOLD_SIZE_SGIS
Affects only multisample points. If the derived point size is larger than
the threshold size defined by the
GL_POINT_FADE_THRESHOLD_SIZE_SGIS parameter, the derived
point size is used as the diameter of the rasterized point, and the alpha
component is intact. Otherwise, the threshold size is set to be the
diameter of the rasterized point, while the alpha component is
modulated accordingly to compensate for the larger area.

GL_DISTANCE_ATTENUATION_SGIS
Defines coefficients of the distance attenuation function. In the ARB
version of this extension, use the constant
GL_POINT_DISTANCE_ATTENUATION_ARB.

All parameters of the glPointParameterfSGIS() and glPointParameterfvSGIS()
functions set various values applied to point rendering. The derived point size is defined
to be the size provided as an argument to glPointSize() modulated with a distance
attenuation factor.

Using the Point Parameters Extension

To use the point parameter extension, call glPointParameter*SGIS() with the following
arguments:

pname GL_POINT_SIZE_MIN_SGIS,
GL_POINT_SIZE_MAX_SGIS, or
GL_POINT_FADE_THRESHOLD_SIZE_SGIS (multisample points only)
GL_DISTANCE_ATTENUATION_SGIS (In the ARB version of this
extension, use GL_POINT_DISTANCE_ATTENUATION_ARB.)
240 007-2392-003

The Point Parameters Extension
param When pname is GL_POINT_SIZE_MIN_SGIS,
GL_POINT_SIZE_MAX_SGIS, or
GL_POINT_FADE_THRESHOLD_SIZE_SGIS, param is respectively set
to the single numeric value you want to set for the minimum size,
maximum size, or threshold size of the point. When pname is
GL_DISTANCE_ATTENUATION_SGIS, param is a pointer to an array of
three coefficients in order: a, b, and c, defining the distance attention
coefficients for point size. The distance attenuation equation is described
in section “Point Parameters Background Information” on page 242.

Note: If you are using the extension in multisample mode, you must use smooth points
to achieve the desired improvements, as shown in the following:

glHint(GL_POINT_SMOOTH_HINT, GL_NICEST)

Point Parameters Example Code

A point parameters example program is available as part of the developer toolbox. It
allows you to change the following attributes directly:

• Values of the distance attenuation coefficients (see “Point Parameters Background
Information” on page 242 and the point parameters specification)

• Fade threshold size

• Minimum and maximum point size

The following code fragment illustrates how to change the fade threshold.

Example 9-2 Point Parameters Example

GLvoid
decFadeSize(GLvoid)
{
#ifdef GL_SGIS_point_parameters
 if (pointParameterSupported) {
 if (fadeSize > 0) fadeSize -= 0.1;
 printf("fadeSize = %4.2f\n", fadeSize);
 glPointParameterfSGIS(GL_POINT_FADE_THRESHOLD_SIZE_SGIS, fadeSize);
 glutPostRedisplay();
 } else {
 fprintf(stderr,
007-2392-003 241

9: Rendering Extensions
 "GL_SGIS_point_parameters not supported
 on this machine\n");
 }
#else
 fprintf(stderr,
 "GL_SGIS_point_parameters not supported
 on this machine\n");
#endif

Minimum and maximum point size and other elements can also be changed; see the
complete example program in the Developer Toolbox.

Point Parameters Background Information

The raster brightness of a point is a function of the point area, point color, and point
transparency, and the response of the display’s electron gun and phosphor. The point
area and the point transparency are derived from the point size, currently provided with
the size parameter of glPointSize().

This extension defines a derived point size to be closely related to point brightness. The
brightness of a point is given by the following equation:

dist_atten(d) = 1 / (a + b * d + c * d^2)

brightness(Pe) = Brightness * dist_atten(|Pe|)

Pe is the point in eye coordinates, and Brightness is some initial value proportional to the
square of the size provided with glPointSize(). The raster brightness is simplified to be
a function of the rasterized point area and point transparency:

area(Pe) = brightness (Pe) if brightness(Pe) >= Threshold_Area
area(Pe) = Theshold_Area otherwise

factor(Pe) = brightness(Pe)/Threshold_Area

alpha(Pe) = Alpha * factor(Pe)

Alpha comes with the point color (possibly modified by lighting). Threshold_Area is in
area units. Thus, it is proportional to the square of the threshold you provide through this
extension.
242 007-2392-003

SGIX_reference_plane—The Reference Plane Extension
Note: For more background information, see the specification of the point parameters
extension.

New Procedures and Functions

The SGIS_point_parameters extension introduces the following functions:

• glPointParameterfSGIS()

• glPointParameterfvSGI()

The ARB_point_parameters extension introduces the following functions:

• glPointParameterfARB()

• glPointParameterfvARB()

SGIX_reference_plane—The Reference Plane Extension

The reference plane extension, SGIX_reference_plane, allows applications to render a
group of coplanar primitives without depth-buffering artifacts. This is accomplished by
generating the depth values for all the primitives from a single reference plane rather
than from the primitives themselves. Using the reference plane extension ensures that all
primitives in the group have exactly the same depth value at any given sample point, no
matter what imprecision may exist in the original specifications of the primitives or in the
OpenGL coordinate transformation process.

Note: This extension is supported only on InfiniteReality systems.

The reference plane is defined by a four-component plane equation. When
glReferencePlaneSGIX() is called, the equation is transformed by the adjoint of the
composite matrix, the concatenation of model-view and projection matrices. The
resulting clip-coordinate coefficients are transformed by the current viewport when the
reference plane is enabled.
007-2392-003 243

9: Rendering Extensions
If the reference plane is enabled, a new z coordinate is generated for a fragment (xf, yf,
zf). This z coordinate is generated from (xf, yf); it is given the same z value that the
reference plane would have at (xf, yf).

Why Use the Reference Plane Extension?

Having such an auto-generated z coordinate is useful in situations where the application
is dealing with a stack of primitives. For example, assume a runway for an airplane is
represented by the following:

• A permanent texture on the bottom

• A runway markings texture on top of the pavement

• Light points representing runway lights on top of everything

All three layers are coplanar, yet it is important to stack them in the right order. Without
a reference plane, the bottom layers may show through due to precision errors in the
normal depth rasterization algorithm.

Using the Reference Plane Extension

If you know in advance that a set of graphic objects will be in the same plane, follow these
steps:

1. Call glEnable() with argument GL_REFERENCE_PLANE_SGIX.

2. Call glReferencePlane() with the appropriate reference plane equation to establish
the reference plane. The form of the reference plane equation is equivalent to that of
an equation used by glClipplane() (see page 137 of the OpenGL Programming Guide,
Second Edition).

3. Draw coplanar geometry that shares this reference plane.

4. Call glDisable() with argument GL_REFERENCE_PLANE_SGIX.

New Function

The SGIX_reference_plane extension introduces the function glReferencePlaneSGIX().
244 007-2392-003

The Shadow Extensions
The Shadow Extensions

The following are the ARB and SGIX versions of the three shadow extensions:

• ARB_depth_texture

• ARB_shadow

• ARB_shadow_ambient

• SGIX_depth_texture

• SGIX_shadow

• SGIX_shadow_ambient

Note: Functionality-wise, the ARB and SGIX versions of these extension are identical.
The SGIX versions are only supported on InfiniteReality systems. The extensions have
been promoted to standard ARB extensions, and new applications should use the
equivalent ARB interface, unless they must run on InfiniteReality systems. The ARB
versions of these extensions are only supported on Silicon Graphics Prism systems.

The following descriptions refer to the SGIX version of the extension. When using the
ARB version, simply replace the SGIX suffix on function and token names with ARB,
except (as noted later) for GL_SHADOW_AMBIENT_SGIX. In this case, use
GL_TEXTURE_COMPARE_FAIL_VALUE_ARB instead.

This section describes three SGIX extensions that are used together to create shadows:

SGIX_depth_texture Defines a new depth texture internal format. While this
extension has other potential uses, it is currently used for
shadows only.

SGIX_shadow Defines two operations that can be performed on texture
values before they are passed to the filtering subsystem.

SGIX_shadow_ambient Allows for a shadow that is not black but instead has a
different brightness.
007-2392-003 245

9: Rendering Extensions
This section first explores the concepts behind using shadows in an OpenGL program. It
then describes how to use the extension in the following sections:

• “Shadow Extension Overview”

• “Creating the Shadow Map”

• “Rendering the Application From the Normal Viewpoint”

Code fragments from an example program are used throughout this section.

Note: A complete example program, shadowmap.c, is available as part of the
Developer’s Toolbox.

Shadow Extension Overview

The basic assumption used by the shadow extension is that an object is in shadow when
something else is closer to the light source than that object is.

Using the shadow extensions to create shadows in an OpenGL scene consists of several
conceptual steps:

1. The application has to check that both the depth texture extension and the shadow
extension are supported.

2. The application creates a shadow map, an image of the depth buffer from the point
of view of the light.

The application renders the scene from the point of view of the light source and
copies the resulting depth buffer to a texture with one of the following internal
formats:

• GL_DEPTH_COMPONENT

• GL_DEPTH_COMPONENT16_SGIX

• GL_DEPTH_COMPONENT24_SGIX

• GL_DEPTH_COMPONENT32_SGIX

The SGIX formats are part of the depth texture extension.
246 007-2392-003

The Shadow Extensions
3. The application renders the scene from the normal viewpoint. In that process, it sets
up texture coordinate generation and the texture coordinate matrix such that for
each vertex, the r coordinate is equal to the distance from the vertex to the plane
used to construct the shadow map.

Projection depends on the type of light. Normally, a finite light (spot) is most
appropriate. In that case, perspective projection is used. An infinite directional light
may also give good results because it does not require soft shadows.

Note that diffuse lights give only soft shadows and are, therefore, not well suited,
although texture filtering will result in some blurriness. Note that it is theoretically
possible to do an ortho projection for directional infinite lights. The lack of soft
shadowing is not visually correct but may be acceptable.

4. For this second rendering pass, the application then enables the texture parameter
GL_TEXTURE_COMPARE_SGIX, which is part of the shadow extension and renders
the scene once more. For each pixel, the distance from the light, which was
generated by interpolating the r texture coordinate, is compared with the shadow
map stored in texture memory. The results of the comparison show whether the
pixel being textured is in shadow.

5. The application can then draw each pixel that passes the comparison with
luminance 1.0 and each shadowed pixel with a luminance of zero or use the
shadow ambient extension to apply ambient light with a value between 0 and 1 (for
example, 0.5).

Creating the Shadow Map

To create the shadow map, the application renders the scene with the light position as the
viewpoint and saves the depth map into a texture image, as illustrated in the following
code fragment:

static void
generate_shadow_map(void)
{
 int x, y;
 GLfloat log2 = log(2.0);

 x = 1 << ((int) (log((float) width) / log2));
 y = 1 << ((int) (log((float) height) / log2));
 glViewport(0, 0, x, y);
 render_light_view();
007-2392-003 247

9: Rendering Extensions
 /* Read in frame-buffer into a depth texture map */
glCopyTexImage2DEXT(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16_SGIX,
 0, 0, x, y, 0);

glViewport(0, 0, width, height);
}

Rendering the Application From the Normal Viewpoint

After generating the texture map, the application renders the scene from the normal
viewpoint but with the purpose of generating comparison data. That is, use glTexgen()
to generate texture coordinates that are identical to vertex coordinates. The texture
matrix then transforms all pixel coordinates back to light coordinates. The depth value is
now available in the r texture coordinate.

Figure 9-2 and Figure 9-3 contrast rendering from the normal viewpoint and the light
source viewpoint.

Figure 9-2 Rendering From the Light Source Point of View

Projection stack
248 007-2392-003

The Shadow Extensions
Figure 9-3 Rendering From Normal Viewpoint

During the second rendering pass, the r coordinate is interpolated over the primitive to
give the distance from the light for every fragment. Then the texture hardware compares
r for the fragment with the value from the texture. Based on this test, a value of 0 or 1 is
sent to the texture filter. The application can render shadows as black, or use the shadow
ambient extension described in the next section, to use a different luminance value.

Using the Shadow Ambient Extension

The shadow ambient extension allows applications to use reduced luminance instead of
the color black for shadows. To achieve this, the extension makes it possible to return a
value other than 0.0 by the SGIX_shadow operation in the case when the shadow test
passes. With this extension any floating-point value in the range [0.0, 1.0] can be
returned. This allows the (untextured) ambient lighting and direct shadowed lighting
from a single light source to be computed in a single pass.

To use the extension, call glTexParameter*() with the following parameter specifications:

pname GL_SHADOW_AMBIENT_SGIX
(GL_TEXTURE_COMPARE_FAIL_VALUE in the ARB version)

param A floating-point value between 0.0 and 1.0

Texture stack

Projection stack
007-2392-003 249

9: Rendering Extensions
After the parameter is set, each pixel that extension is determined to be in shadow by the
shadow extension has a luminance specified by this extension instead of a luminance of
0.0.

SGIX_sprite—The Sprite Extension

The sprite extension, SGIX_sprite, provides support for viewpoint-dependent alignment
of geometry. In particular, geometry that rotates about a point or a specified axis is made
to face the eye point at all times. Imagine, for example, an area covered with trees. As the
user moves around in that area, it is important that the user always view the front of the
tree. Because trees look similar from all sides, it makes sense to have each tree face the
viewer (in fact, “look at” the viewer) at all times to create the illusion of a cylindrical
object.

Note: This extension is currently available only on InfiniteReality systems.

Rendering sprite geometry requires applying a transformation to primitives before the
current model view transformation is applied. This transformation matrix includes a
rotation, which is computed based on the following:

• The current model view matrix

• A translation that is specified explicitly (GL_SPRITE_TRANSLATION_SGIX)

In effect, the model view matrix is perturbed only for the drawing of the next set of
objects; it is not permanently perturbed.

This extension improves performance because the flat object you draw is much less
complex than a true three-dimensional object would be. Platform-dependent
implementations may need to ensure that the validation of the perturbed model view
matrix has as small an overhead as possible. This is especially significant on systems with
multiple geometry processors. Applications that intend to run on different systems
benefit from verifying the actual performance improvement for each case.
250 007-2392-003

SGIX_sprite—The Sprite Extension
Available Sprite Modes

Depending on the sprite mode, primitives are transformed by a rotation, as described in
the following:

GL_SPRITE_AXIAL_SGIX The front of the object is rotated about an axis so
that it faces the eye as much as the axis
constraint allows. This mode is used for
rendering roughly cylindrical objects (such as
trees) in a visual simulation. See Figure 9-4 for
an example.

GL_SPRITE_OBJECT_ALIGNED_SGIX The front of the object is rotated about a point to
face the eye. The remaining rotational degree of
freedom is specified by aligning the top of the
object with a specified axis in object
coordinates. This mode is used for spherical
symmetric objects (such as clouds) and for
special effects such as explosions or smoke
which must maintain an alignment in object
coordinates for realism. See Figure 9-5 for an
example.

GL_SPRITE_EYE_ALIGNED_SGIX The front of the object is rotated about a point
to face the eye. The remaining rotational degree
of freedom is specified by aligning the top of
the object with a specified axis in eye
coordinates. This is used for rendering sprites
that must maintain an alignment on the screen,
such as 3D annotations. See Figure 9-6 for an
example.

The axis of rotation or alignment, GL_SPRITE_AXIS_SGIX, can be in an arbitrary
direction to support geocentric coordinate frames in which “up” is not along x, y, or z.
007-2392-003 251

9: Rendering Extensions
Figure 9-4 Sprites Viewed with Axial Sprite Mode

Figure 9-5 Sprites Viewed With Object Aligned Mode

Figure 9-6 Sprites Viewed With Eye Aligned Mode
252 007-2392-003

SGIX_sprite—The Sprite Extension
Note: The sprite extension specification describes in more detail how the sprite
transformation is computed. See “Extension Specifications” on page 110 for more
information.

Using the Sprite Extension

To render sprite geometry, an application applies a transformation to primitives before
applying the current modelview matrix. The transformation is based on the current
modelview matrix, the sprite rendering mode, and the constraints on sprite motion.

To use the sprite extension, follow these steps:

1. Enable sprite rendering by calling glEnable() with the argument
GL_SPRITE_SGIX.

2. Call glSpriteParameteriSGIX() with one of the three possible modes:

• GL_SPRITE_AXIAL_SGIX

• GL_SPRITE_OBJECT_ALIGNED_SGIX

• GL_SPRITE_EYE_ALIGNED_SGIX

3. Specify the axis of rotation and the translation.

4. Draw the sprite geometry.

5. Call glDisable() with the argument GL_SPRITE_SGIX and render the rest of the
scene.

The following code fragment is from the sprite.c program in the OpenGL course
“From the EXTensions to the SOLutions,” which is available through the Developer
Toolbox.

Example 9-3 Sprite Example Program

GLvoid
drawScene(GLvoid)
{

int i, slices = 8;

glClear(GL_COLOR_BUFFER_BIT);
007-2392-003 253

9: Rendering Extensions
drawObject();

glEnable(GL_SPRITE_SGIX);
glSpriteParameteriSGIX(GL_SPRITE_MODE_SGIX, GL_SPRITE_AXIAL_SGIX);

/* axial mode (clipped geometry) */
glPushMatrix();
glTranslatef(.15, .0, .0);

spriteAxis[0] = .2; spriteAxis[1] = .2; spriteAxis[2] = 1.0;
glSpriteParameterfvSGIX(GL_SPRITE_AXIS_SGIX, spriteAxis);

spriteTrans[0] = .2; spriteTrans[1] = .0; spriteTrans[2] = .0;
glSpriteParameterfvSGIX(GL_SPRITE_TRANSLATION_SGIX, spriteTrans);
drawObject();
glPopMatrix();

/* axial mode (non-clipped geometry) */
glPushMatrix();
glTranslatef(.3, .1, .0);

spriteAxis[0] = .2; spriteAxis[1] = .2; spriteAxis[2] = 0.5;
glSpriteParameterfvSGIX(GL_SPRITE_AXIS_SGIX, spriteAxis);

spriteTrans[0] = .2; spriteTrans[1] = .2; spriteTrans[2] = .0;
glSpriteParameterfvSGIX(GL_SPRITE_TRANSLATION_SGIX, spriteTrans);

drawObject();
glPopMatrix();

/* object mode */
glSpriteParameteriSGIX(GL_SPRITE_MODE_SGIX, GL_SPRITE_OBJECT_ALIGNED_SGIX);

glPushMatrix();
glTranslatef(.0, .12, .0);

spriteAxis[0] = .8; spriteAxis[1] = .5; spriteAxis[2] = 1.0;
glSpriteParameterfvSGIX(GL_SPRITE_AXIS_SGIX, spriteAxis);

spriteTrans[0] = .0; spriteTrans[1] = .3; spriteTrans[2] = .0;
glSpriteParameterfvSGIX(GL_SPRITE_TRANSLATION_SGIX, spriteTrans);

drawObject();
glPopMatrix();
254 007-2392-003

SGIX_sprite—The Sprite Extension
/* eye mode */
glSpriteParameteriSGIX(GL_SPRITE_MODE_SGIX, GL_SPRITE_EYE_ALIGNED_SGIX);
glPushMatrix();
glTranslatef(.15, .25, .0);
spriteAxis[0] = .0; spriteAxis[1] = 1.0; spriteAxis[2] = 1.0;
glSpriteParameterfvSGIX(GL_SPRITE_AXIS_SGIX, spriteAxis);

spriteTrans[0] = .2; spriteTrans[1] = .2; spriteTrans[2] = .0;
glSpriteParameterfvSGIX(GL_SPRITE_TRANSLATION_SGIX, spriteTrans);

drawObject();
glPopMatrix();

glDisable(GL_SPRITE_SGIX);

glutSwapBuffers();
checkError("drawScene");

}

The program uses the different sprite modes depending on user input.

Sprite geometry is modeled in a standard frame: +Z is the up vector. -Y is the front vector,
which is rotated to point towards the eye.

New Function

The SGIX_sprite extension introduces the function glSpriteParameterSGIX().
007-2392-003 255

Chapter 10

10. Imaging Extensions

This chapter describes imaging extensions. After some introductory information the
imaging pipeline, the following extensions are described:

• “Introduction to Imaging Extensions” on page 257

• “EXT_abgr—The ABGR Extension” on page 264

• “EXT_convolution—The Convolution Extension” on page 265

• “EXT_histogram—The Histogram and Minmax Extensions” on page 268

• “EXT_packed_pixels—The Packed Pixels Extension” on page 273

• “SGI_color_matrix—The Color Matrix Extension” on page 276

• “SGI_color_table—The Color Table Extension” on page 277

• “SGIX_interlace—The Interlace Extension” on page 280

• “SGIX_pixel_texture—The Pixel Texture Extension” on page 282

Introduction to Imaging Extensions

This section describes platform dependencies, where extensions are in the OpenGL
imaging pipeline, and the functions that may be affected by one of the imaging
extensions.

Platform Dependencies

Currently, the majority of the imaging extensions are only supported on Fuel,
InfinitePerformance, and InfiniteReality systems. The imaging extensions supported on
Onyx4 and Silicon Graphics Prism systems include only the following:

• EXT_abgr

• EXT_packed_pixels
007-2392-003 257

10: Imaging Extensions
• SGI_color_matrix

The EXT_packed_pixels extension was promoted to a standard part of OpenGL 1.2 and
is available in that form.

Applications on Onyx4 and Silicon Graphics Prism systems can achieve similar
functionality to the SGI_color_table and SGIX_pixel_texture extensions by writing
fragment programs using one-dimensional textures as lookup tables.

Where Extensions Are in the Imaging Pipeline

The OpenGL imaging pipeline is shown in the OpenGL Programming Guide, Second Edition
in the illustration “Drawing Pixels with glDrawPixels*()” in Chapter 8, “Drawing Pixels,
Bitmaps, Fonts, and Images.” The OpenGL Reference Manual, Second Edition also includes
two overview illustrations and a detailed fold-out illustration in the back of the book.

Figure 10-1 is a high-level illustration of pixel paths.

Figure 10-1 OpenGL Pixel Paths

Host Memory

glPixelStore

glReadPixels

glDrawPixels

glCopyPixels

glTexImage

glCopyTexImage

glGetTexImage

Texture Framebuffer
258 007-2392-003

Introduction to Imaging Extensions
The OpenGL pixel paths show the movement of rectangles of pixels among host
memory, textures, and the framebuffer. Pixel store operations are applied to pixels as
they move in and out of host memory. Operations defined by the glPixelTransfer()
function and other operations in the pixel transfer pipeline apply to all paths among host
memory, textures, and the framebuffer.

Pixel Transfer Paths

Certain pipeline elements, such as convolution filters and color tables, are used during
pixel transfer to modify pixels on their way to and from user memory, the framebuffer,
and textures. The set of pixel paths used to initialize these pipeline elements is
diagrammed in Figure 10-2. The pixel transfer pipeline is not applied to any of these
paths.
007-2392-003 259

10: Imaging Extensions
Figure 10-2 Extensions that Modify Pixels During Transfer

Convolution, Histogram, and Color Table in the Pipeline

Figure 10-3 shows the same path with an emphasis on the position of each extension in
the imaging pipeline itself. After the scale and bias operations and after the shift and
offset operations, color conversion (LUT in Figure 10-3 below) takes place with a lookup
table. After that, the extension modules may be applied. Note how the color table
extension can be applied at different locations in the pipeline. Unless the histogram or
minmax extensions were called to collect information only, pixel processing continues, as
shown in the OpenGL Programming Guide.

Host Memory

glPixelStore

glGetMinMax
glConvolution

Filter

glColorTable

glCopy
ColorTable

glCopy
Convolution

Filter

glGet
Convolution

Filter
glGet
Color
Table glGetHistogram

scale
bias Color table

scale
bias

Convolution
filter Histogram MinMax

Framebuffer
260 007-2392-003

Introduction to Imaging Extensions
Figure 10-3 Convolution, Histogram, and Color Table in the Pipeline

Interlacing and Pixel Texture in the Pipeline

Figure 10-4 shows where interlacing (see “SGIX_interlace—The Interlace Extension” on
page 280) and pixel texture (see “SGIX_pixel_texture—The Pixel Texture Extension” on

Index

I->RGBA

RGBA

RGBA->RGBA

OpenGL

Shift & add

LUT

GL_COLOR_TABLE_SGI

GL_POST_CONVOLUTION_COLOR_TABLE_SGI

GL_POST_COLOR_MATRIX_COLOR_TABLE_SGI

Convolve

Post-convolve scale & bias

Color matrix

Histogram

Minmax

Post-color matrix scale & bias

LUT

-> ->

Shift & add
007-2392-003 261

10: Imaging Extensions
page 282) are applied in the pixel pipeline. The steps after interlacing are shown in more
detail than the ones before to allow the diagram to include pixel texture.

Figure 10-4 Interlacing and Pixel Texture in the Pixel Pipeline

Merging the Geometry and Pixel Pipeline

The convert-to-fragment stage of geometry rasterization and of the pixel pipeline each
produce fragments. The fragments are processed by a shared per-fragment pipeline that
begins with applying the texture to the fragment color.

Because the pixel pipeline shares the per-fragment processing with the geometry
pipeline, the fragments it produces must be identical to the ones produced by the

glPixelStore/Unpack

glPixelTransfer

glInterlace

User memory

Conversion to
internal format

clamp [0,1]

Texture

Conversion to fragment:
pixel zoom

pixel texture

Final conversion:
clamp [0,1] or mask

conv to fixed pt

Framebuffer
262 007-2392-003

Introduction to Imaging Extensions
geometry pipeline. The parts of the fragment that are not derived from pixel groups are
filled with the associated values in the current raster position.

Pixel Pipeline Conversion to Fragments

A fragment consists of x and y window coordinates and its associated color value, depth
value, and texture coordinates. The pixel groups processed by the pixel pipeline do not
produce all the fragment’s associated data; so, the parts that are not produced from the
pixel group are taken from the raster position. This combination of information allows
the pixel pipeline to pass a complete fragment into the per-fragment operations shared
with the geometry pipeline, as shown in Figure 10-5.

Figure 10-5 Conversion to Fragments

For example, if the pixel group is producing the color part of the fragment, the texture
coordinates and depth value come from the current raster position. If the pixel group is
producing the depth part of the fragment, the texture coordinates and color come from
the current raster position.

x,y

pixel
group fragment

tcoord

color

depth

tcoord

color

depth

current raster position
007-2392-003 263

10: Imaging Extensions
The pixel texture extension (see “SGIX_pixel_texture—The Pixel Texture Extension” on
page 282) introduces the switch, highlighted in blue (lighter-colored balls), which
provides a way to retrieve the fragment’s texture coordinates from the pixel group. The
pixel texture extension also allows you to specify whether the color should come from
the pixel group or the current raster position.

Functions Affected by Imaging Extensions

Imaging extensions affect all functions that are associated with the pixel transfer modes
(see Chapter 8, “Drawing Pixels, Bitmaps, Fonts, and Images,” of the OpenGL
Programming Guide). In general, the following operations are affected:

• All functions that draw and copy pixels or define texture images

• All functions that read pixels or textures back to host memory

EXT_abgr—The ABGR Extension

The ABGR extension, EXT_abgr, extends the list of host-memory color formats by an
alternative to the RGBA format that uses reverse component order. This is the most
convenient way to use an ABGR source image with OpenGL.

To use this extension, call glDrawPixels(), glGetTexImage(), glReadPixels(), and
glTexImage*() with GL_ABGR_EXT as the value of the format parameter.

The following code fragment illustrates the use of the extension:

/*
 * draw a 32x32 pixel image at location 10, 10 using an ABGR source
 * image. "image" *should* point to a 32x32 ABGR UNSIGNED BYTE image
 */

{
 unsigned char *image;

 glRasterPos2f(10, 10);
 glDrawPixels(32, 32, GL_ABGR_EXT, GL_UNSIGNED_BYTE, image);
}

264 007-2392-003

EXT_convolution—The Convolution Extension
EXT_convolution—The Convolution Extension

The convolution extension, EXT_convolution, allows you to filter images (for example,
to sharpen or blur the) by convolving the pixel values in a one- or two- dimensional
image with a convolution kernel.

The convolution kernels are themselves treated as one- and two- dimensional images.
They can be loaded from application memory or from the framebuffer.

Convolution is performed only for RGBA pixel groups, although these groups may have
been specified as color indexes and converted to RGBA by index table lookup.

Figure 10-6 shows the equations for general convolution at the top and for separable
convolution at the bottom.

Figure 10-6 Convolution Equations

Performing Convolution

Performing convolution consists of the following steps:

1. If desired, specify filter scale, filter bias, and convolution parameters for the
convolution kernel. For example:

glConvolutionParameteriEXT(GL_CONVOLUTION_2D_EXT,
 GL_CONVOLUTION_BORDER_MODE_EXT,
 GL_REDUCE_EXT /*nothing else supported at present */);

glConvolutionParameterfvEXT(GL_CONVOLUTION_2D_EXT,
 GL_CONVOLUTION_FILTER_SCALE_EXT,filterscale);
glConvolutionParameterfvEXT(GL_CONVOLUTION_2D_EXT,
 GL_CONVOLUTION_FILTER_BIAS_EXT, filterbias);
007-2392-003 265

10: Imaging Extensions
2. Define the image to be used for the convolution kernel.

Use a 2D array for 2D convolution and a 1D array for 1D convolution. Separable 2D
filters consist of two 1D images for the row and the column.

To specify a convolution kernel, call glConvolutionFilter2DEXT(),
glConvolutionFilter1DEXT(), or glSeparableFilter2DEXT().

The following example defines a 7 x 7 convolution kernel that is in RGB format and
is based on a 7 x 7 RGB pixel array previously defined as rgbBlurImage7x7:

glConvolutionFilter2DEXT(
GL_CONVOLUTION_2D_EXT, /*has to be this value*/
GL_RGB, /*filter kernel internal format*/
7, 7, /*width & height of image pixel array*/
GL_RGB, /*image internal format*/
GL_FLOAT, /*type of image pixel data*/
(const void*)rgbBlurImage7x7 /* image itself*/
)

For more information about the different parameters, see the reference page for the
relevant function.

3. Enable convolution, as shown in the following example:

glEnable(GL_CONVOLUTION_2D_EXT)

4. Perform pixel operations (for example, pixel drawing or texture image definition).

Convolution happens as the pixel operations are executed.

Retrieving Convolution State Parameters

If necessary, you can use glGetConvolutionParameter*EXT() to retrieve the following
convolution state parameters:

GL_CONVOLUTION_BORDER_MODE_EXT
Convolution border mode. For a list of border modes, see the man page
for glConvolutionParameterEXT().

GL_CONVOLUTION_FORMAT_EXT
Current internal format. For lists of allowable formats, see the man
pages for glConvolutionFilter*EXT() and glSeparableFilter2DEXT().
266 007-2392-003

EXT_convolution—The Convolution Extension
GL_CONVOLUTION_FILTER_{BIAS, SCALE}_EXT
Current filter bias and filter scale factors. The value params must be a
pointer to an array of four elements, which receive the red, green, blue,
and alpha filter bias terms in that order.

GL_CONVOLUTION_{WIDTH, HEIGHT}_EXT
Current filter image width.

GL_MAX_CONVOLUTION_{WIDTH, HEIGHT}_EXT
Maximum acceptable filter image width and filter image height.

Separable and General Convolution Filters

A convolution that uses separable filters typically operates faster than one that uses
general filters.

Special facilities are provided for the definition of two-dimensional separable filters. For
separable filters, the image is represented as the product of two one-dimensional images,
not as a full two-dimensional image.

To specify a two-dimensional separable filter, call glSeparableFilter2DEXT(), which has
the following format:

void glSeparableFilter2DEXT(GLenum target,GLenum internalformat,GLsizei width,
GLsizei height,GLenum format,GLenum type,
const GLvoid *row,const GLvoid *column)

The parameters are defined as follows:

target Must be GL_SEPARABLE_2D_EXT.

internalformat Specifies the formats of two one-dimensional images that are retained; it
must be one of GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA,
GL_INTENSITY, GL_RGB, or GL_RGBA.

row Points to two one-dimensional images in memory, is defined by format
and type, is width pixels wide.

column Points to two one-dimensional images in memory, is defined by format
and type, and is height pixels wide.

The two images are extracted from memory and processed just as if
glConvolutionFilter1DEXT() were called separately for each with the resulting retained
007-2392-003 267

10: Imaging Extensions
images replacing the current 2D separable filter images, except that each scale and bias
are applied to each image using the 2D separable scale and bias vectors.

If you are using convolution on a texture image, keep in mind that the result of the
convolution must obey the constraint that the dimensions have to be a power of 2. If you
use the reduce-border convolution mode, the image shrinks by the filter width minus 1;
so, you may have to take that into account ahead of time.

New Functions

The EXT_convolution extension introduces the following functions:

• glConvolutionFilter1DEXT()

• glConvolutionFilter2DEXT()

• glCopyConvolutionFilter1DEXT()

• glCopyConvolutionFilter2DEXT()

• glGetConvolutionFilterEXT()

• glSeparableFilter2DEXT()

• glGetSeparableFilterEXT()

• glConvolutionParameterEXT()

EXT_histogram—The Histogram and Minmax Extensions

The histogram extension, EXT_histogram, defines operations that count occurrences of
specific color component values and that track the minimum and maximum color
component values in images that pass through the image pipeline. You can use the
results of these operations to create a more balanced, better-quality image.

Figure 10-7 illustrates how the histogram extension collects information for one of the
color components. The histogram has the number of bins specified at creation, and
information is then collected about the number of times the color component falls within
each bin. Assuming that the example below is for the red component of an image, you
can see that R values between 95 and 127 occurred least often and those between 127 and
159 most often.
268 007-2392-003

EXT_histogram—The Histogram and Minmax Extensions
Figure 10-7 How the Histogram Extension Collects Information

Histogram and minmax operations are performed only for RGBA pixel groups, though
these groups may have been specified as color indexes and converted to RGBA by color
index table lookup.

0

31

63

95

127

159

191

223

255
007-2392-003 269

10: Imaging Extensions
Using the Histogram Extension

To collect histogram information, follow these steps:

1. Call glHistogramEXT() to define the histogram, as shown in the following example:

glHistogramEXT(GL_HISTOGRAM_EXT,
 256 /* width (number of bins) */,
 GL_LUMINANCE /* internalformat */,
 GL_TRUE /* sink */);

The parameters are defined as follows:

width ,Specifies the number of histogram entries. Must be a power of 2.

internalformat Specifies the format of each table entry.

sink Specifies whether pixel groups are consumed by the histogram
operation (GL_TRUE) or passed further down the image pipeline
(GL_FALSE).

2. Enable histogramming by calling

glEnable(GL_HISTOGRAM_EXT)

3. Perform the pixel operations for which you want to collect information (drawing,
reading, copying pixels, or loading a texture). Only one operation is sufficient.

For each component represented in the histogram internal format, let the
corresponding component of the incoming pixel (luminance corresponds to red) be
of value c (after clamping to [0, 1). The corresponding component of bin number
round((width-1)*c) is incremented by 1.

4. Call glGetHistogramEXT(), whose format follows, to query the current contents of
the histogram:

void glGetHistogramEXT(GLenum target, GLboolean reset, GLenum format,
GLenum type, GLvoid *values)

The parameters are defined as follows:

target Must be GL_HISTOGRAM_EXT.

reset Must be GL_TRUE or GL_FALSE. If GL_TRUE, each component
counter that is actually returned is reset to zero. Counters that are
not returned are not modified; for example, GL_GREEN or GL_BLUE
counters may not be returned if format is GL_RED and internal
format is GL_RGB.
270 007-2392-003

EXT_histogram—The Histogram and Minmax Extensions
format Must be one of GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,
GL_RGBA, GL_RGB, GL_ABGR_EXT, GL_LUMINANCE, or
GL_LUMINANCE_ALPHA.

type Must be GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, or GL_FLOAT.

values Used to return a 1D image with the same width as the histogram. No
pixel transfer operations are performed on this image, but pixel
storage modes that apply for glReadPixels() are performed. Color
components that are requested in the specified format—but are not
included in the internal format of the histogram—are returned as
zero. The assignments of internal color components to the
components requested by format are as follows:

Internal Component Resulting Component

red red

green green

blue blue

alpha alpha

luminance red/luminance

Using the Minmax Part of the Histogram Extension

The minmax part of the histogram extension lets you find out about minimum and
maximum color component values present in an image. Using the minmax part of the
histogram extension is similar to using the histogram part.

To determine minimum and maximum color values used in an image, follow these steps:

1. Specify a minmax table by calling glMinmaxEXT(), whose format follows:

void glMinmaxEXT(GLenum target, GLenum internalformat, GLboolean sink)

The parameters are defined as follows:

target Specifies the table in which the information about the image is to be
stored. The value for target must be GL_MINMAX_EXT.

internalformat Specifies the format of the table entries. It must be an allowed
internal format. See the man page for glMinmaxEXT().
007-2392-003 271

10: Imaging Extensions
sink Determines whether processing continues. GL_TRUE or GL_FALSE
are the valid values. If set to GL_TRUE, no further processing
happens and pixels or texels are discarded.

The resulting minmax table always has two entries. Entry 0 is the minimum and
entry 1 is the maximum.

2. Enable minmax by calling the following function:

glEnable(GL_MINMAX_EXT)

3. Perform the pixel operation—for example, glCopyPixels().

Each component of the internal format of the minmax table is compared to the
corresponding component of the incoming RGBA pixel (luminance components are
compared to red).

• If a component is greater than the corresponding component in the maximum
element, then the maximum element is updated with the pixel component
value.

• If a component is smaller than the corresponding component in the minimum
element, then the minimum element is updated with the pixel component
value.

4. Query the current context of the minmax table by calling glGetMinmaxEXT(),
whose format follows:

void glGetMinmaxEXT (GLenum target, GLboolean reset, GLenum format,
 GLenum type, glvoid *values)

You can also call glGetMinmaxParameterEXT() to retrieve minmax state information;
setting target to GL_MINMAX_EXT and pname to one of the following values:

GL_MINMAX_FORMAT_EXT Internal format of minmax table

GL_MINMAX_SINK_EXT Value of sink parameter

Using Proxy Histograms

Histograms can get quite large and require more memory than is available to the
graphics subsystem. You can call glHistogramEXT() with target set to
GL_PROXY_HISTOGRAM_EXT to find out whether a histogram fits into memory. The
process is similar to the one explained in the section “Texture Proxy” on page 330 of the
OpenGL Programming Guide, Second Edition.
272 007-2392-003

EXT_packed_pixels—The Packed Pixels Extension
To query histogram state values, call glGetHistogramParameter*EXT(). Histogram calls
with the proxy target (like texture and color table calls with the proxy target) have no
effect on the histogram itself.

New Functions

The EXT_histogram extension introduces the following functions:

• glGetHistogramEXT()

• glGetHistogramParameterEXT()

• glGetMinmaxEXT()

• glGetMinmaxParameterEXT()

• glHistogramEXT()

• glMinmaxEXT()

• glResetHistogramEXT()

• glResetMinmaxEXT()

EXT_packed_pixels—The Packed Pixels Extension

The packed pixels extension, EXT_packed_pixels, provides support for packed pixels in
host memory. A packed pixel is represented entirely by one unsigned byte, unsigned
short, or unsigned integer. The fields within the packed pixel are not proper machine
types, but the pixel as a whole is. Thus, the pixel storage modes, such as
GL_PACK_SKIP_PIXELS, GL_PACK_ROW_LENGTH, and so on, and their unpacking
counterparts all work correctly with packed pixels.
007-2392-003 273

10: Imaging Extensions
Why Use the Packed Pixels Extension?

The packed pixels extension lets you store images more efficiently by providing
additional pixel types you can use when reading and drawing pixels or loading textures.
Packed pixels have two potential benefits:

• Save bandwidth.

Packed pixels may use less bandwidth than unpacked pixels to transfer them to and
from the graphics hardware because the packed pixel types use fewer bytes per
pixel.

• Save processing time.

If the packed pixel type matches the destination (texture or framebuffer) type,
packed pixels save processing time.

In addition, some of the types defined by this extension match the internal texture
formats; so, less processing is required to transfer texture images to texture memory.

Using Packed Pixels

To use packed pixels, provide one of the types listed in Table 10-1 as the type parameter
to glDrawPixels(), glReadPixels(), and so on.

The already available types for glReadPixels(), glDrawPixels(), and so on are listed in
Table 8-2 “Data Types for glReadPixels or glDrawPixels,” on page 293 of the OpenGL
Programming Guide.

Table 10-1 Types That Use Packed Pixels

Parameter Token Value GL Data Type

GL_UNSIGNED_BYTE_3_3_2_EXT GLubyte

GL_UNSIGNED_SHORT_4_4_4_4_EXT GLushort

GL_UNSIGNED_SHORT_5_5_5_1_EXT GLushort

GL_UNSIGNED_INT_8_8_8_8_EXT GLuint

GL_UNSIGNED_INT_10_10_10_2_EXT GLuint
274 007-2392-003

EXT_packed_pixels—The Packed Pixels Extension
Pixel Type Descriptions

Each packed pixel type includes a base type (for example, GL_UNSIGNED_BYTE) and a
field width (for example, 3_3_2):

• The base type (GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, or
GL_UNSIGNED_INT) determines the type of “container” into which each pixel’s
color components are packed.

• The field widths (3_3_2, 4_4_4_4, 5_5_5_1, 8_8_8_8, or 10_10_10_2)
determine the sizes (in bits) of the fields that contain a pixel’s color components.
The field widths are matched to the components in the pixel format in left-to-right
order.

For example, if a pixel has the type GL_UNSIGNED_BYTE_3_3_2_EXT and the
format GL_RGB, the pixel is contained in an unsigned byte, the red component
occupies three bits, the green component occupies three bits, and the blue
component occupies two bits.

The fields are packed tightly into their container with the leftmost field occupying
the most-significant bits and the rightmost field occupying the least-significant bits.

Because of this ordering scheme, integer constants (particularly hexadecimal constants)
can be used to specify pixel values in a readable and system-independent way. For
example, a packed pixel with type GL_UNSIGNED_SHORT_4_4_4_4_EXT, format
GL_RGBA, and color components red == 1, green == 2, blue == 3, alpha == 4 has the value
0x1234.

The ordering scheme also allows packed pixel values to be computed with
system-independent code. For example, if there are four variables (red, green, blue,
alpha) containing the pixel’s color component values, a packed pixel of type
GL_UNSIGNED_INT_10_10_10_2_EXT and format GL_RGBA can be computed with
the following C code:

GLuint pixel, red, green, blue, alpha;
pixel = (red << 22) | (green << 12) | (blue << 2) | alpha;

While the source code that manipulates packed pixels is identical on both big-endian and
little-endian systems, you still need to enable byte swapping when drawing packed
pixels that have been written in binary form by a system with different endianness.
007-2392-003 275

10: Imaging Extensions
SGI_color_matrix—The Color Matrix Extension

The color matrix extension, SGI_color_matrix, lets you transform the colors in the
imaging pipeline with a 4 x 4 matrix. You can use the color matrix to reassign and
duplicate color components and to implement simple color-space conversions.

This extension adds a 4 x 4 matrix stack to the pixel transfer path. The matrix operates
only on RGBA pixel groups; the extension multiplies the 4 x 4 color matrix on top of the
stack with the components of each pixel. The stack is manipulated using the OpenGL
matrix manipulation functions: glPushMatrix(), glPopMatrix(), glLoadIdentity(),
glLoadMatrix(), and so on. All standard transformations—for example, glRotate() or
glTranslate() also apply to the color matrix.

The color matrix is always applied to all pixel transfers. To disable it, load the identity
matrix.

The following is an example of a color matrix that swaps BGR pixels to form RGB pixels:

GLfloat colorMat[16] = {0.0, 0.0, 1.0, 0.0,
0.0, 1.0, 0.0, 0.0,
1.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0 };

glMatrixMode(GL_COLOR);
glPushMatrix();
glLoadMatrixf(colorMat);

After the matrix multiplication, each resulting color component is scaled and biased by
the appropriate user-defined scale and bias values. Color matrix multiplication follows
convolution; convolution follows scale and bias.

To set scale and bias values to be applied after the color matrix, call glPixelTransfer*()
with the following values for pname:

• GL_POST_COLOR_MATRIX_{RED/BLUE/GREEN/ALPHA}_SCALE_SGI

• GL_POST_COLOR_MATRIX_{RED/BLUE/GREEN/ALPHA}_BIAS_SGI
276 007-2392-003

SGI_color_table—The Color Table Extension
SGI_color_table—The Color Table Extension

The color table extension, SGI_color_table, defines a new RGBA-format color lookup
mechanism. It does not replace the color lookup tables provided by the color maps
described in the OpenGL Programming Guide but provides the following additional
lookup capabilities:

• Unlike pixel maps, the color table extension’s download operations go through the
glPixelStore() unpack operations in the same way glDrawPixels() does.

• When a color table is applied to pixels, OpenGL maps the pixel format to the color
table format.

If the copy texture extension is implemented, this extension also defines methods to
initialize the color lookup tables from the framebuffer.

Why Use the Color Table Extension?

The color tables provided by the color table extension allow you to adjust image contrast
and brightness after each stage of the pixel processing pipeline.

Because you can use several color lookup tables at different stages of the pipeline (see
Figure 10-3), you have greater control over the changes you want to make. In addition
the extension color lookup tables are more efficient than those of OpenGL because you
may apply them to a subset of components (for example, alpha only).

Specifying a Color Table

To specify a color lookup table, call glColorTableSGI(), whose format follows:

void glColorTableSGI(GLenum target, GLenum internalformat, GLsizei width,
GLenum format, GLenum type,const GLvoid *table)

The parameters are defined as follows:

target Must be GL_COLOR_TABLE_SGI,
GL_POST_CONVOLUTION_COLOR_TABLE_SGI, or
GL_POST_COLOR_MATRIX_COLOR_TABLE_SGI.

internalformat Specifies the internal format of the color table.
007-2392-003 277

10: Imaging Extensions
width Specifies the number of entries in the color lookup table. It must be
zero or a non-negative power of two.

format Specifies the format of the pixel data in the table.

type Specifies the type of the pixel data in the table.

table Specifies a pointer to a 1D array of pixel data that is processed to
build the table.

If no error results from the execution of glColorTableSGI(), the following events occur:

1. The specified color lookup table is defined to have width entries, each with the
specified internal format. The entries are indexed as zero through N–1, where N is
the width of the table. The values in the previous color lookup table, if any, are lost.
The new values are specified by the contents of the 1D image to which table points
with format as the memory format and type as the data type.

2. The specified image is extracted from memory and processed as if glDrawPixels()
were called, stopping just before the application of pixel transfer modes (see the
illustration “Drawing Pixels with glDrawPixels*()” on page 310 of the OpenGL
Programming Guide).

3. The R, G, B, and A components of each pixel are scaled by the four
GL_COLOR_TABLE_SCALE_SGI parameters, then biased by the four
GL_COLOR_TABLE_BIAS_SGI parameters and clamped to [0,1].

The scale and bias parameters are themselves specified by calling
glColorTableParameterivSGI() or glColorTableParameterfvSGI() with the
following parameters:

target Specifies one of the three color tables: GL_COLOR_TABLE_SGI,
GL_POST_CONVOLUTION_COLOR_TABLE_SGI, or
GL_POST_COLOR_MATRIX_COLOR_TABLE_SGI.

pname Has to be GL_COLOR_TABLE_SCALE_SGI or
GL_COLOR_TABLE_BIAS_SGI.

params Points to a vector of four values: red, green, blue, and alpha in that
order.

4. Each pixel is then converted to have the specified internal format. This conversion
maps the component values of the pixel (R, G, B, and A) to the values included in
the internal format (red, green, blue, alpha, luminance, and intensity).
278 007-2392-003

SGI_color_table—The Color Table Extension
The new lookup tables are treated as 1D images with internal formats like texture images
and convolution filter images. As a result, the new tables can operate on a subset of the
components of passing pixel groups. For example, a table with internal format
GL_ALPHA modifies only the A component of each pixel group and leaves the R, G, and
B components unmodified.

Using Framebuffer Image Data for Color Tables

If the copy texture extension is supported, you can define a color table using image data
in the framebuffer. Call glCopyColorTableSGI(), which accepts image data from a color
buffer region (width-pixel wide by one-pixel high) whose left pixel has window
coordinates (x,y). If any pixels within this region are outside the window that is
associated with the OpenGL context, the values obtained for those pixels are undefined.

The pixel values are processed exactly as if glCopyPixels() had been called until just
before the application of pixel transfer modes. See the illustration “Drawing Pixels with
glDrawPixels*()” on page 310 of the OpenGL Programming Guide.

At this point, all pixel component values are treated exactly as if glColorTableSGI() had
been called, beginning with the scaling of the color components by
GL_COLOR_TABLE_SCALE_SGI. The semantics and accepted values of the target and
internalformat parameters are exactly equivalent to their glColorTableSGI()
counterparts.

Lookup Tables in the Image Pipeline

The the following lookup tables exist at different points in the image pipeline (see
Figure 10-3):

GL_COLOR_TABLE_SGI
Located immediately after index lookup or RGBA to RGBA mapping,
and immediately before the convolution operation.

GL_POST_CONVOLUTION_COLOR_TABLE_SGI
Located immediately after the convolution operation (including its scale
and bias operations) and immediately before the color matrix operation.

GL_POST_COLOR_MATRIX_COLOR_TABLE_SGI
Located immediately after the color matrix operation (including its scale
and bias operations) and immediately before the histogram operation.
007-2392-003 279

10: Imaging Extensions
To enable and disable color tables, call glEnable() and glDisable() with the color table
name passed as the cap parameter. Color table lookup is performed only for RGBA
groups, though these groups may have been specified as color indexes and converted to
RGBA by an index-to-RGBA pixel map table.

When enabled, a color lookup table is applied to all RGBA pixel groups, regardless of its
associated function.

New Functions

The SGI_color_table extension introduces the following functions:

• glColorTableSGI()

• glColorTableParameterivSGI()

• glGetColorTableSGI()

• glGetColorTableParameterivSGI()

• glGetColorTableParameterfvSGI()

SGIX_interlace—The Interlace Extension

The interlace extension, SGIX_interlace, provides a way to interlace rows of pixels when
rasterizing pixel rectangles or loading texture images. Figure 10-4 illustrates how the
extension fits into the imaging pipeline.

In this context, interlacing means skipping over rows of pixels or texels in the
destination. This is useful for dealing with interlace video data since single frames of
video are typically composed of two fields: one field specifies the data for even rows of
the frame, the other specifies the data for odd rows of the frame, as shown in the
following illustration:
280 007-2392-003

SGIX_interlace—The Interlace Extension
Figure 10-8 Interlaced Video (NTSC, Component 525)

When interlacing is enabled, all the groups that belong to a row m are treated as if they
belonged to the row 2×m. If the source image has a height of h rows, this effectively
expands the height of the image to 2×h rows.

Applications that use the extension usually first copy the first set of rows and then the
second set of rows, as explained in the following sections.

In cases where errors can result from the specification of invalid image dimensions, the
resulting dimensions—not the dimensions of the source image—are tested. For example,
when you use glTexImage2D() with GL_INTERLACE_SGIX enabled, the source image
you provide must be of height (texture_height + texture_border)/2.

Using the Interlace Extension

One application of the interlace extension is to use it together with the copy texture
extension. You can use glCopyTexSubImage2D() to copy the contents of the video field
to texture memory and end up with de-interlaced video. You can interlace pixels from
two images as follows:

1. Call glEnable() or glDisable() with cap set to GL_INTERLACE_SGIX.

2. Set the current raster position to xr, yr, as follows:

glDrawPixels(width, height, GL_RGBA, GL_UNSIGNED_BYTE, I0);

.

.

.

1
2
3
4
5
.

.

.

482
483
484
485

Field 1

Field 2

Odd field
(242.5 lines;

Even field
(242.5 lines;

no blanking)

no blanking)

2
4
.

482
484

.

.

.

1
3
5
.

483
485

.

.

.

Frame (raster)
Line number

6
.

Line 0

Line 0
007-2392-003 281

10: Imaging Extensions
3. Copy pixels into texture memory (usually field 1 is first), as follows:

glCopyTexSubImage2D (GL_TEXTURE_2D, level, xoffset, yoffset, x, y,
width, height)

4. Set raster position to (xr,yr+zoomy), as follows:

glDrawPixels(width, height, GL_RGBA, GL_UNSIGNED_BYTE, I1);

5. Copy the pixels from the second field (usually F1 is next). For this call, set the
following:

y offset += yzoom
y += height (to get to next field)

This process is equivalent to taking pixel rows (0,2,4,...) of I2 from image I0, and rows
(1,3,5,...) from image I1, as follows:

glDisable(GL_INTERLACE_SGIX);
/* set current raster position to (xr,yr) */
glDrawPixels(width, 2*height, GL_RGBA, GL_UNSIGNED_BYTE, I2);

SGIX_pixel_texture—The Pixel Texture Extension

The pixel texture extension, SGIX_pixel_texture, allows applications to use the color
components of a pixel group as texture coordinates, effectively converting a color image
into a texture coordinate image. Applications can use the system’s texture-mapping
capability as a multidimensional lookup table for images. Using larger textures will give
you higher resolution, and the system will interpolate whenever the precision of the
color values (texture coordinates) exceeds the size of the texture.

In effect, the extension supports multidimensional color lookups that can be used to
implement accurate and fast color-space conversions for images. Figure 10-4 illustrates
how the extension fits into the imaging pipeline.

Note: This extension is experimental and will change.

Texture mapping is usually used to map images onto geometry, and each pixel fragment
that is generated by the rasterization of a triangle or line primitive derives its texture
coordinates by interpolating the coordinates at the primitive’s vertexes. Thus, you do not
have much direct control of the texture coordinates that go into a pixel fragment.
282 007-2392-003

SGIX_pixel_texture—The Pixel Texture Extension
By contrast, the pixel texture extension gives applications direct control of texture
coordinates on a per-pixel basis, instead of per-vertex as in regular texturing. If the
extension is enabled, glDrawPixels() and glCopyPixels() work differently. For each pixel
in the transfer, the color components are copied into the texture coordinates, as follows:

• Red becomes the s coordinate.

• Green becomes the t coordinate.

• Blue becomes the r coordinate.

• Alpha becomes the q coordinate (fourth dimension).

To use the pixel texture extension, an application has to go through these steps:

1. Define and enable the texture you want to use as the lookup table, as follows:

glTexImage3DEXT(GL_TEXTURE_3D_EXT, args);
glEnable(GL_TEXTURE_3D_EXT);

This texture does not have to be a 3D texture.

2. Enable pixel texture and begin processing images, as follows:

glEnable(GL_PIXEL_TEX_GEN_SGIX);
glDrawPixels(args);
glDrawPixels(args)
...
...

Each subsequent call to glDrawPixels() uses the predefined texture as a lookup table and
uses those colors when rendering to the screen. Figure 10-5 illustrates how colors are
introduced by the extension.

As in regular texture mapping, the texel found by mapping the texture coordinates and
filtering the texture is blended with a pixel fragment, and the type of blend is controlled
with the glTexEnv() function. In the case of pixel texture, the fragment color is derived
from the pixel group; thus, using the GL_MODULATE blend mode, you could blend the
texture lookup values (colors) with the original image colors. Alternatively, you could
blend the texture values with a constant color set with the glColor*() functions. To do
this, use this function:

void glPixelTexGenSGIX(GLenum mode);

The valid values of mode, shown in the following, depend on the pixel group and the
current raster color, which is the color associated with the current raster position:
007-2392-003 283

GL_RGB If mode is GL_RGB, the fragment red, green, and blue will be derived
from the current raster color, set by the glColor() function. Fragment
alpha is derived from the pixel group.

GL_RGBA If mode is GL_RGBA, the fragment red, green, blue, and alpha will be
derived from the current raster color.

GL_ALPHA If mode is GL_ALPHA, the fragment alpha is derived from the current
raster color and red, green, and blue will be derived from the pixel
group.

GL_NONE If mode is GL_NONE, the fragment red, green, blue, and alpha are derived
from the pixel group.

Note: See the following section “Platform Issues” for currently supported modes.

When using pixel texture, the format and type of the image do not have to match the
internal format of the texture. This is a powerful feature; it means, for example, that an
RGB image can look up a luminance result. Another interesting use is to have an RGB
image look up an RGBA result, in effect, adding alpha to the image in a complex way.

Platform Issues

Pixel texture is supported only on Fuel and InfinitePerformance systems. For further
restrictions on the implementation, see your platform release notes and the man page for
glPixelTexGenSGIX(). For new applications targeting Onyx4 and Silicon Graphics
Prism systems, you can achieve similar functionality by writing fragment programs
using the fragment color components as texture coordinates.

When you use 4D textures with an RGBA image, the alpha value is used to derive Q, the
4D texture coordinate. Currently, the Q interpolation is limited to a default GL_NEAREST
mode, regardless of the minfilter and magfilter settings.

Note: When working with mipmapped textures, the effective LOD value computed for
each fragment is 0. The texture LOD and texture LOD bias extensions apply to pixel
textures as well.

SGIX_pixel_texture—The Pixel Texture Extension
New Functions

The SGIX_pixel_texture extension introduces the function glPixelTexGenSGIX().
007-2392-003 285

Chapter 11

11. Video Extensions

Chapter 6, “Resource Control Extensions,” describes a set of GLX extensions that can be
used to control resources. This chapter provides information on the following set of GLX
extensions that support video functionality:

• “SGI_swap_control—The Swap Control Extension” on page 287

• “SGI_video_sync—The Video Synchronization Extension” on page 288

• “SGIX_swap_barrier—The Swap Barrier Extension” on page 289

• “SGIX_swap_group—The Swap Group Extension” on page 292

• “SGIX_video_resize—The Video Resize Extension” on page 294

SGI_swap_control—The Swap Control Extension

Provided the time required to draw each frame can be bounded, the swap control
extension, SGI_swap_control, allows applications to display frames at a regular rate . The
extension allows an application to set a minimum period for buffer swaps, counted in
display retrace periods.

To set the buffer swap interval, call glXSwapIntervalSGI(), which has the following
format:

int glXSwapIntervalSGI(int interval)

Specify the minimum number of retraces between buffer swaps in the interval parameter.
For example, a value of 2 means that the color buffer is swapped at most every other
display retrace. The new swap interval takes effect on the first execution of
glXSwapBuffers() after the execution of glXSwapIntervalSGI().
007-2392-003 287

11: Video Extensions
The functioin glXSwapIntervalSGI() affects only buffer swaps for the GLX write
drawable for the current context. Note that glXSwapBuffers() may be called with a
drawable parameter that is not the current GLX drawable; in this case,
glXSwapIntervalSGI() has no affect on that buffer swap.

