sgl

OpenGL® on Silicon Graphics Systems

007-2392-003

CrenGL

CONTRIBUTORS
Written by Renate Kempf and Jed Hartman. Revised by Ken Jones.

Illustrated by Dany Galgani, Martha Levine, and Chrystie Danzer

Production by Allen Clardy and Karen Jacobson

Engineering contributions by Allen Akin, Steve Anderson, David Blythe, Sharon Rose Clay, Terrence Crane, Kathleen Danielson, Tom Davis,
Celeste Fowler, Ziv Gigus, David Gorgen, Paul Hansen, Paul Ho, Simon Hui, George Kyriazis, Mark Kilgard, Phil Lacroute, Jon Leech, Mark
Peercy, Dave Shreiner, Chris Tanner, Joel Tesler, Gianpaolo Tommasi, Bill Torzewski, Bill Wehner, Nancy Cam Winget, Paula Womack, David
Yu, and others.

Some of the material in this book is from “OpenGL from the EXTensions to the SOLutions,” which is part of the developer’s toolbox.

St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower image courtesy of Xavier Berenguer, Animatica.

COPYRIGHT

© 1996, 1998, 2005 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein.
No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in
whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND

The software described in this document is "commercial computer software" provided with restricted rights (except as to included open/free
source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is a violation of
worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS

Silicon Graphics, the Silicon Graphics logo, Fuel, InfiniteReality, IRIS, IRIS Indigo, IRIX, OpenGL, and Tezro are registered
trademarks and Developer Magic, IMPACT, IRIS GL, IRIS InSight, IRIS ViewKit, Elan, Express, Indy, Indigo, Indigo2, Indigo2
IMPACT, Indigo2 High IMPACT, Indigo2 Maximum IMPACT, InfinitePerformance, O2, Onyx, Onyx4, Open Inventor,
OpenGL Performer, R8000, R10000, Rapid App, RealityEngine, SGI ProPack, Silicon Graphics Prism, UltimateVision, and VPro
are trademarks of Silicon Graphics, Inc.

ATl is a registered trademark of ATI Technologies, Inc. Extreme is a trademark used under license by Silicon Graphics Inc.
GNOME is a trademark of the GNOME Foundation. Intel and AGP are registered trademarks and Itanium is a trademark of Intel
Corporation. Linux is a registered trademark of Linus Torvalds. MIPS is a registered trademark of MIPS Technologies, Inc. OS/2
is a trademark of International Business Machines Corporation. Windows NT is a trademark and Microsoft and Windows are
registered trademarks of Microsoft Corporation. Motif and OSF/Motif are trademarks of Open Software Foundation. X Window
System is a trademark of The Open Group. XFree86 is a trademark of the XFree86 Project, Inc. All other trademarks mentioned
herein are the property of their respective owners.

007-2392-003

New Features in This Guide

In addition to miscellaneous changes throughout, this revision includes the following
changes:

General Changes

The guide now reflects OpenGL 1.3, GLX 1.3, and GLU 1.3 and current Silicon Graphics
visualization systems. Many of the changes reflect support for Silicon Graphics Onyx4
UltimateVision systems on IRIX and Silicon Graphics Prism systems on Linux.

New Chapters
¢ Chapter 7, “Vertex Processing Extensions”

e Chapter 13, “Vertex and Fragment Program Extensions”
Extensions Deprecated
The functionality of the following extensions is now integrated into OpenGL, GLX, and

GLU but the extensions remain in this guide for reference by developers using older
Silicon Graphics systems—such as VPro, InfinitePerformance, and InfiniteReality:

Resource control extensions Make current read, framebuffer configuration, and
pixel buffer
Texturing extensions Texture objects, subtexture, copy texture, 3D texture,

texture edge/border clamp, texture LOD, texture
environment add, and texture LOD bias

Rendering extensions Blending extensions, multisample, point parameters,
shadow, and depth texture

Imaging extensions Blend logic op, convolution, histogram and minmax,
packed pixels, color matrix, and color table

Miscellaneous extensions Polygon offset, vertex array, NURBS tesselator, and
object space tesselator

New Features in This Guide

Extensions Added:
ARB_depth_texture
ARB_fragment_program
ARB_imaging
ARB_multisample
ARB_multitexture
ARB_point_parameters
ARB_shadow
ARB_shadow_ambient
ARB_texture_border_clamp
ARB_texture_compression
ARB_texture_cube_map
ARB_texture_env_add
ARB_texture_env_combine
ARB_texture_env_crossbar
ARB_texture_env_dot3
ARB_texture_mirrored_repeat
ARB_transpose_matrix
ARB_vertex_blend
ARB_vertex_buffer_object
ARB_vertex_program
ARB_window_pos
ATIX_texture_env_combine3

ATIX texture_env_route

ATIX _vertex_shader_output_point_size

ATI_draw_buffers

ATI_element_array

ATI_envmap_bumpmap
ATI_fragment_shader
ATI_map_object_buffer
ATI_separate_stencil
ATI_texture_env_combine3
ATI texture_float
ATI_texture_mirror_once
ATI_vertex_array_object
ATI_vertex_attrib_array_object
ATI_vertex_streams
EXT_bgra
EXT_blend_func_separate
EXT_clip_volume_hint
EXT_compiled_vertex_array
EXT_copy_texture
EXT_draw_range_elements
EXT_fog_coord
EXT_multi_draw_arrays
EXT_point_parameters
EXT_polygon_offset
EXT_rescale_normal
EXT_secondary_color
EXT_separate_specular_color
EXT_stencil_wrap
EXT_subtexture

EXT_texgen_reflection

007-2392-003

New Features in This Guide

007-2392-003

EXT_texture

EXT_texture3D
EXT_texture_compression_s3tc
EXT_texture_cube_map
EXT_texture_edge_clamp
EXT_texture_env_add
EXT_texture_env_combine
EXT_texture_env_dot3
EXT_texture_filter_anisotropic
EXT_texture_lod_bias
EXT_texture_object
EXT_texture_rectangle
EXT_vertex_array
EXT_vertex_shader
HP_occlusion_test

INGR interlace_read
NV_blend_square

NV _occlusion_query

NV_point_sprite

NV_texgen_reflection
S3_s3tc
SGIS_generate_mipmap
SGIS_multitexture
SGIS_pixel_texture
SGIS_texture_color_mask
SGIS_texture_lod
SGIX_async
SGIX_async_pixel
SGIX_blend_alpha_minmax
SGIX_convolution_accuracy
SGIX_fragment_lighting
SGIX_resample
SGIX_scalebias_hint
SGIX_subsample
SGIX_texture_coordinate_clamp
SGIX_vertex_preclip
SUN_multi_draw_arrays

007-2392-003

Record of Revision

Version Description

001 1996
Original publication.

002 1998
Updated to support OpenGL 1.1.

003 March 2005

Updated to support OpenGL 1.3 and extensions to support Onyx4 and
Silicon Graphics Prism systems.

Vii

Contents

Figures .
Tables
Examples

About This Guide.
Silicon Graphics Visualization Systems .
What This Guide Contains

What You Should Know Before Readmg This Guide .

Background Reading . . .
OpenGL and Associated Tools and Libraries .
X Window System: Xlib, X Toolkit, and OSF/Motif
Other Sources .
Obtaining Publications
Conventions Used in This Guide
Typographical Conventions .
Function Naming Conventions .
Reader Comments .

1. OpenGL on Silicon Graphics Systems.
Using OpenGL with the X Window System
GLX Extension to the X Window System .
Libraries, Tools, Toolkits, and Widget Sets
Open Inventor
IRIS ViewKit .
IRIS IM Widget Set .
Xlib Library . .o
Porting Applications between IRIX and Linux
Extensions to OpenGL

007-4075-001

XXX1

. XXxiii

XXXV

. XXxvil
. XXXvii

LXXXVIil

.oxl
. x1
.oxl
. xli
- xli
. xlii
xlid
. xlii

xliii

X
=
<

Q1 U1 G = b= WO N DN = =

Contents

Debugging and Performance Optimization .
Debugging Your Program .o
Maximizing Performance With OpenGL Performer

Location of Example Source Code (IRIX-Specific) .

2. OpenGL and X: Getting Started .
Background and Terminology .
X Window System on Silicon Graphics Systems
Silicon Graphics X Servers
GLX Extension to X .
Compiling With the GLX Extension
X Window System Concepts .
GLX and Overloaded Visuals .
GLX Drawables—Windows and Pixmaps .
Rendering Contexts
Resources As Server Data
X Window Colormaps
Libraries, Toolkits, and Tools .
Widgets and the Xt Library
Xt Library . .o
For More Information About Xt.
Other Toolkits and Tools . .
Integrating Your OpenGL Program With IRIS IM .
Simple Motif Example Program .
Looking at the Example Program
Opening the X Display
Selecting a Visual .
Creating a Rendering Context
Creating the Window.
Binding the Context to the Window
Mapping the Window . .
Integrating OpenGL Programs With X—Summary

O O O N NN S

.10
.11
11
.11
.12
.13
.13
.13
.14
.14
.15
.15
.16
.16
.16
.16
.19
.20
.21
.23
.23
.24
.24
.25

007-4075-001

Contents

007-4075-001

Compiling With OpenGL and Related Libraries26
Link Lines for Individual Libraries.26
Link Lines for Groups of Libraries27

OpenGL and X: Examples .2

Using Widgets . . . A
About OpenGL Drawmg-Area Wldgets e)
Drawing-Area Widget Setup and Creation31

Setting Up Fallback Resources31
Creating the Widgets . . . < 74
Choosing the Visual for the Drawmg -Area Wldget T & |
Creating Multiple Widgets With Identical Characteristics33
Using Drawing-Area Widget Callbacks34
Input Handling With Widgetsand Xt37
Background Information37
Using the Input Callback37
Using Actions and Translations39
Creating Colormaps .4
Widget Troubleshooting.40
Keyboard Input Disappears40
Inheritance Issues .4

Using Xlib e 9
Simple Xlib Example Program I
Creating a Colormap and a Window45

Installing the Colormap.47

Xlib Event Handling .48
Handling Mouse Events.48
Exposinga Window .5

Using Fonts and Strings .51
Xi

Contents

4. OpenGL and X: Advanced Topics
Using Animations .
Swapping Buffers .
Controlling an Animation With Workprocs
General Workproc Information .
Workproc Example
Controlling an Animation With Timeouts .
Using Overlays .
Introduction to Overlays .
Creating Overlays .
Overlay Troubleshooting .
Rubber Banding .
Using Popup Menus With the GLwMDrawmgArea Wldget
Using Visuals and Framebuffer Configurations
Some Background on Visuals .
Running OpenGL Applications Using a Smgle Visual
Using Framebuffer Configurations . .
Describing a Drawable With a GLXFBConﬁg Construct (FBConﬁg)

Less-Rigid Similarity Requirements When Matching Context and Drawable .

Less-Rigid Match of GLX Visual and X Visual
FBConlfig Constructs .
How an FBConfig Is Selected
Related Functions .
Using Colormaps
Background Information About Colormaps
Color Variation Across Colormaps .
Multiple Colormap Issues
Choosing Which Colormap to Use .
Colormap Example
Stereo Rendering
Stereo Rendering Background Information.
Performing Stereo Rendering

Xii

.55
.55
.56
.57
.57
.58
.60
.62
.63
.65
.67
. 68
.69
.71
.71
.72
.74
.75
.75
.76
.76
.82
.83
.83
.83
.84
.84
. 86
. 88
. 88
. 89
. 89

007-4075-001

Contents

007-4075-001

Using Pixel Buffers
About GLXPbuffers .
PBuffers and Pixmaps
Volatile and Preserved Pbuffers
Creating a Pbuffer
Rendering to a Pbuffer
Directing the Buffer Clobber Event .
Related Functions.
Using Pixmaps . .
Creating and Using Pixmaps
Direct and Indirect Rendering
Performance Considerations for X and OpenGL
Portability .

Introduction to OpenGL Extensions
Determining Extension Availability . .
How to Check for OpenGL Extension Avallablhty
Example Program: Checking for Extension Availability .
Checking for GLX Extension Availability .
ARB_get_proc_address—The Dynamic Query-Function-Pointer Extension
The gIXGetProcAddressARB() Function . .o
Extension Wrapper Libraries and Portability Notes .
Finding Information About Extensions .
Man Pages .
Example Programs

Extension Specifications .

Resource Control Extensions e
EXT_import_context—The Import Context Extension
Importing a Context .
Retrieving Display and Context Information .
New Functions

. 90
. 90
. 90
.91
.91
. 93
. 94
. 96
. 96
.97
. 98
.99
.99

101
102
.103
104
105
.106
.106
.108
.109
.109
.110
110

11
112
112
113
114

Xiii

SGI_make_current_read—The Make Current Read Extension

Read and Write Drawables

Possible Match Errors . e

Retrieving the Current Drawable’s Name .

New Functions.
EXT_visual_info—The Visual Info Extension

Using the Visual Info Extension .

Using Transparent Pixels . o
EXT_visual_rating—The Visual Rating Extension .

Using the Visual Rating Extension . e
SGIX_fbconfig—The Framebuffer Configuration Extension .
SGIX_pbuffer—The Pixel Buffer Extension .

Vertex Processing Extensions .
ARB_vertex_buffer_object—The Vertex Buffer Ob]ect Extension.
Why Use Buffer Objects? .
Alternatives to Buffer Objects
Disadvantages of Buffer Objects .
Using Buffer Objects .
Defining Buffer Objects . .
Defining and Editing Buffer Ob]ect Contents .
Mapping Buffer Objects to Application Memory .
Using Buffer Objects as Vertex Array Sources.
Using Buffer Objects as Array Indices .
Querying Data in Buffer Objects
Sample Code .
New Functions.

ARB_window_pos—The Window-Space Raster Position Extension .

Why Use the Window-Space Raster Position Extension? .
Using the Window-Space Raster Position Extenstion .
New Functions.

EXT_clip_volume_hint—The Chp Volume Hint Extension
Why Use Clip Volume Hints?
Using Clip Volume Hints.

114
115
116
116
116
117
117
119
119
120
120
121

123
123
124
124
125
125
126
126
129
130
131
132
132
134
135
135
135
136
136
137
137

Contents

EXT_compiled_vertex_array—The Compiled Vertex Array Extension.137
Why Use Compiled Vertex Arrays?137
Using Compiled Vertex Arrays.138
New Functions . 139

EXT_fog_coord—The Fog Coordinate Extension139
Why Use Fog Coordinates? 139
Using Fog Coordinates 139
Querying the Fog Coordinate State.140
New Functions .40

EXT_multi_draw_arrays—The Multiple Draw Arrays Extension /141
Why Use Multiple Draw Arrays?14
Using Multiple Draw Arrays14
New Functions . 142

EXT_secondary_color—The Secondary Color Extension.142
Why Use Secondary Color?42
Using Secondary Color 143
Querying the Secondary Color State144
New Functions . 14

The Vertex Array Object Extensions (Legacy)145
New Functions .l46

The Texture Coordinate Generation Extensions (Legacy).147

8. Texturing Extensions. .14

ATI_texture_env_combine3—New Texture Combiner Operations Extension.150
Why Use Texture Combiners?150
Using The New Texture Combiner Operations150

ATI_texture_float—The Floating Point Texture Extension152
Why Use Floating Point Textures?52
Using Floating Point Textures153

ATI_texture_mirror_once—The Texture Mirroring Extension154
Why Use Texture Mirroring?154
Using Texture Mirroring.15

007-4075-001 XV

Contents

EXT_texture_compression_s3tc—The S3 Compressed Texture Format Extension .

Why Use S3TC Texture Formats?
Using S3TC Texture Formats.
Constraints on S3TC Texture Formats
EXT_texture_filter_anisotropic—The Anisotropic Texture Filtering Extension .
Why Use Anisotropic Texturing?
Using Anisotropic Texturing .
EXT_texture_rectangle—The Rectangle Texture Extension
Why Use Rectangle Textures?
Using Rectangle Textures. .o
EXT_texture3D—The 3D Texture Extension
Why Use the 3D Texture Extension?
Using 3D Textures.
3D Texture Example Program
New Functions. S
SGI_texture_color_table—The Texture Color Table Extension
Why Use a Texture Color Table?.
Using Texture Color Tables .
Texture Color Table and Internal Formats .
Using Texture Color Table On Different Platforms
SGIS_detail_texture—The Detail Texture Extension
Using the Detail Texture Extension .
Creating a Detail Texture and a Low-Resolution Texture
Detail Texture Computation.
Customizing the Detail Function .
Using Detail Texture and Texture Object .
Detail Texture Example Program
New Functions.
SGIS_filter4_parameters—The Filter4 Parameters Extension .
Using the Filter4 Parameters Extension .
SGIS_point_line_texgen—The Point or Line Texture Generation Extension
Why Use Point or Line Texture Generation

XVi

155
155
156
157
157
157
158
159
159
160
161
161
162
164
167
167
167
168
169
169
170
171
171
173
174
175
175
177
177
178
179
179

007-4075-001

Contents

007-4075-001

SGIS_sharpen_texture—The Sharpen Texture Extension .

About the Sharpen Texture Extension .
How to Use the Sharpen Texture Extension .
How Sharpen Texture Works
Customizing the LOD Extrapolation Function
Using Sharpen Texture and Texture Object
Sharpen Texture Example Program.

New Functions

SGIS_texture_edge/border_clamp—Texture Clamp Extensions.

Texture Clamping Background Information .
Why Use the Texture Clamp Extensions? .
Using the Texture Clamp Extensions .
SGIS_texture_filterd—The Texture Filter4 Extensions.
Using the Texture Filter4 Extension
Specifying the Filter Function .
Determining the weights Array
Setting Texture Parameters .
New Functions e
SGIS_texture_lod—The Texture LOD Extension .

Specifying a Minimum or Maximum Level of Detail .

Specifying Image Array Availability
SGIS_texture_select—The Texture Select Extension

Why Use the Texture Select Extension?

Using the Texture Select Extension .

180
180
181
181
182
.183
.183
185
.185
.185
.185
.186
187
187
.188
.188
.189
.189
.189
.190
.190
191
191
192

XVii

Contents

SGIX_clipmap—The Clipmap Extension
Clipmap Overview
Clipmap Constraints . .
Why Do the Clipmap Constraints Work? .
Clipmap Textures and Plain Textures .
Using Clipmaps From OpenGL .
Setting Up the Clipmap Stack
Updating the Clipmap Stack
Clipmap Background Information .
Moving the Clip Center .
Invalid Borders
Toroidal Loading .
Virtual Clipmaps .

SGIX_texture_add_env—The Texture Environment Add Extension.

SGIX_texture_lod_bias—The Texture LOD Bias Extension
Background: Texture Maps and LODs .
Why Use the LOD Bias Extension? .
Using the Texture LOD Bias Extension .
SGIX_texture_scale_bias—The Texture Scale Bias Extension .

9. Rendering Extensions.
ATI_draw_buffers—The Mu1t1p1e Draw Buffers Extension
Why Use Multiple Draw Buffers?
Using Multiple Draw Buffers.
New Function .
ATI_separate_stencil—The Separate Stencil Extension
Why Use the Separate Stencil Extension?
Using the Separate Stencil Extension
New Functions. .
NV_point_sprite—The Point Spr1te Extension .
Why Use Point Sprites?
Using Point Sprites

XViii

193
194
195
196
196
197
197
199
200
200
201
202
203
204
205
206
208
209
210

211
212
212
212
213
213
213
214
215
215
215
216

007-4075-001

Contents

007-4075-001

NV _occlusion_query—The Occlusion Query Extension .
Why Use Occlusion Queries?
Using the NV_occlusion_query Extension.
New Functions
Blending Extensions
Constant Color Blending Extension.
Using Constant Colors for Blending
New Functions
Minmax Blending Extension.
Using a Blend Equation .
New Functions
Blend Subtract Extension e
SGIS_fog_function—The Fog Function Extension .
FogFunc Example Program .
New Function . e
SGIS_fog_offset—The Fog Offset Extension
The Multisample Extension .
Introduction to Multisampling .
When to Use Multisampling
Using the Multisample Extension .
Using Advanced Multisampling Options .
Color Blending and Screen Door Transparency .

Using a Multisample Mask to Fade Levels of Detail .

Accumulating Multisampled Images .
How Multisampling Affects Different Primitives.
Multisampled Points.
Multisampled Lines .
Multisampled Polygons .
Multisample Rasterization of Pixels and Bitmaps

New Functions

217
217
218
220
221
221
222
.223
.223
223
.223
224
.224
225
228
228
.230
232
232
232
.233
234
.235
.236
237
237
237
.238
.238
.239

Xix

Contents

10.

XX

The Point Parameters Extension .
Using the Point Parameters Extension .
Point Parameters Example Code.
Point Parameters Background Information.
New Procedures and Functions .
SGIX_reference_plane—The Reference Plane Extension
Why Use the Reference Plane Extension?
Using the Reference Plane Extension
New Function .
The Shadow Extensions
Shadow Extension Overview.
Creating the Shadow Map o
Rendering the Application From the Normal Vlewpomt
Using the Shadow Ambient Extension .
SGIX_sprite—The Sprite Extension .
Available Sprite Modes
Using the Sprite Extension

New Function .

Imaging Extensions
Introduction to Imaging Extensions .
Platform Dependencies S
Where Extensions Are in the Imaging Pipeline
Pixel Transfer Paths
Convolution, Histogram, and Color Table in the Pipeline
Interlacing and Pixel Texture in the Pipeline .
Merging the Geometry and Pixel Pipeline .
Pixel Pipeline Conversion to Fragments
Functions Affected by Imaging Extensions .
EXT_abgr—The ABGR Extension

239
240
241
242
243
243
244
244
244
245
246
247
248
249
250
251
253
255

257
257
257
258
259
260
261
262
263
264
264

007-4075-001

Contents

11.

007-4075-001

EXT_convolution—The Convolution Extension
Performing Convolution .
Retrieving Convolution State Parameters .
Separable and General Convolution Filters
New Functions

EXT_histogram—The Histogram and Minmax Extensions

Using the Histogram Extension .

Using the Minmax Part of the Histogram Extension .

Using Proxy Histograms .

New Functions
EXT_packed_pixels—The Packed Pixels Extension

Why Use the Packed Pixels Extension?.

Using Packed Pixels .

Pixel Type Descriptions .
SGI_color_matrix—The Color Matrix Extension
SGI_color_table—The Color Table Extension .

Why Use the Color Table Extension?

Specifying a Color Table . .

Using Framebuffer Image Data for Color Tables .

Lookup Tables in the Image Pipeline

New Functions e
SGIX_interlace—The Interlace Extension

Using the Interlace Extension
SGIX_pixel_texture—The Pixel Texture Extension

Platform Issues

New Functions

Video Extensions . Lo
SGI_swap_control—The Swap Control Extension .

New Functions

SGI_video_sync—The Video Synchronization Extension.

Using the Video Sync Extension
New Functions

.265
.265
.266
.267
.268
.268
270
271
272
273
273
274
274
275
276
277
277
277
.279
279
.280
.280
281
.282
284
.285

287
.287
.288
.288
.288
.289

XXi

Contents

12.

XXii

SGIX_swap_barrier—The Swap Barrier Extension .

Why Use the Swap Barrier Extension? .

Using the Swap Barrier Extension

Buffer Swap Conditions .

New Functions. . .
SGIX_swap_group—The Swap Group Extension .

Why Use the Swap Group Extension? .

Swap Group Details

New Function . e
SGIX_video_resize—The Video Resize Extension .

Controlling When the Video Resize Update Occurs

Using the Video Resize Extension

Example.

New Functions.

Miscellaneous OpenGL Extensions.

GLU_EXT_NURBS _tessellator—The NURBS Tessellator Extension .

Using the NURBS Tessellator Extension
Callbacks Defined by the Extension . . .
GLU_EXT_object_space—The Object Space Tess Extension .
SGIX_list_priority—The List Priority Extension
Using the List Priority Extension
New Functions.
SGIX_instruments—The Instruments Extension
Why Use SGIX_instruments?.
Using the Extension
Specifying the Buffer
Enabling, Starting, and Stopping Instruments.
Measurement Format.
Retrieving Information
Instruments Example Pseudo Code .

New Functions.

289
289
290
291
292
292
292
293
294
294
295
295
297
298

299
299
300
301
303
305
306
307
307
307
308
308
309
309
310
311
312

007-4075-001

Contents

13. Vertex and Fragment Program Extensions.313
The Vertex and Fragment Program Extensions 314

Why Use Pipeline Programs?314
Alternatives to Pipeline Programs3l4

007-4075-001 XXiii

Contents

XXiv

Using Pipeline Programs .

Managing Pipeline Programs
Binding Programs. .

Defining and Enabling Programs

How Programs Replace Fixed Functionality

Structure of Pipeline Programs .
Program Options .

Naming Statements
Program Instructions . .

Pipeline Program Input and Output

Vertex and Fragment Attributes .
Vertex Attributes .

Fragment Attributes .

Vertex and Fragment Program Parameters.
Program Environment and Local Parameters .
OpenGL State Parameters

Vertex and Fragment Program Output .
Vertex Program Output .

Fragment Program Output .

Program Parameter Specification

Generic Vertex Attribute Specification .
Commands
Attribute Aliasing.

Generic Program Matrix Specification .

Program Instruction Summary
Fragment and Vertex Program Instructions
Fragment Program Instructions.

Vertex Program Instructions.

Program Resource Limits and Usage

Other Program Queries

Program String Length, Program String Format, and Program Strmg Name .

Source Text e
Parameters of the Generic Vertex Attribute Array Pointers .

316
316
317
317
318
319
320
322
326
329
329
329
332
333
334
334
344
345
346
347
348
348
350
351
351
355
365
370
372
375
376
376
376

007-4075-001

Contents

Sample Codeo 00000377
Sample Vertex Program. 377

Sample Fragment Programs378

Errors .380
New Functions .31
The Legacy Vertex and Fragment Program Extensions382
How to Use the Legacy Extensions.38
New Functions .38

14. OpenGLTools. .38
Platform Notes. . . G £+
ogl debug—The OpenGL Debugger L
ogldebug Overview . . e 110
How ogldebug Operates e . 74
Getting Started With ogl debug 387
Setting Up ogldebug. . . . G . 74

ogl debug Command-Line Optlons e e38
Starting ogldebug .38
Interacting With ogldebug39
Commands for Basic Interaction 391

Using Checkboxes 3%
Creating a Trace File to Discover OpenGL Problems.393
Using a Configuration File . . . Ce e 3%
Using Menus to Interact With ogldebug e C S
Using the File Menu to Interact With ogl debug.39

Using the Commands Menu to Interact With Your Program39

Using the Information Menu to Access Information.39

Using the References Menu for Background Information399

The OpenGL Character Renderer (GLC) 400
The OpenGL Stream Utility (GLS) 400
OpenGL Stream Utility Overview 400

gl scat Utility . . . (0

gl xi nf 0—The glx Information Utlhty 10 24

007-4075-001 XXV

Contents

15. Tuning Graphics Applications: Fundamentals
General Tips for Debugging Graphics Programs
Specific Problems and Troubleshooting .

Blank Window .
Rotation and Translation Problems .
Depth Buffering Problems
Animation Problems .
Lighting Problems . .
X Window System Problems .
Pixel and Texture Write Problems
System-Specific Problems.
About Pipeline Tuning. .o
A Three-Stage Model of the Graphlcs Plpehne
Isolating Bottlenecks in Your Application: Overview .
Factors Influencing Performance
Taking Timing Measurements
Benchmarking Basics .
Achieving Accurate Timing Measurements
Achieving Accurate Benchmarking Results
Tuning Animation . . e
How Frame Rate Determines Animation Speed

Optimizing Frame Rate Performance

16. Tuning the Pipeline
CPU Tuning: Basics . .
Immediate Mode Drawing Versus Dlsplay Lists and Vertex Buffer Ob]ects
CPU Tuning: Display Lists .
CPU Tuning: Immediate Mode Drawmg
Optimizing the Data Organization .
Optimizing Database Rendering Code .
Examples for Optimizing Data Structures for Drawing .
Examples for Optimizing Program Structure .
Using Specialized Drawing Subroutines and Macros.

Preprocessing Drawing Data (Meshes and Vertex Loops)

XXVi

403
404
405
405
406
406
407
407
408
408
409
409
409
411
413
413
414
414
416
418
419
419

421
421
422
424
425
426
427
428
429
431
432

007-4075-001

Contents

Optimizing Cache and MemoryUse 43
Memory Organization 435
Minimizing Paging . 436

Minimizing Lookups436
Minimizing Cache Misses . . e)
Measuring Cache-Miss and Page-Fault Overhead437

CPU Tuning: Advanced Techniques438
Mixing Computation With Graphics438
Examining Assembly Code 439
Using Additional Processors for Complex Scene Management439
Modeling to the Graphics Pipeline 440

Tuning the Geometry Subsystem40
Using Peak-Performance Primitives for Drawing. 441
Using Vertex Arrays 442
Using Display Lists Appropriately 442
Storing Data Efficiently 443
Minimizing State Changes 443
Optimizing Transformations443
Optimizing Lighting Performance . . . 222

Lighting Operations With Noticeable Performance Costs445
Choosing Modes Wisely 446
Advanced Transform-Limited Tuning Techniques447

Tuning the Raster Subsystem448
Using Backface/Frontface Removal448
Minimizing Per-Pixel Calculations448

Avoiding Unnecessary Per-Fragment Operations449
Organizing Drawing to Minimize Computation.449
Using Expensive Per-Fragment Operations Efficiently449
Using Depth Buffering Efficiently45
Balancing Polygon Size and Pixel Operations451
Other Considerations45
Using Clear Operations .45
Optimizing Texture Mapping 452

007-4075-001 XXVii

Contents

17.

18.

XXViii

Tuning the Imaging Pipeline .

Tuning Graphics Applications: Examples .
Drawing Pixels Fast
Tuning Example .

Testing for CPU Limitation
Using the Profiler .

Testing for Fill Limitation.

Working on a Geometry-Limited Program .
Smooth Shading Versus Flat Shading .
Reducing the Number of Polygons .

Testing Again for Fill Limitation.

System-Specific Tuning .
Introduction to System-Specific Tuning .
Optimizing Performance on InfiniteReality Systems
Managing Textures on InfiniteReality Systems
Offscreen Rendering and Framebuffer Management .
Optimizing State Changes
Miscellaneous Performance Hints o
Optimizing Performance on Onyx4 and Silicon Graphics Prism Systems
Geometry Optimizations: Drawing Vertices e
Texturing Optimizations: Loading and Rendering Texture Images .
Pixel Optimizations: Reading and Writing Pixel Data.
Differences Between Onyx4 and Silicon Graphics Prism Systems

Benchmarks.

Benchmarking Libraries: | i bpdb and | i bi sf ast
Libraries for Benchmarking
Using libpdb
Example for pdbReadRate() .
Example for pdbMeasureRate() .
Example for pdbWriteRate() .
Using | i bi sfast .

453

457
457
459
468
468
471
471
472
472
473

475
476
477
477
478
480
481
482
482
483
483
484

485

493
494
495
497
499
500
500

007-4075-001

Contents

C. System Support for OpenGL Versions and Extensions.503
OpenGL Core Versions .503
OpenGL Extensions .b04
GLX Extensions . 510

D. XFree86 Configuration Specifies51
Configuring a System for Stereo. 512

Example “Device” Section for Stereo 513
Sample Stereo Mode Entries. 513
Example “Monitor” Section for Stereo.5l4
Example “Screen” Section for Stereo5l4
Configuring a System for Full-Scene Antialiasing. 515
Example “Device” Section for Full-Scene Antialiasing516
Configuring a System for Dual-Channel Operation517
Example “Device” Section for Dual Channel 518
Enabling Overlay Planes .5b18
Example “Device” Section to Enable Overlay Planes. 518
Configuring a System for External Genlock or Framelock519
Configuring Monitor Positions52
Example “ServerLayout” Section for Four MonitorsinaLine 521
Example “ServerLayout” Section for Four Monitors in a Square522
Configuring Monitor Types . . . G ¢
Example “Device” Section for Use With Two Analog Monitors.523
Configuring a System for Multiple X Servers524
Identifying Event Devices . . e c &3]
Creating a Multi-Seat XF86Conf1g Fle.b2
Creating a New XF86ConfigFile526
Configuring the Input Devices.527
Configuring the New ServerLayout Sections.529
Example “ServerLayout” Sections for Three X Servers530
Pointing X to the New XF86Config-Nserver File o X 1
Example /etc/X11/xdm/gdm.conf Servers Section for Three X Servers532
Index .53

007-4075-001 XXiX

Figures

Figure 1-1
Figure 2-1
Figure 4-1
Figure 4-2
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Figure 8-11
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Figure 10-6

007-2392-003

How X, OpenGL, and Toolkits Are Layered
Display From si npl est . ¢ Example Program.
Overlay Plane Used for Transient Information .
X Pixmaps and GLX Pixmaps.

3D Texture .

Extracting a Planar Texture From a 3D Texture Volume .

LOD Interpolation Curves.

LOD Extrapolation Curves

Clipmap Component Diagram

Moving the Clip Center

Invalid Border .

Virtual Clipmap

Original Image . .

Image With Positive LOD Bias

Image with Negative LOD Bias

Sample Processing During Multisampling .
Rendering From the Light Source Point of View
Rendering From Normal Viewpoint .

Sprites Viewed with Axial Sprite Mode .
Sprites Viewed With Object Aligned Mode .
Sprites Viewed With Eye Aligned Mode
OpenGL Pixel Paths

Extensions that Modify Pixels Durmg Transfer.

Convolution, Histogram, and Color Table in the Pipeline.

Interlacing and Pixel Texture in the Pixel Pipeline .
Conversion to Fragments .

Convolution Equations

.17
. 64
. 96
161
162
174
182
.195
.200
.202
.203
207
207
.208
234
.248
.249
.252
252
.252
.258
.260
.261
.262
.263
.265

XXXi

Figures

XXXii

Figure 10-7
Figure 10-8
Figure 14-1
Figure 14-2
Figure 14-3
Figure 14-4
Figure 14-5
Figure 14-6
Figure 14-7
Figure 15-1
Figure 15-2
Figure 17-1
Figure D-1

Figure D-2

How the Histogram Extension Collects Information
Interlaced Video (NTSC, Component 525)

ogl debug Main Window .

Setup Panel . .

ogl debug File Menu

ogl debug Commands Menu .

Information Menu Commands (First Screen)
Information Menu Commands (Second Screen)
Enumerants Window e
A Three-Stage Model of the Graphics Pipeline .
Flowchart of the Tuning Process .

Lighted Sphere Created by perf.c .

Four Monitors in a Line.

Four Monitors in a Square .

269
281
390
393
395
396
397
398
399
410
418
459
521
522

007-2392-003

Tables

Table 2-1
Table 2-2
Table 4-1
Table 4-2
Table 4-3
Table 6-1
Table 6-2
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6
Table 8-7
Table 8-8
Table 8-9
Table 8-10
Table 8-11
Table 9-1
Table 9-2
Table 10-1
Table 12-1
Table 12-2
Table 13-1
Table 13-2
Table 13-3
Table 13-4

007-2392-003

Headers and Link Lines for OpenGL and Associated Libraries
Integrating OpenGL and X .

X Visuals and Supported OpenGL Rendermg Modes .

Visual Attributes Introduced by the FBConfigs

FBConfig Attribute Defaults and Sorting Criteria .

Type and Context Information for GLX Context Attributes
Heuristics for Visual Selection

Additional Texture Combiner Operations

New Arguments for Texture Combiner Operations

.11
. 25
.71
.77
. 78
113
117
151
151

New Arguments for Texture Combiner Operations (Alpha- Related) 152

New Floating Point Internal Formats for Textures .

S3TC Compressed Formats and Corresponding Base Formats
Modification of Texture Components o
Texture and Texture Color Tables on InfiniteReality Systems
Magnification Filters for Detail Texture

How Detail Texture Is Computed

Magnification Filters for Sharpen Texture

Texture Select Host Format Components Mapping

Blending Factors Defined by the Blend Color Extension .
Mapping of SGIS and ARB tokens for Multisampling .
Types That Use Packed Pixels .

NURBS Tessellator Callbacks and Their Descrlptlon
Tessellation Methods

Builtin and Generic Vertex Program Attributes

Fragment Program Attributes .o

Program Environment and Local Parameters

Material Property Bindings

.153
156
.169
.169
173
173
181
.193
222
.230
274
.302
.304
.330
.333
334
.335

XXXiii

Tables

XXXiV

Table 13-5
Table 13-6
Table 13-7
Table 13-8
Table 13-9
Table 13-10
Table 13-11
Table 13-12
Table 13-13
Table 13-14
Table 13-15
Table 13-16
Table 13-17
Table 13-18
Table 13-19
Table 14-1
Table 14-2
Table 14-3
Table 15-1
Table B-1
Table C-1
Table C-2
Table C-3
Table D-1
Table D-2

Light Property Bindings

Texture Coordinate Generation Property Bindings .
Texture Environment Property Bindings

Fog Property Bindings .

Clip Plane Property Bindings .

Point Property Bindings

Depth Property Bindings

Matrix Property Bindings .

Vertex Program Output

Fragment Program Output.

Program Instructions (Fragment and Vertex Programs)
Program Instructions (Fragment Programs Only)
Program Instructions (Vertex Programs Only) .
Program Resource Limits .

Program Resource Usage .

Command-Line Options for ogldebug

Command Buttons and Shortcuts .

ogl debug Check Boxes

Factors Influencing Performance .

Errors Returned by | i bpdb Routines

Support for OpenGL Core Versions e
OpenGL Extensions on Different Silicon Graphics Systems
GLX Extensions on Different Silicon Graphics Systems
Input Video Formats (Framelock)

Options for Monitor Layout

336
339
341
341
342
342
343
343
345
346
352
353
354
372
374
388
391
392
413
495
503
504
510
520
523

007-2392-003

007-2392-003

Examples

Example 2-1
Example 3-1
Example 3-2
Example 3-3
Example 3-4
Example 4-1
Example 4-2
Example 5-1
Example 5-2
Example 8-1
Example 8-2
Example 8-3
Example 9-1
Example 9-2
Example 9-3
Example 11-1
Example 12-1
Example 17-1
Example 17-2

Simple IRIS IM Program .

Motif Program That Handles Mouse Events
Simple Xlib Example Program

Event Handling With Xlib.

Font and Text Handling

Popup Code Fragment.

Retrieving the Default Colormap for a Visual
Checking for Extensions

Querying Extension Function Pointers .
Simple 3D Texturing Program

Detail Texture Example

Sharpen Texture Example .
NV_occlusion_query Example

Point Parameters Example

Sprite Example Program

Video Resize Extension Example .
Instruments Example Pseudo Code .
Drawing Pixels Fast

Example Program—Performance Tuning

.17
. 38
. 43
. 49
.52
. 69
. 85
104
.108
164
175
.183
219
241
.253
297
311
.457
.459

XXXV

About This Guide

OpenGL on Silicon Graphics Systems explains how to use the OpenGL graphics library on
Silicon Graphics systems. This guide expands the description of OpenGL programming
presented in the book OpenGL Programming Guide, which describes aspects of OpenGL
that are implementation-independent.

This guide describes the following major topics:

¢ Integrating OpenGL programs with the X Window System

¢ Using OpenGL extensions

¢ Debugging OpenGL programs

* Achieving maximum performance

Silicon Graphics Visualization Systems

Though some items in this guide apply to all Silicon Graphics visualization systems, this
guide explicitly addresses the following families of visualization systems:

¢ Silicon Graphics VPro systems (Fuel and Tezro systems)
¢ Silicon Graphics InfinitePerformance systems

¢ Silicon Graphics InfiniteReality systems

¢ Silicon Graphics Onyx4 UltimateVision systems

¢ Silicon Graphics Prism systems (Linux systems)

007-2392-003 XXXVii

About This Guide

What This Guide Contains

This guide consists of the following chapters and appendixes:

¢ Chapter 1, “OpenGL on Silicon Graphics Systems” introduces the major issues
involved in using OpenGL on Silicon Graphics systems.

¢ Chapter 2, “OpenGL and X: Getting Started” first provides background information
for working with OpenGL and the X Window System. You then learn how to
display some OpenGL code in an X window with the help of a simple example
program.

¢ Chapter 3, “OpenGL and X: Examples” first presents two example programs that
illustrate how to create a window using IRIS IM or Xlib. It then explains how to
integrate text with your OpenGL program.

¢ Chapter 4, “OpenGL and X: Advanced Topics” helps you refine your programs. It
discusses how to use overlays and popups. It also provides information about
pixmaps, visuals and colormaps, and animation.

¢ Chapter 5, “Introduction to OpenGL Extensions” explains what OpenGL extensions
are and how to check for OpenGL and GLX extension availability.

¢ Chapter 6, “Resource Control Extensions” describes extensions that facilitate
management of buffers and similar resources. Most of these extensions are GLX
extensions.

e Chapter 7, “Vertex Processing Extensions” explains how to use vertex processing
extensions.

¢ Chapter 8, “Texturing Extensions”explains how to use the texturing extensions,
providing example code as appropriate.

¢ Chapter 9, “Rendering Extensions” explains how to use extensions that allow you
to customize the system’s behavior during the rendering portion of the graphics
pipeline. This includes blending extensions; the sprite, point parameters, reference
plane, multisample, and shadow extensions; and the fog function and fog offset
extensions.

e Chapter 10, “Imaging Extensions” explains how to use extensions for color
conversion (abgr, color table, color matrix), the convolution extension, the
histogram/minmax extension, and the packed pixel extension.

¢ Chapter 11, “Video Extensions” discusses extensions that can be used to enhance
OpenGL video capabilities.

XXXViii 007-2392-003

About This Guide

007-2392-003

Chapter 12, “Miscellaneous OpenGL Extensions” explains how to use the
instruments and list priority extensions as well as two extensions to GLU.

Chapter 13, “Vertex and Fragment Program Extensions” explains how to use the
programmable shading extensions introduced in Onyx4 and Silicon Graphics Prism
graphics systems.

Chapter 14, “OpenGL Tools” explains how to use the OpenGL debugger
(ogl debug) and discusses the glc OpenGL character renderer and (briefly) the gl s
OpenGL Streaming codec.

Chapter 15, “Tuning Graphics Applications: Fundamentals” starts with a list of
general debugging hints. It then discusses basic principles of tuning graphics
applications: pipeline tuning, tuning animations, optimizing cache and memory
use, and benchmarking. You need this information as a background for the chapters
that follow.

Chapter 16, “Tuning the Pipeline” explains how to tune the different parts of the
graphics pipeline for an OpenGL program. Example code fragments illustrate how
to write your program for optimum performance.

Chapter 17, “Tuning Graphics Applications: Examples” provides a detailed
discussion of the tuning process for a small example program. It also provides a
code fragment that is helpful for drawing pixels fast.

Chapter 18, “System-Specific Tuning” provides information on tuning some specific
Silicon Graphics systems: InfiniteReality, Onyx4, and Silicon Graphics Prism
systems.

Appendix A, “Benchmarks” lists a sample benchmarking program.

Appendix B, “Benchmarking Libraries: libpdb and libisfast” discusses two libraries
you can use for benchmarking drawing operations and maintaining a database of
the results.

Appendix C, “System Support for OpenGL Versions and Extensions” list the
OpenGL core versions and all extensions currently supported on VPro,
InfinitePerformance, InfiniteReality, Onyx4, and Silicon Graphics Prism systems.

Appendix D, “XFree86 Configuration Specifics” provides information about
customizing the XF86Config file for Silicon Graphics Prism systems.

XXXiX

About This Guide

What You Should Know Before Reading This Guide

To work successfully with this guide, you should be comfortable programming in ANSI
C or C++. You should have a fairly good grasp of graphics programming concepts (terms
such as “texture map” and “homogeneous coordinates” are not explained in this guide),
and you should be familiar with the OpenGL graphics library. Some familiarity with the
X Window System, and with programming for Silicon Graphics platforms in general, is
also helpful. If you are a newcomer to any of these topics, see the references listed in
section “Background Reading” on page x1.

Background Reading

The following books provide background and complementary information for this
guide. Bibliographical information or the SGI document number is provided. Books
available online from SGI are marked with (S). For access information, see section
“Obtaining Publications” on page xlii.

OpenGL and Associated Tools and Libraries

x|

¢ Kilgard, Mark]. OpenGL Programming for the X Window System. Menlo Park, CA:
Addison-Wesley Developer’s Press, 1996. ISBN 0-201-48369-9.

Note that while still useful, this book does not describe the newer features of
GLX 1.3.

¢ Dave Shreiner, OpenGL Architecture Review Board, Mason Woo, Jackie Neider and
Tom Davis. OpenGL Programming Guide: The Official Guide to Learning OpenGL,
Version 1.4. Reading, MA: Addison Wesley Longman Inc., 2003. ISBN 0-321-17348-1.

* Dave Shreiner, OpenGL Architecture Review Board. OpenGL 1.4 Reference Manual
(4th Edition). The Official Reference Document for OpenGL, Version 1.4. Reading, MA:
Addison Wesley Longman Inc., 2004. ISBN 0-321-17383-X.

e OpenGL Porting Guide (007-1797-030) (S)

* Silicon Graphics Onyx4 UltimateVision User’s Guide (007-4634-xxx) (S)

* Silicon Graphics UltimateVision Graphics Porting Guide (007-4297-001) (S)
e Silicon Graphics Prism Visualization System User’s Guide (007-4701-xxx) (S)

007-2392-003

About This Guide

Obtaining Maximum Performance on Silicon Graphics Prism Visualization Systems
(007-4271-xxx) (S)

X Window System: Xlib, X Toolkit, and OSF/Motif

Other Sources

007-2392-003

O'Reilly X Window System Series, Volumes 1, 2, 4, 5, and 6 (referred to in the text as
“O’Reilly” with a volume number):

- Nye, Adrian. Volume One: Xlib Programming Manual. Sebastopol, CA: O'Reilly &
Associates, 1992. (S)

— Volume Two. Xlib Reference Manual. Sebastopol, CA: O'Reilly & Associates, 1992.

— Nye, Adrian, and Tim O'Reilly. Volume Four. X Toolkit Intrinsics Programming
Manual. Sebastopol, CA: O'Reilly & Associates, 1992. (S)

- Flanagan, David (ed). Volume Five. X Toolkit Intrinsics Reference Manual.
Sebastopol, CA: O'Reilly & Associates, 1992.

- Heller, Dan. Volume Six. Motif Programming Manual. Sebastopol, CA: O'Reilly &
Associates.

Young, Doug. Application Programming with Xt: Motif Version
Kimbeall, Paul E. The X Toolkit Cookbook. Englewood Cliffs, NJ: Prentice Hall, 1995.

Open Software Foundation. OSF/Motif Programmer’s Guide, Revision 1.2. Englewood
Cliffs, NJ: Prentice Hall, 1993. (S)

Open Software Foundation. OSF/Motif Programmer’s Reference, Revision 1.2.
Englewood Cliffs, NJ: Prentice Hall, 1993. (S)

Open Software Foundation. OSE/Motif User’s Guide, Revision 1.2. Englewood Cliffs,
NJ: Prentice Hall, 1993.

Open Software Foundation. OSF/Motif Style Guide. Englewood Cliffs, NJ: Prentice
Hall. (S)

Kane, Gerry. MIPS RISC Architecture. Englewood Cliffs, NJ: Prentice Hall. 1989.
MIPS Compiling and Performance Tuning Guide. 007-2479-001. (S)

xli

About This Guide

Obtaining Publications

You can obtain SGI documentation in the following ways:

* See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

e Ifitisinstalled on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With an
IRIX system, select Help from the Toolchest, and then select InfoSearch. Or you can
type i nf osear ch on a command line.

* OnIRIX, you can also view release notes by typing either gr el not es orr el not es
on a command line.

* You can also view man pages by typing man <title> on a command line.

e SGI ProPack for Linux documentation and all other documentation included in the
RPMs on the distribution CDs can be found on the CD titled SGI ProPack 3 for Linux
- Documentation CD. To access the information on the documentation CD, open the
i ndex. ht m file with a web browser. After installation, all SGI ProPack for Linux
documentation (including READVE. SG) is in the directory
[usr/ shar e/ doc/ sgi - pr opack- 3. 0.

Conventions Used in This Guide

This section explains the typographical and function-naming conventions used in this
guide.

Typographical Conventions

This guide uses the following typographical conventions:

Convention Meaning

command This fixed-space font denotes literal items such as commands, files,
routines, path names, signals, messages, and programming language
structures.

function This bold font indicates a function or method name. Parentheses are

also appended to the name.

xlii 007-2392-003

About This Guide

Convention Meaning
variable Italic typeface denotes variable entries and words or concepts being
defined.

user input Thisbold, fixed-space font denotes literal items that the user enters in
interactive sessions. (Output is shown in nonbold, fixed-space font.)

(] Brackets enclose optional portions of a command or directive line.
Ellipses indicate that a preceding element can be repeated.

manpage(x) Man page section identifiers appear in parentheses after man page
names.

GUI element This font denotes the names of graphical user interface (GUI) elements
such as windows, screens, dialog boxes, menus, toolbars, icons,
buttons, boxes, fields, and lists.

Function Naming Conventions

This guide refers to a group of similarly named OpenGL functions by a single name,
using an asterisk to indicate all the functions whose names start the same way. For
instance, gl Vertex*() refers to all functions whose names begin with “glVertex”:
glVertex2s(), gl Vertex3dv(), gl Vertex4fv(), and so on.

Naming conventions for X-related functions can be confusing, because they depend
largely on capitalization to differentiate between groups of functions. For systems on
which both OpenGL and IRIS GL are available, the issue is further complicated by the
similarity in function names. Here’s a quick guide to old and new function names:

GLX*() IRIS GL mixed-model support
GIx*() IRIS GL support for IRIS IM
glX*() OpenGL support for X
GLw*() OpenGL support for IRIS IM

Note that the OpenGL gIX*() routines are collectively referred to as GLX.

007-2392-003 xliii

About This Guide

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number is located at the bottom of each

page.)

You can contact SGI in any of the following ways:

¢ Send e-mail to the following address:
techpubs@sgi.com

¢ Use the Feedback option on the Technical Publications Library webpage:
http://docs.sgi.com

¢ Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

¢ Send mail to the following address:

Technical Publications

SGI

1500 Crittenden Lane, M /S 535
Mountain View, CA 94043-1351

* Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.

xliv 007-2392-003

Chapter 1

OpenGL on Silicon Graphics Systems

Silicon Graphics systems allow you to write OpenGL applications that are portable and
run well across the Silicon Graphics workstation product line. This chapter introduces
the basic issues you need to know about if you want to write an OpenGL application for
Silicon Graphics systems. The chapter contains the following topics, which are all
discussed in more detail elsewhere in this guide:

¢ “Using OpenGL with the X Window System” on page 1
¢ “Extensions to OpenGL” on page 5
¢ “Debugging and Performance Optimization” on page 6

¢ “Location of Example Source Code (IRIX-Specific)” on page 7

Using OpenGL with the X Window System

007-2392-003

The OpenGL graphics library is not limited to a particular window system. The
platform’s window system determines where and how the OpenGL application is
displayed and how events (user input or other interruptions) are handled. Currently,
OpenGLis available for the X Window System, Microsoft Windows, Mac OS X, and other
major window systems. If you want your application to run under several window
systems, the application’s OpenGL calls can remain unchanged, but window system
calls are different for each window system.