New Functions

The SGI_swap_control extension introduces the function glXSwapIntervalSGI().

SGI_video_sync—The Video Synchronization Extension

The video synchronization extension, SGI_video_sync, allows an application to
synchronize drawing with the vertical retrace of a monitor or, more generically, to the
boundary between to video frames. In the case of an interlaced monitor, the
synchronization is actually with the field rate instead. Using the video synchronization
extension, an application can put itself to sleep until a counter corresponding to the
number of screen refreshes reaches a desired value. This enables an application to
synchronize itself with the start of a new video frame. The application can also query the
current value of the counter.

The system maintains a video sync counter (an unsigned 32-bit integer) for each screen
in a system. The counter is incremented upon each vertical retrace.

The counter runs as long as the graphics subsystem is running; it is initialized by the
/usr/gfx/gfxinit command.

Note: A process can query or sleep on the counter only when a direct context is current;
otherwise, an error code is returned. See the man page for gfxinit more information.

Using the Video Sync Extension

To use the video sync extension, follow these steps:

1. Create a rendering context and make it current.

2. Call glXGetVideoSyncSGI() to obtain the value of the vertical retrace counter.
288 007-2392-003

SGIX_swap_barrier—The Swap Barrier Extension
3. Call glXWaitVideoSyncSGI(), whose format follows, to put the current process to
sleep until the specified retrace counter:

int glXWaitVideoSyncSGI(int divisor, int remainder,
unsigned int *count)

The parameters are defined as follows:

divisor, remainder The function glXWaitVideoSyncSGI() puts the calling
process to sleep until the value of the vertical retrace counter
(count) modulo divisor equals remainder.

count This is a pointer to the variable that receives the value of the
vertical retrace counter when the calling process wakes up.

New Functions

The SGI_video_sync extension introduces the following functions:

• glXGetVideoSyncSGI()

• glXWaitVideoSyncSGI()

SGIX_swap_barrier—The Swap Barrier Extension

Note: The OpenGL swap barrier functionality requires special hardware support and is
currently supported only on InfiniteReality graphics.

The swap barrier extension, SGIX_swap_barrier, allows applications to synchronize the
buffer swaps of different swap groups—that is, on different machines. For information
on swap groups, see “SGIX_swap_group—The Swap Group Extension” on page 292.

Why Use the Swap Barrier Extension?

For example, two Onyx InfiniteReality systems may be working together to generate a
single visual experience. The first Onyx system may be generating an “out the window
view” while the second Onyx system may be generating a sensor display. The swap
group extension would work well if the two InfiniteReality graphics pipelines were in
007-2392-003 289

11: Video Extensions
the same system, but a swap group cannot span two Onyx systems. Even though the two
displays are driven by independent systems, you still want the swaps to be
synchronized.

The swap barrier solution requires the user to connect a physical coaxial cable to the
Swap Ready port of each InfiniteReality pipeline. The multiple pipelines should also be
genlocked together (synchronizing their video refresh rates). Genlocking a system means
synchronizing it with another video signal serving as a master timing source.

You can use the swap barrier extension through the OpenGL Performer API rather than
calling the extension directly.

Using the Swap Barrier Extension

A swap group is bound to a swap barrier. The buffer swaps of each swap group using
that barrier will wait until every swap group using that barrier is ready to swap (where
readiness is defined in “Buffer Swap Conditions” on page 291). All buffer swaps of all
groups using that barrier will take place concurrently when every group is ready.

The set of swap groups using the swap barrier include not only all swap groups on the
calling application’s system, but also any swap groups set up by other systems that have
been cabled together by the Swap Ready ports of their graphics pipeline. This extension
extends the set of conditions that must be met before a buffer swap can take place.

Applications call glXBindSwapBarriersSGIX(), which has the following format:

void glXBindSwapBarrierSGIX(Display *dpy, GLXDrawable drawable, int barrier)

The function glXBindSwapBarriersSGIX() binds the swap group that contains drawable
to barrier. Subsequent buffer swaps for that group will be subject to this binding until the
group is unbound from barrier. If barrier is zero, the group is unbound from its current
barrier, if any.

To find out how many swap barriers a graphics pipeline (an X screen) supports,
applications call glXQueryMaxSwapbarriersSGIX(), which has the following syntax:

Bool glXQueryMaxSwapBarriersSGIX (Display *dpy, int screen, int max)

The function glXQueryMaxSwapBarriersSGIX() returns in max the maximum number
of barriers supported by an implementation on screen.
290 007-2392-003

SGIX_swap_barrier—The Swap Barrier Extension
The function glXQueryMaxSwapBarriersSGIX() returns GL_TRUE if it succeeds and
GL_FALSE if it fails. If it fails, max is unchanged.

While the swap barrier extension has the capability to support multiple swap barriers
per graphics pipeline, InfiniteReality (the only graphics hardware currently supporting
the swap barrier extension) provides only one swap barrier.

Buffer Swap Conditions

Before a buffer swap can take place when a swap barrier is used, some new conditions
must be satisfied. The conditions are defined in terms of when a drawable is ready to
swap and when a group is ready to swap.

• Any GLX drawable that is not a window is always ready.

• When a window is unmapped, it is always ready.

• When a window is mapped, it is ready when both of the following are true:

– A buffer swap command has been issued for it.

– Its swap interval has elapsed.

• A group is ready when all windows in the group are ready.

• Before a buffer swap for a window can take place, all of the following must be
satisfied:

– The window is ready.

– If the window belongs to a group, the group is ready.

– If the window belongs to a group and that group is bound to a barrier, all
groups using that barrier are ready.

Buffer swaps for all windows in a swap group will take place concurrently after the
conditions are satisfied for every window in the group.

Buffer swaps for all groups using a barrier will take place concurrently after the
conditions are satisfied for every window of every group using the barrier, if and only if
the vertical retraces of the screens of all the groups are synchronized (genlocked). If they
are not synchronized, there is no guarantee of concurrency between groups.

Both glXBindSwapBarrierSGIX() and glXQueryMaxSwapBarrierSGIX() are part of the
X stream.
007-2392-003 291

11: Video Extensions
New Functions

The SGI_swap_barrier extension introduces the following functions:

• glBindSwapBarrierSGIX()

• glQueryMaxSwapBarriersSGIX()

SGIX_swap_group—The Swap Group Extension

The swap group extension, SGIX_swap_group, allows applications to synchronize the
buffer swaps of a group of GLX drawables. The application creates a swap group and
adds drawables to the swap group. After the group has been established, buffer swaps
to members of the swap group will take place concurrently.

In effect, this extension extends the set of conditions that must be met before a buffer
swap can take place.

Why Use the Swap Group Extension?

Synchronizing the swapping of multiple drawables ensures that buffer swaps among
multiple windows (potentially on different screens) swap at exactly the same time.

Consider the following example:

render(left_window);
render(right_window);
glXSwapBuffers(left_window);
glXSwapBuffers(right_window);

The left_window and right_window are on two different screens (different monitors) but
are meant to generate a single logical scene (split across the two screens). While the
programmer intends for the two swaps to happen simultaneously, the two
glXSwapBuffers() calls are distinct requests, and buffer swaps are tied to the monitor’s
rate of vertical refresh. Most of the time, the two glXSwapBuffers() calls will swap both
windows at the next monitor vertical refresh. Because the two glXSwapBuffers() calls
are not atomic, the following cases are possible:

• The first glXSwapBuffers() call may execute just before a vertical refresh, allowing
left_window to swap immediately.
292 007-2392-003

SGIX_swap_group—The Swap Group Extension
• The second glXSwapBuffers() call is made after the vertical refresh, forcing
right_window to wait a full vertical refresh (typically a 1/60th or1/72th of a second).

Someone watching the results in the two windows would very briefly see the new
left_window contents, but alongside the old right_window contents. This “stutter” between
the two window swaps is always annoying and at times simply unacceptable.

The swap group extension allows applications to “tie together” the swapping of multiple
windows. Joining the left_window and right_window into a swap group ensures that the
windows swap together atomically. This could be done during initialization by making
the following call:

glXJoinSwapGroupSGIX(dpy, left_window, right_window);

Subsequent windows can also be added to the swap group. For example, if there was also
a middle window, it could be added to the swap group by making the following call:

glXJoinSwapGroupSGIX(dpy, middle_window, right_window);

Swap Group Details

The only routine added by the swap group extension is glXJoinSwapGroupSGIX(),
which has following format:

void glXJoinSwapGroupSGIX(Display *dpy, GLXDrawable drawable,
GLXDrawable member)

Applications can call glXJoinSwapGroupSGIX() to add drawable to the swap group
containing member as a member. If drawable is already a member of a different group, it is
implicitly removed from that group first. If member is None, drawable is removed from its
swap group, if any.

Applications can reference a swap group by naming any drawable in the group; there is
no other way to refer to a group.

Before a buffer swap can take place, a set of conditions must be satisfied. Both the
drawable and the group must be ready, satisfying the following conditions:

• GLX drawables, except windows, are always ready to swap.

• When a window is unmapped, it is always ready.

• When a window is mapped, it is ready when both of the following are true:
007-2392-003 293

11: Video Extensions
– A buffer swap command has been issued for it.

– Its swap interval has elapsed.

 A group is ready if all windows in the group are ready.

The function glXJoinSwapGroupSGIX() is part of the X stream. Note that a swap group
is limited to GLX drawables managed by a single X server. If you have to synchronize
buffer swaps between monitors on different machines, you need the swap barrier
extension (see “SGIX_swap_barrier—The Swap Barrier Extension” on page 289).

New Function

The SGIX_swap_group extension introduces the function glJoinSwapGroupSGIX().

SGIX_video_resize—The Video Resize Extension

Note: This extension is only supported on InfiniteReality systems.

The video resize extension, SGIX_video_resize, is an extension to GLX that allows the
framebuffer to be dynamically resized to the output resolution of the video channel when
glXSwapBuffers is called for the window that is bound to the video channel. The video
resize extension can also be used to minify (reduce in size) a framebuffer image for
display on a video output channel (such as NTSC or PAL broadcast video). For example,
a 1280 x 1024 computer-generated scene could be minified for output to the
InfiniteReality NTSC/PAL encoder channel. InfiniteReality performs bilinear filtering of
the minified channel for reasonable quality.

As a result, an application can draw into a smaller viewport and spend less time
performing pixel fill operations. The reduced size viewport is then magnified up to the
video output resolution using the SGIX_video_resize extension.

In addition to the magnify and minify resizing capabilities, the video resize extension
allows 2D panning. By overrendering at swap rates and panning at video refresh rates,
it is possible to perform video refresh (frame) synchronous updates.
294 007-2392-003

SGIX_video_resize—The Video Resize Extension
Controlling When the Video Resize Update Occurs

Whether frame synchronous or swap synchronous update is used is set by calling
glXChannelRectSyncSGIX(), which has the following format:

int glXChannelRectSyncSGIX (Display *dpy, int screen,int channel,
GLenum synctype);

The synctype parameter can be either GLX_SYNC_FRAME_SGIX or
GLX_SYNC_SWAP_SGIX.

The extension can control fill-rate requirements for real-time visualization applications
or to support a larger number of video output channels on a system with limited
framebuffer memory.

Using the Video Resize Extension

To use the video resize extensions, follow these steps:

1. Open the display and create a window.

2. Call glXBindChannelToWindowSGIX() to associate a channel with an X window
so that when the X window is destroyed, the channel input area can revert to the
default channel resolution.

The other reason for this binding is that the bound channel updates only when a
swap takes place on the associated X window (assuming swap sync updates—see
“Controlling When the Video Resize Update Occurs” on page 295).

The function has the following format:

int glXBindChannelToWindowSGIX(Display *display, int screen,
int channel, Window window)

The parameters are defined as follows:

display Specifies the connection to the X server.

screen Specifies the screen of the X server.

channel Specifies the video channel number.
007-2392-003 295

11: Video Extensions
window Specifies the window that is to be bound to channel. Note that
InfiniteReality systems support multiple output channels (two or
eight depending on the Display Generator board type). Each
channel can be dynamically resized independently.

3. Call glXQueryChannelDeltasSGIX() to retrieve the precision constraints for any
frame buffer area that is to be resized to match the video resolution. In effect,
glXQueryChannelDeltasSGIX() returns the resolution at which one can place and
size a video input area.

The function has the following format:

int glXQueryChannelDeltasSGIX(Display *display, int screen, int channel,
int *dx, int *dy, int *dw, int *dh)

The parameters are defined as follows:

display Specifies the connection to the X server.

screen Specifies the screen of the X server.

channel Specifies the video channel number.

dx, dy, dw, dh Specify the precision deltas for the origin and size of the area
specified by glXChannelRectSGIX().

4. Call XSGIvcQueryChannelInfo() (an interface to the X video control extension) to
determine the default size of the channel.

5. Open an X window, preferably with no borders.

6. Start a loop in which you perform the following activities:

■ Based on performance requirements, determine the area that will be drawn. If
the application is fill-limited, make the area smaller. You can make a rough
estimate of the fill rate required for a frame by timing the actual rendering time
in milliseconds. On InfiniteReality systems, the SGIX_ir_instrument1 OpenGL
extension can be used to query the pipeline performance to better estimate the
fill rate.

■ Call glViewPort(), providing the width and height, to set the OpenGL viewport
(the rectangular region of the screen where the window is drawn). Base this
viewport on the information returned by glXQueryChannelDeltasSGIX().

■ Call glXChannelRectSGIX() to set the input video rectangle that will take effect
the next swap or next frame (based on glXChannelRectSyncSGIX() setting).
The coordinates of the input video rectangle are those of the viewport just set
up for drawing. This function has the following format:
296 007-2392-003

SGIX_video_resize—The Video Resize Extension
int glXChannelRectSGIX(Display *display, int screen,
int channel, int x, int y, int w, int h)

The parameters are defined as follows:

display—Specifies the connection to the X server

screen—Specifies the screen of the X server.

channel—Specifies the video channel number.

x, y, w, h—Specify the origin and size of the area of the window that will be
converted to the output resolution of the video channel. (x,y) is relative to the
bottom left corner of the channel specified by the current video combination.

■ Draw the scene.

■ Call glXSwapBuffers() for the window in question.

Example

The following example from the man page for glxChannelRectSGIX() illustrates how to
use the extension:

Example 11-1 Video Resize Extension Example

XSGIvcChannelInfo *pChanInfo = NULL;

... open display and screen ...
glXBindChannelToWindowSGIX(display,screen,channel,window);
glXQueryChannelDeltasSGIX(display,screen,channel, &dx,&dy,&dw,&dh);

XSGIvcQueryChannelInfo(display, screen, channel, &pChanInfo);

X = pChanInfo->source.x;
Y = pChanInfo->source.y;
W = pChanInfo->source.width;
H = pChanInfo->source.height;

... open an X window (preferably with no borders so will not get ...

... moved by window manager) at location X,Y,W,H (X coord system) ...

while(...)
{

...determine area(width,height) that will be drawn based on...

...requirements. Make area smaller if application is fill limited..
007-2392-003 297

11: Video Extensions
w = width - (width % dw);
h = height - (height % dh);

glViewport(0,0,w,h);

glXChannelRectSGIX(display,screen,channel, 0,0,w,h);

... draw scene ...

glXSwapBuffers(display,window);
}

New Functions

The SGIX_video_resize extension introduces the following functions:

• glXBindChannelToWindowSGIX()

• glXChannelRectSGIX()

• glXChannelRectSyncSGIX()

• glXQueryChannelRectSGIX()
298 007-2392-003

Chapter 12

12. Miscellaneous OpenGL Extensions

This chapter explains how to use several extensions that are not easily grouped with
texturing, imaging, or GLX extensions. Example code is provided as needed. The
following extensions are described:

• “GLU_EXT_NURBS_tessellator—The NURBS Tessellator Extension” on page 299

• “GLU_EXT_object_space—The Object Space Tess Extension” on page 303

• “SGIX_instruments—The Instruments Extension” on page 307

• “SGIX_list_priority—The List Priority Extension” on page 305

GLU_EXT_NURBS_tessellator—The NURBS Tessellator Extension

The NURBS tessellator extension, GLU_EXT_nurbs_tessellator, is a GLU extension that
allows applications to retrieve the results of a tessellation. The NURBS tessellator is
similar to the GLU polygon tessellator; see “Polygon Tessellation,” starting on page 410
of the OpenGL Programming Guide, Second Edition.

NURBS tessellation consists of OpenGL Begin, End, Color, Normal, Texture, and Vertex
data. This feature is useful for applications that need to cache the primitives to use their
own advanced shading model or to accelerate frame rate or perform other computations
on the tessellated surface or curve data.
007-2392-003 299

12: Miscellaneous OpenGL Extensions
Using the NURBS Tessellator Extension

To use the extension, follow these steps:

1. Define a set of callbacks for a NURBS object using this function:

void gluNurbsCallback(GLUnurbsObj *nurbsObj, GLenum which,
void (*fn)());

The parameter which can be either GLU_ERROR, a data parameter, or one of the
following nondata parameters:

2. Call gluNurbsProperty() with a property parameter of GLU_NURBS_MODE_EXT and
a value parameter of GLU_NURBS_TESSELLATOR_EXT or
GLU_NURBS_RENDERER_EXT.

In rendering mode, the objects are converted or tessellated to a sequence of OpenGL
primitives, such as evaluators and triangles, and sent to the OpenGL pipeline for
rendering. In tessellation mode, objects are converted to a sequence of triangles and
triangle strips and returned to the application through a callback interface for
further processing. The decomposition algorithms used for rendering and for
returning tessellations are not guaranteed to produce identical results.

3. Execute your OpenGL code to generate the NURBS curve or surface (see “A Simple
NURBS Example” on page 455 of the OpenGL Programming Guide, Second Edition.)

4. During tessellation, your callback functions are called by OpenGL with the
tessellation information defining the NURBS curve or surface.

GLU_NURBS_BEGIN_EXT GLU_NURBS_BEGIN_DATA_EXT

GLU_NURBS_VERTEX_EXT GLU_NURBS_VERTEX_DATA_EXT

GLU_NORMAL_EXT GLU_NORMAL_DATA_EXT

GLU_NURBS_COLOR_EXT GLU_NURBS_COLOR_DATA_EXT

GLU_NURBS_TEXTURE_COORD_EXT GLU_NURBS_TEXTURE_COORD_DATA _EXT

GLU_END_EXT GLU_END_DATA_EXT
300 007-2392-003

GLU_EXT_NURBS_tessellator—The NURBS Tessellator Extension
Callbacks Defined by the Extension

There are two forms of each callback defined by the extension: one with a pointer to
application-supplied data and one without. If both versions of a particular callback are
specified, the callback with userData will be used.The userData is a copy of the pointer
that was specified at the last call to gluNurbsCallbackDataEXT().

The callbacks have the following formats:

void begin(GLenum type);
void vertex(GLfloat *vertex);
void normal(GLfloat *normal);
void color(GLfloat *color);
void texCoord(GLfloat *texCoord);
void end(void);

void beginData(GLenum type, void* userData);
void vertexData(GLfloat *vertex, void* userData);
void normalData(GLfloat *normal, void* userData);
void colorData(GLfloat *color, void* userData);
void texCoordData(GLfloat *texCoord, void* userData);
void endData(void* userData);

void error(GLenum errno);

The first 12 callbacks allows applications to get primitives back from the NURBS
tessellator when GLU_NURBS_MODE_EXT is set to GLU_NURBS_TESSELLATOR_EXT.

These callbacks are not made when GLU_NURBS_MODE_EXT is set to
GLU_NURBS_RENDERER_EXT.

All callback functions can be set to NULL even when GLU_NURBS_MODE_EXT is set to
GLU_NURBS_TESSELLATOR_EXT. When a callback function is set to NULL, this function
will not be invoked and the related data, if any, will be lost.
007-2392-003 301

12: Miscellaneous OpenGL Extensions
Table 12-1 provides additional information on each callback.

Table 12-1 NURBS Tessellator Callbacks and Their Description

Callback Description

GLU_NURBS_BEGIN_EXT

GLU_NURBS_BEGIN_DATA_ EXT

Indicates the start of a primitive. type is one of
GL_LINES, GL_LINE_STRIPS, GL_TRIANGLE_FAN,
GL_TRIANGLE_STRIP, GL_TRIANGLES, or
GL_QUAD_STRIP.

The default begin() and beginData() callback functions
are NULL.

GLU_NURBS_VERTEX_EXT
GLU_NURBS_VERTEX_DATA_ EXT

Indicates a vertex of the primitive. The coordinates of the
vertex are stored in the parameter vertex. All the
generated vertices have dimension 3; that is,
homogeneous coordinates have been transformed into
affine coordinates.

The default vertex() and vertexData() callback functions
are NULL.

GLU_NURBS_NORMAL_EXT
GLU_NURBS_NORMAL_DATA_EXT

Is invoked as the vertex normal is generated. The
components of the normal are stored in the parameter
normal. In the case of a NURBS curve, the callback
function is effective only when you provide a normal map
(GLU_MAP1_NORMAL). In the case of a NURBS surface, if
a normal map (GLU_MAP2_NORMAL) is provided, then the
generated normal is computed from the normal map. If a
normal map is not provided, then a surface normal is
computed in a manner similar to that described for
evaluators when GL_AUTO_NORMAL is enabled. The
default normal() and normalData() callback functions are
NULL.

GLU_NURBS_COLOR_EXT
GLU_NURBS_COLOR_DATA_ EXT

Is invoked as the color of a vertex is generated. The
components of the color are stored in the parameter color.
This callback is effective only when you provide a color
map (GL_MAP1_COLOR_4 or GL_MAP2_COLOR_4). The
color value contains four components: R, G, B, or A.The
default color() and colorData() callback functions are
NULL.
302 007-2392-003

GLU_EXT_object_space—The Object Space Tess Extension
GLU_EXT_object_space—The Object Space Tess Extension

The object space tess extension, GLU_EXT_object_space_tess, adds two object space
tessellation methods for GLU nurbs surfaces. NURBS are discussed in the section “The
GLU NURBS Interface” on page 455 of the OpenGL Programming Guide, Second Edition.

The existing tessellation methods GLU_PATH_LENGTH and GLU_PARAMETRIC_ERROR
are view-dependent because the error tolerance is measured in the screen space (in
pixels). The extension provides corresponding object space tessellation methods that are
view-independent in that the error tolerance measurement is in the object space.

GLU_NURBS_TEXCOORD_EXT
GLU_NURBS_TEXCOORD_DATA_EXT

Is invoked as the texture coordinates of a vertex are
generated. These coordinates are stored in the parameter
tex_coord. The number of texture coordinates can be 1, 2,
3, or 4 depending on which type of texture map is
specified (GL_MAP*_TEXTURE_COORD_1,
GL_MAP*_TEXTURE_COORD_2,
GL_MAP*_TEXTURE_COORD_3,
GL_MAP*_TEXTURE_COORD_4where * can be either 1 or
2). If no texture map is specified, this callback function
will not be called.

The default texCoord() and texCoordData() callback
functions are NULL.

GLU_NURBS_END_EXT
GLU_NURBS_END_DATA_EXT

Is invoked at the end of a primitive. The default end() and
endData() callback functions are NULL.

GLU_NURBS_ERROR_EXT Is invoked when a NURBS function detects an error
condition. There are 37 errors specific to NURBS
functions. They are namedGLU_NURBS_ERROR1 through
GLU_NURBS_ERROR37. Strings describing the meaning
of these error codes can be retrieved with
gluErrorString().

Table 12-1 NURBS Tessellator Callbacks and Their Description (continued)

Callback Description
007-2392-003 303

12: Miscellaneous OpenGL Extensions
GLU_SAMPLING_METHOD specifies how a NURBS surface should be tessellated. The
value parameter may be set to one of of the following:

• GLU_PATH_LENGTH

• GLU_PARAMETRIC_ERROR

• GLU_DOMAIN_DISTANCE

• GLU_OBJECT_PATH_LENGTH_EXT

• GLU_OBJECT_PARAMETRIC_ERROR_EXT

To use the extension, call gluNurbsProperty() with an argument of
GLU_OBJECT_PATH_LENGTH_EXT or GLU_OBJECT_PARAMETRIC_ERROR_EXT.
Table 12-2 contrasts the methods provided by the extension with the existing methods.

Table 12-2 Tessellation Methods

Method Description

GLU_PATH_LENGTH The surface is rendered so that the maximum length,
in pixels, of edges of the tessellation polygons is no
greater than what is specified by
GLU_SAMPLING_TOLERANCE.

GLU_PARAMETRIC_ERROR The surface is rendered in such a way that the value
specified by GLU_PARAMETRIC_TOLERANCE
describes the maximum distance, in pixels, between
the tessellation polygons and the surfaces they
approximate.

GLU_DOMAIN_DISTANCE Allows you to specify in parametric coordinates how
many sample points per unit length are taken in u, v
dimension.
304 007-2392-003

SGIX_list_priority—The List Priority Extension
The default value of GLU_SAMPLING_METHOD is GLU_PATH_LENGTH.

GLU_SAMPLING_TOLERANCE specifies the maximum distance in pixels or in object
space when the sampling method is set to GLU_PATH_LENGTH or
GLU_OBJECT_PATH_LENGTH_EXT. The default value for GLU_SAMPLING_TOLERANCE
is 50.0.

GLU_PARAMETRIC_TOLERANCE specifies the maximum distance in pixels or in object
space when the sampling method is set to GLU_PARAMETRIC_ERROR or
GLU_OBJECT_PARAMETRIC_ERROR_EXT. The default value for
GLU_PARAMETRIC_TOLERANCE is 0.5.

SGIX_list_priority—The List Priority Extension

Note: This extension is only supported on Fuel, Tezro, InfinitePerformance, and
InfiniteReality systems.

The list priority extension, SGIX_list_priority, provides a mechanism for specifying the
relative importance of display lists. This information can be used by an OpenGL
implementation to guide the placement of display list data in a storage hierarchy; that is,

GLU_OBJECT_PATH_LENGTH_EXT Similar to GLU_PATH_LENGTH except that it is
view-independent; that is, it specifies that the surface
is rendered so that the maximum length in object
space of edges of the tessellation polygons is no
greater than what is specified by
GLU_SAMPLING_TOLERANCE.

GLU_OBJECT_PARAMETRIC_ERROR_EXT Similar to GLU_PARAMETRIC_ERROR, except that it
is view-independent; that is, it specifies that the
surface is rendered in such a way that the value
specified by GLU_PARAMETRIC_TOLERANCE
describes the maximum distance, in object space,
between the tessellation polygons and the surfaces
they approximate.

Table 12-2 Tessellation Methods (continued)

Method Description
007-2392-003 305

12: Miscellaneous OpenGL Extensions
lists that have higher priority reside in “faster” memory and are less likely to be swapped
out to make space for other lists.

Using the List Priority Extension

To guide the OpenGL implementation in determining which display lists should be
favored for fast executions, applications call glListParameter*SGIX(), which has the
following format:

glListParameterfSGIX(uint list, enum pname, float params)

The parameters are defined as follows:

list The display list

pname GL_LIST_PRIORITY_SGIX

params The priority value

The priority value is clamped to the range [0.0, 1.0] before it is assigned. Zero indicates
the lowest priority and, hence, the least likelihood of optimal execution. One indicates
the highest priority and, hence, the greatest likelihood of optimal execution.

Attempts to prioritize nonlists are silently ignored. Attempts to prioritize list 0 generates
a GL_INVALID_VALUE error.

To query the priority of a list, call glGetListParameterivSGIX(), which has the following
format:

glGetListParameterivSGIX(uint list, enum pname, int *params)

The parameters are defined as follows:

list The display list

pname GL_LIST_PRIORITY_SGIX

If list is not defined, then the value returned is undefined.

Note: On InfiniteReality systems, it makes sense to give higher priority to those display
lists that are changed frequently.
306 007-2392-003

SGIX_instruments—The Instruments Extension
New Functions

The SGIX_list_priority extension introduces the following functions:

• glListParameterSGIX()

• glGetListParameterSGIX()

SGIX_instruments—The Instruments Extension

Note: This extension is only supported on InfiniteReality systems.

The instruments extension, SGIX_instruments, allows applications to gather and return
performance measurements from within the graphics pipeline by adding
instrumentation.

Why Use SGIX_instruments?

There are two reasons for using the instruments extension:

• Load monitoring

If you know that the pipeline is stalled or struggling to process the amount of data
passed to it so far, you can take appropriate steps, such as the following:

– Reduce the level of detail of the remaining objects in the current frame or the
next frame.

– Adjust the framebuffer resolution for the next frame if video resize capability is
available.

• Tuning

The instrumentation may give you tuning information; for example, it may provide
information on how many triangles were culled or clipped before being rasterized.

Load monitoring requires that the instrumentation and the access of the measurements
be efficient; otherwise, the instrumentation itself will reduce performance more than any
load-management scheme could hope to offset. Tuning does not have the same
requirements.
007-2392-003 307

12: Miscellaneous OpenGL Extensions
The instruments extension provides a call to set up a measurements return buffer similar
to the feedback buffer. However, unlike feedback and selection (see glSelectBuffer() and
glFeedbackBuffer()), the instruments extension provides functions that allow
measurements to be delivered asynchronously so that the graphics pipeline need not be
stalled while measurements are returned to the client.

Note that the extension provides an instrumentation framework, but no instruments.
The set of available instruments varies between OpenGL implementations and can be
determined by querying the GL_EXTENSIONS string returned by glGetString() for the
names of the extensions that implement the instruments.

Using the Extension

This section describes using the extension in the following subsections:

• “Specifying the Buffer”

• “Enabling, Starting, and Stopping Instruments”

• “Measurement Format”

• “Retrieving Information”

Specifying the Buffer

To specify a buffer in which to collect instrument measurements, call
glInstrumentsBufferSGIX() with size set to the size of the buffer as a count of GLints.
The function has the following format:

void glInstrumentsBufferSGIX(GLsizei size, GLint *buffer)

The buffer will be prepared in a way that allows it to be written asynchronously by the
graphics pipeline.

If the same buffer was specified on a previous call, the buffer is reset; that is,
measurements taken after the call to glInstrumentsBufferSGIX() are written to the start
of the buffer.

If buffer is zero, then any resources allocated by a previous call to prepare the buffer for
writing will be freed. If buffer is non-zero but is different from a previous call, the old
buffer is replaced by the new buffer and any allocated resources involved in preparing
the old buffer for writing are freed.
308 007-2392-003

SGIX_instruments—The Instruments Extension
The buffer address can be queried with glGetPointerv() using the argument
GL_INSTRUMENT_BUFFER_POINTER_SGIX (note that glGetPointerv() is an OpenGL
1.1 function).

Enabling, Starting, and Stopping Instruments

To enable an instrument, call glEnable() with an argument that specifies the instrument.
The argument to use for a particular instrument is determined by the OpenGL extension
that supports that instrument. (See “Instruments Example Pseudo Code” on page 311.)

To start the currently enabled instrument(s), call glStartInstrumentsSGIX(). To take a
measurement, call glReadInstrumentsSGIX(). To stop the currently enabled instruments
and take a final measurement, call glStopInstrumentsSGIX(). The three functions have
the following formats:

void glStartInstrumentsSGIX(void)
void glReadInstrumentsSGIX(GLint marker)
void glStopInstrumentsSGIX(GLint marker)

The marker parameter is passed through the pipe and written to the buffer to ease the task
of interpreting it.

If no instruments are enabled executing, glStartInstrumentsSGIX(),
glStopInstrumentsSGIX(), or glReadInstruments() will not write measurements to the
buffer.

Measurement Format

The format of any instrument measurement in the buffer obeys the following
conventions:

• The first word of the measurement is the glEnable() enum for the instrument itself.

• The second word of the measurement is the size in GLints of the entire
measurement. This allows any parser to step over measurements with which it is
unfamiliar. Currently, there are no implementation-independent instruments to
describe.

Implementation-dependent instruments are described in the Machine
Dependencies section of the man page for glInstrumentsSGIX(). Currently, only
InfiniteReality systems support any instruments.
007-2392-003 309

12: Miscellaneous OpenGL Extensions
In a single measurement, if multiple instruments are enabled, the data for those
instruments can appear in the buffer in any order.

Retrieving Information

To query the number of measurements taken since the buffer was reset, call glGet() using
GL_INSTRUMENT_MEASUREMENTS_SGIX.

To determine whether a measurement has been written to the buffer, call
glPollInstrumentsSGIX(), which has the following format:

GLint glPollInstrumentsSGIX(GLint *markerp)

If a new measurement has appeared in the buffer since the last call to
glPollInstrumentsSGIX(), 1 is returned, and the value of marker associated with the
measurement by glStopInstrumentsSGIX() or glReadInstrumentsSGIX() is written
into the variable referenced by markerp. The measurements appear in the buffer in the
order in which they were requested. If the buffer overflows, glPollInstrumentsSGIX()
may return –1 as soon as the overflow is detected even if the measurement being polled
did not cause the overflow. An implementation may also choose to delay reporting the
overflow until the measurement that caused the overflow is the one being polled. If no
new measurement has been written to the buffer and overflow has not occurred,
glPollInstrumentsSGIX() returns 0.

Note that while in practice an implementation of the extension is likely to return markers
in order, this functionality is not explicitly required by the specification for the extension.

To get a count of the number of new valid GLints written to the buffer, call
glGetInstrumentsSGIX(), which has the following format:

GLint glGetInstrumentsSGIX(void)

The value returned is the number of GLints that have been written to the buffer since the
last call to glGetInstrumentsSGIX() or glInstrumentsBufferSGIX(). If the buffer has
overflowed since the last call to glGetInstrumentsSGIX(), –1 is returned for the count.
Note that glGetInstrumentsSGIX() can be used independently of
glPollInstrumentsSGIX().
310 007-2392-003

SGIX_instruments—The Instruments Extension
Instruments Example Pseudo Code

Example 12-1 provides pseudo code for using the instruments extension.

Example 12-1 Instruments Example Pseudo Code

#ifdef GL_SGIX_instruments
 #define MARKER1 1001
 #define MARKER2 1002
 {
 static GLint buffer[64];
 GLvoid *bufp;
 int id, count0, count1, r;

 /* define the buffer to hold the measurements */
 glInstrumentsBufferSGIX(sizeof(buffer)/sizeof(GLint), buffer);

 /* enable the instruments from which to take measurements */
 glEnable(<an enum for a supported instrument, such as

GL_IR_INSTRUMENT1_SGIX>);

 glStartInstrumentsSGIX();
 /* insert GL commands here */
 glReadInstrumentsSGIX(MARKER1);
 /* insert GL commands here */
 glStopInstrumentsSGIX(MARKER2);

 /* query the number of measurements since the buffer was specified*/
 glGetIntegerv(GL_INSTRUMENT_MEASUREMENTS_SGIX,&r);
 /* now r should equal 2 */

 /* query the pointer to the instrument buffer */
 glGetPointervEXT(GL_INSTRUMENT_BUFFER_SGIX,&bufp);
 /* now bufp should be equal to buffer */

 /*
 * we can call glGetInstrumentsSGIX before or after the calls to
 * glPollInstrumentsSGIX but to be sure of exactly what
 * measurements are in the buffer, we can use PollInstrumentsSGIX.
 */
 count0 = glGetInstrumentsSGIX();
 /* Since 0, 1, or 2 measurements might have been returned to
 * the buffer at this point, count0 will be 0, 1, or 2 times
 * the size in GLints of the records returned from the
 * currently-enabled instruments.
007-2392-003 311

12: Miscellaneous OpenGL Extensions
 * If the buffer overflowed, count0 will be -1.
 */

 while (!(r = glPollInstrumentsSGIX(&id))) ;
 /* if r is -1, we have overflowed. If it is 1, id will
 * have the value of the marker passed in with the first
 * measurement request (should be MARKER1). While it is 0,
 * no measurement has been returned (yet).
 */

 while (!(r = glPollInstrumentsSGIX(&id))) ;
 /* see the note on the first poll; id now should equal MARKER2 */

 count1 = glGetInstrumentsSGIX();
 /* the sum of count0 and count1 should be 2 times the size in GLints
 * of the records returned for all instruments that we have enabled.
 */
 }
 #endif

New Functions

The SGIX_instruments extension introduces the following functions:

glInstrumentsBufferSGIX()

glStartInstrumentsSGIX()

glStopInstrumentsSGIX()

glReadInstrumentsSGIX()

glPollInstrumentsSGIX()

glGetInstrumentsSGIX()
312 007-2392-003

Chapter 13

13. Vertex and Fragment Program Extensions

In addition to many extensions to the classical fixed-function OpenGL rendering
pipeline, Onyx4 and Silicon Graphics Prism systems support the following extensions
for vertex and fragment programs:

• ARB_vertex_program

• ARB_fragment_program

Collectively, vertex and fragment programs are referred to as graphics pipeline programs
or just pipeline programs.

These extensions allow applications to replace most of the normal fixed-function
transformation, lighting, rasterization, and texturing operations with
application-defined programs that execute on the graphics hardware. The extensions
enable a nearly unlimited range of effects previously available only through offline
rendering or by multipass fixed-function algorithms.

This chapter describes how to define and use vertex and fragment programs and
includes an overview of the programming language in which these programs are
specified. This chapter also briefly describes the following obsolete (legacy) vertex and
fragment program extensions supported only for compatibility:

• ATI_fragment_shader

• EXT_vertex_shader

The structure of this chapter differs from that of the other chapters that describe
extensions because of the level of detail given to programming the vertex and fragament
programs. This chapter uses the following structure:

• “The Vertex and Fragment Program Extensions” on page 314

• “Using Pipeline Programs” on page 316

• “The Legacy Vertex and Fragment Program Extensions” on page 382
007-2392-003 313

13: Vertex and Fragment Program Extensions
The Vertex and Fragment Program Extensions

The ARB_vertex_program and ARB_fragment_program extensions allow applications
to replace respectively the fixed-function vertex processing and fragment processing
pipeline of OpenGL 1.3 with user-defined programs.

Why Use Pipeline Programs?

The fixed-function rendering pipeline of OpenGL 1.3 together with the wide range of
OpenGL extensions supported by Onyx4 and Silicon Graphics Prism systems is very
flexible, but the achievable rendering effects are constrained by the hardwired
algorithms of the fixed-function pipeline. If an application needs to use a custom lighting
model, to combine multiple textures in a way not expressable by register combiners, or
to do anything else that is difficult to express within the fixed-function pipeline; it should
consider if the desired effect can be expressed as a vertex and/or fragment program.

While pipeline programs are not yet expressable in a fully general-purpose,
Turing-complete language, the limited programmability provided is more than adequate
for many advanced rendering algorithms. The capabilities of pipeline programs are
rapidly growing as more general-purpose languages are supported by graphics
hardware.

Alternatives to Pipeline Programs

Before pipeline programs, the most common way to implement advanced rendering
algorithms, while still taking advantage of graphics hardware, was to decompose the
algorithm into a series of steps, each expressable as a single rendering pass of the
fixed-function OpenGL pipeline. By accumulating intermediate results in pixel buffers,
aux buffers, or textures, very complex effects could be built up by such multipass
rendering.

This approach is widely used in older programs and in languages such as the SGI
OpenGL Shader, a compiler which turns a high-level shading language program into a
equivalent series of fixed-function rendering passes.
314 007-2392-003

The Vertex and Fragment Program Extensions
The disadvantages of multipass rendering are the following:

• Performance

Multiple rendering passes usually require re-transforming geometry for each pass.
The multiple passes consume additional CPU-to-graphics bandwidth for
re-copying geometry and consume additional graphics memory and bandwidth for
storing intermediate results; all of these requirements reduce performance.

• Complexity

Converting a complex rendering algorithm into multiple fixed-function passes can
be a tedious task that requires a deep understanding of the capabilities of the
graphics pipeline. The meaning of the resulting passes is difficult to infer even with
knowledge of the algorithm. Also, restructuring applications to perform multipass
rendering is often necessary. While software like the SGI OpenGL Shader can assist
in these steps, it is still less obvious to do complex multipass rendering than to
simply express the algorithm as a single vertex or fragment program.

• Accuracy

The accuracy achievable with multipass rendering is constrained by the limited
precision of the intermediate storage (for example, pixel buffers, aux buffers,
textures, etc.) used to accumulate intermediate results between passes. Typically,
the internal precision of the vertex and fragment processing pipelines is much
higher than the external precision (8–12 bits/color component) in which
intermediate data can be stored. Errors are generated when clamping intermediate
data to external precision, and those errors can rapidly accumulate in the later
rendering passes.

For all these reasons, pipeline programs are the preferred way of expressing rendering
algorithms too complex to fit in a single fixed-function rendering pass. However, in
many cases, the fixed-function pipeline is still more than adequate for application needs.
You must also be cautious because current graphics hardware only supports pipeline
programs of a limited length and complexity and because performance may degrade
rapidly if certain types of programmable operations are combined or expressed in the
wrong order.
007-2392-003 315

13: Vertex and Fragment Program Extensions
Using Pipeline Programs

The vertex and fragment program extensions are much more complicated than most
fixed-function OpenGL extensions. This section describes the extensions in the following
subsections:

• “Managing Pipeline Programs” on page 316

• “How Programs Replace Fixed Functionality” on page 318

• “Structure of Pipeline Programs” on page 319

• “Pipeline Program Input and Output” on page 329

• “Vertex and Fragment Attributes” on page 329

• “Vertex and Fragment Program Parameters” on page 333

• “Vertex and Fragment Program Output” on page 344

• “Program Parameter Specification” on page 347

• “Generic Vertex Attribute Specification” on page 348

• “Generic Program Matrix Specification” on page 351

• “Program Instruction Summary” on page 351

• “Program Resource Limits and Usage” on page 372

• “Other Program Queries” on page 375

• “Sample Code” on page 377

• “Errors” on page 380

Managing Pipeline Programs

Pipeline programs are represented by object names (of type GLuint) that are managed
in exactly the same fashion as texture and display list names with the following routines
for allocating unused program names, deleting programs, and testing if a name refers to
a valid program:

void glGenProgramsARB(GLsizei n, GLuint *programs);
void glDeleteProgramsARB(GLsizei n, const GLuint *programs);
GLboolean glIsProgramARB(GLuint program);
316 007-2392-003

Using Pipeline Programs
Binding Programs

To bind a program name as the currently active vertex or fragment program, make the
following call:

void glBindProgramARB(GLenum target, GLuint programs);

Set the argument target to GL_VERTEX_PROGRAM_ARB or
GL_FRAGMENT_PROGRAM_ARB. Similar to texture objects, there is a default program
name of 0 bound for each type of program in the event that the application does not bind
a generated name.

Defining and Enabling Programs

To define the contents of a vertex or fragment program for the currently bound program
name, make the following call:

void glProgramStringARB(GLenum target, GLenum format, GLsizei length, const
GLvoid *string);

 The arguement values are defined as follows:

target Has the same meaning as for glBindProgramARB().

format Specifies the encoding of the program string and must be
GL_PROGRAM_FORMAT_ASCII_ARB, indicating a 7-bit ASCII character
string.

string Contains the program string. If string is a valid program (as described in
section “Structure of Pipeline Programs” on page 319), the program
bound to target will be updated to execute the program when the
corresponding target is enabled.

length Specifies the length of the string. Because the length is specified in the
call, string need not have a trailing NULL byte, unlike most C language
strings.

To use the currently bound vertex or fragment program (substituting it for the
corresponding fixed functionality, as described in the next section) or to return to using
the fixed-function pipeline, call glEnable() or glDisable(), respectively, with parameters
GL_VERTEX_PROGRAM_ARB or GL_FRAGMENT_PROGRAM_ARB.
007-2392-003 317

13: Vertex and Fragment Program Extensions
How Programs Replace Fixed Functionality

Vertex programs substitute for the following OpenGL fixed vertex processing
functionality:

• Modelview and projection matrix vertex transformations

• Vertex weighting and blending (if the ARB_vertex_blend extension is supported)

• Normal transformation, rescaling, and normalization

• Color material

• Per-vertex lighting

• Texture coordinate generation and texture matrix transformations

• Per-vertex point size computations (if the ARB_point_parameters extension is
supported)

• Per-vertex fog coordinate computations (if the EXT_fog_coord extension is
supported)

• User-defined clip planes

• Normalization of GL_AUTO_NORMAL evaluated normals

• All of the preceding functionality when computing the current raster position

The following fixed vertex processing functionality is always performed even when
using vertex programs:

• Clipping to the view frustum

• Perspective divide (division by w)

• The viewport transformation

• The depth range transformation

• Front and back color selection (for two-sided lighting and coloring)

• Clamping the primary and secondary colors to [0,1]

• Primitive assembly and subsequent operations

• Evaluators (except for GL_AUTO_NORMAL)
318 007-2392-003

Using Pipeline Programs
Fragment programs substitute for the following OpenGL fixed fragment processing
functionality:

• Texture application (including multitexture, texture combiner, shadow mapping,
and any other fixed-function texturing extensions)

• Color sum (if the EXT_secondary_color extension is supported)

• Fog application

Structure of Pipeline Programs

Both vertex and fragment programs are expressed in a low-level, register-based language
similar to a traditional CPU assembler language. However, the registers are four-element
vectors, supporting vector data types such as homogeneous coordinates (X, Y, Z, W
components) and colors (R, G, B, A components). The instruction sets for both types of
programs are augmented to support common mathematical and graphical operations on
these four-element vectors.

A pipeline program has the following structure:

program-type
statement1
statement2
.
.
.
statementn
END

For vertex programs, program-type must be !!ARBvp1.0. For fragment programs, it
must be !!ARBfp1.0.

Statements may be one of the following:

• Program options

• Naming statements

• Program instructions

The statements must be terminated by semicolons (;). Whitespace (spaces, tabs, newlines,
and carriage returns) is ignored, although programs are typically written with one
007-2392-003 319

13: Vertex and Fragment Program Extensions
statement per line for clarity. Comments, which are ignored, are introduced with the #
character and continue to the next newline or carriage return.

When executing programs, instructions are processed in the order they appear in the
program string. There are no looping or branching constructs in either vertex or fragment
programs.

Program Options

Statements that control extended language features are called option statements. The
following is an example:

Vertex program is position-invariant
OPTION ARB_position_invariant;

The following are the currently defined program options:

• Fog application options (fragment programs only)

• Precision hint options (fragment programs only)

• Position-Invariant option (vertex programs only)

Future OpenGL extensions may introduce additional program options; such options are
only valid if the corresponding extension is supported by the implementation.

Fog Application Options (fragment programs only)

These options allow use of the OpenGL fixed-function fog model in a fragment program
without explicitly performing the fog computation.

If a fragment program specifies one of the options ARB_fog_exp, ARB_fog_exp2, or
ARB_fog_linear, the program will apply fog to the program’s final clamped color
output using a fog mode of GL_EXP, GL_EXP2, or GL_LINEAR, respectively.

Using fog in this fashion consumes extra program resources. The program will fail to
load under the following conditions:

• You specify a fog option and the number of temporaries the program contains
exceeds the implementation-dependent limit minus one.

• You specify a fog option and the number of attributes the program contains exceeds
the implementation-dependent limit minus one.
320 007-2392-003

Using Pipeline Programs
• You specify a fog option and the number of parameters the program contains
exceeds the implementation-dependent limit minus two.

• You specify the ARB_fog_exp option and the number of instructions or ALU
instructions the program contains exceeds the implementation-dependent limit
minus three.

• You specify the ARB_fog_exp2 option and the number of instructions or ALU
instructions the program contains exceeds the implementation-dependent limit
minus four.

• You specify the ARB_fog_linear option and the number of instructions or ALU
instructions the program contains exceeds the implementation-dependent limit
minus two.

• You specify more than one of the fog options.

Precision Hint Options (fragment programs only)

Fragment program computations are carried out at an implementation- dependent
precision. However, some implementations may be able to perform fragment program
computations at more than one precision and may be able to trade off computation
precision for performance.

If a fragment program specifies the ARB_precision_hint_fastest program option,
implementations should select precision to minimize program execution time with
possibly reduced precision. If a fragment program specifies the
ARB_precision_hint_nicest program option, implementations should maximize
the precision with a longer execution time.

Only one precision control option may be specified by any given fragment program. A
fragment program that specifies both the ARB_precision_hint_fastest and
ARB_precision_hint_nicest program options will fail to load.

Position-Invariant Option (vertex programs only)

If a vertex program specifies the ARB_position_invariant option, the program is
used to generate all transformed vertex attributes, except for position. Instead, clip
coordinates are computed, and user clipping is performed as in the fixed-function
OpenGL pipeline. Use of position-invariant vertex programs should be used when the
transformed position of a vertex will be the same whether vertex program mode is
enabled or fixed-function vertex processing is performed. This allows mixing both types
of vertex processing in multipass rendering algorithms.
007-2392-003 321

13: Vertex and Fragment Program Extensions
When the position-invariant option is specified in a vertex program, vertex programs are
not allowed to produce a transformed position. Therefore, result.position may not
be bound or written by such a program. Additionally, the vertex program will fail to load
if the number of instructions it contains exceeds the implementation-dependent limit
minus four.

Naming Statements

Statements that associate identifiers with attributes, parameters, temporaries, or
program output are called naming statements. The following are the six types of naming
statements:

• Attribute statements

• Parameter statements

• Temporary statements

• Address statements

• Alias statements

• Output statements

• Attribute Statements

Attribute statements bind an identifier to a vertex or fragment attribute supplied to the
program. Attributes are associated with the particular vertex or fragment being
processed, and their values typically vary for every invocation of a program. They are
defined in OpenGL through commands such as glVertex3f() or glColor4ub(), or in the
case of fragments, generated by vertex processing.

A few examples of attributes are vertex position, color, and texture coordinates; or
fragment position, color, and fog coordinate. Section “Vertex and Fragment Attributes”
on page 329 provides a complete list of vertex and fragment attributes. The following are
examples of attribute statements:

Bind vertex position (e.g. glVertex) to attribute ‘position’
ATTRIB position = vertex.position;
#
Bind fragment texture coordinate set one to attribute ‘texcoord’
ATTRIB texcoord = fragment.texcoord[1];

Attributes are read-only within a program.
322 007-2392-003

Using Pipeline Programs
Parameter Statements

Parameter statements bind an identifier to a program parameter. Parameters have the
following four types:

• Program environment parameters

Constants that are shared by all vertex programs.

• Program local parameters

Constants that are restricted to a single vertex or fragment program.

• OpenGL state values

Items such as transformation matrices, or lighting, material, and texture coordinate
generation parameters.

• Constants declared within a program

Comma-delimited lists of one to four values enclosed in braces. If fewer than four
values are specified, the second, third, and fourth values default to 0.0, 0.0, and
1.0, respectively; or they are single values not enclosed in braces, in which case all
four components of the parameter are initialized to the specified value.

Parameter statements may also be declared as arrays, which are initialized from
subranges of program parameters or state, which are themselves arrays.

Section “Vertex and Fragment Program Parameters” on page 333 provides a complete list
of program environment parameters, program local parameters, and OpenGL state that
may be used as parameters. The following are examples of parameter statements:

 # ‘var’ is bound to program environment parameter 1
 PARAM var = program.env[1];

 # ‘vars’ is bound to program environment parameters 0-3
 PARAM vars[4] = program.env[0..3];

 # ‘lvar’ is bound to program local parameter 2
 PARAM lvar = program.local[2];

 # ‘ambient’ is bound to the ambient color of light 1
 PARAM ambient = state.light[1].ambient;

 # ‘cplane’ is bound to the coefficients of user clip plane 0
 PARAM cplane = state.clip[0].plane;
007-2392-003 323

13: Vertex and Fragment Program Extensions
 # ‘coeffs’ is bound to the four constant values -1,0 1.0, e, pi
 PARAM coeffs = { -1.0, 1.0, 2.71828, 3.14159 };

 # ‘ones’ is bound to the constant values 1.0, 1.0, 1.0, 1.0
 PARAM ones = 1.0;

Parameters are read-only within a program.

Temporary Statements

Temporary statements declare temporary variables; these are read/write registers used
only within a single execution of a program. Initially, the contents of temporaries are
undefined. Temporaries are declared as in the following examples:

Declare a single temporary
TEMP temp1;

Declare multiple temporaries in a single statement
TEMP temp2, temp3;

The maximum number of temporaries that can be declared in a single program is
implementation-dependent and is described further in section “Program Resource
Limits and Usage” on page 372.

Address Statements

Address statements declare address registers; these are read/write registers used only
within a single execution of a vertex program and allow a form of indirect accessing into
parameter arrays. Address statements are only supported in vertex programs.

Address registers are declared either singly or a in multiple fashion like temporaries but
using the ADDRESS statement, as in the following example:

Declare two address registers ‘addr’ and ‘index’
ADDRESS addr, index;

Only the first component of an address register (.x) is used. For an address register
addr, this component is referred to as addr.x. Section “Program Instructions” on
page 326 further describes register component selection. As shown in the following
example, address registers are loaded with the ARL command:

Load address register with the 2nd component (.y) of temporary temp0
ARL addr.x, temp0.y;
324 007-2392-003

Using Pipeline Programs
The value loaded is converted to an integer by clamping towards negative infinity.

Given a parameter array and an address register, a particular element of the array can be
selected based on the address register by using the subscript notation [addr.x+offset],
where offset is a value in the range –64..63. The following example illustrates the use of
the subscript notation:

Params is bound to the first 8 elements of the program local
parameters.
PARAM params[8] = program.local[0..7];

Move parameter at index addr.x+2 into register temp0
MOV temp0, params[addr.x+2];

Alias Statements

Alias statements declare identifiers that are defined to have the same meaning as another
already declared identifier of any type. They do not count towards program resource
limits. For example, a temporary can be aliased as follows:

Declare temporary ‘temp0’
TEMP temp0;

Declare alias ‘alias’ for temp0. ‘alias’ and ‘temp0’ may be used
interchangably
ALIAS alias = temp0;

Output Statements

Output statements declare identifiers that bind to program output. Output depends on
the type of program.

For vertex programs, output includes values such as transformed vertex position,
primary and secondary colors, transformed texture coordinates, which are passed on to
rasterization. After rasterization, interpolated results of this output are available as
attributes of fragment programs or are used in fixed-function fragment processing in
place of the attributes resulting from fixed-function vertex processing.

For fragment programs, output includes color(s) and depth values, which are passed on
to raster processing in place of the colors and depths generated by fixed-function
fragment processing. Section “Pipeline Program Input and Output” on page 329
describes program output further.
007-2392-003 325

13: Vertex and Fragment Program Extensions
The following are examples of output statements:

Bind vertex output position (e.g., transformed vertex coordinates)
to register ‘windowpos’
OUTPUT windowpos = result.position;

Bind fragment output depth (e.g., Z value) to register ‘depth’
OUTPUT depth = result.depth;

Output is write-only within a program.

Program Instructions

Pipeline program instructions are either four-element vector or scalar operations
performed on one, two, or three source operands and one destination operand. The
operands may be either attribute, parameter, or temporary registers. The general format
of instructions is one of the following:

mnemonic dstreg,srcreg1

mnemonic dstreg,srcreg1,srcreg2

mnemonic dstreg,srcreg1,srcreg2,srcreg3

The fields are defined as follows:

mnemonic The instruction name

dstreg The destination register name

srcregi Source register names

Section “Program Instruction Summary” on page 351 provides a complete list of
instructions supported by vertex and fragment programs.

Scalar Component Selection

When a scalar source operand is required, identify it by appending one of .x, .y, .z, or
.w to the register name to select the first, second, third, or fourth components,
respectively, of the source register. These selectors are intended to refer to the X, Y, Z, and
W components of a register being used as a XYZW vector. The following example
computes the cosine of the second component of the source register coord:

 COS result, coord.y;
326 007-2392-003

Using Pipeline Programs
In fragment programs, but not in vertex programs, the selectors .r, .g, .b, and .a may
be used interchangably with the corresponding .x, .y, .z, and .w selectors. These
selectors are intended to refer to the red, green, blue, and alpha components of a register
being used as an RGBA color. The following example computes the base 2 logarithm of
the fourth component of the source register color:

 LG2 result, color.a;

Vector Component Negation and Swizzling

Any source register may be modified by prepending a minus sign (-) to the register name.
Each component is negated and the resulting vector used as input to the instruction. For
example, the following two statements are equivalent:

Compute result = src0 - src1
SUB result, src0, src1;
Compute result = src0 + (-src1) = src0 - src1
ADD result, src0, -src1;

In addition, components of a source register may be arbitrarily selected and reordered
before being used as input to an instruction. This operation is called swizzling. To swizzle
a source register, append a four-letter suffix of .???? to the register name, where each
? may be one of the component selectors x, y, z, or w. In fragment programs, but not in
vertex programs , the selectors r, g, b, or a may also be used.

The selectors map components of the source register; the first, second, third, and fourth
selectors determine the source of the first, second, third, and fourth components,
respectively, of the actual register value passed to the instruction. For example, the
following code reverses the components of a register:

PARAM src = { 1.0, 2.0, 3.0, 4.0 };
TEMP result;
MOV result, src.wzyx;
result now contains { 4.0, 3.0, 2.0, 1.0 }

Swizzling may copy a component of the source register into multiple components of the
instruction input by replicating selectors. For example, the following code replicates the
first and third components of a register:

PARAM src = { 1.0, 2.0, 3.0, 4.0 };
TEMP result;
MOV result, src.xxzz;
result now contains { 1.0, 1.0, 3.0, 3.0 }
007-2392-003 327

13: Vertex and Fragment Program Extensions
To replicate a single component of a register into all four components of the instruction
input, a shorthand notation using a single component selector may be used. The
following code is equivalent to replicating the same component selector four times:

PARAM src = { 1.0, 2.0, 3.0, 4.0 };
TEMP result;
src.y is equivalent to src.yyyy
MOV result, src.y;
result now contains { 2.0, 2.0, 2.0, 2.0 }

Destination Write Masking

Program instructions write a four-component result vector to a single destination
register. Writes to individual components of the destination register may be controlled
by specifying a component write mask. To mask a destination register, append a period (.)
followed by selectors for the components to be written (between one and four). The
selectors must be unique and must appear in the order xyzw. In fragment programs, but
not in vertex programs, the rgba selectors may also be used. For example, the following
line writes only the first and third components of a vector and leaves the second and
fourth components unchanged:

MOV result.xz, src

Fragment Program Destination Clamping

In fragment programs, but not in vertex programs, instructions may be modified to clamp
values to the range [0,1] before writing to the unmasked components of a destination
register. Clamping is particularly useful when operating in the [0,1] color space limits
of the output framebuffer, when using texture coordinates, when computing address
register offsets, or for other purposes. Fragment program instructions support clamping
by appending the suffix _SAT to the instruction mnemonic. Clamping the RGB
components to [0,1] and using write masks to leave the A component of the
destination unchanged, the following example copies a color vector:

PARAM color = { -0.1, 0.7, 1.2, 1.0 };
TEMP result;
MOV_SAT result.rgb, color;
result now contains { 0.0, 0.7, 1.0, ??? }

Constants

Numeric constants may be used in place of source registers. For instructions requiring
scalar input, replace the register name with a single, floating point number. For
instructions requiring vector input, replace the register name with a constant vector
328 007-2392-003

Using Pipeline Programs
defined in the same fashion as constants in parameter statements. The following are
examples of scalar and vector constants in instructions:

Compute cosine of constant value 2.0
COS result, 2.0;
Subtract 1.0 from each element of src
SUB result, src, { 1.0, 1.0, 1.0, 1.0 };

Pipeline Program Input and Output

The preceding description of program structure includes mechanisms for binding input
to and output from programs. This section describes the complete set of input and output
available to pipeline programs. It is important to remember that vertex and fragment
programs have different input and output, because they replace different portions of the
OpenGL fixed-function pipeline.