Note: If you plan to run an application under different window systems, isolate the
windowing code to minimize the number of files that must be special for each system.

All Silicon Graphics systems use the X Window System. Applications on a Silicon
Graphics system rely on Xlib calls to manipulate windows and obtain input. An X-based
window manager (usually 4Dwm) handles iconification, window borders, and
overlapping windows. The IRIX Interactive Desktop environment is based on X, as is the
Silicon Graphics widget set, IRIS IM. IRIS IM is the Silicon Graphics port of OSF/Motif.

1: OpenGL on Silicon Graphics Systems

A full introduction to X is beyond the scope of this guide; for detailed information about
X, see the sources listed in “Background Reading” on page x1.

GLX Extension to the X Window System

The OpenGL extension to the X Window System (GLX) provides a means of creating an
OpenGL context and associating it with a drawable window on a computer that uses the
X Window System. GLX is provided by Silicon Graphics and other vendors as an adjunct
to OpenGL.

For additional information on using GLX, see “GLX Extension to X” on page 11. More
detailed information is in Appendix D, “OpenGL Extensions to the X Window System”
of the OpenGL Programming Guide. The gl Xi nt r 0 man page also provides a good
introduction to the topic.

Libraries, Tools, Toolkits, and Widget Sets

When you prepare a program to run with the X Window System, you can choose the level
of complexity and control that suits you best, depending on how much time you have
and how much control you need.

This section describes different tools and libraries for working with OpenGL in an X
Window System environment. It starts with easy-to-use toolkits and libraries with less
control and then describes the Xlib library, which is more primitive but offers more
control. Most application developers usually write at a higher level than Xlib, but you
may find it helpful to understand the basic facts about the lower levels of the X Window
System that are discussed in this guide.

Note that the different tools are not mutually exclusive: You may design most of the
interface with one of the higher-level tools, then use Xlib to fine-tune a specific aspect or
add something that is otherwise unavailable. Figure 1-1 illustrates the layering:

¢ IRIS ViewKit (only supported on IRIX systems) and Open Inventor are layered on
top of IRIS IM, which is on top of Xlib.

¢ GLXlinks Xlib and OpenGL.
¢ Open Inventor uses GLX and OpenGL.

2 007-2392-003

Using OpenGL with the X Window System

Open Inventor

007-2392-003

Figure 1-1 How X, OpenGL, and Toolkits Are Layered

Note: If you write an application on IRIX using IRIS Viewkit or Open Inventor, the
graphical user interface will be visually consistent with the IRIX Interactive Desktop.

The Open Inventor library uses an object-oriented approach to make the creation of
interactive 3D graphics applications as easy as possible by letting you use its high-level
rendering primitives in a scene graph. It is a useful tool for bypassing the complexity of
X and widget sets, as well as many of the complex details of OpenGL.

Open Inventor provides prepackaged tools for viewing, manipulating, and animating
3D objects. It also provides widgets for easy interaction with X and Xt, and a full
event-handling system.

In most cases, you use Open Inventor, not the lower-level OpenGL library, for rendering
from Open Inventor. However, the Open Inventor library provides several widgets for

1: OpenGL on Silicon Graphics Systems

IRIS ViewKit

IRIS IM Widget Set

use with X and OpenGL (in subclasses of the SOXtGLWidget class) that you can use if
OpenGL rendering is desired. For instance, the SoXtRenderArea widget and its viewer
subclasses can all perform OpenGL rendering. SoXtGLWidget is, in turn, a subclass of
SoXtComponent, the general Open Inventor class for widgets that perform 3D editing.

Components provide functions to show and hide the associated widgets, set various
parameters (such as title and size of the windows), and use callbacks to send data to the
calling application. The viewer components based on SoXtRenderArea handle many
subsidiary tasks related to viewing 3D objects. Other components handle anything from
editing materials and lights in a 3D scene, to copying and pasting 3D objects.

Note that if you are using libInventorXt, you need only link with libInventorXt (it
automatically “exports” all of the routines in libInventor, so you never need to use
-lInventorXt -lInventor, you need only -lInventorXt).

For detailed information on Open Inventor, see The Inventor Mentor: Programming
Object-Oriented 3D Graphics with Open Inventor, Release 2, published by Addison-Wesley
and available online through IRIS InSight.

The IRIS ViewKit library is a C++ application framework designed to simplify the task
of developing applications based on the IRIS IM widget set. The ViewKit framework
promotes consistency by providing a common architecture for applications and
improves programmer productivity by providing high-level, and in many cases
automatic, support for commonly needed operations.

When you use Viewkit in conjunction with OpenGL, it provides drawing areas that
OpenGL can render to.

For more information, see the IRIS ViewKit Programmer’s Guide, available online through
IRIS InSight.

The IRIS IM widget set is an implementation of OSF/Motif provided by Silicon Graphics.
You are strongly encouraged to use IRIS IM when writing software for Silicon Graphics
systems. IRIS IM integrates your application with the desktop’s interface. If you use it,
your application conforms to a consistent look and feel for Silicon Graphics applications.
See the sources listed in “Background Reading” on page xl for further details.

007-2392-003

Extensions to OpenGL

Xlib Library

The X library, Xlib, provides function calls at a lower level than most application
developers want to use. Note that while Xlib offers the greatest amount of control, it also
requires that you attend to many details you could otherwise ignore. If you do decide to
use Xlib, you are responsible for maintaining the Silicon Graphics user interface
standards.

Porting Applications between IRIX and Linux

Not all of the toolkits just described are available on all Silicon Graphics platforms and if
you are targeting both IRIX and Linux, you should be aware of the differences. IRIS
ViewKit is only supported on IRIX systems, but Integrated Computer Solutions
Incorporated (ICS) makes a commercial version of ViewKit for Linux and other
platforms. The IRIS IM widget set includes widgets specific to SGI and supported only
on IRIX. However, the OSF/Motif implementation on Linux supports most of the same
functionality.

In addition to the toolkits and widget sets described earlier, similar GUI functionality is
available from open source packages such as the Gnome Toolkit (GTK), Qt from
Trolltech, and many others. SGI provides industry-standard versions of some of these
packages with SGI Linux systems, and some are also available prebuilt for IRIX through
the IRIX Freeware site, http:/ /freeware.sgi.com/. Although SGI does not recommend
any specific alternative, you may find these toolkits useful.

Extensions to OpenGL

007-2392-003

The OpenGL standard is designed to be as portable as possible and also to be expandable
with extensions. Extensions may provide new functionality, such as several video
extensions, or extend existing functionality, such as blending extensions.

An extension’s functions and tokens use a suffix that indicates the availability of that
extension. For example, the suffix ARB is used for extensions reviewed and approved by
the OpenGL Architecture Review Board. ARB extensions are likely to be more widely
supported on different vendor platforms than are any other type of extension, as they
represent a consensus of the graphics industry. For a complete listing of suffixes, see
Chapter 5, “Introduction to OpenGL Extensions”.

1: OpenGL on Silicon Graphics Systems

The gl i nt r 0 man page provides a useful introduction to extensions; many extensions
are also discussed in detail in the following chapters in this guide:

¢ Chapter 5, “Introduction to OpenGL Extensions”

¢ Chapter 6, “Resource Control Extensions”

¢ Chapter 7, “Vertex Processing Extensions”

¢ Chapter 8, “Texturing Extensions”

e Chapter 9, “Rendering Extensions”

¢ Chapter 10, “Imaging Extensions”

e Chapter 11, “Video Extensions”

¢ Chapter 12, “Miscellaneous OpenGL Extensions”

¢ Chapter 13, “Vertex and Fragment Program Extensions”

Note that both the X Window System and OpenGL support extensions. GLX is an X

extension to support OpenGL. Keep in mind that OpenGL (and GLX) extensions are
different from X extensions.

Debugging and Performance Optimization

If you want a fast application, think about performance from the start. While making sure
the program runs reliably and bug-free is important, it is also essential that you think
about performance early on. Applications designed and written without performance
considerations can rarely be suitably tuned.

If you want high performance, read the following performance chapters in this guide
before you start writing the application:

¢ Chapter 15, “Tuning Graphics Applications: Fundamentals”

¢ Chapter 16, “Tuning the Pipeline”

¢ Chapter 17, “Tuning Graphics Applications: Examples”

* Chapter 18, “System-Specific Tuning”

6 007-2392-003

Location of Example Source Code (IRIX-Specific)

Debugging Your Program

Silicon Graphics provides a variety of debugging tools for use with OpenGL programs:

e The ogl debug tool helps you find OpenGL programming errors and discover
OpenGL programming style that may slow down your application. You can set
breakpoints, step through your program, and collect a variety of information.

e For general-purpose debugging, you can use standard UNIX debugging tools such
as dbx or gdb.

e The CASE tools are only available on IRIX for general-purpose debugging. For
more information on the CASE tools, see ProDev WorkShop and MegaDev Overview
and CASEVision/Workshop User’s Guide.

Maximizing Performance With OpenGL Performer

The OpenGL Performer application development environment from Silicon Graphics
automatically optimizes graphical applications on the full range of Silicon Graphics
systems without changes or recompilation. Performance features supported by
OpenGL Performer include data structures to use the CPU, cache, and memory system
architecture efficiently; tuned rendering loops to convert the system CPU into an
optimized data management engine; and state management control to minimize
overhead.

For OpenGL Performer documentation, see the SGI Technical Publications Library,
http://docs.sgi.com.

Location of Example Source Code (IRIX-Specific)

All complete example programs (though not the short code fragments) are available in
/usr/shar e/ src/ Open@ if you have the ogl _dev. sw. sanpl es subsystem
installed.

007-2392-003 7

Chapter 2

OpenGL and X: Getting Started

This chapter first presents background information that you will find useful when
working with OpenGL and the X Window System. Following the background
information is a simple example program that displays OpenGL code in an X window.
This chapter uses the following topics:

¢ “Background and Terminology” on page 9

¢ “Libraries, Toolkits, and Tools” on page 14

¢ “Integrating Your OpenGL Program With IRIS IM” on page 16
¢ “Integrating OpenGL Programs With X—Summary” on page 25
¢ “Compiling With OpenGL and Related Libraries” on page 26

Background and Terminology

To effectively integrate your OpenGL program with the X Window System, you need to
understand the basic concepts described in the following sections:

e “X Window System on Silicon Graphics Systems”

e “X Window System Concepts”

Note: If you are unfamiliar with the X Window System, you are urged to learn about it
using some of the material listed under “Background Reading” on page xI.

X Window System on Silicon Graphics Systems

The X Window System is the only window system provided for Silicon Graphics systems
running IRIX or Linux.

007-2392-003 9

2: OpenGL and X: Getting Started

X is a network-transparent window system: an application need not be running on the
same system on which you view its display. In the X client/server model, you can run
programs on the local workstation or remotely on other workstations connected by a
network. The X server handles input and output and informs client applications when
various events occur. A special client, the window manager, places windows on the
screen, handles icons, and manages titles and other window decorations.

When you run an OpenGL program in an X environment, window manipulation and
event handling are performed by X functions. Rendering can be done with both X and
OpenGL. In general, X is for the user interface and OpenGL is used for rendering 3D
scenes or for imaging.

Silicon Graphics X Servers

10

There are two different X servers provided depending on the operating system and type
of graphics supported:

e Xsgi

For traditional IRIX graphics systems such as VPro, InfinitePerformance, and
InfiniteReality, Silicon Graphics uses its own X server, called Xsgi.

e XFree86

For IRIX Oynx4 systems and all Linux systems, Silicon Graphics uses an X server
from the open source XFree86 project. This server contains newer X extensions such
as RENDER but does not support all of the extensions of the Xsgi server.

While both Xsgi and XFree86 are based on the X Consortium X11R6 source code base,
Xsgi includes some enhancements that not all servers have: support for visuals with
different colormaps, overlay windows, the Display PostScript extension, the Shape
extension, the X Input extension, the Shared Memory extension, the SGI video control
extensions, and simultaneous displays on multiple graphics monitors. Specifically for
working with OpenGL programes, Silicon Graphics offers the GLX extension described in
the next section.

To see what extensions to the X Window System are available on your current system,

execute xdpyi nf 0 and check the extensions listed below the nunber of ext ensi ons
line.

007-2392-003

Background and Terminology

GLX Extension to X

The GLX extension, which integrates OpenGL and X, is used by X servers that support
OpenGL. The Xsgi and XFree86 servers shipped with Silicon Graphics systems all
support GLX. GLX is both an API and an X extension protocol for supporting OpenGL.
GLX routines provide basic interaction between X and OpenGL. Use them, for example,
to create a rendering context and bind it to a window.

Compiling With the GLX Extension

To compile a program that uses the GLX extension, include the GLX header file

(/ usr/incl ude/ A/ gl x. h), which includes relevant X header files and the standard
OpenGL header files. If desired, include also the GLU utility library header file
(/usr/include/ G/ gl u. h).

Table 2-1 provides an overview of the headers and libraries you need to include.

Table 2-1 Headers and Link Lines for OpenGL and Associated Libraries
Library Header Link Line

OpenGL GL/glh -IGL

GLU GL/gluh -IGLU

GLX GL/glx.h -IGL (includes GLX and OpenGL)
X11 X11/xlib.h -1X11

X Window System Concepts

007-2392-003

To help you understand how to use your OpenGL program inside the X Window System
environment, this section describes the following concepts you will encounter
throughout this guide:

e “GLX and Overloaded Visuals”

e “GLX Drawables—Windows and Pixmaps”
e “Rendering Contexts”

e “Resources As Server Data”

e “X Window Colormaps”

11

2: OpenGL and X: Getting Started

GLX and Overloaded Visuals

12

A standard X visual specifies how the server should map a given pixel value to a color to
be displayed on the screen. Different windows on the screen can have different visuals.

Currently, GLX allows RGB rendering to TrueColor and DirectColor visuals and color
index rendering to StaticColor or PseudoColor visuals. See Table 4-1 on page 71 for
information about the visuals and their supported OpenGL rendering modes.
Framebuffer configurations, or FBConfigs, allow additional combinations. For details,
see the section “Using Visuals and Framebuffer Configurations” on page 71.

GLX overloads X visuals to include both the standard X definition of a visual and
information specific to OpenGL about the configuration of the framebuffer and ancillary
buffers that might be associated with a drawable. Only those overloaded visuals support
both OpenGL and X rendering. GLX, therefore, requires that an X server support a
high-minimum baseline of OpenGL functionality.

When you need visual information, do the following;:
¢ Use xdpyi nf o to display all the X visuals your system supports.
¢ Usegl xi nfoorfindvis to find visuals that can be used with OpenGL.

The fi ndvi s command (only available on SGI IRIX systems) can actually look for
available visuals with certain attributes. See the xdpyi nf o, gl xi nf o, and
findvi s man pages for more information.

Not all X visuals support OpenGL rendering, but all X servers capable of OpenGL
rendering have at least two OpenGL capable visuals. The exact number and type vary
among different hardware systems. A Silicon Graphics system typically supports many
more than the two required OpenGL capable visuals. An RGBA visual is required for any
hardware system that supports OpenGL; a color index visual is required only if the
hardware requires color index. To determine the OpenGL configuration of a visual, you
must use a GLX function.

Visuals are discussed in some detail in “Using Visuals and Framebuffer Configurations”

on page 71. Table 4-1 on page 71 illustrates which X visuals support which type of
OpenGL rendering and whether the colormaps for those visuals are writable or not.

007-2392-003

Background and Terminology

GLX Drawables—Windows and Pixmaps

Rendering Contexts

As arule, a drawable is something into which X can draw, either a window or a pixmap.
An exception is a pixel buffer (pbuffer), which is a GLX drawable but cannot be used for
Xrendering. A GLX drawable is something into which both X and OpenGL can draw,
either an OpenGL capable window or a GLX pixmap. (A GLX pixmap is a handle to an
X pixmap that is allocated in a special way; see Figure 4-2 on page 96.) Different ways of
creating a GLX drawable are discussed in “Drawing-Area Widget Setup and Creation”
on page 31, “Creating a Colormap and a Window” on page 45, and “Using Pixmaps” on
page 96.

Pbuffers were promoted from the SGIX_pbuffer extension to GLX 1.1 into a standard part
of GLX 1.3, which is supported on all current Silicon Graphics visualization systems. So,
the SGIX_pbuffer extension is no longer described in detail in this document.

A rendering context (GLXContext) is an OpenGL data structure that contains the current
OpenGL rendering state, an instance of an OpenGL state machine. (For more
information, see the section “OpenGL as a State Machine” in Chapter 1, “Introduction to
OpenGL,” of the OpenGL Programming Guide.) Think of a context as a complete
description of how to draw what the drawing commands specify.

Only one rendering context can be bound to at most one window or pixmap in a given
thread. If a context is bound, it is considered the current context.

OpenGL routines do not specify a drawable or rendering context as parameters. Instead,
they implicitly affect the current bound drawable using the current rendering context of
the calling thread.

Resources As Server Data

007-2392-003

Resources, in X, are data structures maintained by the server rather than by client
programs. Colormaps (as well as windows, pixmaps, and fonts) are implemented as
resources.

Rather than keeping information about a window in the client program and sending an

entire window data structure from client to server, for instance, window data is stored in
the server and given a unique integer ID called an XID. To manipulate or query the

13

2: OpenGL and X: Getting Started

X Window Colormaps

window data, the client sends the window’s ID number; the server can then perform any
requested operation on that window. This reduces network traffic.

Because pixmaps and windows are resources, they are part of the X server and can be
shared by different processes (or threads). OpenGL contexts are also resources. In
standard OpenGL, they can be shared by threads in the same or a different process
through the use of FBConfigs. For details, see the section “Using Visuals and Framebuffer
Configurations” on page 71.

Note: The term resource can, in other X-related contexts, refer to items handled by the
Resource Manager. They are items that users can customize for their own use. These
resources are user data in contrast to the server data described in this section.

A colormap maps pixel values from the framebuffer to intensities on the screen. Each
pixel value indexes into the colormap to produce intensities of red, green, and blue for
display. Depending on hardware limitations, one or more colormaps may be installed at
one time so that windows associated with those maps display with the correct colors. If
there is only one colormap, two windows that load colormaps with different values look
correct only when they have their particular colormap installed. The X window manager
takes care of colormap installation and tries to make sure that the X client with input
focus has its colormaps installed. On all systems, the colormap is a limited resource.

Every X window needs a colormap. If you are using the OpenGL drawing-area widget
to render in RGB mode into a TrueColor visual, you may not need to worry about the
colormap. In other cases, you may need to assign one. For additional information, see
“Using Colormaps” on page 83. Colormaps are also discussed in detail in O’Reilly,
Volume One.

Libraries, Toolkits, and Tools

14

This section first describes programming with widgets and with the Xt (X Toolkit) library,
then briefly mentions some other toolkits that facilitate integrating OpenGL with the X
Window System.

007-2392-003

Libraries, Toolkits, and Tools

Widgets and the Xt Library

Xt Library

007-2392-003

A widget is a piece of a user interface. Under IRIS IM, buttons, menus, scroll bars, and
drawing windows are all widgets.

It usually makes sense to use one of the standard widget sets. A widget set provides a
collection of user interface elements. A widget set may contain, for example, a simple
window with scrollbars, a simple dialog with buttons, and so on. A standard widget set
allows you to easily provide a common look and feel for your applications. The two most
common widget sets are OSF/Motif and the Athena widget set from MIT.

If you develop on IRIX, Silicon Graphics strongly encourages using IRIS IM, the Silicon
Graphics port of OSF/Motif, for conformance with Silicon Graphics user interface style
and integration with the IRIX Interactive Desktop. If you use IRIS IM, your application
follows the same conventions as other applications on the desktop and becomes easier to
learn and to use. If you develop for cross-platform environments or only for Linux
environments, use those features of OSF/Motif that are not specific to SGI or use other
toolkits such as GTK or Qt.

The examples in this guide use IRIS IM. Using IRIS IM makes it easier to deal with
difficult issues such as text management and cut and paste. IRIS IM makes writing
complex applications with many user interface components relatively simple. This
simplicity does not come free; an application that has minimal user interactions incurs a
performance penalty over the same application written in Xlib. For an introduction to
Xlib, see “Xlib Library” on page 5.

Widgets are built using Xt, the X Toolkit Intrinsics, a library of routines for creating and
using widgets. Xtis a “meta” toolkit used to build toolkits like Motif or IRIS IM; you can,
in effect, use it to extend the existing widgets in your widget sets. Xt uses a
callback-driven programming model. It provides tools for common tasks like input
handling and animation and frees you from having to handle a lot of the details of Xlib
programming.

Note that in most (but not all) cases, using Xlib is necessary only for colormap
manipulation, fonts, and 2D rendering. Otherwise, Xt and IRIS IM are enough, though
you may pay a certain performance penalty for using widgets instead of programming
directly in Xlib.

15

2: OpenGL and X: Getting Started

For More Information About Xt

Standard Xt is discussed in detail in O’Reilly, Volume Four. Standard Motif widgets are
discussed in more detail in O’Reilly, Volume Six. See “Background Reading” on page xl
for full bibliographic information and for pointers to additional documents about Motif
and IRIS IM. The book on OpenGL and X (Kilgard 1996) is particularly helpful for
OpenGL developers.

Other Toolkits and Tools

Silicon Graphics makes several other tools and toolkits available that can greatly
facilitate designing your IRIS IM interface. For more information, see “Open Inventor”
on page 3, “IRIS ViewKit” on page 4, and “Porting Applications between IRIX and
Linux” on page 5.

Integrating Your OpenGL Program With IRIS IM

To help you get started, this section presents the simplest possible example program that
illustrates how to integrate an OpenGL program with IRIS IM. The program itself is
followed by a brief explanation of the steps involved and a more detailed exploration of
the steps to follow during integration and setup of your own program.

Window creation and event handling, either using Motif widgets or using the Xlib library
directly, are discussed in Chapter 3, “OpenGL and X: Examples.”

Simple Motif Example Program

The program in Example 2-1 (not i f/ si npl est. ¢) performs setup, creates a window
using a drawing-area widget, connects the window with a rendering context, and
performs some simple OpenGL rendering (see Figure 2-1).

16 007-2392-003

Integrating Your OpenGL Program With IRIS IM

007-2392-003

Figure 2-1 Display From si npl est . ¢ Example Program

Example 2-1 Simple IRIS IM Program

/*
* sinplest - sinple single buffered RGBA notif program
*/

#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

#i ncl ude <Xni Fr ane. h>

#i ncl ude <X11/ GLw/ GLwWMDr awA. h>

#i ncl ude <X11/ keysym h>

#i ncl ude <X11/Xutil . h>

#i ncl ude <G./ gl x. h>

static int attribs[] = { GLX_RGBA, None};

static String fal |l backResources[] = {

"*useSchenes: all", “*sginode: True”,

"*gl xwi dget *wi dt h: 300",
"*franme*shadowType:

NULL};
/*Cl ear the wi ndow and draw 3 rectangl es*/

voi d
draw_scene(void) {
gl dearColor(0.5 0.5, 0.5,

gl Col or3f (1.0,0.0,0.0);

"*gl xwi dget *hei ght: 300",
SHADOW | N',

1.0);
gl d ear (GL_COLOR _BUFFER _BI T);

17

2: OpenGL and X: Getting Started

gl Rectf(-.5,-.5,.5,.5);
gl Col or3f(0.0,1.0,0.0);
gl Rectf(-.4,-.4,.4,.4);
gl Col or3f(0.0,0.0,1.0);
gl Rectf(-.3,-.3,.3,.3);
gl Fl ush();

}

[*Process input events*/

static void
i nput (Wdget w, XtPointer client_data, XtPointer call) {
char buffer[31];
KeySym keysym
XEvent *event = ((G.wDraw ngAreaCal | backStruct *) call)->event;

swi tch(event->type) {
case KeyRel ease:
XLookupStri ng(&event - >xkey, buffer, 30, &eysym NULL);
switch(keysym {
case XK _Escape :
exi t (EXI T_SUCCESS) ;
br eak;
def aul t: break;

}

br eak;

}

[*Process wi ndow resi ze events*/
* calling gl X\itX nakes sure that all x operations |like *
* XConfigureWndow to resize the wi ndow happen befor the *
* OpenGL gl Viewport call.*/

static void
resi ze(Wdget w, XtPointer client_data, XtPointer call) {
GLwDr awi ngAr eaCal | backStruct *cal | _dat a;
call _data = (G.wDr awi ngAreaCal | backStruct *) call;
gl Xwai t X();
gl Viewport (0, 0, call_data->wi dth, call_data->height);
}

[*Process wi ndow expose events*/

static void

18 007-2392-003

Integrating Your OpenGL Program With IRIS IM

expose(Wdget w, XtPointer client_data, XtPointer call) {
draw_scene();

}
mai n(int argc, char *argv[]) {
Di spl ay *dpy;
Xt AppCont ext app;
XVi sual I nfo *vi si nfo;
G_XCont ext gl xcont ext ;
W dget topl evel , frame, gl xw dget;

topl evel = Xt OpenApplication(&app, "sinplest”, NULL, 0, &argc,
argv, fal | backResour ces, applicationShel |l Wdgetd ass,
NULL, 0);

dpy = XtDisplay(toplevel);

frame = XnCreateFrane(topl evel, "frane", NULL, 0);
Xt ManageChi | d(frane);

/* specify visual directly */
if (!(visinfo = gl XChooseVi sual (dpy, DefaultScreen(dpy), attribs)))
Xt AppError (app, "no suitable RGB visual");

gl xwi dget = Xt VaCr eat eManagedW dget (" gl xwi dget",
gl wWDr awi ngAr eaW dget Cl ass, frane, G.wN\vi sual I nfo,
vi sinfo, NULL);
Xt AddCal | back(gl xwi dget, G.wNexposeCal | back, expose, NULL);
Xt AddCal | back(gl xwi dget, G.wN\resi zeCal | back, resize, NULL);
Xt AddCal | back(gl xwi dget, GLwN nput Cal | back, input, NULL);
Xt Real i zeW dget (t opl evel) ;

gl xcont ext = gl XCr eat eCont ext (dpy, visinfo, 0, GL_TRUE);
GLwDr awi ngAr eaMakeCur r ent (gl xwi dget, gl xcontext);

Xt AppMai nLoop(app);

Looking at the Example Program

As the example program illustrates, integrating OpenGL drawing routines with a simple
IRIS IM program involves only a few steps. Except for window creation and event

007-2392-003 19

2: OpenGL and X: Getting Started

Opening the X Display

20

handling, these steps are actually independent of whether the program uses Xt and Motif
or Xlib.

The rest of this chapter looks at each step. Each step is described in a separate section:

* “Opening the X Display”

* “Selecting a Visual”

* “Creating a Rendering Context”

¢ “Creating the Window” (described with program examples in “Drawing-Area
Widget Setup and Creation” on page 31 and “Creating a Colormap and a Window”
on page 45)

¢ “Binding the Context to the Window”
* “Mapping the Window”
Note that event handling, which is different depending on whether you use Xlib or

Motif, is described in “Input Handling With Widgets and Xt” on page 37 and, for Xlib
programming, “Xlib Event Handling” on page 48.

Before making any GLX (or OpenGL) calls, a program must open a display (required)
and should find out whether the X server supports GLX (optional).

To open a display, use XOpenDisplay() if you are programming with Xlib, or
XtOpenApplication() if you are working with widgets as in Example 2-1 above.
XtOpenApplication() actually opens the display and performs some additional setup:

¢ Initializing Xt

* Opening an X server connection

* Creating an X context (not a GLX context) for the application
¢ Creating an application shell widget

* Processing command-line options

* Registering fallback resources

It is recommend (but not required) that you find out whether the X server supports GLX
by calling gIXQueryExtension().

007-2392-003

Integrating Your OpenGL Program With IRIS IM

Selecting a Visual

007-2392-003

Bool gl XQueryExtension (Display *dpy, int *errorBase, int *eventBase)

In most cases, NULL is appropriate for both errorBase and eventBase. See the
gl XQuer yExt ensi on man page for more information.

Note: This call is not required (and therefore not part of mot i f / si npl est . c), because
glXChooseVisual() simply fails if GLX is not supported. It is included here because it is
recommended for the sake of portability.

If gIXQueryExtension() succeeds, use glXQuery Version() to find which version of GLX
is being used; an older version of the extension may not be able to do everything your
version can do.The following pseudo code demonstrates checking for the version
number:

gl XQuer yVer si on(dpy, &major, &minor),;

if (((mjor == 1) && (mnor == 0)){
/*assume GLX 1.0, avoid GLX 1.1 functionality*/
}

el se{
/*can use GLX 1.1 functionality*/
}

}

GLX 1.3 is supported on all current Silicon Graphics platforms under IRIX 6.5 and Linux.
In addition to providing a few new functions and a mechanism for using extensions
(introduced in GLX 1.1), GLX 1.3 promoted the SGIX_fbconfig, SGIX_pbuffer, and
SGIX_make_current_read GLX extensions to become standard parts of the core 1.3 API.

A visual determines how pixel values are mapped to the screen. The display mode of
your OpenGL program (RGBA or color index) determines which X visuals are suitable.
To find a visual with the attributes you want, call gIXChooseVisual() with the desired
parameters. The following is the function’s format:

XVi sual | nf o* gl XChooseVi sual (Di splay *dpy, int screen, int *attribList)

¢ The first two parameters specify the display and screen. The display was earlier
opened with XtOpenApplication() or XOpenDisplay(). Typically, you specify the
default screen that is returned by the DefaultScreen() macro.

21

2: OpenGL and X: Getting Started

22

* The third parameter is a list of the attributes you want your visual to have, specified
as an array of integers with the special value None as the final element in the array.
Attributes can specify the following;:

— Whether to use RGBA or color-index mode (depending on whether GLX_RGBA
is Tr ue or Fal se)

— Whether to use double-buffering or not (depending on the value of
GLX_DOUBLEBUFFER)

— How deep the depth buffer should be (depending on the value of
GLX_DEPTH_SI ZE)

In Example 2-1 on page 17, the only attribute specified is an RGB display:
static int attribs[] = { GLX_RGBA, None};

The visual returned by gIXChooseVisual() is always a visual that supports OpenGL. It
is guaranteed to have Boolean attributes matching those specified and integer attributes
with values at least as large as those specified. For detailed information, see the

gl XChooseVi sual man page.

Note: Be aware that Xlib provides these three different but related visual data types.
glXChooseVisual() actually returns an XVi sual | nf o*, which is a different entity from
avi sual * oravisual ID. XCreateWindow(), on the other hand, requires a vi sual *,not
an XVi sual | nf o*.

The framebuffer capabilities and other attributes of a window are determined statically
by the visual used to create it. For example, to change a window from single-buffer to
double-buffer, you have to switch to a different window created with a different visual.

Note: In general, ask for one bit of red, green, and blue to get maximum color resolution.
Zero matches to the smallest available color resolution.

Instead of calling gIXChooseVisual(), you can also choose a visual as follows:

¢ Ask the X server for a list of all visuals using XGetVisualInfo() and then call
g1XGetConfig() to query the attributes of the visuals. Be sure to use a visual for
which the attribute GLX_USE_Q is Tr ue.

007-2392-003

Integrating Your OpenGL Program With IRIS IM

¢ If you have decided to use IRIS IM, call XtCreateManagedWidget(), provide
GLwDr awi ngAr eaW dget as the parent, and let the widget choose the visual for
you.

GLX 1.3 allows you to create and choose a gIXFBConlfig construct, which packages GLX
drawable information, for use instead of a visual.

Creating a Rendering Context

Creating the Window

007-2392-003

Creating a rendering context is the application’s responsibility. Even if you choose to use
IRIS IM, the widget does no context management. Therefore, before you can draw
anything, you must create a rendering context for OpenGL using gIXCreateContext(),
which has the following function format:

GLXCont ext gl XCreat eCont ext (Di spl ay *dpy, XVisuallnfo *uis,
GLXCont ext shareList, Bool direct)

The following describes the arguments:

dpy The display you have already opened.

vis The visual you have chosen with gIXChooseVisual().

sharedList A context for sharing display lists or NULL to not share display lists.
direct Direct or indirect rendering. For best performance, always request direct

rendering. The OpenGL implementation automatically switches to
indirect rendering when direct rendering is not possible (for example,
when rendering remotely). See “Direct and Indirect Rendering” on
page 98.

After picking a visual and creating a context, you need to create a drawable (window or
pixmap) that uses the chosen visual. How you create the drawable depends on whether
you use Xlib or Motif calls and is described, with program examples, in “Drawing-Area
Widget Setup and Creation” on page 31 and “Creating a Colormap and a Window” on
page 45.

23

2: OpenGL and X: Getting Started

Binding the Context to the Window

Mapping the Window

24

If you are working with Xlib, bind the context to the window by calling
glXMakeCurrent(). Example 3-2 on page 43 is a complete Xlib program and illustrates
how the function is used.

If you are working with widgets and have an OpenGL context and a window, bind them
together with GLwDrawingAreaMakeCurrent(). This IRIS IM function is a front end to
glXMakeCurrent(); it allows you to bind the context to the window without having to
know the drawable ID and display.

If GLwDrawingAreaMakeCurrent() is successful, subsequent OpenGL calls use the
new context to draw on the given drawable. The call fails if the context and the drawable
are mismatched—that is, if they were created with different visuals.

Note: Do not make OpenGL calls until the context and window have been bound (made
current).

For each thread of execution, only one context can be bound to a single window or
pixmap.

Note: GLX 1.3 allows you to attach separate read and write drawables to a GLX context.
For details, see section “SGI_make_current_read—The Make Current Read Extension”
on page 114.

A window can become visible only if it is mapped and all its parent windows are
mapped. Note that mapping the window is not directly related to binding it to an
OpenGL rendering context, but both need to happen if you want to display an OpenGL
application.

Mapping the window or realizing the widget is not synchronous with the call that
performs the action. When a window is mapped, the window manager makes it visible
if no other actions are specified to happen before. For example, some window managers
display just an outline of the window instead of the window itself, letting the user
position the window. When the user clicks, the window becomes visible.

007-2392-003

Integrating OpenGL Programs With X—Summary

If a window is mapped but is not yet visible, you may already have set OpenGL state; for
example, you may load textures or set colors, but rendering to the window is discarded
(this includes rendering to a back buffer if you are doing double-buffering). You need to
get an Expose event—if using Xlib—or the expose() callback before the window is
guaranteed to be visible on the screen. The init() callback does not guarantee that the
window is visible, only that it exists.

How you map the window on the screen depends on whether you have chosen to create
an X window from scratch or to use a widget:

* Tomap a window created with Xlib functions, call XMapWindow().

¢ To map the window created as a widget, use XtRealizeWidget() and
XtCreateManagedChild(), which perform some additional setup as well. For more
information, see the Xt Real i zeW dget and Xt Cr eat eManagedChi | d man

pages.

Integrating OpenGL Programs With X—Summary

007-2392-003

Table 2-2 summarizes the steps that are needed to integrate an OpenGL program with
the X Window System. While some functions differ in IRIS IM and Xlib, note that the GLX
functions are usually common.

Table 2-2 Integrating OpenGL and X

Step Using IRIS IM Using Xlib
“Opening the X Display” XtOpenApplication XOpenDisplay
Making sure GLX is supported glXQueryExtension gIXQueryExtension
(optional) g1XQueryVersion gIXQueryVersion
“Selecting a Visual” glXChooseVisual gIXChooseVisual
“Creating a Rendering Context” glXCreateContext glXCreateContext

“Creating the Window” (see Chapter 3, XtVaCreateManagedWidget, with XCreateColormap
“OpenGL and X: Examples”) glwMDrawingAreaWidgetClass xCreateWindow

“Binding the Context to the Window” GLwDrawingAreaMakeCurrent glXMakeCurrent

“Mapping the Window” XtRealizeWidget XMapWindow

25

2: OpenGL and X: Getting Started

Additional example programs are provided in Chapter 3, “OpenGL and X: Examples.”

Compiling With OpenGL and Related Libraries

This section lists compiler options for individual libraries then lists groups or libraries
typically used together.

Link Lines for Individual Libraries

This sections lists link lines and the libraries that will be linked.

-1 GL
- X11
—| Xext

-l LU
—I Xmu
—I Xt
—I Xm
-1 GLw
= Xi

—-li mage

26

OpenGL and GLX routines.
Xlib, X client library for X11 protocol generation.

The X Extension library provides infrastructure for X client-side libraries
(like OpenGL).

OpenGL utility library.

Miscellaneous utilities library (includes colormap utilities).

X toolkit library, infrastructure for widgets.

Motif widget set library.

OpenGL widgets, Motif and core OpenGL drawing-area widgets.
X input extension library for using extra input devices.

RGB file image reading and writing routines.

The i mage library is only supported under IRIX. Open source
alternatives like | i bj peg and | i bpnmprovide image I/O functions
and are better alternatives when writing code that must also run on
Linux and other platforms.

Math library. Needed if your OpenGL program uses trigonometric or
other special math routines.

007-2392-003

Compiling With OpenGL and Related Libraries

Link Lines for Groups of Libraries

To use minimal OpenGL or additional libraries, use the following link lines:

Minimal OpenGL -l GL - Xext —I X11
With GLU -1 GLU

With Xmu —Xmu

With Motif and OpenGL widget - GLw—I Xm—I| Xt

007-2392-003 27

Chapter 3

Using Widgets

007-2392-003

OpenGL and X: Examples

Some aspects of integrating your OpenGL program with the X Window System depend
on whether you choose IRIS IM widgets or Xlib. This chapter’s main focus is to help you
with those aspects by looking at example programs:

e “Using Widgets” on page 29 illustrates how to create a window using IRIS IM
drawing-area widgets and how to handle input and other events using callbacks.

e “Using Xlib” on page 42 illustrates how to create a colormap and a window for
OpenGL drawing. It also provides a brief discussion of event handling with Xlib.

This chapter also briefly describes fonts: “Using Fonts and Strings” on page 51 describes
a simple example of using fonts with the gIXUseFont() function.

Note: All integration aspects that are not dependent on your choice of Xlib or Motif are
described in “Integrating Your OpenGL Program With IRIS IM” on page 16 in Chapter 2,
“OpenGL and X: Getting Started.”

This section explains how to use IRIS IM widgets for creating windows, handling input,
and performing other activities that the OpenGL part of a program does not manage. The
section desribes the following topics:

e “About OpenGL Drawing-Area Widgets”

e “Drawing-Area Widget Setup and Creation”
¢ “Input Handling With Widgets and Xt”

e “Widget Troubleshooting”

29

3: OpenGL and X: Examples

About OpenGL Drawing-Area Widgets

30

Using an OpenGL drawing-area widget facilitates rendering OpenGL into an X window.
The widget does the following:

* Provides an environment for OpenGL rendering, including a visual and a
colormap.

e Provides a set of callback routines for redrawing, resizing, input, and initialization
(see “Using Drawing-Area Widget Callbacks” on page 34).

OpenGL provides two drawing-area widgets: GLwMDrawingArea—note the M in the
name—for use with IRIS IM (or with OSF/Motif), and GLwDrawingArea for use with
any other widget sets. Both drawing-area widgets provide the following two
convenience functions:

¢ GLwMDrawingAreaMakeCurrent() and GLwDrawingAreaMakeCurrent()
* GLwMDrawingAreaSwapBuffers() and GLwDrawingAreaSwapBuffers()

The functions allow you to supply a widget instead of the display and window required
by the corresponding GLX functions glXMakeCurrent() and gIXSwapBuffers().

Because the two widgets are nearly identical and because IRIS IM is available on all
Silicon Graphics systems, this chapter uses only the IRIS IM version, even though most
of the information also applies to the general version. Here are some of the
distinguishing characteristics of GLwMDrawingArea:

¢ GLwMDrawingArea understands IRIS IM keyboard traversal (moving around
widgets with keyboard entries rather than a mouse), although keyboard traversal is
turned off by default.

e GLwMDrawingArea is a subclass of the IRIS IM XmPrimitive widget, not a direct
subclass of the Xt Core widget. Therefore, it has various defaults such as
background and foreground colors. GLwMDrawingArea is not derived from the
standard Motif drawing-area widget class. For more information, see O’'Reilly
Volume One or the man pages for Cor e and for XnPri m ti ve.

Note that the default background colors provided by the widget are used during X
rendering, not during OpenGL rendering. Therefore, it is not advisable to rely on
default background rendering from the widget. Even when the background colors
are not used directly, XtGetValues() can be used to query them to allow the
graphics to blend better with the program.

007-2392-003

Using Widgets

* GLwMDrawingArea has the creation function GLwCreateMDrawingArea() in the
style of IRIS IM. You can also create the widget directly through Xt.

For information specific to GLwDrawingArea, see the manpage.

Drawing-Area Widget Setup and Creation

Most of the steps for writing a program that uses a GLwMDrawingArea widget are
already described in “Integrating Your OpenGL Program With IRIS IM” on page 16. This
section explains how to initialize IRIS IM and how to create the drawing-area widget
using code fragments from the not i f/ si npl est . ¢ example program (Example 2-1 on
page 17). This section has the following topics:

e “Setting Up Fallback Resources”

e “Creating the Widgets”

e “Choosing the Visual for the Drawing-Area Widget”

e “Creating Multiple Widgets With Identical Characteristics”
e “Using Drawing-Area Widget Callbacks”

Setting Up Fallback Resources

This section briefly explains how to work with resources in the context of an OpenGL
program. In Xt, resources provide widget properties, allowing you to customize how
your widgets will look. Note that the term “resource” used here refers to window
properties stored by a resource manager in a resource database, not to the X server data
structures for windows, pixmaps, and context described earlier.

Fallback resources inside a program are used when a widget is created and the
application cannot open the class resource file when it calls XtOpenApplication() to
open the connection to the X server. (In the code fragment below, the first two resources
are specific to Silicon Graphics and give the application a Silicon Graphics look and feel.)

static String fallbackResources[] = {
"*useSchenes: all",”*sgi node: True”,
"*gl xwi dget *wi dt h: 300",
"*gl xwi dget *hei ght: 300",
"*franme*shadowType: SHADOW I N',
NULL} ;

007-2392-003 31

3: OpenGL and X: Examples

Creating the Widgets

32

Note: Applications ship with resource files installed in a resource directory (in
lusr/1ib/X11/ app- def aul t s). If you do install such a file automatically with your
application, there is no need to duplicate the resources in your program.

Widgets always exist in a hierarchy with each widget contributing to what is visible on
screen. There is always a top-level widget and almost always a container widget (for
example, form or frame). In addition, you may decide to add buttons or scroll bars, which
are also part of the IRIS IM widget set. Therefore, creating your drawing surface consists
of the following two steps:

1.

Create parent widgets, namely the top-level widget and a container widget. The
program ot i f/ si npl est. ¢, Example 2-1 on page 17, uses a Form container
widget and a Frame widget to draw the 3D box:

topl evel = Xt QpenApplication(&app, "sinplest”, NULL, 0, &argc, argv,
fal | backResour ces, applicationShel | Wdgetd ass, NULL, 0);

form = XnCreateForn{toplevel, "forn, args, n);
Xt ManageChi | d(form;

frame = XnCreateFrane (form "frane", args, n);

For more information, see the man pages for XmForm and XmFrame.

2. Create the GLwMDrawingArea widget itself in either of two ways:

¢ Call GLwCreateMDrawingArea(). You can specify each attribute as an
individual resource or pass in an XVisuallnfo pointer obtained with
glXChooseVisual(). This is discussed in more detail in the next section,
“Choosing the Visual for the Drawing-Area Widget.”
n=20
XSet Arg(args[n] G.wi\vi sual i nfo, (XtArgVal)visinfo);
n++;
gl w = GLwCr eat eMDr awi ngArea(frane, "glw dget", args, n);

e (Call XtVaCreateManagedWidget() and pass it a pointer to the visual you have
chosen. In that case, use glwMDrawingAreaWidgetClass as the parent and
GLwNvisuallnfo to specify the pointer. The following is an example from
nmoti f/sinpl est. c:

007-2392-003

Using Widgets

gl xwi dget = Xt VaCr eat eManagedW dget
("gl xwi dget", gl wiWDr awi ngAr eaW dget Cl ass, frane,
GLwi\vi sual I nfo, visinfo, NULL);

Note: Creating the widget does not actually create the window. An application must
wait until after it has realized the widget before performing any OpenGL operations to
the window, or use the ginit() callback to indicate when the window has been created.

Note that unlike most other Motif user interface widgets, the OpenGL widget explicitly
sets the visual. Once a visual is set and the widget is realized, the visual can no longer be
changed.

Choosing the Visual for the Drawing-Area Widget

When calling the widget creation function,there are three ways of configuring the
GLwMDrawingArea widget (all done through resources):

¢ Pass in separate resources for each attribute (for example GLwNrgba,
GLwNdoublebuffer).

¢ Pass in an attribute list of the type used by gIXChooseVisual() using the
GLwNattribList resource.

* Select the visual yourself using gIXChooseVisual() and pass in the returned
XVisuallnfo* as the GLwNvisuallnfo resource.

Appropriate error handling is critical to a robust program. If you wish to provide error
handling, call gIXChooseVisual(), as all the example programs do (although for the sake
of brevity, none of the examples actually provides error handling). If you provide the
resources and let the widget choose the visual, the widget just prints an error message
and quits. Note that a certain visual may be supported on one system but not on another.

The advantage of using a list of resources is that you can override them with the
app- def aul t s file.

Creating Multiple Widgets With Identical Characteristics

Most applications have one context per widget, though sharing is possible. If you want
to use multiple widgets with the same configuration, you must use the same visual for

007-2392-003 33

3: OpenGL and X: Examples

each widget. Windows with different visuals cannot share contexts. To share contexts, do
the following:

1. Extract the GLwNvisuallnfo resource from the first widget you create.

2. Use that visual in the creation of subsequent widgets.

Using Drawing-Area Widget Callbacks

The GLwMDrawingArea widget provides callbacks for redrawing, resizing, input, and
initialization, as well as the standard XmNdestroyCallback provided by all widgets.

Each callback must first be defined and then added to the widget. In some cases, this is
quite simple, as, for example, the resize callback from not i f/ si npl est . c:

static void

resize(Wdget w, XtPointer client_data, XtPointer call) {
GLwDr awi ngAr eaCal | backStruct *cal | _dat a;
call _data = (G.wDr awi ngAreaCal | backStruct *) call;
gl XwWai t X();

gl Viewport (0, 0, call_data->wi dth, call_data->height);

Note: The X and OpenGL command streams are asynchronous, meaning that the order
in which OpenGL and X commands complete is not strictly defined. In a few cases, it is
important to explicitly synchronize X and OpenGL command completion. For example,
if an X call is used to resize a window within a widget program, call gIXWaitX() before
calling glViewport() to ensure that the window resize operation is complete.

Other cases are slightly more complex, such as the input callback from
nmot i f/ si npl est . ¢, which exits when the user presses the Esc key:

static void
i nput (Wdget w, XtPointer client_data, XtPointer call) {
char buffer[31];
KeySym keysym
XEvent *event = ((CGLwDraw ngAreaCal | backStruct *)call) ->event;

switch(event->type) {

case KeyRel ease:
XLookupStri ng(&vent - >xkey, buffer, 30, &eysym NULL);
swi tch(keysym {

34 007-2392-003

Using Widgets

007-2392-003

case XK _Escape :
exi t (EXI T_SUCCESS) ;

br eak;
defaul t: break;
}
br eak;

}

To add callbacks to a widget, use XtAddCallback(); for example:

Xt AddCal | back(gl xwi dget, G.wNexposeCal | back, expose, NULL);
Xt AddCal | back(gl xwi dget, G.wN\resi zeCal | back, resize, NULL);
Xt AddCal | back(gl xwi dget, GLwNi nput Cal | back, input, NULL);

Each callback must ensure that the thread is made current with the correct context to the
window associated with the widget generating the callback. You can do this by calling
either GLwMDrawingAreaMakeCurrent() or glXMakeCurrent().

If you are using only one GLwMDrawingArea, you can call a routine to make the widget
“current” just once after initializing the widget. However, if you are using more than one
GLwMDrawingArea or rendering context, you need to make the correct context and the
window current for each callback (see “Binding the Context to the Window” on page 24).

The following callbacks are available:
Callback Description

GLwNginitCallback() Specifies the callbacks to be called when the widget is first
realized. You can use this callback to perform OpenGL
initialization, such as creating a context, because no
OpenGL operations can be done before the widget is
realized. The callback reason is GLWCR_G NI T.

Use of this callback is optional. Anything done in this
callback can also be done after the widget hierarchy has
been realized. You can use the callback to keep all the
OpenGL code together, keeping the initialization in the
same file as the widget creation rather than with widget
realization.

Note: If you create a GLwDrawingArea widget as a child
of an already realized widget, it is not possible to add the

35

3: OpenGL and X: Examples

GLwNexposeCallback()

GLwNinputCallback()

GLwNresizeCallback()

36

ginit() callback before the widget is realized because the
widget is immediately realized at creation. In that case,
you should initialize immediately after creating the
widget.

Specifies the callbacks to be called when the widget
receives an Expose event. The callback reason is
GLWCR_EXPCSE. The callback structure also includes
information about the Expose event. Usually the
application should redraw the scene whenever this
callback is called.

Note:An application should not perform any OpenGL
drawing until it receives an expose callback, although it
may set the OpenGL state; for example, it may create
display lists and like items.

Specifies the callbacks to be called when the widget
receives a keyboard or mouse event. The callback
structure includes information about the input event. The
callback reason is GLWCR_| NPUT.

The input callback is a programming convenience; it
provides a convenient way to catch all input events. You
can often create a more modular program, however, by
providing specific actions and translations in the
application rather than using a single catchall callback.
See “Input Handling With Widgets and Xt” on page 37 for
more information.

Specifies the callbacks to be called when the
GLwDrawingArea is resized. The callback reason is
GLWCR_RESI ZE. Normally, programs resize the OpenGL
viewport and possibly reload the OpenGL projection
matrix (see the OpenGL Programming Guide). An expose
callback follows. Avoid performing rendering inside the
resize callback.

007-2392-003

Using Widgets

Input Handling With Widgets and Xt

Background Information

Using the Input Callback

007-2392-003

Using the following topics, this section explains how to perform input handling with
widgets and Xt:

e “Background Information”
e “Using the Input Callback”

e “Using Actions and Translations”

Motif programs are callback-driven. They differ in that respect from IRIS GL programs,
which implement their own event loops to process events. To handle input with a
widget, you can either use the input callback built into the widget or use actions and
translations (Xt-provided mechanisms that map keyboard input into user-provided
routines). Both approaches have advantages:

¢ Input callbacks are usually simpler to write, and they are more unified; all input is
handled by a single routine that can maintain a private state (see “Using the Input
Callback”).

e The actions-and-translations method is more modular, because translations have
one function for each action. Also, with translations the system does the keyboard
parsing so your program does not have to do it. Finally, translations allow the user
to customize the application’s key bindings. See “Using Actions and Translations”
on page 39.

Note: To allow smooth porting to other systems, as well as for easier integration of X and
OpenGL, always separate event handling from the rest of your program.

By default, the input callback is called with every key press and release, with every
mouse button press and release, and whenever the mouse is moved while a mouse
button is pressed. You can change this by providing a different translation table,
although the default setting should be suitable for most applications.

For example, to have the input callback called on all pointer motions, not just on mouse
button presses, add the following to the app- def aul t s file:

37

3: OpenGL and X: Examples

38

*wi dgetname.transl ations : \

<KeyDown>: gl w nput () \n\
<KeyUp>: gl w nput () \n\
<Bt nDown>: gl w nput () \n\
<Bt nUp>: gl w nput () \n\
<Bt nMbt i on>: glw nput () \n\
<Pt r Moved>: gl Wi nput ()

When the callback is passed an X event, the callback interprets the X event and performs
the appropriate action. It is your application’s responsibility to interpret the event—for
example, to convert an X key code into a key symbol and to decide what to do with it.

Example 3-1is from not i f/ nouse. ¢, a double-buffered RGBA program that uses
mouse motion events.

Example 3-1 Motif Program That Handles Mouse Events

static void
i nput (Wdget w, XtPointer client_data, XtPointer call) {

char buffer[31];

KeySym keysym

XEvent *event = ((G.wDraw ngAreaCal | backStruct *) call)->event;
static nmstate, onx, ony, nx, ny;

swi tch(event->type) {
case KeyRel ease:
XLookupStri ng(&event - >xkey, buffer, 30, &eysym NULL);
switch(keysym {
case XK _Escape:
exi t (EXI T_SUCCESS) ;

br eak;
defaul t: break;
}
br eak;
case ButtonPress:
if (event->xbutton.button == Button2) {
nstate | = 2;

nmK = event->xbutton. x;
nmy = event->xbutton.y;
} else if (event->xbutton.button == Buttonl) {
nmstate | = 1;
mx = event->xbutton. X;
ny event - >xbut t on. y;

br eak;

007-2392-003

Using Widgets

case ButtonRel ease:

i f (event->xbutton.button == Button2)
nstate & ~2;

else if (event->xbutton.button == Buttonl)
mstate &= ~1;

br eak;

case MtionNotify:
if (mstate) {
onX = nK;
ony = ny;
nmx = event->xbutton. x;
ny = event->xbutton.y;
updat e_vi ew(nst ate, onx, nx, ony, ny) ;
}

br eak;

Using Actions and Translations

007-2392-003

Actions and translations provide a mechanism for binding a key or mouse event to a
function call. For example, you can structure your program to take the following actions:

* When you press the Esc key, the exit routine quit() is called.
* When you press the left mouse button, rotation occurs.
* When you press f, the program zooms in.

The translations need to be combined with an action task that maps string names like
qui t () toreal function pointers. Below is an example of a translation table:

prograntgl wi dget *t ransl ati ons: #override \n
<Bt n1Down>: start_rotate() \ n\
<Bt n1Up>: stop_rotate() \ n\
<Bt n1Mbti on>: rotate() \ n\
<Key>f: zoom.i n() \ n\
<Key>b: zoom out () \ n\

<KeyUp>osf Cancel : quit()

When you press the left mouse button, the start_rotate() action is called; when it is
released, the stop_rotate() action is called.

The last entry is a little cryptic. It specifies that when the user presses the Esc key, quit()

is called. However, OSF has implemented virtual bindings, which allow the same
programs to work on computers with different keyboards that may be missing various

39

3: OpenGL and X: Examples

Creating Colormaps

keys. If a key has a virtual binding, the virtual binding name must be specified in the
translation. Thus, the example above specifies 0sf Cancel rather than Esc. To use the
above translation in a program that is not based on IRIS IM or OSF/Motif, replace
KeyUp+osf Cancel with KeyUp+Esc.

The translation is only half of what it takes to set up this binding. Although the
translation table above contains apparent function names, they are really action names.
Your program must also create an action table to bind the action names to actual
functions in the program.

For more information on actions and translations, see O’Reilly, X Toolkit Intrinsics
Programming Manual (Volume Four), most notably Chapter 4, “An Example
Application,” and Chapter 8, “Events, Translations, and Accelerators.” You can view this
manual on the SGI Technical Publications Library.

By default, a widget creates a colormap automatically. For many programes, this is
sufficient. However, it is occasionally necessary to create a colormap explicitly, especially
when using color index mode. See “Creating a Colormap and a Window” on page 45 and
“Using Colormaps” on page 83 for more information.

Widget Troubleshooting

This section provides troubleshooting information by describing some common pitfalls
when working with widgets.

Note: Additional debugging information is provided in “General Tips for Debugging
Graphics Programs” on page 404.

Keyboard Input Disappears

40

A common problem in IRIS IM programs is that keyboard input disappears. This is
caused by how IRIS IM handles keyboard focus. When a widget hierarchy has keyboard
focus, only one component of the hierarchy receives the keyboard events. The keyboard
input might be going to the wrong widget. The following are two solutions to this
problem:

007-2392-003

Using Widgets

¢ The easiest solution is to set the following resource for the application:
keyboar dFocusPol i cy: PO NTER

This overrides the default traversal method (explicit traversal) where you can select
widgets with keyboard keys rather than the mouse so that input focus follows the
pointer only. The disadvantages of this method are that it eliminates explicit
traversal for users who prefer it and it forces a nondefault model.

* A better solution is to do the following:

1. Set the following resource:
*widget. traver sal On: TRUE

The field widget is the name of the widget.

2. Whenever mouse button 1 is pressed in the widget, call the following function:

XnPr ocessTr aver sal (wi dget, XnmrRAVERSE CURRENT) ;

Turning process traversal on causes the window to respond to traversal (it
normally does not), and calling XmProcessTraversal() actually traverses into
the widget when appropriate.

Inheritance Issues

In Xt, shell widgets include top-level windows, popup windows, and menus. Shell
widgets inherit their colormap and pixel depth from their parent widget and inherit their
visual from the parent window. If the visual does not match the colormap and depth, this
leads to a BadMat ch X pr ot ocol error.

In a typical IRIS IM program, everything runs in the default visual, and the inheritance
from two different places does not cause problems. However, when a program uses both
OpenGL and IRIS 1M, it requires multiple visuals, and you must be careful. Whenever
you create a shell widget as a child of a widget in a non-default visual, specify pixel
depth, colormap, and a visual for that widget explicitly. This happens with menus or
popup windows that are children of OpenGL widgets. See “Using Popup Menus With
the GLwMDrawingArea Widget” on page 69.

007-2392-003 41

3: OpenGL and X: Examples

Using Xlib

42

If you do get a bad match error, follow these steps to determine its cause:

1. Run the application under a C debugger, such as dbx or cvd (the Case Vision
debugger) with the —sync flag.

The —sync flag tells Xt to call XSynchronize(), forcing all calls to be made
synchronously. If your program is not based on Xt, or if you are not using standard
argument parsing, call XSynchronize(display, TRUE) directly inside your program.

2. Using the debugger, set a breakpoint in exit() and run the program.

When the program fails, you have a stack trace you can use to determine what Xlib
routine caused the error.

Note: If you do not use the —sync option, the stack dump on failure is meaningless: X
batches multiple requests and the error is delayed.

This section explains how to use Xlib for creating windows, handling input, and
performing other activities that the OpenGL part of a program does not manage. This
section has the following topics:

¢ “Simple Xlib Example Program” on page 43
¢ “Creating a Colormap and a Window” on page 45

¢ “Xlib Event Handling” on page 48

007-2392-003

Using Xlib

Simple Xlib Example Program

Because the complete example program in Chapter 2, “OpenGL and X: Getting Started”
used widgets, this section starts with a complete annotated example program for Xlib so
that you have both available as needed. Example 3-2 lists the complete

Xl i b/ si npl est . ¢ example program.

Example 3-2 Simple Xlib Example Program

/*

* sinplest - sinple single buffered RGBA xlib program
*/

[* conmpile: cc -o sinplest sinplest.c -1G& -IX11 */

#include <@/ gl x. h>

#i ncl ude <X11/keysym h>
#i ncl ude <stdlib. h>

#i ncl ude <stdi o. h>

static int attributeList[] = { GLX_RGBA, None };

static void
draw_scene(void) {
gl earColor(0.5 0.5, 0.5 1.0);
gl C ear (GL_COLOR_BUFFER_BI T);
gl Col or 3f(1.0,0.0,0.0);
gl Rectf(-.5,-.5,.5,.5);
gl Col or3f(0.0,1.0,0.0);
gl Rectf(-.4,-.4,.4,.4);
gl Col or 3f (0.0,0.0,1.0);
gl Rectf(-.3,-.3,.3,.3);
gl Flush();
}

static void

process_i nput (Di spl ay *dpy) {
XEvent event;
Bool redraw = 0;

do {
char buf[31];
KeySym keysym

XNext Event (dpy, &event);

007-2392-003 43

3: OpenGL and X: Examples

switch(event.type) {
case Expose:
redraw = 1;
br eak;
case ConfigureNotify:
gl Viewport (0, 0, event.xconfigure.w dth,
event . xconfi gure. hei ght);
redraw = 1;
br eak;
case KeyPress:
(voi d) XLookupString(&event.xkey, buf, sizeof(buf),
&keysym NULL);
switch (keysyn) {

case XK _Escape:
exi t (EXI T_SUCCESS) ;
defaul t:
br eak;
}
defaul t:
br eak;
}
} while (XPendi ng(dpy));
if (redraw) draw scene();

}

static void
error(const char *prog, const char *msg) ({
fprintf(stderr, “%: %\n”, prog, nsg);
exit (EXI T_FAI LURE) ;
J
i nt
mai n(int argc, char **argv) {
Di splay *dpy;
XVi sual I nfo *vi;
XSet W ndowAt t ri but es swa;
W ndow Wi n;
GA_XCont ext cx;
/* get a connection */
dpy = XOpenbi spl ay(0);
if ('dpy) error(argv[0], “can’t open display”);

/* get an appropriate visual */
vi = gl XChooseVi sual (dpy, Defaul t Screen(dpy), attributeList);

44 007-2392-003

Using Xlib

if ('vi) error(argv[0], “no suitable visual”);

/* create a GLX context */

cx = gl XCreat eCont ext (dpy, vi, 0, G_TRUE);

/* create a colormap */

swa. col ormap = XCreat eCol or map(dpy, Root Wndow dpy, vi->screen),

vi ->vi sual, AllocNone);

/* create a wi ndow */

swa. bor der _pi xel = 0;

swa. event _mask = ExposureMask | StructureNotifyMask | KeyPressMask;

wi n = XCreat eW ndow(dpy, Root W ndow(dpy, vi->screen), 0, 0, 300,
300, 0, vi->depth, InputCutput, vi->visual,
CVBor der Pi xel | CWCol or map| CWEvent Mask, &swa) ;

XSt oreNane(dpy, win, “sinplest”);

XMapW ndow(dpy, win);

/* connect the context to the w ndow */
gl XMakeCurrent (dpy, wn, cx);

for(;;) process_input(dpy);

Creating a Colormap and a Window

007-2392-003

A colormap determines the mapping of pixel values in the framebuffer to color values on
the screen. Colormaps are created with respect to a specific visual.

When you create a window, you must supply a colormap for it. The visual associated
with a colormap must match the visual of the window using the colormap. Most X
programs use the default colormap because most X programs use the default visual. The
easiest way to obtain the colormap for a particular visual is to call XCreateColormap():

Col ormap XCreateCol ormap (Display *display, Wndow w, Visual *visual,
i nt alloc)

Here’s how Example 3-2 calls XCreateColormap() in the following manner:

swa. col ormap = XCreat eCol or map(dpy, Root Wndow(dpy, vi->screen),
vi ->visual, AllocNone);

The parameters specify the display, window, visual, and the number of colormap entries
to allocate. The alloc parameter can have the special value Al | ocAl | or Al | ocNone.

45

3: OpenGL and X: Examples

46

While it is easy to simply call XCreateColormap(), you are encouraged to share
colormaps. See Example 4-2 on page 85 for details on how to do this.

Note that you cannot use Al | ocAl | if the colormap corresponds to a visual that has
transparent pixels, because the colormap cell that corresponds to the transparent pixel
cannot be allocated with AllocAll. For more information about colormaps, see “Using
Colormaps” on page 83. For information on overlays, which use a visual with a
transparent pixel, see “Using Overlays” on page 62.

After creating a colormap, you can create a window using XCreateWindow(). Before
calling XCreateWindow(), set the attributes you want in the attributes variable. When
you make the call, indicate valuemask by OR-ing the symbolic constants that specify the
attributes you have set. Here’s how Example 3-2 does it in the following way:

swa. backgr ound_pi xmap = None;

swa. bor der _pi xel = 0;

swa. event _mask = ExposureMask | StructureNotifyMask | KeyPressMask;
wi n = XCreat eW ndow(

dpy, / *di spl ay*/
Root W ndow dpy, Vi ->screen), [*parent */

0, /*x coordi nat e*/
0, /*y coordi nat e*/
300, /*wi dt h*/

300, / *hei ght */

0, / *border wi dth*/
vi - >dept h, [*dept h*/

| nput Qut put, [*cl ass*/

Vi - >vi sual , [*vi sual */

CWBackPi xmap| CVBor der Pi xel | CA\Col or map| CV\Event Mask,
/ *val uemask*/
&swa /*attributes*/

);
Most of the parameters are self-explanatory. However, the following three are
noteworthy:

class Indicates whether the window is | nput Onl y or | nput Cut put .

Not e:l nput Onl y windows cannot be used with GLX contexts.
valuemask Specifies which window attributes are provided by the call.

attributes Specifies the settings for the window attributes. The
XSetWindowAttributes structure contains a field for each of the
allowable attributes.

007-2392-003

Using Xlib

Installing the Colormap

007-2392-003

Note: If the window’s visual or colormap does not match the visual or colormap of the
window’s parent, you must specify a border pixel to avoid a BadMat ch X pr ot ocol
error. Most windows specify a border zero pixels wide. So, the value of the border pixel
is unimportant; zero works fine.

If the window you are creating is a top-level window (meaning it was created as a child
of the root window), consider calling XSetWMProperties() to set the window’s
properties after you have created it.

voi d XSet WWPr operties(Display *display, W ndow w,
XText Property *window_name, XTextProperty *icon_name,
char **argu, int argce, XSizeH nts *mnormal_hints,
XWWHI nt's *wm_hints, Xd assH nt *class_hints)

XSetWMProperties() provides a convenient interface for setting a variety of important
window properties at once. It merely calls a series of other property-setting functions,
passing along the values you pass in. For more information, see the man page.

Note that two useful properties are the window name and the icon name. The example
program calls XStoreName() instead to set the window and icon names.

Applications should generally rely on the window manager to install the colormaps
instead of calling XInstallColormap() directly. The window manager automatically
installs the appropriate colormaps for a window whenever that window gets keyboard
focus. Popup overlay menus are an exception.

By default, the window manager looks at the top-level window of a window hierarchy
and installs that colormap when the window gets keyboard focus. For a typical X-based
application, this is sufficient, but an application based on OpenGL typically uses
multiple colormaps: the top-level window uses the default X colormap, and the Open GL
window uses a colormap suitable for OpenGL.

To address this multiple colormap issue, call the function XSetWMColormapWindows()
to pass the display, the top-level window;, a list of windows whose colormaps should be

installed, and the number of windows in the list.

The list of windows should include one window for each colormap, including the
top-level window’s colormap (normally represented by the top-level window). For a

47

3: OpenGL and X: Examples

Xlib Event Handling

Handling Mouse Events

48

typical OpenGL program that does not use overlays, the list contains two windows: the
OpenGL window and the top-level window. The top-level window should normally be
last in the list. Xt programs may use XtSetWMColormapWindows() instead of
XSetWMColormapWindows(), which uses widgets instead of windows.

Note: The program must call XSetWMColormapWindows() even if it is using a
TrueColor visual. Some hardware simulates TrueColor through the use of a colormap.
Even though the application does not interact with the colormap directly, it is still there.
If you do not call XSetWMColormapWindows(), your program may run correctly only
some of the time and only on some systems.

Use the xpr op program to determine whether XSetWMColormapWindows() was
called. Click the window and look for the WM_COLORVAP_W NDOWS property. This
should be a list of the windows. The last one should be the top-level window. Use
XW ni nf o, providing the ID of the window as an argument, to determine what
colormap the specified window is using and whether that colormap is installed.

This section describes different kinds of user input and explains how you can use Xlib to
perform them. OpenGL programs running under the X Window System are responsible
for responding to events sent by the X server. Examples of X events are Expose,
ButtonPress, ConfigureNotify, and so on.

Note: In addition to mouse devices, Silicon Graphics systems support various other
input devices (for example, spaceballs). You can integrate them with your OpenGL
program using the X input extension. For more information, see the X Input Extension
Library Specification available on the SGI Technical Publications Library.

To handle mouse events, your program first has to request them and then use them in the
main (event handling) loop. Here is an example code fragment from Xl i b/ nouse. ¢, an
Xlib program that uses mouse motion events. Example 3-3 shows how the mouse
processing, along with the other event processing, is defined.

007-2392-003

Using Xlib

007-2392-003

Example 3-3 Event Handling With Xlib

static int
process_i nput (Di spl ay *dpy) {
XEvent event;
Bool redraw = 0;
static int nstate, onx, ony, nx,

do {
char buf[31];
KeySym keysym
XNext Event (dpy, &event);
switch(event.type) {
case Expose:
redraw = 1;
br eak;
case ConfigureNotify:

ny;

gl Vi ewport (0, 0, event.xconfigure.w dth,
event . xconfi gure. hei ght);

redraw = 1;
br eak;
case KeyPress:

(void) XLookupString(&event.xkey, buf, sizeof (buf),

&keysym NULL);
switch (keysyn) {
case XK _Escape:
exi t (EXI T_SUCCESS) ;
defaul t:
br eak;
}
case ButtonPress:
if (event.xbutton. button
nmstate | = 2;
mx = event. xbutton. x;
nmy = event.xbutton.y;
} else if (event.xbutton.
nstate | = 1;
nk = event. xbutton. x;
ny event. xbutton.y;

}

br eak;
case ButtonRel ease:

== Button2) {

button == Buttonl) {

if (event.xbutton.button == Button2)
nstate &= ~2;
else if (event.xbutton.button == Buttonl)

49

3: OpenGL and X: Examples

Exposing a Window

50

nstate &= ~1;
br eak;
case MdtionNotify:
if (mstate) {
onX = nx;
ony = ny;
nmK = event. xbutton. x;
my = event.xbutton.y;
updat e_vi ew(st at e, onx, nx, ony, ny) ;
redraw = 1;
}
br eak;
defaul t:
br eak;

}
} while (XPending(dpy));
return redraw,

}

The process_input() function is then used by the main loop:

while (1) {
i f (process_input(dpy)) {
draw_scene();

When a user selects a window that has been completely or partly covered, the X server
generates one or more Expose events. It is difficult to determine exactly what was drawn
in the now-exposed region and redraw only that portion of the window. Instead,
OpenGL programs usually just redraw the entire window.

If redrawing is not an acceptable solution, the OpenGL program can do all your
rendering into a GLXPixmap instead of directly to the window; then, any time the
program needs to redraw the window, you can simply copy the GLXPixmap’s contents
into the window using XCopyArea(). For more information, see “Using Pixmaps” on
page 96.

007-2392-003

Using Fonts and Strings

Note: Rendering to a GLXPixmap is much slower than rendering to a window and may
not allow access to many features of the graphics hardware.

When handling X events for OpenGL programs, remember that Expose events come in
batches. When you expose a window that is partly covered by two or more other
windows, two or more Expose events are generated, one for each exposed region. Each
one indicates a simple rectangle in the window to be redrawn. If you are going to redraw
the entire window, read the entire batch of Expose events. It is wasteful and inefficient to
redraw the window for each Expose event.

Using Fonts and Strings

007-2392-003

The simplest approach to text and font handling in GLX is using the gIXUseXFont()
function together with display lists. This section shows you how to use the function by
providing an example program. Note that this information is relevant regardless of
whether you use widgets or program in Xlib.

The advantage of glXUseXFont() is that bitmaps for X glyphs in the font match exactly
what OpenGL draws. This solves the problem of font matching between X and OpenGL
display areas in your application.

To use display lists to display X bitmap fonts, your code should do the following;:

1. Use X calls to load information about the font you want to use.

2. Generate a series of display lists using gIXUseXFont(), one for each glyph in the
font.

The glXUseXFont() function automatically generates display lists (one per glyph)
for a contiguous range of glyphs in a font.

3. To display a string, use glListBase() to set the display list base to the base for your
character series. Then pass the string as an argument to glCallLists().

Each glyph display list contains a glBitmap() call to render the glyph and update
the current raster position based on the glyph’s width.

The example code fragment provided in Example 3-4 prints the string “The quick brown
fox jumps over a lazy dog” in Times Medium. It also prints the entire character set, from
ASCII 32 to 127.

51

3: OpenGL and X: Examples

52

Note: You can also use the gl ¢ library, which sits atop of OpenGL, for fonts and strings.
The library is not specific to GLX and provides other functions in addition to
glXUseXFont().

Example 3-4 Font and Text Handling

#i ncl ude <@/ gl . h>
#include <@./glu. h>

#i ncl ude <@/ gl x. h>

#i ncl ude <X11/Xli b. h>
#i ncl ude <X11/ Xutil.h>

CLui nt base;

voi d makeRast er Font (Di spl ay *dpy)

{

XFont St ruct *fontl nfo;
Font id;
unsigned int first, |ast;
fontInfo = XLoadQueryFont (dpy,
"-adobe-ti mes- medi umr-normal --17-120- 100- 100- p- 88-i s08859-1");

if (fontlnfo == NULL) ({

}

printf ("no font found\n");
exit (0);
}

id = fontlnfo->fid,
first = fontlnfo->m n_char_or_byte2;
| ast = fontlnfo->max_char_or_byte2;

base = gl GenLi sts(Il ast+1);
if (base == 0) {
printf ("out of display lists\n");
exit (0);
}
gl XUseXFont (id, first, last-first+l, base+first);

void printString(char *s)

{

gl Li st Base(base) ;

007-2392-003

Using Fonts and Strings

007-2392-003

}

gl Call Lists(strlen(s), G._UNSI GNED BYTE, (unsigned char *)s);

voi d di spl ay(voi d)

{

G.float white[3] ={ 1.0, 1.0, 1.0 };
long i, j;
char teststring[33];

gl d ear (GL_COLOR_BUFFER _BI T);

gl Col or 3f v(white);

for (i =32; i <127; i += 32) {
gl Rast er Pos2i (20, 200 - 18*i/32);
for (J =0;] <32, j++)

teststring[j] =1i+4j;

teststring[32] = O;
printString(teststring);

}

gl Rast er Pos2i (20, 100);

printString("The quick brown fox junps");

gl Rast er Pos2i (20, 82);

printString("over a |azy dog.");

gl Flush ();

53

Chapter 4

OpenGL and X: Advanced Topics

This chapter helps you integrate your OpenGL program with the X Window System by
describing several advanced topics. While understanding the techniques and concepts
described here is not relevant for all applications, it is important that you master them
for certain special situations. The chapter covers the following topics:

¢ “Using Animations” on page 55

¢ “Using Overlays” on page 62

* “Using Visuals and Framebuffer Configurations” on page 71
¢ “Using Colormaps” on page 83

* “Stereo Rendering” on page 88

* “Using Pixel Buffers” on page 90

¢ “Using Pixmaps” on page 96

¢ “Performance Considerations for X and OpenGL” on page 99

¢ “Portability” on page 99

Using Animations

007-2392-003

Animation in its simplest form consists of drawing an image, clearing it, and drawing a
new, slightly different one in its place. However, attempting to draw into a window while
that window is being displayed can cause problems such as flickering. The solution is
double buffering.

Providing example code as appropriate, this section uses the following topics to describe
double-buffered animation inside an X Window System environment:
* “Swapping Buffers”

¢ “Controlling an Animation With Workprocs”

55

4: OpenGL and X: Advanced Topics

Swapping Buffers

56

¢ “Controlling an Animation With Timeouts”

Xt provides two mechanisms that are suited for continuous animation:

* The section “Controlling an Animation With Workprocs” on page 57 describes the
fastest animation possible. If you use workprocs, the program swaps buffers as fast
as possible; this is useful if rendering speed is variable enough that constant speed
animation is not possible. Workproc animations also give other parts of the
application priority. The controls do not become less responsive just because the
animation is being done. The cost of this is that the animation slows down or may
stop when the user brings up a menu or uses other controls.

* The section “Controlling an Animation With Timeouts” on page 60 describes
constant-speed animation. Animations that use timeouts compete on even footing
with other Xt events; the animation will not stop because the user interacts with
other components of the animation.

Note: Controlling animations with workprocs and timeouts applies only to Xt-based
programs.

A double-buffered animation displays one buffer while drawing into another
(undisplayed) buffer then swaps the displayed buffer with the other. In OpenGL, the
displayed buffer is called the front buffer, and the undisplayed buffer is called the back
buffer. This sort of action is common in OpenGL programs; however, swapping buffers
is a window-related function, not a rendering function; therefore, you cannot do it
directly with OpenGL.

To swap buffers, use gIXSwapBuffers() or, when using the widget, the convenience
function GLwDrawingAreaSwapBuffers(). The gIXSwapBuffers() function takes a
display and a window as input—pixmaps do not support buffer swapping—and swaps
the front and back buffers in the drawable. All renderers bound to the window in
question continue to have the correct idea of the front buffer and the back buffer. Note
that once you call gIXSwapBuffers(), any further drawing to the given window is
suspended until after the buffers have been swapped.

Silicon Graphics systems support hardware double buffering; this means the buffer swap
is instantaneous during the vertical retrace of the monitor. As a result, there are no

007-2392-003

Using Animations

tearing artifacts; that is, you do not simultaneously see part of one buffer and part of the
next.

Note: If the window’s visual allows only one color buffer, or if the GLX drawable is a
pixmap, glXSwapBuffers() has no effect (and generates no error).

There is no need to worry about which buffer the X server draws into if you are using X
drawing functions as well as OpenGL; the X server draws only to the current front buffer
and prevents any program from swapping buffers while such drawing is going on. Using
the X double buffering extension (DBE), it is possible to render X into the back buffer.

Note that users like uniform frame rates such as 60 Hz, 30 Hz, or 20 Hz. Animation may
otherwise look jerky. A slower consistent rate is therefore preferable to a faster but
inconsistent rate. For additional information about optimizing frame rates, see
“Optimizing Frame Rate Performance” on page 419. See “SGI_swap_control—The Swap
Control Extension” on page 287 to learn how to set a minimum period of buffer swaps.

Controlling an Animation With Workprocs

A workproc (work procedure) is a procedure that Xt calls when the application is idle.
The application registers workprocs with Xt and unregisters them when it is time to stop
calling them.

Note that workprocs do not provide constant-speed animation but animate as fast as the
application can.

General Workproc Information

007-2392-003

Workprocs can be used to carry out a variety of useful tasks: animation, setting up
widgets in the background (to improve application startup time), keeping a file up to
date, and so on.

It is important that a workproc executes quickly. While a workproc is running, nothing
else can run, and the application may appear sluggish or may even appear to hang.

Workprocs return Booleans. To set up a function as a workproc, first prototype the

function then pass its name to XtAppAddWorkProc(). Xt then calls the function
whenever there is idle time while Xt is waiting for an event. If the function returns Tr ue,

57

4: OpenGL and X: Advanced Topics

Workproc Example

58

it is removed from the list of workprocs; if it returns Fal se, it is kept on the list and is
called again when there is idle time.

To explicitly remove a workproc, call XtRemoveWorkProc(). The following shows the
syntax for the add and remove functions:

Xt Wor kProcl d Xt AppAddWor kPr oc(Xt AppCont ext app_context,
Xt Wor kProc proc, Xt Poi nter client_data)

voi d Xt RemoveWor kProc(Xt Wor kProcl d id)

Similar to the equivalent parameter used in setting up a callback, the client_data
parameter for XtAppAddWorkProc() lets you pass data from the application into the
workproc.

This section illustrates the use of workprocs. The example, moti f/ ani mate. c, isa
simple animation driven by a workproc. When the user selects “animate” from the menu,
the workproc is registered, as follows:

static void
menu(Wdget w, XtPointer clientData, XtPointer callData) {
int entry = (int) clientData;

switch (entry) {
case O:
if (state.animte_wpid) {
Xt RemoveWsr kProc(st at e. ani mat e_wpi d) ;
state.animate_wpid = 0;
} else {
/* register workproc */
state. ani mate_wpi d = Xt AppAddWor kProc(st at e. appct X,
redraw_proc, &state.glxw dget);
}
br eak;
case 1:
exi t (EXI T_SUCCESS) ;
br eak;
defaul t:
br eak;

}

007-2392-003

Using Animations

007-2392-003

The workproc starts executing if the window is mapped (that is, it could be visible but it
may be overlapped):

static void
map_change(W dget w, XtPointer clientData, XEvent *event, Bool ean
*cont) {
switch (event->type) {
case MapNoti fy:
/* resunme aninmation if we becone mapped in the animated state */
if (state.animte_wpid != 0)
state. ani mate_wpi d = Xt AppAddWor kProc(st at e. appct X,
redraw_proc, &state.glxw dget);
br eak;
case UnmapNotify:
/* don’t animate if we aren’'t mapped */
if (state.aninate_wpid) XtRenoveWdrkProc(state. ani mate_wpid);
br eak;

}

If the window is mapped, the workproc calls redraw_proc():

stati c Bool ean
redraw_proc(XtPointer clientData) {
Wdget *w = (Wdget *)clientData;
draw_scene(*w);
return Fal se;
/*call the workproc again as possible*/

}

The redraw_proc() function, in turn, calls draw_scene(), which swaps the buffers. Note
that this program does not use gIXSwapBuffers(), but instead the convenience function
GLwDrawingAreaSwapBuffers().

static void
draw_scene(Wdget w) {
static float rot = 0.;

gl d ear (GL_COLOR_ BUFFER BI T);

gl Color3f(.1, .1, .8);

gl PushMatri x();

if ((rot += 5.) > 360.) rot -= 360.;
gl Rotatef(rot,0.,1.,0.);

cube();

gl Scal ef (0. 3,0.3,0.3);

gl Color3f(.8, .8, .1);

59

4: OpenGL and X: Advanced Topics

cube();
gl PopMatri x();
GLwDr awi ngAr eaSwapBuf f ers(w) ;

Note: If an animation is running and the user selects a menu command, the event
handling for the command and the animation may end up in a race condition.

Controlling an Animation With Timeouts

60

The program that performs an animation using timeouts is actually quite similar to the
one using workprocs. The main difference is that the timeout interval has to be defined
and functions that relied on the workproc now have to be defined to rely on the timeout.
Note especially that redraw_proc() has to register a new timeout each time it is called.

You may find it most helpful to compare the full programs using xdi f f or a similar tool.
This section briefly points out the main differences between two example programs.

The redraw procedure is defined to have an additional argument, an interval ID.
From work_ani mate: static Bool ean redraw_proc(XtPointer clientData);

Fromtine_animate: static Bool ean redraw _proc(XtPointer clientData,
Xtintervalld *id);

Inti me_ani mat e, a timeout has to be defined; the example chooses 10 ms:
#define TIMEQUT 10 /*tinmeout in mlliseconds*/

In the state structure, which defines the global Ul variables, the interval ID instead
of the workproc ID is included.

From wor k_ani mat e:

static struct ({ /* global U variables; keep themtogether */
Xt AppCont ext appct x;
W dget gl xwi dget ;
Bool ean direct;
Xt Wor kProcl d ani mat e_wpi d;
} state;

From tine_ani mat e:

static struct { /* global U variables; keep themtogether */
Xt AppCont ext appct x;

007-2392-003

Using Animations

007-2392-003

W dget gl xwi dget ;

Bool ean direct;

Xtinterval ld ani nmate_toid;
} state;

The menu() function and the map_change() function are defined to remove or
register the timeout instead of the workproc. The following are the two menu()
functions as an example:

From wor k_ani mat e:

static void
menu(W dget w, XtPointer clientData, XtPointer callData) {
int entry = (int) clientData;

switch (entry) {
case O:
if (state.animate_wpid) {
Xt RemoveWsr kProc(st at e. ani mat e_wpi d) ;
state.animte_wpid = 0;
} else {
/* register work proc */
state. ani mate_wpi d = Xt AppAddWor kProc(st at e. appct x,
redraw_proc, &state. gl xwi dget);

}

br eak;

case 1:
exit (EXI T_SUCCESS) ;
br eak;

defaul t:
br eak;

}

}

From ti ne_ani mat e:

static void
menu(Wdget w, XtPointer clientData, XtPointer callData) {
int entry = (int) clientData;

switch (entry) {
case O:
if (state.animate_toid) {
Xt RerroveTi meQut (st ate. ani mat e_t oi d) ;
state.animate _toid = 0;
} else {
/* register tinmeout */

61

4: OpenGL and X: Advanced Topics

state.animate_toid = Xt AppAddTi neCut (st at e. appct x,

TI MEQOUT, redraw_proc, &state.glxw dget);
}

br eak;
case 1:
exit (EXI T_SUCCESS) ;
br eak;
defaul t:
br eak;

}
}

¢ The redraw_proc() function has to register a new timeout each time it is called. Note
that this differs from the workproc approach, where the application automatically
continues animating as long as the system is not doing something else.

static void
redraw_proc(XtPointer clientData, Xtintervalld *id) {
Wdget *w = (Wdget *)clientData;
draw_scene(*w);
/[* register a new timeout */
state.animate_toi d = Xt AppAddTi meCQut (st ate. appctx, TI MEQUT,
redraw _proc, &state. gl xwi dget);

Using Overlays

Overlays are useful in situations where you want to preserve an underlying image while
displaying some temporary information. Examples for this are popup menus,

annotations, or rubber banding. Using the following topics, this section explains overlays
and shows you how to use them:

“Introduction to Overlays”

“Creating Overlays”

“Overlay Troubleshooting”
“Rubber Banding”

62 007-2392-003

Using Overlays

Introduction to Overlays

007-2392-003

An overlay plane is a set of bitplanes displayed preferentially to the normal planes.
Non-transparent pixels in the overlay plane are displayed in preference to the
underlying pixels in the normal planes. Windows in the overlay planes do not damage
windows in the normal plane.

If you have something in the main window that is fairly expensive to draw into and want
to have something else on top, such as an annotation, you can use a transparent overlay
plane to avoid redrawing the more expensive main window. Overlays are well-suited for
popup menus, dialog boxes, and “rubber-band” image resizing rectangles. You can also
use overlay planes for text annotations floating “over” an image and for certain
transparency effects.

Notes:

e Transparency discussed here is distinct from transparency effects based on alpha
buffer blending. See the section “Blending” in Chapter 7, “Blending, Anti-Aliasing,
and Fog,” in the OpenGL Programming Guide.

* On Silicon Graphics systems running the XFree86 server (for example, Onyx4 and
Silicon Graphics Prism systems), you must configure the XFree86 server to support
overlay planes. Refer to the platform-specific documentation for the details of
configuring XFree86.

63

4: OpenGL and X: Advanced Topics

64

wr gy

Normal planes Overlay planes

Normal & overlay planes

Figure 4-1 Overlay Plane Used for Transient Information

A special value in the overlay planes indicates transparency. On Silicon Graphics
systems, it is always the value zero. Any pixel with the value zero in the overlay plane is
not painted to allow the color of the corresponding pixel in the normal planes to show.

The concepts discussed in this section apply more generally to any number of
framebulffer layers, for example, underlay planes (which are covered up by anything in
equivalent regions of higher-level planes).

You can use overlays in the following two ways:

* To draw additional graphics in the overlay plane on top of your normal plane
OpenGL widget, create a separate GLwMDrawingArea widget in the overlay plane
and set the GLX_LEVEL resource to 1. Position the overlay widget on top of the
normal plane widget.

007-2392-003

Using Overlays

Creating Overlays

007-2392-003

Note that since the GLwMDrawingArea widget is not a manager widget, it is
necessary to create both the normal and overlay widgets as children of some
manager widget—for example, a form—and have that widget position the two on
top of each other. Once the windows are realized, you must call XRaiseWindow() to
guarantee that the overlay widget is on top of the normal widget. Code fragments
in “Creating Overlays” on page 65 illustrate this. The whole program is included as
over | ay. ¢ in the source tree.

* To create menus, look at examples in/ usr/src/ X11/ noti f/overl| ay_denos.
They are present if you have the not i f _dev. sw. denp subsystem installed.
Placing the menus in the overlay plane avoids the need for expensive redrawing of
the OpenGL window underneath them. While the demos do not deal specifically
with OpenGL, they do show how to place menus in the overlay plane.

This section explains how to create overlay planes, using an example program based on
Motif. If you create the window using Xlib, the same process is valid (and a parallel
example program is available in the example program directory).

The example program from which the code fragments are taken, not i f/ over |l ay. c,
uses the visual info extension to find a visual with a transparent pixel. See
“EXT_visual_info—The Visual Info Extension” on page 117 for more information.

Note: This example uses the visual info extension, which is supported on all current
Silicon Graphics graphics systems. The visual info extension has also been promoted to
a core feature of GLX 1.3. With new applications, use the GLX 1.3 interface instead of the
extension.

To create the overlay, follow these steps:

1. Define attribute lists for the two widgets (the window and the overlay). For the
overlay, specify GLX_LEVEL as 1 and GLX_TRANSPARENT_TYPE_EXT as
GLX_TRANSPARENT_RGB_EXT.

static int attribs[] = { GLX_RGA, G.X DOUBLEBUFFER, None};

static int ov_attribs[] = {
GLX_BUFFER_SI ZE, 2,
GLX_LEVEL, 1,

GLX_TRANSPARENT TYPE_EXT, GLX_TRANSPARENT RGB_EXT,

65

4: OpenGL and X: Advanced Topics

66

None };

Create a frame and form, create the window widget, and attach it to the form on all
four sides. Add expose, resize, and input callbacks.

[* specify visual directly */
if (!(visinfo = gl XChooseVi sual (dpy, DefaultScreen(dpy), attribs)))
Xt AppError (appctx, "no suitable RGEB visual");

/* attach to formon all 4 sides */
n = 0;
Xt Set Arg(args[n], XtNx, 0); n++;
Xt Set Arg(args[n], XtNy, 0); n++;
Xt Set Arg(args[n], Xm\topAttachnent, XmATTACH FORM); n++;
Xt Set Arg(args[n], XnN eftAttachment, XmATTACH FORM; n++;
Xt Set Arg(args[n], XmNrightAttachment, XmATTACH FORM ; n++;
Xt Set Arg(args[n], Xm\bottomAttachment, XmATTACH FORM); n++;
Xt Set Arg(args[n], G.wN\visuallnfo, visinfo); n++;
state.w = Xt Creat eManagedW dget (" gl xwi dget ",

gl wMDr awi ngAr eaW dget Gl ass, form args, n);
Xt AddCal | back(state.w, G.wNexposeCal | back, expose, NULL);
Xt AddCal | back(state.w, GLwN\resizeCall back, resize, &state);
Xt AddCal | back(state.w, GLwWNi nput Cal | back, input, NULL);
state.cx = gl XCreat eCont ext (dpy, visinfo, 0, GL_TRUE);

Using the overlay visual attributes specified in step 1 and attaching it to the same
form as the window, create the overlay widget. This assures that when the window
is moved or resized, the overlay is moved or resized as well.

if (!'(visinfo = gl XChooseVi sual (dpy, DefaultScreen(dpy),
ov_attribs)))
Xt AppError (appctx, "no suitable overlay visual");
Xt Set Arg(args[n-1], G.w\vi sual | nfo, visinfo);
ov_state.w = Xt Creat eManagedW dget (" overl ay",
gl wMDr awi ngAr eaW dget Cl ass, form args, n);

Add callbacks to the overlay.

Xt AddCal | back(ov_state.w, G.wNexposeCal | back, ov_expose, NULL);
Xt AddCal | back(ov_state.w, GLwN\resizeCallback, resize, &ov_state);
Xt AddCal | back(ov_state.w, GLwWNi nput Cal | back, input, NULL);
ov_state.cx = gl XCreat eContext (dpy, visinfo, 0, GL_TRUE);

Note that the overlay uses the same resize and input callback:

¢ For resize, you may or may not wish to share callbacks, depending on the
desired functionality; for example, if you have a weathermap with annotations,
both should resize in the same fashion.

007-2392-003

Using Overlays

5.

¢ For input, the overlay usually sits on top of the normal window and receives the
input events instead of the overlay window. Redirecting both to the same
callback guarantees that you receive the events, regardless of which window
actually received them.

* The overlay has its own expose function: each time the overlay is exposed, it
redraws itself.

Call XRaiseWindow() to make sure the overlay is on top of the window.
XRai seW ndow(dpy, Xt W ndow(ov_state.w));

Overlay Troubleshooting

007-2392-003

This section gives some advice on issues that can easily cause problems in a program
using overlays:

Colormaps

Overlays have their own colormaps. Therefore, you should call
XSetWMColormapWindows() to create the colormap, populate it with colors, and
to install it.

Note: Overlays on Silicon Graphics systems reserve pixel 0 as the transparent pixel.
If you attempt to create the colormap with Al | ocAl | , the XCreateColormap()
function will fail with a BadAl | oc X pr ot ocol error.Instead of Al | ocAl |, use
Al | ocNone and allocate all the color cells except 0.

Window hierarchy

Overlay windows are created like other windows; their parent window depends on
what you pass in at window creation time. Overlay windows can be part of the
same window hierarchy as normal windows and can be children of the normal
windows. An overlay and its parent window are handled as a single hierarchy for
events like clipping, event distribution, and so on.

Color limitations

Most Silicon Graphics systems support 8-bit overlay planes. In some cases, as with
Onyx4 and Silicon Graphics Prism systems, overlay planes and stereo visuals may
be mutually exclusive, as chosen when the X server is initialized.

Input events

67

4: OpenGL and X: Advanced Topics

Rubber Banding

68

The overlay window usually sits on top of the normal window. Thus, it receives all
input events such as mouse and keyboard events. If the application is only waiting
for events on the normal window, it will not get any of those events. It is necessary
to select events on the overlay window as well.

Missing overlay visuals

On Silicon Graphics systems running the XFree86 server (for example, Onyx4 and
Silicon Graphics Prism systems), there may be no overlay planes configured. Hence,
there will be no visuals at framebuffer levels other than 0. If gIXChooseVisual()
returns no visuals when GLX_LEVEL is specified as 1 in the attribute list, the
application must use a different strategy to display content that would otherwise go
in the overlay planes.

Not seeing the overlay

Although overlay planes are conceptually considered to be “above” the normal
plane, an overlay window can be below a normal window and thus clipped by it.
When creating an overlay and a normal window, use XRaiseWindow() to ensure
that the overlay window is on top of the normal window. If you use Xt, you must
call XRaiseWindow() after the widget hierarchy has been realized.

Rubber banding can be used for cases where applications have to draw a few lines over
a scene in response to a mouse movement. An example is the movable window outline
that you see when resizing or moving a window. Rubber banding is also used frequently
by drawing programs.

The 4Dwmwindow manager provides rubber banding for moving and resizing windows.
However, if you need rubber banding features inside your application, you must manage
it yourself.

The following procedure is the best way to perform rubber banding with overlays (this
is the method used by 4Dwm) the default Silicon Graphics window manager):

1.

Map an overlay window with its background pixmap set to None (background is
passed in as a parameter to XCreateWindow()).

This window should be as large as the area over which rubber banding could take
place.

2. Draw rubber bands in the new overlay window.

007-2392-003

Using Overlays

Ignore resulting damage to other windows in the overlay plane.
3. Unmap the rubber band window.

This action causes Expose events to be sent to other windows in the overlay plane.

Using Popup Menus With the GLwMDrawingArea Widget

007-2392-003

Popups are used by many applications to allow user input. A sample program,
si mpl e- popup. ¢, isincluded in the source tree. It uses the function
XmCreateSimplePopupMenu() to add a popup to a drawing area widget.

Note that if you are not careful when you create a popup menu as a child of
GLwMDrawingArea widget, you may get a BadMat ch X prot ocol error. The menu
(like all other Xt shell widgets) inherits its default colormap and depth from the
GLwMDrawingArea widget but its default visual from the parent (root) window.
Because the GLwMDrawingArea widget is normally not the default visual, the menu
inherits a nondefault depth and colormap from the GLwMDrawingArea widget but also
inherits its visual from the root window (that is, inherits the default visual); this leads to
a BadMat ch X protocol error. For more details and for information on finding the
error, see “Inheritance Issues” on page 41.

The following are two ways to work around this problem:

* Specify the visual, depth, and colormap of the menu explicitly. If you do that,
consider putting the menu in the overlay plane.

* Make the menu a child of a widget that is in the default visual; for example, if the
GLwMDrawingArea widget is a child of an XmFrame, make the menu a child of
XmPFrame as well. Example 4-1 provides a code fragment from
not i f/ si npl e- popup. c.

Example 4-1 Popup Code Fragment

static void
create_popup(W dget parent) {
Arg args[10];
static Wdget popup;
int n;
XmButt onType button_types[] = {
XmPUSHBUTTQN, XmPUSHBUTTON, XmSEPARATOR, XnmPUSHBUTTON, };

XnString button_| abel s[Xt Nunber (button_types)];

69

4: OpenGL and X: Advanced Topics

70

}

butt on_I abel s[0]
button_| abel s[1]
button_| abel s[2]
button_| abel s[3]

XnStringCreatelLocal i zed(“draw filled”);
XnStringCreateLocal i zed(“draw |ines”);
NULL;

XnStringCreatelLocal i zed(“quit”);

n = 0;

Xt Set Arg(args[n], XmM\buttonCount, XtNunber(button_types)); n++;

Xt Set Arg(args[n], Xm\buttonType, button_types); n++;

Xt Set Arg(args[n], XmN\buttons, button_|abels); n++;

Xt Set Arg(args[n], XnNsinpleCallback, nenu); n++;

popup = XnCreat eSi npl ePopupMenu(parent, “popup”, args, n);

Xt AddEvent Handl er (parent, ButtonPressMask, Fal se, activate_nenu,
&popup) ;

XSt ri ngFree(button_| abel s[0]);

Xt ri ngFree(button_I abel s[1]);

Xt ri ngFree(button_I abel s[3]);

mai n(int argc, char *argv[]) {

Di spl ay *dpy;

Xt AppCont ext app;

XVi sual I nfo *vi si nfo;

G_XCont ext gl xcont ext ;

W dget topl evel, frame, gl xw dget;

topl evel = Xt QpenApplication(&app, “sinple-popup”, NULL, O, &argc,
argv, fallbackResources, applicationShell Wdgetd ass,
NULL, 0);

dpy = Xt Di spl ay(topl evel);

frame = XnCreateFrane(toplevel, “frane”, NULL, 0);
Xt ManageChi | d(frane);

/* specify visual directly */
if (!(visinfo = gl XChooseVi sual (dpy, DefaultScreen(dpy), attribs)))
Xt AppError (app, “no suitable RGEB visual”);

gl xwi dget = Xt VaCr eat eManagedW dget (“ gl xwi dget”,
gl wMDr awi ngAr eaW dget C ass, frame, GLw\vi sual | nfo,
vi si nfo, NULL);

Xt AddCal | back(gl xwi dget, G.wNexposeCal | back, expose, NULL);

Xt AddCal | back(gl xwi dget, G.wNresi zeCal | back, resize, NULL);

Xt AddCal | back(gl xwi dget, GLwNi nput Cal | back, input, NULL);

create_popup(frane);

007-2392-003

Using Visuals and Framebuffer Configurations

Xt Real i zeW dget (t opl evel) ;

gl xcont ext = gl XCreat eCont ext (dpy, visinfo, 0, G._TRUE);
GLwDr awi ngAr eaMakeCur r ent (gl xwi dget, gl xcontext);

Xt AppMai nLoop(app) ;

Using Visuals and Framebuffer Configurations

This section explains how to choose and use visuals and on Silicon Graphics
workstations. It uses the following topics:

* “Some Background on Visuals”
¢ “Running OpenGL Applications Using a Single Visual”

e “Using Framebuffer Configurations”

Some Background on Visuals

007-2392-003

An X visual defines how pixels in a window are mapped to colors on the screen. Each
window has an associated visual, which determines how pixels within the window are
displayed on screen. GLX overloads X visuals with additional framebuffer capabilities
needed by OpenGL.

Table 4-1 lists the X visuals supported for different types of OpenGL rendering,
indentifies the Silicon Graphics systems supporting the X visuals, and indicates whether
the colormaps for those visuals are writable or not.

Table 4-1 X Visuals and Supported OpenGL Rendering Modes

OpenGL Rendering Mode X Visual Writable Colormap? Supporting Systems

RGBA TrueColor No All

RGBA DirectColor Yes Onyx4 and Silicon Graphics

Prism systems

color index PseudoColor Yes All except Onyx4 and Silicon
Graphics Prism systems

71

4: OpenGL and X: Advanced Topics

Table 4-1 X Visuals and Supported OpenGL Rendering Modes (continued)
OpenGL Rendering Mode X Visual Writable Colormap? Supporting Systems
color index StaticColor No Not supported

Not supported GrayScale Yes Not supported

Not supported StaticGray No Not supported

Depending on the available hardware and software, an X server can provide multiple
visuals. Each server has a default visual, which can be specified when the server starts.
You can determine the default visual with the Xlib macro DefaultVisual().

Because you cannot predict the configuration of every X server, and you may not know
the system configuration where your program will run,, it is best to find out what visual
classes are available on a case-by-case basis.

e From the command line, use the xdpyi nf 0 command for a list of all visuals the
server supports.

e Usethe gl xi nf o orfi ndvi s command to find visuals that are capable of OpenGL
rendering. The f i ndvi s command can actually look for available visuals with
attributes you specify. See the man page for more information.

¢ From within your application, use the Xlib functions XGetVisualInfo() and
XMatchVisuallnfo()—or glXGetConfig()—or the GLX function
glXChooseVisual().

Note: For most applications, using OpenGL RGBA color mode and a TrueColor visual
is recommended.

Running OpenGL Applications Using a Single Visual

Note: This section applies only to IRIS IM.

In previous chapters, this guide has assumed separate visuals for the X and OpenGL
portions of the program. The top-level windows and all parts of the application that are
not written in OpenGL use the default visual (typically 8-bit PseudoColor, but it depends

72 007-2392-003

Using Visuals and Framebuffer Configurations

007-2392-003

on the configuration of the server). OpenGL runs in a single window that uses an
OpenGL visual.

An alternative approach is to run the whole application using an OpenGL visual. To do
this, determine the suitable OpenGL visual (and colormap and pixel depth) at the start
of the program and create the top-level window using that visual (and colormap and
pixel depth). Other windows, including the OpenGL window, inherit the visual. When
you use this approach, there is no need to use the GLwMDrawingArea widget; the
standard IRIS IM XmDrawingArea works just as well.

The advantages of using a single visual include the following:
e Simplicity

Everything uses the same visual; so, you do not have to worry about things like
colormap installation more than once in the application. However, if you use the
GLwMDrawingArea widget, it does colormap installation for you; see
“Drawing-Area Widget Setup and Creation” on page 31.

¢ Reduced colormap flashing

Colormap flashing happens if several applications are running, each using its own
colormap, and you exceed the system’s capacity for installed hardware colormaps.
Flashing is reduced for a single visual because the entire application uses a single
colormap. The application can still cause other applications to flash, but all recent
Silicon Graphics systems have multiple hardware colormaps to reduce flashing.