The input available to programs includes attributes specific to a vertex or fragment (such
as position, color, or texture coordinates) and parameters, which are constant values
associated with a single program or collectively with all programs.

The output that is generated by programs are results passed on to later stages of the
graphics pipeline, such as transformed vertices and texture coordinates, lit colors, or
fragment depth values.

Vertex and Fragment Attributes

This section lists all possible attributes for vertex and fragment programs and includes a
description of the component usage and examples of commands creating the
corresponding OpenGL state.

Vertex Attributes

Vertex attributes are specified by the application using OpenGL immediate-mode
commands such as glVertex3f() or vertex array commands such as glNormalPointer().
Attributes of a vertex are made available to a vertex program when it is executing for that
vertex and can be accessed in instructions either by binding their names with theATTRIB
naming statement or directly by use of the attribute name.
007-2392-003 329

13: Vertex and Fragment Program Extensions
In addition to the builtin OpenGL attributes such as position, normal, color, and texture
coordinates, vertex programs may be passed additional per-vertex values by using
generic vertex attributes. Generic attributes are four-component vectors specified using a
new set of OpenGL commands. The maximum number of generic attributes supported
is implementation-dependent, but must be at least 16. Generic attributes are specified in
OpenGL using the commands described in section “Generic Vertex Attribute
Specification” on page 348.

In a vertex program, many generic attributes are aliased onto builtin OpenGL attributes.
When declaring attributes in the program, only one of the builtin attribute or the
corresponding generic attribute aliased onto the builtin may be bound. Attempting to
bind both a builtin and the corresponding generic attribute results in an error when
loading the program. Not all generic attributes have builtin attribute aliases, and
conversely so.

Table 13-1 lists the vertex program attributes. In the table, the notation n refers to
additional implementation-specific resources beyond those explicitly numbered. The
possible values of n depend on the maximum number of texture coordinate sets, generic
vertex attributes, vertex weights, or vertex indices supported by the implementation. For
example, if the implementation supports 24 generic vertex attributes, values of n for
vertex.attrib[n] range from 0 to 23.

Table 13-1 Builtin and Generic Vertex Program Attributes

Generic Binding Builtin Binding

Builtin
Component
Usage

Builtin
Description OpenGL Command

vertex.attrib
[0]

vertex.position (x,y,z,w) Object-space
vertex position

glVertex3f()

vertex.attrib
[1]

vertex.weight (w,w,w,w) Vertex weights
0–3

glWeightfARB()

vertex.attrib
[1]

vertex.weight[n] (w,w,w,w) Additional
vertex weights
n-n+3

glWeightfARB()

vertex.attrib
[2]

vertex.normal (x,y,z,1) Normal vector glNormal3f()

vertex.attrib
[3]

vertex.color (r,g,b,a) Primary color glColor4ub()
330 007-2392-003

Using Pipeline Programs
vertex.attrib
[3]

vertex.color.
primary

(r,g,b,a) Primary color glColor4ub()

vertex.attrib
[4]

vertex.color.
secondary

(r,g,b,a) Secondary color glSecondaryColor3u
bEXT()

vertex.attrib
[5]

vertex.fogcoord (f,0,0,1) Fog coordinate glFogCoordEXT()

vertex.attrib
[6]

Generic
attribute 6 (not
aliased)

vertex.attrib
[7]

Generic
attribute 7 (not
aliased)

vertex.attrib
[8]

vertex.texcoord (s,t,r,q) Texture
coordinate set 0

glTexCoord3f()

vertex.attrib
[8]

vertex.texcoord[0] (s,t,r,q) Texture
coordinate set 0

glTexCoord3f()

vertex.attrib
[9]

vertex.texcoord[1] (s,t,r,q) Texture
coordinate set 1

glMultiTexCoord(TE
XTURE1,...)

vertex.attrib
[10]

vertex.texcoord[2] (s,t,r,q) Texture
coordinate set 2

glMultiTexCoord(TE
XTURE2,...)

vertex.attrib
[11]

vertex.texcoord[3] (s,t,r,q) Texture
coordinate set 3

glMultiTexCoord(TE
XTURE3,...)

vertex.attrib
[12]

vertex.texcoord[4] (s,t,r,q) Texture
coordinate set 4

glMultiTexCoord(TE
XTURE4,...)

vertex.attrib
[13]

vertex.texcoord[5] (s,t,r,q) Texture
coordinate set 5

glMultiTexCoord(TE
XTURE5,...)

vertex.attrib
[14]

vertex.texcoord[6] (s,t,r,q) Texture
coordinate set 6

glMultiTexCoord(TE
XTURE6,...)

vertex.attrib
[15]

vertex.texcoord[7] (s,t,r,q) Texture
coordinate set 7

glMultiTexCoord(TE
XTURE7,...)

Table 13-1 Builtin and Generic Vertex Program Attributes (continued)

Generic Binding Builtin Binding

Builtin
Component
Usage

Builtin
Description OpenGL Command
007-2392-003 331

13: Vertex and Fragment Program Extensions
 Fragment Attributes

Fragment attributes are initially generated by either vertex program output or by the
fixed-function OpenGL vertex pipeline if vertex programs are disabled.

Depending on the type of primitive being drawn and on the shading model (GL_FLAT
or GL_SMOOTH) selected, the resulting values may be interpolated on a per-fragment
basis during rasterization and fragment generation. Unlike vertex attributes, there are no
generic fragment attributes.

Attributes of a fragment are made available to a fragment program when it is executing
for that fragment and can be accessed in instructions either by binding their names with
the ATTRIB naming statement or directly by use of the attribute name.

In Table 13-2, the notation n refers to additional implementation-specific texture
coordinates beyond those explicitly numbered. The possible values of n range from zero
up to the maximum number of texture coordinate sets supported by the implementation
minus one.

vertex.attrib
[8+n]

vertex.texcoord[n] (s,t,r,q) Additional
texture
coordinate sets

glMultiTexCoord(TE
XTURE0+n,...)

vertex.matrixindex (i,i,i,i) Vertex matrix
indices 0–3

glMatrixIndexubvA
RB()

vertex.matrixindex
[n]

(i,i,i,i) Additional
vertex matrix
n–n+3

glMatrixIndexubvA
RB()

vertex.attrib
[n]

Depends on n (x,y,z,w) Additional
generic
attributes

Table 13-1 Builtin and Generic Vertex Program Attributes (continued)

Generic Binding Builtin Binding

Builtin
Component
Usage

Builtin
Description OpenGL Command
332 007-2392-003

Using Pipeline Programs
Vertex and Fragment Program Parameters

Parameters are additional values made available during the execution of programs.
When rendering a single primitive, such as a triangle, the vertex and fragment attribute
values will differ for every vertex making up the triangle and for every fragment
generated by triangle rasterization. However, parameter values will be the same for
every vertex and for every fragment.

As cited earlier, the following are the four types of parameters:

• Program environment parameters

Shared by all programs of a particular type; that is, there is one set of environment
parameters for vertex programs and a different set for fragment programs.

• Program local parameters

Specific to a single bound program.

• OpenGL state values

Items such as matrices, and material and light properties are available.

• Constants

Special cases of program local parameters

Table 13-2 Fragment Program Attributes

Attribute Binding Component Usage Description

fragment.color (r,g,b,a) Primary color

fragment.color.primary (r,g,b,a) Primary color

fragment.color.secondary (r,g,b,a) Secondary color

fragment.texcoord (s,t,r,q) Texture coordinate set 0

fragment.texcoord[n] (s,t,r,q) Texture coordinate set n

fragment.fogcoord (f,0,0,1) Fog distance/coordinate

fragment.position (x,y,z,1/w) Window position
007-2392-003 333

13: Vertex and Fragment Program Extensions
Program environment and local parameters are four-component vectors specified using
a new set of OpenGL commands described in section “Program Parameter Specification”
on page 347. The maximum number of parameters supported is
implementation-dependent but must be at least 96 each for the vertex program
environment and program locals and 24 each for the fragment program environment and
program locals. Constants may be specified otherwise.

Program Environment and Local Parameters

Program parameters can be accessed in instructions either by binding their names with
the PARAM naming statement or directly by use of the parameter name. Parameter names
are identical for vertex and fragment programs, although the values differ for the two
types of programs. Table 13-3 shows the parameter names.

In Table 13-3, the notation [a] refers to a single parameter indexed by the constant value
a, and the notation [a..b] refers to an array of parameters indexed by the constant
values a and b, which may be bound to a corresponding array using the PARAM
statement. When specifying arrays, b must be greater than a, and both a and b must be
within the range of supported parameter indices for that type of parameter.

OpenGL State Parameters

Most OpenGL state can be accessed in instructions either by binding state names with
the PARAM naming statement or directly by use of the state name. OpenGL state falls into
several different categories, which are discussed separately in the following subsections:

• Material Property Bindings

• Light Property Bindings

Table 13-3 Program Environment and Local Parameters

Parameter Binding Component Usage Description

program.env[a] (x,y,z,w) Program environment parameter a

program.env[a..b] (x,y,z,w) Program environment parameters a
through b

program.local[a] (x,y,z,w) Program local parameter a

program.local[a..b] (x,y,z,w) Program local parameters a through b
334 007-2392-003

Using Pipeline Programs
• Texture Coordinate Generation Property Bindings

• Texture Enviroment Property Bindings

• Fog Property Bindings

• Clip Plan Property Bindings

• Point Property Bindings

• Depth Property Bindings

• Matrix Property Bindings

Most OpenGL state categories are available to both vertex and fragment programs, but a
few categories are available only to vertex programs, or only to fragment programs.
OpenGL state categories restricted to one type of program are identified in their
respective subsection.

Material Property Bindings

Material property bindings provide access to the OpenGL state specified with
glMaterialf(). Table 13-4 shows the possible bindings.

Table 13-4 Material Property Bindings

Parameter Binding Component Usage Description

state.material.ambient (r,g,b,a) Front ambient material color

state.material.diffuse (r,g,b,a) Front diffuse material color

state.material.specular (r,g,b,a) Front specular material color

state.material.emission (r,g,b,a) Front emissive material color

state.material.shininess (s,0,0,1) Front material shininess

state.material.front.ambient (r,g,b,a) Front ambient material color

state.material.front.diffuse (r,g,b,a) Front diffuse material color

state.material.front.specular (r,g,b,a) Front specular material color

state.material.front.emission (r,g,b,a) Front emissive material color

state.material.front.shininess (s,0,0,1) Front material shininess

state.material.back.ambient (r,g,b,a) Back ambient material color
007-2392-003 335

13: Vertex and Fragment Program Extensions
For material shininess, the .x component is filled with the material’s specular exponent,
and the .y, .z, and .w components are filled with 0, 0, and 1, respectively. Bindings
containing .back refer to the back material; all other bindings refer to the front material.

Material properties can be changed between glBegin() and glEnd(), either directly by
calling glMaterialf() or indirectly through color material. However, such property
changes are not guaranteed to update parameter bindings until the following glEnd()
command. Parameter variables bound to material properties changed between glBegin()
and glEnd() are undefined until the following glEnd() command.

Light Property Bindings

Light property bindings provide access to the OpenGL state specified with glLightf()
and glLightModelf() and to some derived properties generated from light and light
model state values. Table 13-5 shows the possible light property bindings.

state.material.back.diffuse (r,g,b,a) Back diffuse material color

state.material.back.specular (r,g,b,a) Back specular material color

state.material.back.emission (r,g,b,a) Back emissive material color

state.material.back.shininess (s,0,0,1) Back material shininess

Table 13-5 Light Property Bindings

Parameter Binding Component Usage Description

state.light[n].ambient (r,g,b,a) Light n ambient color

state.light[n].diffuse (r,g,b,a) Light n diffuse color

state.light[n].specular (r,g,b,a) Light n specular color

state.light[n].position (x,y,z,w) Light n position light n
attenuation

state.light[n].attenuation (a,b,c,e) Light n attenuation constants
and spot light exponent

Table 13-4 Material Property Bindings (continued)

Parameter Binding Component Usage Description
336 007-2392-003

Using Pipeline Programs
The [n] syntax indicates a specific light (GL_LIGHTn).

For the following bindings, the .x, .y, .z, and .w components are filled with the red,
green, blue, and alpha components, respectively, of the corresponding light color:

state.light[n].spot.direction (x,y,z,c) Light n spot direction and
cutoff angle cosine

state.light[n].half (x,y,z,1) Light n infinite half-angle

state.lightmodel.ambient (r,g,b,a) Light model ambient color

state.lightmodel.scenecolor (r,g,b,a) Light model front scene color

state.lightmodel.front.scenecolor (r,g,b,a) Light model front scene color

state.lightmodel.back.scenecolor (r,g,b,a) Light model back scene color

state.lightprod[n].ambient (r,g,b,a) Light n / front material
ambient color product

state.lightprod[n].diffuse (r,g,b,a) Light n / front material
diffuse color product

state.lightprod[n].specular (r,g,b,a) Light n / front material
specular color product

state.lightprod[n].front.ambient (r,g,b,a) Light n / front material
ambient color product

state.lightprod[n].front.diffuse (r,g,b,a) Light n / front material
diffuse color product

state.lightprod[n].front.specular (r,g,b,a) Light n / front material
specular color product

state.lightprod[n].back.ambient (r,g,b,a) Light n / back material
ambient color product

state.lightprod[n].back.diffuse (r,g,b,a) Light n / back material
diffuse color product

state.lightprod[n].back.specular (r,g,b,a) Light n / back material
specular color product

Table 13-5 Light Property Bindings (continued)

Parameter Binding Component Usage Description
007-2392-003 337

13: Vertex and Fragment Program Extensions
• state.light[n].ambient

• state.light[n].diffuse

• state.light[n].specular

For state.light[n].position, the .x, .y, .z, and .w components are filled with
the X, Y, Z, and W components, respectively, of the corresponding light position.

For state.light[n].attenuation, the .x, .y, and .z components are filled with
the corresponding light constant, linear, and quadratic attenuation parameters. The .w
component is filled with the spot light exponent of the corresponding light.

For state.light[n].spot.direction, the .x, .y, and .z components variable are
filled with the .x, .y, and .z components of the spot light direction of the corresponding
light, respectively. The .w component is filled with the cosine of the spot light cutoff
angle of the corresponding light.

For state.light[n].half, the .x, .y, and .z components of the program parameter
variable are filled with the x, y, and z components, respectively, of the following
normalized infinite half-angle vector:

h_inf = || P + (0, 0, 1) ||

The .w component of is filled with 1. In the computation of h_inf, P consists of the X,
Y, and Z coordinates of the normalized vector from the eye position to the eye-space light
position. h_inf is defined to correspond to the normalized half-angle vector when using
an infinite light (W coordinate of the position is zero) and an infinite viewer. For local
lights or a local viewer, h_inf is well-defined but does not match the normalized
half-angle vector, which will vary depending on the vertex position.

For state.lightmodel.ambient, the .x, .y, .z, and .w components of the program
parameter variable are filled with the red, green, blue, and alpha components of the light
model ambient color, respectively.

For state.lightmodel.scenecolor or
state.lightmodel.front.scenecolor, the .x, .y, and .z components of the
program parameter variable are filled with the red, green, and blue components
respectively of the front scene color, defined by the following:

c_scene = a_cs * a_cm + e_cm
338 007-2392-003

Using Pipeline Programs
The operand a_cs is the light model ambient color, a_cm is the front ambient material
color, and e_cm is the front emissive material color with computations performed
separately for each color component. The .w component of the program parameter
variable is filled with the alpha component of the front diffuse material color.

For state.lightmodel.back.scenecolor, a similar back scene color computed
using back-facing material properties is used. The front and back scene colors match the
values that would be assigned to vertices using conventional lighting if all lights were
disabled.

For bindings beginning with state.lightprod[n], the .x, .y, and .z components of
the program parameter variable are filled with the red, green, and blue components,
respectively, of the corresponding light product. The three light product components are
the products of the corresponding color components of the specified material property
and the light color of the corresponding light (see Table 13-5). The .w component of the
program parameter variable is filled with the alpha component of the specified material
property.

Light products depend on material properties, which can be changed between glBegin()
and glEnd(). Such property changes are not guaranteed to take effect until the following
glEnd() command. Program parameter variables bound to light products whose
corresponding material property changes between glBegin() and glEnd() are undefined
until the following glEnd() command.

Texture Coordinate Generation Property Bindings

Texture coordinate generation property bindings are only available within vertex
programs. They provide access to the OpenGL state specified with glTexGenf().
Table 13-6 shows the possible texture coordinate generation property bindings.

Table 13-6 Texture Coordinate Generation Property Bindings

ParameterBinding Component Usage Description

state.texgen[n].eye.s (a,b,c,d) glTexGen() eye linear plane
coefficients, s coord, unit n

state.texgen[n].eye.t (a,b,c,d) glTexGen() eye linear plane
coefficients, t coord, unit n

state.texgen[n].eye.r (a,b,c,d) glTexGen() eye linear plane
coefficients, r coord, unit n
007-2392-003 339

13: Vertex and Fragment Program Extensions
The [n] syntax indicates a specific texture unit. If omitted, values for texture unit zero will
be bound.

For thestate.texgen[n].object bindings, the.x,.y,.z, and.w components of the
parameter variable are filled with the p1, p2, p3, and p4 values, respectively, specified to
glTexGen() as the GL_OBJECT_LINEAR coefficients for the specified texture coordinate
.s, .t, .r, .q.

For the state.texgen[n].eye bindings, the .x, .y, .z, and .w components of the
parameter variable are filled with the p1’, p2’, p3’, and p4’ values, respectively, specified
to glTexGen() as the GL_EYE_LINEAR coefficients for the specified texture coordinate
.s, .t, .r, .q.

Texture Environment Property Bindings

Texture environment property bindings are only available within fragment programs.
They provide access to the texture environment color specified with glTexEnvf().
Table 13-7 shows the possible texture environment property bindings.

state.texgen[n].eye.q (a,b,c,d) glTexGen() eye linear plane
coefficients, q coord, unit n

state.texgen[n].object.s (a,b,c,d) glTexGen() object linear plane
coefficients, s coord, unit n

state.texgen[n].object.t (a,b,c,d) glTexGen() object linear plane
coefficients, t coord, unit n

state.texgen[n].object.r (a,b,c,d) glTexGen() object linear plane
coefficients, r coord, unit n

state.texgen[n].object.q (a,b,c,d) glTexGen() object linear plane
coefficients, q coord, unit n

Table 13-6 Texture Coordinate Generation Property Bindings (continued)

ParameterBinding Component Usage Description
340 007-2392-003

Using Pipeline Programs
The [n] syntax indicates a specific texture unit. If omitted, values for texture unit zero will
be bound.

For state.texenv[n].color, the .x, .y, .z, and .w components of the parameter
variable are filled with the red, green, blue, and alpha components, respectively, of the
corresponding texture environment color. Note that only legacy texture units within the
range specified by GL_MAX_TEXTURE_UNITS have texture environment state. Texture
image units and texture coordinate sets do not have associated texture environment
state.

Fog Property Bindings

Fog property bindings provide access to the OpenGL state specified with glFogf().
Table 13-8 shows the possible fog property bindings.

Forstate.fog.color, the.x,.y,.z, and .w components of the parameter variable are
filled with the red, green, blue, and alpha, respectively, of the fog color.

For state.fog.params, the .x, .y, and .z components of the parameter variable are
filled with the fog density, linear fog start, and linear fog end parameters, respectively.
The .w component is filled with 1 / (end – start), where end and start are the linear fog end
and start parameters, respectively.

Table 13-7 Texture Environment Property Bindings

Parameter Binding Component Usage Description

state.texenv.color (r,g,b,a) Texture environment zero color

state.texenv[n].color (r,g,b,a) Texture environment n color

Table 13-8 Fog Property Bindings

Parameter Binding Component Usage Description

state.fog.color (r,g,b,a) RGB fog color

state.fog.params (d,s,e,r) Fog density, linear start and end,
and 1/(end – start)
007-2392-003 341

13: Vertex and Fragment Program Extensions
Clip Plane Property Bindings

Clip plane property bindings are only available within vertex programs. They provide
access to the OpenGL state specified with glClipPlane(). Table 13-9 shows the possible
clip plane property bindings.

The [n] syntax indicates a specific clip plane (GL_CLIP_PLANEn).

For state.clip[n].plane, the .x, .y, .z, and .w components of the parameter
variable are filled with the eye-space transformed coefficients p1’, p2’, p3’, and p4’,
respectively, of the corresponding clip plane.

Point Property Bindings

Point property bindings are only available within vertex programs. They provide access
to the OpenGL state specified with the glPointParameterfvARB() command (if the
ARB_point_parameters extension is supported). Table 13-10 shows the possible point
property bindings.

For state.point.size, the .x, .y, .z, and .w components of the parameter variable
are filled with the point size, minimum point size, maximum point size, and fade
threshold, respectively.

For state.point.attenuation, the .x, .y, and .z components of the parameter variable are
filled with the constant, linear, and quadratic point size distance attenuation parameters
(a, b, and c), respectively. The .w component is filled with 1.

Table 13-9 Clip Plane Property Bindings

Parameter Binding Component Usage Description

state.clip[n].plane (a,b,c,d) Clip plane n coefficients

Table 13-10 Point Property Bindings

Parameter Binding Component Usage Description

state.point.size (s,n,x,f) Point size, minimum and
maximum size clamps, and fade
threshold

state.point.attenuation (a,b,c,1) Point size attenuation constants
342 007-2392-003

Using Pipeline Programs
Depth Property Bindings

Depth property bindings are only available within fragment programs. They provide
access to the OpenGL state specified with glDepthRange(). Table 13-11 shows the
possible depth property bindings.

For state.depth.range, the .x and .y components of the parameter variable are
filled with the mappings of near and far clipping planes to window coordinates,
respectively. The .z component is filled with the difference of the mappings of near and
far clipping planes, far – near. The .w component is filled with 1.

Matrix Property Bindings

Matrix property bindings provide access to the OpenGL state specified with commands
that load and multiply matrices, such as glMatrixMode() and glLoadMatrixf().
Table 13-12 shows the possible matrix property bindings.

The [n] syntax indicates a specific matrix number. For .modelview and .texture, a
matrix number is optional, and matrix zero will be bound if the matrix number is
omitted. The field .program refers to generic program matrices, which are defined as
described in section “Generic Program Matrix Specification” on page 351. The field
.palette refers to the matrix palette defined with the ARB_matrix_palette extension;

Table 13-11 Depth Property Bindings

Parameter Binding Component Usage Description

state.depth.range (n,f,d,1) Depth range near, far, and far – near (d)

Table 13-12 Matrix Property Bindings

Parameter Binding Description

state.matrix.modelview[n] Modelview matrix n

state.matrix.projection Projection matrix

state.matrix.mvp Modelview projection matrix

state.matrix.texture[n] Texture matrix n

state.matrix.palette[n] Modelview palette matrix n

state.matrix.program[n] Program matrix n
007-2392-003 343

13: Vertex and Fragment Program Extensions
since this extension is not currently supported on Onyx4 and Silicon Graphics Prism
systems, these state values may not be bound.

The base matrix bindings may be further modified by a inverse/transpose selector and a
row selector. If the beginning of a parameter binding matches any of the matrix binding
names listed in Table 13-12, the binding corresponds to a 4x4 matrix (instead of a
four-element vector, as is true of other parameter bindings). If the parameter binding is
followed by .inverse, .transpose, or .invtrans, the inverse, transpose, or
transpose of the inverse, respectively, of the specified matrix is selected. Otherwise, the
specified matrix selected. If the specified matrix is poorly conditioned (singular or nearly
so), its inverse matrix is undefined.

The binding name state.matrix.mvp refers to the product of modelview matrix zero
and the projection matrix, as defined in the following:

MVP = P * M0

The operand P is the projection matrix and M0 is the modelview matrix zero.

If the selected matrix is followed by .row[a], the .x, .y, .z, and .w components of the
parameter variable are filled with the four entries of row a of the selected matrix. In the
following example, the variable m0 is set to the first row (row 0) of modelview matrix 1,
and m1 is set to the last row (row 3) of the transpose of the projection matrix:

PARAM m0 = state.matrix.modelview[1].row[0];
PARAM m1 = state.matrix.projection.transpose.row[3];

For parameter array bindings, multiple rows of the selected matrix can be bound. If the
selected matrix binding is followed by .row[a..b], the result is equivalent to specifying
matrix rows a through b in order. A program will fail to load if a is greater than b. If no
row selection is specified, rows 0 through 3 are bound in order. In the following code, the
array m2 has two entries, containing rows 1 and 2 of program matrix zero, and m3 has
four entries, containing all four rows of the transpose of program matrix zero:

PARAM m2[] = { state.matrix.program[0].row[1..2] };
PARAM m3[] = { state.matrix.program[0].transpose };

Vertex and Fragment Program Output

Output used by later stages of the OpenGL pipeline can be accessed in instructions either
by binding output names with the OUTPUT statement or directly by use of the output
name. Output from vertex and fragment programs is described in this section.
344 007-2392-003

Using Pipeline Programs
Vertex Program Output

Table 13-13 lists the possible types of vertex program output. Components labelled * are
unused.

For result.position, updates to the .x, .y, .z, and .w components of the result
variable modify the X, Y, Z, and W components, respectively, of the transformed vertex’s
clip coordinates. Final window coordinates are generated for the vertex based on its clip
coordinates.

For bindings beginning with result.color, updates to the .x, .y, .z, and .w
components of the result variable modify the red, green, blue, and alpha components,
respectively, of the corresponding vertex color attribute. Color bindings that do not
specify front or back are consided to refer to front-facing colors. Color bindings that do
not specify primary or secondary are considered to refer to primary colors.

Table 13-13 Vertex Program Output

Output Binding Component Usage Description

result.position (x,y,z,w) Position in clip coordinates

result.color (r,g,b,a) Front-facing primary color

result.color.primary (r,g,b,a) Front-facing primary color

result.color.secondary (r,g,b,a) Front-facing secondary color

result.color.front (r,g,b,a) Front-facing primary color

result.color.front.primary (r,g,b,a) Front-facing primary color

result.color.front.secondary (r,g,b,a) Front-facing secondary color

result.color.back (r,g,b,a) Back-facing primary color

result.color.back.primary (r,g,b,a) Back-facing primary color

result.color.back.secondary (r,g,b,a) Back-facing secondary color

result.fogcoord (f,*,*,*) Fog coordinate

result.pointsize (s,*,*,*) Point size

result.texcoord (s,t,r,q) Texture coordinate, unit 0

result.texcoord[n] (s,t,r,q) Texture coordinate, unit n
007-2392-003 345

13: Vertex and Fragment Program Extensions
For result.fogcoord, updates to the .x component of the result variable set the
transformed vertex’s fog coordinate. Updates to the .y, .z, and .w components of the
result variable have no effect.

For result.pointsize, updates to the .x component of the result variable set the
transformed vertex’s point size. Updates to the .y, .z, and .w components of the result
variable have no effect.

For result.texcoord or result.texcoord[n], updates to the .x, .y, .z, and .w
components of the result variable set the s, t, r, and q components, respectively, of the
transformed vertex’s texture coordinates for texture unit n. If [n] is omitted, texture unit
zero is selected.

All output is undefined at each vertex program invocation. Any results, or even
individual components of results, that are not written during vertex program execution
remain undefined.

Fragment Program Output

Table 13-14 lists the possible types of fragment program output. Components labelled *
are unused.

For result.color or result.color[n], updates to the .x, .y, .z, and .w
components of the result variable modify the red, green, blue, and alpha components,
respectively, of the fragment’s output color for draw buffer n. If [n] is omitted, the output
color for draw buffer zero is modified. However, note that the [n] notation is only
supported if program option ATI_draw_buffers is specified and if the
ATI_draw_buffers extension is supported.

If result.color is not both bound by the fragment program and written by some
instruction of the program, the output color of the fragment program is undefined.

Table 13-14 Fragment Program Output

Output Binding Component Usage Description

result.color (r,g,b,a) Color

result.color[n] (r,g,b,a) Color for draw buffer n

result.depth (*,*,d,*) Depth coordinate
346 007-2392-003

Using Pipeline Programs
Each color output is clamped to the range [0,1] and converted to fixed-point before being
passed on to further fixed-function processing.

For result.depth, updates to the .z component of the result variable modify the
fragment’s output depth value. If result.depth is not both bound by the fragment
program and written by some instruction of the program, the interpolated depth value
produced by rasterization is used as if fragment program mode is not enabled. Writes to
any component of depth other than the .z component have no effect.

The depth output is clamped to the range [0,1] and converted to fixed-point, as if it were
a window Z value before being passed on to further fixed-function processing.

Program Parameter Specification

The preceding section “Vertex and Fragment Program Parameters” on page 333
describes program parameters in terms of how they are accessed within a pipeline
program. To set the value of a program parameter, call one of the following commands:

void glProgramLocalParameter4fARB(GLenum target, GLuint index, GLfloat x,
GLfloat y, GLfloat z, GLfloat w);

void glProgramLocalParameter4fvARB(GLenum target, GLuint index,
const GLfloat *params);

void glProgramLocalParameter4dARB(GLenum target, GLuint index, GLdouble x,
GLdouble y, GLdouble z, GLdouble w);

void glProgramLocalParameter4dvARB(GLenum target, GLuint index,
const GLdouble *params);

void glProgramEnvParameter4fARB(GLenum target, GLuint index, GLfloat x,
GLfloat y, GLfloat z, GLfloat w);

void glProgramEnvParameter4fvARB(GLenum target, GLuint index,
const GLfloat *params);

void glProgramEnvParameter4dARB(GLenum target, GLuint index, GLdouble x,
GLdouble y, GLdouble z, GLdouble w);

void glProgramEnvParameter4dvARB(GLenum target, GLuint index,
const GLdouble *params);

The glProgramLocal*() commands update the value of the program local parameter
numbered index belonging to the program currently bound to target, and the
glProgramEnv*() commands update the value of the program environment parameter
numbered index for target. The argument target may be either
GL_VERTEX_PROGRAM_ARB or GL_FRAGMENT_PROGRAM_ARB.
007-2392-003 347

13: Vertex and Fragment Program Extensions
The scalar forms of the commands set the first, second, third, and fourth components of
the specified parameter to the passed x, y, z and w values. The vector forms of the
commands set the values of the specified parameter to the four values pointed to by
params.

To query the value of a program local parameter, call one of the following commands:

void glGetProgramLocalParameterfvARB(GLenum target, GLuint index,
GLfloat *params);

void glGetProgramLocalParameterdvARB(GLenum target, GLuint index,
GLdouble *params);

To query the value of a program environment parameter, call one of the following
commands:

void glGetProgramEnvParameterfvARB(GLenum target, GLuint index,
GLfloat *params);

void glGetProgramEnvParameterdvARB(GLenum target, GLuint index,
GLdouble *params);

For both local and environment parameters, the four components of the specified
parameter are copied to the target array params.

The number of program local and environment parameters supported for each target
type may be queried as described in section “Program Resource Limits and Usage” on
page 372.

Generic Vertex Attribute Specification

The section “Vertex and Fragment Attributes” on page 329 describes vertex attributes in
terms of how they are accessed within a vertex program. This section lists the commands
for specifying vertex attributes and also describes attribute aliasing.

Commands

To set the value of a vertex attribute, call one of the following commands:

void glVertexAttrib1sARB(GLuint index, GLshort x);
void glVertexAttrib1fARB(GLuint index, GLfloat x);
void glVertexAttrib1dARB(GLuint index, GLdouble x);
void glVertexAttrib2sARB(GLuint index, GLshort x, GLshort y);
void glVertexAttrib2fARB(GLuint index, GLfloat x, GLfloat y);
348 007-2392-003

Using Pipeline Programs
void glVertexAttrib2dARB(GLuint index, GLdouble x, GLdouble y);
void glVertexAttrib3sARB(GLuint index, GLshort x, GLshort y, GLshort z);
void glVertexAttrib3fARB(GLuint index, GLfloat x, GLfloat y, GLfloat z);
void glVertexAttrib3dARB(GLuint index, GLdouble x, GLdouble y,

GLdouble z);
void glVertexAttrib4sARB(GLuint index, GLshort x, GLshort y, GLshort z,

GLshort w);
void glVertexAttrib4fARB(GLuint index, GLfloat x, GLfloat y, GLfloat z,

GLfloat w);
void glVertexAttrib4dARB(GLuint index, GLdouble x, GLdouble y,

GLdouble z, GLdouble w);
void glVertexAttrib4NubARB(GLuint index, GLubyte x, GLubyte y,

GLubyte z, GLubyte w);
void glVertexAttrib1svARB(GLuint index, const GLshort *v);
void glVertexAttrib1fvARB(GLuint index, const GLfloat *v);
void glVertexAttrib1dvARB(GLuint index, const GLdouble *v);
void glVertexAttrib2svARB(GLuint index, const GLshort *v);
void glVertexAttrib2fvARB(GLuint index, const GLfloat *v);
void glVertexAttrib2dvARB(GLuint index, const GLdouble *v);
void glVertexAttrib3svARB(GLuint index, const GLshort *v);
void glVertexAttrib3fvARB(GLuint index, const GLfloat *v);
void glVertexAttrib3dvARB(GLuint index, const GLdouble *v);
void glVertexAttrib4bvARB(GLuint index, const GLbyte *v);
void glVertexAttrib4svARB(GLuint index, const GLshort *v);
void glVertexAttrib4ivARB(GLuint index, const GLint *v);
void glVertexAttrib4ubvARB(GLuint index, const GLubyte *v);
void glVertexAttrib4usvARB(GLuint index, const GLushort *v);
void glVertexAttrib4uivARB(GLuint index, const GLuint *v);
void glVertexAttrib4fvARB(GLuint index, const GLfloat *v);
void glVertexAttrib4dvARB(GLuint index, const GLdouble *v);
void glVertexAttrib4NbvARB(GLuint index, const GLbyte *v);
void glVertexAttrib4NsvARB(GLuint index, const GLshort *v);
void glVertexAttrib4NivARB(GLuint index, const GLint *v);
void glVertexAttrib4NubvARB(GLuint index, const GLubyte *v);
void glVertexAttrib4NusvARB(GLuint index, const GLushort *v);
void glVertexAttrib4NuivARB(GLuint index, const GLuint *v);

These commands update the value of the generic vertex attribute numbered index. The
scalar forms set the first, second, third, and fourth components of the specified attribute
to the passed x, y, z and w values, and the vector forms set the values of the specified
attribute to the values pointed to by v.
007-2392-003 349

13: Vertex and Fragment Program Extensions
If fewer than four values are passed (for the glVertexAttrib1*(), glVertexAttrib2*(), and
glVertexAttrib3*() forms of the commands), unspecified values of y and z default to
0.0, and unspecified values of w default to 1.0.

The glVertexAttrib4N*() forms of the commands specify attributes with fixed-point
coordinates. The specified fixed-point values are scaled to the range [0,1] (for unsigned
forms of the commands) of to the range [–1,1] (for signed forms of the commands) in the
same fashion as for the glNormal*() commands.

The number of vertex attributes supported for each target type may be queried as
described in section “Program Resource Limits and Usage” on page 372.

Attribute Aliasing

Setting generic vertex attribute 0 specifies a vertex; the four vertex coordinates are taken
from the values of attribute 0. A glVertex*() command is completely equivalent to the
corresponding glVertexAttrib() command with an index of zero. Setting any other
generic vertex attribute updates the current values of the attribute. There are no current
values for vertex attribute 0.

Implementations may, but do not necessarily, use the same storage for the current values
of generic and certain conventional vertex attributes. When any generic vertex attribute
other than 0 is specified, the current values for the corresponding conventional attribute
aliased with that generic attribute, as described in the Table 13-1, become undefined.
Similarly, when a conventional vertex attribute is specified, the current values for the
corresponding generic vertex attribute become undefined. For example, setting the
current normal will leave generic vertex attribute 2 undefined, and conversely so.

Generic vertex attributes may also be specified when drawing by using vertex arrays. An
array of per-vertex attribute values is defined by making the following call:

void glVertexAttribPointerARB(GLuint index, GLint size, GLenum type,
GLboolean normalized, GLsizei stride, const GLvoid *pointer);

The arguments are defined as follows:

size Specifies the number of elements per attribute and must be 1, 2, 3, or 4.

type Specifies the type of data in the array and must be one of GL_BYTE,
GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT,
GL_UNSIGNED_INT, GL_FLOAT, or GL_DOUBLE.
350 007-2392-003

Using Pipeline Programs
stride, pointer Specifies the offset in basic machine units from one attribute value to the
next in the array starting at pointer. As with other vertex array
specification calls, a stride of zero indicates that fog coordinates are
tightly packed in the array.

normalized Specifies if fixed-point values will be normalized. If normalized is
GL_TRUE, fixed-point values will be normalized (in the same fashion as
the glVertexAttrib4N*() commands just described). Otherwise,
fixed-point values are used unchanged.

To enable or disable generic vertex attributes when drawing vertex arrays, call one of the
following commands:

void glEnableVertexAttribArrayARB(GLuint index);
void glDisableVertexAttribArrayARB(GLuint index);

The number of program local and environment parameters supported for each target
type may be queried as described in section “Program Resource Limits and Usage” on
page 372.

Generic Program Matrix Specification

Programs may use additional matrices, referred to as generic program matrices, from the
OpenGL state. These matrices are specified using the same commands—for example,
glLoadMatrixf()—as for other matrices such as modelview and projection. To set the
current OpenGL matrix mode to operate on generic matrix n, call glMatrixMode() with
a mode argument of GL_MATRIX0_ARB + n.

The number of program matrices supported may be queried as described in section
“Program Resource Limits and Usage” on page 372.

Program Instruction Summary

The tables in this section summarize the complete instruction set supported for pipeline
programs. In the Input and Output columns, the tables use the following notation:

v Indicates a floating-point vector input or output.

s Indicates a floating-point scalar input.
007-2392-003 351

13: Vertex and Fragment Program Extensions
ssss Indicates a scalar output replicated across a four-component result
vector.

a Indicates a single address register component.

Note: As described in section “Program Instructions” on page 326, most fragment
program instructions support clamping when writing instruction output by appending
the suffix _SAT to the instruction mnemonic.

Table 13-15 summarizes instructions supported in both fragment and vertex programs.

Table 13-15 Program Instructions (Fragment and Vertex Programs)

Instruction Input Input Output Description

ABS v v Absolute value

ADD v,v v Add

DP3 v,v ssss Three-component dot
product

DP4 v,v ssss Four-component dot product

DPH v,v ssss Homogeneous dot product

DST v,v v Distance vector

EX2 s ssss Exponentiate with base 2

FLR v v Floor

FRC v v Fraction

LG2 s ssss Logarithm base 2

LIT v v Compute light coefficients

MAD v,v,v v Multiply and add

MAX v,v v Maximum

MIN v,v v Minimum

MOV v v Move

MUL v,v v Multiply
352 007-2392-003

Using Pipeline Programs
Table 13-16 summarizes instructions supported only in fragment programs.

POW s,s ssss Exponentiate

RCP s ssss Reciprocal

RSQ s ssss Reciprocal square root

SGE v,v v Set on greater than or equal

SLT v,v v Set on less than

SUB v,v v Subtract

SWZ v v Extended swizzle

XPD v,v v Cross product

Table 13-16 Program Instructions (Fragment Programs Only)

Instruction Input Output Description

CMP v,v,v v Compare

COS s ssss Cosine with reduction to [–pi,pi]

KIL v v Kill fragment

LRP v,v,v v Linear interpolation

SCS s ss-- Sine/cosine without reduction

SIN s ssss Sine with reduction to [–pi,pi]

TEX v,u,t v Texture sample

TXB v,u,t v Texture sample with bias

TXP v,u,t v Texture sample with projection

Table 13-15 Program Instructions (Fragment and Vertex Programs) (continued)

Instruction Input Input Output Description
007-2392-003 353

13: Vertex and Fragment Program Extensions
Table 13-17 summarizes instructions supported only in vertex programs.

The following subsections describe each instruction in detail:

• “Fragment and Vertex Program Instructions”

• “Fragment Program Instructions”

• “Vertex Program Instructions”

As shown in the preceding tables, most instructions are supported in both vertex and
fragment programs.

Each subsection contains pseudo code describing the instruction. Instructions will have
up to three operands, referred to as op0, op1, and op2.

Operands are loaded according to the component selection and modification rules. For a
vector operand, these rules are referred to as the VectorLoad() operation. For a scalar
operand, they are referred to as the ScalarLoad() operation.

The variables tmp, tmp0, tmp1, and tmp2 describe scalars or vectors used to hold
intermediate results in the instruction.

Most instructions will generate a result vector called result. The result vector is then
written to the destination register specified in the instruction possibly with destination
write masking and, if the _SAT form of the instruction is used, with destination
clamping, as described previously.

Table 13-17 Program Instructions (Vertex Programs Only)

Instruction Input Output Description

ARL s a Address register load

EXP s v Exponential base 2
(approximate)

LOG s v Logarithm base 2
(approximate)
354 007-2392-003

Using Pipeline Programs
Fragment and Vertex Program Instructions

The instructions described here are supported in both fragment and vertex programs.

ABS—Absolute Value

The ABS instruction performs a component-wise absolute value operation on the single
operand to yield a result vector.

Pseudo code:

tmp = VectorLoad(op0);
result.x = fabs(tmp.x);
result.y = fabs(tmp.y);
result.z = fabs(tmp.z);
result.w = fabs(tmp.w);

ADD—Add

The ADD instruction performs a component-wise add of the two operands to yield a
result vector.

Pseudo code:

tmp0 = VectorLoad(op0);
tmp1 = VectorLoad(op1);
result.x = tmp0.x + tmp1.x;
result.y = tmp0.y + tmp1.y;
result.z = tmp0.z + tmp1.z;
result.w = tmp0.w + tmp1.w;

The following rules apply to addition:

1. x + y == y + x, for all x and y

2. x + 0.0 == x, for all x

DP3—Three-Component Dot Product

The DP3 instruction computes a three-component dot product of the two operands
(using the first three components) and replicates the dot product to all four components
of the result vector.
007-2392-003 355

13: Vertex and Fragment Program Extensions
Pseudo code:

tmp0 = VectorLoad(op0);
tmp1 = VectorLoad(op1);
dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) + (tmp0.z * tmp1.z);
result.x = dot;
result.y = dot;
result.z = dot;
result.w = dot;

DP4—Four-Component Dot Product

The DP4 instruction computes a four-component dot product of the two operands and
replicates the dot product to all four components of the result vector.

Pseudo code:

tmp0 = VectorLoad(op0);
tmp1 = VectorLoad(op1):
dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) + (tmp0.z * tmp1.z) +
(tmp0.w * tmp1.w);
result.x = dot;
result.y = dot;
result.z = dot;
result.w = dot;

DPH—Homogeneous Dot Product

The DPH instruction computes a three-component dot product of the two operands
(using the x, y, and z components), adds the w component of the second operand, and
replicates the sum to all four components of the result vector. This is equivalent to a
four-component dot product where the w component of the first operand is forced to 1.0.

Pseudo code:

tmp0 = VectorLoad(op0);
tmp1 = VectorLoad(op1):
dot = (tmp0.x * tmp1.x) + (tmp0.y * tmp1.y) + (tmp0.z * tmp1.z) +
tmp1.w;
result.x = dot;
result.y = dot;
result.z = dot;
result.w = dot;
356 007-2392-003

Using Pipeline Programs
DST—Distance Vector

The DST instruction computes a distance vector from two specially formatted operands.
The first operand should be of the form [NA, d^2, d^2, NA] and the second operand
should be of the form [NA, 1/d, NA, 1/d], where NA values are not relevant to the
calculation and d is a vector length. If both vectors satisfy these conditions, the result
vector will be of the form [1.0, d, d^2, 1/d].

Pseudo code:

tmp0 = VectorLoad(op0);
tmp1 = VectorLoad(op1);
result.x = 1.0;
result.y = tmp0.y * tmp1.y;
result.z = tmp0.z;
result.w = tmp1.w;

Given an arbitrary vector, d^2 can be obtained using the DP3 instruction (using the same
vector for both operands) and 1/d can be obtained from d^2 using the RSQ instruction.

This distance vector is useful for light attenuation calculations: a DP3 operation using the
distance vector and an attenuation constant vector as operands will yield the attenuation
factor.

EX2—Exponentiate with Base 2

The EX2 instruction approximates 2 raised to the power of the scalar operand and
replicates the approximation to all four components of the result vector.

Pseudo code:

tmp = ScalarLoad(op0);
result.x = Approx2ToX(tmp);
result.y = Approx2ToX(tmp);
result.z = Approx2ToX(tmp);
result.w = Approx2ToX(tmp);

FLR—Floor

The FLR instruction performs a component-wise floor operation on the operand to
generate a result vector. The floor of a value is defined as the largest integer less than or
equal to the value. The floor of 2.3 is 2.0; the floor of –3.6 is –4.0.
007-2392-003 357

13: Vertex and Fragment Program Extensions
Pseudo code:

tmp = VectorLoad(op0);
result.x = floor(tmp.x);
result.y = floor(tmp.y);
result.z = floor(tmp.z);
result.w = floor(tmp.w);

FRC—Fraction

The FRC instruction extracts the fractional portion of each component of the operand to
generate a result vector. The fractional portion of a component is defined as the result
after subtracting off the floor of the component (see the FLR instruction) and is always in
the range [0.0, 1.0].

For negative values, the fractional portion is not the number written to the right of the
decimal point. The fractional portion of –1.7 is not 0.7; it is 0.3. The value 0.3 is produced
by subtracting the floor of –1.7, which is –2.0, from –1.7.

Pseudo code:

tmp = VectorLoad(op0);
result.x = fraction(tmp.x);
result.y = fraction(tmp.y);
result.z = fraction(tmp.z);
result.w = fraction(tmp.w);

LG2—Logarithm Base 2

The LG2 instruction approximates the base 2 logarithm of the scalar operand and
replicates it to all four components of the result vector.

Pseudo code:

tmp = ScalarLoad(op0);
result.x = ApproxLog2(tmp);
result.y = ApproxLog2(tmp);
result.z = ApproxLog2(tmp);
result.w = ApproxLog2(tmp);

If the scalar operand is zero or negative, the result is undefined.
358 007-2392-003

Using Pipeline Programs
LIT—Light Coefficients

The LIT instruction accelerates lighting by computing lighting coefficients for ambient,
diffuse, and specular light contributions. The .x component of the single operand is
assumed to hold a diffuse dot product (such as a vertex normal dotted with the unit
direction vector from the point being lit to the light position). The .y component of the
operand is assumed to hold a specular dot product (such as a vertex normal dotted with
the half-angle vector from the point being lit). The .w component of the operand is
assumed to hold the specular exponent of the material and is clamped to the range
[–128,+128] exclusive.

The .x component of the result vector receives the value that should be multiplied by the
ambient light/material product (always 1.0). The .y component of the result vector
receives the value that should be multiplied by the diffuse light/material product (for
example, state.lightprod[n].diffuse). The .z component of the result vector
receives the value that should be multiplied by the specular light/material product (for
example, state.lightprod[n].specular). The .w component of the result is the
constant 1.0.

Negative diffuse and specular dot products are clamped to 0.0, as is done in the
fixed-function per-vertex lighting operations. In addition, if the diffuse dot product is
zero or negative, the specular coefficient is forced to zero.

Pseudo code:

tmp = VectorLoad(op0);
if (tmp.x < 0) tmp.x = 0;
if (tmp.y < 0) tmp.y = 0;
if (tmp.w < -(128.0-epsilon)) tmp.w = -(128.0-epsilon);
else if (tmp.w > 128-epsilon) tmp.w = 128-epsilon;
result.x = 1.0;
result.y = tmp.x;
result.z = (tmp.x > 0) ? ApproxPower(tmp.y, tmp.w) : 0.0;
result.w = 1.0;

The power approximation function ApproxPower() may be defined in terms of the
base 2 exponentiation and logarithm approximation operations. When executed in
fragment programs, the definition should be as follows:

ApproxPower(a,b) = Approx2ToX(b * ApproxLog2(a))
007-2392-003 359

13: Vertex and Fragment Program Extensions
The functions Approx2ToX() and ApproxLog2() are as defined by the EX2 and LG2
instructions. When executed in vertex programs, the definition should be as follows:

ApproxPower(a,b) = RoughApprox2ToX(b * RoughApproxLog2(a))

The functions RoughApprox2ToX() and RoughApproxLog2() are as defined by the EXP
and LOG instructions. The approximation may not be any more accurate than the
underlying exponential and logarithm approximations.

Since 0^0 is defined to be 1, ApproxPower(0.0, 0.0) will produce 1.0.

MAD—Multiply and Add

The MAD instruction performs a component-wise multiply of the first two operands, and
then does a component-wise add of the product to the third operand to yield a result
vector.

Pseudo code:

tmp0 = VectorLoad(op0);
tmp1 = VectorLoad(op1);
tmp2 = VectorLoad(op2);
result.x = tmp0.x * tmp1.x + tmp2.x;
result.y = tmp0.y * tmp1.y + tmp2.y;
result.z = tmp0.z * tmp1.z + tmp2.z;
result.w = tmp0.w * tmp1.w + tmp2.w;

The multiplication and addition operations in this instruction are subject to the same
rules as described for the MUL and ADD instructions.

MAX—Maximum

The MAX instruction computes component-wise maximums of the values in the two
operands to yield a result vector.

Pseudo code:

tmp0 = VectorLoad(op0);
tmp1 = VectorLoad(op1);
result.x = (tmp0.x > tmp1.x) ? tmp0.x : tmp1.x;
result.y = (tmp0.y > tmp1.y) ? tmp0.y : tmp1.y;
result.z = (tmp0.z > tmp1.z) ? tmp0.z : tmp1.z;
result.w = (tmp0.w > tmp1.w) ? tmp0.w : tmp1.w;
360 007-2392-003

Using Pipeline Programs
MIN—Minimum

The MIN instruction computes component-wise minimums of the values in the two
operands to yield a result vector.

Pseudo code:

tmp0 = VectorLoad(op0);
tmp1 = VectorLoad(op1);
result.x = (tmp0.x > tmp1.x) ? tmp1.x : tmp0.x;
result.y = (tmp0.y > tmp1.y) ? tmp1.y : tmp0.y;
result.z = (tmp0.z > tmp1.z) ? tmp1.z : tmp0.z;
result.w = (tmp0.w > tmp1.w) ? tmp1.w : tmp0.w;

MOV—Move

The MOV instruction copies the value of the operand to yield a result vector.

Pseudo code:

result = VectorLoad(op0);

MUL—Multiply

The MUL instruction performs a component-wise multiply of the two operands to yield a
result vector.

Pseudo code:

tmp0 = VectorLoad(op0);
tmp1 = VectorLoad(op1);
result.x = tmp0.x * tmp1.x;
result.y = tmp0.y * tmp1.y;
result.z = tmp0.z * tmp1.z;
result.w = tmp0.w * tmp1.w;

The following rules apply to multiplication:

1. x * y == y * x, for all x and y

2. +/-0.0 * x = +/-0.0 at least for all x that correspond to representable numbers (The
IEEE non-number and infinity encodings may be exceptions.)

3. +1.0 * x = x, for all x
007-2392-003 361

13: Vertex and Fragment Program Extensions
Multiplication by zero and one should be invariant, as it may be used to evaluate
conditional expressions without branching.

POW—Exponentiate

The POW instruction approximates the value of the first scalar operand raised to the
power of the second scalar operand and replicates it to all four components of the result
vector.

Pseudo code:

tmp0 = ScalarLoad(op0);
tmp1 = ScalarLoad(op1);
result.x = ApproxPower(tmp0, tmp1);
result.y = ApproxPower(tmp0, tmp1);
result.z = ApproxPower(tmp0, tmp1);
result.w = ApproxPower(tmp0, tmp1);

The power approximation function may be implemented using the base 2 exponentiation
and logarithm approximation operations in the EX2 and LG2 instructions, as shown in
the following:

ApproxPower(a,b) = ApproxExp2(b * ApproxLog2(a))

Note that a logarithm may be involved even for cases where the exponent is an integer.
This means that it may not be possible to exponentiate correctly with a negative base. In
constrast, it is possible in a normal mathematical formulation to raise negative numbers
to integer powers (for example, (–3)^2 == 9, and (–0.5)^-2 == 4).

RCP—Reciprocal

The RCP instruction approximates the reciprocal of the scalar operand and replicates it to
all four components of the result vector.

Pseudo code:

tmp = ScalarLoad(op0);
result.x = ApproxReciprocal(tmp);
result.y = ApproxReciprocal(tmp);
result.z = ApproxReciprocal(tmp);
result.w = ApproxReciprocal(tmp);
362 007-2392-003

Using Pipeline Programs
The following rule applies to reciprocation:

ApproxReciprocal(+1.0) = +1.0

RSQ—Reciprocal Square Root

The RSQ instruction approximates the reciprocal of the square root of the absolute value
of the scalar operand and replicates it to all four components of the result vector.

Pseudo code:

tmp = fabs(ScalarLoad(op0));
result.x = ApproxRSQRT(tmp);
result.y = ApproxRSQRT(tmp);
result.z = ApproxRSQRT(tmp);
result.w = ApproxRSQRT(tmp);

SGE—Set on Greater or Equal Than

The SGE instruction performs a component-wise comparison of the two operands. Each
component of the result vector is 1.0 if the corresponding component of the first
operands is greater than or equal that of the second and 0.0, otherwise.

Pseudo code:

tmp0 = VectorLoad(op0);
tmp1 = VectorLoad(op1);
result.x = (tmp0.x >= tmp1.x) ? 1.0 : 0.0;
result.y = (tmp0.y >= tmp1.y) ? 1.0 : 0.0;
result.z = (tmp0.z >= tmp1.z) ? 1.0 : 0.0;
result.w = (tmp0.w >= tmp1.w) ? 1.0 : 0.0;

SLT—Set on Less Than

The SLT instruction performs a component-wise comparison of the two operands. Each
component of the result vector is 1.0 if the corresponding component of the first
operand is less than that of the second and 0.0, otherwise.

Pseudo code:

tmp0 = VectorLoad(op0);
tmp1 = VectorLoad(op1);
result.x = (tmp0.x < tmp1.x) ? 1.0 : 0.0;
result.y = (tmp0.y < tmp1.y) ? 1.0 : 0.0;
result.z = (tmp0.z < tmp1.z) ? 1.0 : 0.0;
007-2392-003 363

13: Vertex and Fragment Program Extensions
result.w = (tmp0.w < tmp1.w) ? 1.0 : 0.0;

SUB—Subtract

The SUB instruction performs a component-wise subtraction of the second operand from
the first to yield a result vector.

Pseudo code:

tmp0 = VectorLoad(op0);
tmp1 = VectorLoad(op1);
result.x = tmp0.x - tmp1.x;
result.y = tmp0.y - tmp1.y;
result.z = tmp0.z - tmp1.z;
result.w = tmp0.w - tmp1.w;

SWZ—Extended Swizzle

The SWZ instruction loads the single vector operand and performs a swizzle operation
more powerful than that provided for loading normal vector operands to yield an
instruction vector.

The extended swizzle is expressed as the following:

SWZ result, op0, xswz, yswz, zswz, wswz

The arguments xswz, yswz, zswz, and wswz are each one of the following extended
swizzle selectors:

0, +0, -0, 1, +1, -1, x, +x, -x, y, +y, -y, z, +z, -z, w, +w, or -w

For the numeric extended swizzle selectors, the result components corresponding to
xswz, yswz, zswz, and wswz are loaded with the specified number. For the non-numeric
extended swizzle selectors, the result components are loaded with the source component
of op0 specified by the extended swizzle selector and are negated if the selector begins
with the – sign.

In fragment programs, but not in vertex programs, the following extended swizzle
selectors may also be used:

r, +r, -r, g, +g, -g, b, +b, -b, a, +a, or -a
364 007-2392-003

Using Pipeline Programs
Since the SWZ instruction allows for component selection and negation for each
individual component, the grammar does not allow the use of the normal swizzle and
negation operations allowed for vector operands in other instructions.

The following example of SWZ shows most of the possible types of selectors:

PARAM color = { -0.1, 0.7, 1.2, 1.0 };
TEMP result;

SWZ result, color, -1, 0, x, -y;
result now contains { -1.0, 0.0, 0.1, -0.7 }

XPD—Cross Product

The XPD instruction computes the cross product using the first three components of its
two vector operands to generate the X, Y, and Z components of the result vector. The W
component of the result vector is undefined.

Pseudo code:

tmp0 = VectorLoad(op0);
tmp1 = VectorLoad(op1);
result.x = tmp0.y * tmp1.z - tmp0.z * tmp1.y;
result.y = tmp0.z * tmp1.x - tmp0.x * tmp1.z;
result.z = tmp0.x * tmp1.y - tmp0.y * tmp1.x;

Fragment Program Instructions

The instructions supported only in fragment programs are of two types:

• Math instructions

• Texture instructions

Math Instructions

The math instructions include the following mathematical operations common in
per-pixel shading algorithms:

• CMP

• COS

• LRP

• SCS
007-2392-003 365

13: Vertex and Fragment Program Extensions
• SIN

CMP—Compare

The CMP instructions perform a component-wise comparison of the first operand against
zero and copies the values of the second or third operands based on the results of the
compare.

Pseudo code:

tmp0 = VectorLoad(op0);
tmp1 = VectorLoad(op1);
tmp2 = VectorLoad(op2);
result.x = (tmp0.x < 0.0) ? tmp1.x : tmp2.x;
result.y = (tmp0.y < 0.0) ? tmp1.y : tmp2.y;
result.z = (tmp0.z < 0.0) ? tmp1.z : tmp2.z;
result.w = (tmp0.w < 0.0) ? tmp1.w : tmp2.w;

COS—Cosine

The COS instruction approximates the trigonometric cosine of the angle specified by the
scalar operand and replicates it to all four components of the result vector. The angle is
specified in radians and does not have to be in the range [–pi,pi].

Pseudo code:

tmp = ScalarLoad(op0);
result.x = ApproxCosine(tmp);
result.y = ApproxCosine(tmp);
result.z = ApproxCosine(tmp);
result.w = ApproxCosine(tmp);

LRP—Linear Interpolation

The LRP instruction performs a component-wise linear interpolation between the second
and third operands using the first operand as the blend factor.

Pseudo code:

tmp0 = VectorLoad(op0);
tmp1 = VectorLoad(op1);
tmp2 = VectorLoad(op2);
result.x = tmp0.x * tmp1.x + (1 - tmp0.x) * tmp2.x;
result.y = tmp0.y * tmp1.y + (1 - tmp0.y) * tmp2.y;
366 007-2392-003

Using Pipeline Programs
result.z = tmp0.z * tmp1.z + (1 - tmp0.z) * tmp2.z;
result.w = tmp0.w * tmp1.w + (1 - tmp0.w) * tmp2.w;

SCS—Sine/Cosine

The SCS instruction approximates the trigonometric sine and cosine of the angle
specified by the scalar operand and places the cosine in the x component and the sine in
the y component of the result vector. The z and w components of the result vector are
undefined. The angle is specified in radians and must be in the range [–pi,pi].

Pseudo code:

tmp = ScalarLoad(op0);
result.x = ApproxCosine(tmp);
result.y = ApproxSine(tmp);

If the scalar operand is not in the range [–pi,pi], the result vector is undefined.

SIN—Sine

The SIN instruction approximates the trigonometric sine of the angle specified by the
scalar operand and replicates it to all four components of the result vector. The angle is
specified in radians and does not have to be in the range [–pi,pi].

Pseudo code:

tmp = ScalarLoad(op0);
result.x = ApproxSine(tmp);
result.y = ApproxSine(tmp);
result.z = ApproxSine(tmp);
result.w = ApproxSine(tmp);

Texture Instructions

The following texture instructions include texture map lookup operations and a kill
instruction:

• TEX

• TXP

• TXB

• KIL
007-2392-003 367

13: Vertex and Fragment Program Extensions
The TEX, TXP, and TXB instructions specify the mapping of 4-tuple vectors to colors of an
image. The sampling of the texture works in the same fashion as the fixed-function
OpenGL pipeline, except that texture environments and texture functions are not applied
to the result and the texture enable hierarchy is replaced by explicit references to the
desired texture target—1D, 2D, 3D, CUBE (for cubemap targets) and RECT (for texture
rectangle targets, if the EXT_texture_rectangle extension is supported). These texture
instructions specify how the 4-tuple is mapped into the coordinates used for sampling.
The following function is used to describe the texture sampling in the descriptions
below:

vec4 TextureSample(float s, float t, float r, float lodBias,
int texImageUnit, enum texTarget);

Note that not all three texture coordinates s, t, and r are used by all texture targets. In
particular, 1D texture targets only use the s component, and 2D and RECT
(non-power-of-two) texture targets only use the s and t components. The following
descriptions of the texture instructions supply all three components, as would be the case
with 3D or CUBE targets.

If a fragment program samples from a texture target on a texture image unit where the
bound texture object is not complete, the result will be the vector (R, G, B, A) = (0, 0, 0, 1).

A fragment program will fail to load if it attempts to sample from multiple texture targets
on the same texture image unit. For example, the following program would fail to load:

!!ARBfp1.0
TEX result.color, fragment.texcoord[0], texture[0], 2D;
TEX result.depth, fragment.texcoord[1], texture[0], 3D;
END

The KIL instruction does not sample from a texture but rather prevents further
processing of the current fragment if any component of its 4-tuple vector is less than zero.

Texture Indirections

A dependent texture instruction is one that samples using a texture coordinate residing
in a temporary rather than in an attribute or a parameter. A program may have a chain
of dependent texture instructions, where the result of the first texture instruction is used
as the coordinate for a second texture instruction, which is, in turn, used as the
coordinate for a third texture instruction, etc. Each node in this chain is termed an
indirection and can be thought of as a set of texture samples that execute in parallel and
are followed by a sequence of ALU instructions.
368 007-2392-003

Using Pipeline Programs
Some implementations may have limitations on how long the dependency chain may be.
Therefore, indirections are counted as a resource just like instructions or temporaries are
counted. All programs have at least one indirection (one node in this chain) even if the
program performs no texture operation. Each instruction encountered is included in this
node until the program encounters a texture instruction with one of the following
properties:

• Its texture coordinate is a temporary that has been previously written in the current
node.

• Its result vector is a temporary that is also the operand or result vector of a previous
instruction in the current node.

A new node is then started that includes the texture instruction and all subsequent
instructions, and the process repeats for all instructions in the program. Note that for
simplicity in counting, result writemasks and operand suffixes are not taken into
consideration when counting indirections.

TEX—Map Coordinate to Color

The TEX instruction takes the first three components of its source vector and maps them
to s, t, and r. These coordinates are used to sample from the specified texture target on
the specified texture image unit in a manner consistent with its parameters. The resulting
sample is mapped to RGBA and written to the result vector.

Pseudo code:

tmp = VectorLoad(op0);
result = TextureSample(tmp.x, tmp.y, tmp.z, 0.0, op1, op2);

TXP—Project Coordinate and Map to Color

The TXP instruction divides the first three components of its source vector by the fourth
component and maps the results to s, t, and r. These coordinates are used to sample
from the specified texture target on the specified texture image unit in a manner
consistent with its parameters. The resulting sample is mapped to RGBA and written to
the result vector. If the value of the fourth component of the source vector is less than or
equal to zero, the result vector is undefined.

Pseudo code:

tmp = VectorLoad(op0);
tmp.x = tmp.x / tmp.w;
tmp.y = tmp.y / tmp.w;
007-2392-003 369

13: Vertex and Fragment Program Extensions
tmp.z = tmp.z / tmp.w;
result = TextureSample(tmp.x, tmp.y, tmp.z, 0.0, op1, op2);

TXB—Map Coordinate to Color While Biasing Its Level Of Detail

The TXB instruction takes the first three components of its source vector and maps them
to s, t, and r. These coordinates are used to sample from the specified texture target on
the specified texture image unit in a manner consistent with its parameters. Additionally,
before determining the mipmap level(s) to sample, the fourth component of the source
vector is added with bias factors for the per-texture-object and per-texture-unit level of
detail. The resulting sample is mapped to RGBA and written to the result vector.

Pseudo code:

tmp = VectorLoad(op0);
result = TextureSample(tmp.x, tmp.y, tmp.z, tmp.w, op1, op2);

KIL—Kill Fragment

Rather than mapping a coordinate set to a color, the KIL operation prevents a fragment
from receiving any future processing. If any component of its source vector is negative,
the processing of this fragment will be discontinued and no further output to this
fragment will occur. Subsequent stages of the GL pipeline will be skipped for this
fragment.

Pseudo code:

tmp = VectorLoad(op0);
if ((tmp.x < 0) || (tmp.y < 0) || (tmp.z < 0) || (tmp.w < 0)) {
 exit;
}

Vertex Program Instructions

The instructions described in this section are only supported by vertex programs. They
include address register loads (ARL) as well as lower-precision (and higher-performance)
exponential and logarithmic computations (EXP and LOG).

ARL—Address Register Load

The ARL instruction loads a single scalar operand and performs a floor operation to
generate a signed integer scalar result.
370 007-2392-003

Using Pipeline Programs
Pseudo code:

 result = floor(ScalarLoad(op0));

 EXP—Exponentiate with Base 2 (approximate)

The EXP instruction computes a rough approximation of 2 raised to the power of the
scalar operand. The approximation is returned in the .z component of the result vector.
A vertex program can also use the .x and .y components of the result vector to generate
a more accurate approximation by evaluating result.x * f(result.y), where f(x) is a
user-defined function that approximates 2^x over the domain [0.0, 1.0]. The .w
component of the result vector is always 1.0.

Pseudo code:

tmp = ScalarLoad(op0);
result.x = 2^floor(tmp);
result.y = tmp - floor(tmp);
result.z = RoughApprox2ToX(tmp);
result.w = 1.0;

The approximation function is accurate to at least 10 bits.

LOG—Logarithm Base 2 (approximate)

The LOG instruction computes a rough approximation of the base 2 logarithm of the
absolute value of the scalar operand. The approximation is returned in the.z component
of the result vector. A vertex program can also use the .x and .y components of the
result vector to generate a more accurate approximation by evaluating result.x +
f(result.y), where f(x) is a user-defined function that approximates 2^x over the
domain [0.0, 1.0]. The .w component of the result vector is always 1.0.

Pseudo code:

tmp = fabs(ScalarLoad(op0));
result.x = floor(log2(tmp));
result.y = tmp / 2^(floor(log2(tmp)));
result.z = RoughApproxLog2(tmp);
result.w = 1.0;

The floor(log2(tmp)) refers to the floor of the exact logarithm, which can be easily
computed for standard floating point representations. The approximation function is
accurate to at least 10 bits.
007-2392-003 371

13: Vertex and Fragment Program Extensions
Program Resource Limits and Usage

You can query resources allocated and consumed by programs by making the following
call:

void glGetProgramivARB(GLenum target, GLenum pname, GLint *params);

The argument target may be either GL_VERTEX_PROGRAM_ARB or
GL_FRAGMENT_PROGRAM_ARB.

To determine the maximum possible resource limits for a program of the specified target
type, use one of the values in Table 13-18 for pname. There are two types of limits:

Native limits If native limits are not exceeded by a program, it is guaranteed that the
program can execute in the graphics hardware. The parameter names
for native limits are of the form GL_MAX_PROGRAM_NATIVE*.

Overall limits If the overall limits are not exceeded, the program will execute, but
possibly on a software fallback path with greatly reduced performance.
The parameter names for overall limits are of the form
GL_MAX_PROGRAM*.

The concepts of texture instructions and texture indirections are described in section
“Fragment Program Instructions” on page 365. In a fragment program, ALU instructions
are all instructions other than the texture instructions TEX, TXP, TXB, and KIL.

Table 13-18 Program Resource Limits

Resource Limit Name (overall, native)

Min Value
for Vertex
Programs

Min Value
for
Fragment
Programs Description

GL_MAX_PROGRAM_INSTRUCTIONS_ARB,
GL_MAX_PROGRAM_NATIVE_INSTRUCTIONS_ARB

128 72 Maximum
number of
instructions
declared

GL_MAX_PROGRAM_ATTRIBS_ARB,
GL_MAX_PROGRAM_NATIVE_ATTRIBS_ARB

16 10 Maximum
number of
attributes
declared
372 007-2392-003

Using Pipeline Programs

x
)

U

)

)

)

GL_MAX_PROGRAM_PARAMETERS_ARB,
GL_MAX_PROGRAM_NATIVE_PARAMETERS_ARB

96 24 Maximum
number of
parameters
declared

GL_MAX_PROGRAM_TEMPORARIES_ARB,
GL_MAX_PROGRAM_NATIVE_TEMPORARIES_ARB

12 16 Maximum
number of
temporaries
declared

GL_MAX_PROGRAM_ADDRESS_REGISTERS_ARB,
GL_MAX_PROGRAM_NATIVE_ADDRESS_REGISTERS_ARB

1 Maximum
number of
address
registers
declared (verte
programs only

GL_MAX_PROGRAM_ALU_INSTRUCTIONS_ARB,
GL_MAX_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB

48 Maximum
number of AL
instructions
declared
(fragment
programs only

GL_MAX_PROGRAM_TEX_INSTRUCTIONS_ARB,
GL_MAX_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB

24 Maximum
number of
texture
instructions
declared
(fragment
programs only

GL_MAX_PROGRAM_TEX_INDIRECTIONS_ARB,
GL_MAX_PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB

4 Maximum
number of
texture
indirections
declared
(fragment
programs only

Table 13-18 Program Resource Limits (continued)

Resource Limit Name (overall, native)

Min Value
for Vertex
Programs

Min Value
for
Fragment
Programs Description
007-2392-003 373

13: Vertex and Fragment Program Extensions
To determine the resources actually consumed by the currently bound program of the
specified target type, use one of the values in Table 13-19 for pname. There are two types
of usage:

Overall usage Overall usage is that of the program as written. The parameter names for
overall usage are of the form GL_PROGRAM*.

Native usage Native usage is for the program as compiled for the target hardware. In
some cases, emulation of operations not directly supported by the
hardware will consume additional resources. The parameter names for
native usage are of the form GL_PROGRAM_NATIVE*.

To assist in determining if a program is running on the actual graphics hardware, call
glGetProgramivARB() with pname set to GL_PROGRAM_UNDER_NATIVE_LIMITS_ARB.
This returns 0 in params if the native resource consumption of the program currently

Table 13-19 Program Resource Usage

Resource Usage Name (overall, native) Description

GL_PROGRAM_INSTRUCTIONS_ARB,
GL_PROGRAM_NATIVE_INSTRUCTIONS_ARB

Number of instructions used

GL_PROGRAM_ATTRIBS_ARB,
GL_PROGRAM_NATIVE_ATTRIBS_ARB

Number of attributes used

GL_PROGRAM_PARAMETERS_ARB,
GL_PROGRAM_NATIVE_PARAMETERS_ARB

Number of parameters used

GL_PROGRAM_TEMPORARIES_ARB,
GL_PROGRAM_NATIVE_TEMPORARIES_ARB

Number of temporaries used

GL_PROGRAM_ADDRESS_REGISTERS_ARB,
GL_PROGRAM_NATIVE_ADDRESS_REGISTERS_ARB

Number of address registers used
(vertex programs only)

GL_PROGRAM_ALU_INSTRUCTIONS_ARB,
GL_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB

Number of ALU instructions used
(fragment programs only)

GL_PROGRAM_TEX_INSTRUCTIONS_ARB,
GL_PROGRAM_NATIVE_TEX_INSTRUCTIONS_ARB

Number of texture instructions used
(fragment programs only)

GL_PROGRAM_TEX_INDIRECTIONS_ARB,
GL_PROGRAM_NATIVE_TEX_INDIRECTIONS_ARB

Number of texture indirections used
(fragment programs only)
374 007-2392-003

Using Pipeline Programs
bound to target exceeds the number of available resources for any resource type and 1,
otherwise.

To determine the maximum number of program local parameters and program
environment parameters that may be specified for target, use a pname of
GL_MAX_PROGRAM_LOCAL_PARAMETERS_ARB or
GL_MAX_PROGRAM_ENV_PARAMETERS_ARB, respectively.

To determine the maximum number of generic vertex attributes that may be specified for
vertex programs, call glGetIntegerv() with a pname of
GL_MAX_VERTEX_ATTRIBS_ARB.

To determine the maximum number of generic matrices that may be specified for
programs, call glGetIntegerv() with a pname of GL_MAX_PROGRAM_MATRICES_ARB. At
least 8 program matrices are guaranteed to be supported. To determine the maximum
stack depth for generic program matrices, call glGetIntegerv() with a pname of
GL_MAX_PROGRAM_MATRIX_STACK_DEPTH_ARB. The maximum generic matrix stack
depth is guaranteed to be at least 1.

To determine properties of generic matrices, rather than extending glGet*() to accept the
GL_MATRIX0+n terminology, additional parameter names are defined which return
properties of the current matrix (as set with the glMatrixMode() function). The depth of
the current matrix stack can be queried by calling glGetIntegerv() with a pname of
GL_CURRENT_MATRIX_STACK_DEPTH_ARB, while the current matrix values can be
queried by calling glGetFloatv() with a pname of GL_CURRENT_MATRIX_ARB or
GL_TRANSPOSE_CURRENT_MATRIX_ARB. The functions return the 16 entries of the
current matrix in column-major or row-major order, respectively.

Other Program Queries

In addition to program resource limits and usage, you can query for following
information about the currently bound program:

• Program string length, program string format, and program string name

• Source text

• Parameters of the generic vertex attribute array pointers
007-2392-003 375

13: Vertex and Fragment Program Extensions
Program String Length, Program String Format, and Program String Name

Calling glGetProgramivARB() with a pname of GL_PROGRAM_LENGTH_ARB,
GL_PROGRAM_FORMAT_ARB, or GL_PROGRAM_BINDING_ARB, returns one integer
reflecting the program string length (in GLubytes), program string format, and program
name, respectively, for the program object currently bound to target.

Source Text

Making the following call returns the source text for the program bound to target in the
array string:

void glGetProgramStringARB(GLenum target, GLenum pname, GLvoid *string);

The argument pname must be GL_PROGRAM_STRING_ARB. The size of string must be at
least the value of GL_PROGRAM_LENGTH_ARB queried with glGetProgramivARB(). The
program string is always returned using the format given when the program string was
specified.

Parameters of the Generic Vertex Attribute Array Pointers

You can query the parameters of the generic vertex attribute array pointers by calling one
of the following commands:

void glGetVertexAttribdvARB(GLuint index, GLenum pname,
GLdouble *params);

void glGetVertexAttribfvARB(GLuint index, GLenum pname, GLfloat *params);
void glGetVertexAttribivARB(GLuint index, GLenum pname, GLint *params);

The pname value must be one of the following:

• GL_VERTEX_ATTRIB_ARRAY_ENABLED_ARB

• GL_VERTEX_ATTRIB_ARRAY_NORMALIZED_ARB

• GL_VERTEX_ATTRIB_ARRAY_SIZE_ARB

• GL_VERTEX_ATTRIB_ARRAY_STRIDE_ARB

• GL_VERTEX_ATTRIB_ARRAY_TYPE_ARB

Bound generic vertex array pointers can be queried by making the following call:

void glGetVertexAttribPointervARB(GLuint index, GLenum pname,
GLvoid **pointer);
376 007-2392-003

Using Pipeline Programs
Sample Code

These examples are intended primarily to show complete vertex and fragment programs
using a range of instructions and input. The OpenGL programming required to set up
and execute these programs on sample geometry are not included.

Sample Vertex Program

The following vertex program implements a simple ambient, specular, and diffuse
infinite lighting computation with a single light and an eye-space normal:

!!ARBvp1.0
ATTRIB iPos = vertex.position;
ATTRIB iNormal = vertex.normal;
PARAM mvinv[4] = { state.matrix.modelview.invtrans };
PARAM mvp[4] = { state.matrix.mvp };
PARAM lightDir = state.light[0].position;
PARAM halfDir = state.light[0].half;
PARAM specExp = state.material.shininess;
PARAM ambientCol = state.lightprod[0].ambient;
PARAM diffuseCol = state.lightprod[0].diffuse;
PARAM specularCol = state.lightprod[0].specular;
TEMP xfNormal, temp, dots;
OUTPUT oPos = result.position;
OUTPUT oColor = result.color;

Transform the vertex to clip coordinates.
DP4 oPos.x, mvp[0], iPos;
DP4 oPos.y, mvp[1], iPos;
DP4 oPos.z, mvp[2], iPos;
DP4 oPos.w, mvp[3], iPos;

Transform the normal to eye coordinates.
DP3 xfNormal.x, mvinv[0], iNormal;
DP3 xfNormal.y, mvinv[1], iNormal;
DP3 xfNormal.z, mvinv[2], iNormal;

Compute diffuse and specular dot products and use LIT to compute
lighting coefficients.
DP3 dots.x, xfNormal, lightDir;
DP3 dots.y, xfNormal, halfDir;
MOV dots.w, specExp.x;
LIT dots, dots;
007-2392-003 377

13: Vertex and Fragment Program Extensions
Accumulate color contributions.
MAD temp, dots.y, diffuseCol, ambientCol;
MAD oColor.xyz, dots.z, specularCol, temp;
MOV oColor.w, diffuseCol.w;
END

Sample Fragment Programs

The following fragment program shows how to perform a simple modulation between
the interpolated fragment color from rasterization and a single texture:

!!ARBfp1.0
ATTRIB tex = fragment.texcoord; # First set of texture coordinates
ATTRIB col = fragment.color.primary; # Diffuse interpolated color

OUTPUT outColor = result.color;

TEMP tmp;

TXP tmp, tex, texture, 2D; # Sample the texture

MUL outColor, tmp, col; # Perform the modulation

END

The following fragment program simulates a chrome surface:

!!ARBfp1.0

########################
Input Textures:
#-----------------------
Texture 0 contains the default 2D texture used for general mapping
Texture 2 contains a 1D pointlight falloff map
Texture 3 contains a 2D map for calculating specular lighting
Texture 4 contains normalizer cube map
#
Input Texture Coordinates:
#-----------------------
TexCoord1 contains the calculated normal
TexCoord2 contains the light to vertex vector
TexCoord3 contains the half-vector in tangent space
TexCoord4 contains the light vector in tangent space
378 007-2392-003

Using Pipeline Programs
TexCoord5 contains the eye vector in tangent space
########################

TEMP NdotH, lV, L;

ALIAS diffuse = L;
PARAM half = { 0.5, 0.5, 0.5, 0.5 };
ATTRIB norm_tc = fragment.texcoord[1];
ATTRIB lv_tc = fragment.texcoord[2];
ATTRIB half_tc = fragment.texcoord[3];
ATTRIB light_tc = fragment.texcoord[4];
ATTRIB eye_tc = fragment.texcoord[5];
OUTPUT oCol = result.color;

TEX L, light_tc, texture[4], CUBE; # Sample cube map normalizer

Calculate diffuse lighting (N.L)
SUB L, L, half; # Bias L and then multiply by 2
ADD L, L, L;
DP3 diffuse, norm_tc, L; # N.L

Calculate specular lighting component { (N.H), |H|^2 }
DP3 NdotH.x, norm_tc, half_tc;
DP3 NdotH.y, half_tc, half_tc;

DP3 lV.x, lv_tc, lv_tc; # lV = (|light to vertex|)^2

#############
Pass 2
#############

TEMP base, specular;
ALIAS atten = lV;

TEX base, eye_tc, texture[0], 2D; # sample enviroment map
using eye vector
TEX atten, lV, texture[2], 1D; # Sample attenuation map
TEX specular, NdotH, texture[3], 2D; # Sample specular NHHH map=
(N.H)^256

specular = (N.H)^256 * (N.L)
this ensures a pixel is only lit if facing the light (since the
specular
exponent makes negative N.H positive we must do this)
MUL specular, specular, diffuse;
007-2392-003 379

13: Vertex and Fragment Program Extensions
specular = specular * environment map
MUL specular, base, specular;

diffuse = diffuse * environment map
MUL diffuse, base, diffuse;

outColor = (specular * environment map) + (diffuse * environment map)
ADD base, specular, diffuse;

Apply point light attenutaion
MUL oCol, base, atten.r;

END

Errors

If a program fails to load because it contains an error when glBindProgramARB() is
called or because it would exceed the resource limits of the implementation, a
GL_INVALID_OPERATION error is generated. Calling glGetIntegerv() with a pname of
GL_PROGRAM_ERROR_POSITION_ARB will return the byte offset into the currently
bound program string at which the error was detected, and calling glGetString() with
pname GL_PROGRAM_ERROR_STRING_ARB will return a string describing the error (for
example, a compiler error message).

If the currently bound vertex or fragment program does not contain a valid program and
the corresponding vertex or fragment program mode is enabled, a
GL_INVALID_OPERATION error is generated whenever glBegin(), glRasterPos*(), or
any drawing command that performs an explicit glBegin(), such as glDrawArrays(), is
called.

Under the following conditions, GL_INVALID_VALUE errors will be generated if the
specified index exceeds the implementation limit for the number of attributes, program
local parameters, program environment parameters, etc.:

• When specifying vertex attribute indices in immediate-mode or vertex array calls

• When specifying program parameter indices in specification or query calls and in
similar calls
380 007-2392-003

Using Pipeline Programs
New Functions

The ARB_vertex_program and ARB_fragment_program extensions introduce the
following functions:

glBindProgramARB()
glDeleteProgramsARB()
glDisableVertexAttribArrayARB()
glEnableVertexAttribArrayARB()
glGenProgramsARB()
glGetProgramEnvParameterdvARB()
glGetProgramEnvParameterfvARB()
glGetProgramLocalParameterdvARB()
glGetProgramLocalParameterfvARB()
glGetProgramStringARB()
glGetProgramivARB()
glGetVertexAttribPointervARB()
glGetVertexAttribdvARB()
glGetVertexAttribfvARB()
glGetVertexAttribivARB()
glIsProgramARB()
glProgramEnvParameter4dARB()
glProgramEnvParameter4dvARB()
glProgramEnvParameter4fARB()
glProgramEnvParameter4fvARB()
glProgramLocalParameter4dARB()
glProgramLocalParameter4dvARB()
glProgramLocalParameter4fARB()
glProgramLocalParameter4fvARB()
glProgramStringARB()
glVertexAttrib1dARB()
glVertexAttrib1dvARB()
glVertexAttrib1fARB()
glVertexAttrib1fvARB()
glVertexAttrib1sARB()
glVertexAttrib1svARB()
glVertexAttrib2dARB()
glVertexAttrib2dvARB()
glVertexAttrib2fARB()
glVertexAttrib2fvARB()
glVertexAttrib2sARB()
glVertexAttrib2svARB()
glVertexAttrib3dARB()
glVertexAttrib3dvARB()
glVertexAttrib3fARB()
007-2392-003 381

13: Vertex and Fragment Program Extensions
glVertexAttrib3fvARB()
glVertexAttrib3sARB()
glVertexAttrib3svARB()
glVertexAttrib4NbvARB()
glVertexAttrib4NivARB()
glVertexAttrib4NsvARB()
glVertexAttrib4NubARB()
glVertexAttrib4NubvARB()
glVertexAttrib4NuivARB()
glVertexAttrib4NusvARB()
glVertexAttrib4bvARB()
glVertexAttrib4dARB()
glVertexAttrib4dvARB()
glVertexAttrib4fARB()
glVertexAttrib4fvARB()
glVertexAttrib4ivARB()
glVertexAttrib4sARB()
glVertexAttrib4svARB()
glVertexAttrib4ubvARB()
glVertexAttrib4uivARB()
glVertexAttrib4usvARB()
glVertexAttribPointerARB()

The Legacy Vertex and Fragment Program Extensions

In addition to the ARB_vertex_program and ARB_fragment_program extension, Onyx4
and Silicon Graphics Prism systems also support the following set of ATI vendor
extensions for vertex and fragment programming:

• ATI_fragment_shader

• EXT_vertex_shader

These two extensions, developed prior to the ARB extensions, are included only for
support of legacy applications being ported from other platforms. They supply no
functionality not present in ARB_vertex_program and ARB_fragment_program and are
not as widely implemented. Whenever writing new code using vertex or fragment
programs, always use the ARB extensions.
382 007-2392-003

The Legacy Vertex and Fragment Program Extensions
How to Use the Legacy Extensions

Since these are legacy extensions, they are not documented in detail here. This section
only describes how the legacy extensions map onto the corresponding ARB extensions.

EXT_vertex_shader Allows an application to define vertex programs that are
functionally comparable to ARB_vertex_program programs.

ATI_fragment_shader Allows an application to define fragment programs that are
functionally comparable to ARB_fragment_program programs.

Instead of specifying a program string, each legacy program instruction is a function call
specifying instruction parameters.

New Functions

The ATI_fragment_shader and EXT_vertex_shader extensions introduce the following
set of functions:

glBindLightParameterEXT()
glBindMaterialParameterEXT()
glBindParameterEXT()
glBindTexGenParameterEXT()
glBindTextureUnitParameterEXT()
glGenFragmentShadersATI()
glGenSymbolsEXT()
glGenVertexShadersEXT()
glAlphaFragmentOp1ATI()
glAlphaFragmentOp2ATI()
glAlphaFragmentOp3ATI()
glBeginFragmentShaderATI()
glBeginVertexShaderEXT()
glBindFragmentShaderATI()
glBindVertexShaderEXT()
glColorFragmentOp1ATI()
glColorFragmentOp2ATI()
glColorFragmentOp3ATI()
glDeleteFragmentShaderATI()
glDeleteVertexShaderEXT()
glDisableVariantClientStateEXT()
glEnableVariantClientStateEXT()
glEndFragmentShaderATI()
glEndVertexShaderEXT()
007-2392-003 383

13: Vertex and Fragment Program Extensions
glExtractComponentEXT()
glGetInvariantBooleanvEXT()
glGetInvariantFloatvEXT()
glGetInvariantIntegervEXT()
glGetLocalConstantBooleanvEXT()
glGetLocalConstantFloatvEXT()
glGetLocalConstantIntegervEXT()
glGetVariantBooleanvEXT()
glGetVariantFloatvEXT()
glGetVariantIntegervEXT()
glGetVariantPointervEXT()
glInsertComponentEXT()
glIsVariantEnabledEXT()
glPassTexCoordATI()
glSampleMapATI()
glSetFragmentShaderConstantATI()
glSetInvariantEXT()
glSetLocalConstantEXT()
glShaderOp1EXT()
glShaderOp2EXT()
glShaderOp3EXT()
glSwizzleEXT()
glVariantPointerEXT()
glVariant{bsifdubusui}vEXT()
glWriteMaskEXT()
384 007-2392-003

Chapter 14

14. OpenGL Tools

This chapter explains how to work with the following OpenGL tools:

• “ogldebug—The OpenGL Debugger” on page 386 lets you use a graphical user
interface to trace and examine OpenGL calls.

• “The OpenGL Character Renderer (GLC)” on page 400 lets you render characters in
OpenGL programs.

• “The OpenGL Stream Utility (GLS)” on page 400 is a facility for encoding and
decoding streams of 8-bit bytes that represent sequences of OpenGL commands.

• “glxinfo—The glx Information Utility” on page 402 provides information on GLX
extensions and OpenGL capable visuals, and the OpenGL renderer of an X server.

The first section describes platform limitations.

Platform Notes

Currently, the ogldebug, GLC, and GLS tools are only supported on SGI IRIX systems
while the glxinfo tool is supported on both IRIX and Linux systems.

Depending on customer demand, the tools ogldebug and GLS may be supported on
Linux systems in the future. The GLC tool is obsolete, although still supported on IRIX
systems. There are several alternative, open source toolkits for high-quality font
rendering in OpenGL. You should migrate applications to one of those alternatives.
007-2392-003 385

14: OpenGL Tools
ogldebug—The OpenGL Debugger

This section explains how to debug graphics applications with the OpenGL debugging
tool ogldebug. The following topics are described:

• “ogldebug Overview” on page 386

• “Getting Started With ogldebug” on page 387

• “Creating a Trace File to Discover OpenGL Problems” on page 393

• “Interacting With ogldebug” on page 391

• “Using a Configuration File” on page 395

• “Using Menus to Interact With ogldebug” on page 395

ogldebug Overview

The ogldebug tool helps you find OpenGL programming errors and discover OpenGL
programming style that may slow down your application. After finding an error, you can
correct it and recompile your program. Using ogldebug, you can perform the following
actions at any point during program execution:

• Set a breakpoint for all occurrences of a given OpenGL call.

• Step through (or skip) OpenGL calls.

• Locate OpenGL errors.

• For a selected OpenGL context, display information about OpenGL state, current
display lists, and the window that belongs to the application you are debugging.

• Create a history (trace) file of all OpenGL calls made. The history file is a GLS file,
which contains comments and performance hints. You can convert it to valid C code
using ogldebug command-line options.

Note: If you are debugging a multiwindow or multicontext application, ogldebug
starts a new session (a new window appears) each time the application starts a new
process. In each new window, the process ID is displayed in the title bar.
386 007-2392-003

ogldebug—The OpenGL Debugger
The OpenGL debugger is not a general-purpose debugger. Use dbx and related tools
such as cvd (CASEVision/Workshop Debugger) to find problems in the nonOpenGL
portions of a program.

How ogldebug Operates

The OpenGL debugger works in the folllowing manner:

• You invoke ogldebug for an application using the appropriate command line
options (see “ogldebug Command-Line Options” on page 388).

• A special library (libogldebug.so) intercepts all OpenGL calls using the
OpenGL streams mechanism. It interprets calls to OpenGL only and filters GLU,
GLC, and GLX calls. GLU calls are parsed down to their OpenGL calls; the actual
GLU calls are lost.

• You can run, halt, step, and trace each process in the application separately using
the ogldebug graphical interface.

• After ogldebug-related processing, the actual OpenGL calls are made as they
would have been if ogldebug had not been present.

Getting Started With ogldebug

This section describes how to set up and start ogldebug and lists available
command-line options.

Setting Up ogldebug

Before you can use ogldebug, you must install the gl_dev.sw.ogldebug (or
gl_dev.sw64.debug) subsystem. You can use the Software Manager option from the
Toolchest menu on the IRIX desktop or execute swmgr from the command line. Consider
also installing gl_dev.man.ogldebug to have access to the man page.
007-2392-003 387

14: OpenGL Tools
ogldebug Command-Line Options

The ogldebug version that is shipped with IRIX 6.5 has a number of command-line
options, which are shown in Table 14-1. The options are also listed in the ogldebugman
page.

Table 14-1 Command-Line Options for ogldebug

Option Description

–display display Set the display for the ogldebug user interface. If –display is
not specified, ogldebug will use $DISPLAY.

–appdisplay display Set the display for the application.

–glsplay gls_trace_file Play back a GLS trace file recorded by ogldebug. Note that a GLS
trace file is not standard C.

–gls2c gls_trace_file Convert a GLS trace file to a C code snippet. Output is to
stdout.

–gls2x gls_trace_file Convert a GLS trace file to an X Window System program that
can be compiled. Output is to stdout.

–gls2glut gls_trace_file Convert a GLS trace file to a GLUT program that can be
compiled. Output is to stdout.
388 007-2392-003

ogldebug—The OpenGL Debugger
Starting ogldebug

To debug your OpenGL program, type the appropriate command line for your
executable format:

o32 % ogldebug options o32program_name program_options

n32 % ogldebug32 options n32program_name program_options

64 % ogldebug64 options 64program_name program_options

The following describes the parameters:

options Any of the options listed under “ogldebug Command-Line Options.”

program_name The name of your (executable) application.

program_options Application-specific options, if any.

Note: It is not necessary to compile the application with any special options. The
debugger works with any program compiled with –lGL.

The ogldebug tool becomes active when the application makes its first OpenGL call.
Each ogldebug main window represents a different application process. If the
application uses fork, sproc, or pthread, multiple ogldebug windows may appear.

The debugger launches your application and halts execution just before the application’s
first OpenGL call. The main window (see Figure 14-1) lets you interact with your
application’s current process and displays information about the process.
007-2392-003 389

14: OpenGL Tools
Figure 14-1 ogldebug Main Window

The following are display areas below the menu bar:

Context information Displays the current process for that window (multiple
processes have multiple windows) and the current OpenGL
context.

OpenGL call display Below the status display area is the OpenGL call display area.
This area shows the next OpenGL command to be executed.

Status display Immediately above the row of buttons is a one-line status
display field, where ogldebug posts confirmation of
commands and other status indicators.

Below the row of buttons are checkboxes, described in “Using Check boxes” on page 392.

Status display

Interaction buttons

Context information

Options

OpenGL call display
390 007-2392-003

ogldebug—The OpenGL Debugger
Interacting With ogldebug

This section provides more detailed information on working with ogldebug. The
following topics are described:

• “Commands for Basic Interaction”

• “Using Check boxes”

Additional information is available in the sections “Creating a Trace File to Discover
OpenGL Problems” on page 393 and “Using Menus to Interact With ogldebug” on
page 395.

Commands for Basic Interaction

You can perform all basic interaction using the row of buttons just above the check boxes.
You can access the same commands using the Commands menu. This section describes
each command, including the keyboard shortcut (also listed in the Commands menu).

Table 14-2 Command Buttons and Shortcuts

Command Result

Halt
Ctrl+H

Temporarily stops the application at the next OpenGL call. All state and program
information is retained so you can continue execution if you wish.

Continue
Ctrl+C

Resumes program execution after execution has been stopped (such as after
encountering a breakpoint or after you used the Halt or Step command). The
program continues running until it reaches another breakpoint or until you explicitly
halt it. The display will only be updated when the application stops again.

Step
Ctrl+T

Continues executing up to the next OpenGL call, then stops before executing that call.

Skip
Ctrl+K

Skips over the current OpenGL call. Useful if you think the current call contains an
error or is likely to cause one. The program executes until it reaches the next OpenGL
call, then stops.
007-2392-003 391

14: OpenGL Tools
Using Check boxes

The check boxes at the bottom of the ogldebug window allow finer control over how
information is collected. Check boxes let you determine when a break occurs and which
API calls you want to skip.

Table 14-3 explains what happens for each of these boxes if it is checked.

Table 14-3 ogldebug Check Boxes

Check box Description

Check for GL error Calls glGetError() after every OpenGL call to check for errors. Note
that glGetError() cannot be called between glBegin() and glEnd()
pairs. glGetError() is called until all errors are clear.

Control drawing Allows you to inspect drawing in progress (forces front buffer
rendering). Also, allows you to control drawing speed.

No history Does not record history of the OpenGL call. As a result, the program
runs faster but you cannot look at history information.

Break on GL calls Halts on selected Open GL calls. Use the adjacent Setup button to
select which calls to skip (see Figure 14-2). In the Break on GL calls
Setup box, glFlush() is selected by default but is not active unless the
Break on GL calls check box is selected.

Break on SwapBuffers Halts on calls that swap buffers. There is no
window-system-independent call that swaps buffers; the debugger
halts on the appropriate call for each platform (for example.
glxSwapBuffers() for X Window System applications).

Skip GL calls Skips selected OpenGL calls. Use the adjacent Setup button to select
which calls to skip.

Skip GL trace calls Does not write selected OpenGL calls to the trace file. Use the adjacent
Setup button to select which calls you do not want traced.
392 007-2392-003

ogldebug—The OpenGL Debugger
Figure 14-2 Setup Panel

Figure 14-2 shows a setup panel. Inside any setup panel, you can use the standard
Shift, Ctrl, and Shift+Ctrl keystrokes for multiple item selection and deselection.

To save and recall up to three custom selection/deselection areas, use the Sets menu in
the setup panel for Break on OpenGL calls, Skip GL calls, and Skip GL trace calls.

Creating a Trace File to Discover OpenGL Problems

A trace file helps you find bugs in the OpenGL portion of your code without having to
worry about the mechanics of window operations. The following is an example of how
to collect one frame of OpenGL calls:

1. Launch ogldebug as follows:

% ogldebug your_program_name

Be sure to use the appropriate options,; see “ogldebug Command-Line Options” on
page 388.
007-2392-003 393

14: OpenGL Tools
2. Run until the application has passed the point of interest. You can do either of these
substeps:

■ Click the Break on SwapBuffers checkbox.

■ Click the Break (API calls) checkbox to select it, then click the Setup button next
to it and choose glFlush() in the Break Selection panel.

3. From the Information menu, select Call History.

The ogldebug tool presents a panel that lets you select which OpenGL context you
want to trace. Depending on the application, more than one context may be
available.

4. Select the OpenGL context you want to trace.

A Call History panel appears to show a list of all OpenGL contexts in the
application. Double-clicking the context will show an additional window with all
calls from that context. You can examine the call history in the panel or save it as a
GLS trace file using the Save button at the bottom of the panel.

A GLS trace is meant to be pure OpenGL and to be window-system-independent.
However, comments indicate where GLX, GLU, and GLC calls were made. Any
OpenGL calls made from within these higher-level calls are indented. Performance
hints are also included in the trace file, as in the following example:

...

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_AUTO_NORMAL);
glEnable(GL_NORMALIZE);
glMaterialfv(GL_FRONT, GL_AMBIENT, {0.1745, 0.01175, 0.01175,

2.589596E-29});
glsString(“Info”, “For best performance, set up material parameters

first, then enable lighting.”);

...

5. At this point, you have several options:

■ Play back (re-execute) the GLS trace file with the -glsplay option.

■ Convert the GLS trace file to a C file by invoking ogldebug with the -gls2c,
-gls2x, or -gls2glut option. Any comments or performance hints are
removed during the conversion.
394 007-2392-003

ogldebug—The OpenGL Debugger
For larger applications, such as OpenGL Performer, consider using the no-history
feature. If you need to run the application to a particular point and do not care about the
call history until that point, turn on the no-history feature to speed things up.

Using a Configuration File

As you work with ogldebug, you may find it useful to save and reload certain settings.
You can save and reload groups of ogldebug settings as follows:

• To save settings, choose Save Configuration from the File menu, then enter a
filename using the resulting dialog box.

• To load settings, choose Load Configuration from the File menu, then select a file
using the resulting dialog box.

Using Menus to Interact With ogldebug

This section describes how you can interact with ogldebug using menus. The following
tasks are described:

• “Using the File Menu to Interact With ogldebug” on page 395

• “Using the Commands Menu to Interact With Your Program” on page 396

• “Using the Information Menu to Access Information” on page 396

• “Using the References Menu for Background Information” on page 399

Using the File Menu to Interact With ogldebug

The File menu (shown in Figure 14-3) gives version information, lets you save and reload
a configuration file, and stops ogldebug.

Figure 14-3 ogldebug File Menu
007-2392-003 395

14: OpenGL Tools
Using the Commands Menu to Interact With Your Program

The Commands menu gives you access to commands that control ogldebug
execution.The commands are described in “Interacting With ogldebug” on page 391.

Figure 14-4 ogldebug Commands Menu

Using the Information Menu to Access Information

The following two illustrations show the windows in which ogldebug displays
information. A table that explains the functionality follows each illustration.
396 007-2392-003

ogldebug—The OpenGL Debugger
Figure 14-5 Information Menu Commands (First Screen)

The following is a brief description of the Call Count and Call History menu commands:

Call Count Brings up a window with counts for OpenGL, GLU, GLX, and GLC calls.
You can show a count for all OpenGL functions or only for functions that
were called at least once (nonzero calls).

Call History Brings up a window with a history of OpenGL calls (as a GLS trace).
007-2392-003 397

14: OpenGL Tools
Figure 14-6 Information Menu Commands (Second Screen)

The following is a brief description of the menu commands:

Display List First prompts for a context, then brings up a window with
information about the application’s display lists, if any, for that
context. You can show all or only non-empty display lists.
398 007-2392-003

ogldebug—The OpenGL Debugger
Primitive Count Provides the number of all primitives sent by the application so
far (for example, quads, polygons, and so on). Whether they are
clipped or not is not reported.

State Brings up a window that displays information on OpenGL state
variables. You can show all or only nondefault state. Note that you
cannot query state between glBegin() and glEnd() pairs.

Window (not shown)
Brings up window information for the application you are running from
ogldebug.

Using the References Menu for Background Information

The References menu provides access to the Enumerants menu command only. If you
choose Enumerants, a window displays a list of the symbolic names of OpenGL
enumerated constants together with the actual number (in hexadecimal and decimal)
that each name represents (See Figure 14-7).

Figure 14-7 Enumerants Window
007-2392-003 399

14: OpenGL Tools
The OpenGL Character Renderer (GLC)

The OpenGL Character Renderer (GLC) is a platform-independent character renderer
that offers the following benefits:

• Convenient to use for simple applications.

• Can scale and rotate text and draw text using lines, filled triangles, or bitmaps.

• Supports international characters.

For a basic discussion of GLC and a list of notes and known bugs for the current
implementation, see the glcintro man page.

The most authoritative documentation on GLC is the GLC specification document,
which is usually included in each OpenGL release in PostScript form. If you install the
software product gl_dev.sw.samples, the GLC specification is installed as the
following file:

/usr/share/src/OpenGL/teach/glc/glcspec.ps

The OpenGL Stream Utility (GLS)

The OpenGL Stream Codec (GLS) is a facility for encoding and decoding streams of 8-bit
bytes that represent sequences of OpenGL commands. This section starts with an
overview of GLS, then describes “glscat Utility” on page 401, which allows you to
concatenate GLS streams.

OpenGL Stream Utility Overview

GLS can be used for a variety of purposes—the following, for example:

• Scalable OpenGL pictures—GLS facilitates resolution-independent storage,
interchange, viewing, and printing.

• Persistent storage of OpenGL commands, display lists, images, and textures.

• Communication—Command transfer between application processes through
byte-stream connections.

• Client-side display lists—Can contain client data or callbacks.
400 007-2392-003

The OpenGL Stream Utility (GLS)
• Tracing—Useful for debugging, profiling, and benchmarking.

Some of these applications require the definition and implementation of higher-level
APIs that are more convenient to use than the GLS API. The GLS API provides only the
basic encoding and decoding services that allow higher-level services to be built on top
of it efficiently.

 The GLS specification has two components:

• A set of three byte-stream encodings for OpenGL and GLS commands:
human-readable text, big-endian binary, and little-endian binary. The three
encodings are semantically identical; they differ only in syntax. Therefore, it is
possible to convert GLS byte streams freely among the three encodings without loss
of information.

• An API that provides commands for encoding and decoding GLS byte streams. This
API is not formally an extension of the OpenGL API. Like the GLU API, the GLS
API is designed to be implemented in an optional, standalone client-side subroutine
library that is separate from the subroutine library that implements the OpenGL
API.

The GLS encodings and API are independent of platform and window system. In
particular, the GLS encodings are not tied to the X Window System protocol encoding
used by the GLX extension. GLS is designed to work equally well in UNIX, Windows,
and other environments.

For more information, see the glsintro man page.

glscat Utility

The glscat utility (/usr/sbin/glscat) allows you to concatenate GLS streams.
Enter glscat -h at the command line for a list of command-line parameters and
options.

In its simplest usage, glscat copies a GLS stream from standard input to standard
output:

glscat < stream1.gls > stream2.gls

As an alternative to standard input, one or more named input files can be provided on
the command line. If multiple input streams are provided, GLS will concatenate them:
007-2392-003 401

14: OpenGL Tools
glscat stream1.gls stream2.gls > stream3.gls

Use the -o outfile option to specify a named output file as an alternative to standard
output:

glscat –o stream2.gls < stream1.gls

In all cases, the input stream is decoded and re-encoded, and errors are flagged. By
default, the type of the output stream (GLS_TEXT, GLS_BINARY_MSB_FIRST, or
GLS_BINARY_LSB_FIRST) is the same as the type of the input stream.

The most useful option to glscat is the -t type, which lets you control the type of the
output stream. The type parameter is a single-letter code, one of the following:

t Text

b Native binary

s Swapped binary

l LSB-first binary

m MSB-first binary

For example, the following command converts a GLS stream of any type to text format:

glscat -t t < stream1.gls > stream2.gls

glxinfo—The glx Information Utility

Theglxinfoutility lists information about the GLX extension, OpenGL capable visuals,
and the OpenGL renderer of an X server. The GLX and render information includes the
version and extension attributes. The visual information lists the GLX visual attributes
for each OpenGL capable visual (for example whether the visual is double-buffered, the
component sizes, and so on). For more information, try the command or see theglxinfo
man page.
402 007-2392-003

Chapter 15

15. Tuning Graphics Applications: Fundamentals

Tuning your software can make it use hardware capabilities more effectively. Even the
fastest machine can render only as fast as the application can drive it. Simple changes in
application code can often make a dramatic difference in rendering time. In addition,
Silicon Graphics systems let you make trade-offs between image quality and
performance for your application.

This chapter looks at tuning graphics applications. Using the following sections, this
chapter describes pipeline tuning as a conceptual framework for tuning graphics
applications and introduces some other fundamentals of tuning:

• “General Tips for Debugging Graphics Programs” on page 404

• “Specific Problems and Troubleshooting” on page 405

• “About Pipeline Tuning” on page 409

• “Tuning Animation” on page 418

• “Taking Timing Measurements” on page 413

Writing high-performance code is usually more complex than just following a set of
rules. Most often, it involves making trade-offs between special functions, quality, and
performance for a particular application. For more information about the issues you
need to consider and for a tuning example, see the following chapters in this book:

• Chapter 16, “Tuning the Pipeline”

• Chapter 17, “Tuning Graphics Applications: Examples”

• Chapter 18, “System-Specific Tuning”

After reading these chapters, experiment with the different techniques described to help
you decide where to make these trade-offs.

Note: If optimum performance is crucial, consider using the OpenGL Performer
rendering toolkit. See “Maximizing Performance With OpenGL Performer” on page 7.
007-2392-003 403

15: Tuning Graphics Applications: Fundamentals
General Tips for Debugging Graphics Programs

This section gives advice on important aspects of OpenGL debugging. Most points apply
primarily to graphics programs and may not be obvious to developers who are
accustomed to debugging text-based programs.

Here are some general debugging tips for an OpenGL program:

• OpenGL never signals errors but simply records them; you must determine
whether an error occurred. During the debugging phase, your program should call
glGetError() to look for errors frequently (for example, once per redraw) until
glGetError() returns GL_NO_ERROR. While this slows down performance
somewhat, it helps you debug the program efficiently. You can use ogldebug to
automatically call glGetError() after every OpenGL call. See “ogldebug—The
OpenGL Debugger” on page 386 for more information on ogldebug.

• Use an iterative coding process: add some graphics-related code, build and test to
ensure expected results, and repeat as necessary.

• Debug the parts of your program in order of complexity: First make sure your
geometry is drawing correctly, then add lighting, texturing, and backface culling.

• Start debugging in single-buffer mode, then move on to a double-buffered program.

The following are some areas that frequently experience errors:

• Be careful with OpenGL enumerated constants that have similar names. For
example, glBegin(GL_LINES) works; glBegin(GL_LINE) does not. Using
glGetError() can help to detect problems like this (it reports GL_INVALID_ENUM for
this specific case).

• Use only per-vertex operations in a glBegin()/glEnd() sequence. Within a
glBegin()/glEnd() sequence, the only graphics commands that may be used are
commands for setting materials, colors, normals, edge flags, texture coordinates,
surface parametric coordinates, and vertex coordinates. The use of any other
graphics command is invalid. The exact list of allowable commands is given in the
man page for glBegin(). Even if other calls appear to work, they are not guaranteed
to work in the future and may have severe performance penalties.

• Check for matching glPushMatrix() and glPopMatrix() calls.

• Check matrix mode state information. Generally, an application should stay in
GL_MODELVIEW mode. Odd visual effects can occur if the matrix mode is not right.
404 007-2392-003

Specific Problems and Troubleshooting
Specific Problems and Troubleshooting

This section describes some specific problems frequently encountered by OpenGL users.
Note that one generally useful approach is to experiment with an ogldebug trace of the
first few frames. See “Creating a Trace File to Discover OpenGL Problems” on page 393.
This section covers the following problems:

• “Blank Window” on page 405

• “Rotation and Translation Problems” on page 406

• “Depth Buffering Problems” on page 406

• “Animation Problems” on page 407

• “Lighting Problems” on page 407

• “X Window System Problems” on page 408

• “Pixel and Texture Write Problems” on page 408

• “System-Specific Problems” on page 409

Blank Window

A common problem encountered in graphics programming is a blank window. If you
find your display does not show what you expected, do the following:

• To make sure you are bound to the right window, try clearing the image buffers
with glClear(). If you cannot clear, you may be bound to the wrong window (or no
window at all).

• To make sure you are not rendering in the background color, use an unusual color
(instead of black) to clear the window with glClear().

• To make sure you are not clipping everything inadvertently, temporarily move the
near and far clipping planes to extreme distances (such as 0.001 and 1000000.0).
(Note that a range like this is totally inappropriate for actual use in a program.)

• Try backing up the viewpoint up to see more of the space.

• Check the section “Troubleshooting Transformations” in Chapter 3 of the OpenGL
Programming Guide, Second Edition.

• Make sure you are using the correct projection matrix.
007-2392-003 405

15: Tuning Graphics Applications: Fundamentals
• Remember that glOrtho() and glPerspective() calls multiply onto the current
projection matrix; they do not replace it.

• If you have a blank window in a double-buffered program, check first that
something is displayed when you run the program in single-buffered mode. If yes,
make sure you are calling glXSwapBuffers(). If the program is using depth
buffering, ensure that the depth buffer is cleared as appropriate. See also “Depth
Buffering Problems” on page 406.

• Check the aspect ratio of the viewing frustrum. Do not set up your program using
code like the following:

GLfloat aspect = event.xconfigure.width/event.xconfigure.height
 /* 0 by integer division */

Rotation and Translation Problems

The following rotation and translation areas might be trouble spots:

• Z axis direction

Remember that by default you start by looking down the negative z axis. Unless
you move the viewpoint, objects should have negative z coordinates to be visible.

• Rotation

Make sure you have translated back to the origin before rotating (unless you intend
to rotate about some other point). Rotations are always about the origin of the
current coordinate system.

• Transformation order

First translating and then rotating an object yields a different result than first
rotating and then translating. The order of rotation is also important; for example,
R(x), R(y), R(z) is not the same as R(z), R(y), R(x).

Depth Buffering Problems

When your program uses depth testing, be sure to do the following:

• Enable depth testing using glEnable() with a GL_DEPTH_TEST argument; depth
testing is off by default. Set the depth function to the desired function, using
glDepthFunc(); the default function is GL_LESS.
406 007-2392-003

Specific Problems and Troubleshooting
• To guarantee that your program is portable, always ask for a depth buffer explicitly
when requesting a visual or framebuffer configuration.

Animation Problems

The following two areas might be animation problem areas:

• Double buffering

After drawing to the back buffer, make sure you swap buffers with
glXSwapBuffers().

• Observing the image during drawing

If you have a performance problem and want to see which part of the image takes
the longest to draw, use a single-buffered visual. If you do not use resources to
control visual selection, call glDrawBuffer() with a GL_FRONT argument before
rendering. You can then observe the image as it is drawn. Note that this observation
is possible only if the problem is severe. On a fast system, you may not be able to
observe the problem.

Lighting Problems

If you are having lighting problems, try one or more of the followig actions:

• Turn off specular shading in the early debugging stages. It is harder to visualize
where specular highlights should be than where diffuse highlights should be.

• For local light sources, draw lines from the light source to the object you are trying
to light to make sure the spatial and directional nature of the light is right.

• Make sure you have both GL_LIGHTING enabled and the appropriate GL_LIGHT#’s
enabled.

• To see whether normals are being scaled and causing lighting problems, enable
GL_NORMALIZE. This is particularly important if you call glScale().

• Make sure normals are pointing in the right direction.

• Make sure the light is actually at the intended position. Positions are affected by the
current model-view matrix. Enabling light without calling glLight(GL_POSITION)
provides a headlight if called before gluLookAt() and so on.
007-2392-003 407

15: Tuning Graphics Applications: Fundamentals
X Window System Problems

The following items identify possible problem sources with the X Window system:

• OpenGL and the X Window System have different notions of the y direction.
OpenGL has the origin (0, 0) in the lower left corner of the window; X has the origin
in the upper left corner. If you try to track the mouse but find that the object is
moving in the “wrong” direction vertically, this is probably the cause.

• Textures and display lists defined in one context are not visible to other contexts
unless they explicitly share textures and display lists.

• glXUseXFont() creates display lists for characters. The display lists are visible only
in contexts that share objects with the context in which they were created.

Pixel and Texture Write Problems

If you are having problems writing pixels or textures, ensure that the pixel storage mode
GL_UNPACK_ALIGNMENT is set to the correct value depending on the type of data. For
example:

GLubyte buf[] = {0x9D, ... 0xA7};
 /* a lot of bitmap images are passed as bytes! */
glBitmap(w, h, x, y, 0, 0, buf);

The default value for GL_UNPACK_ALIGNMENT is 4. It should be 1 in the preceding case.
If this value is not set correctly, the image looks sheared.

The same thing applies to textures.
408 007-2392-003

About Pipeline Tuning
System-Specific Problems

Ensure you do not exceed implementation-specific resource limits such as maximum
projection stack depth. In general, consult the documentation for your platform for likely
problem areas.

About Pipeline Tuning

Traditional software tuning focuses on finding and tuning hot spots, the 10% of the code
in which a program spends 90% of its time. Pipeline tuning uses a different approach: it
looks for bottlenecks, overloaded stages that are holding up other processes.

At any time, one stage of the pipeline is the bottleneck. Reducing the time spent in the
bottleneck is the only way to improve performance. Speeding up operations in other
parts of the pipeline has no effect. Conversely, doing work that further narrows the
bottleneck or that creates a new bottleneck somewhere else, is the only thing that further
degrades performance. If different parts of the hardware are responsible for different
parts of the pipeline, the workload can be increased at other parts of the pipeline without
degrading performance, as long as that part does not become a new bottleneck. In this
way, an application can sometimes be altered to draw a higher-quality image with no
performance degradation.

The goal of any program is a balanced pipeline; highest-quality rendering at optimum
speed. Different programs stress different parts of the pipeline; therefore, it is important
to understand which elements in the graphics pipeline are a program’s bottlenecks.

A Three-Stage Model of the Graphics Pipeline

The graphics pipeline in all Silicon Graphics systems consists of three conceptual stages
(see Figure 15-1). Depending on the implementation, all parts may be done by the CPU
or parts of the pipeline may be done by an accelerator card. The conceptual model is
useful in either case: it helps you to understand where your application spends its time.

The following are the three stages of the model:

The CPU subsystem The application program running on the CPU, feeding
commands to the graphics subsystem.
007-2392-003 409

15: Tuning Graphics Applications: Fundamentals
The geometry subsystem The per-polygon operations, such as coordinate
transformations, lighting, texture coordinate generation, and
clipping (may be hardware accelerated).

The raster system The per-pixel and per-fragment operations, such as the simple
operation of writing color values into the framebuffer, or more
complex operations like depth buffering, alpha blending, and
texture mapping.

Figure 15-1 A Three-Stage Model of the Graphics Pipeline

Note that this three-stage model is simpler than the actual hardware implementation in
the various models in the Silicon Graphics product line, but it is detailed enough for all
but the most subtle tuning tasks.

The amount of work required from the different pipeline stages varies among
applications. For example, consider a program that draws a small number of large
polygons. Because there are only a few polygons, the pipeline stage that does geometry
operations is lightly loaded. Because those few polygons cover many pixels on the
screen, the pipeline stage that does rasterization is heavily loaded.

To speed up this program, you must speed up the rasterization stage, either by drawing
fewer pixels, or by drawing pixels in a way that takes less time by turning off modes like
texturing, blending, or depth buffering. In addition, because spare capacity is available
in the per-polygon stage, you can increase the work load at that stage without degrading
performance. For example, you can use a more complex lighting model or define
geometry elements such that they remain the same size but look more detailed because
they are composed of a larger number of polygons.

CPU

Geometry subsystem

Raster subsystem
410 007-2392-003

About Pipeline Tuning
Note that in a software implementation, all the work is done on the host CPU. As a result,
it does not make sense to increase the work in the geometry pipeline if rasterization is the
bottleneck: you would increase the work for the CPU and decrease performance.