¢ Easier mixing of OpenGL and X

If you run in a single visual, you can render OpenGL to any window in the
application, not just to a dedicated window. For example, you could create an
XmDrawnButton and render OpenGL into it.

The advantages of using separate visuals for X and OpenGL include the following:
¢ Consistent colors in the X visual

If the OpenGL visual has a limited number of colors, you may want to allow more
colors for X. For example, if you are using double buffering on an 8-bit machine,
you have only 4 bitplanes (16 colors) per buffer. You can have OpenGL dither in
such a circumstance to obtain approximations of other colors, but X will not dither;
so, if you are using the same visual for OpenGL and X, the X portion of your
application will be limited to 16 colors as well.

73

4: OpenGL and X: Advanced Topics

This limiting of colors would be particularly unfortunate if your program uses the
Silicon Graphics color-scheme system. While X chooses a color as close as possible
to the requested color, the choice is usually noticeably different from the requested
color. As a result, your application looks noticeably different from the other
applications on the screen.

Memory savings

The amount of memory used by a pixmap within the X server depends on the depth
of the associated visual. Most applications use X pixmaps for shadows, pictures,
and so on that are part of the user interface widgets. If you are using a 12-bit or
24-bit visual for OpenGL rendering and your program also uses X pixmaps, those
pixmaps would use less memory in the default 8-bit visual than in the OpenGL
visual

Easier menu handling in IRIS IM

If the top-level shell is not in the default visual, there will be inheritance problems
during menu creation (see “Inheritance Issues” on page 41). You must explicitly
specify the visual depth and colormap when creating a menu. For cascading menus,
specify depth and colormap separately for each pane.

Using Framebuffer Configurations

The framebuffer configuration functions in GLX 1.3 are analogous to GLX visuals but
provide the following additional features:

They introduce a new way to describe the capabilities of a GLX drawable—that is,
to describe the resolution of color buffer components and the type and size of
ancillary buffers by providing a GLXFBConfig construct (also called an FBConfig).

They relax the “similarity” requirement when associating a current context with a
drawable.

They support RGBA rendering to one- and two-component windows (luminance
and luminance alpha rendering) and GLX pixmaps as well as pixel buffers
(pbuffers). Section “Using Pixel Buffers” on page 90 describes pbuffers.

The following are reasons to use framebuffer configurations:

74

To use pbuffers.

To render luminance data to a TrueColor visual.

007-2392-003

Using Visuals and Framebuffer Configurations

To replace gIXChooseVisual(), because framebuffer configurations provide visual
selection for all GLX drawables, including pbuffers, and incorporates the visual info
and visual rating extensions.

This section briefly describes the following features framebuffer configurations provide:

“Describing a Drawable With a GLXFBConfig Construct (FBConfig)”
“Less-Rigid Similarity Requirements When Matching Context and Drawable”
“Less-Rigid Match of GLX Visual and X Visual”

Describing a Drawable With a GLXFBConfig Construct (FBConfig)

Currently, GLX overloads X visuals so that they have additional buffers and other
characteristics needed for OpenGL rendering. FBConfigs package GLX drawables by
defining a new construct, a GLXFBConfig, which encapsulates GLX drawable
capabilities and has the following properties:

It may or may not have an associated X visual. If it does have an associated X visual,
then it is possible to create windows that have the capabilities described by the
FBConfig.

A particular FBConfig is not required to work with all GLX drawables. For example,
it is possible for implementations to export FBConfigs that work only with GLX
pixmaps.

Less-Rigid Similarity Requirements When Matching Context and Drawable

007-2392-003

In OpenGL without FBConfigs, if you associate a drawable with a GLX context by calling
glXMakeCurrent(), the two have to be similar—that is, created with the same visual.
FBConlfigs relax the requirement; they only require the context and drawable to be
compatible. This is less restrictive and implies the following:

The render_type attribute for the context must be supported by the FBConfig that
created the drawable. For example, if the context was created for RGBA rendering,
it can be used only if the FBConfig supports RGBA rendering.

All color buffers and ancillary buffers that exist in both FBConfigs must have the
same size. For example, a GLX drawable that has a front left buffer and a back left
buffer with red, green, and blue sizes of 4 is not compatible with an FBConfig that
has only a front left buffer with red, green, and blue sizes of 8. However, it is
compatible with an FBConfig that has only a front left buffer if the red, green, and
blue sizes are 4.

75

4: OpenGL and X: Advanced Topics

Note that when a context is created, it has an associated rendering type,
GLX_RGBA TYPE or GLX_COLOR_| NDEX_TYPE.

Less-Rigid Match of GLX Visual and X Visual

FBConfig Constructs

76

The current GLX specification requires that the G_X_RGBA visual attribute be associated
only with TrueColor and DirectColor X visuals. FBConfigs make it possible to do RGBA
rendering to windows created with visuals of type PseudoColor, StaticColor, GrayScale,
and StaticGray. In each case, the red component is used to generate the framebuffer
values and the green and blue fragments are discarded.

The OpenGL RGBA rendering semantics are more powerful than the OpenGL index
rendering semantics. By extending the X visual types that can be associated with an
RGBA color buffer, FBConfigs allow RGBA rendering semantics to be used with
pseudo-color and gray-scale displays. A particularly useful application of FBConfigs is
that they allow you to work with single-component images with texture mapping, then
use a pseudo-color visual to map the luminance values to color.

An FBConlfig describes the format, type, and size of the color and ancillary buffers for a
GLX drawable. If the GLX drawable is a window, then the FBConfig that describes it has
an associated X visual; for a GLXPixmap or GLXPbuffer, there may or may not be an X

visual associated with the FBConfig.

Choosing an FBConfig Construct

Use gIXGetFBConfigs() to get a list of all FBConfigs that are available on the specified
screen. The format of the function is as follows:

GLXFBConfi g *gl XGet FBConfi gs(Di splay *dpy, int screen,int *nitems)
The number of FBConfigs returned is stored in the value nitems.

Use gIXChooseFBConfig() to get FBConfig constructs that match a specified list of
attributes:

GLXFBConfi g *gl XChooseFBConfi g(Di splay *dpy, int screen,
const int ‘*attrib_list, i nt ‘*nitems)

Like gIXGetFBConfigs(), function gIXChooseFBConfig() returns an array of FBConfigs
that are available on the specified screen if attrib_list is NULL; otherwise, this call returns

007-2392-003

Using Visuals and Framebuffer Configurations

007-2392-003

an array of FBConfigs that match the specified attributes. Table 4-2 shows only attributes
specific to FBConfigs; additional attributes are listed on the gl XChooseVi sual man

page.

Table 4-2 Visual Attributes Introduced by the FBConfigs

Attribute Type Description

GLX_DRAWABLE_TYPE bitmask Mask indicating which GLX drawables are
supported. Valid bits are GLX_W NDOW BI T and
GLX_PI XMAP_BI T.

GLX_RENDER _TYPE bitmask Mask indicating which OpenGL rendering modes are
supported. Valid bits are GLX_RGBA_BI T and
GLX_COLOR_I NDEX_BI T.

GLX_X RENDERABLE boolean True if X can render to drawable.

GLX_FBCONFI G_I D XID XID of the FBConfig.

The attributes are matched in an attribute-specific manner. Some attributes, such as
GLX_LEVEL, must match the specified value exactly; others, such as GLX_RED_SI ZE,
must meet or exceed the specified minimum values.

The sorting criteria are defined as follows:

smaller

larger

exact

mask

FBConfigs with an attribute value that meets or exceeds the specified
value are matched. Precedence is given to smaller values. When a value
is not explicitly requested, the default is implied.

When the value is requested explicitly, only FBConfigs with a
corresponding attribute value that meets or exceeds the specified value
are matched. Precedence is given to larger values. When the value is not
requested explicitly, larger behaves exactly smaller.

Only FBConfigs whose corresponding attribute value exactly matches
the requested value are considered.

For an FBConfig to be considered, all the bits that are set in the requested
value must be set in the corresponding attribute. Additional bits might
be set in the attribute.

77

4: OpenGL and X: Advanced Topics

78

Table 4-3 illustrates how each attribute is matched. Note that “No effect” means that the
default behavior is to have no preference when searching for a matching FBConfig.

Table 4-3 FBConfig Attribute Defaults and Sorting Criteria
Attribute Default Sorting Criteria
GLX_BUFFER_SI ZE 0 Smaller
GLX_LEVEL 0 Smaller
GLX_DOUBLEBUFFER No effect Smaller
GLX_STEREO Fal se Exact
GLX_AUX_BUFFERS 0 Smaller
GLX _RED _SI ZE 0 Larger
CGLX_GREEN_SI ZE 0 Larger
GLX_BLUE_SI ZE 0 Larger
GLX_ALPHA SI ZE 0 Larger
GLX_DEPTH_SI ZE 0 Larger
CGLX_STENCI L_SI ZE 0 Larger
GLX_ACCUM RED_SI ZE 0 Larger
GLX_ACCUM GREEN_SI ZE 0 Larger
GLX_ACCUM BLUE_SI ZE 0 Larger
GLX_ACCUM ALPHA_SI ZE 0 Larger
GLX_SAMPLE_BUFFERS_ARB 0if GLX_SAMPLES ARB=0; Smaller
otherwise, 1.
GLX_SAMPLES_ARB 0 Smaller
GLX X VI SUAL_TYPE No effect Exact
GLX_TRANSPARENT_TYPE GLX_NONE Exact
GLX_TRANSPARENT_| NDEX_VALUE No effect Exact
GLX_TRANSPARENT_RED VALUE No effect Exact

007-2392-003

Using Visuals and Framebuffer Configurations

007-2392-003

Table 4-3 FBConfig Attribute Defaults and Sorting Criteria (continued)
Attribute Default Sorting Criteria
CGLX_TRANSPARENT_GREEN_VALUE No effect Exact
CGLX_TRANSPARENT_BLUE_VALUE No effect Exact
GLX_TRANSPARENT _ALPHA VALUE No effect Exact
GLX_VI SUAL_CAVEAT GLX_NONE Exact if
specified;
otherwise,
minimum
GLX_DRAWABLE_TYPE GLX_W NDOW BI T Mask
GLX_RENDER_TYPE GLX_RGBA BI T Mask
GLX_X_ RENDERABLE No effect Exact
GLX_FBCONFI G_I D No effect Exact

There are several uses for the gIXChooseFBConfig() function:

Retrieve an FBConfig with a given ID specified with GLX_FBCONFI G_I D.
Retrieve the FBConfig that is the best match for a given list of visual attributes.

Retrieve first a list of FBConfigs that match some criteria—for example, each
FBConfig available on the screen or all double-buffered visuals available on the
screen. Then call gIXGetFBConfigAttrib() to find their attributes and choose the
one that best fits your needs.

Once the FBConfig is obtained, you can use it to create a GLX pixmap, window, or
pbuffer (see “Using Pixel Buffers” on page 90).

Below is a description of what happens when you call gIXChooseFBConfig():

If no matching FBConfig exists or if an error occurs (that is, an undefined GLX
attribute is encountered in attrib_list, screen is invalid, or dpy does not support the
GLX extension), then NULL is returned.

If attrib_list is not NULL and more than one FBConfig is found, then an ordered list is
returned with the FBConfigs that form the “best” match at the beginning of the list.
(“How an FBContfig Is Selected” on page 82 describes the selection process.) Use
XFree() to free the memory returned by gIXChooseFBConfig().

79

4: OpenGL and X: Advanced Topics

80

e If G X_RENDER TYPE is in attrib_list, the value that follows is a mask indicating
which types of drawables will be created with it. For example, if GLX_RGBA BI T |
GLX_COLOR_| NDEX_BI T is specified as the mask, then gIXChooseFBConfig()
searches for FBConfigs that can be used to create drawables that work with both
RGBA and color index rendering contexts. The default value for
GLX_RENDER TYPEis GLX_RGBA BI T.

The attribute GLX_DRAWABLE_TYPE as as its value a mask indicating which
drawables to consider. Use it to choose FBConfigs that can be used to create and
render to a particular GLXDrawable. For example, if GLX_ W NDOW BI T |

GLX_PI XMAP_BI T is specified as the mask for GLX_DRAWABLE_TYPE then
glXChooseFBConfig() searches for FBConfigs that support both windows and GLX
pixmaps. The default value for GLX_DRAWABLE_TYPE is GLX_W NDOW BI T.

If an FBConfig supports windows it has an associated X visual. Use the
GLX_X_VI SUAL_TYPE attribute to request a particular type of X visual.

Note that RGBA rendering may be supported for any of the six visual types, but color
index rendering can be supported only for PseudoColor, StaticColor, GrayScale, and
StaticGray visuals (that is, single-channel visuals). The GLX_X_VI SUAL_TYPE attribute
is ignored if GLX_DRAWABLE_TYPE is specified in attrib_list and the mask that follows
does not have GLX_W NDOW BI T set.

GLX_X_RENDERABLE is a Boolean indicating whether X can be used to render into a
drawable created with the FBConfig. This attribute is always true if the FBConfig
supports windows and/or GLX pixmaps.

Retrieving FBConfig Attribute Values

To get the value of a GLX attribute for an FBConfig, call the following function:

int gl XGet FBConfi gAttrib(Display *dpy, GLXFBConfig config,
i nt attribute, int *value)

If gIXGetFBConfigAttrib() succeeds, it returns Success, and the value for the specified
attribute is returned in value; otherwise, it returns an error.

Note: An FBConfig has an associated X visual if and only if the GLX_DRAWABLE_TYPE
value has the GLX_W NDOW BI T bit set.

007-2392-003

Using Visuals and Framebuffer Configurations

To retrieve the associated visual, call the following function:

XVi sual I nfo *gl XGet Vi sual FronFBConf i g(Di spl ay *dpy,
GLXFBConfi g config)

If config is a valid FBConfig and it has an associated X visual, then information describing
that visual is returned; otherwise, NULL is returned. Use XFree() to free the returned data.

To create a GLX rendering context, a GLX window, or a GLX pixmap using an FBConfig,
call gIXCreateNewContext(), gIXCreateWindow(), or gIXCreatePixmap(). Their formats
follow:

GLXCont ext gl XCr eat eNewCont ext (Di spl ay *dpy, GLXFBConfig config,
i nt render_type, GLXContext share_list,
Bool direct)

GLXW ndow gl XCr eat eW ndow(Di spl ay *dpy, GLXFBConfi g config,
W ndow win, const int *attrib_list)

GLXPi xmap gl XCr eat ePi xmap(Di spl ay *dpy, GLXFBConfi g config,
Pi xmap pixmap, const int *attrib_list)

The window passed to glXCreateWindow() must be created with an X visual
corresponding to config; that is, it should be created using the same visual returned by
g1XGetVisualFromFBConfig() for that FBConfig. Similarly, the pixmap passed to
glXCreatePixmap() must have the same color depth as config. If these requirements are
not met, creating the window or pixmap will fail with an X BadMat ch error.

The attrib_list argument specifies optional additional attributes to use in creating
windows or pixmaps. Currently no additional attributes are defined; so, this parameter
must always be NULL.

These functions are analogous to the glXCreateContext() and gIXCreateGLXPixmap()
functions, but they use GLXFBConfigs instead of visuals. See the
gl XCr eat eNewCont ext , gl XCr eat eW ndow and gl XCr eat ePi xmap man pages for

detailed information.

To create a pixel buffer using an FBConfig, see “Using Pixel Buffers” on page 90.

007-2392-003 81

4: OpenGL and X: Advanced Topics

How an FBConfig Is Selected

If more than one FBConfig matches the specification, they are prioritized as follows
(Table 4-3 on page 78 summarizes this information):

82

Preference is given to FBConfigs with the largest GLX_RED_SI ZE,
GLX_GREEN_SI ZE, and GLX_BLUE_SI ZE.

If the requested GLX_ALPHA_SI ZE is zero, preference is given to FBConfigs that
have GLX_ALPHA_SI ZE set to zero; otherwise, preference is given to FBConfigs that
have the largest GLX_ALPHA_SI ZE value.

If the requested number of GLX_AUX_BUFFERS is zero, preference is given to
FBConlfigs that have GLX_AUX_BUFFERS set to zero; otherwise, preference is given
to FBConlfigs that have the smallest GLX_AUX_BUFFERS value.

If the requested size of a particular ancillary buffer is zero (for example,
GLX_DEPTH_BUFFERIs zero), preference is given to FBConfigs that also have that
size set to zero; otherwise, preference is given to FBConfigs that have the largest
size.

If the requested value of either G X_SAMPLE_BUFFERS_ARB or
GLX_SAMPLES_ARB is zero, preference is given to FBConfigs that also have these
attributes set to zero; otherwise, preference is given to FBConfigs that have the
smallest size.

If GLX_X_ VI SUAL_TYPE is not specified but there is an X visual associated with the
FBConlfig, the visual type is used to prioritize the FBConfig.

If GLX_RENDER_TYPE has GLX_RGBA_BI T set, the visual types are prioritized as
follows: TrueColor, DirectColor, PseudoColor, StaticColor, GrayScale, and
StaticGray.

If only the GLX_COLOR | NDEX s set in GLX_RENDER_TYPE, visual types are
prioritized as PseudoColor, StaticColor, GrayScale, and StaticGray.

If GLX_VI SUAL_CAVEAT is set, the implementation for the particular system on
which you run determines which visuals are returned. See “EXT_visual_rating—
The Visual Rating Extension” on page 119 for more information.

007-2392-003

Using Colormaps

Related Functions

Using Colormaps

The FBConfig feature introduces the following functions:
e gIXGetFBConfigAttrib()

¢ gIXGetFBConfigs()

¢ gIXChooseFBConfig()

¢ glXCreateWindow()

¢ glXCreatePixmap()

¢ glXCreateNewContext()

¢ gIXGetVisualFromFBConfig()

This section describes the use of colormaps in some detail. Note that in many cases, you
will not need to worry about colormaps: just use the drawing area widget and create a
TrueColor visual for your RGBA OpenGL program. However, under certain
circumstances, for example, if the OpenGL program uses indexed color, the information
in this section is important. The section discusses these topics:

¢ “Background Information About Colormaps”
* “Choosing Which Colormap to Use”

¢ “Colormap Example”

Background Information About Colormaps

007-2392-003

OpenGL supports two rendering modes: RGBA mode and color-index mode.
¢ In RGBA mode, color buffers store red, green, blue, and alpha components directly.

¢ In color-index mode, color buffers store indexes (names) of colors that are
dereferenced by the display hardware. A color index represents a color by name
rather than by value. A colormap is a table of index-to-RGB mappings.

83

4: OpenGL and X: Advanced Topics

Note: Onyx4 and Silicon Graphics Prism systems do not support color index rendering;
only RGBA mode is available.

OpenGL color modes are described in some detail in the section “RGBA versus
Color-Index Mode” in Chapter 5, “Color,” of the OpenGL Programming Guide.

The X Window System supports six different types of visuals, with each type using a
different type of colormap (see Table 4-1 on page 71). Although working with X
colormaps may initially seem somewhat complicated, the X Window System does allow
you a great deal of flexibility in choosing and allocating colormaps. Colormaps are
described in detail with example programs in Chapter 7, “Color,” of O’'Reilly

Volume One.

The rest of this section addresses some issues having to do with X colormaps.

Color Variation Across Colormaps

The same index in different X colormaps does not necessarily represent the same color.
Ensure that you have the correct color index values for the colormap you are using.

If you use a nondefault colormap, avoid color macros such as BlackPixel() and

WhitePixel(). As is required by X11, these macros return pixel values that are correct for
the default colormap but inappropriate for your application. The pixel value returned by
the macro is likely to represent a color different from black or white in your colormap, or
worse yet, be out of range for it. If the pixel value does not exist in your colormap (such
as any pixel greater than three for a 2-bit overlay colormap), an X protocol error results.

A “right index-wrong map” type of mistake is most likely if you use the macros
BlackPixel() and WhitePixel(). For example, the BlackPixel() macro returns zero, which
is black in the default colormap. That value is always transparent (not black) in a popup
or overlay colormap (if it supports transparent pixels).

You might also experience problems with colors not appearing correctly on the screen
because the colormap for your window is not installed in the hardware.

Multiple Colormap Issues

The need to deal with multiple colormaps of various sizes raises new issues. Some of
these issues do not have well-defined solutions.

84 007-2392-003

Using Colormaps

007-2392-003

There is no default colormap for any visual other than the default visual. You must tell
the window manager which colormaps to install using XSetWMColormapWindows(),
unless you use the GLwMDrawingArea widget, which does this for you.

With multiple colormaps in use, colormap flashing may occur if you exceed the
hardware colormap resources.

An application has as many of its colormaps installed as possible only when it has
colormap focus.

— At that time, the window manager attempts to install all the application’s
colormaps, regardless of whether or not all are currently needed. These
colormaps remain installed until another application needs to have one of them
replaced.

— If another application gets colormap focus, the window manager installs that
application’s (possibly conflicting) colormaps. Some widgets may be affected
while other widgets remain unchanged.

— The window manager does not reinstall the colormaps for your application
until your application has the colormap focus again.

The getColormap() call defined in Example 4-2 returns a sharable colormap (the ICCCM
RGB_DEFAULT_MAP) for a TrueColor visual given a pointer to XVisuallnfo. This is useful
to reduce colormap flashing for non-default visuals.

Example 4-2 Retrieving the Default Colormap for a Visual

Col or map

{

get Col or map(XVi sual Info * vi)
St at us st at us;
XSt andar dCol or map *st andar dCaps;
Col or map cmap;
i nt i, nunCnaps;

/* be lazy; using DirectColor too involved for this exanmple */
if (vi->class != TrueCol or)
fatal Error(“no support for non-TrueCol or visual”);
/* if no standard col ormap but TrueCol or, make an unshared one */
status = XmuLookupSt andar dCol or map(dpy, vi->screen, vi->visualid,
vi - >dept h, XA RGB_DEFAULT_MAP,
/* replace */ False, /* retain */ True);
if (status == 1) {
status = XGet RGBCol or maps(dpy, Root W ndow(dpy, vi->screen),
&st andar dCmaps, &nuntCraps,

85

XA RGB_DEFAULT_MAP) ;
if (status == 1)
for (i = 0; i < nunCmaps; i++)

if (standardCmaps[i].visualid == vi->visualid) {
cmap = standardCmaps[i]. col or map;
XFr ee(st andar dCraps) ;
return cnap;

}

}
cmap = XCreat eCol or map(dpy, Root W ndow(dpy, vi->screen),

vi - >vi sual, All ocNone);
return cmap;

Choosing Which Colormap to Use

When choosing which colormap to use, follow these heuristics:

1.

2.

3.

Decide whether your program will use RGBA or color-index mode.

Some operations, such as texturing and blending, are not supported in color-index
mode; others, such as lighting, work differently in the two modes. Because of that,
RGBA rendering is usually the right choice. (See “Choosing between RGBA and
Color-Index Mode” in Chapter 5, “Color,” of the OpenGL Programming Guide).

OpenGL and GLX require an RGBA mode program to use a TrueColor or
DirectColor visual and require a color-index mode program to use a PseudoColor or
StaticColor visual.

Note: Remember that RGBA is usually the right choice for OpenGL on a Silicon
Graphics system. Onyx4 and Silicon Graphics Prism systems support only RGBA
mode.

Choose a visual.

If you intend to use RGBA mode, specify RGBA in the attribute list when calling
glXChooseVisual().

If RGBA is not specified in the attribute list, gIXChooseVisual() selects a
PseudoColor visual to support color index mode (or a StaticColor visual if no
PseudoColor visual is available).

Create a colormap that can be used with the selected visual.

Using Colormaps

4. If a PseudoColor or DirectColor visual has been selected, initialize the colors in the
colormap.

Note: DirectColor visuals are not supported on Silicon Graphics systems.
Colormaps for TrueColor and StaticColor visuals are not writable.

5. Make sure the colormap is installed.

Depending on what approach you use, you may or may not have to install it
yourself:

¢ If you use the GLwMDrawingArea widget, the widget automatically calls
XSetWMColormapWindows() when the GLwNinstallColormap resource is
enabled.

* The colormap of the top-level window is used if your whole application uses a
single colormap. In that case, you have to make sure the colormap of the
top-level window supports OpenGL.

¢ Call XSetWMColormapWindows() to ensure that the window manager knows
about your window’s colormap. The following is the syntax for
XSetWMColormapWindows():

St at us XSet WWCol or mapW ndows(Di spl ay *display, W ndow w,
W ndow * colormap_windows, int count)

Many OpenGL applications use a 24-bit TrueColor visual (by specifying GLX_RGBA in
the visual attribute list when choosing a visual). Colors usually look right in TrueColor,
and some overhead is saved by not having to look up values in a table. On some systems,
using 24-bit color can slow down the frame rate because more bits must be updated per
pixel, but this is not usually a problem.

If you want to adjust or rearrange values in a colormap, you can use a PseudoColor
visual.

Lighting and antialiasing are difficult in color-index mode, and texturing and
accumulation do not work at all. It may be easier to use double buffering and redraw to
produce a new differently colored image, or use the overlay plane. In general, avoid
using PseudoColor visuals if possible. Overlays, which always have PseudoColor
colormaps on current systems, are an exception to this.

007-2392-003 87

4: OpenGL and X: Advanced Topics

Colormap Example

Stereo Rendering

88

The following is a brief example that demonstrates how to store colors into a given
colormap cell:

XCol or xc;
di spl ay = XOpenbDi spl ay(0);
vi sual = gl XChooseVi sual (di spl ay, DefaultScreen(display),
attributeList);
context = gl XCreateContext (display, visual, 0, G._FALSE);
col or Map = XCreat eCol ormap (di splay, RootW ndow di spl ay,
vi sual - >screen), visual->visual, AlocAl);

if (ind < visual->col ormap_si ze) {
xc. pi xel = ind;
xc.red = (unsigned short)(red * 65535.0 + 0.5);
xc.green = (unsigned short)(green * 65535.0 + 0.5);
xc. blue = (unsigned short)(blue * 65535.0 + 0.5);
xc.flags = DoRed | DoGreen | DoBl ue;
XSt oreCol or (display, colorMp, &xc);

Note: Do not use Al | ocAl | on overlay visuals with transparency. If you do,
XCreateColormap() fails because the transparent cell is read-only.

Silicon Graphics systems and OpenGL both support stereo rendering. In stereo
rendering, the program displays a scene from two slightly different viewpoints to
simulate stereoscopic vision, resulting in a 3D image to a user wearing a special viewing
device. Various viewing devices exist. Most of them cover one eye while the computer
displays the image for the other eye and then cover the second eye while the computer
displays the image for the first eye.

This section describes the following topics:
* “Stereo Rendering Background Information”

¢ “Performing Stereo Rendering”

007-2392-003

Stereo Rendering

Stereo Rendering Background Information

Stereo rendering is done only using quad-buffered stereo. Legacy, low-end Silicon
Graphics systems support a different stereo interface referred to as divided-screen stereo,
which is no longer described in this document.

Quad-buffered stereo uses a separate buffer for the left and right eye; this results in four
buffers if the program is already using a front and back buffer for animation.
Quad-buffered stereo is supported on all current Silicon Graphics systems .

For more information on stereo rendering, see the man pages for the following functions:
* XSGIStereoQueryExtension()

¢ XSGIStereoQueryVersion()

¢ XSGIQueryStereoMode()

* XSGISetStereoMode()

* XSGISetStereoBuffer()

Note: The st er eo man page includes sample code fragments and pointers to sample
code as well as general information on stereo rendering.

Performing Stereo Rendering

007-2392-003

To perform stereo rendering, follow these steps:

1. Perform initialization; that is, make sure the GLX extension is supported and so on.
2. Put the monitor in stereo mode with the set non command.

3. Choose a visual with front left, front right, back left, and back right buffers.

4

Perform all other setup operations illustrated in the examples in Chapter 2,
“OpenGL and X: Getting Started” and Chapter 3, “OpenGL and X: Examples”.

Create a window, create a context, make the context current, and so on.
5. Start the event loop.

6. Draw the stereo image as shown in the following code:
gl Dr awBuf f er (GL_BACK_LEFT) ;

89

4: OpenGL and X: Advanced Topics

Using Pixel Buffers

About GLXPbuffers

PBuffers and Pixmaps

90

< draw |l eft image >
gl Dr awBuf f er (GL_BACK_RI GHT) ;
< draw right image >
gl XSwapBuffers(...);

For more information, see the glDrawBuffer() man page.

In addition to rendering on windows and GLX pixmaps, you can render to a pixel buffer
(GLXPbulffer or pbuffer for short). This section describes the GLX features that allow you
render to pbuffers.

A GLXPbuffer or pbuffer is an additional non-visible rendering pbuffer for an OpenGL
renderer. A pbuffer has the following distinguishing characteristics:

Support hardware-accelerated rendering

Pbuffers support hardware-accelerated rendering in an off-screen buffer unlike
pixmaps, which typically do not allow accelerated rendering.

Window-independent

Pbuffers differ from auxiliary buffers (aux buffers) because they are not related to
any displayable window; so, a pbuffer may not be the same size as the application’s
window while an aux buffer must be the same size as its associated window.

A pbuffer is equivalent to a GLXPixmap with the following exceptions:

There is no associated X pixmap. Also, since pbuffers are a GLX resource, it may not
be possible to render to them using X or an X extension other than GLX.

The format of the color buffers and the type and size of associated ancillary buffers
for a pbuffer can be described only with an FBConfig; an X visual cannot be used.

It is possible to create a pbuffer whose contents may be arbitrarily and
asynchronously lost at any time.

007-2392-003

Using Pixel Buffers

¢ A pbuffer works with both direct and indirect rendering contexts.

A pbuffer is allocated in non-visible framebuffer memory—that is, areas for which
hardware-accelerated rendering is possible. Applications include additional color
buffers for rendering or image processing algorithms.

Volatile and Preserved Pbuffers

Creating a Pbuffer

007-2392-003

Pbuffers can be either volatile—that is, their contents can be destroyed by another
window or pbuffer—or preserved—that is, their contents are guaranteed to be correct and
are swapped out to virtual memory when other windows need to share the same
framebuffer space. The contents of a preserved pbuffer are swapped back in when the
pbuffer is needed. The swapping operation incurs a performance penalty. Therefore, use
preserved pbuffers only if re-rendering the contents is not feasible.

A pbuffer is intended to be a static resource: a program typically allocates it only once,
rather than as a part of its rendering loop. The framebuffer resources that are associated
with a pbuffer are also static. They are deallocated only when the pbuffer is destroyed or,
in the case of volatile pbuffers, as the result of X server activity that changes framebuffer
requirements of the server.

To create a pbuffer, call glXCreatePbuffer():

GLXPbuf f er gl XCr eat ePbuf f er (Di spl ay *dpy, GLXFBConfig config,
i nt attrib_list)

This call creates a single pbuffer and returns its XID.

The parameter attrib_list specifies a list of attributes for the pbuffer. Note that the
attribute list is defined in the same way as the list for gIXChooseFBConfig(): attributes
are immediately followed by the corresponding desired value and the list is terminated
with None.

The following attributes can be specified in attrib_list:

GLX_PBUFFER_W DTH Determines the pixel width of the rectangular
pbutffer. This token must be followed by an integer
specifying the desired width. If not specified, the
default value is 0.

91

4: OpenGL and X: Advanced Topics

92

GLX_PBUFFER_HEI GHT

GLX_PRESERVED CONTENTS

GLX_LARGEST_PBUFFER

Determines the pixel height of the rectangular
pbuffer. This token must be followed by an integer
specifying the desired height. If not specified, the
default value is 0.

If specified with a value of Fal se, an volatile pbuffer
is created, and its contents may be lost at any time. If
this attribute is not specified or if it is specified with a
value of Tr ue, the contents of the pbuffer are
preserved, typically, by swapping out portions of the
pbuffer to main memory when a resource conflict
occurs. In either case, the client can register to receive
a buffer clobber event and be notified when the
pbuffer contents have been swapped out or have been
damaged.

If specified with a value of Tr ue, the largest available
pbuffer (not exceeding the requested size specified by
the values of GLX_PBUFFER W DTHand
GLX_PBUFFER_HEI GHT) will be created when
allocation of the pbuffer would otherwise fail due to
lack of graphics memory. If this attribute is not
specified or is specified with a value of Fal se,
allocation will fail if the requested size is too large
even if a smaller pbuffer could be successfully
created. The gIXQueryDrawable() function may be
used to determine the actual allocated size of a
pbutffer.

The resulting pbuffer contains color buffers and ancillary buffers as specified by config. It
is possible to create a pbuffer with back buffers and to swap the front and back buffers

by calling gIXSwapBuffers(). Note that a pbuffer uses framebuffer resources; so,

applications should deallocate it when not in use—for example, when the application

windows are iconified.

If gIXCreatePbuffer() fails to create a pbuffer due to insufficient resources, a BadAl | oc
X protocol error is generated and NULL is returned. If config is not a valid FBConfig,
then a GLXBadFBConf i g error is generated; if config does not support pbuffers, a
BadMat ch X protocol erroris generated.

007-2392-003

Using Pixel Buffers

Rendering to a Pbuffer

007-2392-003

Any GLX rendering context created with an FBConfig or X visual that is compatible with
an FBConfig may be used to render into the pbuffer. For the definition of compatible, see
the man pages for glXCreateNewContext(), giXMakeCurrent(), and
glXMakeCurrentRead SGI().

If a pbulffer is created with GLX_PRESERVED CONTENTS set to false, the storage for the
buffer contents—or a portion of the buffer contents—may be lost at any time. It is not an
error to render to a pbuffer that is in this state, but the effect of rendering to it is
undefined. It is also not an error to query the pixel contents of such a pbuffer, but the
values of the returned pixels are undefined.

Because the contents of a volatile pbuffer can be lost at any time with only asynchronous
notification (using the buffer clobber event), the only way a client can guarantee that
valid pixels are read back with glReadPixels() is by grabbing the X server. Note that this
operation is potentially expensive and you should not do it frequently. Also, because
grabbing the X server locks out other X clients, you should do it only for short periods of
time. Clients that do not wish to grab the X server can check whether the data returned
by glReadPixels() is valid by calling XSync() and then checking the event queue for
“buffer clobber events (assuming that any previous clobber events were pulled off of the
queue before the glReadPixels() call).

To destroy a pbulffer call glXDestroyPbuffer(), whose format follows:
voi d gl XDest royPbuf f er (Di spl ay *dpy, GLXPbuffer pbuf)

To query an attribute associated with a GLX drawable (GLXWindow, GLXPixmap, or
GLXPbulffer), call gIXQueryDrawable(), whose format follows:

voi d gl XQuer yDr awabl e(Di spl ay *dpy, GLXDrawabl e drawable, int attribute
unsi gned int *value)

The GLX_W DTH, GLX_HEI GHT, and GLX_FBCONFI G_| D attributes may be queried for
all types of drawables. The query returns respectively the allocated pixel width, pixel
height, and the XID of the FBConfig with respect to which the drawable was created.

The GLX_PRESERVED_CONTENTS and GLX_LARGEST_PBUFFER attributes are
meaningful only for GLXPbuffer drawables and return the values specified when the
pbuffer was created. The values returned when querying these attributes for
GLXWindow or GLXPixmap drawables are undefined.

93

4: OpenGL and X: Advanced Topics

To find the FBConfig for a drawable, first retrieve the ID for the FBConfig using
glXQueryDrawable() and then call gIXChooseFBConfig() with that ID specified as the
GLX_FBCONFI G_| Dattribute value in the attribute list. For more details, see “Using
Framebuffer Configurations” on page 74.

Directing the Buffer Clobber Event

94

An X client can ask to receive GLX events on a GLXWindow or GLXPbulffer by calling
glXSelectEvent():

voi d gl XSel ect Event (Di spl ay *dpy, GLXDr awabl e drawable,
unsi gned | ong event_mask)

Currently, you can only select the GLX_BUFFER_CLOBBER_MASK GLX event bit in
event_mask. The event structure is as follows:

typedef struct {

int event_type; /* GLX_DAMAGED or GLX SAVED */

int draw_type; /* GLX_ W NDOW or G.X PBUFFER */

unsi gned | ong serial; /* Nunmber of |ast request processed */
/* by server */

Bool send_event; /* True if event was generated by a */
/* SendEvent request */

Di spl ay *di spl ay; /* Display the event was read from*/

G XDr awabl e drawabl e; /* XID of Drawable */

unsigned int buffer_mask; /* Mask indicating which buffers are */
[* affected */

unsi gned int aux_buffer; /* Wich aux buffer was affected */

int x, vy;

int width, height;

int count; /* If nonzero, at |least this many nore */
/* events*/

} GLXPbuffer Cl obber Event;

A single X server operation can cause several buffer clobber events to be sent; for
example, a single pbuffer may be damaged and cause multiple buffer clobber events to
be generated. Each event specifies one region of the GLXDrawable that was affected by
the X server operation.

Events are sent to the application and queried using the normal X event commands
(XNextEvent(), XPending(), and so on). The event_mask value returned in the event
structure indicates which color and ancillary buffers were affected. The following values
can be set in the event structure:

007-2392-003

Using Pixel Buffers

GLX_FRONT_LEFT_BUFFER BI T
GLX_FRONT_RI GHT BUFFER BI T
GLX_BACK_LEFT_BUFFER BI T
GLX_BACK_RI GHT_BUFFER BI T
GLX_AUX_BUFFERS BI T
GLX_DEPTH BUFFER BI T
GLX_STENCI L_BUFFER BI T
GLX_ACCUM BUFFER BI T

All the buffer clobber events generated by a single X server action are guaranteed to be
contiguous in the event queue. The conditions under which this event is generated and
the event type vary, depending on the type of the GLXDrawable:

¢ For a preserved pbulffer, a buffer clobber event with event_type GLX_SAVEDis
generated whenever the contents of the pbuffer are swapped out to host memory.
The event(s) describes which portions of the pbuffer were affected. Clients that
receive many buffer clobber events referring to different save actions should
consider freeing the pbuffer resource to prevent the system from thrashing due to
insufficient resources.

¢ For a volatile pbuffer, a buffer clobber event with event_type GLX_DAMAGED is
generated whenever a portion of the pbuffer becomes invalid. The client may wish
to regenerate the invalid portions of the pbuffer.

¢ For a window, a clobber event with event_type GLX_SAVEDis genererated whenever
an ancillary buffer associated with the window is moved out of off-screen memory.
The event indicates which color or ancillary buffers and which portions of those
buffers were affected. Windows do not generate clobber events when clobbering
each other’s ancillary buffers—only standard X damage events.

Calling glXSelectEvent() overrides any previous event mask that was set by the client for
the drawable. Note that it does not affect the event masks that other clients may have
specified for a drawable, because each client rendering to a drawable has a separate event
mask for it.

To find out which GLX events are selected for a window or pbuffer, call
glXGetSelectedEvent():

voi d gl XSel ect Event (Di spl ay *dpy, GLXDrawabl e drawable,
unsi gned | ong event_mask)

007-2392-003 95

4: OpenGL and X: Advanced Topics

Related Functions

The GLX pbuffer feature provides the following functions:
e glXCreatePbuffer()

¢ glXDestroyPbuffer()

e glXQueryDrawable()

e glXSelectEvent()

¢ glXGetSelectedEvent()

Using Pixmaps

An OpenGL program can render to three kinds of drawables: windows, pbuffers, and
pixmaps. A pixmap is an offscreen rendering area. On Silicon Graphics systems, pixmap
rendering is not hardware-accelerated. Furthermore, pixmap rendering does not support
all features and extensions of the underlying graphics hardware.

e— Image buffer

glxpixmap

pixmap

Figure 4-2 X Pixmaps and GLX Pixmaps

In contrast to windows, where drawing has no effect if the window is not visible, a
pixmap can be drawn to at any time because it resides in memory. Before the pixels in the

96 007-2392-003

Using Pixmaps

pixmap become visible, they have to be copied into a visible window. The unaccelerated
rendering for pixmap pixels has performance penalties.

This section explains how to create and use a pixmap and identifies some related issues:

“Creating and Using Pixmaps” provides basic information about working with
pixmaps.

“Direct and Indirect Rendering” provides some background information; it is
included here because rendering to pixmaps is always indirect.

Creating and Using Pixmaps

007-2392-003

Integrating an OpenGL program with a pixmap is very similar to integrating it with a
window. The following steps describe how you create and use pixmaps.

Note: Steps 1-3 and step 6 are described in detail in “Integrating Your OpenGL Program
With IRIS IM” on page 16.

—_

Open the connection to the X server.

Choose a visual.

Create a rendering context with the chosen visual.
This context must be indirect.

Create an X pixmap using XCreatePixmap().

Create a GLX pixmap using glXCreateGLXPixmap(), whose syntax is shown in the
following:

GLXPi xmap gl XCr eat eGLXPi xmap(Di spl ay *dpy, XVisual I nfo *uvis,
Pi xmap pixmap)

The GLX pixmap “wraps” the pixmap with ancillary buffers determined by vis (see
Figure 4-2).

The pixmap parameter must specify a pixmap that has the same depth as the visual
to which vis points (as indicated by the visual’s GLX_BUFFER_SI ZE value).
Otherwise, a BadMat ch X pr ot ocol error results.

Use glXMakeCurrent() to bind the pixmap to the context.

You can now render into the GLX pixmap.

97

4: OpenGL and X: Advanced Topics

Direct and Indirect Rendering
OpenGL rendering is done differently in different rendering contexts (and on different
platforms).
e Direct rendering

Direct rendering contexts support rendering directly from OpenGL using the
hardware, bypassing X entirely. Direct rendering is much faster than indirect
rendering, and all Silicon Graphics systems can do direct rendering to a window.

¢ Indirect rendering

In indirect rendering contexts, OpenGL calls are passed by GLX protocol to the X
server, which does the actual rendering. Remote rendering has to be done
indirectly; pixmap rendering is implemented to work only indirectly.

Note: As arule, use direct rendering unless you are using pixmaps. If you ask for direct
and your DISPLAY is remote, the library automatically switches to indirect rendering.

In indirect rendering, OpenGL rendering commands are added to the GLX protocol
stream, which in turn is part of the X protocol stream. Commands are encoded and sent
to the X server. Upon receiving the commands, the X server decodes them and dispatches
them to the GLX extension. Control is then given to the GLX process (with a context
switch) so that the rendering commands can be processed. The faster the graphics
hardware, the higher the overhead from indirect rendering.

You can obtain maximum indirect-rendering speed by using display lists; they require a
minimum of interaction with the X server. Unfortunately, not all applications can take
full advantage of display lists; this is particularly a problem in applications using
rapidly-changing scene structures. Display lists are efficient because they reside in the X
server.

You may see multiple X processes on your workstation when you are running indirect
rendering OpenGL programs.

98 007-2392-003

Performance Considerations for X and OpenGL

Performance Considerations for X and OpenGL

Due to synchronization and context switching overhead, there is a possible performance
penalty for mixing OpenGL and X in the same window. GLX does not constrain the order
in which OpenGL commands and X requests are executed. To ensure a particular order,
use the GLX commands gIXWaitGL() and gIXWaitX(). Use the following guidelines:

* glXWaitGL() prevents any subsequent X calls from executing until all pending
OpenGL calls complete. When you use indirect rendering, this function does not
contact the X server and is therefore more efficient than glFinish().

* glXWaitX(), when used with indirect rendering, is just the opposite: it ensures that
all pending X calls complete before any further OpenGL calls are made. Also, giving
this function an advantage over XSync() when rendering indirectly, gIXWaitX()
does not need to contact the X server.

* Remember also to batch Expose events. See “Exposing a Window” on page 50.

* Make sure no additional Expose events are already queued after the current one.
You can discard all but the last event.

Portability

If you expect to port your program from X to other windowing systems (such as
Microsoft Windows), certain programming practices make porting easier. The following
is a partial list:

¢ Isolate your windowing functions and calls from your rendering functions. The
more modular your code is in this respect, the easier it is to switch to another
windowing system.

e For Microsoft Windows porting only, avoid naming variables with any variation of
the words “near” and “far”. They are reserved words in Intel xx86 compilers. For
instance, you should avoid the names _near, _f ar, __near, far, near, f ar,
Near, Far, NEAR, FAR, and so on.

* Microsoft Windows does not have an equivalent to gIXCopyContext().

007-2392-003 99

Chapter 5

007-2392-003

Introduction to OpenGL Extensions

OpenGL extensions introduce new features and enhance performance. Some extensions
provide completely new functionality; for example, the convolution extension allows
you to blur or sharpen images using a filter kernel. Other extensions enhance existing
functionality; for example, the fog function extension enhances the existing fog
capability.

Many features initially introduced as extensions are promoted to become core features of
later releases of OpenGL. When an extension is promoted in this fashion, it is
documented as part of the core OpenGL 1.x API and usually will not be described in
detail in this document.

Using the following topics, this chapter provides basic information about OpenGL
extensions:
¢ “Determining Extension Availability” on page 102

e “ARB_get_proc_address—The Dynamic Query-Function-Pointer Extension” on
page 106

* “Finding Information About Extensions” on page 109

101

5: Introduction to OpenGL Extensions

Determining Extension Availability

Function names and tokens for OpenGL extensions have a suffix describing the source of
the extension—for example, glConvolutionFilter2DEXT() or glColorTableSGI(). The
names of the extensions themselves (the extension strings) use prefixes—for example,
SGI_color_table. The following is a detailed list of all suffixes and prefixes:

ARB

EXT

SGI

SGIS

SGIX

ATI

ATIX

HP, NV, etc.

102

Used for extensions that have been developed and adopted by the
OpenGL Architecture Review Board, the standards body controlling the
OpenGL APL

Used for extensions that have been reviewed and approved by more
than one OpenGL vendor.

Used for extensions that are available across the Silicon Graphics
product line, although the support for all products may not appear in
the same release.

Not all SGI extensions are supported on Silicon Graphics Onyx4 and
Silicon Graphics Prism systems.

Used for extensions that are found only on a subset of Silicon Graphics
platforms.

Used for extensions that are experimental: In future releases, the API for
these extensions may change, or they may not be supported at all.

Used for extensions that have been developed by ATI Technologies.
These extensions are found only on platforms using ATI graphics
processor units (GPUs), including Silicon Graphics Onyx4 and Silicon
Graphics Prism graphics systems.

Used for experimental ATI extensions in the same fashion as SGIX.

Used for extensions that were initially developed by other vendors.
These extensions are included for compatibility with code ported from
those vendors’ platforms and are not available on all Silicon Graphics
platforms.

007-2392-003

Determining Extension Availability

Note: When an extension is promoted to the OpenGL core, the function names and
tokens have the extension suffix removed. Unless otherwise documented, the suffixed
and non-suffixed forms of the functions and tokens have exactly the same meaning and
use. Extensions that are promoted typically are available in both suffixed and
non-suffixed forms for backwards compatibility.

How to Check for OpenGL Extension Availability

007-2392-003

All supported extensions have a corresponding definition in gl . h or gl ext. h (a
companion header included by gl . h) and a token in the extensions string returned by
glGetString(). For example, if the ABGR extension (EXT_abgr) is supported, it is defined
in gl . h as follows:

#define GL_EXT abgr 1

GL_EXT_abgr appears in the extensions string returned by glGetString(). Use the
definitions in gl . h at compile time to determine if procedure calls corresponding to an
extension exist in the library.

Note: In this document, OpenGL extensions are listed by name without the GL_ prefix.
For example, the ABGR extension is listed under a section heading of “EXT_abgr”.
However, when testing for the presence of an OpenGL extension in the extensions string
or in the OpenGL header files, you must use the GL_ prefix. Note that extensions for the
GLX and GLU APIs have names similarly prefixed by GLX_and GL_, and you must use
these prefixes when testing for run-time or compile-time support of those extensions.

Applications should do compile-time checking—for example, making sure
GL_EXT_abgr is defined; and run-time checking—for example, making sure
GL_EXT_abgr is in the extension string returned by glGetString().

¢ Compile-time checking ensures that entry points such as new functions or new
enums are supported. You cannot compile or link a program that uses a certain
extension if the client-side development environment does not support it.

* Run-time checking ensures that the extension is supported for the OpenGL server
and run-time library you are using.

103

5: Introduction to OpenGL Extensions

Note that availability depends not only on the operating system version but also on
the particular hardware you are using: even though the OpenGL library supports
GL_CONVOLUTI ON_2D_EXT, you get an GL_| NVALI D_OPERATI ONerror if you call
glConvolutionFilter2DEXT() on a Silicon Graphics Prism system.

Note that | i bdl interface allows users to dynamically load their own shared objects as
needed. Applications can use this interface, particularly the dlsym() function, to compile
their application on any system, even if some of the extensions used are not supported.

Example Program: Checking for Extension Availability
In Example 5-1, the function QueryExtension() checks whether an extension is available.

Example 5-1 Checking for Extensions

mai n(int argc, char* argv[]) {

if (!QueryExtension("G._EXT_texture_object")) {
fprintf(stderr, "texture_object extension not supported.\n");
exit(1);

static GLbool ean QueryExt ensi on(char *ext Nane)

{
/*
** Search for extName in the extensions string. Use of strstr()
** is not sufficient because extension names can be prefixes of
** other extension names. Coul d use strtok() but the constant
** string returned by gl GetString nmight be in read-only menory.
*/
char *p;
char *end;
i nt ext NamelLen;

ext NaneLen = strl en(ext Nane);
p = (char *)gl Get String(G._EXTENSI ONS) ;
if (NULL == p) {

return GL_FALSE;
}

104 007-2392-003

Determining Extension Availability

end = p + strlen(p);

while (p < end) {
int n=strcspn(p, " ");
if ((extNaneLen == n) && (strncnp(extNane, p, n) == 0)) {
return GL_TRUE;
}
p+=(n + 1);
}
return G_L_FALSE;

As an alternative to checking for each extension explicitly, you can make the following
calls to determine the system and graphics driver release on which your program is
running;:

gl Get St ri ng(G._RENDERER)

gl Get Stri ng(GL_VERSI ON)

Given a list of extensions supported on that system for that release, you can usually
determine whether the particular extension you need is available. For this to work on all
systems, a table of different systems and the extensions supported has to be available.
Some extensions have been included in patch releases; so, be careful when using this
approach.

Checking for GLX Extension Availability

If you use any of the extensions to GLX, described in Chapter 6, “Resource Control
Extensions,” you also need to check for GLX extension availability.

Querying for GLX extension support is similar to querying for OpenGL extension
support with the following exceptions:

007-2392-003

Compile-time def i nes are found in gl x. h or gl xext . h (a companion header
included by gl x. h).

Prefix the names of GLX extensions with GLX_ when testing for run-time or
compile-time support, just as you must prefix the names of OpenGL extensions
with G__.

To get the list of supported GLX extensions, call gIXQueryExtensionsString().

GLX versions must be 1.1 or greater (no extensions to GLX 1.0 exist).

105

5: Introduction to OpenGL Extensions

e All current Silicon Graphics platforms (Fuel, Tezro, InfiniteReality,
InfinitePerformance, Onyx4, and Silicon Graphics Prism systems) support GLX 1.3.
Most GLX extensions were promoted to the GLX 1.3 core, in some cases with minor
changes in functionality. For maximum portability, applications should use the GLX
1.3 core functions and tokens instead of the extensions.

Taking these exceptions into account, adapt the process described in “How to Check for
OpenGL Extension Availability” on page 103.

ARB_get _proc_address—The Dynamic Query-Function-Pointer
Extension

On SGI IRIX systems, all functions defined by OpenGL and GLX extensions are exported
statically from the OpenGL link library so that they may be called directly. This is also
true on SGI Linux systems. However, the OpenGL application binary interface (ABI) for
Linux does not guarantee that extension functions or core functions beyond the set of
functions defined in OpenGL 1.2 and GLX 1.3 can be called statically on all Linux
environments. This is because the OpenGL library, which defines static entry points, and
the OpenGL hardware drivers, which define extensions, may come from different
sources and, therefore, not always be compatible with each other. This is also true on
Microsoft Windows systems.

As a result, the following applications must access extension functions and newer core
functions, those beyond OpenGL 1.2 and GLX 1.3, dynamically at run time:

e Applications written to be portable to Linux systems by other vendors

* Applications written to be portable to Microsoft Windows systems

* Applications originally written on Linux systems by other vendors or Microsoft

Windows systems and ported to SGI Linux systems

The GLX_ARB_get_proc_address extension allows dynamic access to these functions at
run time by providing the gIXGetProcAddressARB() function.

The glXGetProcAddressARB() Function

Function gIXGetProcAddressARB() is called with the name of another OpenGL or GLX
extension function or a newer core function and has the following format:

106 007-2392-003

ARB_get_proc_address—The Dynamic Query-Function-Pointer Extension

007-2392-003

voi d (*gl XGet ProcAddress(const GLubyte *procname)) (voi d)

The value procname is a string such as “ gl | sObj ect Buf f er ATl ” or

“ gl Conpr essedTex| mage2DARB” . If the OpenGL or GLX function corresponding to
procname exists, gIXGetProcAddressARB() returns a function pointer to the
corresponding function. Because the signatures of extension functions differ, the type of
the pointer returned by gIXGetProcAddressARB() is the generic (voi d (*) (voi d)).
The pointer must be mapped to an appropriate function pointer type corresponding to
the extension and then used to call the extension function when required.

The standard headers GL/ gl ext . h and GL/ gl xext . h define, respectively, OpenGL
and GLX interfaces (formats and token values) for extensions and newer core functions.
In addition to defining formats, the headers also define C typedefs for these functions to
ease the process of storing return values from glXGetProcAddressARB(). The following
is a consistent convention for deriving a typedef for such a function:

1. Convert the name of the function to upper case.
2. Prefix the result with “ PFNGL" (meaning “pointer to GL function”).
3. Suffix the result with “ PROC".

For example, consider the following extension function:
GLbool ean gl | sObj ect Buf f er ATl (GLui nt buffer);

Its corresponding typedef in gl ext . h would be the following:
typedef GLbool ean (*PFNGLI SOBJECTBUFFERATI PROC) (G.ui nt buffer);

The typedef names for GLX extension functions are defined similarly, but using the
prefix “ PENGLX" instead of * PFNGL" .

Example 5-2 shows how to query and use an extension function pointer. The example
uses the glIsObjectBufferATI function(), which is part of the
GL_ATI_vertex_array_object extension, supported on Onyx4 and Silicon Graphics Prism
systems. The example assumes that the application has already checked the
GL_EXTENSI ONSstring to confirm that the extension is supported and that all references
to functions, typedefs, or tokens used by the extension are wrapped in a #i f def
GL_ATI _vertex_array_obj ect/#endi f block so that the application using this
code compiles correctly on platforms not supporting the extension. For clarity, these
compile- and run-time checks are not included in the example.

107

5: Introduction to OpenGL Extensions

Example 5-2 Querying Extension Function Pointers

/* Declare global variable containing the extension function pointer */
PFNGLI SOBJECTBUFFERATI PRCC | sQbj ect Buf f er ATI = NULL;

/* Query the function pointer */
| sChj ect Buf f er ATI = (PFNGLI SOBJECTBUFFERATI PROC)
gl XGet Pr ocAddr essARB(“gl | sCbj ect Buf fer ATI ") ;

/* This should never happen if the extension is supported;
* but sanity check anyway, for robustness. */
if (IsObjectBufferATlI == NULL) {

error(“Cannot obtain extension function pointer.”);

}

/* Later in the program call the extension function as needed */
GLuint buffer = bufferID; /* A buffer 1D to be queried */

/* Equivalent to calling
* if (gllsObjectBufferATl (buffer) == GL_TRUE) {
*/
if ((*1sObjectBufferATl)(buffer) == GL_TRUE) {
/* buffer is indeed a vertex array buffer ID */

}

Note: Calling gIXGetProcAddressARB() is an expensive operation. Do not call it every
time an extension is to be called. Instead, query function pointers once after creating a
context and cache the resulting pointers for future use.

Extension Wrapper Libraries and Portability Notes

108

Using the GLX_ARB_get_proc_address extension directly, as described in Example 5-2,
can be tedious and intrusive on application code by causing many GL function calls to
be performed indirectly through function pointers. Instead, use one of the many
available open source extension wrapper libraries, which hide most of the details.

SGI does not currently recommend or support a specific wrapper library, because there

are many popular libraries and they are frequently updated to keep track of new vendor
and ARB-approved OpenGL extensions. Consult the the developer and support forums

007-2392-003

Finding Information About Extensions

area of the OpenGL website, http:/ /www.opengl.org/ (which is also a good place to
look for information about many other OpenGL programming topics).

As a starting point, consider the following extension wrapper libraries:

Wrapper Library Website

GLEW (The OpenGL Extension Wrangler library)
http:/ / glew.sourceforge.net/

GLee (The OpenGL Easy Extension library)

http:/ /elf-stone.com/downloads.php#GLee
ext gl gen http:/ /trenki.50free.org/extgl/
OglExt http:/ /www.julius.caesar.de/oglext/

Note that most of these libraries run on Microsoft Windows as well as Linux (and
sometimes other operating systems with OpenGL support as well).

Finding Information About Extensions

Man Pages

007-2392-003

You can find information about the extensions through man pages, example programs,
and extension specifications.

For the most up-to-date information on extensions, see the following man pages:
glintro Information about the current state of extensions on your system.
gl Xintro Information on GLX extensions.

Note that individual OpenGL man pages have a MACHI NE DEPENDENCI ES section that
lists the systems on which certain extension functions or options are implemented.

Multisampling is supported on all current Silicon Graphics systems with the exception

of Fuel, Tezro, and InfinitePerformance systems. Currently, it can be used with windows
or pixel buffers of multisampling-capable visual types, but not with pixmaps.

109

5: Introduction to OpenGL Extensions

Example Programs

All complete example programs included in this guide (though not the short code
fragments) are available on IRIX systems in/ usr / shar e/ sr ¢/ QpenGL if you have the
ogl _dev. sw. sanpl es subsystem installed. You can also find example programs
through the Silicon Graphics Developer Toolbox, http:/ /toolbox.sgi.com/.

Extension Specifications

Extension specifications describe extension functionality from the implementor’s point
of view. They are prepared to fit in with the OpenGL specification. Specification contain
detailed information that goes beyond what developers usually need to know. If you
need more details on any of the extensions, search for its specification in the OpenGL
Extenstion Registry, http://oss.sgi.com/projects/ogl-sample/registry/.

110 007-2392-003

Chapter 6

007-2392-003

Resource Control Extensions

This chapter describes resource control extensions, which are extensions to GLX. GLX is

an extension to the X Window System that makes OpenGL available in an X Window

System environment. All GLX functions and other elements have the prefix gl X (just as

all OpenGL elements have the prefix gl).

You can find information on GLX in several places, including the following:

¢ Introductory information—See the gl Xi nt r 0 man page.

¢ In-depth coverage—See Appendix C, “OpenGL and Window Systems,” of the
OpenGL Programming Guide and OpenGL Programming for the X Window System.

See “OpenGL and Associated Tools and Libraries” on page xl for bibliographical
information.

This chapter explains how to use extensions to GLX. The following extensions are
presented in alphabetical order:

e “EXT_import_context—The Import Context Extension” on page 112

¢ “SGI_make_current_read—The Make Current Read Extension” on page 114

e “EXT_visual_info—The Visual Info Extension” on page 117

e “EXT_visual_rating—The Visual Rating Extension” on page 119

The following sections describe extensions that are experimental:
¢ “SGIX_tbconfig—The Framebuffer Configuration Extension” on page 120
¢ “SGIX_pbuffer—The Pixel Buffer Extension” on page 121

111

6: Resource Control Extensions

Using OpenGL in an X Window System environment is described in the following
chapters of this guide:

Chapter 2, “OpenGL and X: Getting Started”
Chapter 3, “OpenGL and X: Examples”
Chapter 4, “OpenGL and X: Advanced Topics”

EXT_import_context—The Import Context Extension

Importing a Context

112

The import context extension, EXT_import_context, allows multiple X clients to share an
indirect rendering context. The extension also adds some query routines to retrieve
information associated with the current context.

To work effectively with this extension, you must first understand direct and indirect
rendering. See “Direct and Indirect Rendering” on page 98 for some background
information.

You can use the extension to import another process” OpenGL context, as follows:

To retrieve the XID for a GLX context, call gIXGetContextIDEXT():
GLXCont ext | D gl XGet Cont ext | DEXT(const GLXCont ext ctx)

This function is client-side only. No round trip is forced to the server; unlike most X
calls that return a value, gIXGetContextIDEXT() does not flush any pending events.

To create a GLX context, given the XID of an existing GLX context, call
gIXImportContextEXT(). You can use this function in place of gIXCreateContext()
to share another process’ indirect rendering context:

G XCont ext gl XI mpor t Cont ext EXT(Di spl ay *dpy, G.XContext|D contextID)

Only the server-side context information can be shared between X clients;
client-side state, such as pixel storage modes, cannot be shared. Thus,
glXImportContextEXT() must allocate memory to store client-side information.

007-2392-003

EXT_import_context—The Import Context Extension

A call to gIXImportContextEXT() does not create a new XID. It merely makes an
existing XID available to the importing client. The XID goes away when the creating
client drops its connection or the ID is explicitly deleted. The object goes away when
the XID goes away and the context is not current to any thread.

To free the client-side part of a GLX context that was created with
glXImportContextEXT(), call gIXFreeContextEXT():

voi d gl XFreeCont ext EXT(Di spl ay *dpy, GLXContext ctx)

glXFreeContextEXT() does not free the server-side context information or the XID
associated with the server-side context.

Retrieving Display and Context Information

007-2392-003

Use the extension to retrieve the display of the current context or other information about
the context, as follows:

To retrieve the current display associated with the current context, call
gIXGetCurrentDisplayEXT(), which has the following format:

Di splay * gl XGet Current Di spl ayEXT(void);

If there is no current context, NULL is returned. No round trip is forced to the server;
unlike most X calls that return a value, gIXGetCurrentDisplayEXT() does not flush
any pending events.

To obtain the value of a context’s attribute, call gIXQueryContextInfoEXT():

i nt gl XQueryCont ext | nf oEXT(Di spl ay *dpy, GLXContext ctx,
i nt attribute, i Nt *value)

The values and types corresponding to each GLX context attribute are listed in
Table 6-1.

Table 6-1 Type and Context Information for GLX Context Attributes

GLX Context Attribute Type Context Information
GLX_SHARE_CONTEXT_EXT XID XID of the share list context
GLX_VI SUAL_| D_EXT XID Visual ID
GLX_SCREEN_EXT i nt Screen number

113

6: Resource Control Extensions

New Functions

The EXT_import_context extension introduces the following new functions:
¢ glXGetCurrentDisplayEXT()

¢ gIXGetContextIDEXT()

¢ glIXImportContextEXT()

¢ glXFreeContextEXT()

¢ gIXQueryContextInfoEXT()

SGI_make _current_read—The Make Current Read Extension

114

Note: The functionality of SGI_make_current_read was promoted to a standard part of
GLX 1.3. For new applications, use the GLX 1.3 g]XMakeContextCurrent() and
glXGetCurrentReadDrawable() functions instead of this extension.

The make current read extension, SGI_make_current_read, allows you to attach separate
read and write drawables to a GLX context by calling gIXMakeCurrentReadSGI(),
which has the following prototype:

Bool gl XMakeCurrent ReadSA (Di spl ay *dpy, GLXDr awabl e draw,
GLXDr awabl e read, G.XContext gc)

The variable items are defined as follows:

dpy Specifies the connection to the X server.

draw Specifies a GLX drawable that receives the results of OpenGL drawing
operations.

read Specifies a GLX drawable that provides pixels for glReadPixels() and

glCopyPixels() operations.

gc Specifies a GLX rendering context to be attached to draw and read.

007-2392-003

SGI_make_current_read—The Make Current Read Extension

Read and Write Drawables

007-2392-003

In GLX 1.1, you associate a GLX context with one drawable (window or pixmap) by
calling glXMakeCurrentSGI().The function gIXMakeCurrentReadSGI() lets you attach
a GLX context to two drawables: you draw to the first one and the second serves as a
source for pixel data.

In effect, the following calls are equivalent:

gl XMakeCur r ent SA (context, win)
gl XMakeCurr ent ReadSQ (context, win, win)

Having both a read and a write drawable is useful—for example, to copy the contents of
a window to another window, to stream video to a window, and so on.

The write drawable is used for all OpenGL operations. Accumulation buffer operations
fetch data from the write drawable and are not allowed when the read and write
drawable are not identical.

The read drawable is used for any color, depth, or stencil values that are retrieved by
glReadPixels(), glCopyPixels(), glCopyTexImage(), or glCopyTexSubImage(). It is also
use by any OpenGL extension that sources images from the framebuffer in the manner
of glReadPixels(), glCopyPixels(), glCopyTexImage(), or glCopyTexSubImage().

The following is some additional information about the two drawables:

* The two drawables do not need to have the same ancillary buffers (depth buffer,
stencil buffer, and so on).

* The read drawable does not have to contain a buffer corresponding to the current
GL_READ_BUFFER of a GLX context. For example, the current G&._READ_BUFFER
may be GL_BACK, and the read drawable may be single-buffered.

If a subsequent command sets the read buffer to a color buffer that does not exist on
the read drawable—even if set implicitly by glPopAttrib()—or if an attempt is
made to source pixel values from an unsupported ancillary buffer, a

GL_I NVALI D_OPERATI ONerror is generated.

o If the current G._READ_BUFFER does not exist in the read drawable, pixel values
extracted from that drawable are undefined, but no error is generated.

* Operations that query the value of G._READ_BUFFER use the value set last in the
context, regardless of whether the read drawable has the corresponding buffer.

115

6: Resource Control Extensions

Possible Match Errors

When glXMakeCurrentReadSGI() associates two GLX drawables with a single GLX
context, a BadMat ch X pr ot ocol error is generated if either drawable was not created
with the same X screen.

The color, depth, stencil, and accumulation buffers of the two drawables do not need to
match. Some implementations may impose additional constraints, such as requiring that
the color component resolution of both drawables be the same. In such cases, a

BadMat ch X protocol error will be generated.

Retrieving the Current Drawable’s Name
The function gIXGetCurrentReadDrawableSGI() returns the name of the GLXDrawable
currently being used as a pixel query source.

e If glXMakeCurrent() specified the current rendering context, then
gIXGetCurrentReadDrawableSGI() returns the drawable specified as draw by that
glXMakeCurrent call.

o If glXMakeCurrentReadSGI() specified the current rendering context, then
glXGetCurrentReadDrawableSGI() returns the drawable specified as read by that
glXMakeCurrentReadSGI() call.

If there is no current read drawable, gIXGetCurrentReadDrawableSGI() returns None.

New Functions

The SGI_make_current_read extension introduces the following functions:
e glXMakeCurrentReadSGI()
¢ gIXGetCurrentReadDrawableSGI()

116 007-2392-003

EXT_visual_info—The Visual Info Extension

EXT _visual_info—The Visual Info Extension

Using the Visual Info

007-2392-003

Note: The functionality of EXT_visual_info was promoted to a standard part of GLX 1.3,
which is supported on all current Silicon Graphics visualization systems. For new
applications, use the GLX 1.3 gIXChooseFBConfig() function and select framebuffer
configurations based on the GLX_X_ VI SUAL_TYPE attribute instead of the

GLX_X_VI SUAL_TYPE_EXT attribute defined by this extension.

The visual info extension, EXT_visual_info, enhances the standard GLX visual
mechanism as follows:

* You can request that a particular X visual type be associated with a GLX visual.
* You can query the X visual type underlying a GLX visual.
* You can request a visual with a transparent pixel.

* You can query whether a visual supports a transparent pixel value and query the
value of the transparent pixel.

Note that the notions of level and transparent pixels are orthogonal as both level 1
and level 0 visuals may or may not support transparent pixels.
Extension

To find a visual that best matches specified attributes, call gIXChooseVisual():
XVi sual | nf o* gl XChooseVi sual (Di splay *dpy, int screen, int *attrib_list)

The following heuristics determine which visual is chosen:

Table 6-2 Heuristics for Visual Selection
If... And GLX_X_VISUAL_TYPE_EXT is... Theresultis...
CLX_RGBAisin GLX_TRUE_COLOR_EXT TrueColor visual
attrib_list.

GLX_DI RECT_COLOR_EXT DirectColor visual

117

6: Resource Control Extensions

Table 6-2

Heuristics for Visual Selection (continued)

If...

And GLX_X_VISUAL_TYPE_EXT is...

The resultis...

GLX_RGBAis
not in
attrib_list.

GLX_PSEUDO_COLOR_EXT,
GLX_STATI C_COLOR_EXT,
GLX _GRAY_SCALE_ EXT, or
GLX_STATI C_GRAY_EXT

Not in attrib_list, and if all other
attributes are equivalent...

GLX_PSEUDO_COLOR_EXT

GLX_STATI C_COLOR_EXT

GLX_TRUE_COLOR_EXT,
GLX_DI RECT_COLOR_EXT,
GLX_GRAY_SCALE_EXT, or
GLX_STATI C_GRAY_EXT

Not in attrib_list and if all other
attributes are equivalent...

Visual Selection fails

A TrueColor visual
(GLX_TRUE_COLOR_EXT) is chosen in
preference to a DirectColor visual
(GLX_DI RECT_COLOR_EXT)

PseudoColor visual

StaticColor visual

Visual selection fails

A PseudoColor visual
(GLX_PSEUDO_COLOR _EXT) is chosen in
preference to a StaticColor visual
(GLX_STATI C_COLOR_EXT)

If an undefined GLX attribute, or an unacceptable enumerated attribute value is
encountered, NULL is returned.

More attributes may be specified in the attribute list. If a visual attribute is not specified,
a default value is used. For more details, see the man page for gIXChooseVisual().

To free the data returned from glXChooseVisual(), use XFree().

Note that GLX_VI SUAL_TYPE_EXT can also be used with gIXGetConfig().

118

007-2392-003

EXT_visual_rating—The Visual Rating Extension

Using Transparent Pixels

How you specify that you want a visual with transparent pixels depends on the existing
attributes:

If ... Then call gIXChooseVisual() and specify as the value
of GLX_TRANSPARENT_TYPE_EXT ...
GLX_RGBAs in attrib_list. GLX_TRANSPARENT_RGB_EXT

GLX_RGBAis not in attrib_list. GLX_TRANSPARENT | NDEX_EXT

Do not specify one of the following values in attrib_list because typically only one
transparent color or index value is supported:

+ GLX_TRANSPARENT | NDEX_VALUE_EXT
+ GLX_TRANSPARENT { RED| GREEN| BLUE| ALPHA} VALUE_EXT

Once you have a transparent visual, you can query the transparent color value by calling
glXGetConfig(). To get the transparent index value for visuals that support index
rendering, use GLX_TRANSPARENT_| NDEX_VALUE_EXT. For visuals that support
RGBA rendering, use GLX_TRANSPARENT_{ RED| GREEN| BLUE} _ VALUE_EXT. The
visual attribute GLX_TRANSPARENT _ALPHA VALUE_EXT is included in the extension
for future use.

“Creating Overlays” on page 65 presents an example program that uses a transparent
visual for the overlay window.

EXT_visual_rating—The Visual Rating Extension

007-2392-003

Note: The functionality of EXT_visual_rating was promoted to a standard part of

GLX 1.3, which is supported on all current Silicon Graphics visualization systems. For
new applications, use the GLX 1.3 g]XChooseFBConfig() function and select framebuffer
configurations based on the GLX_CONFI G_CAVEAT attribute instead of the

GLX_VI SUAL_CAVEAT_EXT attribute defined by this extension.

The visual rating extension, EXT_visual_rating, allows servers to export visuals with
improved features or image quality but with lower performance or greater system
burden. The extension allows this without having to have these visuals selected

119

6: Resource Control Extensions

preferentially. It is intended to ensure that most—but possibly not all—applications get
the “right” visual.

You can use this extension during visual selection. While you will get a good match for
most systems, you may not get the best match for all systems.

Using the Visual Rating Extension

To determine the rating for a visual, call gIXGetConfig() with attribute set to
GLX_VI SUAL_CAVEAT_EXT. The function gIXGetConfig() returns the rating of the
visual in the parameter value, which will be either GLX_NONE_EXT or GLX_SLOW EXT.

If the GLX_VI SUAL_CAVEAT_EXT attribute is not specified in the attrib_list parameter of
glXChooseVisual(), preference is given to visuals with no caveats (that is, visuals with
the attribute set to GLX_NONE_EXT). If the GLX VI SUAL _CAVEAT_EXT attribute is
specified, then gIXChooseVisual() matches the specified value exactly. For example, if
the value is specified as GLX_NONE_EXT, only visuals with no caveats are considered.

SGIX_fbconfig—The Framebuffer Configuration Extension

Note: The functionality of SGIX_fbconfig was promoted to a standard part of GLX 1.3,
which is supported on all current Silicon Graphics visualization systems. For new
applications, use the GLX 1.3 equivalent functions and tokens instead of this extension.
For a description of framebuffer configurations in GLX 1.3, see section “Using Visuals
and Framebuffer Configurations” on page 71. Since the GLX 1.3 features are similar to
this extension, the lengthy description is not repeated here.

120 007-2392-003

SGIX_pbuffer—The Pixel Buffer Extension

SGIX_pbuffer—The Pixel Buffer Extension

Note: The functionality of SGIX_pbuffer was promoted to a standard part of GLX 1.3,
which is supported on all current Silicon Graphics visualization systems. For new
applications, use the GLX 1.3 equivalent functions and tokens instead of this extension.
For a description of pixel buffers in GLX 1.3, see section “Using Pixel Buffers” on page 90.
Since the GLX 1.3 features are similar to this extension, the lengthy description is not
repeated here.

007-2392-003 121

Chapter 7

Vertex Processing Extensions

This chapter describes how to use the following OpenGL vertex processing extensions:
* “ARB_vertex_buffer_object—The Vertex Buffer Object Extension” on page 123

¢ “ARB_window_pos—The Window-Space Raster Position Extension” on page 135
o “EXT_clip_volume_hint—The Clip Volume Hint Extension” on page 136

e “EXT_compiled_vertex_array—The Compiled Vertex Array Extension” on page 137
e “EXT_fog_coord—The Fog Coordinate Extension” on page 139

e “EXT_multi_draw_arrays—The Multiple Draw Arrays Extension” on page 141

e “EXT_secondary_color—The Secondary Color Extension” on page 142

The following groups of obsolete (legacy) vertex processing extensions are also briefly
described:

¢ “The Vertex Array Object Extensions (Legacy)” on page 145

¢ “The Texture Coordinate Generation Extensions (Legacy)” on page 147

The legacy extensions are supported for compatibility and are not fully documented in
this guide.

ARB_vertex_buffer_object—The Vertex Buffer Object Extension

007-2392-003

The ARB_vertex_buffer_object extension allows applications to store buffers containing
application-defined data in graphics memory and to draw vertex arrays using data
contained in those buffers, instead of the usual vertex array usage where array data is
taken from application memory.

123

7: Vertex Processing Extensions

Why Use Buffer Objects?

When drawing vertex arrays using unextended OpenGL 1.3, all data in the arrays must
be transferred from application memory to the graphics processor. In Onyx4 and Silicon
Graphics Prism systems (as well as all other modern graphics systems), the bandwidth
between application memory and the graphics processor (typically over an interface like
PCI-X or AGP) is substantially lower than the bandwidth between the graphics processor
and its own local graphics memory. Therefore, when drawing vertex array data
repeatedly with no changes or only small changes relative to the size of the arrays,
substantial performance increases can be realized by storing vertex arrays in graphics
memory. It is impossible to reach the maximum vertex transformation rates supported
by the graphics processor unless vertex data is being supplied from graphics memory.

This extension provides an explicit mechanism for creating and managing data buffers
in graphics memory by defining portions of those buffers as vertex arrays and drawing
vertices using those arrays.

Alternatives to Buffer Objects

124

In the past, optimization advice often included the use of OpenGL display lists to
encapsulate drawing commands. Display lists can also be stored in graphics memory
and provide similar performance benefits. However, display lists cannot be modified
once they are created; even the simplest change to a list requires destroying and
re-creating its entire contents. Also, it is considerably more difficult for the graphics
library to recognize and optimize display lists, because they can contain arbitrary
sequences of OpenGL commands, not just array data.

While Onyx4 and Silicon Graphics Prism systems do perform display list optimizations,
new applications should use buffer objects if possible. Buffer objects are more easily
optimized, and individual elements of a buffer object can be modified without needing
to re-create the entire buffer in graphics memory.

Another approach to high-performance drawing operations used in the past is for the
application to hint to the graphics library that its vertex arrays will not be modified for
some period of time by locking portions of the currently bound vertex arrays (see section
“EXT_compiled_vertex_array—The Compiled Vertex Array Extension” on page 137).
Locking allows the graphics library to copy vertex array data into graphics memory for
the duration of the lock. However, any changes to vertex array data requires the
expensive operations of unlocking, changing, and re-locking the array. Also, only a single

007-2392-003

ARB_vertex_buffer_object—The Vertex Buffer Object Extension

set of vertex arrays can be locked at a time; therefore, if multiple arrays are used for
drawing, the performance benefits of locking are lost.

While Onyx4 and Silicon Graphics Prism systems do support locking vertex arrays, new
applications should use buffer objects if possible. Multiple buffer objects can be defined
and switched without swapping buffer data out of graphics memory and, as just
described, individual elements of buffer objects can easily be modified.

Disadvantages of Buffer Objects

Using Buffer Objects

007-2392-003

While buffer objects are the easiest and most reliable way to achieve maximum geometry
throughput, graphics memory is usually a much more limited resource than application
memory. Typically graphics processors have only 256-512 MB of graphics memory, and
that memory must be shared among the framebuffer, texture, display lists, and buffer
object storage.

If an application’s use of graphics memory exceeds the amount physically present in the
system, data may be automatically swapped out when not in use. This can result in
greatly reduced performance and, in extreme cases, may result in applications
terminating due to excessive graphics memory use. Examples where such situations are
likely to arise include applications using many 2D image textures, using large 3D
textures for volume rendering, or using large vertex arrays for drawing high-complexity
models. In such cases, applications can achieve better performance by managing the
swapping of texture and buffer data into graphics memory manually instead of relying
on the automatic algorithms supported within the graphics library. However, such buffer
management can be difficult to tune. A recommended alternative is to use higher-level
scene graph APIs built on OpenGL, like OpenGL Performer and OpenGL Volumizer.
These software layers are optimized to achieve maximum performance on

Silicon Graphics systems while still supporting very large datasets.

As shown in the following code lines, buffer objects are represented by object names (of
type GLui nt) which are managed in exactly the same fashion as texture and display list
names with routines for allocating unused buffer object names, deleting named buffer
objects, and testing if a name refers to a valid buffer object:

voi d gl GenBuf f er sARB(GLsi zei n, GLuint *buffers);
voi d gl Del et eBuf f er SARB(GLsi zei n, const GLuint *buffers);
GLbool ean gl | sBuf f er ARB(GLui nt buffer) ;

125

7: Vertex Processing Extensions

Defining Buffer Objects

Note that when deleting a buffer object with glDeleteBuffersARB(), all data in graphics
memory associated with that buffer object will be freed as well. Because graphics
memory is usually a scarce resource compared to application memory, it is important to
delete buffer objects if they are no longer needed or to reuse the memory associated with
buffer objects.

Once a buffer object name has been obtained from glGenBuffers(), the corresponding
buffer object can be created by making the following call:

voi d gl Bi ndBuf f er ARB(GLenum target, GLuint buffer);

The argument buffer is the buffer object name, and target is either
GL_ARRAY_BUFFER_ARB (for vertex array data) or G._ ELEMENT_ARRAY_BUFFER_ARB
(for array index data). The newly created buffer object is initially defined with a size of
Zero.

You can also use glBindBufferARB() to bind an existing buffer object. If the bind is
successful, no change is made to the state of the newly bound buffer object and any
previous binding to target is broken.

While a buffer object is bound, operations on the target to which it is bound affect that
object, and queries of the target return information about that object.

Initially, the reserved buffer object name 0 is bound to each of G._ ARRAY_BUFFER_ARB
and GL_ELEMENT_ARRAY_BUFFER_ARB. However, there is no buffer object
corresponding to the name 0, and any attempt to operate on or query the
GL_ARRAY_BUFFER_ARB or GL_ELEMENT_ARRAY_BUFFER_ARB target when it is
bound to zero will generate errors. This is because binding to zero is used to indicate that
normal vertex array behavior should apply, as described further later in section “Using
Buffer Objects as Vertex Array Sources” on page 130.

Defining and Editing Buffer Object Contents

126

Buffer objects contain the same data that a normal OpenGL vertex array would contain,
and the data is laid out in the same fashion. However, instead of simply providing a
pointer to vertex array data in application memory, the contents of buffer objects must be
explicitly defined.

007-2392-003

ARB_vertex_buffer_object—The Vertex Buffer Object Extension

007-2392-003

Once a valid buffer object has been bound, define its contents by making the following
call:

voi d gl Buf f er Dat aARB(GLenum target, GLsi zei ptrARB size, const void *data,
GLenum usage) ,

target If the buffer contents are to be used for vertex array data (for example,
vertices, normals, texture coordinates, etc.), then target must be
GL_ARRAY_BUFFER_ARB. If the contents are to be used for vertex index
data (for example, indices into vertex array data), then target must be
GL_ELEMENT_ARRAY_BUFFER_ARB. This target is described further
later in the section “Using Buffer Objects as Vertex Array Sources” on
page 130.

data A pointer to the buffer data in application memory. The argument data
may be NULL, in which case the buffer object size is set as specified, but
its contents remain undefined.

size The length of data in basic machine units (bytes). The type of size is the
new C type GLsi zei pt r ARB. This type is an unsigned integer type
guaranteed to be large enough to represent the largest possible object in
application memory.

usage Provides a hint as to the expected usage pattern of the buffer being
defined. The following are the valid usage hints:

GL_STREAM DRAW ARB
Buffer contents will be specified once by the application and
used at most a few times as the source of a drawing
command.

GL_STREAM READ_ARB
Buffer contents will be specified once by reading data from
OpenGL and queried at most a few times by the application.

GL_STREAM COPY_ARB
Buffer contents will be specified once by reading data from
OpenGL and used at most a few times as the source of a
drawing command.

GL_STATI C_DRAW ARB
Buffer contents will be specified once by the application and
used many times as the source for drawing commands.

127

7: Vertex Processing Extensions

128

GL_STATI C_READ_ARB
Buffer contents will be specified once by reading data from
OpenGL and queried many times by the application.

GL_STATI C_COPY_ARB
Buffer contents will be specified once by reading data from
OpenGL and used many times as the source for drawing
commands.

GL_DYNAM C_DRAW ARB
Buffer contents will be respecified repeatedly by the
application and used many times as the source for drawing
commands.

GL_DYNAM C_READ_ARB
Buffer contents will be respecified repeatedly by reading
data from OpenGL and queried many times by the
application.

GL_DYNAM C_COPY_ARB
Buffer contents will be respecified repeatedly by reading
data from OpenGL and used many times as the source for
drawing commands.

The most common usage patterns for buffer objects being used as vertex array or element
sources are the following;:

GL_STATI C_DRAW ARB
Used for unchanging objects. This usage is similar to creating display
lists that will be called many times.

GL_DYNAM C_DRAW ARB
Used for objects whose contents may be edited repeatedly.

Many of the usage patterns are only expected to be relevant for future extensions built
on ARB_vertex_buffer_object that use the same buffer object mechanism for other
purposes, such as pixel or video data.

To edit (update) the contents of an existing buffer object by changing only part of the
buffer contents, make the following call:

voi d gl Buf f er SubDat aARB(GLenum target, GLi nt ptr ARB offset, GLsi zei ptr ARB
size, const void *data);

007-2392-003

ARB_vertex_buffer_object—The Vertex Buffer Object Extension

The arguments target, data, and size specify the buffer object target to be affected, a
pointer to the updated data block in application memory, and the length of the data block
to replace in the buffer in the same fashion as the corresponding parameters of
glBufferDataARB().

The argument offset specifies the start of the range of data to replace in the buffer object
in basic machine units relative to the beginning of the buffer being modified. The type of
offset is the new C type GLi nt pt r ARB. This type is an integer type guaranteed to be large
enough to represent the largest possible offset to an element of a buffer in application
memory.

Elements offset through (offset + size — 1) in the buffer object bound to target are replaced
by the corresponding elements in application memory starting at data. An error is
generated if offset is less than zero, or if (offset + size) is greater than the size of the buffer
object.

Mapping Buffer Objects to Application Memory

007-2392-003

An alternate method for editing buffer objects is to map them into application memory
by making the following call:

voi d *gl MapBuf f er ARB(G_enum target, G.enum access) ;

If the buffer object bound to target can be successfully mapped, a pointer to the buffer
contents is returned; otherwise, a GL_OUT_OF_MEMORY error will be generated.

The argument access must be one of GL_READ_ONLY_ARB, GL_WRI TE_ONLY_ARB, or
GL_READ_W\RI TE_ARB. It specifies which operations may be performed on the buffer
while it is mapped. The most common access pattern for buffer objects being used as
vertex array sources is GL_WRl TE_ONLY_ARB. It indicates that small parts of the buffer
may be updated, but nothing will be read from the buffer.

While a buffer object is mapped, no OpenGL operations may refer to the mapped data
either by issuing drawing commands that would refer to data in the mapped buffer
object or by passing pointers within the mapped region to other OpenGL commands.
Also, glBufferSubData() may not be called while the corresponding buffer object is
mapped.

After modifying mapped buffer object contents and before using that buffer object as a
source or sink for OpenGL, unmap the buffer object by making the following call:

GLbool ean gl UnmapBuf f er ARB(GLenum target) ;

129

7: Vertex Processing Extensions

If glUnmapBufferARB() returns G._ FALSE, it indicates that values in the buffer object’s
data have become corrupted (usually as the result of a screen resolution change or
another event that affects graphics memory). In this case, the buffer object contents are
undefined.

Note: Mapping buffer objects into application memory may be a very inefficient way to
modify their contents especially when performing indirect rendering, and such mapping
has several possible failure modes caused by external events such as resolution changes.
If possible, use glBufferSubData() to update buffer contents instead.

Using Buffer Objects as Vertex Array Sources

130

Once you create a buffer object and define its contents, you can use it as a source for array
drawing operations. When any of the commands defining an array pointer (including
those in the following list) is called while a buffer object is bound, the interpretation of
the pointer argument to that command is changed:

¢ glColorPointer()

¢ glEdgeFlagPointer()

¢ glIndexPointer()

¢ glNormalPointer()

¢ glTexCoordPointer()

* glVertexPointer()

* glFogCoordPointerEXT(), if the EXT_fog_coord extension is supported

¢ glSecondaryColorPointerEXT(), if the EXT_secondary_color extension is
supported

o glVertexAttribPointerARB(), if the ARB_vertex_program extension is supported
* glWeightPointerARB(), if the ARB_vertex_blend extension is supported

Instead of being interpreted as a pointer to data in application memory, the pointer is
interpreted as an offset within the currently bound buffer object.

After defining a particular array pointer in this fashion and when the corresponding
array is enabled, all vertex array drawing operations (for example, those in the following

007-2392-003

ARB_vertex_buffer_object—The Vertex Buffer Object Extension

list) will read data from the corresponding buffer object instead of from application
memory:

¢ glArrayElement()

e glDrawArrays()

¢ glDrawElements()

¢ glDrawRangeElements()

e glMultiDrawArrays()

e glMultiDrawElementsEXT()

Once an array pointer is defined as an offset within a buffer object, the buffer object may
be unbound, but the array pointer will continue to refer to that buffer object until it is
redefined. This allows different array pointers to refer to different buffer objects, as well
as to application memory. However, for maximum performance, all enabled array
pointers should refer to buffer objects, both because any access to application memory
while drawing is likely to limit performance due to bandwidth constraints and the
complexity of mixing arrays from application and buffer object memory may throw the
OpenGL implementation onto a slower and more complex code path.

When specifying array pointers as offsets within buffer objects, the application must
convert an integer offset, expressed in basic machine units into a pointer argument. For
this purpose, it is useful to define a macro like the following:

#def i ne BUFFER_OFFSET(offsef) ((char *)NULL + (offset))

For example, suppose that the bound buffer object contains an array of packed
3-component, floating point normal data and you wish to set the normal pointer to the
64th element of this array. In this case, the offset in basic machine units would be

64 * 3 * sizeof(G@.f | oat). Therefore, you would make the following call:

gl Nor mal Poi nter (3, G._FLOAT, O,
BUFFER_OFFSET(64 * 3 * sizeof (G.float)));

Using Buffer Objects as Array Indices

007-2392-003

In addition to storing vertex array data in buffer objects, array indices may also be stored.
These indices are normally specified as pointer arguments to the array drawing
commands glDrawElements(), glDrawRangeElements(), and (if the
EXT_multi_draw_arrays extension is supported) glMultiDrawElementsEXT(). By
storing both array data and array indices in buffer objects, indexed drawing operations

131

7: Vertex Processing Extensions

do not need to refer to application memory ever once they are set up. This enables
maximum performance.

Array indices in buffer objects are defined using the same calls as for array data—for
example, glBindBufferARB(), glBufferDataARB(), etc. However, the target
GL_ELEMENT_ARRAY_BUFFER_ARB must be used for indices instead of
GL_ARRAY_BUFFER ARB.

In the same fashion as the array pointer calls, if glDrawElements() or
glDrawRangeElements() is called while a buffer object is bound to
GL_ELEMENT_ARRAY_BUFFER_ARB, the indices argument to these calls is interpreted as
an offset into the buffer object, rather than a pointer to index data in application memory.
If giMultiDrawElementsEXT() is called, the indices argument is still interpreted as a
pointer into application memory; however, the contents of the memory located at that
pointer are then interpreted as an array of offsets into the buffer object, rather than an
array of pointers into application memory.

Querying Data in Buffer Objects

Sample Code

132

To query part or all of the contents of a buffer object, make the following call:

voi d gl Get Buf f er SubDat aARB(GLenum farget, GLi nt pt r ARB offset,
GLsi zei ptr ARB size, void *data);

The argumemts target, offset, and size have the same meaning as the corresponding
arguments of glBufferSubDataARB(); they specify the target to be queried and the range
of data within the buffer object bound to that target to return. The returned data is copied
to the region of application memory referenced by data.

Buffer object contents may not be queried while an object is mapped; calls to
glGetBufferSubDataARB() will generate a GL_| NVALI D_OPERATI ONerror in this case.

The following code fragment defines two buffer objects, fills them with data interpreted
respectively as vertex coordinates and vertex colors, and draws a triangle using the data
contained in the buffer objects.

#defi ne BUFFER_OFFSET(offset) ((char *)NULL + (offset))

/* Vertex coordinate and color data to place in buffer objects */
GLfl oat vertexData[] ={ -1.0, 1.0, 0.0,

007-2392-003

ARB_vertex_buffer_object—The Vertex Buffer Object Extension

007-2392-003

-1.0, -1.0, 0.0,
1.0, -1.0, 0.0
G.float colorData[] ={ 0.0, 0.0 0.0
1.0, 0.0, 0.0,
1.0, 1.0 0.0
/* Names of the vertex and color buffer objects */
GLui nt vertexBuffer, colorBuffer;

/* Cenerate two unused buffer object names */
gl GenBuffersARB(1, &vertexBuffer);
gl GenBuf fersARB(1, &col orBuffer);

/* Bind the first buffer object and fill it with vertex data */
gl Bi ndBuf f er ARB(GL_ARRAY_BUFFER, vertexBuffer);

gl Buf f er Dat aARB(GL_ARRAY_BUFFER, si zeof (vertexData), vertexData,
GL_STATI C_DRAW ;

/* Bind the second buffer object and fill it with color data */
gl Bi ndBuf f er ARB(GL_ARRAY_BUFFER, col orBuffer);

gl Buf f er Dat aARB(GL_ARRAY_BUFFER, si zeof (col orData), col orDat a,
GL_STATI C_DRAW ;

/* Enable vertex and color arrays for drawing */
gl Enabl ed i ent St at e(G._VERTEX_ARRAY) ;
gl Enabl ed i ent St at e(G._COLOR_ARRAY) ;

/* Set the vertex array pointer to the start of the vertex buffer
obj ect */

gl Bi ndBuf f er ARB(GL_ARRAY_BUFFER, vertexBuffer);

gl VertexPoi nter (3, G._FLOAT, 0, BUFFER _OFFSET(0));

/* Set the color array pointer to the start of the color buffer object

*/
gl Bi ndBuf f er ARB(GL_ARRAY_BUFFER, col orBuffer);
gl Col or Poi nter (3, G._FLOAT, 0, BUFFER _OFFSET(0));

/* Unbind the array buffer target, since all enabled array
* pointers have now been set.

*/

gl Bi ndBuf f er ARB(GL_ARRAY_BUFFER, 0);

/*

* Everything up to this point is initialization. Now the application

* can enter its draw ng | oop.

133

7: Vertex Processing Extensions

New Functions

134

*/

whil e (!draw ngLoopDone()) {
/* Performinput and per-loop processing, if required */
doLoopPr ocessi ng();

/* Draw the triangle defined by the vertex and col or buffer objects
*
/

gl DrawArrays(G._TRI ANGLE_STRI P, 0, 3);
}

/*
* When the drawing | oop is conplete, buffer objects should be del eted.
*/

/* Disable the vertex and col or arrays */
gl Di sabl ed i ent St at e(GL_VERTEX_ARRAY) ;
gl Di sabl el i ent St at e(G._COLOR_ARRAY) ;

/* Free data contained in the buffer objects, and del ete the objects */
gl Del et eBuf f er sARB(1, vertexBuffer);
gl Del et eBuf f er sARB(1, col orBuffer);

The ARB_vertex_buffer_object extension introduces the following functions:
e glBindBufferARB()

¢ glBufferDataARB()

¢ glBufferSubDataARB()

¢ glDeleteBuffersARB()

* glGenBuffersARB()

¢ glGetBufferSubDataARB()

¢ glIsBufferARB()

e glMapBufferARB()

¢ glUnmapBufferARB()

007-2392-003

ARB_window_pos—The Window-Space Raster Position Extension

ARB_window_pos—The Window-Space Raster Position Extension

The ARB_window_pos extension provides a set of functions to directly set the raster
position in window coordinates. This extension bypasses the model-view and projection
matrices and the viewport-to-window mapping.

Why Use the Window-Space Raster Position Extension?

When drawing two-dimensional geometry, applications often want to have pixel-precise
control of where pixels are drawn on the screen. Normally when specifying the current
raster position, the raster position specified by the application is treated in the same
fashion as a vertex: it is transformed by the model-view and projection matrices and then
sent through the viewport-to-window mapping to arrive at a window-space raster
position.

While it is possible to set the raster position to a specific window-space location using the
conventional mechanism, doing so requires careful setup of the transformation matrices
and viewport mapping. Also, if the projected window-space raster position is outside the
window bounds, it may be marked invalid so that nothing will be drawn by
glDrawPixels(), even though this effect may be desirable (for drawing pixel images that
are partially outside the window but whose visible regions are still drawn).

This extension introduces a mechanism for directly setting the raster position in
window-space coordinates and ensuring that the resulting raster position will always be
valid even if it is outside the window.

Using the Window-Space Raster Position Extenstion

007-2392-003

The current raster position may be defined in window space with any of the following
calls:

voi d gl WndowPos2sARB(GLshort x, G.short y);

voi d gl WndowPos2i ARB(GLint x, Gint y);

voi d gl WndowPos2f ARB(GLfl oat x, G.float y);

voi d gl W ndowPos2dARB(GLdoubl e x, GL.double v);

voi d gl WndowPos3sARB(G.short x, G.short y, Gshort z);
void gl WndowPos3i ARB(G.int x, Gint y, Gint z);

voi d gl WndowPos3f ARB(GLfl oat x, G.float y, Gfloat z);
voi d gl W ndowPos3dARB(GLdoubl e x, G.double y, G.double z);

135

7: Vertex Processing Extensions

In the glWindowPos2*() forms of this call, only the x and y raster position coordinates
are specified, and raster position z is always set to zero. In the glWindowPos3*() forms,
x, y, and z are all specified.

The following are the vector forms of these calls;

voi d gl W ndowPos2svARB(const GLshort *pos);
voi d gl WndowPos2i vARB(const GLint *pos);
voi d gl WndowPos2f vARB(const GLfl oat *pos);
voi d gl WndowPos2dvARB(const GLdoubl e *pos) ;
voi d gl W ndowPos3svARB(const GLshort *pos);
voi d gl W ndowPos3i VARB(const GLint *pos);
voi d gl W ndowPos3f vARB(const GLfl oat *pos);
voi d gl W ndowPos3dvARB(const GL.doubl e *pos) ;

In the glWindowPos2*vARB() forms of this call, the argument is a pointer to a
two-element vector specifying x and y, and the raster position z is always set to zero. In
the glWindowPos3*vARB() forms, the argument is a pointer to a three-element vector
specifying x, y, and z.

For all forms of glWindowPos*(), associated data (raster color, texture coordinates, etc.)
for the current raster position is taken from the current state values in the same fashion
as for glRasterPos*(). However, lighting, texture coordinate generation, and clipping are
not performed by glWindowPos*().

New Functions

The ARB_window_pos extesnion introduces the 16 functions listed in preceding section.

EXT _clip_volume_hint—The Clip Volume Hint Extension

The EXT_clip_volume_hint extension provides a mechanism for applications to indicate
that they do not require clip volume clipping for primitives. It allows applications to
maximize performance in situations where they know that clipping is unnecessary.

136 007-2392-003

EXT_compiled_vertex_array—The Compiled Vertex Array Extension

Why Use Clip Volume Hints?

Clipping geometry to the clip volume can decrease performance, and is not always
needed. In many situations, applications can determine that part or all of the geometry
being rendered lies entirely inside the clip volume; in other words, that such geometry
will never be clipped. This is typically done by testing bounding boxes around
application geometry against the clip volume. While such tests might in principle be
done using OpenGL features such as the NV_occlusion_query extension, it is usually
best to simply compare bounding boxes against the plane equations defining the clip
volume entirely in the application code.

Using Clip Volume Hints

To hint that clip volume clipping does not need to be performed, call glHint() with a
target of CLI P_VOLUME_CLI PPI NG_HI NT_EXT and a mode of GL_FASTEST. To hint
that clip volume clipping must be performed, use a mode of G._NI CEST instead.

As with all hints, the clip volume hint is only an indication and the OpenGL
implementation may not respect the hint when set to GL_FASTEST. However, if large
amounts of geometry can easily be tested to confirm that they need not be clipped, then
there may be performance gains in using the hint particularly when using multiple
user-defined clipping planes.

EXT_compiled_vertex_array—The Compiled Vertex Array Extension

The EXT_compiled_vertex_array extension defines an interface which allows static
(unchanging) vertex arrays in application memory to be cached, pre-transformed, or
pre-compiled.

Why Use Compiled Vertex Arrays?

007-2392-003

Compiled vertex arrays may be used to cache the transformed results of array data for
reuse by several glDrawArrays(), glArrayElement(), or glDrawElements() commands.
For example, you might get better performance when drawing a large mesh of
quadrilaterals one strip at a time, where each successive strip shares half its vertices with
the previous strip. It also allows transferring array data to faster memory for more
efficient processing.

137

7: Vertex Processing Extensions

Using compiled vertex arrays is an optimization technique that should be used only
when porting old code that already uses client-side vertex arrays for drawing. Whenever
possible in new applications, use buffer objects instead (see
“ARB_vertex_buffer_object—The Vertex Buffer Object Extension” on page 123).

Compiled vertex arrays should be used only when executing multiple vertex array

drawing commands that collectively refer multiple times to most of the elements in the
locked range. The performance benefits of using compiled vertex arrays with very small
vertex arrays (consequently, not reusing many elements) are unlikely to be worthwhile.

Using Compiled Vertex Arrays

To use compiled vertex arrays, follow these steps:

1. Identify the range of elements of the currently bound vertex arrays that may be
reused in subsequent drawing operations

2. Make the following call:
voi d gl LockArraysEXT(GLint first, GLsizei count);

The argument first specifies a starting element index and count specifies the number
of elements to lock. Elements first through (first + count — 1) of all enabled vertex
arrays will be locked.

3. Render geometry using glDrawArrays(), glDrawElements(), or other vertex array
drawing commands.

While vertex arrays are locked, changes made to array contents by an application
may not be reflected in any vertex array drawing commands. Furthermore, vertex
array drawing commands that refer to array elements outside the locked range have
undefined results.

4. When finished drawing data in the locked ranges, make the following call:
voi d gl Unl ockArraysEXT(void);

This unlocks all arrays; subsequent changes to vertex arrays are properly reflected
by drawing commands, and the restriction of drawing only elements within the
locked range is lifted.

138 007-2392-003

EXT_fog_coord—The Fog Coordinate Extension

New Functions

The EXT_compiled_vertex_array extension introduces the following functions:
¢ glLockArraysEXT()
¢ glUnlockArraysEXT()

EXT fog coord—The Fog Coordinate Extension

The EXT_fog_coord extension introduces the fog coordinate, a new per-vertex attribute,
which may be used in fog computation in place of the fragment’s eye distance.

Why Use Fog Coordinates?

Normally, when fog is enabled, the fog factor computed for each fragment is based on
the distance from the camera to the fragment. This distance is fed into one of three
parameterized fog models (linear, exponential, or exponential-squared), as selected by
parameters to glFog*().

Fog models based only on fragment distance do not provide a level of control sufficient
for effects such as patchy fog. By specifying arbitrary per-vertex values as input to the
fog model rather than fragment distance, applications can produce more sophisticated
and realistic fog models.

Using Fog Coordinates

007-2392-003

To select use of either the fog coordinate or the fragment eye distance when computing
fog, specify the fog coordinate source by making the following call:

gl Fogi (G._FOG_COORDI NATE_SQURCE_EXT, param) ;
If param is GL_FOG_COORDI NATE_EXT, the fog coordinate is used in fog computations.

If param is GL_FRAGVENT_DEPTH_EXT, the fragment eye distance is used. Initially
fragment eye distance is used.