Isolating Bottlenecks in Your Application: Overview

The basic strategy for isolating bottlenecks is to measure the time it takes to execute a
program (or part of a program) and then change the code in ways that do not alter its
performance (except by adding or subtracting work at a single point in the graphics
pipeline). If changing the amount of work at a given stage of the pipeline does not alter
performance noticeably, that stage is not the bottleneck. If there is a noticeable difference
in performance, you have found a bottleneck.

• CPU bottlenecks

The most common bottleneck occurs when the application program does not feed
the graphics subsystem fast enough. Such programs are called CPU-limited.

To see if your application is the bottleneck, remove as much graphics work as
possible, while preserving the behavior of the application in terms of the number of
instructions executed and the way memory is accessed. Often, changing just a few
OpenGL calls is a sufficient test. For example, replacing vertex and normal calls like
glVertex3fv() and glNormal3fv() with color subroutine calls like glColor3fv()
preserves the CPU behavior while eliminating all drawing and lighting work in the
graphics pipeline. If making these changes does not significantly improve
performance, then your application has a CPU bottleneck. For more information,
see “CPU Tuning: Basics” on page 421.

• Geometry bottlenecks

Programs that create bottlenecks in the geometry (per-polygon) stage are called
transform-limited. To test for bottlenecks in geometry operations, change the
program so that the application code runs at the same speed and the same number
of pixels are filled, but the geometry work is reduced. For example, if you are using
lighting, call glDisable() with a GL_LIGHTING argument to turn off lighting
temporarily. If performance improves, your application has a per-polygon
bottleneck. For more information, see “Tuning the Geometry Subsystem” on
page 440.

• Rasterization bottlenecks
007-2392-003 411

15: Tuning Graphics Applications: Fundamentals
Programs that cause bottlenecks at the rasterization (per-pixel) stage in the pipeline
are fill-rate-limited. To test for bottlenecks in rasterization operations, shrink objects
or make the window smaller to reduce the number of active pixels. This technique
does not work if your program alters its behavior based on the sizes of objects or the
size of the window. You can also reduce the work done per pixel by turning off
per-pixel operations such as depth buffering, texturing, or alpha blending or by
removing clear operations. If any of these experiments speeds up the program, it
has a per-pixel bottleneck. For more information, see “Tuning the Raster
Subsystem” on page 448.

Usually, the following order of operations is the most expedient:

1. First determine if your application is CPU-limited using gr_osview or top and
checking whether the CPU usage is near 100%. The gr_osview program
(supported only on SGI IRIX systems) also includes statistics that indicate whether
the performance bottleneck is in the graphics subsystem or in the host.

2. Then check whether the application is fill-rate-limited by shrinking the window.

3. If the application is neither CPU-limited nor fill-rate-limited, you have to prove that
it is geometry-limited.

Note that on some systems you can have a bottleneck just in the transport layer between
the CPU and the geometry. To test whether that is the case, try sending less data; for
example, call glColor3ub() instead of glColor3f().

Many programs draw a variety of things, each of which stresses different parts of the
system. Decompose such a program into pieces and time each piece. You can then focus
on tuning the slowest pieces. For an example of such a process, see Chapter 17, “Tuning
Graphics Applications: Examples.”
412 007-2392-003

Taking Timing Measurements
Factors Influencing Performance

Pipeline tuning is described in detail in Chapter 16, “Tuning the Pipeline.” Table 15-1
provides an overview of factors that may limit rendering performance and the stages of
the pipeline involved.

Taking Timing Measurements

Timing, or benchmarking, parts of your program is an important part of tuning. It helps
you determine which changes to your code have a noticeable effect on the speed of your
application.

To achieve performance that is close to the best the hardware can achieve, start following
the more general tuning tips provided in this manual. The next step is, however, a
rigorous and systematic analysis. This section looks at some important issues regarding
benchmarking:

• “Benchmarking Basics”

• “Achieving Accurate Timing Measurements”

• “Achieving Accurate Benchmarking Results”

Table 15-1 Factors Influencing Performance

Performance Parameter Pipeline Stage

Amount of data per polygon All stages

Time of application overhead CPU subsystem (application)

Transform rate and mode setting for polygon Geometry subsystem

Total number of polygons in a frame Geometry and raster subsystem

Number of pixels filled Raster subsystem

Fill rate for the given mode settings Raster subsystem

Time of color and/or depth buffer clear Raster subsystem
007-2392-003 413

15: Tuning Graphics Applications: Fundamentals
Benchmarking Basics

A detailed analysis involves examining what your program is asking the system to do
and then calculating how long it should take based on the known performance
characteristics of the hardware. Compare this calculation of expected performance with
the performance actually observed and continue to apply the tuning techniques until the
two match more closely. At this point, you have a detailed accounting of how your
program spends its time, and you are in a strong position both to tune further and to
make appropriate decisions considering the speed-versus-quality trade-off.

The following parameters determine the performance of most applications:

• Total number of polygons in a frame

• Transform rate for the given polygon type and mode settings

• Number of pixels filled

• Fill rate for the given mode settings

• Time of color and depth buffer clear

• Time of buffer swap

• Time of application overhead

• Number of attribute changes and time per change

Achieving Accurate Timing Measurements

Consider these guidelines to get accurate timing measurements:

• Take measurements on a quiet system.

Verify that minimum activity is taking place on your system while you take timing
measurements. Other graphics programs, background processes, and network
activity can distort timing results because they use system resources. For example,
do not have applications such as top, osview, gr_osview, or Xclock running
while you are benchmarking. If possible, turn off network access as well.

• Work with local files.

Unless your goal is to time a program that runs on a remote system, make sure that
all input and output files, including the file used to log results, are local.
414 007-2392-003

Taking Timing Measurements
• Choose timing trials that are not limited by the clock resolution.

Use a high-resolution clock and make measurements over a period of time that is at
least one hundred times the clock resolution. A good rule of thumb is to benchmark
something that takes at least two seconds so that the uncertainty contributed by the
clock reading is less than one percent of the total error. To measure something that is
faster, write a loop in the example program to execute the test code repeatedly.

Note: Loops like this for timing measurements are highly recommended. Be sure to
structure your program in a way that facilitates this approach.

The function gettimeofday() provides a convenient interface to system clocks with
enough resolution to measure graphics performance over several frames. On IRIX
systems, call syssgi() with SGI_QUERY_CYCLECNTR for high-resolution timers. If
you can repeat the drawing to make a loop that takes ten seconds or so, a stopwatch
works fine and you do not need to alter your program to run the test.

• Benchmark static frames.

Verify that the code you are timing behaves identically for each frame of a given
timing trial. If the scene changes, the current bottleneck in the graphics pipeline
may change, making your timing measurements meaningless. For example, if you
are benchmarking the drawing of a rotating airplane, choose a single frame and
draw it repeatedly, instead of letting the airplane rotate and taking the benchmark
while the animation is running. Once a single frame has been analyzed and tuned,
look at frames that stress the graphics pipeline in different ways, analyzing and
tuning each frame.

• Compare multiple trials.

Run your program multiple times and try to understand variance in the trials.
Variance may be due to other programs running, system activity, prior memory
placement, or other factors.

• Call glFinish() before reading the clock at the start and at the end of the time trial.

Graphics calls can be tricky to benchmark because they do all their work in the
graphics pipeline. When a program running on the main CPU issues a graphics
command, the command is put into a hardware queue in the graphics subsystem to
be processed as soon as the graphics pipeline is ready. The CPU can immediately do
other work, including issuing more graphics commands until the queue fills up.
007-2392-003 415

15: Tuning Graphics Applications: Fundamentals
When benchmarking a piece of graphics code, you must include in your
measurements the time it takes to process all the work left in the queue after the last
graphics call. Call glFinish() at the end of your timing trial just before sampling the
clock. Also call glFinish() before sampling the clock and starting the trial to ensure
no graphics calls remain in the graphics queue ahead of the process you are timing.

• To get accurate numbers, you must perform timing trials in single-buffer mode with
no calls to glXSwapBuffers().

Because buffers can be swapped only during a vertical retrace, there is a period
between the time a glXSwapBuffers() call is issued and the next vertical retrace
when a program may not execute any graphics calls. A program that attempts to
issue graphics calls during this period is put to sleep until the next vertical retrace.
This distorts the accuracy of the timing measurement.

When making timing measurements, use glFinish() to ensure that all pixels have
been drawn before measuring the elapsed time.

• Benchmark programs should exercise graphics in a way similar to the actual
application. In contrast to the actual application, the benchmark program should
perform only graphics operations. Consider using ogldebug to extract
representative OpenGL command sequences from the program. See “ogldebug—
The OpenGL Debugger” on page 386 for more information.

Achieving Accurate Benchmarking Results

To benchmark performance for a particular code fragment, follow these steps:

1. Determine how many polygons are being drawn and estimate how many pixels
they cover on the screen. Have your program count the polygons when you read in
the database.

To determine the number of pixels filled, start by making a visual estimate. Be sure
to include surfaces that are hidden behind other surfaces, and notice whether or not
backface elimination is enabled. For greater accuracy, use feedback mode and
calculate the actual number of pixels filled.

2. Determine the transform and fill rates on the target system for the mode settings
you are using.

Refer to the product literature for the target system to determine some transform
and fill rates. Determine others by writing and running small benchmarks.
416 007-2392-003

Taking Timing Measurements
3. Divide the number of polygons drawn by the transform rate to get the time spent on
per-polygon operations.

4. Divide the number of pixels filled by the fill rate to get the time spent on per-pixel
operations.

5. Measure the time spent executing instructions on the CPU.

To determine time spent executing instructions in the CPU, perform the
graphics-stubbing experiment described in “Isolating Bottlenecks in Your
Application: Overview” on page 411.

6. On high-end systems where the processes are pipelined and happen
simultaneously, the largest of the three times calculated in steps 3, 4, and 5
determines the overall performance. On low-end systems, you may have to add the
time needed for the different processes to arrive at a good estimate.

Timing analysis takes effort. In practice, it is best to make a quick start by making some
assumptions, then refine your understanding as you tune and experiment. Ultimately,
you need to experiment with different rendering techniques and perform repeated
benchmarks, especially when the unexpected happens.

Try some of the suggestions presented in the following chapter on a small program that
you understand and use benchmarks to observe the effects. Figure 15-2 shows how you
may actually go through the process of benchmarking and reducing bottlenecks several
times. This is also demonstrated by the example presented in Chapter 17, “Tuning
Graphics Applications: Examples.”
007-2392-003 417

15: Tuning Graphics Applications: Fundamentals
Figure 15-2 Flowchart of the Tuning Process

Tuning Animation

Tuning animation requires attention to some factors not relevant in other types of
applications. This section first explores how frame rates determine animation speed and
then provides some advice for optimizing an animation’s performance.

Smooth animation requires double buffering. In double buffering, one framebuffer holds
the current frame, which is scanned out to the monitor by the video hardware, while the
rendering hardware is drawing into a second buffer that is not visible. When the new

Reduce worst bottleneck

Identify bottlenecks by benchmarking

Apply general graphics techniques
418 007-2392-003

Tuning Animation
framebuffer is ready to be displayed, the system swaps the buffers. The system must wait
until the next vertical retrace period between raster scans to swap the buffers so that each
raster scan displays an entire stable frame, rather than parts of two or more frames.

How Frame Rate Determines Animation Speed

The smoothness of an animation depends on its frame rate. The more frames rendered
per second, the smoother the motion appears. The basic elements that contribute to the
time to render each individual frame are shown in Table 15-1 on page 413.

When trying to improve animation speed, consider these points:

• A change in the time spent rendering a frame has no visible effect unless it changes
the total time to a different integer multiple of the screen refresh time.

Frame rates must be integral multiples of the screen refresh time, which is 16.7 msec
(milliseconds) for a 60 Hz monitor. If the draw time for a frame is slightly longer
than the time for n raster scans, the system waits for n+1 vertical retraces before
swapping buffers and allowing drawing to continue; so, the total frame time is
(n+1)*16.7 msec.

• If you want an observable performance increase, you must reduce the rendering
time enough to take a smaller number of 16.7-msec raster scans.

Alternatively, if performance is acceptable, you can add work without reducing
performance, as long as the rendering time does not exceed the current multiple of
the raster scan time.

• To help monitor timing improvements, turn off double buffering and then
benchmark how many frames you can draw. If you do not, it is difficult to know if
you are near a 16.7-msec boundary.

Optimizing Frame Rate Performance

The most important aid for optimizing frame rate performance is taking timing
measurements in single-buffer mode only. For more detailed information, see “Taking
Timing Measurements” on page 413.

In addition, follow these guidelines to optimize frame rate performance:

• Reduce drawing time to a lower multiple of the screen refresh time (16.7 msec on a
60 Hz monitor).
007-2392-003 419

15: Tuning Graphics Applications: Fundamentals
This is the only way to produce an observable performance increase.

• Perform non-graphics computation after glXSwapBuffers().

A program is free to do non-graphics computation during the wait cycle between
vertical retraces. Therefore, issue a glXSwapBuffers() call immediately after
sending the last graphics call for the current frame, perform computation needed
for the next frame, then execute OpenGL calls for the next frame (call
glXSwapBuffers(), and so on).

• Do non-drawing work after a screen clear.

Clearing a full screen takes time. If you make additional drawing calls immediately
after a screen clear, you may fill up the graphics pipeline and force the program to
stall. Instead, do some non-drawing work after the clear.
420 007-2392-003

Chapter 16

16. Tuning the Pipeline

Providing code fragments and examples as appropriate, this chapter presents a variety
of techniques for optimizing the different parts of the pipeline. The following topics are
used:

• “CPU Tuning: Basics” on page 421

• “CPU Tuning: Immediate Mode Drawing” on page 425

• “CPU Tuning: Display Lists” on page 424

• “Optimizing Cache and Memory Use” on page 435

• “CPU Tuning: Advanced Techniques” on page 438

• “Tuning the Geometry Subsystem” on page 440

• “Tuning the Raster Subsystem” on page 448

• “Tuning the Imaging Pipeline” on page 453

CPU Tuning: Basics

The first stage of the rendering pipeline is the traversal of the data and sending the
current rendering data to the rest of the pipeline. In theory, the entire rendering database
(scene graph) must be traversed in some fashion for each frame because both scene
content and viewer position can be dynamic.

To get the best possible CPU performance, use the following overall guidelines:

• Compile your application for optimum speed.

Compile all object files with at least -O2. Note that the compiler option for
debugging, -g, turns off all optimization. If you must run the debugger on
optimized code, you can use -g3 with -O2 with limited success. If you are not
compiling with -xansi (the default) or -ansi, you may need to include -float for
faster floating point operations.
007-2392-003 421

16: Tuning the Pipeline
On certain platforms, other compile-time options (such as -mips3 or -mips4) are
available.

• On IRIX systems, always compile for the n32 ABI, instead of the obsolete o32 ABI.
n32 is now the default for the IRIX compilers.

• Use a simple data structure and a fast traversal method.

The CPU tuning strategy focuses on developing fast database traversal for drawing
with a simple, easily accessed data structure. The fastest rendering is achieved with
an inner loop that traverses a completely flattened (non-hierarchical) database.
Most applications cannot achieve this level of simplicity for a variety of reasons. For
example, some databases occupy too much memory when completely flattened.
Note also that you run a greater risk of cache misses if you flatten the data.

When an application is CPU-limited, the entire graphics pipeline may be sitting idle for
periods of time. The following sections describe techniques for structuring application
code so that the CPU does not become the bottleneck.

Immediate Mode Drawing Versus Display Lists and Vertex Buffer Objects

When deciding whether you want to use display list or immediate mode drawing,
consider the amount of work you do in constructing your databases and using them for
purposes other than graphics. The following are three cases to consider:

• If you create models that never change and are used only for drawing, then
OpenGL display lists or vertex buffer objects are the right representation.

Display lists can be optimized in hardware-specific ways, loaded into dedicated
display list storage in the graphics subsystem, downloaded to on-board dlist RAM,
and so on. See “CPU Tuning: Display Lists” on page 424 for more information on
display lists.

• If you create models that are subject to infrequent change but are rarely used for any
purpose other than drawing, then vertext buffer objects or vertex arrays are the
right representation.

Vertex arrays are relatively compact and have modest impact on the cache. Software
renderers can process the vertices in batches; hardware renderers can process a few
triangles at a time to maximize parallelism. As long as the vertex arrays can be
retained from frame to frame so that you do not incur a lot of latency by building
them afresh each frame, they are the best solution for this case. See “Using Vertex
Arrays” on page 442 for more information.
422 007-2392-003

CPU Tuning: Basics
• If you create very dynamic models or if you use the data for heavy computations
unrelated to graphics, then the glVertex()-style interface (immediate mode
drawing) is the best choice.

Immediate mode drawing allows you to do the following:

– To maximize parallelism for hardware renderers

– To optimize your database for the other computations you need to perform

– To reduce cache thrashing

Overall, this will result in higher performance than forcing the application to use a
graphics-oriented data structure like a vertex array. Use immediate mode drawing
for large databases (which might have to be paged into main memory) and dynamic
database— for example, for morphing operations where the number of vertices is
subject to change or for progressive refinement. See “CPU Tuning: Immediate Mode
Drawing” on page 425 for tuning information.

If you are still not sure whether to choose display lists or immediate mode drawing,
consider the following advantages and disadvantages of display lists.

Display lists have the following advantages:

• You do not have to optimize traversal of the data yourself; display list traversal is
well-tuned and more efficient than user programs.

• Display lists manage their own data storage. This is particularly useful for
algorithmically generated objects.

• Display lists are significantly better for remote graphics over a network. The display
list can be cached on the remote CPU so that the data for the display list does not
have to be re-sent every frame. Furthermore, the remote CPU handles much of the
responsibility for traversal.

• Display lists are preferable for direct rendering if they contain enough primitives (a
total of about 10) because display lists are stored efficiently. If the lists are short, the
setup performance cost is not offset by the more efficient storage or saving in CPU
time.

Display lists do have the following drawbacks that may affect some applications:

• The most troublesome drawback of display lists is data expansion. To achieve fast,
simple traversal on all systems, all data is copied directly into the display list.
Therefore, the display list contains an entire copy of all application data plus
additional overhead for each command. If the application has no need for the data
007-2392-003 423

16: Tuning the Pipeline
other than drawing, it can release the storage for its copy of the data and the penalty
is negligible.

• If vertices are shared in structures more complex than the OpenGL primitives (line
strip, triangle strip, triangle fan, and quad strip), they are stored more than once.

• If the database becomes sufficiently large, paging eventually hinders performance.
Therefore, when contemplating the use of OpenGL display lists for really large
databases, consider the amount of main memory.

• The compile time for display lists may be significant.

CPU Tuning: Display Lists

In display list mode, pieces of the database are compiled into static chunks that can then
be sent to the graphics pipeline. In this case, the display list is a separate copy of the
database that can be stored in main memory in a form optimized for feeding the rest of
the pipeline.

For example, suppose you want to apply a transformation to some geometric objects and
then draw the result. If the geometric objects are to be transformed in the same way each
time, it is better to store the matrix in the display list. The database traversal task is to
hand the correct chunks to the graphics pipeline. Display lists can be recreated easily
with some additional performance cost.

Tuning for display lists focuses mainly on reducing storage requirements. Performance
improves if the data fit in the cache because this avoids cache misses when the data is
traversed again.

Follow these rules to optimize display lists:

• If possible, compile and execute a display list in two steps instead of using
GL_COMPILE_AND_EXECUTE.

• Call glDeleteLists() to delete display lists that are no longer needed.

This frees storage space used by the deleted display lists and expedites the creation
of new display lists.

• Avoid the duplication of display lists.
424 007-2392-003

CPU Tuning: Immediate Mode Drawing
For example, if you have a scene with 100 spheres of different sizes and materials,
generate one display list that is a unit sphere centered about the origin. Then, for
each sphere in the scene, follow these steps:

1. Set the material for the current sphere.

2. Issue the necessary scaling and translation commands for sizing and
positioning the sphere. Watch for the scaling of normals.

3. Invoke glCallList() to draw the unit sphere display list.

In this way, a reference to the unit sphere display list is stored instead of all of the
sphere vertices for each instance of the sphere.

• Make the display list as flat as possible, but be sure not to exceed the cache size.

Avoid using an excessive hierarchy with many invocations of glCallList(). Each
glCallList() invocation results in a lookup operation to find the designated display
list. A flat display list requires less memory and yields simpler and faster traversal.
It also improves cache coherency.

Display lists are best used for static objects. Do not put dynamic data or operations in
display lists. Instead, use a mixture of display lists for static objects and immediate mode
for dynamic operations.

Note: See Chapter 18, “System-Specific Tuning,” for potential display list optimizations
on the system you are using.

CPU Tuning: Immediate Mode Drawing

Immediate mode drawing means that OpenGL commands are executed when they are
called rather than from a display list. This style of drawing provides flexibility and
control over both storage management and drawing traversal. The trade-off for the extra
control is that you have to write your own optimized subroutines for data traversal.
Tuning, therefore, has the following two parts:

• “Optimizing the Data Organization”

• “Optimizing Database Rendering Code”
007-2392-003 425

16: Tuning the Pipeline
While you may not use each technique in this section, minimize the CPU work done at
the per-vertex level and use a simple data structure for rendering traversal.

There is no recipe for writing a peak-performance immediate mode renderer for a
specific application. To predict the CPU limitation of your traversal, design potential data
structures and traversal loops and write small benchmarks that mimic the memory
demands you expect. Experiment with optimizations and benchmark the effects.
Experimenting on small examples can save time in the actual implementation.

Optimizing the Data Organization

It is common for scenes to have hierarchical definitions. Scene management techniques
may rely on specific hierarchical information. However, a hierarchical organization of the
data raises the following performance concerns and should be used with care:

• The time spent traversing pointers to different sections of a hierarchy can create a
CPU bottleneck.

This is partly because of the number of extra instructions executed, but it is also a
result of the inefficient use of cache and memory. Overhead data not needed for
rendering is brought through the cache and can push out needed data, to cause
subsequent cache misses.

• Traversing hierarchical structures can cause excessive memory paging.

Hierarchical structures can be distributed throughout memory. It is difficult to be
sure of the exact amount of data you are accessing and of its exact location;
therefore, traversing hierarchical structures can access a costly number of pages.

• Complex operations may need access to both the geometric data and other scene
information, complicating the data structure.

• Caching behavior is often difficult to predict for dynamic hierarchical data
structures.

The following are rules for optimizing data organization:

• In general, store the geometry data used for rendering in static, contiguous buffers
rather than in the hierarchical data structures.

• Do not interlace data used to render frames and infrequently used data in memory.
Instead, include a pointer to the infrequently used data and store the data itself
elsewhere.
426 007-2392-003

CPU Tuning: Immediate Mode Drawing
• Flatten your rendering data (minimize the number of levels in the hierarchy) as
much as cache and memory considerations and your application constraints permit.

The appropriate amount of flattening depends on the system on which your
application will run.

• Balance the data hierarchy. This makes application culling (the process of
eliminating objects that do not fall within the viewing frustum) more efficient and
effective.

Optimizing Database Rendering Code

This section includes some suggestions for writing peak-performance code for inner
rendering loops.

During rendering, an application ideally spends most of its time traversing the database
and sending data to the graphics pipeline. Hot spots are instructions in the display loop
that are executed many times every frame. Any extra overhead in a hot spot is greatly
magnified by the number of times it is executed.

When using simple, high-performance graphics primitives, the application is even more
likely to be CPU-limited. The data traversal must be optimized so that it does not become
a bottleneck.

During rendering, the sections of code that actually issue graphics commands should be
the hot spots in application code. These subroutines should use peak-performance
coding methods. Small improvements to a line that is executed for every vertex in a
database accumulate to have a noticeable effect when the entire frame is rendered.

The rest of this section looks at examples and techniques for optimizing immediate mode
rendering:

• “Examples for Optimizing Data Structures for Drawing”

• “Examples for Optimizing Program Structure”

• “Using Specialized Drawing Subroutines and Macros”

• “Preprocessing Drawing Data (Meshes and Vertex Loops)”
007-2392-003 427

16: Tuning the Pipeline
Examples for Optimizing Data Structures for Drawing

Follow these suggestions for optimizing how your application accesses data:

• One-Dimensional Arrays. Use one-dimensional arrays traversed with a pointer
that always holds the address for the current drawing command. Avoid
array-element addressing or multidimensional array accesses.

bad: glVertex3fv(&data[i][j][k]);
good: glVertex3fv(dataptr);

• Adjacent structures. Keep all static drawing data for a given object together in a
single contiguous array traversed with a single pointer. Keep this data separate
from other program data, such as pointers to drawing data or interpreter flags.

• Flat structures. Use flat data structures and do not use multiple-pointer indirection
when rendering, as shown in the following:

Bad glVertex3fv(object->data->vert);

OK glVertex3fv(dataptr->vert);

Good glVertex3fv(dataptr);

The following code fragment is an example of efficient code to draw a single
smooth-shaded, lit polygon. Notice that a single data pointer is used. It is updated
once at the end of the polygon after the glEnd() call.

glBegin(GL_QUADS);
glNormal3fv(ptr);
glVertex3fv(ptr+3);
glNormal3fv(ptr+6);
glVertex3fv(ptr+9);
glNormal3fv(ptr+12);
glVertex3fv(ptr+15);
glNormal3fv(ptr+18);
glVertex3fv(ptr+21);
glEnd();
ptr += 24;
428 007-2392-003

CPU Tuning: Immediate Mode Drawing
Examples for Optimizing Program Structure

The following are areas for optimizing your program structure:

• Loop unrolling (1). Avoid short, fixed-length loops especially around vertices.
Instead, unroll these loops:

Bad for(i=0; i < 4; i++){

glColor4ubv(poly_colors[i]);

glVertex3fv(poly_vert_ptr[i]);

}

Good glColor4ubv(poly_colors[0]);

glVertex3fv(poly_vert_ptr[0]);

glColor4ubv(poly_colors[1]);

glVertex3fv(poly_vert_ptr[1]);

glColor4ubv(poly_colors[2]);

glVertex3fv(poly_vert_ptr[2]);

glColor4ubv(poly_colors[3]);

glVertex3fv(poly_vert_ptr[3]);

• Loop unrolling (2). Minimize the work done in a loop to maintain and update
variables and pointers. Unrolling can often assist in this:

Bad glNormal3fv(*(ptr++));

glVertex3fv(*(ptr++));

or

glNormal3fv(ptr); ptr += 4;

glVertex3fv(ptr); ptr += 4;

Good glNormal3fv(*(ptr));

glVertex3fv(*(ptr+1));

glNormal3fv(*(ptr+2));

glVertex3fv(*(ptr+3));

or

glNormal3fv(ptr);

glVertex3fv(ptr+4);

glNormal3fv(ptr+8);

glVertex3fv(ptr+12);
007-2392-003 429

16: Tuning the Pipeline
Note: On current MIPS processors, loop unrolling may hurt performance more than
it helps; so, use it with caution. In fact, unrolling too far hurts on any processor
because the loop may use an excessive portion of the cache. If it uses a large enough
portion of the cache, it may interfere with itself; that is, the whole loop will not fit (not
likely) or it may conflict with the instructions of one of the subroutines it calls.

• Loops accessing buffers. Minimize the number of different buffers accessed in a
loop:

Bad glNormal3fv(normaldata);

glTexCoord2fv(texdata);

glVertex3fv(vertdata);

Good glNormal3fv(dataptr);

glTexCoord2fv(dataptr+3);

glVertex3fv(dataptr+5);

• Loop end conditions. Make end conditions on loops as trivial as possible; for
example, compare the loop variable to a constant, preferably zero. Decrementing
loops are often more efficient than their incrementing counterparts:

Bad

for (i = 0; i < (end-beginning)/size; i++)
{...}

Better

for (i = beginning; i < end; i += size)
{...}

Good

for (i = total; i > 0; i--)
{...}

• Conditional statements.

– Use switch statements instead of multiple if-else-if control structures.

– Avoid if tests around vertices; use duplicate code instead.

• Subroutine prototyping. Prototype subroutines in ANSI C style to avoid run-time
typecasting of parameters:

void drawit(float f, int count)
{
}

430 007-2392-003

CPU Tuning: Immediate Mode Drawing
• Multiple primitives. Send multiple primitives between glBegin()/glEnd() pairs
whenever possible:

glBegin(GL_TRIANGLES)
....
..../* many triangles */
....
glEnd

glBegin(GL_QUADS)
....
..../* many quads */
....
glEnd

Using Specialized Drawing Subroutines and Macros

This section describes several ways to improve performance by making appropriate
choices about display modes, geometry, and so on.

Make decisions about which geometry to display and which modes to use at the highest
possible level in the program organization.

The drawing subroutines should be highly specialized leaves in the program’s call tree.
Decisions made too far down the tree can be redundant. For example, consider a
program that switches back and forth between flat-shaded and smooth-shaded drawing.
Once this choice has been made for a frame, the decision is fixed and the flag is set. For
example, the following code is inefficient:

/* Inefficient way to toggle modes */
draw_object(float *data, int npolys, int smooth) {
int i;
glBegin(GL_QUADS);
for (i = npolys; i > 0; i--) {

if (smooth) glColor3fv(data);
glVertex3fv(data + 4);
if (smooth) glColor3fv(data + 8);
glVertex3fv(data + 12);
if (smooth) glColor3fv(data + 16);
glVertex3fv(data + 20);
if (smooth) glColor3fv(data + 24);
glVertex3fv(data + 28);

}
glEnd();
007-2392-003 431

16: Tuning the Pipeline
Even though the program chooses the drawing mode before entering the draw_object()
routine, the flag is checked for every vertex in the scene. A simple if test may seem
innocuous; however, when done on a per-vertex basis, it can accumulate a noticeable
amount of overhead.

Compare the number of instructions in the disassembled code for a call to glColor3fv()
first without and then with the if test.

Assembly code for a call without the if test (six instructions):

lw a0,32(sp)
lw t9,glColor3fv
addiu a0,a0,32
jalr ra,t9
nop
lw gp,24(sp)

Assembly code for a call with an if test (eight instructions):

lw t7,40(sp)
beql t7,zero,0x78
nop
lw t9,glColor3fv
lw a0,32(sp)
jalr ra,t9
addiu a0,a0,32
lw gp,24(sp)

Notice the two extra instructions required to implement the if test. The extra if test per
vertex increases the number of instructions executed for this otherwise optimal code by
33%. These effects may not be visible if the code is used only to render objects that are
always graphics-limited. However, if the process is CPU-limited, then moving decision
operations such as this if test higher up in the program structure improves
performance.

Preprocessing Drawing Data (Meshes and Vertex Loops)

Putting some extra effort into generating a simpler database makes a significant
difference when traversing that data for display. A common tendency is to leave the data
in a format that is good for loading or generating the object, but not optimal for actually
displaying it. For peak performance, do as much of the work as possible before
rendering.
432 007-2392-003

CPU Tuning: Immediate Mode Drawing
Preprocessing turns a difficult database into a database that is easy to render quickly.
This is typically done at initialization or when changing from a modeling to a
fast-rendering mode. This section describes preprocessing meshes and vertex loops to
illustrate this point.

Preprocessing Meshes Into Fixed-Length Strips

Preprocessing can be used to turn general meshes into fixed-length strips.

The following sample code shows a commonly used, but inefficient, way to write a
triangle strip render loop:

float* dataptr;
...
while (!done) switch(*dataptr) {

case BEGINSTRIP:
glBegin(GL_TRIANGLE_STRIP);
dataptr++;
break;

case ENDSTRIP:
glEnd();
dataptr++;
break;

case EXIT:
done = 1;
break;

default: /* have a vertex !!! */
glNormal3fv(dataptr);
glVertex3fv(dataptr + 4);
dataptr += 8;

}

This traversal method incurs a significant amount of per-vertex overhead. The loop is
evaluated for every vertex and every vertex must also be checked to make sure that it is
not a flag. These checks waste time and also bring all of the object data through the cache,
reducing the performance advantage of triangle strips. Any variation of this code that
has per-vertex overhead is likely to be CPU-limited for most types of simple graphics
operations.
007-2392-003 433

16: Tuning the Pipeline
Preprocessing Vertex Loops

Preprocessing is also possible for vertex loops, as shown in the following:

glBegin(GL_TRIANGLE_STRIP);
for (i=num_verts; i > 0; i--) {

glNormal3fv(dataptr);
glVertex3fv(dataptr+4);
dataptr += 8;
}

glEnd();

For peak immediate mode performance, precompile strips into specialized primitives of
fixed length. Only a few fixed lengths are needed. For example, use strips that consist of
12, 8, and 2 primitives.

Note: The optimal strip length may vary depending on the hardware platform. For more
information, see Chapter 18, “System-Specific Tuning.”

The specialized strips are sorted by size, resulting in the efficient loop shown in this
sample code:

/* dump out N 8-triangle strips */
for (i=N; i > 0; i--) {

glBegin(GL_TRIANGLE_STRIP);
glNormal3fv(dataptr);
glVertex3fv(dataptr+4);
glNormal3fv(dataptr+8);
glVertex3fv(dataptr+12);
glNormal3fv(dataptr+16);
glVertex3fv(dataptr+20);
glNormal3fv(dataptr+24);
glVertex3fv(datatpr+28);
...
glEnd();
dataptr += 64;

}

A mesh of length 12 is about the maximum for unrolling. Unrolling helps to reduce the
overall cost-per-loop overhead but, after a point, it produces no further gain.
434 007-2392-003

Optimizing Cache and Memory Use
Over-unrolling eventually hurts performance by increasing code size and reducing
effectiveness of the instruction cache. The degree of unrolling depends on the processor;
run some benchmarks to understand the optimal program structure on your system.

Optimizing Cache and Memory Use

This section first provides some background information about the structure of the cache
and about memory lookup. It then gives some tips for optimizing cache and memory use.

Memory Organization

On most systems, memory is structured as a hierarchy that contains a small amount of
faster, more expensive memory at the top and a large amount of slower memory at the
base. The hierarchy is organized from registers in the CPU at the top down to the disks
at the bottom. As memory locations are referenced, they are automatically copied into
higher levels of the hierarchy; so, data that is referenced most often migrates to the fastest
memory locations.

The following are the areas of concern:

• The cache feeds data to the CPU, and cache misses can slow down your program.

Each processor has instruction caches and data caches. The purpose of the caches is
to feed data and instructions to the CPU at maximum speed. When data is not
found in the cache, a cache miss occurs and a performance penalty is incurred as
data is brought into the cache.

• The translation-lookaside buffer (TLB) keeps track of the location of frequently used
pages of memory. If a page translation is not found in the TLB, a delay is incurred
while the system looks up the page and enters its translation.

The goal of machine designers and programmers is to maximize the chance of finding
data as high up in the memory hierarchy as possible. To achieve this goal, algorithms for
maintaining the hierarchy, embodied in the hardware and the operating system, assume
that programs have locality of reference in both time and space; that is, programs keep
frequently accessed locations close together. Performance increases if you respect the
degree of locality required by each level in the memory hierarchy.

Even applications that appear not to be memory-intensive, in terms of total number of
memory locations accessed, may suffer unnecessary performance penalties for inefficient
007-2392-003 435

16: Tuning the Pipeline
allocation of these resources. An excess of cache misses, especially misses on read
operations, can force the most optimized code to be CPU-limited. Memory paging causes
almost any application to be severely CPU-limited.

Minimizing Paging

This section provides some guidelines for minimizing memory paging:

• “Minimizing Lookups”

• “Minimizing Cache Misses”

• “Measuring Cache-Miss and Page-Fault Overhead”

Minimizing Lookups

To minimize page lookups, follow these guidelines:

• Keep frequently used data within a minimal number of pages. Starting with IRIX
6.5, each page consists of 16 KB. In earlier versions of IRIX, each page consists of 4
KB (16 KB in high-end systems). Minimize the number of pages referenced in your
program by keeping data structures within as few pages as possible. Use osview to
verify that no TLB misses are occurring.

• Store and access data in flat, sequential data structures particularly for frequently
referenced data. Every pointer indirection could result in the reading of a new page.
This is guaranteed to cause performance problems with CPUs like R10000 that try
to do instructions in parallel.

• In large applications (which cause memory swapping), use mpin() to lock
important memory into RAM.

Minimizing Cache Misses

Each processor may have first-level instruction and data caches on chip and have
second-level caches that are bigger but somewhat slower. The sizes of these caches vary;
you can use the hinv command to determine the sizes on your system. The first-level
data cache is always a subset of the data in the second-level cache.

Memory access is much faster if the data is already loaded into the first-level cache. When
your program accesses data that is not in one of the caches, a cache miss results. This
causes a cache line of several bytes, including the data you just accessed, to be read from
436 007-2392-003

Optimizing Cache and Memory Use
memory and stored in the cache. The size of this transaction varies from machine to
machine. Caches are broken down into lines, typically 32-128 bytes. When a cache miss
occurs, the corresponding line is loaded from the next level down in the hierarchy.

Because cache misses are costly, try to minimize them by following these steps:

• Keep frequently accessed data together. Store and access frequently used data in
flat, sequential files and structures and avoid pointer indirection. In this way, the
most frequently accessed data remains in the first-level cache wherever possible.

• Access data sequentially. If you are accessing words sequentially, each cache miss
brings in 32 or more words of needed data; if you are accessing every 32nd word,
each cache miss brings in one needed word and 31 unneeded words, degrading
performance by up to a factor of 32.

• Avoid simultaneously traversing several large independent buffers of data, such as
an array of vertex coordinates and an array of colors within a loop. There can be
cache conflicts between the buffers. Instead, pack the contents into one interleaved
buffer when possible. If this packing forces a big increase in the size of the data, it
may not be the right optimization for that program. If you are using vertex arrays,
try using interleaved arrays.

Second-level data cache misses also increase bus traffic, which can be a problem in a
multiprocessing application. This can happen with multiple processes traversing very
large data sets. See “Immediate Mode Drawing Versus Display Lists and Vertex Buffer
Objects” on page 422 for additional information.

Measuring Cache-Miss and Page-Fault Overhead

To find out if cache and memory usage are a significant part of your CPU limitation,
follow these guidelines:

• Use osview to monitor your application.

• A more rigorous way to estimate the time spent on memory access is to compare the
execution-profiling results collected with PC sampling with those of basic block
counting. Perform each test with and without calls to glVertex3fv().

– PC sampling in Speedshop gives a real-time estimate of the time spent in
different sections of the code.

– Basic block counting from Speedshop gives an ideal estimate of how much time
should be spent, not including memory references.

See the speedshop man page or the Speedshop User’s Guide for more information.
007-2392-003 437

16: Tuning the Pipeline
PC sampling includes time for system overhead; so, it always predicts longer
execution than basic block counting. However, your PC sample time should not be
more than 1.5 times the time predicted by Speedshop.

The CASEVision/WorkShop tools, in particular the performance analyzer, can also
help with those measurements. The WorkShop Overview introduces the tools.

CPU Tuning: Advanced Techniques

After you have applied the techniques discussed in the previous sections, consider using
the following advanced techniques to tune CPU-limited applications:

• “Mixing Computation With Graphics”

• “Examining Assembly Code”

• “Using Additional Processors for Complex Scene Management”

• “Modeling to the Graphics Pipeline”

Mixing Computation With Graphics

When you are fine-tuning an application, interleaving computation and graphics can
make it better balanced and therefore more efficient. Key places for interleaving are after
glXSwapBuffers(), glClear(), and drawing operations that are known to be fill-limited
(such as drawing a backdrop or a ground plane or any other large polygon).

A glXSwapBuffers() call creates a special situation. After calling glXSwapBuffers(), an
application may be forced to wait for the next vertical retrace (in the worst case, up to
16.7 msecs) before it can issue more graphics calls. For a program drawing 10 frames per
second, 15% of the time (worst case) can be spent waiting for the buffer swap to occur.

In contrast, non-graphic computation is not forced to wait for a vertical retrace.
Therefore, if there is a section of computation that must be done every frame that
includes no graphics calls, it can be done after the glXSwapBuffers() instead of causing
a CPU limitation during drawing.

Clearing the screen is a time-consuming operation. Doing non-graphics computation
immediately after the clear is more efficient than sending additional graphics requests
down the pipeline and being forced to wait when the pipeline’s input queue overflows.
438 007-2392-003

CPU Tuning: Advanced Techniques
Experimentation is required to do the following:

• To determine where the application is demonstrably graphics-limited

• To ensure that inserting the computation does not create a new bottleneck

For example, if a new computation references a large section of data that is not in the data
cache, the data for drawing may be swapped out for the computation, then swapped
back in for drawing. The result is worse performance than the original organization.

Examining Assembly Code

When tuning inner rendering loops, examining assembly code can be helpful. You need
not be an expert assembly coder to interpret the results. Just looking at the number of
extra instructions required for an apparently innocuous operation is often informative.

On IRIX systems, use the dis command to disassemble optimized code for a given
procedure and to correlate assembly code lines with line numbers from the source code
file. This correlation is especially helpful for examining optimized code. The -S option
to the cc command produces a .s file of assembly output, complete with your original
comments.

On Silicon Graphics Prism systems, use the objdump –d [–S] command instead of the
dis command. The –S option is available on the gcc command but comments are not
included.

Using Additional Processors for Complex Scene Management

If your application is running on systems with multiple processors, consider supplying
an option for doing scene management on additional processors to relieve the rendering
processor from the burden of expensive computation.

Using additional processors may also reduce the amount of data rendered for a given
frame. Simplifying or reducing rendering for a given scene can help reduce bottlenecks
in all parts of the pipeline, as well as the CPU. One example is removing unseen or
backfacing objects. Another common technique is to use an additional processor to
determine when objects are going to appear very far away and use a simpler model with
fewer polygons and less expensive modes for distant objects.
007-2392-003 439

16: Tuning the Pipeline
Modeling to the Graphics Pipeline

The modeling of the database directly affects the rendering performance of the resulting
application and therefore has to match the performance characteristics of the graphics
pipeline and make trade-offs with the database traversals. Graphics pipelines that
support connected primitives, such as triangle meshes, benefit from having long meshes
in the database. However, the length of the meshes affects the resulting database
hierarchy, and long strips through the database do not cull well with simple bounding
geometry.

Model objects with an understanding of inherent bottlenecks in the graphics pipeline:

• Pipelines that are severely fill-limited benefit from having objects modeled with cut
polygons and more vertices and fewer overlapping parts, which decreases depth
complexity.

• Pipelines that are easily geometry- or host-limited benefit from modeling with
fewer polygons.

There are several other modeling tricks that can reduce database complexity:

• Use textured polygons to simulate complex geometry. This is especially useful if the
graphics subsystem supports the use of textures where the alpha component of the
texture marks the transparency of the object. Textures can be used as cut-outs for
objects like fences and trees.

• Use textures for simulating particles, such as smoke.

• Use textured polygons as single-polygon billboards. Billboards are polygons that
are fixed at a point and rotated about an axis, or about a point, so that the polygon
always faces the viewer. Billboards are useful for symmetric objects such as light
posts and trees and also for volume objects, such as smoke. Billboards can also be
used for distant objects to save geometry. However, the managing of billboard
transformations can be expensive and affect both the cull and the draw processes.

The sprite extension can be used for billboards on certain platforms; see
“SGIX_sprite—The Sprite Extension” on page 250.

Tuning the Geometry Subsystem

The geometry subsystem is the part of the pipeline in which per-polygon operations,
such as coordinate transformations, lighting, texture coordinate generation, and clipping
440 007-2392-003

Tuning the Geometry Subsystem
are performed. The geometry hardware may also be used for operations that are not
strictly transform operations, such as convolution.

This section presents the following techniques for tuning the geometry subsystem:

• “Using Peak-Performance Primitives for Drawing”

• “Using Vertex Arrays”

• “Using Display Lists Appropriately”

• “Optimizing Transformations”

• “Optimizing Lighting Performance”

• “Choosing Modes Wisely”

• “Advanced Transform-Limited Tuning Techniques”

Using Peak-Performance Primitives for Drawing

This section describes how to draw geometry with optimal primitives. Consider the
following guidelines to optimize drawing:

• Use connected primitives (line strips, triangle strips, triangle fans, and quad strips).
Put at least 8 primitives in a sequence—12 to 16 if possible.

Connected primitives are desirable because they reduce the amount of data sent to
the graphics subsystem and the amount of per-polygon work done in the pipeline.
Typically, about 12 vertices per glBegin()/glEnd() block are required to achieve peak
rates (but this can vary depending on your hardware platform). For lines and
points, it is especially beneficial to put as many vertices as possible in a
glBegin()/glEnd() sequence. For information on the most efficient vertex numbers
for the system you are using, see Chapter 18, “System-Specific Tuning.”

• Use “well-behaved” polygons, convex and planar, with only three or four vertices.

If you use concave and self-intersecting polygons, they are broken down into
triangles by OpenGL. For high-quality rendering, you must pass the polygons to
GLU to be tessellated. This can make them prohibitively expensive. Nonplanar
polygons and polygons with large numbers of vertices are more likely to exhibit
shading artifacts.
007-2392-003 441

16: Tuning the Pipeline
If your database has polygons that are not well-behaved, perform an initial
one-time pass over the database to transform the troublemakers into well-behaved
polygons and use the new database for rendering. Using connected primitives
results in additional gains.

• Minimize the data sent per vertex.

Polygon rates can be affected directly by the number of normals or colors sent per
polygon. Setting a color or normal per vertex, regardless of the glShadeModel()
used, may be slower than setting only a color per polygon, because of the time spent
sending the extra data and resetting the current color. The number of normals and
colors per polygon also directly affects the size of a display list containing the object.

• Group like primitives and minimize state changes to reduce pipeline revalidation.

Using Vertex Arrays

Vertex arrays offer the following benefits:

• The OpenGL implementation can take advantage of uniform data formats.

• The glInterleavedArrays() call lets you specify packed vertex data easily. Packed
vertex formats are typically faster for OpenGL to process.

• The glDrawArrays() call reduces the overhead for subroutine calls.

• The glDrawElements() call reduces the overhead for subroutine calls and also
reduces per-vertex calculations because vertices are reused.

Using Display Lists Appropriately

You can often improve geometry performance by storing frequently-used commands in
a display list. If you plan to redraw the same geometry multiple times, or if you have a
set of state changes that are applied multiple times, consider using display lists. Display
lists allow you to define the geometry or state changes once and execute them multiple
times. Some graphics hardware stores display lists in dedicated memory or stores data
in an optimized form for rendering (see also “CPU Tuning: Display Lists” on page 424).
442 007-2392-003

Tuning the Geometry Subsystem
Storing Data Efficiently

Putting some extra effort into generating a more efficient database makes a significant
difference when traversing the data for display. A common tendency is to leave the data
in a format that is good for loading or generating the object but not optimal for actually
displaying the data. For peak performance, do as much work as possible before
rendering. Preprocessing of data is typically performed at initialization time or when
changing from a modeling mode to a fast rendering mode.

Minimizing State Changes

Your program will almost always benefit if you reduce the number of state changes. A
good way to do this is to sort your scene data according to what state is set and render
primitives with the same state settings together. Primitives should be sorted by the most
expensive state settings first. Typically it is expensive to change texture binding, material
parameters, fog parameters, texture filter modes, and the lighting model. However, some
experimentation will be required to determine which state settings are most expensive
on your system. For example, on systems that accelerate rasterization, it may not be very
expensive to disable or enable depth testing or to change rasterization controls such as
the depth test function. But if your system has software rasterization, this may cause the
graphics pipeline to be revalidated.

It is also important to avoid redundant state changes. If your data is stored in a
hierarchical database, make decisions about which geometry to display and which
modes to use at the highest possible level. Decisions that are made too far down the tree
can be redundant.

Optimizing Transformations

OpenGL implementations are often able to optimize transform operations if the matrix
type is known. Use the following guidelines to achieve optimal transform rates:

• Call glLoadIdentity() to initialize a matrix rather than loading your own copy of the
identity matrix.

• Use specific matrix calls such as glRotate*(), glTranslate*(), and glScale*() rather
than composing your own rotation, translation, or scale matrices and calling
glLoadMatrix() or glMultMatrix().
007-2392-003 443

16: Tuning the Pipeline
• If possible, use single precision such as glRotatef(), glTranslatef(), and glScalef().
On most systems, this may not be critical because the CPU converts doubles to
floats.

Optimizing Lighting Performance

OpenGL offers a large selection of lighting features. Some are virtually free in terms of
computational time and others offer sophisticated effects with some performance
penalty. For some features, the penalties may vary depending on your hardware. Be
prepared to experiment with the lighting configuration.

As a general rule, use the simplest possible lighting model, a single infinite light with an
infinite viewer. For some local effects, try replacing local lights with infinite lights and a
local viewer.

You normally will not notice a performance degradation when using one infinite light,
unless you use lit textures or color index lighting.

Use the following settings for peak-performance lighting:

• Single infinite light

– Ensure that GL_LIGHT_MODEL_LOCAL_VIEWER is set to GL_FALSE in
glLightModel() (the default).

– Ensure that GL_LIGHT_MODEL_TWO_SIDE is set to GL_FALSE in
glLightModel() (the default).

– Local lights are noticeably more expensive than infinite lights. Avoid lighting
where the fourth component of GL_LIGHT_POSITION is nonzero.

– There may be a sharp drop in lighting performance when switching from one
light to two lights, but the drop for additional lights is likely to be more gradual.

• RGB mode

• GL_COLOR_MATERIAL disabled

• GL_NORMALIZE disabled

Because this is usually necessary when the modelview matrix includes a scaling
transformation, consider preprocessing the scene to eliminate scaling.
444 007-2392-003

Tuning the Geometry Subsystem
Lighting Operations With Noticeable Performance Costs

Follow these additional guidelines to achieve peak lighting performance:

• Do not change material parameters frequently.

Changing material parameters can be expensive. If you need to change the material
parameters many times per frame, consider rearranging the scene traversal to
minimize material changes. Also, consider using glColorMaterial() to change
specific parameters automatically rather than using glMaterial() to change
parameters explicitly.

The following code fragment illustrates how to change ambient and diffuse
material parameters at every polygon or at every vertex:

glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
/* Draw triangles: */
glBegin(GL_TRIANGLES);
/* Set ambient and diffuse material parameters: */
glColor4f(red, green, blue, alpha);
glVertex3fv(...);glVertex3fv(...);glVertex3fv(...);
glColor4f(red, green, blue, alpha);
glVertex3fv(...);glVertex3fv(...);glVertex3fv(...);
...
glEnd();

• Disable two-sided lighting unless your application requires it.

Two-sided lighting illuminates both sides of a polygon. This is much faster than the
alternative of drawing polygons twice. However, using two-sided lighting is
significantly slower than one-sided lighting for a single rendering object.

• Disable GL_NORMALIZE.

If possible, provide unit-length normals and do not call glScale*() to avoid the
overhead of GL_NORMALIZE. On some OpenGL implementations, it may be faster
to simply rescale the normal instead of renormalizing it when the modelview
matrix contains a uniform scale matrix.

• Avoid scaling operations if possible.

• Avoid changing the GL_SHININESS material parameter if possible. Setting a new
GL_SHININESS value requires significant computation each time.
007-2392-003 445

16: Tuning the Pipeline
Choosing Modes Wisely

OpenGL offers many features that create sophisticated effects with excellent
performance. For each feature, consider the trade-off between effects, performance, and
quality.

• Turn off features when they are not required.

Once a feature has been turned on, it can slow the transform rate even when it has
no visible effect.

For example, the use of fog can slow the transform rate of polygons even when the
polygons are too close to show fog and even when the fog density is set to zero. For
these conditions, turn off fog explicitly with the following call:

glDisable(GL_FOG)

• Minimize expensive mode changes and sort operations by the most expensive
mode. Specifically, consider these tips:

– Use small numbers of texture maps to avoid the cost of switching between
textures. If you have many small textures, consider combining them into a
single larger, tiled texture. Rather than switching to a new texture before
drawing a textured polygon, choose texture coordinates that select the
appropriate small texture tile within the large texture.

– Avoid changing the projection matrix or changing glDepthRange() parameters.

– When fog is enabled, avoid changing fog parameters.

– Turn fog off for rendering with a different projection (for example,
orthographic) and turn it back on when returning to the normal projection.

• Use flat shading whenever possible.

Flat shading reduces the number of lighting computations from one per vertex to
one per primitive and also reduces the amount of data that must be passed from the
CPU through the graphics pipeline for each primitive. This is particularly important
for high-performance line drawing.

• Beware of excessive mode changes, even mode changes considered cheap, such as
changes to shade model, depth buffering, and blending function.
446 007-2392-003

Tuning the Geometry Subsystem
Advanced Transform-Limited Tuning Techniques

This section describes advanced techniques for tuning transform-limited drawing. Use
the following guidelines to draw objects with complex surface characteristics:

• Use textures to replace complex geometry.

Textured polygons can be significantly slower than their non-textured counterparts.
However, texture can be used instead of extra polygons to add detail to a geometric
object. This can provide simplified geometry with a net speed increase and an
improved picture, as long as it does not cause the program to become fill-limited.
Texturing performance varies across the product line; so, this technique might not
be equally effective on all systems. Experimentation is usually necessary.

• Use glAlphaFunc() in conjunction with one or more textures to give the effect of
rather complex geometry on a single polygon.

Consider drawing an image of a complex object by texturing it onto a single
polygon. Set alpha values to zero in the texture outside the image of the object. (The
edges of the object can be antialiased by using alpha values between zero and one.)
Orient the polygon to face the viewer. To prevent pixels with zero alpha values in
the textured polygon from being drawn, make the following call:

glAlphaFunc(GL_NOTEQUAL, 0.0)

This effect is often used to create objects like trees that have complex edges or many
holes through which the background should be visible (or both).

• Eliminate objects or polygons that will be out of sight or too small.

• Use fog to increase visual detail without drawing small background objects.

• Use culling on a separate processor to eliminate objects or polygons that will be out
of sight or too small to see.

• Use occlusion culling: draw large objects that are in front first, then read back the
depth buffer, and use it to avoid drawing objects that are hidden.
007-2392-003 447

16: Tuning the Pipeline
Tuning the Raster Subsystem

In the raster system, per-pixel and per-fragment operations take place. The operations
include writing color values into the framebuffer or more complex operations like depth
buffering, alpha blending, and texture mapping.

An explosion of both data and operations is required to rasterize a polygon as individual
pixels. Typically, the operations include depth comparison, Gouraud shading, color
blending, logical operations, texture mapping, and possibly antialiasing. This section
describes the following techniques for tuning fill-limited drawing:

• “Using Backface/Frontface Removal”

• “Minimizing Per-Pixel Calculations”

• “Using Clear Operations”

• “Optimizing Texture Mapping”

Using Backface/Frontface Removal

To reduce fill-limited drawing, use backface/frontface removal. For example, if you are
drawing a sphere, half of its polygons are backfacing at any given time.
Backface/frontface removal is done after transformation calculations but before
per-fragment operations. This means that backface removal may make transform-limited
polygons somewhat slower but make fill-limited polygons significantly faster. You can
turn on backface removal when you are drawing an object with many backfacing
polygons, then turn it off again when drawing is completed.

Minimizing Per-Pixel Calculations

One way to improve fill-limited drawing is to reduce the work required to render
fragments. This section describes the following ways to do this:

• “Avoiding Unnecessary Per-Fragment Operations”

• “Using Expensive Per-Fragment Operations Efficiently”

• “Using Depth Buffering Efficiently”

• “Balancing Polygon Size and Pixel Operations”

• “Other Considerations”
448 007-2392-003

Tuning the Raster Subsystem
Avoiding Unnecessary Per-Fragment Operations

Turn off per-fragment operations for objects that do not require them and structure the
drawing process to minimize their use without causing excessive toggling of modes.

For example, if you are using alpha blending to draw some partially transparent objects,
make sure that you disable blending when drawing the opaque objects. Also, if you
enable alpha testing to render textures with holes through which the background can be
seen, be sure to disable alpha testing when rendering textures or objects with no holes. It
also helps to sort primitives so that primitives that require alpha blending or alpha
testing to be enabled are drawn at the same time. Finally, you may find it faster to render
polygons such as terrain data in back-to-front order.

Organizing Drawing to Minimize Computation

Organizing drawing to minimize per-pixel computation can significantly enhance
performance. For example, to minimize depth buffer requirements, disable depth
buffering when drawing large background polygons, then draw more complex
depth-buffered objects.

Using Expensive Per-Fragment Operations Efficiently

Use expensive per-fragment operations with care. Per-fragment operations, in the rough
order of increasing cost (with flat shading being the least expensive and multisampling
the most expensive), are as follows:

1. Flat shading

2. Gouraud shading

3. Depth buffering

4. Alpha blending

5. Texturing

6. Multisampling

Note: The actual order depends on your system.
007-2392-003 449

16: Tuning the Pipeline
Each operation can independently slow down the pixel fill rate of a polygon, although
depth buffering can help reduce the cost of alpha blending or multisampling for hidden
polygons.

Using Depth Buffering Efficiently

Any rendering operation can become fill-limited for large polygons. Clever structuring
of drawing can eliminate the need for certain fill operations. For example, if large
backgrounds are drawn first, they do not need to be depth-buffered. It is better to disable
depth buffering for the backgrounds and then enable it for other objects where it is
needed.

For example, flight simulators use this technique. Depth buffering is disabled; the sky,
ground, and then the polygons lying flat on the ground (runway and grid) are drawn
without suffering a performance penalty. Then depth buffering is enabled for drawing
the mountains and airplanes.

There are other special cases in which depth buffering might not be required. For
example, terrain, ocean waves, and 3D function plots are often represented as height
fields (X-Y grids with one height value at each lattice point). It is straightforward to draw
height fields in back-to-front order by determining which edge of the field is furthest
away from the viewer, then drawing strips of triangles or quadrilaterals parallel to that
starting edge and working forward. The entire height field can be drawn without depth
testing, provided it does not intersect any piece of previously-drawn geometry. Depth
values need not be written at all, unless subsequently-drawn depth-buffered geometry
might intersect the height field; in that case, depth values for the height field should be
written, but the depth test can be avoided by calling the following function:

glDepthFunc(GL_ALWAYS)
450 007-2392-003

Tuning the Raster Subsystem
Balancing Polygon Size and Pixel Operations

The pipeline is generally optimized for polygons that have 10 pixels on a side. However,
you may need to work with polygons larger or smaller than that depending on the other
operations taking place in the pipeline:

• If the polygons are too large for the fill rate to keep up with the rest of the pipeline,
the application is fill-rate limited. Smaller polygons balance the pipeline and
increase the polygon rate.

• If the polygons are too small for the rest of the pipeline to keep up with filling, then
the application is transform-limited. Larger and fewer polygons, or fewer vertices,
balance the pipeline and increase the fill rate.