139

7: Vertex Processing Extensions

Fog coordinates are interpolated over primitives in the same fashion as colors, texture
coordinates, and other vertex attributes. When drawing immediate-mode geometry, the
current fog coordinate is specified by calling one of the following functions:

voi d gl FogCoor df EXT(GLf | oat coord) ;
voi d gl FogCoor ddEXT(GLdoubl e coord) ;
voi d gl FogCoor df VEXT(GLf | oat *coord) ;
voi d gl FogCoor ddvEXT(GLdoubl e *coord) ;

The fog coordinate may also be specified when drawing using vertex arrays. An array of
per-vertex fog coordinates is defined by making the following call:

voi d gl FogCoor dPoi nt er EXT(GLenum type, GLsi zei stride, const GLvoid *ptr);

The argument type specifies the type of data in the array and must be either G._FLOAT
or GL_DOUBLE. The argument stride specifies the offset in basic machine units from one
fog coordinate to the next in the array starting at ptr. As with other vertex array
specification calls, a stride of zero indicates that fog coordinates are tightly packed in the
array.

To enable or disable fog coordinates when drawing vertex arrays, call
glEnableClientState() or glDisableClientState() with parameter
GL_FOG_COORDI NATE_ARRAY_EXT.

Querying the Fog Coordinate State

New Functions

140

The current fog coordinate can be queried by calling glGetFloatv() with parameter name
GL_CURRENT_FOG_COORDI NATE_EXT. Parameters of the fog coordinate vertex array
pointer can be queried by calling glGetIntegerv() with parameter name
GL_FOG_COORDI NATE_ARRAY_TYPE_EXT or

GL_FOG_COORDI NATE_ARRAY_STRI DE_EXT and calling glGetPointerv() with
parameter name GL_FOG_COORDI NATE_ARRAY_PQO NTER_EXT.

The EXT_fog_coord extension introduces the following functions:
¢ glFogCoordfEXT()

¢ glFogCoorddEXT()

¢ glFogCoordfvEXT()

007-2392-003

EXT_multi_draw_arrays—The Multiple Draw Arrays Extension

e glFogCoorddvEXT()
e glFogCoordPointerEXT()

EXT_multi_draw_arrays—The Multiple Draw Arrays Extension

The EXT_multi_draw_arrays extension defines two functions that allow multiple groups
of primitives to be rendered from the same vertex arrays.

Why Use Multiple Draw Arrays?

When drawing many small, disjoint geometric primitives from a single set of vertex
arrays, a separate call to glDrawArrays() or glDrawElements() is required for each
primitive. This can be inefficient due to the setup required for each call. Using this
extension, multiple disjoint ranges of vertex arrays can be drawn in a single call. This
reduces the setup overhead and code complexity.

Using Multiple Draw Arrays

007-2392-003

When drawing more than one range of data from a set of vertex arrays, where each such
range is a contiguous group of elements in the arrays, make the following call:

voi d gl Mul ti DrawAr raysEXT(GLenum mode, const GLint *first,
const GLsizei *count, G.sizei primcount);

This is equivalent to the following multiple calls to glDrawArrays():

for (int i = 0; i < princount; i++) {
if (count[i]) > 0)
gl DrawArrays(node, first[i], count[i]);

}

When drawing more than one range of data, where each range is defined by a contiguous
range of indices, make the following call:

voi d gl Mul ti DrawEl enent sEXT(GLenum mode, const GLsizei *count,
GLenum type, const GLvoid **indices, GLsizei primcount);

This is equivalent to the following multiple calls to glDrawElements();

for (int i =0; i < princount; i++) {

141

7: Vertex Processing Extensions

New Functions

if (count[i]) > 0)
gl Dr awEl enent s(node, count[i], type, indices[i]);

}

The ith element of the count array is the number of array indices to draw, and the ith
element of the index array is a pointer to the array indices. All indices must be of the same
specified type.

The EXT_multi_draw_arrays extension introduces the following functions:
¢ glMultiDrawArraysEXT()
¢ glMultiDrawElementsEXT()

EXT_secondary_color—The Secondary Color Extension

The EXT_secondary_color extension introduces the secondary color, a new per-vertex
attribute. When lighting is disabled, the secondary color may be added to the color
resulting from texturing. In unextended OpenGL 1.3, this color sum computation is only
possible when lighting is enabled, and the secondary color used in this situation is based
on the specular term of lighting equations rather than being explicitly defined by the
application.

Why Use Secondary Color?

142

Many rendering algorithms use texture-based lighting computations rather than the
builtin vertex lighting of OpenGL. While texture-based lighting is more difficult to
specify, it supports arbitrary lighting models. In unextended OpenGL 1.3, the color sum
hardware is not available to texture-based lighting. By introducting an explicit secondary
color attribute, lighting effects such as non-textured specular highlights can easily be
produced even when using texture-based lighting.

007-2392-003

EXT_secondary_color—The Secondary Color Extension

Using Secondary Color

007-2392-003

To control the use of secondary color and color sum when OpenGL lighting is disabled,
call glEnable() or glDisable() with parameter G._COLOR_SUM EXT.

Only the red, green, and blue components of the secondary color can be controlled; the
alpha component is unused in the color sum and is assumed to be zero. Initially, the
secondary color is (0,0,0).

Secondary color is interpolated over primitives in the same fashion as color. When
drawing immediate-mode geometry, the current secondary color is specified by calling
one of the following functions:

voi d gl Col or 3bEXT(GLbyte red, GLbyte green, GLbyte blue);

voi d gl Col or 3ubEXT(GLubyt e red, GLubyte green, GLubyte blue);
voi d gl Col or 3sEXT(GLshort red, GLshort green, GLshort blue);
voi d gl Col or 3usEXT(GLushort red, GLushort green, GLushort blue);
voi d gl Col or 3i EXT(GLi nt red, GLint green, GLint blue);

voi d gl Col or 3ui EXT(GLui nt red, GLuint green, GLuint blue);

voi d gl Col or 3f EXT(GLf | oat red, GLfloat green, GLfloat blue);
voi d gl Col or 3dEXT(GLdoubl e red, GLdoubl e green, GLdoubl e blue);
voi d gl Col or 3bvEXT(GLbyt e *coords) ;

voi d gl Col or 3ubvEXT(GLubyt e *coords) ;

voi d gl Col or 3svEXT(GLshort *coords) ;

voi d gl Col or 3usvEXT(GLushort *coords) ;

voi d gl Col or 3i VEXT(GLi nt *coords) ;

voi d gl Col or 3ui VEXT(GLui nt *coords) ;

voi d gl Col or 3f vEXT(GLf | oat *coords) ;

voi d gl Col or 3dvEXT(GLdoubl e *coords) ;

In the vector forms of these calls, coords is a three-element array containing red, green,
and blue secondary color components in order. The data formats supported and
interpretation of parameter values as color components are identical to the
three-component glColor*() commands.

Secondary color may also be specified when drawing using vertex arrays. An array of
per-vertex secondary colors is defined by making the following call:

voi d gl Secondar yCol or Poi nt er EXT(GLi nt size, GLenum type, G.si zei stride,
const GLvoid *ptr);

143

7: Vertex Processing Extensions

The arguments are defined as follows:

size Specifies the number of components per color value and must always be
3.
type Specifies the type of data in the array and must be one of GL_BYTE,

GL_UNSI GNED_BYTE, GL_SHORT, GL_UNSI GNED_SHORT, GL_| NT,
GL_UNSI GNED_| NT, GL_FLOAT, or GL_ DOUBLE.

stride Specifies the offset in basic machine units from one secondary color to
the next in the array starting at ptr. As with other vertex array
specification calls, a stride of zero indicates that secondary colors are
tightly packed in the array.

To enable or disable secondary colors when drawing vertex arrays, call
glEnableClientState() or glDisableClientState() with parameter
GL_SECONDARY_COLOR_ARRAY_EXT.

Querying the Secondary Color State

The current secondary color can be queried by calling glGetFloatv() with parameter
name GL_ CURRENT_SECONDARY_COLOR_EXT. Parameters of the secondary color
vertex array pointer can be queried by calling glGetIntegerv() with one of the following
parameter names and calling glGetPointerv() with parameter name
GL_SECONDARY_COLOR_ARRAY_PO NTER_EXT:

e GL_SECONDARY_COLOR_ARRAY_ S| ZE_EXT
e GL_SECONDARY_COLOR_ARRAY TYPE_EXT
e GL_SECONDARY_COLOR_ARRAY_STRI DE_EXT

New Functions

The EXT_secondary_color extension introduces the list of functions defined in section
“Using Secondary Color” on page 143.

144 007-2392-003

The Vertex Array Object Extensions (Legacy)

The Vertex Array Object Extensions (Legacy)

007-2392-003

In addition to the ARB_vertex_buffer_object extension, Onyx4 and Silicon Graphics
Prism systems also support the following set of ATI vendor extensions that were
developed prior to ARB_vertex_buffer_object and were the basis on which
ARB_vertex_buffer_object was specified:

e ATI element_array
e ATI_map_object_buffer
e ATI vertex_array_object

e ATI vertex_attrib_array_object

Note: These four extensions are included only for support of legacy applications being
ported from other platforms. They supply no functionality beyond that of
ARB_vertex_buffer_object and are not as widely used. Whenever writing new code
using buffer objects, always use the ARB extension.

Since these are legacy extensions, they are not documented in detail in this guide. The
following table briefly describes each extension in terms of how it maps onto
ARB_vertex_buffer_object:

ATI_vertex_array_object
Defines the base functionality for creating array objects: defining usage
modes and contents of array objects and defining specific vertex arrays
as portions of array objects.

ATI_vertex_attrib_array_object
Defines additional APIs for creating array objects that can contain vertex
attribute data for use with the ARB_vertex_program and
ARB_fragment_program extensions.

ATI_element_array
Allows drawing array objects using arrays of indices also in array
objects, analogous to the ELEMENT_ARRAY_BUFFER_ARB target
supported by ARB_vertex_buffer_object.

ATI_map_object_buffer
Allows mapping array objects into application memory, analogous to
the glMapBufferARB() functionality of ARB_vertex_buffer_object.

145

7: Vertex Processing Extensions

New Functions

146

The legacy vertex array objects extensions introduce the following functions:

glArrayObjectATI()
glDrawElementArrayATI()
glDrawRangeElementArrayATI()
glElementPointerATI()
glFreeObjectBufferATI()
glGetArrayObjectfvATI()
glGetArrayObjectivATI()
glGetObjectBufferfvATI()
glGetObjectBufferivATI()
glGetVariantArrayObjectfvATI()
glGetVariantArrayObjectivATI()
glGetVertexAttribArrayObjectfvATI()
glGetVertexAttribArrayObjectivATI()
gllsObjectBufferATI()
glMapObjectBufferATI()
glNewObjectBufferATI()
glUnmapObjectBufferATI()
glUpdateObjectBufferATI()
glVariantArrayObjectATI()
glVertexAttribArrayObjectATI()

007-2392-003

The Texture Coordinate Generation Extensions (Legacy)

The Texture Coordinate Generation Extensions (Legacy)

007-2392-003

There are two legacy texture coordinate generation extensions:

¢ EXT_texgen_reflection

* NV_texgen_reflection

The EXT_texgen_reflection extension provides two new texture coordinate generation

modes that are useful in texture-based lighting and environment mapping. Differing
only in the token names used, the NV_texgen_reflection provides identical functionality.

Note: The functionality defined by these extensions was later promoted into a standard
part of OpenGL 1.3, and these extensions are included only for support of legacy
applications being ported from other platforms. Whenever writing new code, always use
the OpenGL 1.3 interface.

Since these are legacy extensions, they are not documented in detail here; only the
mapping from the extension tokens to the OpenGL 1.3 tokens is defined.

EXT_texgen_reflection defines the following two new texture generation modes,
according to the value of param to glTexGeni() when its pname argument is
CGL_TEXTURE_GEN_MODE:

e GL_NORMAL MAP EXT

e GL_REFLECTI ON_MAP_EXT

NV_texgen_reflection uses the following token names to define the same modes,
respectively:

e GL_NORMAL MAP NV

e GL_REFLECTI ON_MAP_NV

In OpenGL 1.3, the mode defined by G._NORMAL_MAP_EXT and GL_NORNVAL_MAP_NV
may instead be defined by GL_NCRVAL_MVAP. Likewise, the the mode defined by

GL_REFLECTI ON_MAP_EXT and GL_REFLECTI ON_MAP_NV may instead be defined by
G._REFLECTI ON_MAPR.

147

Chapter 8

007-2392-003

Texturing Extensions

This chapter explains how to use the following OpenGL texturing extensions:

“ATI_texture_env_combine3—New Texture Combiner Operations Extension” on
page 150

“ATI_texture_float—The Floating Point Texture Extension” on page 152
“ATI_texture_mirror_once—The Texture Mirroring Extension” on page 154

“EXT_texture_compression_s3tc—The S3 Compressed Texture Format Extension”
on page 155

“EXT_texture_filter_anisotropic—The Anisotropic Texture Filtering Extension” on
page 157

“EXT_texture_rectangle—The Rectangle Texture Extension” on page 159
“EXT_texture3D—The 3D Texture Extension” on page 161
“SGI_texture_color_table—The Texture Color Table Extension” on page 167
“SGIS_detail_texture—The Detail Texture Extension” on page 170
“SGIS_filter4_parameters—The Filter4 Parameters Extension” on page 177
“SGIS_sharpen_texture—The Sharpen Texture Extension” on page 180
“SGIS_texture_edge/border_clamp—Texture Clamp Extensions” on page 185
“SGIS_texture_filterd—The Texture Filter4 Extensions” on page 187
“SGIS_texture_lod—The Texture LOD Extension” on page 189

“SGIS_texture_select—The Texture Select Extension” on page 191

149

8: Texturing Extensions

This chapter also describe the following extensions that are experimental:

o “SGIX_clipmap—The Clipmap Extension” on page 193

e “SGIX_texture_add_env—The Texture Environment Add Extension” on page 204
e “SGIX_texture_lod_bias—The Texture LOD Bias Extension” on page 205

e “SGIX_texture_scale_bias—The Texture Scale Bias Extension” on page 210

ATl _texture_env_combine3—New Texture Combiner Operations
Extension

The OpenGL 1.3 core provides texture combiner operations. These operations are a
powerful set of functions that can be applied at each texture unit and exceed the simpler
OpenGL 1.0 texture environment functions, such as ADD. The extension
ATI_texture_env_combine3 defines several additional combiner operations.

This section assumes familiarity with the basic texture combiner interface and only
describes the new operations added by the extension.

Why Use Texture Combiners?

Texture combiners allow a greatly increased range of texturing functionality (per-pixel
lighting, bump mapping, and other advanced rendering effects) while still using the
OpenGL fixed-function pipeline. This extension increases that range even further

compared to base OpenGL 1.3. For an even broader range of functionality, consider using
fragment programs instead.

Using The New Texture Combiner Operations

When glTexEnvi() or glTexEnvf() is called with a parameter name of G._COVBI NE_RGB
or GL_COVBI NE_ALPHA, this extension allows the corresponding parameter to take on
one of the following values:

e GL_MODULATE_ADD ATI
e GL_MODULATE_SI GNED_ADD ATI
e GL_MODULATE_SUBTRACT ATI

150 007-2392-003

ATI_texture_env_combine3—New Texture Combiner Operations Extension

Table 8-1 shows the texture functions corresponding to these operations.

Table 8-1 Additional Texture Combiner Operations

GL_COMBINE_RGB or GL_COMBINE_ALPHA Operation Texture Function
GL_MODULATE_ADD_ATI Arg0*Arg2 +Argl
GL_MODULATE_SI GNED_ADD_ATI Arg0*Arg2+Argl-0.5
GL_MODULATE_SUBTRACT_ATI Arg0*Arg2- Argl

In Table 8-1, Ar g0, Ar g1, and Ar g2 represent values determined by the values set for
GL_SOURCE(0, 1, 2) _(RGB, ALPHA) and GL_OPERAND(0, 1, 2) _(RGB, ALPHA) with
glTexEnv*(). In addition to the values defined by OpenGL 1.3 (GL_TEXTURE,
GL_CONSTANT, G_._PRI MARY_COLOR, and G__PREVI QUS), this extension allows
GL_SOURCE(0, 1, 2) _(RGB, ALPHA) to take on the values G._ZEROand G._ONE. In
this case, the values generated for the corresponding Ar g(0, 1, 2) are shown in

Table 8-2 and Table 8-3.

Table 8-2 New Arguments for Texture Combiner Operations

Resulting Arg(0,1,2) RGB Value

GL_SOURCE(0,1,2) RGB GL_OPERAND(0,1,2) RGB (for each component)
G._ZERO GL_SRC_COLCR 0
G._ZERO GL_ONE_M NUS_SRC_COLOR 1
G._ZERO GL_SRC_ALPHA 0
G._ZERO GL_ONE_M NUS_SRC_ALPHA 1
G._ONE G._SRC_COLCR 1
GL_ONE GL_ONE_M NUS_SRC_COLOR 0
G._ONE GL_SRC_ALPHA 1
G._ONE GL_ONE_M NUS_SRC_ALPHA 0

007-2392-003 151

8: Texturing Extensions

Table 8-3 New Arguments for Texture Combiner Operations (Alpha-Related)
Resulting Arg(0,1,2) Alpha

GL_SOURCE(0,1,2) ALPHA GL_OPERAND(0,1,2) ALPHA Value

GL_ZERO GL_SRC_ALPHA 0

GL_ZERO GL_ONE_M NUS_SRC_ALPHA 1

GL_ONE GL_SRC_ALPHA 1

GL_ONE GL_ONE_M NUS_SRC_ALPHA 0

ATl texture_float—The Floating Point Texture Extension

The ATI_texture_float extension defines new, sized texture internal formats with 32- and
16-bit floating point components. The 32-bit floating point components are stored in
standard IEEE single-precision float format. The 16-bit floating point components have 1
sign bit, 5 exponent bits, and 10 mantissa bits. Floating point components are clamped to
the limits of the range representable by their format.

Why Use Floating Point Textures?

152

Floating point textures support greatly increased numerical range and precision
compared to fixed-point textures, which can only represent values in the range [0,1]. This
is important for many purposes, such as high dynamic range imaging, performing
general-purpose numerical computations in the graphics processor, and representing
input data naturally without needing to scale and bias it to fit in the limited range of
fixed-point textures.

Floating point textures are especially useful when using fragment shaders, where a much

wider range of computations can be performed than in the fixed-function graphics
pipeline.

007-2392-003

ATI_texture_float—The Floating Point Texture Extension

Using Floating Point Textures

007-2392-003

The new formats defined by this extension may be used as the i nt er nal f or mat
parameter when specifying textures with one of the following:

glTexImagelD()
glTexImage2D()
glTexImage3D()
glCopyTexImagelD()
glCopyTexImage2D()

The names of the new formats, the corresponding base internal format, and the precision
of each component in a texture stored with those formats are shown in Table 8-4. In the
table, “f32” means the component is stored as a 32-bit IEEE floating point number and

“f16” means the component is stored as a 16-bit floating point number.

Table 8-4 New Floating Point Internal Formats for Textures

Sized Internal Format Base Internal Format Red Green Blue Alpha Lum Inten
Bits Bits Bits Bits Bits Bits

RGBA_FLOAT32_ATI RGBA 32 32 32 32

RGB_FLQOAT32_ATI RGB 32 32 32

ALPHA_FLOAT32_ATI ALPHA 32

I NTENSI TY_FLOAT32_ATI I NTENSI TY 32

LUM NANCE_FLOAT32_ATI LUM NANCE 32

LUM NANCE_ALPHA FLOAT32 LUM NANCE_ALPHA 32 32

_ATI

RGBA_FLOAT16_ATI RGBA f16 f16 f16 f16

RGB_FLOAT16_ATI RGB f16 f16 f16

ALPHA_FLOAT16_ATI ALPHA f16

I NTENSI TY_FLOAT16_ATI I NTENSI TY f16

153

8: Texturing Extensions

Table 8-4 New Floating Point Internal Formats for Textures (continued)

Sized Internal Format Base Internal Format Red Green Alpha Lum Inten
Bits Bits Bits Bits

LUM NANCE_FLOAT16_ATI LUM NANCE f16

LUM NANCE_ALPHA FLOAT16 LUM NANCE_ALPHA f16

_ATI

ATI_texture_mirror_once—The Texture Mirroring Extension

The ATI_texture_mirror_once extension introduces new texture coordinate wrap modes
that effectively use a texture map twice as large as the specified texture image. The

additional half of the new image is a mirror image of the original.

This behavior is similar to the G._M RRORED_REPEAT wrap mode of OpenGL 1.4, but
mirroring is done only once rather than repeating. That is, input texture coordinates
outside the range [-1,1] are clamped to this range. After clamping, values in the range
[0,1] are used unchanged while values in the range [-1,0] are negated before sampling

the texture.

The extension supports the following two wrap modes:

G._M RROR_CLAMP_ATI Texture filtering may include texels from the
texture border, like the core GL_ CLAMP mode.
G._M RROR_CLAMP_TO EDGE_ATI Texture coordinates are clamped such that

the texture filter never samples texture
borders, like the core G._ CLAMP_TO_EDGE

mode.

Why Use Texture Mirroring?

For textures that are symmetrical about one or more axes, texture mirroring reduces the
amount of texture memory required by not storing the redundant symmetric portion of
the texture. The choice of using GL_M RRORED_REPEAT or the modes introduced by
ATI_texture_mirror_once depends on whether or not an infinitely extended texture
image is desired (as may be the case for synthetic textures used for backgrounds or

high-frequency noise).

154

007-2392-003

EXT_texture_compression_s3tc—The S3 Compressed Texture Format Extension

Using Texture Mirroring

To specity texture mirroring, call glTexParameteri() with the following parameter
specifications:

target GL_TEXTURE_1D,G._TEXTURE_ 2D, or G._TEXTURE_3D

pname GL_TEXTURE_WRAP_S,GL_TEXTURE_WRAP_T, or
GL_TEXTURE_WRAP_R

param GL_M RROR_CLAMP_ATI for mirroring or

GL_M RROR_CLAMP_TO _EDGE_ATI for mirroring without sampling
texture borders

EXT texture _compression_s3tc—The S3 Compressed Texture Format

Extension

The EXT_texture_compression_s3tc extension builds on the compressed texture interface
in core OpenGL by adding external and internal compressed formats in the popular
S3TC formats. S3TC formats are also sometimes referred to as DXTC, in the Microsoft
DirectX terminology. These formats are only supported for 2D textures.

Why Use S3TC Texture Formats?

007-2392-003

Depending on the nature of the textures, compressed textures can provide dramatic
savings in texture memory at a relatively small cost in texture quality. Natural imagery
tends to compress with fewer detectable artifacts than synthetic images, but it is always
important to test and make sure that compressed image quality is adequate, particularly
in high-fidelity domains such as flight simulation.

The core OpenGL compressed texture interface allows compressing textures to a internal
format whose exact nature is unspecified. This format may differ between OpenGL
implementations, and potentially even between driver releases on the same platform.
This variance makes it difficult to ensure that the quality and size of images so
compressed are adequate. It is also difficult to store or transport compressed images
without knowing their exact format.

S3TC overcomes these constraints by defining specific formats for compressed images of
several types, and these formats may be used by other tools such as image viewers and

155

8: Texturing Extensions

artwork creation applications. S3TC is a widely used informal standard for texture
compression.
Using S3TC Texture Formats

This extension introduces four new compressed texture formats, with corresponding
RGB or RGBA base formats as shown in Table 8-5.

Table 8-5 S3TC Compressed Formats and Corresponding Base Formats
Base
Internal

Compressed Internal Format Format Description

GL_COWPRESSED RGB_S3TC DXT1_EXT G._RGB Each 4x4 block of texels consists of
64 bits of RGB image data.

GL_COVPRESSED RGBA S3TC DXT1_EXT G._RGBA Each 4x4 block of texels consists of
64 bits of RGB image data and
minimal alpha information (1
bit/texel corresponding to 0. 0 or
1. 0).

GL_COWPRESSED RGBA_S3TC _DXT3_EXT G._RCGBA Each 4x4 block of texels consists of
64 bits of uncompressed alpha
image data followed by 64 bits of
compressed RGB image data.

GL_COVPRESSED RGBA S3TC DXT5_EXT G._RGBA Each 4x4 block of texels consists of
64 bits of compressed alpha image
data followed by 64 bits of
uncompressed RGB image data.

The new compressed formats may be used as the i nt er nal f or mat parameter of
glTexImage2D(), glCopyTexImage2D(), and glCompressed TexImage2D() when
specifying a 2D texture, and as the f or mat parameter of
glCompressedTexSubImage2D() when respecifying a part of a texture.

When specifying a texture in already-compressed S3TC format—for example, when
calling glCompressedTexImage2D() or glCompressed TexSubImage2D()—the required
format of the input image is fully defined by the extension specification for
EXT_texture_compression_s3tc. The specification is located on the following webpage:

156 007-2392-003

EXT_texture_filter_anisotropic—The Anisotropic Texture Filtering Extension

http://oss. sgi.conm projects/ogl-sanpl e/ registry/ EXT/texture_conpression_s3tc.txt

Constraints on S3TC Texture Formats

Due to the definition of the formats, the following constraints on specifying texture
images and subimages in the S3TC formats:

e S3TC formats support only 2D images without borders. The function
glCompressedTexImage2DARB() will generate a G__| NVALI D_OPERATI ONerror
if the parameter bor der is nonzero.

e S3TC formats are block-encoded in 4x4 texel blocks and can be easily edited along
block boundaries. The function glCompressedTexSubImage2D() will generate a
GL_I NVALI D_OPERATI ONerror if any one of the following conditions occurs:

— The value of wi dt h is not a multiple of four or not equal to the value of
GL_TEXTURE_W DTH for the mipmap level being specified.

— The value of hei ght is not a multiple of four or not equal to the value of
GL_TEXTURE_HEI GHT for the mipmap level being specified.

— Either the value of xof f set or yof f set is not a multiple of four.

Note that these constraints represents a relaxation of the tighter constraints on generic
compressed texture formats.

EXT texture filter_anisotropic—The Anisotropic Texture Filtering
Extension

The EXT_texture_filter_anisotropic extension supports improved texture sampling
compared to the standard mipmapping technique.

Why Use Anisotropic Texturing?
Texture mapping as defined in core OpenGL assumes that the projection of the pixel filter
footprint into texture space is a square (that is, isotropic). In practice, however, the

footprint may be long and narrow (that is, anisotropic). Consequently, mipmap filtering
severely blurs images on surfaces angled obliquely away from the viewer. For example,

007-2392-003 157

8: Texturing Extensions

in flight simulations, views of the runway during approaches are likely to be
oversampled across the runway and undersampled along its length.

There are several approaches for improving texture sampling by accounting for the
anisotropic nature of the pixel filter footprint into texture space. This extension provides
a general mechanism for supporting such filtering schemes without specifying a
particular formulation of anisotropic filtering.

The maximum degree of anisotropy to account for in texture filtering may be defined per
texture object, subject to a global upper bound determined by the implementation.

Increasing the degree of anisotropy will generally improve texture filtering quality, but
at the cost of reducing the texture fill rate. Rather than setting the maximum possible
anisotropy, choose the smallest degree of anisotropy that will provide the desired level
of image quality and performance and consider providing interactive controls to allow
users to adjust the anisotropy level further at run time.

Using Anisotropic Texturing

158

To specify the degree of texture anisotropy, call glTexParameterf() with the following
parameter specifications:

target GL_TEXTURE_1D, G._TEXTURE_2D, or GL_TEXTURE_3D
pname GL_TEXTURE_MAX_ANI SOTROPY_EXT
param A value between 2. 0 and the implementation-dependent maximum

(which may be determined by calling glGetFloatv() with pname set to
GL_MAX_TEXTURE_MAX_ANI SOTROPY_EXT)

When the specified value of GL_TEXTURE_MAX_ANI SOTROPY_EXT is 1. O, standard
mipmap texture sampling is used as defined in core OpenGL. When the value is greater
than 1.0, a texture filtering scheme that accounts for a degree of anisotropy defined by the

minimum of the specified value and the value of
GL_MAX_TEXTURE_MAX_ANI SOTROPY_EXT is used.

While the exact anisotropic filtering scheme may vary, it will satisfy the following
conditions:

e Mipmap levels will only be accessed if the texture minification filter is one that
requires mipmaps.

007-2392-003

EXT_texture_rectangle—The Rectangle Texture Extension

¢ Anisotropic texturing will only access texture mipmap levels between the values of
GL_TEXTURE_BASE_LEVEL and GL_TEXTURE_MAX_LEVEL.

* The values specified for GL_TEXTURE_MAX_LODand GL_TEXTURE_M N_LCDwill
be honored if the anisotropic scheme allows such.

* When the value of GL_TEXTURE_MAX_AN SOTROPY_EXT is N, the anisotropic
filter will try to sample N texels within the texture footprint of the fragment being
textured, where mipmapping would only sample one texel. For example, if Nis 2. 0
and the GL_LI NEAR_M PNMAP_LI NEARfilter is being used, the anisotropic filter will
sample 16 texels, rather than the 8 samples used by mipmapping. However, subject
to the constraints of the particular anisotropic filter being used, N may be rounded
up at sampling time.

EXT_texture_rectangle—The Rectangle Texture Extension

OpenGL texturing is normally limited to images with power-of-two dimensions and an
optional one-texel border. The EXT_texture_rectangle extension adds a new texture
target that supports 2D textures without requiring power-of-two dimensions and
accesses the texture by texel coordinates instead of the normalized [0,1] access used for
other texture targets.

Why Use Rectangle Textures?

007-2392-003

Rectangle (non-power-of-two) textures are useful whenever working with texture
images that have such dimensions. Representing such images at their natural resolutions
avoids resampling artifacts and saves texture memory. Examples include (but are not
limited to) video images, shadow maps, window-space texturing, and data arrays for
general-purpose computation in fragment programs.

However, rectangle textures have the following additional constraints that may restrict
their applicability relative to power-of-two textures:

¢ Mipmaps are not supported. Rectangle textures may only define a base level image,
and the minification filter must be G__NEAREST or G__ LI NEAR

¢ Only the clamped texture coordinate wrap modes are allowed for the s and t
coordinates: G._CLAMP, GL_CLAMP_TO_EDGE, and G._CLAMP_TO_BORDER
Repeated and/or mirrored wrap modes are not supported.

¢ Texture border images are not supported (border must be zero).

159

8: Texturing Extensions

Using Rectangle Textures

160

To enable or disable rectangle texture mapping, call glEnable() or glDisable() with
parameter GL_ TEXTURE_RECTANGLE_EXT. When several types of of textures are
enabled, the precedence order is the following:

1. GL_TEXTURE_2D
2. GL_TEXTURE_RECTANGLE_EXT
3. GL_TEXTURE_3D

This means that if both 2D and rectangle texturing are enabled, the currently bound
rectangle texture will be used. If both 3D and rectangle texturing are enabled, the
currently bound 3D texture will be used.

To define a rectangle texture, call glTexImage2D() or glCopyTexImage2D() with the
parameter target set to GL_TEXTURE_RECTANGLE_EXT. The mipmap level and border
size must both be zero. The dimensions of rectangle textures are not restricted to powers
of two but are limited to the implementation-dependent maximum rectangle texture
size, which can be queried by calling glGetIntegerv() with parameter
GL_MAX_RECTANGLE_TEXTURE_SI ZE_EXT.

Using a texture target of GL_TEXTURE_RECTANGLE_EXT, you can perform all other
operations on rectangle textures (binding texture objects, specifying subimages,
querying texture images, setting texture and texture level parameters). Using target
GL_PROXY_TEXTURE_RECTANGLE_EXT, you can perform proxy texture queries on
rectangle textures. The currently bound rectangle texture object may be queried by
calling glGetIntegerv() with the parameter GL_ TEXTURE_BI NDI NG_RECTANGLE_EXT.

When rendering with a rectangle texture, texture coordinates are interpreted differently.
Rather than clamping to the range [0,1], the s coordinate is clamped to the range [0,w] and
the t coordinate is clamped to the range [0,/1], where w and & are respectively the width
and height of the rectangle texture. After clamping, you access texels directly using the
clamped texture coordinates as indices into the rectangle texture, instead of first scaling
them by the dimensions of the texture image as you do for normal power-of-two 2D
textures.

007-2392-003

EXT_texture3D—The 3D Texture Extension

EXT_texture3D—The 3D Texture Extension

Note: This extension was promoted to a standard part of OpenGL 1.2. For new
applications, use the equivalent OpenGL 1.2 interface (for example, with the EXT suffix
removed), unless they must run on InfiniteReality systems.

The 3D texture extension, EXT_texture3D, defines 3D texture mapping and in-memory
formats for 3D images and adds pixel storage modes to support them.

3D textures can be thought of as an array of 2D textures, as illustrated in Figure 8-1.

0,1,1 111’1

0,1,0
1,1,0
0,0,1
1,0,1 T
00,0 1,0,0 R
S

—>

Figure 8-1 3D Texture

A 3D texture is mapped into (s,t,r) coordinates such that its lower left back corner is
(0,0,0) and its upper right front corner is (1,1,1).

Why Use the 3D Texture Extension?

007-2392-003

3D textures are useful for the following:

¢ Volume rendering and examining a 3D volume one slice at a time
* Animating textured geometry (for example, people that move)

* Solid texturing (for example, wood, marble and so on)

¢ Eliminating distortion effects that occur when you try to map a 2D image onto 3D
geometry

161

8: Texturing Extensions

Texel values defined in a 3D coordinate system form a texture volume. You can extract
textures from this volume by intersecting it with a plane oriented in 3D space, as shown
in Figure 8-2.

Figure 8-2 Extracting a Planar Texture From a 3D Texture Volume

The resulting texture, applied to a polygon, is the intersection of the volume and the
plane. The orientation of the plane is determined from the texture coordinates of the
vertices of the polygon.

Using 3D Textures

To create a 3D texture, use glTexImage3DEXT(), which has the following format:

voi d gl Texl mage3DEXT(GLenumt ar get,
Gint |evel,
GLenum i nt er nal f or mat,
A.si zei wi dth,
GLsi zei hei ght,
GLsi zei depth,
GLi nt border,
GLenum f or mat ,
GLenum t ype,
const GLvoid *pixels)

The function is defined like glTexImage2D() but has a depth argument that specifies the
number of “slices” in the texture.

162 007-2392-003

EXT_texture3D—The 3D Texture Extension

007-2392-003

The extension provides the following additional features:

Pixel storage modes
The extension extends the pixel storage modes by adding eight state variables:

- CGL_(UN) PACK_I MAGE_HEI GHT_EXT defines the height of the image the
texture is read from, analogous to the GL_(UN) PACK_LENGTH variable for
image width.

- CGL_(UN) PACK_SKI P_I MAGES_EXT determines an initial skip analogous to
GL_(UN) PACK_SKI P_PI XELS and GL_(UN) PACK_SKI P_ROWS.

The eight state variables default to zero.
Texture wrap modes

The functions glTexParameter*() accept the additional token value
GL_TEXTURE_WRAP_R _EXT. The value GL_ TEXTURE_WRAP_R _EXT affects the R
coordinate in the same way that GL_ TEXTURE_WRAP_S affects the S coordinate and
GL_TEXTURE_WRAP_T affects the T coordinate. The default value is GL_ REPEAT.

Mipmapping

Mipmapping for two-dimensional textures is described in the section “Multiple
Levels of Detail,” on page 338 of the OpenGL Programming Guide. Mipmapping for
3D textures works the same way. A 3D mipmap is an ordered set of volumes
representing the same image; each volume has a resolution lower than the previous
one.

The filtering options GL_NEAREST_M PNMAP_NEAREST,

GL_NEAREST_M PMAP_LI NEAR and GL_LI NEAR_M PMAP_NEAREST apply to
subvolumes instead of subareas. GL_LI NEAR_M PMAP_LI NEAR results in two
trilinear blends in two different volumes followed by an LOD blend.

Proxy textures

Use the proxy texture G._PROXY_TEXTURE_3D_EXT to query an implementation’s
maximum configuration. For more information on proxy textures, see “Texture
Proxy” on page 330 of the OpenGL Programming Guide, Second Edition.

You can also call glGetIntegerv() with argument
GL_MAX_TEXTURE_SI ZE_3D _EXT.

Querying
Use the following call to query the 3D texture:
gl Get Texl mage(GL_TEXTURE_3D_EXT, level, format, type, pixels)

163

8: Texturing Extensions

¢ Replacing texture images

Subvolumes of the 3D texture can be replaced using glTexSubImage3DEXT() and
glCopyTexSubImage3DEXT() (see “Replacing All or Part of a Texture Image,” on
pages 332 - 335 of the OpenGL Programming Guide, Second Edition).

3D Texture Example Program

164

The code fragment presented in this section illustrates the use of the extension. The
complete program is included in the example source tree.

Example 8-1 Simple 3D Texturing Program

/*

* Shows a 3D texture by drawing slices through it.
*/

/* conpile: cc -o tex3d tex3d.c -1 G -1 X11 */

#include <@/ gl x. h>

#i ncl ude <@/ gl u. h>

#i ncl ude <X11/keysym h>
#i nclude <stdlib. h>

#i ncl ude <stdio. h>

static int attributeList[] = { GX_RGBA, None };
unsigned int tex[64][64][64];

/* generate a sinple 3D texture */
static void
make_texture(void) {
int i, j, k;
unsigned int *p = & ex[0][0][0];
for (i=0; i<64; i++) {

for (j=0; j<64; j++) {
for (k=0; k<64; k++) {

if (i <10 || i > 48 ||
j <10]]] >48]]|
k <10 || k > 48) {
if (i <2 1] i >62]]
<211 j >62]]
k <2]| k >62) {
*p++ = 0x00000000;

007-2392-003

EXT_texture3D—The 3D Texture Extension

007-2392-003

}

} else {
*p++ = Oxff8Offff;

} else {
*p++ = 0x000000f f;

static void
init(void) {

}

make_texture();

gl Enabl e(GL_TEXTURE_3D_EXT);

gl Enabl e(G._BLEND) ;

gl Bl endFunc(GL_SRC ALPHA, GL_ONE);
glCearColor(0.2,0.2,0.5,1.0);

gl Pi xel Storei (GL_UNPACK_ALI GNVENT, 1);

gl Mat ri xMbde(G._PRQIECTI ON) ;

gl uPer spective(60.0, 1.0, 1.0, 100.0);
gl Matri xMode(G._MODELVI EW ;

gl Transl atef (0.,0.,-3.0);

gl Mat ri xMode(GL_TEXTURE) ;

[* Simlar to defining a 2D texture, but note the setting of the */
/* wap paraneter for the R coordinate. Also, for 3D textures */
/* you probably won't need m pmaps, hence the linear mn filter. */
gl TexEnvf (GL_TEXTURE_ENV, G._TEXTURE_ENV_MODE, G._MODULATE);
gl TexParanet eri (GL_TEXTURE_3D EXT, G._TEXTURE_M N_FI LTER,

GL_LI NEAR) ;
gl TexParanet eri (GL_TEXTURE_3D EXT, G._TEXTURE WRAP_S, GL_CLAMP);
gl TexParaneteri (GL_TEXTURE_3D EXT, G._TEXTURE WRAP_T, GL_CLAMP);
gl TexPar amet eri (G._TEXTURE_3D_EXT, G._TEXTURE_WRAP_R EXT,

G._CLAWP) ;
gl Texl mage3DEXT(GL_TEXTURE_3D EXT, 0, 4, 64, 64, 64, O,
GL_RGBA, GL_UNSI GNED_BYTE, tex);

#defi ne NUMSLI CES 256

static void
draw_scene(void) {

165

8: Texturing Extensions

166

int i;
float r, dr, z, dz;

gl Color4af (1, 1, 1, 1.4/ NUNVBLICES);

gl C ear (GL_COLOR_BUFFER _BI T);

/* Display the entire 3D texture by drawing a series of quads */
/* that slice through the texture coordinate space. Note that */
/* the transfornmations below are applied to the texture matrix, */
/* not the nodelview matrix. */

gl Loadl dentity();

/* center the texture coords around the [0, 1] cube */

gl Translatef(.5,.5,.5);

/* a rotation just to nake the picture nore interesting */
gl Rotatef (45.,1.,1.,.5);

/* to make sure that the texture coords, after arbitrary */
/* rotations, still fully contain the [0,1] cube, make them span */
/* a range sqrt(3)=1.74 w de */
r -0.87; dr = 1.74/ NUVBLI CES;
z -1.00; dz = 2.00/NUVBLI CES;
for (i=0; i < NUMSLICES; i++) {

gl Begi n(GL_TRI ANGLE_STRI P) ;

gl TexCoord3f(-.87,-.87,r); gl Vertex3f(-1,-1, z);

gl TexCoord3f(-.87, .87,r); gl Vertex3f(-1, 1,2z);

gl TexCoord3f(.87,-.87,r); glVertex3f(1,-1,2);

gl TexCoord3f(.87, .87,r); glVertex3f(1, 1,2z);

gl End();

r += dr;

z += dz;

/* process input and error functions and main(), which handl es w ndow
* setup, go here.

007-2392-003

SGI_texture_color_table—The Texture Color Table Extension

New Functions

The EXT_texture3D extension introduces the following functions:
¢ glTexImage3DEXT()

¢ glTexSubImage3DEXT()

¢ glCopyTexImage3DEXT()

SGI _texture_color_table—The Texture Color Table Extension

Note: This extension is not supported on Onyx4 and Silicon Graphics Prism systems.
Applications can achieve similar functionality by writing fragment programs using 1D
textures as lookup tables for the texel values returned by sampling an image texture.

The texture color table extension, SGI_texture_color_table, adds a color lookup table to
the texture mechanism. The table is applied to the filtered result of a texture lookup
before that result is used in the texture environment equations.

Why Use a Texture Color Table?

The following are two example situations in which the texture color table extension is
useful:

* Volume rendering

You can store something other than color in the texture (for example, a physical
attribute like bone density) and use the table to map that density to an RGB color.
This is useful if you want to display just that physical attribute and also if you want
to distinguish between that attribute and another (for example, muscle density).
You can selectively replace the table to display different features. Note that
updating the table can be faster than updating the texture. (This technique is also
called false color imaging or segmentation.

* Representing shades (gamut compression)

If you need to display a high color-resolution image using a texture with low
color-component resolution, the result is often unsatisfactory. A 16-bit texel with 4
bits per component doesn’t offer a lot of shades for each color, because each color

007-2392-003 167

8: Texturing Extensions

component has to be evenly spaced between black and the strongest shade of the
color. If an image contains several shades of light blue but no dark blue, for
example, the on-screen image cannot represent that easily because only a limited
number of shades of blue, many of them dark, are available. When using a color
table, you can “stretch” the colors.

Using Texture Color Tables

To use a texture color table, define a color table, as described in “SGI_color_table—The
Color Table Extension” on page 277. Use GL_TEXTURE_COLOR _TABLE_SG as the value
for the target parameter of the various commands. Note the following points:

The table size, specified by the width parameter of glColorTableSGI(), is limited to
powers of two.

Each implementation supports a at least a maximum size of 256 entries. The actual
maximum size is implementation-dependent; it is much larger on most Silicon
Graphics systems.

Use GL_PROXY_TEXTURE _COLOR TABLE_SA to determine whether there is
enough room for the texture color table in exactly the manner described in “Texture
Proxy,” on page 330 of the OpenGL Programming Guide.

The following code fragment loads a table that inverts a texture. It uses a GL_LUM NANCE
external format table to make identical R, G, and B mappings.

| oadi nver set abl e()

{

168

static unsigned char tabl e[256];
int i;

for (i =0; i < 256; i++) {
table[i] = 255-i;
}

gl Col or Tabl eSG (GL_TEXTURE_COLOR TABLE SG, GL_RGBA8_EXT,
256, GL_LUM NANCE, GL_UNSI GNED BYTE, table);
gl Enabl e(GL_TEXTURE_COLOR TABLE_SG)

007-2392-003

SGI_texture_color_table—The Texture Color Table Extension

Texture Color Table and Internal Formats

The contents of a texture color table are used to replace a subset of the components of
each texel group, based on the base internal format of the table. If the table size is zero,
the texture color table is effectively disabled. The texture color table is applied to the
texture components Red (Rt), Green (Gt), Blue (Bt), and Alpha(At) texturing components
according to Table 8-6.

Table 8-6 Modification of Texture Components

Base Table Internal Format Rt Gt Bt At
GL_ALPHA Rt Gt Bt A(A)
GL_LUM NANCE L(Rt) L(GY) L(BY) At
GL_LUM NANCE_ALPHA L(Rt) L(GY) L(Bt) A(Ab)
GL_I NTENSI TY I(Rt) I(Gt) I(Bt) I(At)
GL_RGB R(Rt) G(GY) B(Bt) At
GL_RGBA R(RY) G(Gt) B(BY) A(At)

Using Texture Color Table On Different Platforms

007-2392-003

The texture color table extension is currently implemented on Fuel, Infinite Performance,
and InfiniteReality systems. For a detailed discussion of machine-dependent issues, see
the gl Col or Tabl ePar armet er SG man page. This section summarizes the most
noticeable restrictions.

InfiniteReality systems reserve an area of 4K 12-bit entries for texture color tables.
Applications can use four 1KB tables, two 2KB tables, or one 4KB table. Not all
combinations of texture and texture color tables are valid. InfiniteReality systems
support the combinations shown in Table 8-7.

Table 8-7 Texture and Texture Color Tables on InfiniteReality Systems
TCT size TCT Format Texture
>=1024 Any Any

169

8: Texturing Extensions

Table 8-7 Texture and Texture Color Tables on InfiniteReality Systems (continued)
TCT size TCT Format Texture

2048 L ILLA L LLA

4096 LL ILL

SGIS_detail_texture—The Detail Texture Extension

170

Note: This extension is not supported on Onyx4 and Silicon Graphics Prism systems.
Applications can achieve similar functionality using fragment programs.

This section describes the detail texture extension, SGIS_detail_texture, which like the
sharpen texture extension (see “SGIS_sharpen_texture—The Sharpen Texture
Extension” on page 180) is useful in situations where you want to maintain good image
quality when a texture is magnified for close-up views.

Ideally, programs should always use textures that have high enough resolution to allow
magnification without blurring. High-resolution textures maintain realistic image
quality for both close-up and distant views. For example, in a high-resolution road
texture, the large features—such as potholes, oil stains, and lane markers that are visible
from a distance—as well as the asphalt of the road surface look realistic no matter where
the viewpoint is.

Unfortunately, a high-resolution road texture with that much detail may be as large as
2K x 2K, which may exceed the texture storage capacity of the system. Making the image
close to or equal to the maximum allowable size still leaves little or no memory for the
other textures in the scene.

The detail texture extension provides a solution for representing a 2K x 2K road texture
with smaller textures. Detail texture works best for a texture with high-frequency
information that is not strongly correlated to its low-frequency information. This occurs
in images that have a uniform color and texture variation throughout, such as a field of
grass or a wood panel with a uniform grain. If high-frequency information in your
texture is used to represent edge information (for example, a stop sign or the outline of a
tree) consider the sharpen texture extension (see “SGIS_sharpen_texture—The Sharpen
Texture Extension” on page 180).

007-2392-003

SGIS_detail_texture—The Detail Texture Extension

Using the Detail Texture Extension

Because the high-frequency detail in a texture (for example, a road) is often
approximately the same across the entire texture, the detail from an arbitrary portion of
the texture image can be used as the detail across the entire image.

When you use the detail texture extension, the high-resolution texture image is
represented by the combination of a low-resolution texture image and a small
high-frequency detail texture image (the detail texture). OpenGL combines these two
images during rasterization to create an approximation of the high-resolution image.

This section first explains how to create the detail texture and the low-resolution texture
that are used by the extension ,then briefly describes how detail texture works and how
to customize the LOD interpolation function, which controls how OpenGL combines the
two textures.

Creating a Detail Texture and a Low-Resolution Texture

007-2392-003

This section explains how to convert a high-resolution texture image into a detail texture
and a low-resolution texture image. For example, for a 2K x 2K road texture, you may
want to use a 512 x 512 low-resolution base texture and a 256 x 256 detail texture. Follow
these steps to create the textures:

1. Make the low-resolution image using i zoomor another resampling program by
shrinking the high-resolution image by 2".

In this example, 7 is 2; so, the resolution of the low-resolution image is 512 x 512.
This band-limited image has the two highest-frequency bands of the original image
removed from it.

2. Create the subimage for the detail texture using subi mage or another tool to select
a 256 x 256 region of the original high-resolution image, whose 7 highest-frequency
bands are characteristic of the image as a whole. For example, rather than choosing
a subimage from the lane markings or a road, choose an area in the middle of a lane.

3. Optionally, make this image self-repeating along its edges to eliminate seams.
4. Create a blurry version of the 256 x 256 subimage as follows:

» First shrink the 256 x 256 subimage by 2", to 64 x 64.

= Then scale the resulting image back up to 256 x 256.

The image is blurry because it is missing the two highest-frequency bands present
in the two highest levels of detail.

171

8: Texturing Extensions

172

Subtract the blurry subimage from the original subimage. This difference image—
the detail texture—has only the two highest frequency bands.

Define the low-resolution texture (the base texture created in step 1) with the
GL_TEXTURE_2D target and the detail texture (created in step 5) with the
GL_DETAI L_TEXTURE_2D SGi S target.

In the road example, you would use the following:

CLvoi d *detailtex, *basetex;
gl Texl mage2D(G._DETAI L_TEXTURE 2D S@ S, 0, 4, 256, 256, 0, G._RGBA,
GL_UNSI GNED_BYTE, detailtex);
gl Texl mage2D(G._TEXTURE 2D, 0, 4, 512, 512, 0, G.L_RGBA
GL_UNSI GNED_BYTE, basetex);

The internal format of the detail texture and the base texture must match exactly.

Set the GL_DETAI L_TEXTURE_LEVEL_SG S parameter to specify the level at
which the detail texture resides. In the road example, the detail texture is level -2
(because the original 2048 x 2048 texture is two levels below the 512 x 512 base
texture):

gl TexPar amet eri (GL_TEXTURE_2D, GL_DETAIL_TEXTURE LEVEL_SG 'S, -2);
Because the actual detail texture supplied to OpenGL is 256 x 256, OpenGL

replicates the detail texture as necessary to fill a 2048 x 2048 texture. In this case, the
detail texture repeats eight times in Sand in T.

Note that the detail texture level is set on the G._ TEXTURE_2D target, not on
GL_DETAI L_TEXTURE 2D Sd S.

Set the magnification filter to specify whether the detail texture is applied to the
alpha or color component, or both. Use one of the filters in Table 8-8. For example,
to apply the detail texture to both alpha and color components, use the following:

gl TexPar anet eri (GL_TEXTURE_2D, GL_TEXTURE_MAG FI LTER,
GL_LINEAR DETAIL_SG S);

Note that the magnification filter is set on the GL_TEXTURE_2D target, not on
GL_DETAI L_TEXTURE_2D_Sd S.

007-2392-003

SGIS_detail_texture—The Detail Texture Extension

Table 8-8 Magnification Filters for Detail Texture

GL_TEXTURE_MAG_FILTER Alpha Red, Green, Blue
GL_LI NEAR DETAIL_SG S Detail Detail

GL_LI NEAR DETAI L_COLOR SG S Bilinear Detail

GL_LI NEAR DETAI L_ALPHA SG S Detail Bilinear

Detail Texture Computation

007-2392-003

For each pixel that OpenGL textures, it computes an LOD-based factor that represents
the amount by which the base texture (that is, level 0) is scaled. LOD # represents a
scaling of 2. Negative values of LOD correspond to magnification of the base texture.

To produce a detailed textured pixel at level of detail 7, OpenGL uses one of the two
formulas shown in Table 8-9, depending on the detail texture mode.

Table 8-9 How Detail Texture Is Computed

GL_DETAIL_TEXTURE_MODE_SGIS Formula

GL_ADD LODn = LODO + weight(n) ODET
GL_MODULATE LODn = LODO + weight(n) * DET * LODO

The variables in the formulas are defined as follows:

n Level of detail
weight(n) Detail function
LODO Base texture value
DET Detail texture value

For example, to specify G_._ADD as the detail mode, use
gl TexPar anet eri (GL_TEXTURE_2D, GL_DETAI L_TEXTURE_MODE_SGI'S, GL_ADD);

Note that the detail texture level is set on the GL_ TEXTURE_2D target, not on
GL_DETAI L_TEXTURE_2D SAd S.

173

8: Texturing Extensions

Customizing the Detail Function

174

In the road example, the 512 x 512 base texture is LOD 0. The detail texture combined
with the base texture represents LOD -2, which is called the maximum-detail texture.

By default, OpenGL performs linear interpolation between LOD 0 and LOD -2 when a
pixel’s LOD is between 0 and -2. Linear interpolation between more than one LOD can
result in aliasing. To minimize aliasing between the known LODs, OpenGL lets you
specify a nonlinear LOD interpolation function.

Figure 8-3 shows the default linear interpolation curve and a nonlinear interpolation
curve that minimizes aliasing when interpolating between two LODs.

Default LOD interpolation Custom LOD interpolation

Weight Weight Values of
TX_CONTROL_POINTs

(1,.3) (-2,1) (-3 1.1)

d
0/ . LS :

0 -1 -2 -3 -4 0 -1 -2 -3 -4
LOD LOD

Figure 8-3 LOD Interpolation Curves

The basic strategy is to use very little of the detail texture until the LOD is within one
LOD of the maximum-detail texture. More of the information from the detail texture can
be used as the LOD approaches LOD -2. At LOD -2, the full amount of detail is used, and
the resultant texture exactly matches the high-resolution texture.

Use glDetail TexFuncSGIS() to specify control points for shaping the LOD interpolation
function. Each control point contains a pair of values; the first value specifies the LOD,
and the second value specifies the weight for that magnification level. Note that the LOD
values are negative.

007-2392-003

SGIS_detail_texture—The Detail Texture Extension

The following control points can be used to create a nonlinear interpolation function (as
shown above in Figure 8-3):

GLfloat points[] = {

b
gl Det ai | TexFuncSA S(GL_TEXTURE_2D, 4, points);

Note that how these control points determine a function is system-dependent. For
example, your system may choose to create a piecewise linear function, a piecewise
quadratic function, or a cubic function. However, regardless of which kind of function is
chosen, the function passes through the control points.

Using Detail Texture and Texture Object

If you are using texture objects, the base texture and the detail texture are separate texture
objects. You can bind any base texture object to G._ TEXTURE_2D and any detail texture
object to GL_DETAI L_TEXTURE_2D_Sd S. You cannot bind a detail texture object to
GL_TEXTURE_2D.

Each base texture object contains its own detail mode, magnification filter, and LOD
interpolation function. Setting these parameters therefore affects only the texture object
that is currently bound to GL_TEXTURE_2D. If you set these parameters on the detail
texture object, they are ignored.

Detail Texture Example Program

007-2392-003

Example 8-2 is a code fragment taken from a simple detail texture example program. The
complete example is included in the source tree as det ai | . ¢. Itis also available
through the developer toolbox under the same name. For information on toolbox access,
see http:/ /www.sgi.com/Technology /toolbox.html.

Example 8-2 Detail Texture Example

unsi gned int tex[128][128];
unsi gned int detailtex[256][256];

static void
make_t extures(void) {

175

8: Texturing Extensions

int i, j;
unsi gned int *p;

/* base texture is solid gray */
p = &ex[0][0];
for (i=0; i<128*128; i++) *p++ = Ox808080ff;

/* detail texture is a yellow grid over a gray background */
/* this artificial detail texture is just a sinple exanple */
/* you should derive a real detail texture fromthe original */
/* image as explained in the text. */
p = &Jetailtex[0][0];
for (i=0; i<256; i++) {

for (j=0; j<256; j++) {

if (i@ ==01]] jB == 0) {
*p++ = OxffffOOff;
} else {

*p++ = 0x808080f f;
}

}

static void
init(void) {
make_textures();

gl Enabl e(G._TEXTURE_2D) ;

gl Matri xMbde(G._PRQIECTI ON) ;

gl uPerspective(90.0, 1.0, 0.3, 10.0);
gl Mat ri xMode(GL_MODELVI EW ;

gl Transl atef(0.,0.,-1.5);

gl earColor(0.0, 0.0, 0.0, 1.0);
gl Pi xel St orei (GL_UNPACK_ALI GNVENT, 1);
gl TexEnvf (GL_TEXTURE_ENV, G._TEXTURE ENV_MODE, G._MODULATE);

/* NOTE: paraneters are applied to base texture, not the detail */
gl TexParanet eri (GL_TEXTURE_2D, GL_TEXTURE_M N _FILTER, G._LI NEAR);
gl TexParaneteri (GL_TEXTURE_2D, G._TEXTURE_MAG FI LTER,

G._LI NEAR DETAIL_SA S);
gl TexParaneteri (GL_TEXTURE_2D, GL_DETAIL_TEXTURE_LEVEL_SG S, -1);
gl Texl mage2D(G._TEXTURE_2D,

0, 4, 128, 128, 0, G._RGBA, G._UNSI GNED BYTE, tex);

gl Texl mage2D(G._DETAI L_TEXTURE 2D _SG S,

176 007-2392-003

SGIS_filter4_parameters—The Filter4 Parameters Extension

New Functions

0, 4, 256, 256, 0, GL_RGBA, G._UNSI GNED BYTE,
detail tex);

}

static void

draw_scene(void) {
gl d ear (GL_COLOR BUFFER BI T);
gl Begi n(GL_TRI ANGLE_STRI P) ;

gl TexCoord2f(0, 0); gl Vertex3f(-1,-0.4, 1);
gl TexCoord2f(0, 1); gl Vertex3f(-1,-0.4,-1);
gl TexCoord2f(1, 0); gl Vertex3f(1,-0.4, 1);
gl TexCoord2f(1, 1); gl Vertex3f(1,-0.4,-1);
gl End() ;
gl Fl ush();

The SGIS_detail_texture extension introduces the following functions:
e glDetailTexFuncSGIS()
¢ glGetDetailTexFuncSGIS()

SGIS filter4_parameters—The Filter4 Parameters Extension

007-2392-003

Note: This extension is part of GLU and is only supported on InfiniteReality systems.
Applications can achieve higher-quality texture filtering on Onyx4 and Silicon Graphics
Prism systems using anisotropic texture filtering.

The filter4 parameters extension, SGIS_filter4_parameters, provides a convenience
function that facilitates generation of values needed by the Texture Filter4 extension (see
“SGIS_texture_filterd—The Texture Filter4 Extensions” on page 187).

Applications can derive 4 x 4 and 4 x 4 x 4 interpolation coefficients by calculating the
cross product of coefficients in 2D or 3D, using the two-pixel-wide span of filter function.

The coefficients are computed in one of two ways:

177

8: Texturing Extensions

¢ Using the Mitchell-Netravali scheme

Many of the desired characteristics of other 4x1 interpolation schemes can be
accomplished by setting B and C in their piecewise cubic formula. Notably, the
blurriness or sharpness of the resulting image can be adjusted with B and C. See
Mitchell, Don. and Netravali, Arun, “Reconstruction Filters for Computer
Graphics,” SIGGRAPH '88, pp. 221-228.

¢ Using Lagrange interpolation

Four piecewise cubic polynomials (two redundant ones) are used to produce
coefficients resulting in images at a high sharpness level. See Dahlquist and Bjorck,
“Numerical Methods”, Prentice-Hall, 1974, pp 284-285.

To choose one of the two schemas, set the filtertype parameter of gluTexFilterFuncSGI()
to GLU_LAGRANG AN_SG or GLU M TCHELL_NETRAVALI _SG .

Using the Filter4 Parameters Extension

178

Applications use the Filter4 Parameter extension in conjunction with the Texture Filter4
extension to generate coefficients that are then used as the weights parameter of
glTexFilterFuncSGIS().

To generate the coefficients, call gluTexFilterFuncSGI() with the following argument

values:
Argument
target

filterype
params

n

weights

Value

GL_TEXTURE_1Dor G._TEXTURE_2D

GLU_LAGRANG AN_SG or GLU_M TCHELL_NETRAVALI _SG
The value appropriate for the chosen filtertype:

If filtertype is GLU_LAGRANG AN_SGI, parms must be NULL.

If filtertype is GLU_M TCHELL_NETRAVALI _SG , parms may point to a
vector of two floats containing B and C control values or parms may be
NULL in which case both B and C default to 0.5.

A power of two plus one and must be less than or equal to 1025.

Pointing to an array of # floating-point values generated by the function.
It must point to n values of type GL_FLOAT worth of memory.

007-2392-003

SGIS_point_line_texgen—The Point or Line Texture Generation Extension

Note that gluTexFilterFuncSGI() and glTexFilterFuncSGI() only customize filter4
filtering behavior; texture filter4 functionality needs to be enabled by calling
glTexParameter*() with pname set to TEXTURE_M N_FI LTER or

TEXTURE_MAG FI LTER, and params set to GL_FI LTER4_SQ S. See “Using the Texture
Filter4 Extension” on page 187 for more information.

SGIS_point_line_texgen—The Point or Line Texture Generation Extension

Note: This extension is only supported on InfiniteReality systems. Applications can
achieve similar functionality on Onyx4 and Silicon Graphics Prism systems by writing
fragment programs.

The point or line texgen extension, SGIS_point_line_texgen, adds two texture coordinate
generation modes, which both generate a texture coordinate based on the minimum
distance from a vertex to a specified line.

The section “Automatic Texture-Coordinate Generation” in Chapter 9, “Texture
Mapping” of the OpenGL Programming Guide, Second Edition, describes how applications
can use glTexGen() to have OpenGL automatically generate texture coordinates.

This extension adds two modes to the existing three. The two new modes are different
from the other three. To use them, the application uses one of the newly defined constants
for the pname parameter and another one matching the param (or params) parameter. For
example:

gl TexGeni (GL_S, GL_EYE PO NT_SG S, EYE_DI STANCE_TO PO NT_SG S)
Why Use Point or Line Texture Generation

The extension is useful for certain volumetric rendering effects. For example,
applications could compute fogging based on distance from an eyepoint.

007-2392-003 179

8: Texturing Extensions

SGIS_sharpen_texture—The Sharpen Texture Extension

Note: This extension is not supported on Onyx4 and Silicon Graphics Prism systems.
Applications can achieve similar functionality using fragment programs.

This section describes the sharpen texture extension, SGIS_sharpen_texture. This
extension and the detail texture extension (see “SGIS_detail_texture—The Detail Texture
Extension” on page 170) are useful in situations where you want to maintain good image
quality when a texture must be magnified for close-up views.

When a textured surface is viewed close up, the magnification of the texture can cause
blurring. One way to reduce blurring is to use a higher-resolution texture for the close-up
view at the cost of extra storage. The sharpen texture extension offers a way to keep the
image crisp without increasing texture storage requirements.

Sharpen texture works best when the high-frequency information in the texture image
comes from sharp edges. The following are two examples:

¢ In astop sign, the edges of the letters have distinct outlines, and bilinear
magnification normally causes the letters to blur. Sharpen texture keeps the edges
crisp.

* In a tree texture, the alpha values are high inside the outline of the tree and low
outside the outline (where the background shows through). Bilinear magnification
normally causes the outline of the tree to blur. Sharpen texture, applied to the alpha
component, keeps the outline crisp.

Sharpen texture works by extrapolating from mipmap levels 1 and 0 to create a
magnified image that has sharper features than either level.

About the Sharpen Texture Extension
This section first explains how to use the sharpen texture extension to sharpen the

component of your choice. It then gives some background information about how the
extension works and explains how you can customize the LOD extrapolation function.

180 007-2392-003

SGIS_sharpen_texture—The Sharpen Texture Extension

How to Use the Sharpen Texture Extension

You can use the extension to sharpen the alpha component, the color components, or
both, depending on the magnification filter. To specify sharpening, use one of the
magnification filters in Table 8-10.

Table 8-10 Magnification Filters for Sharpen Texture

GL_TEXTURE_MAG_FILTER Alpha Red, Green, Blue
CL_LI NEAR_SHARPEN SA S sharpen sharpen
GL_LI NEAR_SHARPEN_COLOR_SA S bilinear sharpen
GL_LI NEAR_SHARPEN_ALPHA_SG S sharpen bilinear

For example, suppose that a texture contains a picture of a tree in the color components
and the opacity in the alpha component. To sharpen the outline of the tree, use the
following;:

gl TexPar anet eri (GL_TEXTURE_2D, GL_TEXTURE_MAG FI LTER,
GL_LI NEAR SHARPEN ALPHA SG S);

How Sharpen Texture Works

007-2392-003

When OpenGL applies a texture to a pixel, it computes a level of detail (LOD) factor that
represents the amount by which the base texture (that is, level 0) must be scaled. LOD n
represents a scaling of 2. For example, if OpenGL needs to magnify the base texture by
a factor of 4 in both S and T, the LOD is -2. Note that magnification corresponds to
negative values of LOD.

To produce a sharpened texel at level-of-detail 17, OpenGL adds the weighted difference
between the texel at LOD 0 and LOD 1 to LOD 0, as expressed in the following formula:

LoDn = LODO + weight(n) * (LODO - LODI)

The variables are defined as follows:

n Level-of-detail

weight(n) LOD extrapolation function
LODO Base texture value

LOD1 Texture value at mipmap level 1

181

8: Texturing Extensions

By default, OpenGL uses a linear extrapolation function, where weight(n) = -n/4. You
can customize the LOD extrapolation function by specifying its control points, as
described in the next section.

Customizing the LOD Extrapolation Function

With the default linear LOD extrapolation function, the weight may be too large at high
levels of magnification, that is, as n becomes more negative. This can result in so much
extrapolation that noticeable bands appear around edge features, an artifact known as
“ringing.” In this case, it is useful to create a nonlinear LOD extrapolation function.

Figure 8-4 shows LOD extrapolation curves as a function of magnification factors. The
curve on the left is the default linear extrapolation, where weight(n) = -n/4. The curve on
the right is a nonlinear extrapolation, where the LOD extrapolation function is modified
to control the amount of sharpening so that less sharpening is applied as the
magnification factor increases. The function is defined for n less than or equal to 0.

Weight Default LOD extrapolation Weight Custom LOD extrapolation

2 2 /—

/

//

0 -1 -2 -3 -4 0 -1 2 3 -4
LOD LOD

Figure 8-4 LOD Extrapolation Curves

Use glSharpenTexFuncSGIS() to specify control points for shaping the LOD
extrapolation function. Each control point contains a pair of values; the first value
specifies the LOD, and the second value specifies a weight multiplier for that
magnification level. Remember that the LOD values are negative.

182 007-2392-003

SGIS_sharpen_texture—The Sharpen Texture Extension

For example, to gradually ease the sharpening effect, use a nonlinear LOD extrapolation
curve—as shown on the right in Figure 8-4—with these control points:

GLfloat points[] = {

0., 0.,
-1., 1.,
-2., 1.7,
-4., 2.

b
gl Shar penTexFuncSG S(GL_TEXTURE_2D, 4, points);

Note that how these control points determine the function is system-dependent. For
example, your system may choose to create a piecewise linear function, a piecewise
quadratic function, or a cubic function. However, regardless of the kind of function you
choose, the function will pass through the control points.

Using Sharpen Texture and Texture Object

If you are using texture objects, each texture object contains its own LOD extrapolation
function and magnification filter. Setting the function or the filter, therefore, affects only
the texture object that is currently bound to the texture target.

Sharpen Texture Example Program

007-2392-003

Example 8-3 illustrates the use of sharpen texture. Because of space limitations, the
sections dealing with X Window System setup and some of the keyboard input are
omitted. The complete example is included in the source tree as shar pen. c. It is also
available through the developer toolbox under the same name. See

http:/ /www.sgi.com/Technology/toolbox.html for information on toolbox access.

Example 8-3 Sharpen Texture Example

/* tree texture: high alpha in foreground, zero al pha in background */
#defi ne B 0x00000000

#defi ne F OxAOAOQAOf f

unsigned int tex[] = {

WWWW®m®m
WWWW®mm
WWWW®mm
WWWW®mm
WWWW®mm
MWm®®m®m
MTTTm®EW
MMM
MMM
MTTTmWW
MW m®W®m®m
WWWW®mm
WWWW®m®m
WWWW®mm
WWWW®mm
WWWW®mm

183

8: Texturing Extensions

184

WO WWWEOW®E®E®T
WO WWWEOE®E®E®T
POETNTTOEEED
WWWTTMTNT®E®DE®E

WWWTTMTNTE®DE®E
POETNTTOEEEE
WO WWEOE®E®E®T

Do mmTmmmMmmmTmm®©
DmmmmmmmMmmmmmm
ommmmmmmmmm
ommmmmmmmmm
ommmmmmmmm
ommmmmmmmm
DT mMmmmmm
Do mmTmmmMmmmTm®©

I

static void
init(void) {
gl Enabl e(GL_TEXTURE_2D) ;
gl Mat ri xMbde(G._PRQIECTI ON) ;

gl uPer spective(60.0, 1.0, 1.0,

gl Mat ri xMbde(GL_MODELVI EW ;
gl Transl atef(0.,0.,-2.5);

gl Col or4f (0,0,0,1);

glCearColor(0.0, 0.0, 0.0, 1.0);

[selplveiiveiue o ive R ve R ve lve]

10.0);

gl Pi xel St orei (GL_UNPACK_ALI GNVENT, 1);

gl TexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);

gl TexPar anet eri (GL_TEXTURE_2D, GL_TEXTURE_M N FILTER, GL_LI NEAR);

/* sharpening just al pha keeps the tree outline crisp */
gl TexParanet erf (GL_TEXTURE_2D, G._TEXTURE_MAG FI LTER,
GL_LI NEAR_SHARPEN ALPHA SG S);

/* generate m pmaps; levels 0 and 1 are needed for sharpening */

gl uBui | d2DM prmaps(GL_TEXTURE 2D, 4, 16, 16, G._RGBA,
GL_UNSI GNED_BYTE,

}

static void

draw_scene(void) {
gl d ear (GL_COLOR BUFFER BI T);
gl Begi n(GL_TRI ANGLE_STRI P) ;

tex);

gl TexCoord2f(0, 1); gl Vertex2f(-1,-1);
gl TexCoord2f(0, 0); gl Vertex2f(-1, 1);
gl TexCoord2f (1, 1); gl Vertex2f(1,-1);
gl TexCoord2f(1, 0); gl Vertex2f(1, 1);

gl End();
gl Fl ush();

007-2392-003

SGIS_texture_edge/border_clamp—Texture Clamp Extensions

New Functions

The SGIS_sharpen_texture extension introduces the following functions:
¢ glSharpenTexFuncSGIS()
¢ glGetSharpenTexFuncSGIS()

SGIS_texture _edge/border_clamp—Texture Clamp Extensions

Note: These extensions were promoted to standard parts of OpenGL 1.2 and OpenGL
1.3, respectively. Use the equivalent OpenGL interfaces (for example, with the SGIS
suffixes removed) with new applications, unless they must run on InfiniteReality or
InfinitePerformance systems.

This section first provides some background information on texture clamping. It then
identifies reasons for using the following texture clamping extensions and explains how
to use them:

* The texture edge clamp extension, SGIS_texture_edge_clamp

* The texture border clamp extension, SGIS_texture_border_clamp

Texture clamping is especially useful for nonrepeating textures.

Texture Clamping Background Information

OpenGL provides clamping of texture coordinates: any values greater than 1.0 are set to
1.0, any values less than 0.0 are set to 0.0. Clamping is useful for applications that want
to map a single copy of the texture onto a large surface. Clamping is discussed in detail
in the section “Repeating and Clamping Textures” on page 360 of the OpenGL
Programming Guide, Second Edition.

Why Use the Texture Clamp Extensions?

When a texture coordinate is clamped using the default OpenGL algorithm and a
GL_LI NEARfilter or one of the LI NEARmipmap filters is used, the texture sampling filter

007-2392-003 185

8: Texturing Extensions

straddles the edge of the texture image. This action takes half its sample values from
within the texture image and the other half from the texture border.

It is sometimes desirable to alter the default behavior of OpenGL texture clamping
operations as follows:

Clamp a texture without requiring a border or a constant border color. This is
possible with the texture clamping algorithm provided by the texture-edge-clamp
extension. G._CLAMP_TO EDGE_SG S clamps texture coordinates at all mipmap
levels such that the texture filter never samples a border texel.

When used with a G._NEAREST or a G__ LI NEAR filter, the color returned when
clamping is derived only from texels at the edge of the texture image.

Clamp a texture to the border color rather than to an average of the border and edge
colors. This is possible with the texture-border-clamp extension.
GL_CLAMP_TO _BORDER_SQA S clamps texture coordinates at all mipmap levels.

GL_NEAREST and GL_LINEAR filters return the color of the border texels when
the texture coordinates are clamped.

This mode is well-suited for using projective textures such as spotlights.

Both clamping extensions are supported for 1D, 2D, and 3D textures. Clamping always
occurs for texture coordinates less than zero and greater than 1.0.

Using the Texture Clamp Extensions

186

To specity texture clamping, call glTexParameteri() with the following specifications:

Parameter Value
target GL_TEXTURE_1D, GL_TEXTURE 2D, or G._TEXTURE 3D EXT
pname GL_TEXTURE WRAP_S, G._ TEXTURE_WRAP_T, or

GL_TEXTURE_WRAP_R_EXT

param GL_CLAMP_TO_EDGE_SQ S for edge clamping

GL_CLAMP_TO BORDER_SQd S for border clamping

007-2392-003

SGIS_texture_filterd—The Texture Filter4 Extensions

SGIS texture_filterad—The Texture Filter4 Extensions

Note: This extension is only supported on InfiniteReality systems. Applications can
achieve higher quality texture filtering on Onyx4 and Silicon Graphics Prism systems
using anisotropic texture filtering.

The texture filter4 extension, SGIS_texture_filter4, allows applications to filter 1D and 2D
textures using an application-defined filter. The filter has to be symmetric and separable
and have four samples per dimension. In the most common 2D case, the filter is bicubic.
This filtering can yield better-quality images than mipmapping and is often used in
image processing applications.

The OpenGL Programming Guide, Second Edition, describes texture filtering in the section
“Filtering” on page 345, as follows:

“Texture nmaps are square or rectangular, but after being nmapped to a
pol ygon or surface and transforned into screen coordi nates, the

i ndividual texels of a texture rarely correspond to individual pixels
of the final screen image. Depending on the transformati on used and the
texture mapping applied, a single pixel on the screen can correspond to
anything froma small portion of a texel (magnification) to a large
col l ection of texels (mnification).”

Several filters are already part of OpenGL; the extension allows you to define your own
custom filter. The custom filter cannot be a mipmapped filter and must be symmetric and
separable (in the 2D case).

Using the Texture Filter4 Extension
To use Filter4 filtering, you have to first define the filter function. Filter4 uses an

application-defined array of weights (see “Determining the weights Array” on
page 188). There is an implementation-dependent default set of weights.

007-2392-003 187

8: Texturing Extensions

Specifying the Filter Function

Applications specify the filter function by calling glTexFilterFuncSGIS() (see also the
gl TexFi | t er FuncSG S man page) with the following specifications:

Parameter Value

target GL_TEXTURE_1Dor GL_TEXTURE_2D

filter CL_FILTER4_SA S

weights Pointing to an array of n floating-point values. The value n must equal

2**m + 1 for some nonnegative integer value of m.

Determining the weights Array

188

The weights array contains samples of the filter function expressed as follows:
f(x), 0<=x<=2

Each element weights[i] is the value of the following expression:
f((2*i)/(n-1)), O<=i<=n-1

OpenGL stores and uses the filter function as a set of samples, expressed as follows:
f((2*i)/(Size-1)), 0<=i<=Size-1

The Size variable is the implementation-dependent constant

GL_TEXTURE_FI LTER4_SI ZE. If n equals Size, the array weights is stored directly in
OpenGL state. Otherwise, an implementation-dependent resampling method is used to
compute the stored samples.

Note: “SGIS_filter4_parameters—The Filter4 Parameters Extension” on page 177
provides interpolation coefficients just as they are required for GL_FILTER4_SGIS
filtering.

The variable Size must equal 2**m + 1 for some integer value of m greater than or equal
to 4. The value Size for texture target is returned by params when glGetTexParameteriv()
or glGetTexParameterfv() is called with pname set to TEXTURE_FI LTER4_SI ZE_SA S.

007-2392-003

SGIS_texture_lod—The Texture LOD Extension

Setting Texture Parameters

New Functions

After the filter function has been defined, call glTexParameter*() with the following
specifications:

Parameter Value

pname GL_TEXTURE_M N_FI LTERor GL_TEXTURE_MAG FI LTER
param or params FILTER4A_SG S

param(s) The function you just defined

Because filter4 filtering is defined only for non-mipmapped textures, there is no
difference between its definition for minification and magnification.

The SGIS_texture_filter4 extension introduces the following functions:
¢ glTexFilterFuncSGIS()
¢ glGetTexFilterFuncSGIS()

SGIS_texture lod—The Texture LOD Extension

007-2392-003

Note: This extension was promoted to a standard part of OpenGL 1.2. Use the equivalent
OpenGL 1.2 interface (for example, with the SGIS suffix removed) with new applications,
unless they must run on InfiniteReality systems.

The texture LOD extension, SGIS_texture_lod, imposes constraints on the texture LOD
parameter. Together these constraints allow a large texture to be loaded and used initially
atlow resolution and to have its resolution raised gradually as more resolution is desired
or available. By providing separate, continuous clamping of the LOD parameter, the
extension makes it possible to avoid “popping” artifacts when higher-resolution images
are provided.

To achieve this, the extension imposes the following constraints:

¢ It clamps LOD to a specific floating point range.

189

8: Texturing Extensions

e It limits the selection of mipmap image arrays to a subset of the arrays that would
otherwise be considered.

To understand the issues described in this section, you should be familiar with the issues
described in the sections “Multiple Levels of Detail” on page 338 and “Filtering” on page
344 of the OpenGL Programming Guide.

Specifying a Minimum or Maximum Level of Detalil

To specify a minimum or maximum level of detail for a specific texture, call
glTexParameter*() with the following specifications:

Parameter Value

target GL_TEXTURE 1D, GL_TEXTURE 2D, or
GL_TEXTURE 3D _EXT

pname GL_TEXTURE_M N_LOD_SA Sor

GL_TEXTURE_MAX_LOD SG S

param (or params pointing to) ~ The new value

LOD is clamped to the specified range before it is used in the texturing process. Whether
the minification or magnification filter is used depends on the clamped LOD.

Specifying Image Array Availability

190

The OpenGL Specification describes a “complete” set of mipmap image arrays at levels 0
(zero) through p, where p is a well-defined function of the dimensions of the level 0
image.

This extension lets you redefine any image level as the base level (or maximum level).
This is useful, for example, if your application runs under certain time constraints, and
you want to make it possible for the application to load as many levels of detail as
possible but stop loading and continue processing while choosing from the available
levels after a certain period of time has elapsed. Availability in that case does not depend
on what is explicitly specified in the program but on what could be loaded in a specified
time.

To set a new base (or maximum) level, call glTexParameteri(), glTexParemeterf(),
glTexParameteriv(), or glTexParameterfv() and use the following specifications:

007-2392-003

SGIS_texture_select—The Texture Select Extension

Parameter Value

target GL_TEXTURE_1D, GL_TEXTURE_2D, or
GL_TEXTURE_3D_EXT

pname GL_TEXTURE_BASE_LEVEL_SG S to specify a base
level or

GL_TEXTURE_NMAX_LEVEL_SQA S to specify a
maximum level

param to (or params pointing to) The desired value

Note that the number used for the maximum level is absolute, not relative to the base
level.

SGIS_texture_select—The Texture Select Extension

Note: This extension is only supported on InfiniteReality systems. Applications
requiring efficient use of texture memory on Onyx4 and Silicon Graphics Prism systems
should use the OpenGL 1.3 texture compression interface together with the compressed
texture format defined by the EXT_texture_compression_s3tc extension. Alternatively,
these systems may support automatic texture compression on a per-application basis by
setting environment variables; see the platform release notes for more details.

The texture select extension, SGIS_texture_select, allows for more efficient use of texture
memory by subdividing the internal representation of a texel into one, two, or four
smaller texels. The extension may also improve performance of texture loading.

Why Use the Texture Select Extension?

007-2392-003

On InfiniteReality graphics systems, the smallest texel supported by the hardware is 16
bits. The extension allows you to pack multiple independent textures together to
efficiently fill up space in texture memory. The extension itself refers to each of the
independent textures as component groups.

* Two 8-bit textures can be packed together. Examples include 8-bit luminance, 8-bit
intensity, 8-bit alpha, and 4-bit luminance-alpha.

191

8: Texturing Extensions

e Four 4-bit textures can be packed together. Examples include 4-bit luminance, 4-bit
intensity, and 4-bit alpha.

The extension allows developers to work with these components by providing several
new texture internal formats. For example, assume that a texture internal format of
GL_DUAL_LUM NANCE4_SQA Sis specified. Now there are two component groups,
where each group has a format of G__LUM NANCE4. One of the two GL_LUMINANCE
groups is always selected. Each component can be selected and interpreted as a
GL_LUM NANCE texture.

Note: The point of this extension is to save texture memory. Applications that need only
8-bit or 4-bit texels would otherwise use half or one quarter of texture memory. However,
applications that use 16-bit or larger texels (such as RGBA4, LA8) will not benefit from
this extension.

Using the Texture Select Extension

To use the texture select extension, first call glTexImage*D() to define the texture using
one of the new internal formats as follows:

gl Texl mage[n] DI EXT] (/* Definition */
i nternal Format =
GL_DUAL_{ ALPHA, LUM NANCE, INTENSITY * }{4, 8, 12, 16 }_SAS
GL_DUAL_LUM NANCE_ALPHA{ 4, 8 } _SAS
GL_QUAD { ALPHA, LUM NANCE, INTENSITY*}{ 4, 8 }_SAS

)

The system then assigns parts of the texture data supplied by the application to parts of
the 16-bit texel, as illustrated in Table 8-11.

To select one of the component groups for use during rendering, the application then
calls glTexParameter*() as follows:

gl TexParaneteri (/* Selection & Usage */
target = GL_TEXTURE_[n] D[_EXT],
param = G._DUAL_TEXTURE_SELECT _SGA S GL_QUAD TEXTURE_SELECT_SA S
val ue {
{

1},
, 1, 2, 3}

O Ol

)

192 007-2392-003

SGIX_clipmap—The Clipmap Extension

There is always a selection defined for both DUAL_TEXTURE_SELECT_SG S and
QUAD_TEXTURE_SELECT_SA Sformats. The selection becomes active when the current
texture format becomes one of the DUAL* or QUAD* formats, respectively. If the current
texture format is not one of DUAL* or QUAD* formats, this extension has no effect.

Component mapping from standard RGBA to the new internal formats is as follows:

Table 8-11 Texture Select Host Format Components Mapping

Format Grouping

DUAL* formats that are groups of RED component goes to the first group.

ALPHA, LUM NANCE, and | NTENSI TY o pHa component goes to the second group.

DUAL* formats that are groups of RED and GREEN components go to the first group.
LUM NANCE_ALPHA BLUE and ALPHA go to the second group.
QUAD* formats RED component goes to the first group.

GREEN component goes to the second group.
BLUE component goes to the third group.
ALPHA component goes to the fourth group.

The interpretation of the bit resolutions of the new internal formats is
implementation-dependent. To query the actual resolution that is granted, call
glGetTexLevelParameter() with pname set appropriately—for example,
GL_TEXTURE_LUM NANCE_SI ZE. The bit resolution of similar type components in a
group, such as multiple LUM NANCE components, is always the same.

SGIX _clipmap—The Clipmap Extension

007-2392-003

Note: This extension is only supported on InfiniteReality systems. However,
OpenGL Performer implements an emulation of clipmapping; therefore, applications
using OpenGL Performer will be able to use extremely large textures even on systems
not supporting the clipmap extension.

The clipmap extension, SGIX_clipmap, allows applications to use dynamic texture
representations that efficiently cache textures of arbitrarily large size in a finite amount
of physical texture memory. Only those parts of the mipmapped texture that are visible

193

8: Texturing Extensions

Clipmap Overview

194

from a given application-specified location are stored in system and texture memory. As
a result, applications can display textures too large to fit in texture memory by loading
parts on the texture into texture memory only when they are required.

Full clipmap support is implemented in OpenGL Performer 2.2 (or later). Applications
can also use this extension on the appropriate hardware (currently InfiniteReality only)
for the same results. In that case, the application has to perform memory management

and texture loading explicitly.

This section explains how clipmaps work and how to use them in the following sections:

¢ “Clipmap Overview” on page 194 explains the basic assumptions behind clipmaps.

e “Using Clipmaps From OpenGL” on page 197 provides step-by-step instructions
for setting up a clipmap stack and for using clipmaps. Emphasis is on the steps with
references to the background information as needed.

¢ “Clipmap Background Information” on page 200 explains in more detail some of
the concepts behind the steps in clipmap creation.

e “Virtual Clipmaps” on page 203 describes how to work with a virtualized clipmap,
which is the appropriate solution if some levels of the clipmap do not fit.

Note: For additional conceptual information, see the specification for the clipmap
extension, which is available through the developer’s toolbox.

Clipmaps avoid the size limitations of normal mipmaps by clipping the size of each level
of a mipmap texture to a fixed area called the clip region (see Figure 8-5). A mipmap
contains a range of levels, each four times the size of the previous one. Each level (size)
determines whether clipping occurs as follows:

e For levels smaller than the clip region—that is, for low-resolution levels that have
relatively few texels—the entire level is kept in texture memory.

* Levels larger than the clip region are clipped to the clip region’s size. The clip region
is set by the application, trading off texture memory consumption against image
quality. The image may become blurry because texture accesses outside the clip
region are forced to use a coarse LOD.

007-2392-003

SGIX_clipmap—The Clipmap Extension

Clipmap Constraints

007-2392-003

7 Entire level in
texture memory

Figure 8-5 Clipmap Component Diagram

The clipmap algorithm is based on the following constraints:

The viewer can see only a small part of a large texture from any given viewpoint.
The viewer looks at a texture from only one location.
The viewer moves smoothly relative to the clipmap geometry (no teleporting).

The textured geometry must have a reasonable, relatively flat topology.

Given these constraints, applications can maintain a high-resolution texture by keeping
only those parts of the texture closest to the viewer in texture memory. The remainder of
the texture is on disk and cached in system memory.

195

8: Texturing Extensions

Why Do the Clipmap Constraints Work?

The clipmap constraints work because only the textured geometry closest to the viewer
needs a high-resolution texture. Distant objects are smaller on the screen; so, the texels
used on that object also appear smaller (cover a small screen area). In normal
mipmapping, coarser mipmap levels are chosen as the texel size gets smaller relative to
the pixel size. These coarser levels contain fewer texels because each texel covers a larger
area on the textured geometry.

Clipmaps store only part of each large (high-resolution) mipmap level in texture
memory. When the user looks over the geometry, the mipmap algorithm starts choosing
texels from a lower level before running out of texels on the clipped level. Because
coarser levels have texels that cover a larger area, at a great enough distance, texels from
the unclipped, smaller levels are chosen as appropriate.

When a clip size is chosen, the mipmap levels are separated into the following two

categories:

¢ Clipped levels, which are texture levels that are larger than the clip size.

¢ Nonclipped levels, which are small enough to fit entirely within the clip region.
The nonclipped levels are viewpoint-independent; each nonclipped texture level is

complete. Clipped levels, however, must be updated as the viewer moves relative to the
textured geometry.

Clipmap Textures and Plain Textures

196

Clipmaps are not completely interchangeable with regular OpenGL textures. The
following are some differences:

¢ Centering

In a regular texture, every level is complete in a regular texture. Clipmaps have
clipped levels, where only the portion of the level near the clipmap center is
complete. In order to look correct, a clipmap center must be updated as the
viewport of the textured geometry moves relative to the clipmap geometry. As a
result, clipmaps require functionality that recalculates the center position whenever
the viewer moves (essentially each frame). This means that the application has to
update the location of the clip center as necessary.

e Texel data

007-2392-003

SGIX_clipmap—The Clipmap Extension

A regular texture is usually only loaded once when the texture is created. The texel
data of a clipmap must be updated by the application each time the clipmap center
is moved. This is usually done by calling glTexSubImage2D() and using the
toroidal loading technique (see “Toroidal Loading” on page 202).

Using Clipmaps From OpenGL

Setting Up the Clipmap Stack

007-2392-003

To use clipmaps, an application has to take care of the following two distinct tasks,
described in this section:

“Setting Up the Clipmap Stack”
“Updating the Clipmap Stack”

To set up the clipmap stack, an application has to follow these steps:

1.

2.

As shown in the following, call glTexParameter*() with the

G_TEXTURE_M N_FI LTER_SG X parameter set to

GL_LI NEAR_CLI PMAP_LI NEAR_SQA X to let OpenGL know that clipmaps, not
mipmaps, will be used:

gl TexPar anet eri (GL_TEXTURE_2D, GL_TEXTURE_M N_FI LTER,
GL_LI NEAR CLI PMAP_LI NEAR) ;

GL_TEXTURE_MAG_FI LTER can be anything but GL_FI LTER4_SG S.

Set the GL_TEXTURE_CLI PMAP_FRAME_SG X parameter to establish an invalid
border region of at least eight pixels.

The frame is the part of the clip that the hardware should ignore. Using the frame
avoids certain sampling problems; in addition, the application can load into the
frame region while updating the texture. See “Invalid Borders” on page 201 for
more information.

In the following code fragment, size is the fraction of the clip size that should be part
of the border; that is, .2 would mean 20 percent of the entire clip size area would be
dedicated to the invalid border along the edge of the square clip size region.

A float size = .2f; /* 20% */
/* can range fromO (no border) to 1 (all border) */
gl TexParanet er f (GL_TEXTURE_2D, G._TEXTURE_CL| PMAP_FRAME_SA X, si ze) ;

197

8: Texturing Extensions

198

Set GL_TEXTURE_CLI PMAP_CENTER SG X to set the center texel of the
highest-resolution texture, specified as an integer. The clip center is specified in
terms of the top (highest-resolution) level of the clipmap, level 0. OpenGL
automatically adjusts and applies the parameters to all of the other levels.

The position of the center is specified in texel coordinates. Texel coordinate are
calculated by taking the texture coordinates (which range from 0 to 1 over the
texture) and multiplying them by the size of the clipmap’s top level. See “Moving
the Clip Center” on page 200 for more information.

The following code fragment specifies the location of the region of interest on every
clipped level of clipmap. The location is specified in texel coordinates; so, texture
coordinates must be multiplied by the size of the top level in each dimension. In this
example, center is at the center of texture (.5, .5). Assume this clipmap is 4096 (s
direction) by 8192 (t direction) at level 0.

int center[3];

center[0] = .5 * 4096;

center[1] .5 * 8192;

center[2] 0; /* always zero until 3d clipmaps supported */

gl TexPar anet eri v(G._TEXTURE_2D,
GL_TEXTURE_CLI PMAP_CENTER_SG X, center);

Set GL_TEXTURE_CLI PMAP_OFFSET_SQ X to specify the offset. The offset
parameter allows applications to offset the origin of the texture coordinates so that
the incrementally updated texture appears whole and contiguous.

Like the center, the offset is supplied in texel coordinates. In the code fragment
below, clip size is the size of the region of interest.

int offset[2];

of f set [0]
of fset[1]

(center[0] + clipsizel2) %clipsize;
(center[1] + clipsizel2) %clipsize;

gl TexPar amet eri v(GL_TEXTURE_2D,
GL_TEXTURE_CLI PMAP_OFFSET_SA X, of f set) ;

Call glTexImage2D() to define the highest-resolution level that contains the entire
map. This indirectly tells OpenGL what the clip size is and which level of the
clipmap contains the largest clipped level. OpenGL indirectly calculates the clip size
of a clipmap by the size of the texture levels. Although the clipmap levels can be
loaded in any order, it is most efficient for the current clipmap system if the top of

007-2392-003

SGIX_clipmap—The Clipmap Extension

Updating the Clipmap Stack

007-2392-003

the pyramid is loaded first. Note that a clipmap’s clip size level is at some level
other than zero. Otherwise, there would be no levels larger than the clip size—that
is, no clipped levels.

In the following code fragment, the clipmap is RGB with a top level of dimensions
8192 by 8192 and a clip size of 512 by 512. There will be 12 levels total, and the last
level at which the whole mipmap is in memory (512 level) is level 4.

GLint pyram d_|l evel, border = 0;

GLsizei clipsize_wid, clipsize_ht;

clipsize_wid = clipsize_ht = 512;

pyram d_level = 4; /* 8192 = 0, 4096 = 1, 2048 = 2, 1024 = 3, ... */

gl Texl mage2D(G._TEXTURE_2D,
pyram d_|I evel ,
GL_RGB, /* internal format */
clipsize_wd,
clipsize_ht,
border, /* not invalid border! */,
GL_RGB, /* format of data being | oaded */
GL_BYTE, /* type of data being | oaded */
data); /* data can be null and subloaded later if desired */

Create the clipmap stack by calling glTexImage2D() repeatedly for each level.

If you want to use a virtual clipmap, you can use the texture_LOD extension (see
“SGIS_texture_lod—The Texture LOD Extension” on page 189) to specify the
minimum and maximum LOD. See “Virtual Clipmaps” on page 203.

After the application has precomputed all mipmaps, it stores them on disk for easy
access. Note that it is not usually possible to create the stack in real time.

As the user moves through the scene, the center of the clipmap usually changes with each
frame. Applications, therefore, must update the clipmap stack with each frame by
following these steps:

1.

Compute the difference between the old and new center.
See “Moving the Clip Center” on page 200 for background information.
Determine the incremental texture load operations needed for each level.

Perform toroidal loads by calling glTexSubImage2D() to load the appropriate texel
regions.

199

8: Texturing Extensions

“Toroidal Loading” on page 202 discusses this in more detail.

4. Set the parameters forthe center and the offset for the next move.

Clipmap Background Information

The following sections provide background information for the steps in “Using
Clipmaps From OpenGL” on page 197.

Moving the Clip Center

Only a small part of each clipped level of a clipmap actually resides in texture memory:.
As a result, moving the clip center requires updating the contents of texture memory so
it contains the pixel data corresponding to the new location of the region of interest.

Updates must usually happen every frame, as shown in Figure 8-6. Applications can

update the clipmaps to the new center using toroidal loading (see “Toroidal Loading” on
page 202).

<>

Centered

Center moves Texture coordinates wrap

Toroidal loads Same as centered
Figure 8-6 Moving the Clip Center
The clip center is set by the application for level 0, the level with the highest resolution.

The clipmap code has to derive the clip center location on all levels. As the viewer roams
over a clipmap, the centers of each mipmap level move at a different rate. For example,

200 007-2392-003

SGIX_clipmap—The Clipmap Extension

moving the clip center one unit corresponds to the center moving one half that distance
in each dimension in the next-coarser mipmap level.

When applications use clipmaps, most of the work consists of updating the center
properly and updating the texture data in the clipped levels reliably and efficiently for
each frame.To facilitate loading only portions of the texture at a time, the texture data
should first be subdivided into a contiguous set of rectangular areas called tiles. These
tiles can then be loaded individually from disk into texture memory.

Invalid Borders

Applications can improve performance by imposing alignment requirements to the
regions being downloaded to texture memory. Clipmaps support the concept of an
invalid border to provide this feature. The border is an area around the perimeter of a clip
region that is guaranteed not to be displayed. The invalid border shrinks the usable area
of the clip region and can be used to dynamically change the effective size of the clip
region.

When texturing requires texels from a portion of an invalid border at a given mipmap

level, the texturing system moves down a level and tries again. It keeps going down to

coarser levels until it finds texels at the proper coordinates that are not in the invalid

region. This is always guaranteed to happen, because each level covers the same area

with fewer texels. Even if the required texel is clipped out of every clipped level, the

unclipped pyramid levels will contain it.

The invalid border forces the use of lower levels of the mipmap. As a result, it

* Reduces the abrupt discontinuity between mipmap levels if the clip region is small.
Using coarser LODs blends mipmap levels over a larger textured region.

¢ Improves performance when a texture must be roamed very quickly.

Because the invalid border can be adjusted dynamically, it can reduce the texture and
system memory loading requirements at the expense of a blurrier textured image.

007-2392-003 201

8: Texturing Extensions

Toroidal Loading

202

Required texel Clip center

Fine Clip region

Coarser

Figure 8-7 Invalid Border

To minimize the bandwidth required to download texels from system to texture memory,
the image cache’s texture memory should be updated using toroidal loading, which
means the texture wraps upon itself. (see Figure 8-6).

A toroidal load assumes that changes in the contents of the clip region are incremental,
such that the update consists of the following:

* New texels that need to be loaded

e Texels that are no longer valid

e Texels that are still in the clip region but have shifted position

Toroidal loading minimizes texture downloading by updating only the part of the

texture region that needs new texels. Shifting texels that remain visible is not necessary,
because the coordinates of the clip region wrap around to the opposite side.

As the center moves, only texels along the edges of the clipmap levels change. To allow

for incremental loading only of these texels using glTexSubImage2D(), toroidal offset
values must be added to the texture addresses of each level. The offset is specified by the

007-2392-003

SGIX_clipmap—The Clipmap Extension

Virtual Clipmaps

007-2392-003

application (see “Setting Up the Clipmap Stack” on page 197). The offsets for the top
level define the offsets for subsequent levels by a simple shift, just as with the center.

You can use the texture LOD extension in conjunction with mipmapping to change the
base level from zero to something else. Using different base levels results in clipmaps
with more levels than the hardware can store at once when texturing.

These larger mipmapped textures can be used by only accessing a subset of all available
mipmap levels in texture memory at any one time. A virtual offset is used to set a virtual
“level 0” in the mipmap while the number of effective levels indicates how many levels
starting from the new level 0 can be accessed. The minLOD and maxLOD are also used
to ensure that only valid levels are accessed. Using the relative position of the viewer and
the terrain to calculate the values, the application typically divides the clipmapped
terrain into pieces and sets the values as each piece is traversed.

Clip size
RO e
J‘\\‘ ’/

Clip region

Clipmap LOD
offset

Virtual clipmap
\// Clipmap depth depth

Figure 8-8 Virtual Clipmap

203

8: Texturing Extensions

To index into a clipmap of greater than GL_MAX_CLI PMAP_DEPTH_SG Xlevels of detail,
additional parameters are provided to restrictively index a smaller clipmap of (N+1)
levels located wholly within a complete, larger clipmap. Figure 8-8 illustrates how a
virtual clipmap fits into a larger clipmap stack. The clipmap extension specification
explains the requirements for the larger and smaller clipmap in more detail.

When creating a virtual clipmap, an application calls glTexParameteriv() or
glTexParameterfv() with the following specifications:

Parameter Value

target GL_TEXTURE_2D

pname GL_TEXTURE_CLI PMAP_VI RTUAL_DEPTH_SG X
params (D,N+1,V+1)

The value D is the finest level of the clipmap, N+1 is the depth of the
clipmap, and V+1 is the depth of the virtual clipmap.

If the depth of the virtual clipmap is zero, clipmap virtualization is ignored, and
texturing proceeds as with a non-virtual clipmap.

If you have virtualized the clipmap, you will be adjusting the LOD offset and possibly
the number of displayable levels as you render each chunk of polygons that need a
different set of clipmap levels to be rendered properly. The application has to compute
the levels needed.

SGIX_texture_add_env—The Texture Environment Add Extension

204

Note: This extension is not supported on Onyx4 and Silicon Graphics Prism systems.
Applications can achieve similar functionality by using the OpenGL 1.3 ADD texture
environment mode, although the constant color scale and bias provided by this extension
are not supported by base OpenGL 1.3. Alternatively, the OpenGL 1.3 texture combiner
interface can be set up to match the effects of this extension.

The texture environment add extension, SGIX_texture_add_env, defines a new texture
environment function, which scales the texture values by the constant texture
environment color, adds a constant environment bias color, and finally adds the resulting
texture value on the in-coming fragment color. The extension can be used to simulate

007-2392-003

SGIX_texture_lod_bias—The Texture LOD Bias Extension

highlights on textures (although that functionality is usually achieved with multipass
rendering) and for situations in which it has to be possible to make the existing color
darker or lighter—for example, for simulating an infrared display in a flight simulator.
OpenGL supports the following four texture environment functions:

e G._DECAL

e GL_REPLACE

e GL_MODULATE

e GL_BLEND

The extension provides an additional environment, GL_ADD, which is supported with
the following equation:

Cv =Cf + CC + Cb

Variable Value

Cf Fragment color

Cc Constant color set by calling glTexEnv() with prname set to
GL_TEXTURE_ENV_COLCR

Ct Texture color

Cb Bias color set by calling glTexEnv() with pname set to

GL_TEXTURE_ENV_BI AS_SA Xand param set to a value greater than -1
and less than 1.

The new function works just like the other functions described in the section “Texture
Functions” on page 354 of the OpenGL Programming Guide, Second Edition.

SGIX_texture lod_bias—The Texture LOD Bias Extension

007-2392-003

Note: This extension is not supported on Onyx4 and Silicon Graphics Prism systems.
Applications can achieve similar functionality by using the OpenGL 1.4
TEXTURE_LOD_BI AS parameter, although the numerical meaning of the bias is not
identical between this extension and the OpenGL 1.4 feature because the bias is added at
different stages of computing the level of detail.

205

8: Texturing Extensions

The texture LOD bias extension, SGIX_texture_lod_bias, allows applications to bias the
default LOD to make the resulting image sharper or more blurry. This can improve image
quality if the default LOD is not appropriate for the situation in question.

Background: Texture Maps and LODs

206

If an application uses an image as a texture map, the image may have to be scaled down
to a smaller size on the screen. During this process the image must be filtered to produce
a high-quality result. Nearest-neighbor or linear filtering do not work well when an
image is scaled down; for better results, an OpenGL program can use mipmapping. A
mipmap is a series of prefiltered texture maps of decreasing resolution. Each texture map
is referred to as one level of detail (LOD). Applications create a mipmap using the
routines gluBuild1DMipmaps() or gluBuild2DMipmaps(). Mipmaps are discussed
starting on page 338 of the OpenGL Programming Guide, Second Edition.