If you are drawing very large polygons such as backgrounds, performance will improve
if you use simple fill algorithms. For example, do not set glShadeModel() to GL_SMOOTH
if smooth shading is not required. Also, disable per-fragment operations such as depth
buffering, if possible. If you need to texture the background polygons, consider using
GL_REPLACE as the texture environment.

Other Considerations

The following are other ways to improve fill-limited drawing:

• Use alpha blending with discretion.

Alpha blending is an expensive operation. A common use of alpha blending is for
transparency, where the alpha value denotes the opacity of the object. For fully
opaque objects, disable alpha blending with glDisable(GL_BLEND).

• Avoid unnecessary per-fragment operations.

Turn off per-fragment operations for objects that do not require them and structure
the drawing process to minimize their use without causing excessive toggling of
modes.

Using Clear Operations

When considering clear operations, use the following guidelines:

• If possible, avoid clear operations.

For example, you can avoid clearing the depth buffer by setting the depth test to
GL_ALWAYS.
007-2392-003 451

16: Tuning the Pipeline
• Avoid clearing the color and depth buffers independently.

The most basic per-frame operations are clearing the color and depth buffers. On
some systems, there are optimizations for common special cases of these operations.

Whenever you need to clear both the color and depth buffers, do not clear each
buffer independently. Instead, make the following call:

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

• Be sure to disable dithering before clearing.

Optimizing Texture Mapping

Follow these guidelines when rendering textured objects:

• Avoid frequent switching between texture maps.

If you have many small textures, consider combining them into a single, larger
mosaic texture. Rather than switching to a new texture before drawing a textured
polygon, choose texture coordinates that select the appropriate small texture tile
within the large texture.

• Use texture objects to encapsulate texture data.

Place all the glTexImage*() calls (including mipmaps) required to completely
specify a texture and the associated glTexParameter*() calls (which set texture
properties) into a texture object and bind this texture object to the rendering context.
This allows the implementation to compile the texture into a format that is optimal
for rendering and, if the system accelerates texturing, to efficiently manage textures
on the graphics adapter.

• When using texture objects, call glAreTexturesResident() to make sure that all
texture objects are resident during rendering.

On systems where texturing is done on the host, glAreTexturesResident() always
returns GL_TRUE. If necessary, reduce the size or internal format resolution of your
textures until they all fit into memory. If such a reduction creates intolerably fuzzy
textured objects, you may give some textures lower priority.

• If possible, use glTexSubImage*D() to replace all or part of an existing texture
image rather than the more costly operations of deleting and creating an entire new
image.

• Avoid expensive texture filter modes.
452 007-2392-003

Tuning the Imaging Pipeline
On some systems, trilinear filtering is much more expensive than nearest or linear
filtering.

Tuning the Imaging Pipeline

This section briefly lists some ways in which you can improve pixel processing.
Example 17-1 on page 457 provides a code fragment that shows how to set the OpenGL
state so that subsequent calls to glDrawPixels() or glCopyPixels() will be fast.

To improve performance in the imaging pipeline, follow these guidelines:

• Disable all per-fragment operations.

• Define images in the native hardware format so that type conversion is not
necessary.

• For texture download operations, match the internal format of the texture with that
on the host.

• Byte-sized components, particularly unsigned byte components, are fast. Use pixel
formats where each of the components (red, green, blue, alpha, luminance, or
intensity) is 8 bits long.

• Use fewer components; for example, use GL_LUMINANCE_ALPHA or
GL_LUMINANCE.

• Use a color matrix and a color mask to store four luminance values in the RGBA
framebuffer. Use a color matrix and a color mask to work with one component at a
time. If one component is being processed, convolution is much more efficient. Then
process all four images in parallel. Processing four images together is usually faster
than processing them individually as single-component images.

The following code fragment uses the green component as the data source and
writes the result of the operation into some (possibly all) of the other components:

/* Matrix is in column major order */
GLfloat smearGreenMat[16] = {
 0, 0, 0, 0,
 1, 1, 1, 1,
 0, 0, 0, 0,
 0, 0, 0, 0,
};
/* The variables update R/G/B/A indicate whether the
* corresponding component would be updated.
007-2392-003 453

16: Tuning the Pipeline
*/
GLboolean updateR, updateG, updateB, updateA;

...

/* Check for availability of the color matrix extension */

/* Set proper color matrix and mask */
glMatrixMode(GL_COLOR);
glLoadMatrixf(smearGreenMat);
glColorMask(updateR, updateG, updateB, updateA);

/* Perform the imaging operation */
glEnable(GL_SEPARABLE_2D_EXT);
glCopyTexSubImage2DEXT(...);
/* Restore an identity color matrix. Not needed when the same
* smear operation is to used over and over
*/
glLoadIdentity();

/* Restore previous matrix mode (assuming it is modelview) */
glMatrixMode(GL_MODELVIEW);
...

• Load the identity matrix into the color matrix to turn the color matrix off.

When using the color matrix to broadcast one component into all others, avoid
manipulating the color matrix with transformation calls such as glRotate(). Instead,
load the matrix explicitly using glLoadMatrix().

• Locate the bottleneck.

Similar to polygon drawing, there can be a pixel-drawing bottleneck due to
overload in host bandwidth, processing, or rasterizing. When all modes are off, the
path is most likely limited by host bandwidth, and a wise choice of host pixel
format and type pays off tremendously. This is also why byte components are
sometimes faster. For example, use packed pixel format GL_RGB5_A1 to load
texture with a GL_RGB5_A1 internal format.

When either many processing modes or several expensive modes such as
convolution are on, the processing stage is the bottleneck. Such cases benefit from
one-component processing, which is much faster than multicomponent processing.

Zooming up pixels may create a raster bottleneck.
454 007-2392-003

Tuning the Imaging Pipeline
• A big-pixel rectangle has a higher throughput (that is, pixels per second) than a
small rectangle. Because the imaging pipeline is tuned to trade off a relatively large
setup time with a high pixel-transfer efficiency, a large rectangle distributes the
setup cost over many pixels to achieve higher throughput.

• Having no mode changes between pixel operations results in higher throughput.
New high-end hardware detects pixel mode changes between pixel operations.
When there is no mode change between pixel operations, the setup overhead is
drastically reduced. This is done to optimize for image tiling where an image is
painted on the screen by drawing many small tiles.

• On most systems, glCopyPixels() is faster than glDrawPixels().

• Tightly packing data in memory (for example, row length=0, alignment=1) is
slightly more efficient for host transfer.
007-2392-003 455

Chapter 17

17. Tuning Graphics Applications: Examples

This chapter first presents a code fragment that helps you draw pixels fast. The second
section steps through an example of tuning a small graphics program, shows changes to
the program, and describes the speed improvements that result. The two sections are
titled as follows:

• “Drawing Pixels Fast” on page 457

• “Tuning Example” on page 459

Drawing Pixels Fast

The code fragment in Example 17-1 illustrates how to set an OpenGL state so that
subsequent calls to glDrawPixels() or glCopyPixels() will be fast.

Example 17-1 Drawing Pixels Fast

 /*
 * Disable stuff that is likely to slow down
 * glDrawPixels.(Omit as much of this as possible,
 * when you know in advance that the OpenGL state is
 * already set correctly.)
 */
 glDisable(GL_ALPHA_TEST);
 glDisable(GL_BLEND);
 glDisable(GL_DEPTH_TEST);
 glDisable(GL_DITHER);
 glDisable(GL_FOG);
 glDisable(GL_LIGHTING);
 glDisable(GL_LOGIC_OP);
 glDisable(GL_STENCIL_TEST);
 glDisable(GL_TEXTURE_1D);
 glDisable(GL_TEXTURE_2D);
 glPixelTransferi(GL_MAP_COLOR, GL_FALSE);
 glPixelTransferi(GL_RED_SCALE, 1);
 glPixelTransferi(GL_RED_BIAS, 0);
007-2392-003 457

17: Tuning Graphics Applications: Examples
 glPixelTransferi(GL_GREEN_SCALE, 1);
 glPixelTransferi(GL_GREEN_BIAS, 0);
 glPixelTransferi(GL_BLUE_SCALE, 1);
 glPixelTransferi(GL_BLUE_BIAS, 0);
 glPixelTransferi(GL_ALPHA_SCALE, 1);
 glPixelTransferi(GL_ALPHA_BIAS, 0);

 /*
 * Disable extensions that could slow down
 * glDrawPixels.(Actually, you should check for the
 * presence of the proper extension before making
 * these calls.That code was omitted for simplicity.)
 */

#ifdef GL_EXT_convolution
 glDisable(GL_CONVOLUTION_1D_EXT);
 glDisable(GL_CONVOLUTION_2D_EXT);
 glDisable(GL_SEPARABLE_2D_EXT);
#endif

#ifdef GL_EXT_histogram
 glDisable(GL_HISTOGRAM_EXT);
 glDisable(GL_MINMAX_EXT);
#endif

#ifdef GL_EXT_texture3D
 glDisable(GL_TEXTURE_3D_EXT);
#endif

 /*
 * The following is needed only when using a
 * multisample-capable visual.
 */

#ifdef GL_SGIS_multisample
 glDisable(GL_MULTISAMPLE_SGIS);
#endif
458 007-2392-003

Tuning Example
Tuning Example

This section steps you through a complete example of tuning a small program using the
techniques discussed in Chapter 16, “Tuning the Pipeline.” Consider a program that
draws a lighted sphere, shown in Figure 17-1.

Figure 17-1 Lighted Sphere Created by perf.c

You can use the benchmarking framework in Appendix A, “Benchmarks” for window
and timing services. All you have to do is set up the OpenGL rendering context in
RunTest() and perform the drawing operations in Test(). The first version renders the
sphere by drawing strips of quadrilaterals parallel to the sphere’s lines of latitude.

Example 17-2 Example Program—Performance Tuning

/***
 cc -o perf -O perf.c -lGLU -lGL -lX11
**/

#include <GL/glx.h>
#include <GL/glu.h>
#include <X11/keysym.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/time.h>
#include <math.h>
007-2392-003 459

17: Tuning Graphics Applications: Examples
char* ApplicationName;
double Overhead = 0.0;
int VisualAttributes[] = { GLX_RGBA, GLX_RED_SIZE, 1, GLX_GREEN_SIZE,
 1, GLX_BLUE_SIZE, 1, GLX_DEPTH_SIZE, 1, None };
int WindowWidth;
int WindowHeight;

/**
 * GetClock - get current time (expressed in seconds)
**/
double
GetClock(void) {
 struct timeval t;

 gettimeofday(&t);
 return (double) t.tv_sec + (double) t.tv_usec * 1E-6;
 }

/**
 * ChooseRunTime - select an appropriate runtime for benchmarking
**/
double
ChooseRunTime(void) {
 double start;
 double finish;
 double runTime;

 start = GetClock();

 /* Wait for next tick: */
 while ((finish = GetClock()) == start)
 ;

 /* Run for 100 ticks, clamped to [0.5 sec, 5.0 sec]: */
 runTime = 100.0 * (finish - start);
 if (runTime < 0.5)
 runTime = 0.5;
 else if (runTime > 5.0)
 runTime = 5.0;

 return runTime;
 }

/**
460 007-2392-003

Tuning Example
 * FinishDrawing - wait for the graphics pipe to go idle
 *
 * This is needed to make sure we are not including time from some
 * previous uncompleted operation in the measurements. (It is not
 * foolproof, since you cannot eliminate context switches, but you can
 * assume the caller has taken care of that problem.)
**/
void
FinishDrawing(void) {
 glFinish();
 }

/**
 * WaitForTick - wait for beginning of next system clock tick; return
 * the time
**/
double
WaitForTick(void) {
 double start;
 double current;

 start = GetClock();

 /* Wait for next tick: */
 while ((current = GetClock()) == start)
 ;

 /* Start timing: */
 return current;
 }

/**
 * InitBenchmark - measure benchmarking overhead
 *
 * This should be done once before each risky change in the
 * benchmarking environment. A “risky” change is one that might
 * reasonably be expected to affect benchmarking overhead. (For
 * example, changing from a direct rendering context to an indirect
 * rendering context.) If all measurements are being made on a single
 * rendering context, one call should suffice.
**/

void
007-2392-003 461

17: Tuning Graphics Applications: Examples
InitBenchmark(void) {
 double runTime;
 long reps;
 double start;
 double finish;
 double current;

 /* Select a run time appropriate for our timer resolution: */
 runTime = ChooseRunTime();

 /* Wait for the pipe to clear: */
 FinishDrawing();

 /* Measure approximate overhead for finalization and timing
 * routines: */
 reps = 0;
 start = WaitForTick();
 finish = start + runTime;
 do {
 FinishDrawing();
 ++reps;
 } while ((current = GetClock()) < finish);

 /* Save the overhead for use by Benchmark(): */
 Overhead = (current - start) / (double) reps;
 }

/**
 * Benchmark--measure number of caller operations performed per second
 *
 * Assumes InitBenchmark() has been called previously, to initialize
 * the estimate for timing overhead.
**/
double
Benchmark(void (*operation)(void)) {
 double runTime;
 long reps;
 long newReps;
 long i;
 double start;
 double current;

 if (!operation)
 return 0.0;
 /* Select a run time appropriate for our timer resolution: */
462 007-2392-003

Tuning Example
 runTime = ChooseRunTime();

 /*
 * Measure successively larger batches of operations until you
 * find one that is long enough to meet our run-time target:
 */
 reps = 1;
 for (;;) {
 /* Run a batch: */
 FinishDrawing();
 start = WaitForTick();
 for (i = reps; i > 0; --i)
 (*operation)();
 FinishDrawing();

 /* If we reached our target, get out of the loop: */
 current = GetClock();
 if (current >= start + runTime + Overhead)
 break;

 /*
 * Otherwise, increase the rep count and try to reach
 * the target on the next attempt:
 */
 if (current > start)
 newReps = reps *(0.5 + runTime /
 (current - start - Overhead));
 else
 newReps = reps * 2;
 if (newReps == reps)
 reps += 1;
 else
 reps = newReps;
 }

 /* Subtract overhead and return the final operation rate: */
 return (double) reps / (current - start - Overhead);
 }
/**
 * Test - the operation to be measured
 *
 * Will be run several times in order to generate a reasonably accurate
 * result.
**/
void
007-2392-003 463

17: Tuning Graphics Applications: Examples
Test(void) {
 float latitude, longitude;
 float dToR = M_PI / 180.0;

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 for (latitude = -90; latitude < 90; ++latitude) {
 glBegin(GL_QUAD_STRIP);
 for (longitude = 0; longitude <= 360; ++longitude) {
 GLfloat x, y, z;
 x = sin(longitude * dToR) * cos(latitude * dToR);
 y = sin(latitude * dToR);
 z = cos(longitude * dToR) * cos(latitude * dToR);
 glNormal3f(x, y, z);
 glVertex3f(x, y, z);
 x = sin(longitude * dToR) * cos((latitude+1) *
 dToR);
 y = sin((latitude+1) * dToR);
 z = cos(longitude * dToR) * cos((latitude+1) *
 dToR);
 glNormal3f(x, y, z);
 glVertex3f(x, y, z);
 }
 glEnd();
 }
 }

/**
 * RunTest - initialize the rendering context and run the test
**/
void
RunTest(void) {
 static GLfloat diffuse[] = {0.5, 0.5, 0.5, 1.0};
 static GLfloat specular[] = {0.5, 0.5, 0.5, 1.0};
 static GLfloat direction[] = {1.0, 1.0, 1.0, 0.0};
 static GLfloat ambientMat[] = {0.1, 0.1, 0.1, 1.0};
 static GLfloat specularMat[] = {0.5, 0.5, 0.5, 1.0};

 if (Overhead == 0.0)
 InitBenchmark();

 glClearColor(0.5, 0.5, 0.5, 1.0);

 glClearDepth(1.0);
 glEnable(GL_DEPTH_TEST);
464 007-2392-003

Tuning Example
 glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
 glLightfv(GL_LIGHT0, GL_SPECULAR, specular);
 glLightfv(GL_LIGHT0, GL_POSITION, direction);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHTING);

 glMaterialfv(GL_FRONT, GL_AMBIENT, ambientMat);
 glMaterialfv(GL_FRONT, GL_SPECULAR, specularMat);
 glMateriali(GL_FRONT, GL_SHININESS, 128);

 glEnable(GL_COLOR_MATERIAL);
 glShadeModel(GL_SMOOTH);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, 1.0, 2.4, 4.6);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0,0,3.5, 0,0,0, 0,1,0);

 printf("%.2f frames per second\n", Benchmark(Test));
 }

/**
 * ProcessEvents - handle X11 events directed to our window
 *
 * Run the measurement each time we receive an expose event.
 * Exit when you receive a press of the Escape key.
 * Adjust the viewport and projection transformations when the window
 * changes size.
**/
void
ProcessEvents(Display* dpy) {
 XEvent event;
 Bool redraw = 0;

 do {
 char buf[31];
 KeySym keysym;

 XNextEvent(dpy, &event);
 switch(event.type) {
 case Expose:
007-2392-003 465

17: Tuning Graphics Applications: Examples
 redraw = 1;
 break;
 case ConfigureNotify:
 glViewport(0, 0,
 WindowWidth =
 event.xconfigure.width,
 WindowHeight =
 event.xconfigure.height);
 redraw = 1;
 break;
 case KeyPress:
 (void) XLookupString(&event.xkey, buf,
 sizeof(buf), &keysym, NULL);
 switch (keysym) {
 case XK_Escape:
 exit(EXIT_SUCCESS);
 default:
 break;
 }
 break;
 default:
 break;
 }
 } while (XPending(dpy));

 if (redraw) RunTest();
 }

/**
 * Error - print an error message, then exit
**/
void
Error(const char* format, ...) {
 va_list args;

 fprintf(stderr, "%s: ", ApplicationName);

 va_start(args, format);
 vfprintf(stderr, format, args);
 va_end(args);

 exit(EXIT_FAILURE);
 }

/**
466 007-2392-003

Tuning Example
 * main - create window and context, then pass control to ProcessEvents
**/
int
main(int argc, char* argv[]) {
 Display *dpy;
 XVisualInfo *vi;
 XSetWindowAttributes swa;
 Window win;
 GLXContext cx;

 ApplicationName = argv[0];

 /* Get a connection: */
 dpy = XOpenDisplay(NULL);
 if (!dpy) Error("can't open display");

 /* Get an appropriate visual: */
 vi = glXChooseVisual(dpy, DefaultScreen(dpy),
 VisualAttributes);
 if (!vi) Error("no suitable visual");

 /* Create a GLX context: */
 cx = glXCreateContext(dpy, vi, 0, GL_TRUE);

 /* Create a color map: */
 swa.colormap = XCreateColormap(dpy, RootWindow(dpy,
 vi->screen), vi->visual, AllocNone);

 /* Create a window: */
 swa.border_pixel = 0;
 swa.event_mask = ExposureMask | StructureNotifyMask |
 KeyPressMask;
 win = XCreateWindow(dpy, RootWindow(dpy, vi->screen), 0, 0,
 300, 300, 0, vi->depth, InputOutput, vi->visual,
 CWBorderPixel|CWColormap|CWEventMask, &swa);
 XStoreName(dpy, win, "perf");
 XMapWindow(dpy, win);

 /* Connect the context to the window: */
 glXMakeCurrent(dpy, win, cx);

 /* Handle events: */
 while (1) ProcessEvents(dpy);
 }
007-2392-003 467

17: Tuning Graphics Applications: Examples
Testing for CPU Limitation

An application may be CPU-limited, geometry-limited, or fill-limited. Start tuning by
checking for a CPU bottleneck. As shown in the following code, replace the glVertex3f(),
glNormal3f(), and glClear() calls in Test() with glColor3f() calls. This minimizes the
number of graphics operations while preserving the normal flow of instructions and the
normal pattern of accesses to main memory.

void
Test(void) {
 float latitude, longitude;
 float dToR = M_PI / 180.0;

 glColor3f(0, 0, 0);

 for (latitude = -90; latitude < 90; ++latitude) {
 glBegin(GL_QUAD_STRIP);
 for (longitude = 0; longitude <= 360; ++longitude) {
 GLfloat x, y, z;
 x = sin(longitude * dToR) * cos(latitude * dToR);
 y = sin(latitude * dToR);
 z = cos(longitude * dToR) * cos(latitude * dToR);
 glColor3f(x, y, z);
 glColor3f(x, y, z);
 x = sin(longitude * dToR) * cos((latitude+1) * dToR);
 y = sin((latitude+1) * dToR);
 z = cos(longitude * dToR) * cos((latitude+1) * dToR);
 glColor3f(x, y, z);
 glColor3f(x, y, z);
 }
 glEnd();
 }
 }

Using the Profiler

The program still renders less than 0.8 frames per second. Because eliminating all
graphics output had almost no effect on performance, the program is clearly
CPU-limited. Use the profiler to determine which function accounts for most of the
execution time.

% cc -o perf -O -p perf.c -lGLU -lGL -lX11
% perf
% prof perf
468 007-2392-003

Tuning Example

Profile listing generated Wed Jul 19 17:17:03 1995
 with: prof perf

samples time CPU FPU Clock N-cpu S-interval Countsize
 219 2.2s R4000 R4010 100.0MHz 0 10.0ms 0(bytes)

Each sample covers 4 bytes for every 10.0ms (0.46% of 2.1900sec)
--
-p[rocedures] using pc-sampling.
Sorted in descending order by the number of samples in each procedure.
Unexecuted procedures are excluded.

samples time(%) cum time(%) procedure (file)

 112 1.1s(51.1) 1.1s(51.1) __sin
 (/usr/lib/libm.so:trig.s)
 29 0.29s(13.2) 1.4s(64.4) Test (perf:perf.c)
 18 0.18s(8.2) 1.6s(72.6) __cos (/usr/lib/libm.so:trig.s)
 16 0.16s(7.3) 1.8s(79.9) Finish
 (/usr/lib/libGLcore.so:../EXPRESS/gr2_context.c)
 15 0.15s(6.8) 1.9s(86.8) __glexpim_Color3f
 (/usr/lib/libGLcore.so:../EXPRESS/gr2_vapi.c)
 14 0.14s(6.4) 2s(93.2) _BSD_getime
 (/usr/lib/libc.so.1:BSD_getime.s)
 3 0.03s(1.4) 2.1s(94.5) __glim_Finish
 (/usr/lib/libGLcore.so:../soft/so_finish.c)
 3 0.03s(1.4) 2.1s(95.9) _gettimeofday
 (/usr/lib/libc.so.1:gettimeday.c)
 2 0.02s(0.9) 2.1s(96.8) InitBenchmark (perf:perf.c)
 1 0.01s(0.5) 2.1s(97.3) __glMakeIdentity
 (/usr/lib/libGLcore.so:../soft/so_math.c)
 1 0.01s(0.5) 2.1s(97.7) _ioctl
 (/usr/lib/libc.so.1:ioctl.s)
 1 0.01s(0.5) 2.1s(98.2) __glInitAccum64
 (/usr/lib/libGLcore.so:../soft/so_accumop.c)
 1 0.01s(0.5) 2.2s(98.6) _bzero
 (/usr/lib/libc.so.1:bzero.s)
 1 0.01s(0.5) 2.2s(99.1) GetClock (perf:perf.c)
 1 0.01s(0.5) 2.2s(99.5) strncpy
 (/usr/lib/libc.so.1:strncpy.c)
 1 0.01s(0.5) 2.2s(100.0) _select
 (/usr/lib/libc.so.1:select.s)
007-2392-003 469

17: Tuning Graphics Applications: Examples
 219 2.2s(100.0) 2.2s(100.0) TOTAL

Almost 60% of the program’s time for a single frame is spent computing trigonometric
functions (__sin and __cos).

There are several ways to improve this situation. First, consider reducing the resolution
of the quad strips that model the sphere. The current representation has over 60,000
quads, which is probably more than is needed for a high-quality image. After that,
consider other changes like the following:

• Consider using efficient recurrence relations or table lookup to compute the regular
grid of sine and cosine values needed to construct the sphere.

• The current code computes nearly every vertex on the sphere twice (once for each of
the two quad strips in which a vertex appears); therefore, you could achieve a 50%
reduction in trigonometric operations just by saving and re-using the vertex values
for a given line of latitude.

Because exactly the same sphere is rendered in every frame, the time required to compute
the sphere vertices and normals is redundant for all but the very first frame. To eliminate
the redundancy, generate the sphere just once and place the resulting vertices and surface
normals in a display list. You still pay the cost of generating the sphere once and
eventually may need to use the other techniques mentioned above to reduce that cost,
but at least the sphere is rendered more efficiently. The following code illustrates this
tuning:

void
Test(void) {
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glCallList(1);
 }
....
void
RunTest(void){...
 glNewList(1, GL_COMPILE);
 for (latitude = -90; latitude < 90; ++latitude) {
 glBegin(GL_QUAD_STRIP);
 for (longitude = 0; longitude <= 360; ++longitude) {
 GLfloat x, y, z;
 x = sin(longitude * dToR) * cos(latitude * dToR);
 y = sin(latitude * dToR);
 z = cos(longitude * dToR) * cos(latitude * dToR);
 glNormal3f(x, y, z);
470 007-2392-003

Tuning Example
 glVertex3f(x, y, z);
 x = sin(longitude * dToR) * cos((latitude+1) * dToR);
 y = sin((latitude+1) * dToR);
 z = cos(longitude * dToR) * cos((latitude+1) * dToR);
 glNormal3f(x, y, z);
 glVertex3f(x, y, z);
 }
 glEnd();
 }
 glEndList();

 printf("%.2f frames per second\n", Benchmark(Test));
 }

This version of the program achieves a little less than 2.5 frames per second, a noticeable
improvement.

When the glClear(), glNormal3f(), and glVertex3f() calls are again replaced with
glColor3f(), the program runs at roughly 4 frames per second. This implies that the
program is no longer CPU-limited. Therefore, you need to look further to find the
bottleneck.

Testing for Fill Limitation

To check for a fill limitation, reduce the number of pixels that are filled. The easiest way
to do that is to shrink the window. If you try that, you see that the frame rate does not
change for a smaller window; so, the program must now be geometry-limited. As a
result, it is necessary to find ways to make the processing for each polygon less expensive
or to render fewer polygons.

Working on a Geometry-Limited Program

Previous tests determined that the program is geometry-limited. The next step is to
pinpoint the most severe problems and to change the program to alleviate the bottleneck.

Since the purpose of the program is to draw a lighted sphere, you cannot eliminate
lighting altogether. The program is already using a fairly simple lighting model (a single
infinite light and a nonlocal viewer); so, there is not much performance to be gained by
changing the lighting model.
007-2392-003 471

17: Tuning Graphics Applications: Examples
Smooth Shading Versus Flat Shading

Smooth shading requires more computation than flat shading. Consider changing the
following line

glShadeModel(GL_SMOOTH);

to

glShadeModel(GL_FLAT);

This increases performance to about 2.75 frames per second. Since this is not much better
than 2.5 frames per second, the example program continues to use smooth shading.

Reducing the Number of Polygons

Since a change in lighting and shading does not improve performance significantly, the
best option is to reduce the number of polygons the program is drawing.

One approach is to tesselate the sphere more efficiently. The simple sphere model used
in the program has very large numbers of very small quadrilaterals near the poles, and
comparatively large quadrilaterals near the equator. Several superior models exist, but
to keep things simple, this discussion continues to use the latitude/longitude tesselation.

A little experimentation shows that reducing the number of quadrilaterals in the sphere
causes a dramatic performance increase, as shown in the following code. When the
program places vertices every 10 degrees, instead of every degree, performance
skyrockets to nearly 200 frames per second:

 for (latitude = -90; latitude < 90; latitude += 10) {
 glBegin(GL_QUAD_STRIP);
 for (longitude = 0; longitude <= 360; longitude += 10) {
 GLfloat x, y, z;
 x = sin(longitude * dToR) * cos(latitude * dToR);
 y = sin(latitude * dToR);
 z = cos(longitude * dToR) * cos(latitude * dToR);
 glNormal3f(x, y, z);
 glVertex3f(x, y, z);
 x = sin(longitude * dToR) * cos((latitude+10) * dToR);
 y = sin((latitude+10) * dToR);
 z = cos(longitude * dToR) * cos((latitude+10) * dToR);
 glNormal3f(x, y, z);
 glVertex3f(x, y, z);
 }
472 007-2392-003

Tuning Example
 glEnd()
 }

Of course, this yields a rougher-looking sphere. When tuning, you often need to make
such trade-offs between image quality and drawing performance or provide controls in
your application that allow end users to make the trade-offs.

In this particular case, the improvement, a maximum of 200 frames per second, becomes
apparent only because the program is single-buffered. If the program used double
buffering, performance would not increase beyond the frame rate of the monitor
(typically 60 or 72 frames per second); so, there would be no performance penalty for
using a higher-quality sphere.

If performance is truly critical and sphere intersections are not likely, consider rendering
more vertices at the edge of the silhouette and fewer at the center.

Testing Again for Fill Limitation

If you now shrink the window and performance increases, this indicates that the
program is again fill-limited. To increase performance further, you need to fill fewer
pixels or make pixel-fill less expensive by changing the pixel-drawing mode.

This particular application uses just one special per-fragment drawing mode: depth
buffering. Depth buffering can be eliminated in a variety of special cases, including
convex objects, backdrops, ground planes, and height fields.

Fortunately, because the program is drawing a sphere, you can eliminate depth buffering
and still render a correct image by discarding quads that face away from the viewer (the
“front” faces, given the orientation of quads in this model). The following code illustrate
this::

 glDisable(GL_DEPTH_TEST);
 glEnable(GL_CULL_FACE);
 glCullFace(GL_FRONT);

This pushes performance up to nearly 260 frames per second. Further improvements are
possible. The program’s performance is still far from the upper limit determined by the
peak fill rate. Note that you can sometimes improve face culling by performing it in the
application; for example, for a sphere you would see just the hemisphere closest to you,
and therefore you only have to compute the bounds on latitude and longitude.
007-2392-003 473

Chapter 18

18. System-Specific Tuning

This chapter first describes some general issues regarding system-specific tuning and
then provides tuning information that is relevant for particular Silicon Graphics systems.
Use these techniques as needed if you expect your program to be used primarily on one
kind of system or a group of systems. The chapter uses the following to topics:

• “Introduction to System-Specific Tuning”

• “Optimizing Performance on InfiniteReality Systems” on page 477

• “Optimizing Performance on Onyx4 and Silicon Graphics Prism Systems” on
page 482

Some points are also described in earlier chapters but repeated here because they result
in particularly noticeable performance improvement on certain platforms.

Note: To determine your particular hardware configuration, use /usr/gfx/gfxinfo.
See the man page for gfxinfo for more information. You can also call glGetString()
with the GL_RENDERER argument. For information about the renderer strings for
different systems, see the man page for glGetString().
007-2392-003 475

18: System-Specific Tuning
Introduction to System-Specific Tuning

Many of the performance tuning techniques described in the previous chapters (such as
minimizing the number of state changes and disabling features that are not required) are
good ideas, regardless of your platform. Other tuning techniques need to be customized
for certain systems. For example, before you sort your database based on state changes,
you need to determine which state changes are the most expensive for your target
system.

In addition, you may want to modify the behavior of your program depending on which
modes are fast. This is especially important for programs that must run at a particular
frame rate. To maintain the frame rate on certain systems, you may need to disable some
features. For example, if a particular texture mapping environment is slow on one of your
target systems, you must disable texture mapping or change the texture environment
whenever your program is running on that platform.

Before you can tune your program for each of the target platforms, you must do some
performance measurements. This is not always straightforward. Often a particular
device can accelerate certain features, but not all at the same time. It is therefore
important to test the performance for combinations of features that you will be using. For
example, a graphics adapter may accelerate texture mapping but only for certain texture
parameters and texture environment settings. Even if all texture modes are accelerated,
you have to experiment to see how many textures you can use at the same time without
causing the adapter to page textures in and out of the local memory.

A more complicated situation arises if the graphics adapter has a shared pool of memory
that is allocated to several tasks. For example, the adapter may not have a framebuffer
deep enough to contain a depth buffer and a stencil buffer. In this case, the adapter would
be able to accelerate both depth buffering and stenciling but not at the same time; or,
perhaps, depth buffering and stenciling can both be accelerated but only for certain
stencil buffer depths.

Typically, per-platform testing is done at initialization time. You should do some trial
runs through your data with different combinations of state settings and calculate the
time it takes to render in each case. You may want to save the results in a file so that your
program does not have to do this test each time it starts. You can find an example of how
to measure the performance of particular OpenGL operations and to save the results
using the isfast program from the OpenGL website.
476 007-2392-003

Optimizing Performance on InfiniteReality Systems
Optimizing Performance on InfiniteReality Systems

This section describes optimizing performance on InfiniteReality systems in the
following sections:

• “Managing Textures on InfiniteReality Systems”

• “Offscreen Rendering and Framebuffer Management”

• “Optimizing State Changes”

• “Miscellaneous Performance Hints”

Managing Textures on InfiniteReality Systems

The following texture management strategies are recommended for InfiniteReality
systems:

• Using the texture_object extension (OpenGL 1.0) or texture objects (OpenGL 1.1)
usually yields better performance than using display lists.

• OpenGL will make a copy of your texture if needed for context switching; so,
deallocate your own copy as soon as possible after loading it.

On Infinite Reality systems, only the copy on the graphics pipe exists. If you run out
of texture memory, OpenGL must save the texture that did not fit from the graphics
pipe to the host, clean up texture memory, and then reload the texture. To avoid
these multiple moves of the texture, always clean up textures you no longer need so
that you do not deplete texture memory.

This approach has the advantage of very fast texture loading because no host copy
is made.

• To load a texture immediately, perform the following steps:

1. Enable texturing.

2. Bind your texture.

3. Call glTexImage*().

• To define a texture without loading it into the hardware until the first time it is
referenced, perform the following steps:

1. Disable texturing.

2. Bind your texture.
007-2392-003 477

18: System-Specific Tuning
3. Call glTexImage*().

In this case, a copy of your texture is placed in main memory.

• Do not overflow texture memory; otherwise, texture swapping will occur.

• If you want to implement your own texture memory management policy, use
subtexture loading. You have the following two options:

– Allocate one large empty texture, call glTexSubImage*() to load it piecewise,
and then use the texture matrix to select the relevant portion.

– Allocate several textures, then fill them in by calling glTexSubImage*() as
appropriate.

For both options, it is important that after initial setup, you never create and destroy
textures but reuse existing ones.

• Use 16-bit texels whenever possible; RGBA4 can be twice as fast as RGBA8. As a
rule, remember that bigger formats are slower.

• If you need a fine color ramp, start with 16-bit texels and then use a texture lookup
table and texture scale/bias.

• Texture subimages should be multiples of 8 texels wide for maximum performance.

• For loading textures, use pixel formats on the host that match texel formats on the
graphics system.

• Avoid OpenGL texture borders; they consume large amounts of texture memory.
For clamping, use the GL_CLAMP_TO_EDGE_SGIS style defined by the
SGIS_texture_edge_clamp extension.

Offscreen Rendering and Framebuffer Management

InfiniteReality systems support offscreen rendering through a combination of OpenGL
features and extensions:

Pixel buffers Pixel buffers (pbuffers) are offscreen pixel arrays that
behave much like windows, except that they are invisible.
See “SGIX_pbuffer—The Pixel Buffer Extension” on
page 121.

Framebuffer configurations Framebuffer configurations define color buffer depths,
determine presence of Z buffers, and so on. See “Using
Visuals and Framebuffer Configurations” on page 71.
478 007-2392-003

Optimizing Performance on InfiniteReality Systems
Concurrent reads/writes The function glXMakeCurrentReadSGI() allows you to
read from one window or pbuffer while writing to
another. See “SGI_make_current_read—The Make
Current Read Extension” on page 114.

In addition, glCopyTexImage*() allows you to copy from a pbuffer or window to texture
memory. This function is supported through an extension in OpenGL 1.0 but is part of
OpenGL 1.1.

For framebuffer memory management, consider the following tips:

• Use pbuffers. pbuffers are allocated by “layer” in unused portions of the
framebuffer.

• If you have deep windows, such as multisampled or quad- buffered windows, then
you will have less space in the framebuffer for pbuffers.

• A pbuffer is swappable (to avoid collisions with windows) but is not completely
virtualized; that is, there is a limit to the number of pbuffers you can allocate. The
sum of all allocated pbuffer space cannot exceed the size of the framebuffer.

• A pbuffer can be volatile (subject to destruction by window operations) or
nonvolatile (swapped to main memory in order to avoid destruction). Volatile
pbuffers are recommended because swapping is slow. Treat volatile pbuffers like
they were windows, subject to exposure events.
007-2392-003 479

18: System-Specific Tuning
Optimizing State Changes

The following items provide guidelines for optimizing state changes:

• As a rule, it is more efficient to change state when the relevant function is disabled
than when it is enabled.

For example, when changing line width for antialiased lines, make the following
calls:

glLineWidth(width);
glEnable(GL_LINE_SMOOTH);

As a result of these calls, the line filter table is computed just once when line
antialiasing is enabled. The table may be computed twice (once when antialiasing is
enabled and again when the line width is changed) if you make the following calls:

glEnable(GL_LINE_SMOOTH);
glLineWidth(width);

As a result, it may be best to disable a feature if you plan to change state and then
enable it after the change.

• The following mode changes are fast: sample mask, logic op, depth function, alpha
function, stencil modes, shade model, cullface, texture environment, matrix
transforms.

• The following mode changes are slow: texture binding, matrix mode, lighting, point
size, line width.

• For the best results, map the near clipping plane to 0.0 and the far clipping plane to
1.0 (this is the default). Note that a different mapping (for example 0.0 and 0.9)
will still yield a good result. A reverse mapping, such as near = 1.0 and far = 0.0,
noticeably decreases depth-buffer precision.

• When using a visual with a 1-bit stencil, it is faster to clear both the depth buffer and
stencil buffer than it is to clear the depth buffer alone.

• Use the color matrix extension for swapping and smearing color channels. The
implementation is optimized for cases in which the matrix is composed of zeros and
ones.

• Be sure to check for the usual things: indirect contexts, drawing images with depth
buffering enabled, and so on.

• Triangle strips that are multiples of 10 (12 vertices) are best.
480 007-2392-003

Optimizing Performance on InfiniteReality Systems
• InfiniteReality systems optimize 1-component pixel draw operations. They are also
faster when the pixel host format matches the destination format.

• Bitmaps have high setup overhead. Consider these approaches:

– If possible, draw text using textured polygons. Put the entire font in a texture
and use texture coordinates to select letters.

– To use bitmaps efficiently, compile them into display lists. Consider combining
more than one into a single bitmap to save overhead.

– Avoid drawing bitmaps with invalid raster positions. Pixels are eliminated late
in the pipeline and drawing to an invalid position is almost as expensive as
drawing to a valid position.

Miscellaneous Performance Hints

The following are some miscellaneous performance hints:

• Minimize the amount of data sent to the pipeline.

– Use display lists as a cache for geometry. Using display lists is critical on Onyx
systems. It is less critical, but still recommended, on Onyx2 systems. The
performance of the two systems differs because the bus between the host and
the graphics is faster on Onyx2 systems.

The display list priority extension (see “SGIX_list_priority—The List Priority
Extension” on page 305) can be used to manage display list memory efficiently.

– Use texture memory or offscreen framebuffer memory (pbuffers) as a cache for
pixels.

– Use small data types aligned for immediate-mode drawing (such as RGBA
color packed into a 32-bit word, surface normals packed as three shorts, texture
coordinates packed as two shorts). Smaller data types mean, in effect, less data
to transfer.

• Render with exactly one thread per pipe.

• Use multiple OpenGL rendering contexts sparingly.

Assuming no texture swapping, the rendering context-switching rate is about
60,000 calls per second. Therefore, each call to glXMakeCurrent() costs the
equivalent of 100 textured triangles or 800 32-bit pixels.
007-2392-003 481

18: System-Specific Tuning
Optimizing Performance on Onyx4 and Silicon Graphics Prism Systems

This section describes OpenGL performance optimizations for Onyx4 and Silicon
Graphics Prism systems. Both Onyx4 and Silicon Graphics Prism systems use
commodity graphics GPUs. Compared to older SGI graphics systems such as
InfiniteReality and VPro, graphics hardware of this type differs substantially in features
and in how to achieve peak performance (fast paths).

This section describes the following topics:

• “Geometry Optimizations: Drawing Vertices” on page 482

• “Texturing Optimizations: Loading and Rendering Texture Images” on page 483

• “Pixel Optimizations: Reading and Writing Pixel Data” on page 483

• “Differences Between Onyx4 and Silicon Graphics Prism Systems” on page 484

For a more complete discussion of performance issues, including higher-level issues such
as multipipe scaling, see the document Silicon Graphics UltimateVision Graphics Porting
Guide. You can also refer to the latest platform-specific documentation and release notes
for your system, since additional performance optimizations and fast paths are ongoing.

Geometry Optimizations: Drawing Vertices

On older SGI graphics systems, immediate-mode rendering could usually reach peak
performance of the geometry pipeline. However, the geometry pipeline capacity in
Onyx4 and Silicon Graphics Prism GPUs greatly exceeds the available CPU-to-graphics
bandwidth. The fastest paths for geometry on Onyx4 and Silicon Graphics Prism systems
are either display lists or vertex buffer objects.

It is usually easiest to use display lists when porting older applications. When
constructing display lists, a variety of optimizations are performed by the system. Some
of these optimizations may be controlled by environment variables, as defined in
platform-specific documentation.

Vertex buffer objects (using the ARB_vertex_buffer_object extension) are the preferred
fast path when writing new code. When drawing indexed geometry, make sure to store
both vertex array data and the array index data in buffer objects.
482 007-2392-003

Optimizing Performance on Onyx4 and Silicon Graphics Prism Systems
Drawing geometry using vertex buffer objects or display lists can be more than five times
faster than immediate-mode rendering. The performance gain is typically larger on
Onyx4 systems than on Silicon Graphics Prism systems.

Texturing Optimizations: Loading and Rendering Texture Images

The GPUs in Onyx4 and Silicon Graphics Prism systems support less texture memory
than InfiniteReality systems. In addition, texture memory is shared with framebuffer and
display list memory. This memory sharing may further reduce available available texture
memory depending on the framebuffer configuration, use of pixel buffers, size of display
lists, etc. However, you can reduce the texture memory requirements through the use of
compressed texture formats.

Using OpenGL 1.3 core features and the EXT_texture_compression_s3tc extension,
Onyx4 and Silicon Graphics Prism systems both support compressed texture formats.
Compressed textures use approximately one-sixth of the space required for an
equivalent uncompressed texture and require correspondingly less graphics memory
bandwidth when rendering. Texture compression should be used whenever the resulting
image quality loss is acceptable. When texture compression is not acceptable, use the
fastest uncompressed texture formats, as described in the following section “Pixel
Optimizations: Reading and Writing Pixel Data” on page 483.

In some cases, the graphics drivers may automatically compress textures by default.
Refer to platform-specific documentation for more information about controlling this
process.

Pixel Optimizations: Reading and Writing Pixel Data

When you use functions like glDrawPixels(), glReadPixels(), and glTexImage2D() to
transfer pixel and uncompressed texture data between the CPU and graphics pipeline, it
is much faster when you use pixel format and type combinations that are efficiently
supported by the GPUs and drivers.

When reading and writing pixel data, the format GL_RGBA and type
GL_UNSIGNED_BYTE are fastest. When reading and writing uncompressed texture
images, the same format and type are fastest, as well as the internal texture format
GL_RGBA. When writing format GL_DEPTH_COMPONENT (depth buffer data), the type
GL_UNSIGNED_SHORT is fastest.
007-2392-003 483

18: System-Specific Tuning
Other combinations of pixel format and type require additional conversion and
packing/unpacking steps. Some additional format/type combinations may be
optimized in the future; refer to the platform release notes for more information.

Differences Between Onyx4 and Silicon Graphics Prism Systems

In contrast to older SGI graphics systems, Onyx4 and Silicon Graphics Prism systems
both use commodity graphics GPUs. The optimizations cited earlier in this section are
applicable to commodity graphics GPUs on any system. However, the following
differences between Onyx4 and Silicon Graphics Prism systems may affect performance:

• Onyx4 systems use MIPS CPUs while Silicon Graphics Prism systems use Intel
Itanium CPUs. In general, Silicon Graphics Prism systems have higher CPU
performance and greater memory bandwidth compared to Onyx4 systems. This
affects compute-bound applications.

• Onyx4 systems run the IRIX operating system while Silicon Graphics Prism systems
run Linux. The OpenGL and X feature sets of the two systems are very similar, and
the operating system differences generally do not, in and of themselves, affect
performance.

• Onyx4 systems use a PCI-X interface between the CPU and GPU while Silicon
Graphics Prism systems use an AGP 8x interface. The AGP interface offers
considerably higher bandwidth, which will improve performance for
immediate-mode rendering, pixel and texture uploads and downloads, and other
operations that must shift large amounts of data between the CPU and GPU.

However, even on Silicon Graphics Prism systems, it is important to follow the
advice cited earlier in this section regarding use of display lists and vertex buffer
objects, efficient texture and pixel formats, etc. Neither the PCI-X interface nor the
AGP interface is capable of feeding data to GPUs at a transfer rate equal to their
processing rate. Hence, caching data on GPUs is critical to peak performance.

• Silicon Graphics Prism systems, a more recent product line, will have more
opportunities for upgrades, resulting in greater performance and more OpenGL
features, to both CPUs and GPUs.
484 007-2392-003

Appendix A

A. Benchmarks

This appendix contains a sample program you can use to measure the performance of an
OpenGL operation. For an example of how the program can be used with a small
graphics applications, see Chapter 17, “Tuning Graphics Applications: Examples.”

/**
 * perf - framework for measuring performance of an OpenGL operation
 *
 * Compile with: cc -o perf -O perf.c -lGL -lX11
 *
**/

#include <GL/glx.h>
#include <X11/keysym.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <sys/time.h>

char* ApplicationName;
double Overhead = 0.0;
int VisualAttributes[] = { GLX_RGBA, None };
int WindowWidth;
int WindowHeight;

/**
 * GetClock - get current time (expressed in seconds)
**/
double
GetClock(void) {
 struct timeval t;

 gettimeofday(&t);
 return (double) t.tv_sec + (double) t.tv_usec * 1E-6;
 }
007-2392-003 485

A: Benchmarks
/**
 * ChooseRunTime - select an appropriate runtime for benchmarking
**/
double
ChooseRunTime(void) {
 double start;
 double finish;
 double runTime;

 start = GetClock();

 /* Wait for next tick: */
 while ((finish = GetClock()) == start)
 ;

 /* Run for 100 ticks, clamped to [0.5 sec, 5.0 sec]: */
 runTime = 100.0 * (finish - start);
 if (runTime < 0.5)
 runTime = 0.5;
 else if (runTime > 5.0)
 runTime = 5.0;

 return runTime;
 }

/**
 * FinishDrawing - wait for the graphics pipe to go idle
 *
 * This is needed to make sure we're not including time from some
 * previous uncompleted operation in our measurements. (It's not
 * foolproof, since we can't eliminate context switches, but we can
 * assume our caller has taken care of that problem.)
**/
void
FinishDrawing(void) {
 glFinish();
 }

/**
 * WaitForTick - wait for beginning of next system clock tick; return
 * the time
**/
486 007-2392-003

double
WaitForTick(void) {
 double start;
 double current;

 start = GetClock();

 /* Wait for next tick: */
 while ((current = GetClock()) == start)
 ;

 /* Start timing: */
 return current;
 }

/**
 * InitBenchmark - measure benchmarking overhead
 *
 * This should be done once before each risky change in the
 * benchmarking environment. A ``risky'' change is one that might
 * reasonably be expected to affect benchmarking overhead. (For
 * example, changing from a direct rendering context to an indirect
 * rendering context.) If all measurements are being made on a single
 * rendering context, one call should suffice.
**/
void
InitBenchmark(void) {
 double runTime;
 long reps;
 double start;
 double finish;
 double current;

 /* Select a run time appropriate for our timer resolution: */
 runTime = ChooseRunTime();

 /* Wait for the pipe to clear: */
 FinishDrawing();

 /* Measure approximate overhead for finalization and timing
 * routines
 */
 reps = 0;
 start = WaitForTick();
 finish = start + runTime;
007-2392-003 487

A: Benchmarks
 do {
 FinishDrawing();
 ++reps;
 } while ((current = GetClock()) < finish);

 /* Save the overhead for use by Benchmark(): */
 Overhead = (current - start) / (double) reps;
 }

/**
 * Benchmark - measure number of caller's operations performed per
 * second.
 * Assumes InitBenchmark() has been called previously, to initialize
 * the estimate for timing overhead.
**/
double
Benchmark(void (*operation)(void)) {
 double runTime;
 long reps;
 long newReps;
 long i;
 double start;
 double current;

 if (!operation)
 return 0.0;

 /* Select a run time appropriate for our timer resolution: */
 runTime = ChooseRunTime();

 /*
 * Measure successively larger batches of operations until we
 * find one that's long enough to meet our runtime target:
 */
 reps = 1;
 for (;;) {
 /* Run a batch: */
 FinishDrawing();
 start = WaitForTick();
 for (i = reps; i > 0; --i)
 (*operation)();
 FinishDrawing();
488 007-2392-003

 /* If we reached our target, bail out of the loop: */
 current = GetClock();
 if (current >= start + runTime + Overhead)
 break;

 /*
 * Otherwise, increase the rep count and try to reach
 * the target on the next attempt:
 */
 if (current > start)
 newReps = reps *
 (0.5 + runTime / (current - start -
 Overhead));
 else
 newReps = reps * 2;
 if (newReps == reps)
 reps += 1;
 else
 reps = newReps;
 }

 /* Subtract overhead and return the final operation rate: */
 return (double) reps / (current - start - Overhead);
 }

/**
 * Test - the operation to be measured
 *
 * Will be run several times in order to generate a reasonably accurate
 * result.
**/
void
Test(void) {
 /* Replace this code with the operation you want to measure: */
 glColor3f(1.0, 1.0, 0.0);
 glRecti(0, 0, 32, 32);
 }

/**
 * RunTest - initialize the rendering context and run the test
**/
void
RunTest(void) {
 if (Overhead == 0.0)
 InitBenchmark();
007-2392-003 489

A: Benchmarks
 /* Replace this sample with initialization for your test: */

 glClearColor(0.5, 0.5, 0.5, 1.0);
 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(0.0, WindowWidth, 0.0, WindowHeight, -1.0, 1.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 printf("%.2f operations per second\n", Benchmark(Test));
 }

/**
 * ProcessEvents - handle X11 events directed to our window
 *
 * Run the measurement each time we receive an expose event.
 * Exit when we receive a keypress of the Escape key.
 * Adjust the viewport and projection transformations when the window
 * changes size.
**/
void
ProcessEvents(Display* dpy) {
 XEvent event;
 Bool redraw = 0;

 do {
 char buf[31];
 KeySym keysym;

 XNextEvent(dpy, &event);
 switch(event.type) {
 case Expose:
 redraw = 1;
 break;
 case ConfigureNotify:
 glViewport(0, 0,
 WindowWidth =
 event.xconfigure.width,
 WindowHeight =
 event.xconfigure.height);
 redraw = 1;
 break;
490 007-2392-003

 case KeyPress:
 (void) XLookupString(&event.xkey, buf,
 sizeof(buf), &keysym, NULL);
 switch (keysym) {
 case XK_Escape:
 exit(EXIT_SUCCESS);
 default:
 break;
 }
 break;
 default:
 break;
 }
 } while (XPending(dpy));

 if (redraw) RunTest();
 }

/**
 * Error - print an error message, then exit
**/
void
Error(const char* format, ...) {
 va_list args;

 fprintf(stderr, "%s: ", ApplicationName);

 va_start(args, format);
 vfprintf(stderr, format, args);
 va_end(args);

 exit(EXIT_FAILURE);
 }

/**
 * main - create window and context, then pass control to ProcessEvents
**/
int
main(int argc, char* argv[]) {
 Display *dpy;
 XVisualInfo *vi;
 XSetWindowAttributes swa;
 Window win;
 GLXContext cx;
007-2392-003 491

A: Benchmarks
 ApplicationName = argv[0];

 /* Get a connection: */
 dpy = XOpenDisplay(NULL);
 if (!dpy) Error("can't open display");

 /* Get an appropriate visual: */
 vi = glXChooseVisual(dpy, DefaultScreen(dpy),VisualAttributes);
 if (!vi) Error("no suitable visual");

 /* Create a GLX context: */
 cx = glXCreateContext(dpy, vi, 0, GL_TRUE);

 /* Create a color map: */
 swa.colormap = XCreateColormap(dpy, RootWindow(dpy,
 vi->screen), vi->visual, AllocNone);

 /* Create a window: */
 swa.border_pixel = 0;
 swa.event_mask = ExposureMask | StructureNotifyMask |
 KeyPressMask;
 win = XCreateWindow(dpy, RootWindow(dpy, vi->screen), 0, 0,
 300, 300, 0,vi->depth, InputOutput, vi->visual,
 CWBorderPixel|CWColormap|CWEventMask, &swa);
 XStoreName(dpy, win, "perf");
 XMapWindow(dpy, win);

 /* Connect the context to the window: */
 glXMakeCurrent(dpy, win, cx);

 /* Handle events: */
 while (1) ProcessEvents(dpy);
 }
492 007-2392-003

Appendix B

B. Benchmarking Libraries: libpdb and libisfast

When optimizing an OpenGL application, there are two problems you need to address:

• When you are writing an OpenGL application, it is difficult to know whether a
particular feature (like depth buffering or texture mapping) is fast enough to be
useful.

• If you want your application to run fast on a variety of machines while taking
advantage of as many hardware features as possible, you need to write code that
makes configuration decisions at run time.

For the OpenGL predecessor IRIS GL, you could call getgdesc() to determine whether a
feature had hardware support. For example, you could determine whether a Z buffer
existed. If it did, you might assume that Z buffering was fast and, therefore, your
application would use it.

In OpenGL, things are more complicated. All the core features are provided even when
there is no hardware support for them and they must be implemented completely in
software. There is no OpenGL routine that reports whether a feature is implemented
partly or completely in hardware.

Furthermore, features interact in unpredictable ways. The following are examples:

• A machine might have hardware support for depth buffering but only for some
comparison functions.

• Depth buffering might be fast only as long as stencilling is not enabled.

• Depth buffering might be fast when drawing to a window but slow when drawing
to a pixmap.

A routine that identifies hardware support for particular features is actually a lot more
complicated and less useful than you might think.

To decide whether a given OpenGL feature is fast, you have to measure it. Since the
performance of a section of graphics code is dependent on many pieces of information
from the run-time environment, no other method is as well-defined and reliable.
007-2392-003 493

B: Benchmarking Libraries: libpdb and libisfast
Keep in mind that while the results of the libisfast routines are interesting, they
apply to limited special cases. Always consider using a more general tool like Open
Inventor or OpenGL Performer.

Performance measurement can be tricky, as indicated by the following considerations:

• You need to handle the cases when you are displaying over a network as well as
locally.

• You must flush the graphics pipeline properly and account for the resulting
overhead.

• Measuring all the features needed by your application may take a while. Save
performance measurements and reuse them whenever possible; users will not want
to wait for measurements each time the application starts.

• Consider measuring things other than graphics: disk and network throughput,
processing time for a particular set of data, performance on single-processor and
multiprocessor systems, and so on.

Libraries for Benchmarking

This appendix describes two libraries that can help with all of the tasks just mentioned:

libpdb Performance database routines for measuring execution rates and
maintaining a simple database.

libisfast A set of routines demonstrating libpdb that answer common questions
about the performance of OpenGL features (using reasonable but
subjective criteria).

These libraries cannot substitute for comprehensive benchmarking and performance
analysis and do not replace more sophisticated tools (like OpenGL Performer and
Open Inventor) that optimize application performance in a variety of ways. However,
they can handle simple tasks easily.
494 007-2392-003

Using libpdb
Using libpdb

Library libpdb provides the following routines:

pdbOpen() Opens the performance database.

pdbReadRate() Reads the execution rate for a given benchmark (identified by a
machine name, application name, benchmark name, and version
string) from the database.

pdbMeasureRate() Measures the execution rate for a given operation.

pdbWriteRate() Writes the execution rate for a given benchmark into the database.

pdbClose() Closes the performance database and writes it back to disk if
necessary.

All libpdb routines return a value of type pdbStatusT, which is a bit mask of error
conditions. If the value is zero (PDB_NO_ERROR), the call completed successfully. If the
value is nonzero, it is a combination of one or more of the conditions listed in Table B-1.

Every program must call pdbOpen() before using the database and pdbClose() when the
database is no longer needed. Routine pdbOpen() opens the database file (stored in
$HOME/.pdb2 on IRIX and Linux systems) and reads all the performance measurements
into main memory. Routine pdbClose() releases all memory used by the library, and
writes the database back to its file if any changes have been made by invoking
pdbWriteRate(). The following are sample calls to the routines:

Table B-1 Errors Returned by libpdb Routines

Error Meaning

PDB_OUT_OF_MEMORY Attempt to allocate memory failed.

PDB_SYNTAX_ERROR Database contains one or more records that could not be parsed.

PDB_NOT_FOUND Database does not contain the record requested by the application.

PDB_CANT_WRITE Database file could not be updated.

PDB_NOT_OPEN Routine pdbOpen() was not invoked before calling one of the other
libpdb routines.

PDB_ALREADY_OPEN Routine pdbOpen() was called while the database is still open (for
example, before pdbClose() is invoked).
007-2392-003 495

B: Benchmarking Libraries: libpdb and libisfast
pdbStatusT pdbOpen(void);
pdbStatusT pdbClose(void);

Routine pdbOpen() returns the following:

• PDB_NO_ERROR on success

• PDB_OUT_OF_MEMORY if there was insufficient main memory to store the entire
database

• PDB_SYNTAX_ERROR if the contents of the database could not be parsed or seemed
implausible (for example, a nonpositive performance measurement)

• PDB_ALREADY_OPEN if the database has been opened by a previous call to
pdbOpen() and not closed by a call to pdbClose()

Routine pdbClose() returns the following:

• PDB_NO_ERROR on success

• PDB_CANT_WRITE if the database file is unwritable for any reason

• PDB_NOT_OPEN if the database is not open

Normally applications should look for the performance data they need before going to
the trouble of taking measurements. Routine pdbReadRate(), which is used for this
purpose, has the following format:

pdbStatusT pdbReadRate (const char* machineName,const char* appName,
const char* benchmarkName,const char* versionString, double* rate)

The variable items are defined as follows:

machineName A zero-terminated string giving the name of the machine for which the
measurement is sought. If NULL, the default machine name is used. (In
X11 environments, the display name is an appropriate choice, and the
default machine name is the content of the DISPLAY environment
variable.)

appName Name of the application. This is used as an additional database key to
reduce accidental collisions between benchmark names.

benchmarkName Name of the benchmark.
496 007-2392-003

Using libpdb
versionString The fourth argument is a string identifying the desired version of the
benchmark. For OpenGL performance measurements, the string
returned by glGetString(GL_VERSION) is a good value for this
argument. Other applications might use the version number of the
benchmark rather than the version number of the system under test.

rate A pointer to a double-precision floating-point variable that receives the
performance measurement (the “rate”) from the database. The rate
indicates the number of benchmark operations per second that were
measured on a previous run. If pdbReadRate() returns zero, then it
completed successfully and the rate is returned in the last argument. If
the requested benchmark is not present in the database, it returns
PDB_NOT_FOUND. Finally, if pdbReadRate() is called when the database
has not been opened by pdbOpen(), it returns PDB_NOT_OPEN.

Example for pdbReadRate()

The following example illustrates the use of pdbReadRate():

main() {
 double rate;
 pdbOpen();
 if (pdbReadRate(NULL, "myApp", "triangles",
 glGetString(GL_VERSION), &rate)
 == PDB_NO_ERROR)
 printf("%g triangle calls per second\n", rate);
 pdbClose();
 }

When the application is run for the first time or when the performance database file has
been removed (perhaps to allow a fresh start after a hardware upgrade), pdbReadRate()
is not able to find the desired benchmark. If this happens, the application should use
pdbMeasureRate(), which has the following format, to make a measurement:

pdbStatusT pdbMeasureRate (pdbCallbackT initialize, pdbCallbackT operation,
 pdbCallbackT finalize, int calibrate, double* rate)

The variable items are defined as follows:

initialize A pointer to the initialization function. The initialization function is run
before each set of operations. For OpenGL performance measurement, it
is appropriate to use glFinish() for initialization to make sure that the
007-2392-003 497

B: Benchmarking Libraries: libpdb and libisfast
graphics pipe is quiet. However, for other performance measurements,
the initialization function can create test data, preload caches, and so on.
The value may be NULL; in which case, no initialization is performed.

operation A pointer to the operation function. This function performs the
operations that are to be measured. Usually you will want to make sure
that any global state needed by the operation is set up before calling the
operation function so that you do not include the cost of the setup
operations in the measurement.

finalize A pointer to a finalization function. This is run once, after all the calls to
the operation function are complete. In the preceding example,
glFinish() ensures that the graphics pipeline is idle. The value of finalize
may be NULL; in which case, no finalization is performed. The
finalization function must be calibrated so that the overhead of calling it
may be subtracted from the time used by the operation function. If the
fourth argument is nonzero, then pdbMeasureRate() calibrates the
finalization function. If the fourth argument is zero, then
pdbMeasureRate() uses the results of the previous calibration.
Recalibrating each measurement is the safest approach, but it roughly
doubles the amount of time needed for a measurement. For OpenGL, it
should be acceptable to calibrate once and recalibrate only when using
a different X11 display.

rate A pointer to a double-precision floating-point variable that receives the
execution rate. This rate is the number of times the operation function
was called per second. Routine pdbMeasureRate() attempts to compute
a number of repetitions that results in a run time of about one second.
(Calibration requires an additional second.) It is reasonably careful
about timekeeping on systems with low-resolution clocks.

Routine pdbMeasureRate() always returns PDB_NO_ERROR.
498 007-2392-003

Using libpdb
Example for pdbMeasureRate()

The following example illustrates the use of pdbMeasureRate():

void SetupOpenGLState(void) {
 /* set all OpenGL state to desired values */
 }

void DrawTriangles(void) {
 glBegin(GL_TRIANGLE_STRIP);
 /* specify some vertices... */
 glEnd();
 }
main() {
 double rate;
 pdbOpen();
 if (pdbReadRate(NULL, "myApp", "triangles",
 glGetString(GL_VERSION), &rate)
 != PDB_NO_ERROR) {
 SetupOpenGLState();
 pdbMeasureRate(glFinish, DrawTriangles,
 glFinish, 1, &rate);
 }
 printf("%g triangle calls per second\n", rate);
 pdbClose();
 }

Once a rate has been measured, it should be stored in the database by calling
pdbWriteRate(), which has the following format:

pdbStatusT pdbWriteRate (const char* machineName,
const char* applicationName, const char* benchmarkName,
const char* versionString, double rate)

The first four arguments of pdbWriteRate() match the first four arguments of
pdbReadRate(). The last argument is the performance measurement to be saved in the
database.

Routine pdbWriteRate() returns the following:

• PDB_NO_ERROR if the performance measurement was added to the in-memory
copy of the database

• PDB_OUT_OF_MEMORY if there was insufficient main memory

• PDB_NOT_OPEN if the database is not open
007-2392-003 499

B: Benchmarking Libraries: libpdb and libisfast
When pdbWriteRate() is called, the in-memory copy of the performance database is
marked “dirty.” Routine pdbClose() takes note of this and writes the database back to
disk.

Example for pdbWriteRate()

The following example illustrates the use of pdbWriteRate():

main() {
 double rate;
 pdbOpen();
 if (pdbReadRate(NULL, "myApp", "triangles",
 glGetString(GL_VERSION), &rate)
 != PDB_NO_ERROR) {
 SetupOpenGL();
 pdbMeasureRate(glFinish, DrawTriangles,
 glFinish, 1, &rate);
 pdbWriteRate(NULL, "myApp", "triangles",
 glGetString(GL_VERSION), rate);
 }
 printf("%g triangle calls per second\n", rate);
 pdbClose();
 }

Using libisfast

The libisfast library is a set of demonstration routines that show how libpdb can be
used to measure and maintain OpenGL performance data. Library libisfast is based
on purely subjective performance criteria. If they are appropriate for your application,
feel free to use them. If not, copy the source code and modify it accordingly.

In all cases that follow, the term “triangles” refers to a triangle strip with 37 vertices. The
triangles are drawn with perspective projection, lighting, and smooth (Gouraud)
shading. Unless otherwise stated, display-list-mode drawing is used. This makes
libisfast yield more useful results when the target machine is being accessed over a
network.

The application must initialize libisfast before performing any performance
measurements and clean up after the measurements are finished. On X11 systems,
initialize libisfast by making the following call:
500 007-2392-003

Using libisfast
int IsFastXOpenDisplay(const char* displayName);

Perform cleanup by making the following call:

void IsFastXCloseDisplay(void);

The following are other libisfast routines to use:

IsFastOpenXDisplay() Returns zero if the named display could not be opened and
nonzero if the display was opened successfully.

DepthBufferingIsFast() Returns nonzero if depth-buffered triangles can be drawn at
least half as fast as triangles without depth buffering:

int DepthBufferingIsFast(void);

ImmediateModeIsFast() Returns nonzero if immediate-mode triangles can be drawn
at least half as fast as display-listed triangles:

int ImmediateModeIsFast(void);

Note that one significant use of ImmediateModeIsFast()
may be to decide whether a “local” or a “remote” rendering
strategy is appropriate. If immediate mode is fast, as on a
local workstation, it may be best to use that mode and avoid
the memory cost of duplicating the application’s data
structures in display lists. If immediate mode is slow, as is
likely for a remote workstation, it may be best to use display
lists for bulky geometry and textures.

StencillingIsFast() Returns nonzero if stencilled triangles can be drawn at least
half as fast as non-stencilled triangles:

int StencillingIsFast(void);

TextureMappingIsFast() Returns nonzero if texture-mapped triangles can be drawn
at least half as fast as non-texture-mapped triangles:

int TextureMappingIsFast(void);

Although the routines inlibisfast are useful for a number of applications, you should
study them and modify them for your own use. Doing so allows yout to explore the
particular performance characteristics of your systems: their sensitivity to triangle size,
007-2392-003 501

B: Benchmarking Libraries: libpdb and libisfast
triangle strip length, culling, stencil function, texture-map type, texture-coordinate
generation method, and so on.
502 007-2392-003

Appendix C

C. System Support for OpenGL Versions and
Extensions

Using the following topics, this appendix lists the OpenGL core versions and extensions
that are supported on the various Silicon Graphics visualization systems:

• “OpenGL Core Versions” on page 503

• “OpenGL Extensions” on page 504

• “GLX Extensions” on page 510

OpenGL Core Versions

Table C-1 shows the support for OpenGL core versions by system.

In general, the sets of extensions supported by traditional Silicon Graphics systems and
by the newer GPU-based Silicon Graphics systems are largely disjoint. However, by
writing appropriate user-defined vertex and fragment programs, many of the vertex

Table C-1 Support for OpenGL Core Versions

OpenGL and GLX Version Visualization System

OpenGL 1.1 and GLX 1.3 InfiniteReality

Also supports many EXT and SGI extensions.

OpenGL 1.2 and GLX 1.3 Fuel, Tezro, and InfinitePerformance systems using VPro graphics

Also supports many EXT and SGI extensions.

OpenGL 1.3 and GLX 1.3 Silicon Graphics Onyx4 UltimateVision and Silicon Graphics
Prism systems using commodity GPUs from ATI Technologies

Also supports many standard ARB and ATI vendor-specific
extensions. Some EXT and SGI extensions common to VPro and
InfiniteReality are also supported.
007-2392-003 503

C: System Support for OpenGL Versions and Extensions
processing and rasterization features introduced with older EXT and SGI extensions can
be emulated.

OpenGL Extensions

Table C-2 lists the supported OpenGL extensions. Note that while the list is
comprehensive, this guide only describes those extensions that are either available or
scheduled to be available on more than one platform.

Table C-2 OpenGL Extensions on Different Silicon Graphics Systems

Extension
VPro/
InfinitePerformance InfiniteReality

UltimateVision/
Prism

ARB_depth_texture X

ARB_fragment_program X

ARB_imaging X

ARB_multisample X

ARB_multitexture X

ARB_point_parameters X

ARB_shadow X

ARB_shadow_ambient X

ARB_texture_border_clamp X

ARB_texture_compression X

ARB_texture_cube_map X

ARB_texture_env_add X

ARB_texture_env_combine X

ARB_texture_env_crossbar X

ARB_texture_env_dot3 X

ARB_texture_mirrored_repeat X

ARB_transpose_matrix X
504 007-2392-003

OpenGL Extensions
ARB_vertex_blend Xa

ARB_vertex_buffer_object Xb

ARB_vertex_program X

ARB_window_pos X

ATIX_texture_env_combine3 X

ATIX_texture_env_route X

ATIX_vertex_shader_output_point_size X

ATI_draw_buffers X

ATI_element_array X

ATI_envmap_bumpmap X

ATI_fragment_shader X

ATI_map_object_buffer X

ATI_separate_stencil X

ATI_texture_env_combine3 X

ATI_texture_float X

ATI_texture_mirror_once X

ATI_vertex_array_object X

ATI_vertex_attrib_array_object X

ATI_vertex_streams X

EXT_abgr X X X

EXT_bgra X

EXT_blend_color X X X

EXT_blend_func_separate X

Table C-2 OpenGL Extensions on Different Silicon Graphics Systems (continued)

Extension
VPro/
InfinitePerformance InfiniteReality

UltimateVision/
Prism
007-2392-003 505

C: System Support for OpenGL Versions and Extensions
EXT_blend_logic_op X X Xc

EXT_blend_minmax X X X

EXT_blend_subtract X X X

EXT_clip_volume_hint X

EXT_compiled_vertex_array X

EXT_convolution X X

EXT_copy_texture X Xd

EXT_draw_range_elements X

EXT_fog_coord X

EXT_histogram X X

EXT_multi_draw_arrays X

EXT_packed_pixels X X X

EXT_point_parameters X

EXT_polygon_offset X X

EXT_rescale_normal X

EXT_secondary_color X

EXT_separate_specular_color X

EXT_stencil_wrap X

EXT_subtexture X Xe

EXT_texgen_reflection X

EXT_texture X Xf

EXT_texture3D X X X

EXT_texture_compression_s3tc X

Table C-2 OpenGL Extensions on Different Silicon Graphics Systems (continued)

Extension
VPro/
InfinitePerformance InfiniteReality

UltimateVision/
Prism
506 007-2392-003

OpenGL Extensions
EXT_texture_cube_map X

EXT_texture_edge_clamp X

EXT_texture_env_add X X

EXT_texture_env_combine X

EXT_texture_env_dot3 X

EXT_texture_filter_anisotropic X

EXT_texture_lod_bias X

EXT_texture_object X X

EXT_texture_rectangle X

EXT_vertex_array X X

EXT_vertex_shader X

HP_occlusion_test X

INGR_interlace_read X

NV_blend_square X

NV_occlusion_query X

NV_point_sprite X

NV_texgen_reflection X

S3_s3tc X

SGI_color_matrix X X X

SGI_color_table X X

SGI_texture_color_table X X

SGIS_detail_texture X X

SGIS_fog_function X X

Table C-2 OpenGL Extensions on Different Silicon Graphics Systems (continued)

Extension
VPro/
InfinitePerformance InfiniteReality

UltimateVision/
Prism
007-2392-003 507

C: System Support for OpenGL Versions and Extensions
SGIS_generate_mipmap X

SGIS_multisample X

SGIS_multitexture Xg

SGIS_pixel_texture X

SGIS_point_line_texgen X

SGIS_point_parameters X

SGIS_sharpen_texture X

SGIS_texture_LOD X

SGIS_texture_border_clamp X X

SGIS_texture_color_mask X

SGIS_texture_edge_clamp X X X

SGIS_texture_filter4 X

SGIS_texture_lod X X

SGIS_texture_select X

SGIX_async X

SGIX_async_pixel X

SGIX_blend_alpha_minmax X

SGIX_calligraphic_fragment X

SGIX_clipmap X

SGIX_convolution_accuracy X

SGIX_depth_texture X

SGIX_flush_raster X

SGIX_fog_offset X X

Table C-2 OpenGL Extensions on Different Silicon Graphics Systems (continued)

Extension
VPro/
InfinitePerformance InfiniteReality

UltimateVision/
Prism
508 007-2392-003

OpenGL Extensions
SGIX_fragment_lighting X

SGIX_instruments X

SGIX_interlace X X

SGIX_ir_instrument1 X

SGIX_list_priority X X

SGIX_reference_plane X

SGIX_resample X

SGIX_scalebias_hint X

SGIX_shadow X

SGIX_shadow_ambient X

SGIX_sprite X

SGIX_subsample X

SGIX_texture_add_env X

SGIX_texture_coordinate_clamp X

SGIX_texture_lod_bias X X

SGIX_texture_scale_bias X X

SGIX_vertex_preclip X

SUN_multi_draw_arrays Xh

a. Silicon Graphics Prism systems only

b. Silicon Graphics Prism systems only

c. Silicon Graphics Onyx4 UltimateVision systems only

d. Silicon Graphics Onyx4 UltimateVision systems only

e. Silicon Graphics Onyx4 UltimateVision systems only

f. Silicon Graphics Onyx4 UltimateVision systems only

g. Silicon Graphics Prism systems only

h. Silicon Graphics Prism systems only

Table C-2 OpenGL Extensions on Different Silicon Graphics Systems (continued)

Extension
VPro/
InfinitePerformance InfiniteReality

UltimateVision/
Prism
007-2392-003 509

C: System Support for OpenGL Versions and Extensions
GLX Extensions

Table C-3 lists the GLX extensions supported on Silicon Graphics systems.

Table C-3 GLX Extensions on Different Silicon Graphics Systems

Extension
VPro/
InfinitePerformance InfiniteReality

UltimateVision/
Prism

GLX_ARB_get_proc_address X

GLX_ARB_multisample X

GLX_SGIS_multisample X

GLX_EXT_import_context X X X

GLX_EXT_visual_info X X X

GLX_EXT_visual_rating X X X

GLX_SGIX_fbconfig X X Xa

a. Silicon Graphics Onyx4 UltimateVision systems only. In new code, use GLX core features to access FBCon-
figs and pixel buffers instead of this extension.

GLX_SGIX_pbuffer X X Xb

b. Silicon Graphics Onyx4 UltimateVision systems only. In new code, use GLX core features to access FBCon-
figs and pixel buffers instead of this extension.

GLX_SGIX_hyperpipe X X X

GLX_SGIX_swap_barrier X X X c

c. Silicon Graphics Prism systems only.

GLX_SGIX_swap_group X X X

GLX_SGI_swap_control X X

GLX_SGI_make_current_read X X X

GLX_SGI_video_sync X X Xd

d. Silicon Graphics Prism systems only.

GLX_SGIX_video_resize X
510 007-2392-003

Appendix D

D. XFree86 Configuration Specifics

Silicon Graphics Prism and Onyx4 systems require a number of system-specific X
configuration settings for various configurations. Using the following topics, this
appendix provides information about customizing the XF86Config file for
Silicon Graphics Prism systems:

• “Configuring a System for Stereo” on page 512

• “Configuring a System for Full-Scene Antialiasing” on page 515

• “Configuring a System for Dual-Channel Operation” on page 517

• “Enabling Overlay Planes” on page 518

• “Configuring a System for External Genlock or Framelock” on page 519

• “Configuring Monitor Positions” on page 521

• “Configuring Monitor Types” on page 523

• “Configuring a System for Multiple X Servers” on page 524

For Onyx4 systems, refer to the Silicon Graphics Onyx4 UltimateVision User’s Guide and the
Silicon Graphics UltimateVision Graphics Porting Guide. In general, for ongoing
enhancements in X configuration, refer to the most recent user’s guide for your platform.
007-2392-003 511

D: XFree86 Configuration Specifics
Configuring a System for Stereo

This section describes how to configure a system to display stereo images.

Stereo sync is supported only on systems using ImageSync boards.

Note: Simultaneously running stereo and full-scene antialiasing can require more
graphics-card memory than is available, and thus may not always work correctly.

1. Create a copy of the XF86Config file to be customized for stereo:

cp /etc/X11/XF86Config /etc/X11/XF86Config.Stereo

2. Edit the XF86Config.Stereo file to include the following line at the end of each
“Device” section:

Option "Stereo" "1"
Option "StereoSyncEnable" "1"

(see the “Example “Device” Section for Stereo” on page 513).

3. Edit the XF86Config.Stereo file to include the appropriate stereo modes in the
“Monitor” section:

a. Create an appropriate mode (see “Sample Stereo Mode Entries” on page 513).

b. Add that mode to the “Monitor” section of your XF86Config.Stereo file (see
the “Example “Monitor” Section for Stereo” on page 514).

Note: “Mode” and “Modeline” are two alternative formats used to present the same
information.

4. Ensure that the monitor supports the high horizontal sync rate setting. Refer to the
documentation for the monitor to determine the horizontal sync rate. Modify the
HorizSync setting in the “Monitor” section of the XF86Config.Stereo file. For
example:

HorizSync 22-105

5. Modify the “Screen” section so that you use the appropriate mode setting. For
example:

Modes "1280x1024@96" (see the “Example “Screen” Section for Stereo” on page 514).
512 007-2392-003

Configuring a System for Stereo
6. Create a new /etc/X11/xdm/Xservers.Stereo file containing the following
line:

:0 secure /usr/bin/X11/X :0 -xf86config /etc/X11/XF86Config.Stereo

7. Edit the /etc/X11/xdm/xdm-config file to point to the new X servers file:

Replace the line:

DisplayManager.servers: /etc/X11/xdm/Xservers

with:

DisplayManager.servers: /etc/X11/xdm/Xservers.Stereo

8. Save the file and reboot the system to restart graphics in stereo mode:

Note that a stereo sync signal will not be present until you run a stereo application. One
such application is ivview. If your system has ivview installed, you can use it to test
the stereo configuration by running:
ivview /usr/share/data/models/X29.iv
and right click to activate the stereo setting on the preferences panel.

Example “Device” Section for Stereo
Section "Device"
 Identifier "SGI SG-0"
 Driver "fglrx"
 BusId "PCI:2:0:0"
=== QBS Management ===
 Option "Stereo" "1"
 Option "StereoSyncEnable" "1"
EndSection

Sample Stereo Mode Entries
Modeline "1024x768@96" 103.5 1024 1050 1154 1336 768 771 774 807
Modeline "1280x1024@96" 163.28 1280 1300 1460 1600 1024 1027 1033 1063
Modeline "1024x768@100" 113.309 1024 1096 1208 1392 768 769 772 814
Modeline "1024x768@120" 139.054 1024 1104 1216 1408 768 769 772 823 +hsync +vsync
Modeline "1280x1024@100" 190.960 1280 1376 1520 1760 1024 1025 1028 1085 +hsync +vsync
Mode "1280x1024_96s_mirage"
 DotClock 152.928
 HTimings 1280 1330 1390 1500
 VTimings 1024 1026 1030 1062
007-2392-003 513

D: XFree86 Configuration Specifics
EndMode

Example “Monitor” Section for Stereo
Section "Monitor"
 Identifier "Stereo Monitor"
 HorizSync 30-96 # multisync
 VertRefresh 50-160 # multisync
 Modeline "1024x768@96" 103.5 1024 1050 1154 1336 768 771 774 807
EndSection

Example “Screen” Section for Stereo
Section "Screen"
 Identifier "Screen SG-0"
 Device "SGI SG-0"
 Monitor "Stereo Monitor"
 DefaultDepth 24
 SubSection "Display"
 Depth 24
 Modes "1280x1024@96"
 EndSubSection
EndSection
514 007-2392-003

Configuring a System for Full-Scene Antialiasing
Configuring a System for Full-Scene Antialiasing

This section describes how to configure a system for global or per-window full-scene
antialiasing.

Note: Simultaneously running stereo and full-scene antialiasing can require more
graphics-card memory than is available, and thus may not work correctly.

1. Create a copy of the XF86Config file to be customized for full-scene antialiasing:

cp /etc/X11/XF86Config /etc/X11/XF86Config.AntiAlias

Note: Automatically generated XF86Config files should contain the customized
multi-sample positions shown in on page 516. If these values are not already
present, adding them will significantly improve the quality of your output.

2. Edit the XF86Config.AntiAlias file to include the following line at the end of
each “Device” section:

Option "FSAAScale" “X”

where X is 1, 2, 4, or 6 (see the example “Device” section on page 516).

Note: Per-window full-scene antialiasing is accomplished by setting “FSAAScale”
to 1. The antialiasing level may then be set by the appropriate selection of visuals.
Global antialiasing is accomplished by setting “FSAAScale” to 2, 4, or 6. In this case,
the setting will apply to all OpenGL windows, regardless of the visual being
displayed.

3. Create a new /etc/X11/xdm/Xservers.AntiAlias file containing the
following (all on one line):

:0 secure /usr/bin/X11/X :0 -xf86config /etc/X11/XF86Config.AntiAlias

4. Edit the /etc/X11/xdm/xdm-config file to point to the new X servers file:

Replace the line:

DisplayManager.servers: /etc/X11/xdm/Xservers

with:

DisplayManager.servers: /etc/X11/xdm/Xservers.AntiAlias
007-2392-003 515

D: XFree86 Configuration Specifics
5. Stop the system graphics from the X-terminal:

<CTRL> <ALT> <BKSPC>

6. Restart graphics:

/usr/bin/X11/startx

Example “Device” Section for Full-Scene Antialiasing
Section "Device"
 Identifier "SGI SG-0"
 Driver "fglrx"
 BusId "PCI:2:0:0"
=== FSAA Management ===
 Option "FSAAScale" "1"
 Option "FSAADisableGamma" "no"
 Option "FSAACustomizeMSPos" "yes"
 Option "FSAAMSPosX0" "0.250000"
 Option "FSAAMSPosY0" "0.416666"
 Option "FSAAMSPosX1" "0.083333"
 Option "FSAAMSPosY1" "0.083333"
 Option "FSAAMSPosX2" "0.416666"
 Option "FSAAMSPosY2" "0.750000"
 Option "FSAAMSPosX3" "0.750000"
 Option "FSAAMSPosY3" "0.916666"
 Option "FSAAMSPosX4" "0.583333"
 Option "FSAAMSPosY4" "0.250000"
 Option "FSAAMSPosX5" "0.916666"
 Option "FSAAMSPosY5" "0.583333"
EndSection
516 007-2392-003

Configuring a System for Dual-Channel Operation
Configuring a System for Dual-Channel Operation

To configure a system for dual-channel operation, follow the steps in this section.

Note: If any pipes managed by an X server have their second channel enabled, then
every pipe managed by that X server must have its second channel enabled.

Note: Both channels on a pipe must have the same display resolution.

1. Create a copy of the XF86Config file to be customized for dual-channel operation:

cp /etc/X11/XF86Config /etc/X11/XF86Config.DualChannel

2. Edit the XF86Config.DualChannel file to include the following line at the end of
each “Device” section:

Option "DesktopSetup" mode

where mode is one of the following:

"0x00000100" [this mode clones the managed area]
"0x00000200" [this mode scales the managed area by 2 horizontally]
"0x00000300" [this mode scales the managed area by 2 vertically]

(see the example “Device” section on page 518).

Note: All pipes managed by the same X server must be set to the same mode.

3. When using monitors or monitor cables which do not conform to the VESA Display
Data Channel (DDC) standard, append the following entry in the “Device” section
to enable proper display configuration:

Option "NoDDC" "on"

4. Create a new /etc/X11/xdm/Xservers.DualChannel file containing the
following line:

:0 secure /usr/bin/X11/X :0 -xf86config /etc/X11/XF86Config.DualChannel

5. Edit the /etc/X11/xdm/xdm-config file to point to the new X servers file:

Replace the line:

DisplayManager.servers: /etc/X11/xdm/Xservers
007-2392-003 517

D: XFree86 Configuration Specifics
with:

DisplayManager.servers: /etc/X11/xdm/Xservers.DualChannel

6. Stop the system graphics from the X-terminal:

<CTRL> <ALT> <BKSPC>

7. Restart graphics:

/usr/bin/X11/startx

Example “Device” Section for Dual Channel
Section "Device"
 Identifier "SGI SG-0"
 Driver "fglrx"
 BusId "PCI:2:0:0"
 Option "DesktopSetup" "0x00000200"
EndSection

Enabling Overlay Planes

To enable overlay planes, follow these steps:

1. Edit the /etc/X11/XF86Config file to include the following line in each “Device”
section for which you want overlay planes enabled:

Option "OpenGLOverlay" "On"

2. Log out from the desktop, then log back on.

Example “Device” Section to Enable Overlay Planes
Section "Device"
 Identifier "SGI SG-0"
 Driver "fglrx"
 BusId "PCI:2:0:0"
 Option "OpenGLOverlay" "On"
EndSection
518 007-2392-003

Configuring a System for External Genlock or Framelock
Configuring a System for External Genlock or Framelock

External genlock and framelock may be used on systems with at least one optional
ImageSync board.

To configure your system to receive an external genlock or framelock signal you must run
the setmon command with the appropriate options.

Before running setmon, use printenv DISPLAY to ensure that the DISPLAY
environment variable is set to the local system (for example, :0.0). If it is not, use setenv
DISPLAY :0.0 to change it (substituting other numbers for :0.0 if appropriate).

To set the system for genlock, execute the following command:

setmon -ppipenumber -g graphicsformat

where pipenumber is the pipe to which this setting should be applied, and
graphicsformat is one of the timings (modes) listed in the “Monitor” section of the
/etc/X11/XF86Config file.

To set the system for framelock, execute the following command:

setmon -ppipenumber -Lvideoformat graphicsformat

where pipenumber is the pipe to which this setting should be applied,
videoformat is the input video format to be used as a framelock source, and
graphicsformat is one of the framelock-certified timings (modes) listed in the “Monitor”
section of the /etc/X11/XF86Config file that is compatible with the chosen input
video format (Table D-1 on page 520 provides a list of compatible formats).

Note: The default behavior of setmon is to load the new format for the current session
only and to prompt for input to determine if the format should be saved as the default.
To save the new format as the default you must be logged in as root.

For more information about the setmon command, see the setmon man page (man
setmon).
007-2392-003 519

D: XFree86 Configuration Specifics
Note: Framelock-certified timings will include an “f” appended to their name (that is,
“1280x1024_5994f” is certified for NTSC (525 line) video timing).

Table D-1 Input Video Formats (Framelock)

Input Video Format (Framelock Source) Format Name Compatible Graphics Formats

525 line at 59.94Hz (NTSC) 525
(or use the alias NTSC)

1280x1024_5994f
1920x1154_5994f

625 line at 50Hz (PAL) 625
(or use the alias PAL)

1280x1024_50f
1920x1154_50f

720-line progressive-scan at 59.94Hz 720p_5994 1920x1154_5994f

720-line progressive-scan at 60Hz 720p_60 1280x1024_60f
1920x1154_60f
1920x1200_60f

1080-line progressive-scan at 25Hz 1080p_25 1280x1024_50f
1920x1154_50f

1080-line interlaced at 25Hz 1080i_25 1280x1024_50f
1920x1154_50f

1080-line progressive-scan at 29.97Hz 1080p_2997 1920x1154_5994f

1080-line interlaced at 29.97Hz 1080i_2997 1920x1154_5994f

1080-line progressive-scan at 30Hz 1080p_30 1280x1024_60f
1920x1154_60f
1920x1200_60f

1080-line interlaced at 30Hz 1080i_30 1280x1024_60f
1920x1154_60f
1920x1200_60f
520 007-2392-003

Configuring Monitor Positions
Configuring Monitor Positions

When an X-Server is managing multiple monitors, it needs to know their relative
positions in order to properly handle cursor cross-over locations.

The monitor positions are specified in the “ServerLayout” section of the
/etc/X11/XF86Config file as follows:

Each screen is listed, followed by a list of the screens above, below, to the left, and to the
right of it (in that order). Figure D-1 and the following subsection show an example of
four monitors arranged in a line.

Programs started by clicking on an icon appear on the screen from which you invoked
them. Note that once a program has been launched, it is not possible to move it from one
screen to another.

Figure D-1 Four Monitors in a Line

Example “ServerLayout” Section for Four Monitors in a Line
Section "ServerLayout"
 Identifier "Four-in-a-Line"
 Screen "Screen SG-0" "" "" "" "Screen SG-1"
 Screen "Screen SG-1" "" "" "Screen SG-0" "Screen SG-2"
 Screen "Screen SG-2" "" "" "Screen SG-1" "Screen SG-3"
 Screen "Screen SG-3" "" "" "Screen SG-2" ""
 InputDevice "Mouse1" "CorePointer"
 InputDevice "Keyboard1" "CoreKeyboard"
EndSection

SG-0 SG-1 SG-2 SG-3
007-2392-003 521

D: XFree86 Configuration Specifics
Figure D-2 and the subsection following it show an example of four monitors arranged
in a square.

Figure D-2 Four Monitors in a Square

Example “ServerLayout” Section for Four Monitors in a Square
Section "ServerLayout"
 Identifier "Four-in-a-Square"
 Screen "Screen SG-0" "" "Screen SG-2" "" "Screen SG-1"
 Screen "Screen SG-1" "" "Screen SG-3" "Screen SG-0" ""
 Screen "Screen SG-2" "Screen SG-0" "" "" "Screen SG-3"
 Screen "Screen SG-3" "Screen SG-1" "" "Screen SG-2" ""
 InputDevice "Mouse1" "CorePointer"
 InputDevice "Keyboard1" "CoreKeyboard"
EndSection

SG-0 SG-1

SG-2 SG-3
522 007-2392-003

Configuring Monitor Types
Configuring Monitor Types

The system graphics cards support both analog and digital monitors. The type of
monitor connected to each graphics card is specified in the “Device” sections of the
/etc/X11/XF86Config file.

Table D-2 lists the allowable options for the MonitorLayout line. If the line is not present,
both channels default to AUTO.

The format is:

Option "MonitorLayout" "channel1type, channel2type"

where channel1type is the type (AUTO, TMDS, CRT or NONE) of monitor attached to
channel 1 (the left DVI-I connector) for this pipe, and
channel2type is the type (AUTO, TMDS, CRT or NONE) of monitor attached to channel 2 (the
right DVI-I connector) for this pipe.

Example “Device” Section for Use With Two Analog Monitors
Section "Device"
 Identifier "SGI SG-0"
 Driver "fglrx"
 BusId "PCI:2:0:0"
 Option "MonitorLayout" "CRT, CRT"
EndSection

Table D-2 Options for Monitor Layout

Monitor Type Meaning

AUTO Automatically select monitor type (default)

TMDS Digital monitor

CRT Analog monitor

NONE No monitor
007-2392-003 523

D: XFree86 Configuration Specifics
Configuring a System for Multiple X Servers

Multiple X servers allows specific subsets of the keyboards, pointing devices, and
monitors attached to a Silicon Graphics Prism system to each be managed by a different
X server.

Note: The use of multiple X servers requires SGI ProPack 3, Service Pack 4 or a later
release of the software.

This section describes a relatively simple configuration. Much more complex
configurations are possible, however, and may be accomplished by extending the
instructions provided here.

Note: When configuring multiple seats, the best method is to first attach all devices
(keyboards, pointing devices, and monitors) and configure the system with a single X
server. Once this is done, the configuration may be modified to assign individual subsets
of these devices to be managed by separate X servers.

Configuring a system for multi-seat operation involves the following steps, each
described in a separate subsection below:

1. Identify the correct event devices (that is, keyboards and pointing devices) for each
seat.

2. Create and edit an XF86Config-N server file for the desired configuration.

3. Point X to the newly-created XF86Config-N server file.
524 007-2392-003

Configuring a System for Multiple X Servers
Identifying Event Devices

An “event device” is a keyboard or pointing device. All event devices connected to the
system are listed at boot time on lines beginning with the string “input.” These boot
messages may be displayed at a Linux command prompt using the dmesg command.
The output from the dmesg command can be quite long, and therefore is usually filtered
with a grep command. For example:

dmesg | grep ^input
input0: USB HID v1.10 Keyboard [NOVATEK Generic USB Keyboard] on usb1:4.0
input1: USB HID v1.00 Mouse [Logitech N43] on usb1:5.0
input2: USB HID v1.00 Mouse [Logitech N43] on usb1:6.0
input3: USB HID v1.10 Keyboard [NOVATEK Generic USB Keyboard] on usb1:7.0
input4: USB HID v1.00 Keyboard [SILITEK USB Keyboard and Mouse] on usb1:9.0
input5: USB HID v1.00 Mouse [SILITEK USB Keyboard and Mouse] on usb1:9.1
input6: USB HID v1.00 Mouse [Logitech N43] on usb1:10.0

All input devices detected during boot-up will have device nodes created for them in the
/dev/input directory as follows:

• Each keyboard will have an associated event* device node.

• Each pointing device will have both an associated event* device node and an
associated mouse* device node.

The mapping of devices to nodes is by number (that is, input0 maps to event0, input1
maps to event1, and so on). The first input that is a pointing device gets mapped to
mouse0, the next input that is a pointing device gets mapped to mouse1, and so on.

The dmesg output shown above would therefore create the following mapping:

input0: event0
input1: event1, mouse0
input2: event2, mouse1
input3: event3
input4: event4
input5: event5, mouse2
input6: event6, mouse3

This mapping can then be used to edit the XF86Config-N server file, as described in the
next subsection, “Creating a Multi-Seat XF86Config File” on page 526.
007-2392-003 525

D: XFree86 Configuration Specifics
Creating a Multi-Seat XF86Config File

A multiple-X server configuration requires a customized XF86Config file containing a
separate ServerLayout section for each X server you will be running.

Note: The original ServerLayout section (always identified as “Main Layout”) is
typically left unchanged, allowing the system to easily be reconfigured as a single-X
server system.

Creating a New XF86Config File

Start out by creating a new XF86Config file. The easiest way to do this is to simply make
a copy of the system’s regular XF86Config file, as follows:

cp /etc/X11/XF86Config /etc/X11/XF86Config-Nservers

N is the number of servers you will be configuring.
526 007-2392-003

Configuring a System for Multiple X Servers
Configuring the Input Devices

Next, configure the input devices as follows:

1. Copy the section beginning:

Section "InputDevice"
 Identifier "Keyboard1"

and insert a duplicate copy (or copies) below the existing section, until there is one
copy for each keyboard (including the original copy in this count).

2. Edit all the keyboard InputDevice sections, in each one changing the driver from
“keyboard” to “evdev” and adding an Option line identifying the appropriate event
device (in this example, “/dev/input/event0”). The resulting InputDevice
sections will look something like the following:

Section "InputDevice"
 Identifier "Keyboard1"
 Driver "evdev"
 Option "Device" "/dev/input/event0"
 # ...
EndSection

Note: See “Identifying Event Devices” on page 525 for instructions on how to
determine the appropriate event device for each section.

Note: You may assign any number of keyboards to a single X server, but no keyboard
may be assigned to more than one X server.

3. Copy the section beginning:

Section "InputDevice"
 Identifier "Mouse1"

and insert a duplicate copy (or copies) below the existing section, until there is one
copy for each pointing device (including the original copy in this count).

4. Edit all the mouse InputDevice sections, changing the Option “Device” line from
the default “/dev/input/mice” to one identifying the appropriate event device
(in this example, “/dev/input/mouse0”). The resulting InputDevice sections will
look something like the following:

Section "InputDevice"
 Identifier "Mouse1"
007-2392-003 527

D: XFree86 Configuration Specifics
 Driver "mouse"
 Option "Device" "/dev/input/mouse0"
 # ...
EndSection

Note: See “Identifying Event Devices” on page 525 for instructions on how to
determine the appropriate event device.

Note: You may assign any number of pointing devices to a single X server, but no
pointing device may be assigned to more than one X server.
528 007-2392-003

Configuring a System for Multiple X Servers
Configuring the New ServerLayout Sections

In this new XF86Config-Nservers file, perform the following steps:

1. Copy the section beginning:

Section “ServerLayout”
 Identifier “Main Layout”

and insert a duplicate copy (or copies) below the existing section, until there is one
copy for each X server you will have (do NOT include the original “Main Layout”
copy in this count).

2. While leaving the original ServerLayout section identified as “MainLayout,” give
each new ServerLayout section a new name. For example, the first server might be
named “Layout0”:

Identifier “Layout0”

the next “Layout1,” and so on.

3. Within each new Server Layout section, disable (delete or comment out) every
screen that will not be used in that layout:

 Screen "Screen SG-0" "" "" "" "Screen SG-1"
Screen "Screen SG-1" "" "" "Screen SG-0" ""

Note: You may assign any number of screens to a single X server, but no screen may
be assigned to more than one X server.

4. Edit each Server Layout section to make sure than no remaining uncommented
screen lists as adjacent another screen that will be managed by a different X server:

 Screen "Screen SG-0" "" "" "" ""
Screen "Screen SG-1" "" "" "Screen SG-0" ""

5. Within each Server Layout section, change the input devices to the correct ones for
that X server. For example, the first X server might use:

InputDevice “Mouse1” “CorePointer”
InputDevice “Keyboard1” “CoreKeyboard”

6. Save the XF86Config-Nservers file.

For an example ServerLayout section from an XF86Config-3server file, see
“Example “ServerLayout” Sections for Three X Servers” on page 530. In this example, the
007-2392-003 529

D: XFree86 Configuration Specifics
first two X servers manage one screen each, while the third X server manages two
screens.

Example “ServerLayout” Sections for Three X Servers
**
ServerLayout sections.
**

Section "ServerLayout"
 Identifier "Main Layout"
 Screen "Screen SG-0" "" "" "" "Screen SG-1"
 Screen "Screen SG-1" "" "" "Screen SG-0" "Screen SG-2"
 Screen "Screen SG-2" "" "" "Screen SG-1" "Screen SG-3"
 Screen "Screen SG-3" "" "" "Screen SG-2" ""
 InputDevice "Mouse1" "CorePointer"
 InputDevice "Keyboard1" "CoreKeyboard"
EndSection

Section "ServerLayout"
 Identifier "Layout0"
 Screen "Screen SG-0" "" "" "" ""
 InputDevice "Mouse1" "CorePointer"
 InputDevice "Keyboard1" "CoreKeyboard"
EndSection

Section "ServerLayout"
 Identifier "Layout1"
 Screen "Screen SG-1" "" "" "" ""
 InputDevice "Mouse2" "CorePointer"
 InputDevice "Keyboard2" "CoreKeyboard"
EndSection

Section "ServerLayout"
 Identifier "Layout2"
 Screen "Screen SG-2" "" "" "" "Screen SG-3"
 Screen "Screen SG-3" "" "" "Screen SG-2" ""
 InputDevice "Mouse3" "CorePointer"
 InputDevice "Keyboard3" "CoreKeyboard"
EndSection
530 007-2392-003

Configuring a System for Multiple X Servers
Pointing X to the New XF86Config-Nserver File

Once you have created the new XF86Config-Nserver file, the last step is to tell X to
use the new layouts it contains, rather than the default server layout. To do so, perform
the following steps:

1. Make a backup copy of the default single server /etc/X11/xdm/gdm.conf file:

cp /etc/X11/gdm/gdm.conf /etc/X11/gdm/gdm.conf-old

2. Edit the /etc/X11/gdm/gdm.conf file to use the new server layouts you defined
in the XF86Config file:

In the [servers] section, comment out the standard server, then add the new
server layouts you will be using:

#0=Standard
0=Layout0
1=Layout1
2=Layout2

3. Define each new server layout. For example:

[server-Layout0]
name=Layout0 server
command=/usr/X11R6/bin/X :0 -xf86config /etc/X11/XF86Config.3server -layout Layout0
flexible=true

For an example of a multi-X-server [servers] section, see “Example
/etc/X11/xdm/gdm.conf Servers Section for Three X Servers” on page 532.

4. Save the file and reboot the system.
007-2392-003 531

D: XFree86 Configuration Specifics
Example /etc/X11/xdm/gdm.conf Servers Section for Three X Servers
[servers]

#0=Standard
0=Layout0
1=Layout1
2=Layout2

[server-Standard]
name=Standard server
command=/usr/X11R6/bin/X
flexible=true

[server-Layout0]
name=Layout0 server
command=/usr/X11R6/bin/X :0 -xf86config /etc/X11/XF86Config.3server -layout Layout0
flexible=true

[server-Layout1]
name=Layout1 server
command=/usr/X11R6/bin/X :1 -xf86config /etc/X11/XF86Config.3server -layout Layout1
flexible=true

[server-Layout2]
name=Layout2 server
command=/usr/X11R6/bin/X :2 -xf86config /etc/X11/XF86Config.3server -layout Layout2
flexible=true
532 007-2392-003

Index
Numbers

3D texture extension, 161
mipmapping, 163
pixel storage modes, 163

4Dwm, 1
60-Hz monitor, 419

A

ABGR extension, 264
ABI, 422
ABS instruction, 355
accumulated multisampling, 236
actions and translations, 37, 39
ADD instruction, 355
adding callbacks, 35
advanced multisampling options, 233
AGP interface, 484
aliasing, vertex attributes, 350
AllocAll, 45
AllocNone, 45
alpha blending, 449
alpha component

representing complex geometry, 447
alpha value used as multisample mask, 234
analog monitors, 523
ancillary buffers, 12, 75, 90, 92
animations, 55

avoiding flickering, 55
benchmarking, 415
clear operations, 419
controlling with workprocs, 57
debugging, 407
double buffering, 418
frame rate, 419
glXSwapBuffers, 420
optimizing frame rates, 419
speed, 419
swapping buffers, 56
tuning, 418

anisotropic texture filtering, 177, 187
anisotropic texturing, 157
ANSI C

prototyping subroutines, 430
See also compiling.

antialiasing, 232
lines, 238
multisampling, 231

app-defaults file, 32, 33, 37
application binary interface (ABI), 422
ARB extensions, 5
ARB_depth_texture extension, 245
ARB_fragment_program extension, 313
ARB_multisample extension, 230
ARB_point_parameters extension, 239
ARB_shadow extension, 245
ARB_shadow_ambient extension, 245
ARB_vertex_buffer_object extension, 123
007-2392-003 533

Index
ARB_vertex_program extension, 313
ARB_window_pos extension, 135
ARL instruction, 370
arrays, traversal, 428
assembly code, 432, 439
Athena widget set, 15
ATI_draw_buffers extension, 212
ATI_element_array extension, 145
ATI_fragment_shader extensions, 382
ATI_map_object_buffer extension, 145
ATI_separate_stencil extension, 213
ATI_texture_env_combine3 extension, 150
ATI_texture_float extension, 152
ATI_texture_mirror_once extension, 154
ATI_vertex_array_object extension, 145
ATI_vertex_attrib_array_object extension, 145
attribute aliasing, 350
attributes

of drawing-area widget, 33
of widgets, 31

B

backdrop, 438
backface removal, 448
BadAlloc X protocol error, 67, 92
BadMatch X protocol error, 41, 47, 92, 97, 116
benchmarking, 413

and glFinish(), 416
background processes, 414
basics, 414
clock resolution, 415
example program, 485
instruments extension, 307
libraries, 494
loops, 415

static frames, 415
billboards, 440

sprite extension, 250
binding context to window, 24
bitmap fonts, 51
BlackPixel() color macro, 84
blank window, 405
blend subtract extension, 224
blending

 See also minmax blending extension, logical
operator blending, constant color blending,
alpha blending.

and multisampling, 234
constant color, 221
extensions, 221-224

blending factors, 222
block counting, 437
border clamping, 185
border pixel, 47
bottlenecks

CPU, 426
definition, 409
finding, 411
geometry subsystem, 411
raster subsystem, 411
See also optimizing.
tuning

buffer clobber events, 93, 94
buffer swaps, synchronizing, 292
buffers

accessed by loops, 430
accumulation buffer for multisampling, 236
avoiding simultaneous traversal, 437
instrument extension, 308
See also ancillary buffers
swapping, 56
synchronizing swaps, 292

bump mapping, 150
534 007-2392-003

Index
C

cache
definition, 435
determining size, 436
immediate mode drawing, 426
minimizing misses, 436
miss, 426, 435

calculating expected performance, 414
callbacks

adding, 35
and current context, 35
drawing-area widget, 34, 36
expose, 36, 67
expose(), 25
for NURBS object, 300
ginit() callback, 33
in overlay, 66
init, 35
init(), 25
input, 34, 36, 66
resize, 34, 36, 66

CASE tools, 7
CASEVision/Workshop Debugger, 387
cc command, 439
character strings, 51
checking for extensions, 103
choosing colormaps, 86
choosing visuals, 21
clamping

border clamping, 185
edge clamping, 185

clear
for debugging, 405
performance tuning, 438

clearing bitplanes, 452
clip region, 194
clip volumes, 136

clipmap extension, 193-200
clipmaps

center, 196
clipped level, 196
component diagram, 195
how to set up stack, 197
invalid borders, 201
nonclipped level, 196
tiles, 201
toroidal loading, 202
updating stacks, 199
virtual, 203

clipped level, 196
clipping

debugging, 405
clock resolution, 415
CMP instruction, 366
color blending extension, 221
color buffer clear

influence on performance, 414
with depth buffer clear, 452

color lookup tables
pixel texture, 282

color macros, 84
color matrix

and color mask, 453
and identity matrix, 454
extension, 276

color table extension, 277
and copy texture, 279

color-index mode, 83
colormaps, 84

and drawing-area widgets, 14
and overlays, 67
choosing, 86
creating, 45
default, 84
definition, 14, 83
flashing, 73, 85
007-2392-003 535

Index
installing, 47
multiple, 84
retrieving default, 85
transparent cell, 64
Xlib, 88

compiling
display lists, 424
-float option, 421
-g option, 421
-mips3, -mips4, 422
-O2 option, 421
optimizing, 421

complex structures, 424
compressed texture formats, 155
concave polygons, optimizing, 441
conditional statements, 430
configuration file for ogldebug, 395
constant color blending extension, 221

blending factors, 222
container widgets, 32
contexts

and visuals, 75
binding to window, 24
created with GLXFBConfig, 93
current, 13
retrieving current display, 113
See also rendering contexts

convolution extension, 265
and texture images, 268
border mode, 266
example, 265
filter bias factors, 267
filter image height, 267
filter image width, 267
filter scale factors, 267
maximum filter image height, 267
maximum filter image width, 267
separable filter, 267

convolution kernels, 265

coordinate system, 408
COS instruction, 366
CPU bottlenecks

checking in example program, 468
eliminating from example program, 470
from hierarchical data structures, 426
memory paging, 436
testing for, 411

CPU stage of the pipeline, 409
CPU usage bar, 412
culling, 427, 447
current context, 13
customizing detail texture, 174
customizing sharpen texture, 182
cvd (CASEVision/Workshop Debugger), 387
cvd debugger, 42

D

data
expansion in display lists, 423
preprocessing, 432
storage self-managed by display lists, 423

data organization, 426
balancing hierarchy, 427
disadvantages of hierarchies, 426

data traversal, 421
remote rendering, 423

data types used by packed pixels extension, 274
database

optimizing by preprocessing, 432
optimizing traversal, 427

DBE, 57
dbx, 387
dbx debugger, 42
dbx debugging tool, 7
debugger See ogldebug.
536 007-2392-003

Index
debugging, 386-409
animations, 407
blank window, 405
CASE tools, 7
dbx, 7
depth testing, 406
gdb, 7
glOrtho(), 406
glPerspective(), 406
lighting, 407
ogldebug, 7
projection matrix, 405

default colormaps, 85
DefaultVisual() Xlib macro, 72
degugging, 40
deleting unneeded display lists, 424
depth buffer clear, 414
depth buffering, 449, 493

clearing depth and color buffer, 452
debugging, 406
in example program, 473
optimizing, 450

depth peeling, 217
depth testing, 406
DepthBufferingIsFast(), 501
detail texture, 170-177

and texture objects, 175
customizing, 174
example program, 175
how computed, 173
LOD interpolation function, 174
magnification filters, 173

determining cache size, 436
Developer Toolbox, 110
digital monitors, 523
direct rendering and pbuffers, 91
direct rendering contexts, 98
DirectColor visuals, 71, 76

dis command, 439
display lists

appropriate use, 425
compiling, 424
complex structures, 424
contrasted with immediate mode, 423
deleting unneeded, 424
dependent on context, 408
duplication, 424
fonts and strings, 51
for X bitmap fonts, 51
InfiniteReality systems, 481
list priority extension, 305
optimizing, 424
sharing, 408
tuning, 424-425

displays, retrieving information, 113
divided-screen stereo, 89
double buffering, 55, 418
double buffering X extension, 57
DP3 instruction, 355
DP4 instruction, 356
DPH instruction, 356
draw arrays, multiple, 141
draw buffers, 212
drawables

and GLXFBConfig, 75
definition, 13
read drawable, 115
rendering, 96
write drawable, 115

drawing
avoiding after screen clear, 420
fast pixel drawing, 457
location in call tree, 431
optimizing, 441-442

drawing-area widgets, 30
and colormaps, 14
attributes, 33
007-2392-003 537

Index
callbacks, 34, 36
creating, 31, 32

DST instruction, 357
DUAL* formats, 193
dual-channel

configuring, 517
DXTC, 155

E

edge clamping, 185
effective levels, 203
end conditions of loops, 430
errors

BadAlloc X protocol error, 67, 92
BadMatch X protocol error, 41, 47, 92, 97, 116
calling glGetError(), 404
error handling, 33
GL_INVALID_OPERATION error, 132, 157, 213,

380
GL_INVALID_VALUE error, 380
PDB_ALREADY_OPEN, 495
PDB_CANT_WRITE, 495
PDB_NOT_FOUND, 495
PDB_NOT_OPEN, 495
PDB_OUT_OF_MEMORY, 495
PDB_SYNTAX_ERROR, 495
vertex and fragment programs, 380

events, 48
buffer clobber, 94
processing with callbacks, 37
Xlib, 48

EX2 instruction, 357
example programs

benchmarking, 485
checking for extensions, 104
colormaps, 88
default colormap, 85

detail texture, 175
drawing pixels fast, 457-458
event handling with Xlib, 48
fonts and strings, 51
location, 7, 110
motif, 17
mouse motion events, 38
pdbMeasureRate(), 497
pdbWriteRate(), 499
popup menu, 69
sharpen texture extension, 183
tuning example, 459-473
workproc, 58
Xlib, 43
Xlib event handling, 48

EXP instruction, 371
expensive modes, 446-448
expose callback, 36, 67
Expose events, 25, 50

batching, 99
expose() callback, 25
exposing windows, 50
EXT_abgr, 264
EXT_blend_color, 221
EXT_blend_minmax, 223
EXT_blend_subtract, 224
EXT_clip_volume_hint extension, 136
EXT_compiled_vertex_array extension, 137
EXT_convolution, 265
EXT_fog_coord extension, 139
EXT_histogram, 268
EXT_import_context, 112
EXT_multi_draw_arrays extension, 141
EXT_packed_pixels, 273
EXT_secondary_color extension, 142
EXT_texgen_reflection extension, 147
EXT_texture_compression_s3tc extension, 155
538 007-2392-003

Index
EXT_texture_filter_anisotropic extension, 157
EXT_texture_rectangle extension, 159
EXT_texture3D, 161
EXT_vertex_shader extensions, 382
EXT_visual_info, 117
EXT_visual_rating, 119
extension

vertex buffer objects, 123
extensions

3D texture, 161
ABGR, 264
blend subtract, 224
check for availability, 10
checking for availability, 103
clip volume hint, 136
clipmaps, 193
color blending, 221
color matrix, 276
color table, 277
convolution, 265
deprecated, iii
detail texture, 170
filter4 parameters, 177
fog coordinates, 139
fragment programs, 313, 382
frame buffer configuration, 74
GLX extension to X, 10
histogram, 268
import context, 112
instruments, 307
interlace, 280
list priority, 305
make current read, 114
minmax blending, 223
multiple draw arrays, 141
multisampling, 231
NURBS tesselator, 299
object space tess, 303
packed pixels, 273
pixel texture, 282

pixel’s raster or window position, 135
point parameter, 239
prefixes, 103
raster position of pixel, 135
resource, 111-121
secondary color, 142
shadow, 245
sharpen texture, 180
specification, 110
sprite, 250
suffixes, 5
swap barrier, 289
swap control, 287
swap group, 292
system support, 503
texture border clamp, 185
texture color table, 167
texture coordinate generation, 147
texture edge clamp, 185
texture environment add, 204
texture filter4, 187
texture LOD, 189
texture LOD bias, 206
texture select, 191
texture_scale_bias, 210
texturing, 149
vertex array objects, 145
vertex arrays, compiled, 137
vertex programs, 313, 382
video, 287-298
video resize, 294
video sync, 288
visual info, 117
visual rating, 119
wrapper libraries, 109

extglgen, extension wrapper library, 109
eye point orientation, 250
007-2392-003 539

Index
F

fading with constant color blending, 222
fallback resources, 31
false color imaging, 167
fast paths (See performance.)
FBConfig (framebuffer configuration), 74
FBConfigs, 12
File menu (ogldebug), 395
fill rates, 414
fill-limited code

definition, 412
in example program, 471
tuning, 448-452

filter4 parameters extension, 177
Lagrange interpolation, 178
Mitchell-Netravali scheme, 178

filters
texture filter4, 187

finding bottlenecks, 411
findvis, 12, 72
flat shading, 446, 449, 472
flickering in animations, 55
flight simulators, 450
floating point textures, 152
FLR instruction, 357
fog, 446
fog coordinates, 139
fonts, 51
form widget, 32, 66
fragment programs, 170, 179, 180, 210, 224, 228, 258,

284, 313-383
frame rates

preferred by viewers, 57
tuning, 419

frame widget, 32, 66
framebuffer configuration extension, 74

framebuffer configurations, 12
framebuffer, efficient use, 453
framelock

configuring, 519
FRC instruction, 358
frontface removal, 448
full-scene antialiasing

configuring, 515

G

-g compiler option, 421
gamut compression, 167
gamut expansion, 210
gcc command, 439
gdb debugging tool, 7
Genlock

configuring, 519
genlocked pipelines, 290
geometry-limited code

finding bottlenecks, 411
in example program, 471
tuning, 440-447

getColormap(), 85
getgdesc(), IRIS GL function, 493
gettimeofday(), 415
gfxinfo, 475
gfxinit, 288
ginit() callback, 33
GL_(UN)PACK_IMAGE_HEIGHT_EXT, 163
GL_1PASS_SGIS, 236
GL_2PASS_0_SGIS, 236
GL_4PASS_0_SGIS, 236
GL_ABGR_EXT, 264
GL_BLEND, 221
GL_CLAMP_TO_BORDER_SGIS, 186
540 007-2392-003

Index
GL_CLAMP_TO_EDGE_SGIS, 186
GL_COMPILE_AND_EXECUTE, 424
GL_CONVOLUTION_BORDER_MODE_EXT, 266
GL_CONVOLUTION_FILTER_BIAS_EXT, 267
GL_CONVOLUTION_FILTER_SCALE_EXT, 267
GL_CONVOLUTION_FORMAT_EXT, 266
GL_CONVOLUTION_HEIGHT_EXT, 267
GL_CONVOLUTION_WIDTH_EXT, 267
GL_DEPTH_TEST, 406
GL_INTERLACE_SGIX, 281
GL_INVALID_OPERATION error, 132, 157, 213, 380
GL_INVALID_VALUE error, 380
GL_LINE_SMOOTH, 238
GL_LINEAR_DETAIL_ALPHA_SGIS, 173
GL_LINEAR_DETAIL_COLOR_SGIS, 173
GL_LINEAR_DETAIL_SGIS, 173
GL_LINEAR_SHARPEN_ALPHA_SGIS, 181
GL_LINEAR_SHARPEN_COLOR_SGIS, 181
GL_LINEAR_SHARPEN_SGIS, 181
GL_MAX_CONVOLUTION_HEIGHT_EXT, 267
GL_MAX_CONVOLUTION_WIDTH_EXT, 267
GL_POINT_FADE_THRESHOLD_SIZE_SGIS, 240
GL_POINT_SIZE_MAX_SGIS, 240
GL_POINT_SIZE_MIN_SGIS, 240
GL_POST_COLOR_MATRIX_*_BIAS_SGI, 276
GL_POST_COLOR_MATRIX_*_SCALE_SGI, 276
GL_RENDERER, 105, 475
GL_RGB5_A1_EXT, 454
GL_SAMPLE_ALPHA_TO_MASK_SGIS, 234
GL_SAMPLE_MASK_SGIS, 235
GL_SHININESS, 445
GL_SPRITE_AXIAL_SGIX, 251
GL_SPRITE_EYE_ALIGNED_SGIX, 251
GL_SPRITE_OBJECT_ALIGNED_SGIX, 251
GL_TEXTURE_CLIPMAP_CENTER_SGIX, 198

GL_TEXTURE_CLIPMAP_OFFSET_SGIX, 198
GL_TEXTURE_COLOR_TABLE_SGI, 168
GL_TEXTURE_LOD_BIAS_*_SGIX, 209
GL_TEXTURE_MAG_FILTER, 173
GL_TEXTURE_MAX_LOD_SGIS, 190
GL_TEXTURE_MIN_LOD_SGIS, 190
GL_TEXTURE_WRAP_R_EXT, 163
GL_UNPACK_ALIGNMENT, 408
GL_UNSIGNED_BYTE_3_3_2_EXT, 274
GL_UNSIGNED_INT_10_10_10_2_EXT, 274
GL_UNSIGNED_INT_8_8_8_8_EXT, 274
GL_UNSIGNED_SHORT_4_4_4_4_EXT, 274
GL_UNSIGNED_SHORT_5_5_5_1_EXT, 274
GL_VERSION, 105
glAlphaFragmentOp1ATI(), 383
glAlphaFragmentOp2ATI(), 383
glAlphaFragmentOp3ATI(), 383
glAlphaFunc(), 447
glArrayElement(), 131
glArrayObjectATI(), 146
glBegin(), 431
glBeginFragmentShaderATI(), 383
glBeginOcclusionQueryNV(), 220
glBeginVertexShaderEXT(), 383
glBindBufferARB(), 126, 132, 134
glBindFragmentShaderATI(), 383
glBindLightParameterEXT(), 383
glBindMaterialParameterEXT(), 383
glBindParameterEXT(), 383
glBindProgramARB(), 317, 380, 381
glBindSwapBarrierSGIX(), 292
glBindTexGenParameterEXT(), 383
glBindTextureUnitParameterEXT(), 383
glBindVertexShaderEXT(), 383
glBlendColorEXT(), 222, 223
007-2392-003 541

Index
glBlendEquationEXT(), 223
glBlendFunc(), 221, 222
glBufferDataARB(), 129, 132, 134
glBufferSubData(), 129, 130
glBufferSubDataARB(), 132, 134
glCallList(), 425
glCallLists(), 51
glClear(), 405, 438
glClipPlane(), 342
glColor3bEXT(), 143
glColor3bvEXT(), 143
glColor3dEXT(), 143
glColor3dvEXT(), 143
glColor3fEXT(), 143
glColor3fvEXT(), 143
glColor3iEXT(), 143
glColor3ivEXT(), 143
glColor3sEXT(), 143
glColor3svEXT(), 143
glColor3ubEXT(), 143
glColor3ubvEXT(), 143
glColor3uiEXT(), 143
glColor3uivEXT(), 143
glColor3usEXT(), 143
glColor3usvEXT(), 143
glColor4ub(), 322
glColorFragmentOp1ATI(), 383
glColorFragmentOp2ATI(), 383
glColorFragmentOp3ATI(), 383
glColorMaterial(), 445
glColorPointer(), 130
glColorTableParameterivSGI(), 280
glColorTableSGI(), 168, 277, 280
glCompressedTexImage2D(), 156
glCompressedTexImage2DARB(), 157

glCompressedTexSubImage2D(), 156, 157
glConvolutionFilter*DEXT(), 266
glConvolutionFilter1DEXT(), 268
glConvolutionFilter2DEXT(), 268
glConvolutionParameterEXT(), 268
glCopyColorTableSGI(), 279
glCopyConvolutionFilter*DEXT(), 268
glCopyConvolutionFilter1DEXT(), 268
glCopyConvolutionFilter2DEXT(), 268
glCopyPixels() and minmax extension, 272
glCopyTexImage1D(), 153
glCopyTexImage2D(), 153, 156, 160
glCopyTexImage3DEXT(), 167
glDeleteBuffersARB(), 126, 134
glDeleteFragmentShaderATI(), 383
glDeleteLists(), 424
glDeleteOcclusionQueriesNV(), 220
glDeleteProgramsARB(), 381
glDeleteVertexShaderEXT(), 383
glDepthRange(), 343, 446
glDetailTexFuncSGIS(), 174, 177
glDisableVariantClientStateEXT(), 383
glDisableVertexAttribArrayARB(), 381
glDrawArrays(), 131
glDrawBuffer(), 212
glDrawBuffersATI(), 213
glDrawElementArrayATI(), 146
glDrawElements(), 131
glDrawPixels(), 483
glDrawPixels(), optimizing, 457
glDrawRangeElementArrayATI(), 146
glDrawRangeElements(), 131
glEdgeFlagPointer(), 130
GLee, extension wrapper library, 109
glElementPointerATI(), 146
542 007-2392-003

Index
glEnableVariantClientStateEXT(), 383
glEnableVertexAttribArrayARB(), 381
glEnd(), 431
glEndFragmentShaderATI(), 383
glEndOcclusionQueryNV(), 219, 220
glEndVertexShaderEXT(), 383
GLEW, extension wrapper library, 109
glExtractComponentEXT(), 384
glFinish(), 415, 416
glFogCoorddEXT(), 140
glFogCoorddvEXT(), 141
glFogCoordfEXT(), 140
glFogCoordfvEXT(), 140
glFogCoordPointerEXT(), 130, 141
glFogf(), 341
glFogFuncSGIS(), 228
glFreeObjectBufferATI(), 146
glGenBuffers(), 126
glGenBuffersARB(), 134
glGenFragmentShadersATI(), 383
glGenOcclusionQueriesNV(), 218, 220
glGenProgramsARB(), 381
glGenSymbolsEXT(), 383
glGenVertexShadersEXT(), 383
glGetArrayObjectivATI(), 146
glGetBufferSubDataARB(), 134
glGetColorTableParameterfvSGI(), 280
glGetColorTableParameterivSGI(), 280
glGetColorTableSGI(), 280
glGetConvolutionFilterEXT(), 268
glGetDetailTexFuncSGIS(), 177
glGetError(), 404
glGetFloatv(), 158
glGetHistogramEXT(), 270, 273
glGetHistogramParameterEXT(), 273

glGetInstrumentsSGIX(), 312
glGetIntegerv(), 160, 212, 214
glGetInvariantBooleanvEXT(), 384
glGetInvariantFloatvEXT(), 384
glGetInvariantIntegervEXT(), 384
glGetListParameterSGIX(), 306, 307
glGetLocalConstantBooleanvEXT(), 384
glGetLocalConstantFloatvEXT, 384
glGetLocalConstantIntegervEXT(), 384
glGetMinmaxEXT(), 272, 273
glGetMinmaxParameterEXT(), 272, 273
glGetObjectBufferfvATI(), 146
glGetObjectBufferivATI(), 146
glGetOcclusionQueryNV(), 219
glGetOcclusionQueryuiNV(), 219
glGetOcclusionQueryuivNV(), 221
glGetProgramEnvParameterdvARB(), 381
glGetProgramEnvParameterfvARB(), 381
glGetProgramivARB(), 374, 376, 381
glGetProgramLocalParameterdvARB(), 381
glGetProgramLocalParameterfvARB(), 381
glGetProgramStringARB(), 381
glGetSeparableFilterEXT(), 268
glGetSharpenTexFuncSGIS(), 185
glGetString(), 103, 105, 475
glGetTexFilterFuncSGIS(), 189
glGetVariantArrayObjectfvATI(), 146
glGetVariantArrayObjectivATI(), 146
glGetVariantBooleanvEXT(), 384
glGetVariantFloatvEXT(), 384
glGetVariantIntegervEXT(), 384
glGetVariantPointervEXT(), 384
glGetVertexAttribArrayObjectfvATI(), 146
glGetVertexAttribArrayObjectivATI(), 146
glGetVertexAttribdvARB(), 381
007-2392-003 543

Index
glGetVertexAttribfvARB(), 381
glGetVertexAttribivARB(), 381
glGetVertexAttribPointervARB(), 381
glHint(), 137
glHistogramEXT(), 270, 273
glIndexPointer(), 130
glInsertComponentEXT(), 384
glInstrumentsBufferSGIX(), 308, 312
glInstrumentsSGIX(), 309
glintro man page, 6
glIsBufferARB(), 134
glIsObjectBufferATI function(), 107
glIsObjectBufferATI(), 146
glIsOcclusionQueryNV(), 220
glIsProgramARB(), 381
glIsVariantEnabledEXT(), 384
glJoinSwapGroupSGIX(), 294
glLightf(), 336
glLightModelf(), 336
glListBase(), 51
glListParameterSGIX(), 306, 307
glLoadMatrixf(), 343
glLockArraysEXT(), 139
glMapBufferARB(), 134, 145
glMapObjectBufferATI(), 146
glMaterial(), 445
glMaterialf(), 335, 336
glMatrixMode(), 343, 351, 375
glMinmaxEXT(), 271, 273
glMultiDrawArrays(), 131
glMultiDrawArraysEXT(), 142
glMultiDrawElementsEXT(), 131, 132, 142
glNewObjectBufferATI(), 146
glNormal*(), 350
glNormalPointer(), 130, 329

glOrtho(), 406
glPassTexCoordATI(), 384
glPerspective(), 406
glPixelTexGenSGIX(), 283, 285
glPointParameterfARB(), 243
glPointParameterfSGIS(), 240, 243
glPointParameterfvARB(), 243, 342
glPointParameterfvSGI(), 243
glPointParameterfvSGIS(), 240
glPollInstrumentsSGIX(), 310, 312
glProgramEnv*(), 347
glProgramEnvParameter4*(), 381
glProgramLocal*(), 347
glProgramLocalParameter4*(), 381
glProgramStringARB(), 381
glQueryMaxSwapBarriersSGIX(), 292
glReadInstrumentsSGIX(), 309, 312
glReadPixels(), 217, 483
glReferencePlaneSGIX(), 244
glResetHistogramEXT(), 273
glResetMinmaxEXT(), 273
glSampleAlphaToMaskSGIS(), 235
glSampleMapATI(), 384
glSampleMaskSGIS(), 234, 235, 239
glSamplePatternSGIS(), 236, 239
glSecondaryColorPointerEXT(), 130
glSeparableFilter2DEXT(), 266, 267, 268
glSetFragmentShaderConstantATI(), 384
glSetInvariantEXT(), 384
glSetLocalConstantEXT(), 384
glShadeModel()

for performance tuning, 446
glShaderOp1EXT(), 384
glShaderOp2EXT(), 384
glShaderOp3EXT(), 384
544 007-2392-003

Index
glSharpenTexFuncSGIS(), 182, 185
glSpriteParameterSGIX(), 255
glStartInstrumentsSGIX(), 309, 312
glStencilFunc(), 214
glStencilFuncSeparateATI(), 215
glStencilOp(), 214
glStencilOpSeparateATI(), 215
glStopInstrumentsSGIX(), 309, 312
glSwizzleEXT(), 384
glTexCoordPointer(), 130
glTexEnvf(), 150, 340
glTexEnvi(), 150
glTexFilterFuncSGIS(), 188, 189
glTexGen(), 340
glTexGenf(), 339
glTexGeni(), 147
glTexImage1D(), 153
glTexImage2D(), 153, 156, 160, 483
glTexImage2D() and interlacing, 281
glTexImage3D(), 153
glTexImage3DEXT, 162
glTexImage3DEXT(), 167
glTexParameterf(), 158
glTexParameteri(), 155
glTexSubImage() for clipmap loading, 199
glTexSubImage3DEXT(), 167
GLU header, 11
GLU include files, 10
GLU_EXT_nurbs_tessellator, 299
GLU_EXT_object_space_tess, 303
GLU_LAGRANGIAN_SGI, 178
GLU_MITCHELL_NETRAVALI_SGI, 178
GLU_OBJECT_PARAMETRIC_ERROR_EXT, 304
GLU_OBJECT_PATH_LENGTH_EXT, 304
glUnlockArraysEXT(), 139

glUnmapBufferARB(), 130, 134
glUnmapObjectBufferATI(), 146
gluNurbsCallbackDataEXT(), 301
gluNurbsProperty(), 304
glUpdateObjectBufferATI(), 146
glUseXFont(), 408
glVariant{bsifdubusui}vEXT(), 384
glVariantArrayObjectATI(), 146
glVariantPointerEXT(), 384
glVertex3f(), 322, 329
glVertexAttrib*(), 381
glVertexAttrib1*(), 350
glVertexAttrib2*(), 350
glVertexAttrib3*(), 350
glVertexAttrib4*(), 350
glVertexAttribArrayObjectATI(), 146
glVertexAttribPointerARB(), 130
glVertexPointer(), 130
GLwCreateMDrawingArea(), 31
GLwDrawingAreaMakeCurrent(), 24
GLwDrawingAreaSwapBuffers(), 56
glWeightPointerARB(), 130
glWindowPos2dARB(), 135
glWindowPos2dvARB(), 136
glWindowPos2fARB(), 135
glWindowPos2fvARB(), 136
glWindowPos2iARB(), 135
glWindowPos2ivARB(), 136
glWindowPos2sARB(), 135
glWindowPos2svARB(), 136
glWindowPos3dARB(), 135
glWindowPos3dvARB(), 136
glWindowPos3fARB(), 135
glWindowPos3fvARB(), 136
glWindowPos3iARB(), 135
007-2392-003 545

Index
glWindowPos3ivARB(), 136
glWindowPos3sARB(), 135
glWindowPos3svARB(), 136
GLwMDrawingArea widget, 30

and popup, 69
choosing the visual, 33
menus, 69
overlays, 65

GLwMDrawingAreaMakeCurrent(), 30, 35
GLwMDrawingAreaSwapBuffers(), 30
GLwNexposeCallback, 36
GLwNginitCallback, 35
GLwNinputCallback, 36
GLwNresizeCallback, 36
glWriteMaskEXT(), 384
GLX, 2, 10, 11

checking support, 20
drawables, 13
extensions, 11, 21
extensions, list of, 510
header, 11
importing indirect context, 112
pixmaps, 13, 97
pixmaps and exposing windows, 50
using glXQueryExtension(), 20

GLX visual, 12
GLX_ARB_get_proc_address extension, 106
GLX_BUFFER_SIZE, 97
GLX_DRAWABLE_TYPE_SGIX, 77
GLX_FBCONFIG_ID, 77
GLX_GRAY_SCALE_EXT, 118
GLX_NONE_EXT, 120
GLX_PSEUDO_COLOR, 118
GLX_RENDER_TYPE, 77
GLX_SAMPLE_BUFFERS_SGIS, 233
GLX_SAMPLES_SGIS, 232
GLX_SCREEN_EXT, 113

GLX_SHARE_CONTEXT_EXT, 113
GLX_SLOW_EXT, 120
GLX_STATIC_COLOR_EXT, 118
GLX_STATIC_GRAY_EXT, 118
GLX_TRUE_COLOR_EXT, 117
GLX_VISUAL_CAVEAT_EXT, 82, 120
GLX_VISUAL_ID_EXT, 113
GLX_X_RENDERABLE, 77
GLX_X_VISUAL_TYPE_EXT, 117
glXBindChannelToWindowSGIX(), 298
glXBindSwapBarriersSGIX(), 290
glXChannelRectSGIX(), 298
glXChannelRectSyncSGIX(), 295, 298
glXChooseFBConfig(), 79, 83, 94, 117, 119
glXChooseFBConfigSGIX(), 82
glXChooseVisual(), 21, 33, 68, 72, 117, 120

and multisampling, 232
using FBConfig instead, 75

GLXContext, 13
glXCopyContext(), 99
glXCreateContext(), 23, 81
glXCreateGLXPbufferSGIX(), 96
glXCreateGLXPixmap(), 81, 97
glXCreateGLXPixmapWithConfigSGIX(), 83
glXCreateNewContext(), 81, 83
glXCreatePbuffer(), 91, 96
glXCreatePixmap(), 81
glXCreateWindow(), 81, 83
glXDestroyGLXPbufferSGIX(), 96
glXDestroyPbuffer(), 93, 96
GLXFBConfig, 75, 76

attributes, 77
how selected, 82

glXFreeContextEXT(), 114
glXFreeGLXContext(), 113
glXGetConfig(), 72
546 007-2392-003

Index
glXGetContextIDEXT(), 114
glXGetCurrentDisplayEXT(), 113, 114
glXGetCurrentReadDrawable(), 114
glXGetCurrentReadDrawableSGI(), 116
glXGetFBConfigAttrib(), 79, 80, 83
glXGetFBConfigAttribSGIX(), 82
glXGetFBConfigs(), 76, 83
glXGetGLXContextIDEXT(), 112
glXGetGLXPbufferConfigSGIX(), 96
glXGetGLXPbufferStatusSGIX(), 96
glXGetLargestGLXPbufferSGIX(), 96
glXGetProcAddressARB(), 106
glXGetSelectedEvent(), 96
glXGetVideoSyncSGI(), 288, 289
glXGetVisualFromFBConfig(), 81, 83
glXImportContextEXT(), 114
glXImportGLXContextEXT(), 112
glxinfo, 12
glxinfo utility, 402
glXJoinSwapGroupSGIX(), 293
glXMakeContextCurrent(), 114
glXMakeCurrent(), 24, 35, 75
glXMakeCurrentReadSGI(), 114, 116
glXMakeCurrentSGI()

 See also MakeCurrentReadSGI extension
GLXPbuffers, 90
glXQueryChannelRectSGIX(), 298
glXQueryContextInfoEXT(), 113, 114
glXQueryDrawable(), 92, 93, 96
glXQueryExtension(), 20
glXQueryExtensionsString(), 105
glXSelectEvent(), 94, 96
glXSwapBuffers(), 56, 92, 416, 438

and tuning animations, 420
glXSwapIntervalSGI(), 287, 288

glXUseFont(), 29
glXUseXFont(), 51
glXWaitGL(), 99
glXWaitVideoSyncSGI(), 289
glXWaitX(), 99
glyphs, 51
Gnome Toolkit (GTK), 5
Gouraud shading, 449
GrayScale visuals, 71, 76, 118
ground plane, 438
grouping primitives, 442
GTK, 5, 15

H

halo effects, 217
hardware configuration, 475
header

for OpenGL, GLU, GLX, 11
hierarchy

data organization, 426
memory, 435

high-performance drawing, 441-442
hints

GL_NICEST smooth hint, 237
hinv command, 436
histogram extension, 268

example, 270
using proxy histograms, 272

histogram normalization, 210
history file, 386
hot spots, 409
007-2392-003 547

Index
I

identity matrix, 454
if-else-if statements, 430
imaging extensions, 257-285
imaging pipeline, 257

location of color table, 279
overview, 261
tuning, 453-455

immediate mode
contrasted with display lists, 423
machine dependencies, 501
tuning, 425-435

ImmediateModeIsFast(), 501
import context extension, 112

shareable information, 112
include files for OpenGL and X, 11
indirect rendering, 98

pbuffers, 91
indirect rendering contexts

sharing with import context, 112
InfiniteReality systems

clipmaps, 194
display lists, 481
pbuffers, 479, 481
performance tuning, 477-481
sprite extension, 250
texture select extension, 191
texture subimages, 478
textures, 477

inheritance issues, 41
init callback, 35
init() callback, 25
input callbacks, 34, 36, 37, 66

example, 38
private state, 37
when called, 37

input disappears, 40

input events
and overlays, 68

input extension (X), 48
input handling, 37

actions and translations, 37
instruments extension, 307
Intel Itanium CPUs, 484
interlace extension, 280
interleaving computation with graphics, 438
internal formats

texture select, 192
Intrinsics, 15
invalid border regions, 197
invalid borders, 201
IRIS IM, 1

and Xt, 15
example program, 17
integrating with OpenGL, 16
keyboard traversal, 30
troubleshooting, 40
widgets, 15

IRIS IM widget set, 4, 5
IRIS ViewKit, 4, 5
IRIX Interactive Desktop, 15
IRIX Interactive Desktop environment, 1
IsFastOpenXDisplay(), 501

K

key bindings, 39
keyboard focus, 40
keyboard traversal, 30, 41
keyboards

virtual key bindings, 39
KIL instruction, 370
548 007-2392-003

Index
L

Lagrange interpolation (filter4 parameters
extension), 178

lens flare, 217
level of detail (LOD), 206
LG2 instruction, 358
libisfast, 494, 500
libpdb, 494
libraries

how to link, 26
OpenGL and X, 11

light points, 239
lighting

and material parameters, 445
debugging, 407
nonlocal viewing, 444
optimizing, 444-447
performance penalty of advanced features, 444
shininess, 445
single-sided, 444

lighting, per-pixel, 150
line strips, 441
linear filtering, 206
link lines, 26

OpenGL and X, 26
list priority extension, 305
LIT instruction, 359
load monitoring with instruments, 307
loading

optimizing, 454
location of example programs, 110
location of example source code, 7
location of specifications, 110
LOD, 206

clipmaps, 193
multisampling, 235
specifying minimum/maximum level, 190

texture LOD bias extension, 206
texture LOD extension, 189

LOD extrapolation function, 182
LOD interpolation curve, 174
LOG instruction, 371
lookup tables

pixel texture, 282
loops

accessing buffers, 430
for benchmarking, 415
optimizing, 430
unrolling, 430

LRP instruction, 366

M

Mac OS X window system, 1
machine configuration, 475
macros, 431
MAD instruction, 360
magnification filters

detail texture, 173
sharpen texture, 181

magnification of textures, 180
make current read extension, 114
mapping windows, 25
masks

multisample mask, 235
material parameters, 445
MAX instruction, 360
maximum intensity projection (MIP), 223
maxlod, 203
memory

limitations with display lists, 424
optimizing display lists, 424
paging, 436
paging caused by hierarchical data structures, 426
007-2392-003 549

Index
savings using several visuals, 74
structure of, 435

menus
GLwMDrawingArea widget, 69
multi-visual applications, 74

meshes, 433
Microsoft Windows, 1, 99
MIN instruction, 361
minimizing cache misses, 436
minmax blending extension, 223
minmax extension, 271
mipmapping, 157, 163

and texture LOD bias extension, 206
texture LOD extension, 190

mipmapping See Also texture filter4 extension, 187
mipmaps and clipmaps, 194
MIPS CPUs, 484
-mips3, 422
Mitchell-Netravali scheme (filter4 parameters

extension), 178
mode settings, 414
model view matrix and sprite extension, 250
monitor positions, 521
monitor types (digital and analog), 523
MonitorLayout, 523
Motif, 1

and Xt, 15
See also IRIS IM, widgets

motif/simplest.c example program, 17
mouse events, 37, 48
MOV instruction, 361
MUL instruction, 361
multipass multisampling, 236
multiple colormaps, 84
multiple processes, 437
multiple processors, 439

multiple processors and sprite extension, 250
multiple visuals, 72
multisample extension, 231
multisample mask, 235
multisample points and

GL_POINT_FADE_THRESHOLD_SIZE_SGIS,
240

multisampling, 230-238
advanced options, 233
and blending, 234
choosing visual, 232
comparative performance cost, 449
defining mask, 235
GL_LINE_SMOOTH, 238
introduction, 232
multipass multisampling, 236
points, 237
polygons, 238
screen-door transparency, 234
when to use, 232

N

n32 ABI, 422
Nearest-neighbor filtering, 206
nonclipped level, 196
nonlocal viewing, 444
NURBS object

callback, 300
NURBS tessellator extension, 299
NV_point_sprite extension, 215
NV_texgen_reflection extension, 147

O

O2 compiler option, 421
o32 ABI, 422
550 007-2392-003

Index
objdump command, 439
object space tess extension, 303
occlusion queries, 217
ogldebug

configuration file, 395
File menu, 395
Options menu, 396
References menu, 399
setup, 387
trace file, 393

ogldebug debugging tool, 7
ogldebug tool, 386-399
OglExt, extension wrapper library, 109
one-dimensional arrays, 428
Open Inventor, 3
OpenGL

coordinate system, 408
header, 11
include files, 11
integrating with IRIS IM, 16
rendering mode, 71
speed considerations with X, 25
visual, 12

OpenGL Performer, 7, 194
OpenGL Performer API

swap barrier, 290
OpenGL state parameters, 334
OpenGL, version support, 503
opening X displays, 20
optimizing

compilation, 421
concave polygons, 441
conditional statements, 430
database by preprocessing, 432
database traversal, 427
depth buffering, 450
display lists, 424
drawing, 441-442

frame rates, 419
glDrawPixels(), 457
lighting, 444-447
loading, 454
loops, 430
pixel drawing, 457
rendering data, 427
rendering loops, 427

Options menu (ogldebug), 396
OSF/Motif, 1

and Xt, 15
See also widgets, IRIS IM.

osview, 412, 414, 436, 437
overlay planes

enabling, 518
overlays, 62, 63

clipped, 68
colormaps, 67
GLwMDrawingArea widget, 65
input events, 68
transparency, 63
troubleshooting, 67
using XRaiseWindow(), 67
window hierarchy, 67

overloaded visuals, 12

P

packed pixels extension, 273
pixel types, 274

paging, 436
parameters determining performance, 414
pbuffers, 13, 90

and GLXFBConfig, 79
direct rendering, 91
indirect rendering, 91
on InfiniteReality systems, 479, 481
preserved, 91
007-2392-003 551

Index
rendering, 96
volatile, 91

PC sampling, 438
PCI-X interface, 484
pdb routines, 494
PDB_ALREADY_OPEN error, 495
PDB_CANT_WRITE error, 495
PDB_NOT_FOUND error, 495
PDB_NOT_OPEN error, 495
PDB_OUT_OF_MEMORY error, 495
PDB_SYNTAX_ERROR error, 495
pdbClose(), 496
pdbMeasureRate(), 497
pdbOpen(), 495, 496
pdbWriteRate(), 499
perf.c discussion, 459-473
perf.c example program, 485
performance

clearing bitplanes, 452
determining parameters, 414
estimates, 414, 417
InfiniteReality systems, 477-481
influencing factors, 413
instruments, 307
measurements, 307
Onyx4 systems, 482
penalties with lighting, 444
Silicon Graphics Prism systems, 482

Performance DataBase(pdb) routines, 494
per-fragment operations

efficient use, 449
per-pixel operations, 412
per-polygon operations

finding bottlenecks, 411
pipeline

3-stage model, 409
CPU stage, 409

performance factors, 413
raster subsystem, 412
tuning, 409

pipeline programs, 313
pixel buffers, 13, 90
pixel path tuning, 453-455
pixel raster position, 135
pixel storage modes, 163, 273

and import context, 112
pixel texture extension, 282
pixel types using packed pixels, 274
pixels

optimizing drawing, 457
transparent, 117

pixmaps, 96, 97
and exposing windows, 51
and GLXFBConfig, 75, 81
and pbuffer, 90
as resources, 14
exposing windows, 50
rendering, 96
See also X pixmaps, GLX pixmaps.

planes
overlay, 62

point parameter extension, 239
point sprites, 215
points

and multisampling, 237
GL_NICEST smooth hint, 237

polling instruments, 310
polygons

grouping primitives, 442
influencing performance, 414
large, 438
multisampling, 238
optimizing, 431, 440
optimizing large polygons, 450
optimum size, 451
552 007-2392-003

Index
reducing number in example program, 472
popup menus, 69

code fragment, 69
GLwMDrawingArea widget, 69

porting, windowing systems, 99
POW instruction, 362
preprocessing

introduction, 432
meshes, 433
vertex loops, 434

preserved pbuffer, 91
buffer clobber event, 95

prof sample output, 468
profiler, 468
projection matrix debugging, 405
prototyping subroutines

in ANSI C, 430
proxy mechanism

proxy histograms, 272
proxy textures, 163
PseudoColor visuals, 71, 76, 87

Q

Qt toolkit, 5, 15
quad strips, 441
QUAD* formats, 193
quad-buffered stereo, 89

R

raster subsystem. See fill-limited code.
RCP instruction, 362
read drawable, 115
rectangle textures, 159
References menu (ogldebug), 399

refresh rate of screen, 419
remote rendering

advantage of display lists, 423
data traversal, 423

removing backfacing polygons, 448
rendering

direct and indirect, 98
optimizing data, 427
optimizing loops, 427

rendering contexts
creating, 23
definition, 13

rendering extensions, 211-250
resize callback, 34, 36, 66
resource extensions, 111-121
Resource Manager, 14
resources, 14, 31

definition, 13
fallback, 31
widget properties, 31

RGBA mode, 83
and GLXFBConfig, 76

rotation problems, 406
RSQ instruction, 363
rubber banding, 68
RunTest(), 459

S

S3TC texture formats, 155
sample code (See example programs.)
scene graph, 421, 426
screen clear and animations, 419
screen refresh time, 419
screen-door transparency, 234
SCS instruction, 367
007-2392-003 553

Index
secondary color, 142
segmentation, 167
separable convolution filter, 267
setmon command, 89, 519
setting up ogldebug, 387
setting window properties, 47
SGE instruction, 363
SGI_color_matrix, 276
SGI_color_table, 277
SGI_make_current_read, 114
SGI_swap_control, 287
SGI_texture_color_table, 167
SGI_video_sync, 288
SGIS_detail_texture, 170
SGIS_filter4_parameters, 177
SGIS_multisample, 231
SGIS_multisample extension, 230
SGIS_point_parameters, 239
SGIS_sharpen_texture, 180
SGIS_texture_border_clamp, 185
SGIS_texture_edge_clamp, 185
SGIS_texture_filter4, 187
SGIS_texture_lod, 189
SGIX_clipmap, 193
SGIX_depth_texture extension, 245
SGIX_fbconfig, 74
SGIX_instruments, 307
SGIX_interlace, 280
SGIX_list_priority, 305
SGIX_pixel_texture, 282
SGIX_shadow extension, 245
SGIX_shadow_ambient extension, 245
SGIX_sprite, 250
SGIX_swap_barrier, 289
SGIX_swap_group, 292

SGIX_texture_add_env, 204
SGIX_texture_lod_bias, 206
SGIX_texture_scale_bias, 210
SGIX_texture_select, 191
SGIX_video_resize, 294
shading, 449, 472
shadow extensions, 245
sharing resources, 14
sharpen texture extension, 180

customizing, 182
example program, 183
magnification filters, 181

sheared image, 408
simple lighting model, 444
SIN instruction, 367
single-buffer mode, 419
single-channel visuals, 80
single-sided lighting, 444
SLT instruction, 363
smoke, 440
smooth shading, 472
source code for examples, 7
specification location, 110
specifying minimum/maximum LOD, 190
speed considerations, 25
sphere example, 459-473
sprite extension, 250

and multiple processors, 250
stack trace, 42
StaticColor visuals, 71, 76, 118
StaticGray visuals, 71, 76, 118
stencil buffers, 213
StencillingIsFast(), 501
stereo images

congfiguring, 512
stereo rendering, 88
554 007-2392-003

Index
strings, 51
strips, 433
SUB instruction, 364
subimage, 171
swap barrier extension, 289
swap control extension, 287
swap group extension, 292
swap groups, synchronizing, 289
swapping buffers, 56
switch statements, 430
swizzling, 327
SWZ instruction, 364
synchronizing buffer swaps, 292
synchronizing swap groups, 289
synchronizing video, 288

T

tessellation, object space, 303
tessellations, retrieving, 299
Test(), 459
TEX instruction, 369
text handling, 51
texture border clamp extension, 185
texture borders, 478
texture color table extension, 167
texture combiner operations, 150
texture coordinate generation, 147
texture edge clamp extensions, 185
texture environment add extension, 204
texture extensions, 149-205
texture filter4 extension, 187
texture images

and convolution extension, 268
texture internal formats

texture select, 192
texture LOD bias extension, 206
texture LOD extension, 189
texture magnification, 180
texture mapping, 501
texture memory, efficient use, 191
texture objects

and detail texture, 175
texture select extension, 191
texture subimages on InfiniteReality, 478
texture wrap modes, 163
texture_scale_bias extension, 210
textured polygons, 440
TextureMappingIsFast(), 501
textures

3D texture mapping, 161
compressed formats, 155
filter4 parameters extension, 177
floating point, 152
interlacing, 281
mapping, 157
mirroring, 154
on InifiniteReality systems, 477
optimizing, 446
rectangle textures, 159
switching, 446
texture coordinate wrap modes, 154
texture filter4 extension, 187
texture LOD extension, 189

texturing, 449
 See also textures

texturing extensions, 149
three-stage model of the graphics pipeline, 409
tiles, 201
timing

background processes, 414
glFinish(), 416
loops, 415
007-2392-003 555

Index
measurements, 413, 414
TLB, 435
top, 412
top-level widget, 32
toroidal loading, 197, 199, 200, 202
trace file, 386
trace files, 393
transform rate, 414
transform-limited code

finding bottlenecks, 411
tuning, 440-447

translation-lookaside buffer. See TLB.
translations. See actions and translations.
transparency, 451

in overlays, 63
transparent pixels, 46, 117
traversal, 30, 41

remote rendering, 423
traversal of data, 421
triangle fans, 441
triangle strips, 434, 441
troubleshooting

IRIS IM input disappears, 40
overlays, 67
widgets, 40

TrueColor visuals, 48, 71, 76, 87
tuning

advanced, 438-439
animations, 418
clear, 438
display lists, 424-425
examining assembly code, 439
example program, 459-473
fill-limited code, 448-452
fundamentals, 403-417
immediate mode, 425-435
pipeline, 409
pixel path, 453-455

reducing frame rate, 419
single-buffer mode, 419
transform-limited code, 440-447
using textured polygons, 440

tuning with instruments, 307
TXB instruction, 370
TXP instruction, 369

U

underlay planes, 64
unrolling, 429, 435
updating clipmap stack, 199
using Xlib, 42

V

vertex array objects, 145
vertex arrays, 442
vertex arrays, compiled, 137
vertex attribute aliasing, 350
vertex buffer objects, 123
vertex loops

preprocessing, 434
vertex programs, 313-383
vertical retrace, 419, 438
video

interlace extension, 280
stereo rendering, 88

video extensions, 287-298
video resize extension, 294
video sync extension, 288
virtual clipmaps, 203
virtual key bindings, 39
virtual offset, 203
556 007-2392-003

Index
visual info extension, 117
used in overlay example, 65

visual rating extension, 119
visuals, 71, 72

and colormaps, 45
and contexts, 75
choosing, 71
colormaps, 71
definition, 12
for multisampling, 232
gray scale, 118
memory savings, 74
mutiple-visual applications, 72
OpenGL visual, 12
overloaded, 12
selecting, 21
single-channel, 80
single-visual applications, 72
static color, 118
static gray, 118
visual info extension, 117

volatile pbuffers, 91
buffer clobber event, 95

volume rendering, 161
and texture color table, 167

W

WhitePixel color macro, 84
widget sets, 15
widgets, 15

callbacks, 36
container, 32
definition, 15
drawing-area, 30
error handling, 33
form, 66
frame, 66
input handling, 37

IRIS IM, 15
mapping window, 25
properties, 31
troubleshooting, 40
with identical characteristics, 33
XmPrimitive, 30

window manager
4Dwm, 1

window properties
setting, 47

window systems
Mac OS X, 1
Microsoft Windows, 1
X Window System, 1

windowing systems, 99
windows

as resources, 14
mapping, 25
rendering, 96

work procedures. See workprocs.
workprocs, 57

adding, 57
example program, 58
removing, 58

wrap modes for textures, 163
write drawable, 115

X

X
bitmap fonts, 51
color macros, 84
coordinate system, 408
fallback resources, 31
opening display, 20
pixmaps, 97
resources, 14
speed considerations, 25
007-2392-003 557

Index
X double buffering extension, 57
X extensions

double buffering, 57
GLX, 10

X input extension, 48
X visual See visuals
X window and channel, 295
X Window System, 1

introduction, 9
terminology, 9

XCreateColormap(), 45, 67
XCreatePixmap()., 97
XCreateWindow(), 46
xdpyinfo, 12, 72
xdpyinfo command, 10
XF86Config file

configuring for dual-channel, 517
configuring for external framelock, 519
configuring for external Genlock, 519
configuring for full-scene antialiasing, 515
configuring for stereo, 512
configuring monitor types, 523
enabling overlay planes, 518

XFree(), 118
XFree86 X server, 10
XGetVisualInfo(), 22, 72
XID, 13, 112

for pbuffer, 91
XInstallColormap(), 47
Xlib, 5

colormaps, 88
event handling, 48
example program, 43

XMapWindow(), 25
XMatchVisualInfo(), 72
XmCreateSimplePopupMenu(), 69
XmPrimitive widget, 30

XOpenDisplay(), 20
XPD instruction, 365
XRaiseWindow(), 65, 67
XSetWMColormapWindows(), 47, 67, 85, 87
XSetWMProperties(), 47
Xsgi X server, 10
XStoreName(), 47
XSynchronize(), 42
Xt, 15
XtAddCallback(), 35
XtAppAddWorkProc(), 57
XtCreateManagedChild(), 25
XtCreateManagedWidget(), 23
XtOpenApplication(), 20, 31
XtRealizeWidget(), 25
XtRemoveWorkProc(), 58

Z

z axis, 406
558 007-2392-003

	Figures
	Tables
	Examples
	About This Guide
	Silicon Graphics Visualization Systems
	What This Guide Contains
	What You Should Know Before Reading This Guide
	Background Reading
	OpenGL and Associated Tools and Libraries
	X Window System: Xlib, X Toolkit, and OSF/Motif
	Other Sources
	Obtaining Publications
	Conventions Used in This Guide
	Typographical Conventions
	Function Naming Conventions

	Reader Comments

	OpenGL on Silicon Graphics Systems
	Using OpenGL with the X Window System
	GLX Extension to the X Window System
	Libraries, Tools, Toolkits, and Widget Sets
	Open Inventor
	IRIS ViewKit
	IRIS IM Widget Set
	Xlib Library

	Porting Applications between IRIX and Linux

	Extensions to OpenGL
	Debugging and Performance Optimization
	Debugging Your Program
	Maximizing Performance With OpenGL Performer

	Location of Example Source Code (IRIX-Specific)

	OpenGL and X: Getting Started
	Background and Terminology
	X Window System on Silicon Graphics Systems
	Silicon Graphics X Servers
	GLX Extension to X
	Compiling With the GLX Extension

	X Window System Concepts
	GLX and Overloaded Visuals
	GLX Drawables—Windows and Pixmaps
	Rendering Contexts
	Resources As Server Data
	X Window Colormaps

	Libraries, Toolkits, and Tools
	Widgets and the Xt Library
	Xt Library
	For More Information About Xt

	Other Toolkits and Tools

	Integrating Your OpenGL Program With IRIS IM
	Simple Motif Example Program
	Looking at the Example Program
	Opening the X Display
	Selecting a Visual
	Creating a Rendering Context
	Creating the Window
	Binding the Context to the Window
	Mapping the Window

	Integrating OpenGL Programs With X—Summary
	Compiling With OpenGL and Related Libraries
	Link Lines for Individual Libraries
	Link Lines for Groups of Libraries

	OpenGL and X: Examples
	Using Widgets
	About OpenGL Drawing-Area Widgets
	Drawing-Area Widget Setup and Creation
	Setting Up Fallback Resources
	Creating the Widgets
	Choosing the Visual for the Drawing-Area Widget
	Creating Multiple Widgets With Identical Characteristics
	Using Drawing-Area Widget Callbacks

	Input Handling With Widgets and Xt
	Background Information
	Using the Input Callback
	Using Actions and Translations

	Creating Colormaps
	Widget Troubleshooting
	Keyboard Input Disappears
	Inheritance Issues

	Using Xlib
	Simple Xlib Example Program
	Creating a Colormap and a Window
	Installing the Colormap

	Xlib Event Handling
	Handling Mouse Events
	Exposing a Window

	Using Fonts and Strings

	OpenGL and X: Advanced Topics
	Using Animations
	Swapping Buffers
	Controlling an Animation With Workprocs
	General Workproc Information
	Workproc Example

	Controlling an Animation With Timeouts

	Using Overlays
	Introduction to Overlays
	Creating Overlays
	Overlay Troubleshooting
	Rubber Banding
	Using Popup Menus With the GLwMDrawingArea Widget

	Using Visuals and Framebuffer Configurations
	Some Background on Visuals
	Running OpenGL Applications Using a Single Visual
	Using Framebuffer Configurations
	Describing a Drawable With a GLXFBConfig Construct (FBConfig)
	Less-Rigid Similarity Requirements When Matching Context and Drawable
	Less-Rigid Match of GLX Visual and X Visual
	FBConfig Constructs
	How an FBConfig Is Selected

	Related Functions

	Using Colormaps
	Background Information About Colormaps
	Color Variation Across Colormaps
	Multiple Colormap Issues

	Choosing Which Colormap to Use
	Colormap Example

	Stereo Rendering
	Stereo Rendering Background Information
	Performing Stereo Rendering

	Using Pixel Buffers
	About GLXPbuffers
	PBuffers and Pixmaps
	Volatile and Preserved Pbuffers

	Creating a Pbuffer
	Rendering to a Pbuffer
	Directing the Buffer Clobber Event
	Related Functions

	Using Pixmaps
	Creating and Using Pixmaps
	Direct and Indirect Rendering

	Performance Considerations for X and OpenGL
	Portability

	Introduction to OpenGL Extensions
	Determining Extension Availability
	How to Check for OpenGL Extension Availability
	Example Program: Checking for Extension Availability
	Checking for GLX Extension Availability

	ARB_get_proc_address—The Dynamic Query-Function-Pointer Extension
	The glXGetProcAddressARB() Function
	Extension Wrapper Libraries and Portability Notes

	Finding Information About Extensions
	Man Pages
	Example Programs
	Extension Specifications

	Resource Control Extensions
	EXT_import_context—The Import Context Extension
	Importing a Context
	Retrieving Display and Context Information
	New Functions

	SGI_make_current_read—The Make Current Read Extension
	Read and Write Drawables
	Possible Match Errors
	Retrieving the Current Drawable’s Name
	New Functions

	EXT_visual_info—The Visual Info Extension
	Using the Visual Info Extension
	Using Transparent Pixels

	EXT_visual_rating—The Visual Rating Extension
	Using the Visual Rating Extension

	SGIX_fbconfig—The Framebuffer Configuration Extension
	SGIX_pbuffer—The Pixel Buffer Extension

	Vertex Processing Extensions
	ARB_vertex_buffer_object—The Vertex Buffer Object Extension
	Why Use Buffer Objects?
	Alternatives to Buffer Objects
	Disadvantages of Buffer Objects
	Using Buffer Objects
	Defining Buffer Objects
	Defining and Editing Buffer Object Contents
	Mapping Buffer Objects to Application Memory
	Using Buffer Objects as Vertex Array Sources
	Using Buffer Objects as Array Indices
	Querying Data in Buffer Objects
	Sample Code

	New Functions

	ARB_window_pos—The Window-Space Raster Position Extension
	Why Use the Window-Space Raster Position Extension?
	Using the Window-Space Raster Position Extenstion
	New Functions

	EXT_clip_volume_hint—The Clip Volume Hint Extension
	Why Use Clip Volume Hints?
	Using Clip Volume Hints

	EXT_compiled_vertex_array—The Compiled Vertex Array Extension
	Why Use Compiled Vertex Arrays?
	Using Compiled Vertex Arrays
	New Functions

	EXT_fog_coord—The Fog Coordinate Extension
	Why Use Fog Coordinates?
	Using Fog Coordinates
	Querying the Fog Coordinate State
	New Functions

	EXT_multi_draw_arrays—The Multiple Draw Arrays Extension
	Why Use Multiple Draw Arrays?
	Using Multiple Draw Arrays
	New Functions

	EXT_secondary_color—The Secondary Color Extension
	Why Use Secondary Color?
	Using Secondary Color
	Querying the Secondary Color State
	New Functions

	The Vertex Array Object Extensions (Legacy)
	New Functions

	The Texture Coordinate Generation Extensions (Legacy)

	Texturing Extensions
	ATI_texture_env_combine3—New Texture Combiner Operations Extension
	Why Use Texture Combiners?
	Using The New Texture Combiner Operations

	ATI_texture_float—The Floating Point Texture Extension
	Why Use Floating Point Textures?
	Using Floating Point Textures

	ATI_texture_mirror_once—The Texture Mirroring Extension
	Why Use Texture Mirroring?
	Using Texture Mirroring

	EXT_texture_compression_s3tc—The S3 Compressed Texture Format Extension
	Why Use S3TC Texture Formats?
	Using S3TC Texture Formats
	Constraints on S3TC Texture Formats

	EXT_texture_filter_anisotropic—The Anisotropic Texture Filtering Extension
	Why Use Anisotropic Texturing?
	Using Anisotropic Texturing

	EXT_texture_rectangle—The Rectangle Texture Extension
	Why Use Rectangle Textures?
	Using Rectangle Textures

	EXT_texture3D—The 3D Texture Extension
	Why Use the 3D Texture Extension?
	Using 3D Textures
	3D Texture Example Program
	New Functions

	SGI_texture_color_table—The Texture Color Table Extension
	Why Use a Texture Color Table?
	Using Texture Color Tables
	Texture Color Table and Internal Formats
	Using Texture Color Table On Different Platforms

	SGIS_detail_texture—The Detail Texture Extension
	Using the Detail Texture Extension
	Creating a Detail Texture and a Low-Resolution Texture
	Detail Texture Computation
	Customizing the Detail Function
	Using Detail Texture and Texture Object

	Detail Texture Example Program
	New Functions

	SGIS_filter4_parameters—The Filter4 Parameters Extension
	Using the Filter4 Parameters Extension

	SGIS_point_line_texgen—The Point or Line Texture Generation Extension
	Why Use Point or Line Texture Generation

	SGIS_sharpen_texture—The Sharpen Texture Extension
	About the Sharpen Texture Extension
	How to Use the Sharpen Texture Extension
	How Sharpen Texture Works
	Customizing the LOD Extrapolation Function
	Using Sharpen Texture and Texture Object

	Sharpen Texture Example Program
	New Functions

	SGIS_texture_edge/border_clamp—Texture Clamp Extensions
	Texture Clamping Background Information
	Why Use the Texture Clamp Extensions?
	Using the Texture Clamp Extensions

	SGIS_texture_filter4—The Texture Filter4 Extensions
	Using the Texture Filter4 Extension
	Specifying the Filter Function
	Determining the weights Array
	Setting Texture Parameters

	New Functions

	SGIS_texture_lod—The Texture LOD Extension
	Specifying a Minimum or Maximum Level of Detail
	Specifying Image Array Availability

	SGIS_texture_select—The Texture Select Extension
	Why Use the Texture Select Extension?
	Using the Texture Select Extension

	SGIX_clipmap—The Clipmap Extension
	Clipmap Overview
	Clipmap Constraints
	Why Do the Clipmap Constraints Work?
	Clipmap Textures and Plain Textures

	Using Clipmaps From OpenGL
	Setting Up the Clipmap Stack
	Updating the Clipmap Stack

	Clipmap Background Information
	Moving the Clip Center
	Invalid Borders
	Toroidal Loading

	Virtual Clipmaps

	SGIX_texture_add_env—The Texture Environment Add Extension
	SGIX_texture_lod_bias—The Texture LOD Bias Extension
	Background: Texture Maps and LODs
	Why Use the LOD Bias Extension?
	Using the Texture LOD Bias Extension

	SGIX_texture_scale_bias—The Texture Scale Bias Extension

	Rendering Extensions
	ATI_draw_buffers—The Multiple Draw Buffers Extension
	Why Use Multiple Draw Buffers?
	Using Multiple Draw Buffers
	New Function

	ATI_separate_stencil—The Separate Stencil Extension
	Why Use the Separate Stencil Extension?
	Using the Separate Stencil Extension
	New Functions

	NV_point_sprite—The Point Sprite Extension
	Why Use Point Sprites?
	Using Point Sprites

	NV_occlusion_query—The Occlusion Query Extension
	Why Use Occlusion Queries?
	Using the NV_occlusion_query Extension
	New Functions

	Blending Extensions
	Constant Color Blending Extension
	Using Constant Colors for Blending
	New Functions

	Minmax Blending Extension
	Using a Blend Equation
	New Functions

	Blend Subtract Extension

	SGIS_fog_function—The Fog Function Extension
	FogFunc Example Program
	New Function

	SGIS_fog_offset—The Fog Offset Extension
	The Multisample Extension
	Introduction to Multisampling
	When to Use Multisampling

	Using the Multisample Extension
	Using Advanced Multisampling Options
	Color Blending and Screen Door Transparency
	Using a Multisample Mask to Fade Levels of Detail
	Accumulating Multisampled Images

	How Multisampling Affects Different Primitives
	Multisampled Points
	Multisampled Lines
	Multisampled Polygons
	Multisample Rasterization of Pixels and Bitmaps

	New Functions

	The Point Parameters Extension
	Using the Point Parameters Extension
	Point Parameters Example Code
	Point Parameters Background Information
	New Procedures and Functions

	SGIX_reference_plane—The Reference Plane Extension
	Why Use the Reference Plane Extension?
	Using the Reference Plane Extension
	New Function

	The Shadow Extensions
	Shadow Extension Overview
	Creating the Shadow Map
	Rendering the Application From the Normal Viewpoint
	Using the Shadow Ambient Extension

	SGIX_sprite—The Sprite Extension
	Available Sprite Modes
	Using the Sprite Extension
	New Function

	Imaging Extensions
	Introduction to Imaging Extensions
	Platform Dependencies
	Where Extensions Are in the Imaging Pipeline
	Pixel Transfer Paths
	Convolution, Histogram, and Color Table in the Pipeline
	Interlacing and Pixel Texture in the Pipeline

	Merging the Geometry and Pixel Pipeline
	Pixel Pipeline Conversion to Fragments
	Functions Affected by Imaging Extensions

	EXT_abgr—The ABGR Extension
	EXT_convolution—The Convolution Extension
	Performing Convolution
	Retrieving Convolution State Parameters
	Separable and General Convolution Filters
	New Functions

	EXT_histogram—The Histogram and Minmax Extensions
	Using the Histogram Extension
	Using the Minmax Part of the Histogram Extension
	Using Proxy Histograms
	New Functions

	EXT_packed_pixels—The Packed Pixels Extension
	Why Use the Packed Pixels Extension?
	Using Packed Pixels
	Pixel Type Descriptions

	SGI_color_matrix—The Color Matrix Extension
	SGI_color_table—The Color Table Extension
	Why Use the Color Table Extension?
	Specifying a Color Table
	Using Framebuffer Image Data for Color Tables
	Lookup Tables in the Image Pipeline
	New Functions

	SGIX_interlace—The Interlace Extension
	Using the Interlace Extension

	SGIX_pixel_texture—The Pixel Texture Extension
	Platform Issues
	New Functions

	Video Extensions
	SGI_swap_control—The Swap Control Extension
	New Functions

	SGI_video_sync—The Video Synchronization Extension
	Using the Video Sync Extension
	New Functions

	SGIX_swap_barrier—The Swap Barrier Extension
	Why Use the Swap Barrier Extension?
	Using the Swap Barrier Extension
	Buffer Swap Conditions

	New Functions

	SGIX_swap_group—The Swap Group Extension
	Why Use the Swap Group Extension?
	Swap Group Details
	New Function

	SGIX_video_resize—The Video Resize Extension
	Controlling When the Video Resize Update Occurs
	Using the Video Resize Extension
	Example
	New Functions

	Miscellaneous OpenGL Extensions
	GLU_EXT_NURBS_tessellator—The NURBS Tessellator Extension
	Using the NURBS Tessellator Extension
	Callbacks Defined by the Extension

	GLU_EXT_object_space—The Object Space Tess Extension
	SGIX_list_priority—The List Priority Extension
	Using the List Priority Extension
	New Functions

	SGIX_instruments—The Instruments Extension
	Why Use SGIX_instruments?
	Using the Extension
	Specifying the Buffer
	Enabling, Starting, and Stopping Instruments
	Measurement Format
	Retrieving Information

	Instruments Example Pseudo Code
	New Functions

	Vertex and Fragment Program Extensions
	The Vertex and Fragment Program Extensions
	Why Use Pipeline Programs?
	Alternatives to Pipeline Programs

	Using Pipeline Programs
	Managing Pipeline Programs
	Binding Programs
	Defining and Enabling Programs

	How Programs Replace Fixed Functionality
	Structure of Pipeline Programs
	Program Options
	Naming Statements
	Program Instructions

	Pipeline Program Input and Output
	Vertex and Fragment Attributes
	Vertex Attributes
	Fragment Attributes

	Vertex and Fragment Program Parameters
	Program Environment and Local Parameters
	OpenGL State Parameters

	Vertex and Fragment Program Output
	Vertex Program Output
	Fragment Program Output

	Program Parameter Specification
	Generic Vertex Attribute Specification
	Commands
	Attribute Aliasing

	Generic Program Matrix Specification
	Program Instruction Summary
	Fragment and Vertex Program Instructions
	Fragment Program Instructions
	Vertex Program Instructions

	Program Resource Limits and Usage
	Other Program Queries
	Program String Length, Program String Format, and Program String Name
	Source Text
	Parameters of the Generic Vertex Attribute Array Pointers

	Sample Code
	Sample Vertex Program
	Sample Fragment Programs

	Errors
	New Functions

	The Legacy Vertex and Fragment Program Extensions
	How to Use the Legacy Extensions
	New Functions

	OpenGL Tools
	Platform Notes
	ogldebug—The OpenGL Debugger
	ogldebug Overview
	How ogldebug Operates

	Getting Started With ogldebug
	Setting Up ogldebug
	ogldebug Command-Line Options
	Starting ogldebug

	Interacting With ogldebug
	Commands for Basic Interaction
	Using Check boxes

	Creating a Trace File to Discover OpenGL Problems
	Using a Configuration File
	Using Menus to Interact With ogldebug
	Using the File Menu to Interact With ogldebug
	Using the Commands Menu to Interact With Your Program
	Using the Information Menu to Access Information
	Using the References Menu for Background Information

	The OpenGL Character Renderer (GLC)
	The OpenGL Stream Utility (GLS)
	OpenGL Stream Utility Overview
	glscat Utility

	glxinfo—The glx Information Utility

	Tuning Graphics Applications: Fundamentals
	General Tips for Debugging Graphics Programs
	Specific Problems and Troubleshooting
	Blank Window
	Rotation and Translation Problems
	Depth Buffering Problems
	Animation Problems
	Lighting Problems
	X Window System Problems
	Pixel and Texture Write Problems
	System-Specific Problems

	About Pipeline Tuning
	A Three-Stage Model of the Graphics Pipeline
	Isolating Bottlenecks in Your Application: Overview
	Factors Influencing Performance

	Taking Timing Measurements
	Benchmarking Basics
	Achieving Accurate Timing Measurements
	Achieving Accurate Benchmarking Results

	Tuning Animation
	How Frame Rate Determines Animation Speed
	Optimizing Frame Rate Performance

	Tuning the Pipeline
	CPU Tuning: Basics
	Immediate Mode Drawing Versus Display Lists and Vertex Buffer Objects

	CPU Tuning: Display Lists
	CPU Tuning: Immediate Mode Drawing
	Optimizing the Data Organization
	Optimizing Database Rendering Code
	Examples for Optimizing Data Structures for Drawing
	Examples for Optimizing Program Structure
	Using Specialized Drawing Subroutines and Macros
	Preprocessing Drawing Data (Meshes and Vertex Loops)

	Optimizing Cache and Memory Use
	Memory Organization
	Minimizing Paging
	Minimizing Lookups
	Minimizing Cache Misses
	Measuring Cache-Miss and Page-Fault Overhead

	CPU Tuning: Advanced Techniques
	Mixing Computation With Graphics
	Examining Assembly Code
	Using Additional Processors for Complex Scene Management
	Modeling to the Graphics Pipeline

	Tuning the Geometry Subsystem
	Using Peak-Performance Primitives for Drawing
	Using Vertex Arrays
	Using Display Lists Appropriately
	Storing Data Efficiently
	Minimizing State Changes
	Optimizing Transformations
	Optimizing Lighting Performance
	Lighting Operations With Noticeable Performance Costs

	Choosing Modes Wisely
	Advanced Transform-Limited Tuning Techniques

	Tuning the Raster Subsystem
	Using Backface/Frontface Removal
	Minimizing Per-Pixel Calculations
	Avoiding Unnecessary Per-Fragment Operations
	Organizing Drawing to Minimize Computation
	Using Expensive Per-Fragment Operations Efficiently
	Using Depth Buffering Efficiently
	Balancing Polygon Size and Pixel Operations
	Other Considerations

	Using Clear Operations
	Optimizing Texture Mapping

	Tuning the Imaging Pipeline

	Tuning Graphics Applications: Examples
	Drawing Pixels Fast
	Tuning Example
	Testing for CPU Limitation
	Using the Profiler

	Testing for Fill Limitation
	Working on a Geometry-Limited Program
	Smooth Shading Versus Flat Shading
	Reducing the Number of Polygons

	Testing Again for Fill Limitation

	System-Specific Tuning
	Introduction to System-Specific Tuning
	Optimizing Performance on InfiniteReality Systems
	Managing Textures on InfiniteReality Systems
	Offscreen Rendering and Framebuffer Management
	Optimizing State Changes
	Miscellaneous Performance Hints

	Optimizing Performance on Onyx4 and Silicon Graphics Prism Systems
	Geometry Optimizations: Drawing Vertices
	Texturing Optimizations: Loading and Rendering Texture Images
	Pixel Optimizations: Reading and Writing Pixel Data
	Differences Between Onyx4 and Silicon Graphics Prism Systems

	Benchmarks
	Benchmarking Libraries: libpdb and libisfast
	Libraries for Benchmarking
	Using libpdb
	Example for pdbReadRate()
	Example for pdbMeasureRate()
	Example for pdbWriteRate()

	Using libisfast

	System Support for OpenGL Versions and Extensions
	OpenGL Core Versions
	OpenGL Extensions
	GLX Extensions

	XFree86 Configuration Specifics
	Configuring a System for Stereo
	Example “Device” Section for Stereo
	Sample Stereo Mode Entries
	Example “Monitor” Section for Stereo
	Example “Screen” Section for Stereo

	Configuring a System for Full-Scene Antialiasing
	Example “Device” Section for Full-Scene Antialiasing

	Configuring a System for Dual-Channel Operation
	Example “Device” Section for Dual Channel

	Enabling Overlay Planes
	Example “Device” Section to Enable Overlay Planes

	Configuring a System for External Genlock or Framelock
	Configuring Monitor Positions
	Example “ServerLayout” Section for Four Monitors in a Line
	Example “ServerLayout” Section for Four Monitors in a Square

	Configuring Monitor Types
	Example “Device” Section for Use With Two Analog Monitors

	Configuring a System for Multiple X Servers
	Identifying Event Devices
	Creating a Multi-Seat XF86Config File
	Creating a New XF86Config File
	Configuring the Input Devices
	Configuring the New ServerLayout Sections

	Example “ServerLayout” Sections for Three X Servers
	Pointing X to the New XF86Config-Nserver File
	Example /etc/X11/xdm/gdm.conf Servers Section for Three X Servers

	Index