Graphics systems from Silicon Graphics automatically select an LOD for each textured
pixel on the screen. However, in some situations the selected LOD results in an image
that is too crisp or too blurry for the needs of the application. For example, 2D
mipmapping works best when the shape of the texture on the screen is a square. If that
is not the case, then one dimension of the texture must be scaled down more than the
other to fit on the screen. By default, the LOD corresponding to the larger scale factor is
used; so, the dimension with the smaller scale factor will appear too blurry.

Figure 8-9 shows an image that is too blurry with the default LOD bias. You can see that
the marker in the middle of the road is blurred out. In Figure 8-10, this effect is
exaggerated by a positive LOD bias. Figure 8-11 shows how the markers become visible
with a negative LOD bias.

007-2392-003

SGIX_texture_lod_bias—The Texture LOD Bias Extension

Figure 8-9 Original Image

Figure 8-10 Image With Positive LOD Bias

007-2392-003 207

8: Texturing Extensions

Figure 8-11 Image with Negative LOD Bias

As another example, the texture data supplied by the application may be slightly
oversampled or undersampled; so, the textured pixels drawn on the screen may be
correspondingly blurry or crisp.

Why Use the LOD Bias Extension?

The texture LOD bias extension allows applications to bias the default LOD to make the
resulting image sharper or more blurry. An LOD of 0 corresponds to the most-detailed
texture map, an LOD of 1 corresponds to the next smaller texture map, and so on. The
default bias is zero, but if the application specifies a new bias, that bias will be added to
the selected LOD. A positive bias produces a blurrier image, and a negative bias
produces a crisper image. A different bias can be used for each dimension of the texture
to compensate for unequal sampling rates.

208 007-2392-003

SGIX_texture_lod_bias—The Texture LOD Bias Extension

Examples of textures that can benefit from this LOD control include the following:

¢ Images captured from a video source. Because video systems use non-square pixels,
the horizontal and vertical dimensions may require different filtering.

* A texture that appears blurry because it is mapped with a nonuniform scale, such as
a texture for a road or runway disappearing toward the horizon. The vertical
dimension must be scaled down a lot near the horizon, the horizontal dimension
need not to be scaled down as much.

e Textures that do not have power-of-two dimensions and, therefore, they had to be
magnified before mipmapping. The magnification may have resulted in a
nonuniform scale.

Using the Texture LOD Bias Extension

To make a mipmapped texture sharper or blurrier, applications can supply a negative or
positive bias by calling glTexParameter*() with the following specifications:

Parameter Value
target TEXTURE_1D, TEXTURE 2D, or TEXTURE_3D_EXT
pname GL_TEXTURE _LOD BIAS_S Sd X,

GL_TEXTURE_LOD BI AS T_SG X, or
GL_TEXTURE_LOD BI AS R SG X

param (or params pointing to) The desired bias value, which may be any integer or
floating-point number. The default value is 0.

You can specify a bias independently for one or more texture dimensions. The final LOD
is at least as large as the maximum LOD for any dimension; that is, the texture is scaled
down by the largest scale factor, even though the best scale factors for each dimension
may not be equal.

Applications can also call glGetTexParameter*() to check whether one of these values
has been set.

007-2392-003 209

8: Texturing Extensions

SGIX_texture_scale bias—The Texture Scale Bias Extension

210

Note: This extension is not supported on Onyx4 and Silicon Graphics Prism systems.
Applications can achieve similar functionality by setting up the OpenGL 1.3 texture
combiner interface to match the effects of this extension or by using fragment programs.

The texture_scale_bias extension, SGIX_texture_scale_bias, allows applications to
perform scale, bias, and clamp operations as part of the texture pipeline. By allowing
scale or bias operations on texels, applications can make better utilization of the color
resolution of a particular texture internal format by performing histogram normalization
or gamut expansion, for example. In addition, some color remapping may be performed
with this extension if a texture color lookup table is not available or too expensive.

The scale, bias, and clamp operations are applied in that order directly before the texture
environment equations or if the SGI_texture_color_table extension exists, directly before
the texture color lookup table. The four values for scale (or bias) correspond to the R, G,
B, and A scale (or bias) factors. These values are applied to the corresponding texture

components, Rt, Gt, Bt, and At. Following the scale and bias is a clamp to the range [0, 1].

To use the extension, an application calls glTexParameter*() with the following
specifications:

Parameter Value

pname GL_POST_TEXTURE_FI LTER_BI AS_SG X or
GL_POST_TEXTURE_FI LTER_SCALE_SG X

params An array of four values

The scale or bias values can be queried using glGetTexParameterfv() or
glGetTexParameteriv(). The scale, bias, and clamp operations are effectively disabled by
setting the four scale values to 1 and the four bias values to 0. There is no specific enable
or disable token for this extension.

Because an implementation may have a limited range for the values of scale and bias (for
example, due to hardware constraints), this range can be queried. To obtain the scale or
bias range, call glGet*() with G._POST_TEXTURE_FI LTER_SCALE_RANGE_SG Xor
GL_POST_TEXTURE_FI LTER _BI AS_RANGE_SQA X, respectively, as the value parameter.
An array of two values is returned: the first is the minimum value and the second is the
maximum value.

007-2392-003

Chapter 9

007-2392-003

Rendering Extensions

This chapter explains how to use the different OpenGL rendering extensions. Rendering
refers to several parts of the OpenGL pipeline: the evaluator stage, rasterization, and

per-fragment operations. The following extenstions are described in this chapter:

“ATI_draw_buffers—The Multiple Draw Buffers Extension” on page 212

“ATI_separate_stencil—The Separate Stencil Extension” on page 213
“NV_point_sprite—The Point Sprite Extension” on page 215
“NV_occlusion_query—The Occlusion Query Extension” on page 217
“Blending Extensions” on page 221

“SGIS_fog_function—The Fog Function Extension” on page 224
“SGIS_fog_offset—The Fog Offset Extension” on page 228

“The Multisample Extension” on page 230

“The Point Parameters Extension” on page 239
“SGIX_reference_plane—The Reference Plane Extension” on page 243
“The Shadow Extensions” on page 245

“SGIX_sprite—The Sprite Extension” on page 250

211

9: Rendering Extensions

ATl _draw_buffers—The Multiple Draw Buffers Extension

The ATI_draw_buffers extension allows fragment programs to generate multiple output
colors, and provides a mechanism for directing those outputs to multiple color buffers.

Why Use Multiple Draw Buffers?

Multiple draw buffers are typically useful when generating an image and auxiliary data,
multiple versions of an image, or multiple computed results from a fragment program
being used for general-purpose computation.

Using Multiple Draw Buffers

Normally, a fragment program will generate a single output color, r esul t . col or,
which is written to the color buffer defined by glDrawBuffer(). When a fragment
program specifies the option “ATl _dr aw_buf f er s”, an implementation-dependent
number of output colors, named r esul t . col or [n] , may be generated, where n ranges
from O up to the number of draw buffers minus one. The number of draw buffers
supported is implementation-dependent, and may be queried by calling glGetIntegerv()
with the parameter GL_ MAX_DRAW BUFFERS_ATI . Typically, at least four draw buffers
are supported by this extension.

To define the color buffers to which multiple output colors are written, make the
following call:

voi d gl DrawBuf f er sATI (GLsi zei n, const GLenum *bufs);

The parameter n specifies the number of buffers in bufs and bufs is a pointer to an array
of symbolic constants specifying the buffer to which each output color is written. The
constants may be one of the following;:

« GL_NONE

« GL_FRONT_LEFT
« G._FRONT_RI GHT
« GL_BACK LEFT

« GL_BACK RIGHT

212 007-2392-003

ATI_separate_stencil—The Separate Stencil Extension

New Function

* G_AUXO through GL_AUXn, where n + 1 is the number of available auxiliary
buffers.

The draw buffers being defined correspond in order to the respective output colors. The
draw buffer for output colors beyond # is set to GL_NONE.

The constants GL_FRONT, GL_BACK, GL_LEFT, GL_RI GHT, and GL_FRONT_AND_BACK,
which may refer to multiple color buffers, are not valid elements of bufs, and their use
will generate a GL_| NVALI D_OPERATI ON error.

If the “ATI _dr aw_buf f er s” fragment program option is not used by a fragment
program or if fixed-function fragment processing is being used, then
glDrawBuffersATI() specifies a set of draw buffers for the writing of the output color 0
or the output color from fixed-function fragment processing.

The draw buffer corresponding to output color i may be queried by calling
glGetIntegerv() with the parameter GL_DRAW BUFFER;_ATI .

The ATI_draw_buffers extension introduces the function glDrawBuffersATI().

ATl _separate_stencil—The Separate Stencil Extension

The ATI_separate_stencil extension provides the ability to modify the stencil buffer
based on the orientation of the primitive that generated a fragment.

Why Use the Separate Stencil Extension?

007-2392-003

When performing stencil buffer computations which differ for fragments generated by
front-facing and back-facing primitives, applications typically must render geometry
twice. They use face culling to discard front-facing primitives with one pass and
back-facing primitives on the second and change stencil buffer settings prior to each
pass. A common example is stencil shadow volumes, where the stencil buffer is to be
incremented for front-facing fragments and decremented for back-facing fragments.

213

9: Rendering Extensions

By using independent stencil tests and operations depending on fragment orientation,
such computations can be performed in a single pass, which may significantly increase
performance for geometry-limited applications.

Using the Separate Stencil Extension

To set the stencil function separately for front-facing and back-facing fragments, make the
following call:

voi d gl Stenci | FuncSepar at eATI (GLenum frontfunc, GLenum backfunc, GLint ref,
GLui nt mask) ;

The parameters frontfunc and backfunc respectively specify the stencil test function used
for front-facing and back-facing fragments. The values accepted are the same as for
glStencilFunc(), and the initial value of each function is GL_ALWAYS.

The parmater ref specifies the reference value used for both front-facing and back-facing
fragments. It is clamped to the range [0, pow(2,s) — 1], where s is the number of bits in the
stencil buffer.

The s least significant bits of the mask value are bitwise ANDed with ref and then with
the stored stencil value, and the resulting masked value is used in the comparison
controlled by {\emf unc}.

To set the stencil operation separately for front-facing and back-facing fragments, make
the following call:

voi d gl Stenci| OpSepar at eATI (GLenum face, GLenum fail, GLenum zfail,
G.enum zpass) ,

The parameter face specifies the orientation for the stencil operation and must be
GL_FRONT, GL_BACK, or G._FRONT_AND_BACK to set both stencil operations to the
same values.

The parameters fail, zfail, and zpass respectively specify the operations to perform when
the stencil test fails, stencil test passes but depth test fails, and stencil and depth tests both
pass. The values accepted are the same as for glStencilOp().

Use the core OpenGL tokens to query for the front-facing stencil state. To query for the
back-facing stencil state, call glGetIntegerv() with the following tokens:

« GL_STENCI L_BACK_FUNC AT

214 007-2392-003

NV_point_sprite—The Point Sprite Extension

New Functions

« GL_STENCI L_BACK_FAI L_ATI
« GL_STENCI L_BACK_PASS_DEPTH_FAI L_ATI
« GL_STENCI L_BACK_PASS_DEPTH_PASS_ATI

The ATI_separate_stencil extension introduces the following functions:
¢ glStencilFuncSeparateATI()
¢ glStencilOpSeparateATI()

NV _point_sprite—The Point Sprite Extension

The NV_point_sprite extension supports application of texture maps to point primitives
instead of using a single texture coordinate for all fragments generated by the point. Note
that NV_point_sprite is not related to the SGIX_sprite extension described in section
“SGIX_sprite—The Sprite Extension” on page 250.

Why Use Point Sprites?

007-2392-003

When rendering effects such as particle systems, applications often want to draw a small
texture (such as a shaded sphere) to represent each particle rather than the set of
uniformly shaded fragments normally generated by a GL_PO NTS primitive. This can
easily be done by rendering a GL_QUADS primitive for each point but at the cost of
quadrupling the amount of geometry transferred to the graphics pipeline for each point
and of performing additional work to compute the location of each vertex of the quad.
Since particle systems typically involves thousands or tens of thousands of particles, this
can translate to a large geometry load.

Point sprites allow producing these effects using point primitives instead of quads. Each
texture unit can be modified to replace the single S and T texture coordinate for each
fragment generated by a point with S and T point sprite coordinates, which are
interpolated across the fragments generated by a point. Finally, a global parameter
controls the R texture coordinate for point sprites to allow applications to animate slices
of a single 3D texture during the lifetime of a point. For example, it allows an application
to represent a particle that glows and then fades.

215

9: Rendering Extensions

Using Point Sprites

216

Point sprites are enabled by calling glEnable(GL_PO NT_SPRI TE_NV). When point
sprites are enabled, the state of point antialiasing is ignored so that fragments are
generated for the entire viewport square occupied by the point instead of just fragments
in a circle filling that viewport square.

When point sprites are enabled, each texture unit may independently determine whether
or not the single point texture coordinate is replaced by point sprite texture coordinates
by making the following call:

gl TexEnvi (GL_PO NT_SPRI TE_NV, GL_COORD_REPLACE_NV, flag);

The active texture unit will generate point sprite coordinates if flag is G._ TRUE or will
use the point texture coordinate if flag is G._FALSE.

The point sprite texture coordinates generated for fragments by a point will be the
following:

s =1/2 + ((x - x, + 1/2) [size)
t =12+ ((y,- y, + 12) | size)

The variable items are defined as follows:

X, Specifies the window coordinates of a fragment generated by the point.

o Yy p g g y p

(% Vo) Specifies the floating point coordinates of the point center.

size Specifies the screen-space point width, which depends on the current
point width as well as the scaling determined by the current point
parameters.

When 3D texturing is enabled, the R value generated for point sprite coordinates is
determined by making the following call:

gl Poi nt Paranet eri NV(GL_PO NT_SPRI TE_R_MODE_NV, GLint param);

The following are possible values of param:

GL_ZERO The R coordinate generated for all fragments will be zero. This is
typically the fastest mode. G._ZEROis the default.

G_S The R coordinate generated for all fragments will be taken from the S
coordinate of the point before point sprite coordinates are generated.

007-2392-003

NV _occlusion_query—The Occlusion Query Extension

G_R The R coordinate generated for all fragments will be taken from the R
coordinate of the point before point sprite coordinates are generated.

NV_occlusion_query—The Occlusion Query Extension

The NV_occlusion_query extension provides a high-level mechanism to query the
visibility of an object and returns a count of the number of pixels that pass the depth test.

Why Use Occlusion Queries?

007-2392-003

Occlusion queries are primarily used to help applications avoid rendering objects that
are completely occluded (blocked from visibility) by other objects closer to the viewer.
This can result in a significantly reduced geometry load.

Typically, this test consists of the following steps:

1. Drawing large foreground objects (occluders) that are expected to block background
objects

2. Starting the occlusion test

3. Drawing simple primitives representing the bounding box of background objects
that may be occluded

4. Ending the occlusion test

5. Reading back the number of pixels of the bounding box that passed the depth test

If the number of pixels that passed the depth test is zero, then the objects represented by
this bounding box are completely occluded and do not need to be drawn. Otherwise, at
least some of the objects within the bounding box may be visible and can either be drawn
or finer-detailed occlusion queries can be performed on smaller components of the
objects. In addition, if the number of pixels is small relative to the size of the bounding
box, it may be possible to represent the objects with lower-detailed models.

Some other possible uses for occlusion queries include depth peeling techniques like as
order-independent transparency, where an application can stop rendering when further
layers will be invisible, and as a replacement for glReadPixels() when performing
operations like reading the depth buffer to determine fractional visibility of a light source
for lens flare or halo effects.

217

9: Rendering Extensions

Use occlusion queries with care, however. Naive use of a query may stall the graphics
pipeline and CPU while waiting for query results. To avoid this problem,
NV_occlusion_query supports a simple test for the availability of query results. If the
query results are not available, the application can do other drawing or compute tasks
while waiting for the results to become available.

In addition, the expense of rendering bounding boxes for an occlusion test, while
typically small compared to the expense of rendering the objects themselves, can become
significant if done too finely (for example, rendering bounding boxes for small objects)
or if done frequently when it is unlikely that the bounding boxes will actually be
occluded.

Using the NV_occlusion_query Extension

218

Occlusion queries depend on occlusion query objects. As shown in the following code,
these objects are represented by object names (of type GLui nt), which are managed in
exactly the same fashion as texture and display list names—that is, with routines for
allocating unused query names, deleting query names, and testing if a name is a valid
occlusion query:

voi d gl GenCccl usi onQueri esNV(GLsi zei n, GLuint *ids);
voi d gl Del et eCccl usi onQueri esNV(G.si zei n, const G.uint *ids);
GLbool ean gl I sCccl usi onQuer yNV(GLui nt id) ;

Occlusion query objects contain a pixel counter, which is initially set to zero. The size (in
bits) of this counter is the same for all queries and may be determined by calling
glGetIntegerv() with parameter GL_PI XEL_COUNTER_BI TS_NV. An occlusion query
counter is guaranteed to contain at least 24 bits, supporting pixels counts of at least
16777215, but it may be larger.

To perform occlusion queries, first acquire an unused query name using
glGenOcclusionQueriesNV(). Begin the query by making the following call:

voi d gl Begi nCccl usi onQuer yNV(GLui nt id) ;

The parameter id specifies the name of the query to be created. Then render the geometry
to be queried. Whenever a fragment being rendered passes the depth test while an
occlusion query is being performed, the pixel counter is incremented by one. In a
multisampling situation, the pixel counter is incremented once for each sample whose
coverage bit in the fragment is set.

007-2392-003

NV _occlusion_query—The Occlusion Query Extension

007-2392-003

Typically, when rendering bounding boxes for an occlusion test, the color and depth
masks are set to GL_FALSE so that the bounding boxes themselves are not drawn to the
framebuffer.

To end an occlusion query, make the following call:
voi d gl EndCccl usi onQuer yNV(voi d);

To retrieve the count of pixels that passed the occlusion query, make the following call:

voi d gl Get Cccl usi onQuer yui vNV(GLui nt id, GLenum pname, GLuint *params);

Set the parameter pname to GL_Pl XEL_COUNT_NV. The count is returned in the variable
pointed to by params. However, as noted earlier, calling glGetOcclusionQueryNV()
immediately after ending a query may cause the graphics pipeline to stall.

To avoid stalling, first determine whether the query count is available by calling
glGetOcclusionQueryuiNV() with a pname of GL_PI XEL_COUNT_AVAI LABLE_NV. If
the value returned in params is GL_TRUE, then the count is available, and a query of
GL_PI XEL_COUNT_NV may be performed without stalling. Otherwise, the application
may perform additional work unrelated to the occlusion query and test periodically for
the result. Note that the first call to determine GL_ Pl XEL_COUNT_AVAI LABLE_NV for a
query should be preceded by glFlush() to ensure that the glEndOcclusionQueryNV()
operation for that query has reached the graphics pipeline. Otherwise, it is possible to
spin indefinitely on the query.

Example 9-1 shows a simple use of NV_occlusion_query.

Example 9-1 NV_occlusion_query Example

GLui nt occl usi onQuery[numQuery]; /* names for each query to perform*/
gl GenCccl usi onQueri esNV(numQuery, occl usi onQuery);

[* Prior to this point, first render the foreground occluders */

/* Disable color and depth mask wites while rendering boundi ng boxes
*/

gl Col or Mask(GL_FALSE, G._FALSE, G._FALSE, G._FALSE);

gl Dept hMask(GL_FALSE) ;

/* Also disable texturing, fragment shaders, and any other

* unneccessary functionality, since nothing will actually be

* witten to the screen.

*/

219

9: Rendering Extensions

/* Now | oop over nunfQuery objects, performng an occl usion query for
each */
for (i =0; i < numQuery; i++) {
gl Begi nCccl usi onQuer yNV(occl usi onQuery[i]);
/* Render bounding box for object i */
gl EndCccl usi onQuer yNV() ;
}

/* Enabl e color and depth mask wites, and any other state disabled
* above prior to the occlusion queries

*/

gl Col or Mask(G._TRUE, G.L_TRUE, G._TRUE, G._TRUE);

gl Dept hMask(GL_TRUE) ;

/* 1f possible, performother conputations or rendering at this
* point, while waiting for occlusion results to becone avail abl e.
*/

/* Now obtain pixel counts for each query, and draw objects based
* on those counts.
*/
for (i =0; i < numery; i++) {
GLui nt pi xel Count ;

gl Get Cccl usi onQuer yui vVNV(occl usi onQuery[i], G._PI XEL_COUNT_NV,
&pi xel Count) ;

if (pixel Count > 0) {
/* Render geonetry for object i here */

}

New Functions

The NV_occlusion_query extension introduces the following functions:
¢ glGenOcclusionQueriesNV()

¢ glDeleteOcclusionQueriesNV()

¢ glIsOcclusionQueryNV()

¢ glBeginOcclusionQueryNV()

¢ glEndOcclusionQueryNV()

220 007-2392-003

Blending Extensions

¢ glGetOcclusionQueryuivNV()

Blending Extensions

Blending refers to the process of combining color values from an incoming pixel
fragment (a source) with current values of the stored pixel in the framebuffer (the
destination). The final effect is that parts of a scene appear translucent. You specify the
blending operation by calling glBlendFunc(), then enable or disable blending using
glEnable() or glDisable() with GL_BLEND specified.

Blending is described in the first section of Chapter 7, “Blending, Antialiasing, Fog, and
Polygon Offset” of the OpenGL Programming Guide. The section also lists a number of
sample uses of blending.

This section explains how to use extensions that support color blending for images and
rendered geometry in a variety of ways:

¢ “Constant Color Blending Extension”

¢ “Minmax Blending Extension”

e “Blend Subtract Extension”

Note: These three extensions were promoted to a standard part of OpenGL 1.2. Use the
equivalent OpenGL 1.2 interfaces (for example, with the EXT suffixes removed) with
new applications, unless they must run on InfiniteReality, InfinitePerformance, or Fuel
systems. The extensions are supported on all current Silicon Graphics systems.

Constant Color Blending Extension

007-2392-003

The standard blending feature allows you to blend source and destination pixels. The
constant color blending extension, EXT_blend_color, enhances this capability by
defining a constant color that you can include in blending equations.

Constant color blending allows you to specify input source with constant alpha that is

not 1 without actually specifying the alpha for each pixel. Alternatively, when working
with visuals that have no alpha, you can use the blend color for constant alpha. This also
allows you to modify a whole incoming source by blending with a constant color (which

221

9: Rendering Extensions

is faster than clearing to that color). In effect, the image looks as if it were viewed through
colored glasses.

Using Constant Colors for Blending

To use a constant color for blending, follow these steps:

1. Call glBlendColorEXT(), whose format follows, to specify the blending color:

voi d gl Bl endCol or EXT(GLcl anpf red, GL.cl anpf green, GL.cl anpf blue,
GLcl ampf alpha)

The four parameters are clamped to the range [0,1] before being stored. The default
value for the constant blending color is (0,0,0,0).

2. Call glBlendFunc() to specify the blending function, using one of the tokens listed
in Table 9-1 as source or destination factor, or both.

Table 9-1 Blending Factors Defined by the Blend Color Extension

Constant Computed Blend Factor
GL_CONSTANT_COLOR_EXT (Re, Gg, Be, Ac)

GL_ONE_M NUS_CONSTANT _COLOR_EXT 1,1,1,1) - (Re, Ge, B, Ac)
GL_CONSTANT_ALPHA EXT (Ac, Ac, Ac, Ac)
GL_ONE_M NUS_CONSTANT ALPHA_EXT (1,1,1,1) - (Ac, Ac, Ac, Ac)

Rc, Ge, Be, and Ac are the four components of the constant blending color. These
blend factors are already in the range [0,1].

You can, for example, fade between two images by drawing both images with
Alpha and 1-Alpha as Alpha goes from 1 to 0, as in the following code fragment:

gl Bl endFunc(GL_ONE_M NUS_CONSTANT_COLOR_EXT, GL_CONSTANT_COLOR_EXT);
for (alpha = 0.0; alpha <= 1.0; al pha += 1.0/16.0) {
gl d ear (GL_COLOR_BUFFER_BI T);
gl DrawPi xel s(wi dt h, height, G._RGB, G._UNSI GNED BYTE, image0O);
gl Enabl e(G._BLEND) ;
gl Bl endCol or EXT(al pha, al pha, al pha, al pha);
gl DrawPi xel s(wi dth, height, G._RGB, G._UNSI GNED BYTE, inmgel);
gl Di sabl e(GL_BLEND) ;

222 007-2392-003

Blending Extensions

New Functions

gl XSwapBuf f ers(di spl ay, w ndow);

The EXT_blend_color extension introduces the function glBlendColorEXT().

Minmax Blending Extension

Using a Blend Equation

New Functions

007-2392-003

The minmax blending extension, EXT_blend_minmax, extends blending capability by
introducing two new equations that produce the minimum or maximum color
components of the source and destination colors. Taking the maximum is useful for
applications such as maximum intensity projection (MIP) in medical imaging.

This extension also introduces a mechanism for defining alternate blend equations. Note
that even if the minmax blending extension is not supported on a given system, that
system may still support the logical operation blending extension or the subtract
blending extension. When these extensions are supported, the glBlendEquationEXT()
function is also supported.

To specify a blend equation, call glBlendEquationEXT(), whose format follows:
voi d gl Bl endEquat i onEXT(GLenum mode)

The mode parameter specifies how source and destination colors are combined. The blend
equations GL_M N_EXT, GL._MAX_EXT, and GL_LOG C_OP_EXT do not use source or
destination factors; that is, the values specified with glBlendFunc() do not apply.

If mode is set to GL_FUNC_ADD_EXT, then the blend equation is set to G._ADD, the
equation used currently in OpenGL 1.0. The glBlendEquationEXT() reference page lists
other modes. These modes are also discussed in “Blend Subtract Extension” on page 224.
While OpenGL 1.0 defines logic operation only on color indices, this extension extends
the logic operation to RGBA pixel groups. The operation is applied to each component
separately.

The EXT_BLEND_MINMAX extension introduces the function giBlendEquationEXT().

223

9: Rendering Extensions

Blend Subtract Extension

The blend subtract extension, EXT_blend_subtract, provides two additional blending
equations that can be used by glBlendEquationEXT(). These equations are similar to the
default blending equation but produce the difference of its left- and right-hand sides,
rather than the sum. See the man page for glBlendEquationEXT() for a detailed
description.

Image differences are useful in many image-processing applications; for example,
comparing two pictures that may have changed over time.

SGIS _fog _function—The Fog Function Extension

224

Standard OpenGL defines three fog modes: G__LI NEAR, GL_EXP (exponential), and
GL_EXP2 (exponential squared). Visual simulation systems can benefit from more
sophisticated atmospheric effects, such as those provided by the fog function extension.

Note: The fog function extension is supported only on InfiniteReality,
InfinitePerformance, and Fuel systems. Applications can achieve similar functionality on
Onyx4 and Silicon Graphics Prism systems using fragment programs.

The fog function extension, SGIS_fog_function, allows you to define an
application-specific fog blend factor function. The function is defined by a set of control
points and should be monotonic. Each control point is represented as a pair of the
eye-space distance value and the corresponding value of the fog blending factor. The
minimum number of control points is 1. The maximum number is
implementation-dependent.

To specify the function for computing the blending factor, call glFogFuncSGIS() with
points pointing at an array of pairs of floating point values and 7 set to the number of
value pairs in points. The first value of each value pair in points specifies a value of
eye-space distance (should be nonnegative), and the second value of each value pair
specifies the corresponding value of the fog blend factor (should be in the [0.0, 1.0]
range). If there is more than one point, the order in which the points are specified is based
on the following requirements:

* The distance value of each point is not smaller than the distance value of its
predecessor.

007-2392-003

SGIS_fog_function—The Fog Function Extension

¢ The fog factor value of each point is not bigger than the fog factor value of its
predecessor.

Replacing any previous specification that may have existed, the n value pairs in points
completely specify the function. At least one control point should be specified. The
maximum number of control points is implementation-dependent and may be retrieved
by calling glGetIntegerv() with a pname of GL_MAX_FOG_FUNC_PO NTS_SG S while
the number of points actually specified for the current fog function may be retrieved with
a pname of FOG_FUNC_PO NTS_SG S.

Initially the fog function is defined by a single point (0.0, 1.0). The fog factor function is
evaluated by fitting a curve through the points specified by glFogFuncSGIS(). This curve
may be linear between adjacent points, or it may be smoothed, but it will pass exactly
through the points, limited only by the resolution of the implementation. The value pair
with the lowest distance value specifies the fog function value for all values of distance
less than or equal to that pair’s distance. Likewise, the value pair with the greatest
distance value specifies the function value for all values of distance greater than or equal
to that pair’s distance.

If pname is G._FOG_MODE and param is, or params points to an integer
GL_FOG_FUNC_SQ S, then the application-specified fog factor function is selected for
the fog calculation.

FogFunc Example Program

007-2392-003

The following simple example program for the fog function extension can be executed
well only on those platforms where the extension is supported (VPro and InfiniteReality
systems).

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <@/ gl . h>
#i ncl ude <@/ gl ut. h>
/* Sinmple deno program for fog-function. WII work only on machi nes
where SA@ S fog_func is supported.

Press ‘f' key to toggle between fog and no fog
Pres ESC to quit

* 0% X X X X X

cc fogfunc.c -o fogfunc -lglut -1GU -1G& -1 Xnmu -1 X11

225

9: Rendering Extensions

*/
#defi ne ESC 27

Gint width = 512, height = 512;
GLint dofog = 1; /* fog enabled by default */
GLfloat fogfunc[] = { /* fog-function profile */
6.0, 1.0,/* (distance, blend-factor) pairs */

8.0, 0.5,

10.0, 0.1,

12.0, 0.0,

b

void init(void)
{
GLUquadric *q =
GLfl oat anbient]| 0
GLfl oat diffuse[, 0. . 0};
r , 0.7, 0.8, 1.0};
= , -20.0, 0.0}; /* infinite light */
, 0.2, 0.5, 1.0};

GLfl oat specul ar[]
G.float |Ipos[] = {0.0
G.float diff_mat[]
Gfloat anb_mat[] = {
GLfl oat spec_mat[] =
GLfl oat shininess_ma
GLfl oat anb_scene[]
G.fl oat fog_color[]

n -

gl earColor(0.0, 0.0, 0.0, 1.0);
gl O ear (G _COLOR BUFFER BI T | G._DEPTH BUFFER BIT);

gl Matri xMode(G._PRQIECTI ON) ;
gl Loadl dentity();
gl Frustum(-4.0, 4.0, -4.0, 4.0, 4.0, 30.0);

gl Mat ri xMode(GL_MODELVI EW ;
gl Loadl dentity();

/* Setup lighting */

gl Li ghtfv(G__LI GHTO, GL_AMBI ENT, anbient);

gl Li ghtfv(G_LI GHTO, G._SPECULAR, specul ar);

gl Li ghtfv(G._LI GHTO, G._DI FFUSE, diffuse);

gl Li ghtfv(G._LI GHTO, G._PCSITION, | pos);

gl Li ght Model fv(GL_LI GHT_MODEL_AMBI ENT, anb_scene);

226 007-2392-003

SGIS_fog_function—The Fog Function Extension

007-2392-003

}

gl Material fv(G._FRONT, G._DI FFUSE, diff_nmat);
gl Material fv(G._FRONT, G._AMBI ENT, anb_mat);
gl Material f v(G._FRONT, GL_SPECULAR, spec_nat);
gl Material fv(GL_FRONT, GL_SH NI NESS,

gl Enabl e(G._LI GHTO) ;
gl Enabl e(GL_LI GHTI NG) ;

/* Setup fog function */

gl Fogf v(GL._FOG COLCR, fog_color);
gl Fogf (GL_FOG_MODE, G._FOG FUNC SG S);

gl FogFuncSAd S(4, fogfunc);
gl Enabl e(GL._FOG) ;

/* Setup scene */

gl Translatef (0.0, 0.0, -6.0);
gl Rotatef (60.0, 1.0, 0.0, 0.0);

gl NewLi st (1, G._COWPILE);

gl PushMatri x();

gl Transl atef (2.0, 0.0, 0.0);
gl Color3f(1.0, 1.0, 1.0);

gl uSphere(q, 1.0, 40, 40);

gl Transl atef(-4.0, 0.0, 0.0);

gl uSphere(q, 1.0, 40, 40);

gl Transl atef (0.0, 0.0, -4.0);
gl uSphere(q, 1.0, 40, 40);

gl Transl atef (4.0, 0.0, 0.0);
gl uSphere(qg, 1.0, 40, 40);

gl Transl atef (0.0, 0.0, -4.0);
gl uSphere(q, 1.0, 40, 40);

gl Transl atef (-4.0, 0.0, 0.0);
gl uSphere(q, 1.0, 40, 40);

gl PopMatri x();

gl EndLi st ();

voi d di spl ay(voi d)

{

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BIT);
(dofog) ? gl Enabl e(GL._FOG : gl Di sabl e(G_FOG ;

gl Cal I List(1);
gl ut SwapBuffers();

shi ni ness_mat) ;

227

9: Rendering Extensions

}

voi d kbd(unsi gned char key, int x, int y)
{
switch (key) {
case ‘f': /* toggle fog enable */
dofog = 1 - dof og;
gl ut Post Redi spl ay();
br eak;

case ESC./* quit!! */
exit(0);
}
}

mai n(int argc, char *argv[])
{
glutlnit(&rgc, argv);
gl utlnitDi splayMde(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);
gl utlni t WndowSi ze(wi dth, height);
gl ut Creat eW ndow(“Fog Function”);
gl ut Keyboar dFunc(kbd) ;
gl ut Di spl ayFunc(di spl ay) ;

init();
gl ut Mai nLoop() ;

New Function

The SGIS_fog_function extension introduces the function glFogFuncSGIS().

SGIS fog_ offset—The Fog Offset Extension

Note: This extension is not supported on Onyx4 and Silicon Graphics Prism systems.
Applications can achieve similar functionality using fragment programs.

The fog offset extension, SGIX_fog_offset, allows applications to make objects look
brighter in a foggy environment.

228 007-2392-003

SGIS_fog_offset—The Fog Offset Extension

When fog is enabled, it is equally applied to all objects in a scene. This can create
unrealistic effects for objects that are especially bright (light sources like automobile
headlights, runway landing lights, or florescent objects, for instance). To make such
objects look brighter, fog offset may be subtracted from the eye distance before it is used
for the fog calculation. This works appropriately because the closer an object is to the eye,
the less obscured by fog it is.

To use fog with a fog offset, follow these steps:
1. Call glEnable() with the G._FOGargument to enable fog.
2. Call glFog*() to choose the color and the equation that controls the density.

The above two steps are explained in more detail in “Using Fog” on page 240 of the
OpenGL Programming Guide, Second Edition.

3. Call glEnable() with argument G._FOG_OFFSET_SG X

4. Call glFog*() with a pname value of GL_FOG_OFFSET_VALUE_SG X and four
params. The first three parameters are point coordinates in the eye space and the
fourth parameter is an offset distance in the eye space.

The GL_FOG_COFFSET_VALUE_SG X value specifies point coordinates in eye space
and offset amount toward the viewpoint. It is subtracted from the depth value to
make objects closer to the viewer right before fog calculation. As a result, objects
look less foggy. Note that these point coordinates are needed for OpenGL
implementations that use z-based fog instead of eye space distance. The
computation of the offset in the z dimension is accurate only in the neighborhood of
the specified point.

If the final distance is negative as a result of offset subtraction, it is clamped to 0. In
the case of perspective projection, fog offset is properly calculated for the objects
surrounding the given point. If objects are too far away from the given point, the fog
offset value should be defined again. In the case of ortho projection, the fog offset
value is correct for any object location.

5. Call glDisable() with argument GL_FOG_OFFSET_SG X to disable fog offset.

007-2392-003 229

9: Rendering Extensions

The Multisample Extension

230

There are two version of the multisample extension:
¢ ARB_multisample
¢ SGIS_multisample

Note: Functionality-wise, the ARB and SGIS versions of this extension are very similar
but not identical. The SGIS version is only supported on InfiniteReality systems. The
extension has been promoted to a standard ARB extension, and new applications should
use the equivalent ARB interface, unless they must run on InfiniteReality systems. The
ARB version of this extension is only supported on Silicon Graphics Prism systems.

SGIS_multisample differs from ARB_multisample in the following respects:
e All SGIS suffixes on function and token names are changed to ARB.
¢ The term mask is changed to cover age in token and function names.

¢ The ability to change the sample pattern between rendering passes, described in
section “Accumulating Multisampled Images” on page 236, is only supported by
the SGIS version of the extension.

Table 9-2 shows the overall mapping between SGIS and ARB tokens and functions.

Table 9-2 Mapping of SGIS and ARB tokens for Multisampling

SGIS_multisample Token ARB_multisample Token
Sanpl eMaskSA S Sanpl eCover ageARB
GLX_SAMPLE_BUFFERS_SG S GLX_SAWMPLE_BUFFERS_ARB
GLX_SAMPLES_SG S GLX_SAWMPLES_ARB

MULTI SAMPLE_SA S MULTI SAMPLE_ARB

SAMPLE_ALPHA TO MASK SG'S SAMPLE_ALPHA TO COVERAGE ARB
SAMPLE_ALPHA TO ONE_SG S SAMPLE_ALPHA_TO ONE_ARB
SAMPLE_MASK_SG S SAVPLE_COVERAGE_ARB

MULTI SAMPLE_BI T_EXT MULTI SAMPLE_BI T_ARB

007-2392-003

The Multisample Extension

Table 9-2 Mapping of SGIS and ARB tokens for Multisampling (continued)

SGIS_multisample Token ARB_multisample Token
SAMPLE_BUFFERS_SG S SAVPLE_BUFFERS_ARB
SAMPLES_Sd S SAVPLES_ARB
SAMPLE_MASK_VALUE_SG S SAMPLE_COVERAGE_VALUE_ARB
SAMPLE_NMASK | NVERT_SG S SAVPLE_COVERAGE_| NVERT_ARB
Sanpl ePatt ernSG S Not supported
SAMPLE_PATTERN_SG S Not supported

1PASS_SG S Not supported

2PASS_0_SA3 S Not supported

2PASS_1_SA3 S Not supported

4PASS_0_SG S Not supported

4PASS_1_SG S Not supported

4PASS 2_SGE S Not supported

4PASS 3_SA S Not supported

The multisample extension, SGIS_multisample, provides a mechanism to antialias all
OpenGL primitives: points, lines, polygons, bitmaps, and images.

This section explains how to use multisampling and explores what happens when you
use it. It describes the following topics:
¢ “Introduction to Multisampling” on page 232

e “Using the Multisample Extension” on page 232 and “Using Advanced
Multisampling Options” on page 233

¢ “How Multisampling Affects Different Primitives” on page 237

007-2392-003 231

9: Rendering Extensions

Introduction to Multisampling

Multisampling works by sampling all primitives multiple times at different locations
within each pixel; in effect, multisampling collects subpixel information. The result is an
image that has fewer aliasing artifacts.

Because each sample includes depth and stencil information, the depth and stencil
functions perform equivalently in the single-sample mode. A single pixel can have 4, 8,
16, or even more subsamples, depending on the platform.

When you use multisampling and read back color, you get the resolved color value (that
is, the average of the samples). When you read back stencil or depth, you typically get
back a single sample value rather than the average. This sample value is typically the one
closest to the center of the pixel.

When to Use Multisampling

Multisample antialiasing is most valuable for rendering polygons because it correctly
handles adjacent polygons, object silhouettes, and even intersecting polygons. Each time
a pixel is updated, the color sample values for each pixel are resolved to a single,
displayable color.

For points and lines, the “smooth” antialiasing mechanism provided by standard
OpenGL results in a higher-quality image and should be used instead of multisampling
(see “Antialiasing” in Chapter 7, “Blending, Antialiasing, Fog, and Polygon Offset” of
the OpenGL Programming Guide).

The multisampling extension lets you alternate multisample and smooth antialiasing
during the rendering of a single scene; so, it is possible to mix multisampled polygons
with smooth lines and points. See “Multisampled Points” on page 237 and
“Multisampled Lines” on page 237 for more information.

Using the Multisample Extension

232

To use multisampling in your application, select a multisampling-capable visual by
calling gIXChooseVisual() with the following items in attr_list:

GLX_SAMPLES_SG S
Must be followed by the minimum number of samples required in
multisample buffers. The function gIXChooseVisual() gives preference

007-2392-003

The Multisample Extension

to visuals with the smallest number of samples that meet or exceed the
specified number. Color samples in the multisample buffer may have
fewer bits than colors in the main color buffers. However, multisampled
colors maintain at least as much color resolution in aggregate as the
main color buffers.

GLX_SAVPLE_BUFFERS SG S
This attribute is optional. Currently there are no visuals with more than
one multisample buffer; so, the returned value is either zero or one.
When GLX_SAMPLES_SG Sis non-zero, this attribute defaults to 1.
When specified, the attribute must be followed by the minimum
acceptable number of multisample buffers. Visuals with the smallest
number of multisample buffers that meet or exceed this minimum
number are preferred.

Multisampling is enabled by default. To query whether multisampling is enabled, make
the following call:

gl | sEnabl ed(MULTI SAMPLE_SG S)

To turn off multisampling, make the following call:
gl Di sabl e(MULTI SAMPLE_SG S)

Using Advanced Multisampling Options
Advanced multisampling options provide additional rendering capabilities. This section
describes the following features:
¢ Using a multisample mask to choose how many samples are writable
¢ Using alpha values to feather-blend texture edges
¢ Using the accumulation buffer with multisampling

The following steps, illustrated in Figure 9-1, shows how the subsamples in one pixel are
turned on and off.

007-2392-003 233

9: Rendering Extensions

1. The primitive is sampled at the locations defined by a sample pattern. If a sample is

inside the polygon, it is turned on; otherwise, it is turned off. This produces a
coverage mask.

2. The coverage mask is then ANDed with a user-defined sample mask, defined by a

call to glSampleMaskSGIS() (see “Using a Multisample Mask to Fade Levels of
Detail” on page 235).

3. You may also choose to convert the alpha value of a fragment to a mask and AND it

with the coverage mask from step 2.

Enable GL_SAMPLE_ALPHA TO MASK_SG S to convert alpha to the mask. The
fragment alpha value is used to generate a temporary mask, which is then ANDed
with the fragment mask.

+ = + =

Find samples AND with user-defined AND with optional
inside polygon sample mask... alpha-to-mask mask

Figure 9-1 Sample Processing During Multisampling

The two processes—using a multisample mask created by glSampleMaskSGIS() and
using the alpha value of the fragment as a mask—can both be used for different effects.

When GL_SAMPLE_ALPHA TO MASK_SG Sis enabled, it is usually appropriate to
enable GL_SAMPLE_ALPHA TO ONE_Sd S to convert the alpha values to 1 before
blending. Without this option, the effect would be colors that are twice as transparent.

Note: When you use multisampling, blending reduces performance. Therefore, when
possible, disable blending and instead use G._SAMPLE_MASK_SQG S or
GL_ALPHA TO MASK.

Color Blending and Screen Door Transparency

234

Multisampling can be used to solve the problem of blurred edges on textures with
irregular edges, such as tree textures, that require extreme magnification. When the
texture is magnified, the edges of the tree look artificial, as if the tree were a paper cutout.

007-2392-003

The Multisample Extension

To make them look more natural by converting the alpha to a multisample mask, you can
obtain several renderings of the same primitive, each with the samples offset by a specific
amount. See “Accumulating Multisampled Images” on page 236 for more information.

The same process can be used to achieve screen door transparency. If you draw only
every other sample, the background shines through for all other samples. This results in
a transparent image. This is useful because it does not require the polygons to be sorted
from back to front. It is also faster because it does not require blending.

Using a Multisample Mask to Fade Levels of Detail

007-2392-003

You can use a mask to specify a subset of multisample locations to be written at a pixel.
This feature is useful for fading the level of detail in visual simulation applications. You
can use multisample masks to perform the blending from one level of detail of a model
to the next by rendering the additional data in the detailed model using a steadily
increasing percentage of subsamples as the viewpoint nears the object.

To achieve this blending between a simpler and a more detailed representation of an
object or to achieve screen door transparency (described in the previous section), either
call glSampleMaskSGIS() or use the alpha values of the object and call
glSampleAlphaToMaskSGIS().

The following is the format for glSampleMaskSGIS():
voi d gl Sampl eMaskSA S (G.cl anpf walue, bool ean invert)

The parameters are defined as follows:

value Specifies coverage of the modification mask clamped to the range [0, 1].
0 implies no coverage, and 1 implies full coverage.

invert Should be GL_FALSE to use the modification mask implied by value or
GL_TRUE to use the bitwise inverse of that mask.

To define a multisample mask using glSampleMaskSGIS(), follow these steps:

1. Enable G._SAMPLE_MASK_Sd S.

2. Call glSampleMaskSGIS() with, for example, value set to .25 and invert set to
GL_FALSE.

3. Render the object once for the more complex level of detail.

235

9: Rendering Extensions

4. Call glSampleMaskSGIS() again with, for example, value set to .25 and invert set to
GL_TRUE.

5. Render the object for the simpler level of detail.

This time, the complementary set of samples is used because of the use of the
inverted mask.

6. Display the image.

7. Repeat the process for larger sample mask values of the mask as needed (as the
viewpoint nears the object).

Accumulating Multisampled Images

236

You can enhance the quality of the image even more by making several passes and
adding the result in the accumulation buffer. The accumulation buffer averages several
renderings of the same primitive. For multipass rendering, different sample locations
need to be used in each pass to achieve high quality.

When an application uses multisampling in conjunction with accumulation, it should
call glSamplePatternSGIS() with one of the following patterns as an argument:

* G _1PASS_SG Sis designed to produce a well-antialiased result in a single
rendering pass (this is the default).

* G _2PASS 0_SG Sand G._2PASS_1_SG S together specify twice the number of
sample points per pixel. You should first completely render a scene using pattern
GL_2PASS_0_SQA S, then completely render it again using GL_2PASS_1_SG S.
When the two images are averaged using the accumulation buffer, the result is as if
a single pass had been rendered with 2xG._SAMPLES_SQ S sample points.

e CL_4PASS 0_SG S,GL_4PASS 1_SA S, GL_4PASS 2_Sd S, and
GL_4PASS_3_SA S together define a pattern of 4xGL_SAMPLES_SG S sample
points. They can be used to accumulate an image from four complete rendering
passes.

Accumulating multisample results can also extend the capabilities of your system. For
example, if you have only enough resources to allow four subsamples, but you are
willing to render the image twice, you can achieve the same effect as multisampling with
eight subsamples. Note that you do need an accumulation buffer, which also takes space.

007-2392-003

The Multisample Extension

To query the sample pattern, call glGetIntegerv() with pname set to
GL_SAMPLE_PATTERN_SQA S. The pattern should be changed only between complete
rendering passes.

For more information, see “The Accumulation Buffer,” on page 394 of the OpenGL
Programming Guide.

How Multisampling Affects Different Primitives

Multisampled Points

Multisampled Lines

007-2392-003

This section briefly describes multisampled points, lines, polygons, pixels, and bitmaps.

If you are using multisampling, the value of the smoothing hint

(G._PO NT_SMOOTH_HI NT or GL_LI NE_SMOOTH_HI NT) is ignored. Because the
quality of multisampled points may not be as good as that of antialiased points,
remember that you can turn multisampling on and off as needed to achieve
multisampled polygons and antialiased points.

Note: On InfiniteReality systems, you achieve higher-quality multisampled points by
setting GL_POl NT_SMOOTH_HI NT to G._NI CEST (though this mode is slower and
should be used with care).

gl Hi nt (GL_POl NT_SMOOTH_HI NT, GL_NI CEST)

The result is round points. Points may disappear or flicker if you use them without this
hint. See the next section for caveats on using multisampling with smooth points and
lines.

Lines are sampled into the multisample buffer as rectangles centered on the exact
zero-area segment. Rectangle width is equal to the current line width. Rectangle length
is exactly equal to the length of the segment. Rectangles of colinear, abutting line
segments abut exactly so that no subsamples are missed or drawn twice near the shared
vertex.

237

9: Rendering Extensions

Multisampled Polygons

Just like points, lines on InfiniteReality systems look better when drawn “smooth” than
they do with multisampling.

Note: If you want to draw smooth lines and points by enabling

GL_LI NE_SMOOTH_HI NT or GL_PQO NT_SMOOTH_HI NT, you need to disable
multisampling and then draw the lines and points. The trick is that you need to do this
after you have finished doing all of the multisampled drawing. If you try to re-enable
multisampling and draw more polygons, those polygons will not necessarily be
antialiased correctly if they intersect any of the lines or points.

Polygons are sampled into the multisample buffer much as they are into the standard
single-sample buffer. A single color value is computed for the entire pixel, regardless of
the number of subsamples at that pixel. Each sample is then written with this color if and
only if it is geometrically within the exact polygon boundary.

If the depth buffer is enabled, the correct depth value at each multisample location is
computed and used to determine whether that sample should be written or not. If stencil
is enabled, the test is performed for each sample.

Polygon stipple patterns apply equally to all sample locations at a pixel. All sample
locations are considered for modification if the pattern bit is 1. None is considered if the
pattern bit is 0.

Multisample Rasterization of Pixels and Bitmaps

238

If multisampling is on, pixels are considered small rectangles and are subject to
multisampling. When pixels are sampled into the multisample buffer, each pixel is
treated as an xzoom-by-yzoom square, which is then sampled just like a polygon.

007-2392-003

The Point Parameters Extension

New Functions

The SGIS_multisample extension introduces the following functions:
¢ glSampleMaskSGIS()
¢ glSamplePatternSGIS()

The Point Parameters Extension

007-2392-003

There are two versions of the point parameters extension:
* ARB_point_parameters

* SGIS_point_parameters

Note: Functionality-wise, the ARB and SGIS versions of this extension are identical. The
SGIS version is only supported on InfiniteReality systems. The extension has been
promoted to a standard ARB extension, and new applications should use the equivalent
ARB interface, unless they must run on InfiniteReality systems. The ARB version of this
extension is only supported on Silicon Graphics Prism systems.

The following descriptions refer to the SGIS version of the extension. When using the
ARB version, simply replace the SG S suffix on function and token names with ARB,
except (as noted later) for G._DI STANCE_ATTENUATI ON_SQ@ S. In this case, use
GL_PO NT_DI STANCE_ATTENUATI ON_ARB instead.

The point parameter extension, SGIS_point_parameters can be used to render tiny light
sources, commonly referred to as light points. The extension is useful, for example, in an
airport runway simulation. As the plane moves along the runway, the light markers
grow larger as they approach.

By default, a fixed point size is used to render all points, regardless of their distance from
the eye point. Implementing the runway example or a similar scene would be difficult
with this behavior. This extension is useful in the following two ways:

¢ It allows the size of a point to be affected by distance attenuation; that is, the point
size decreases as the distance of the point from the eye increases.

239

9: Rendering Extensions

¢ Itincreases the dynamic range of the raster brightness of points. In other words, the
alpha component of a point may be decreased (and its transparency increased) as its
area shrinks below a defined threshold. This is done by controlling the mapping
from the point size to the raster point area and point transparency.

The new point size derivation method applies to all points while the threshold applies to
multisample points only. The extension makes this behavior available with the following
constants:

GL_PO NT_SI ZE_ M N_SGA Sand GL_PQO NT_SI ZE_ MAX_SA S
Define upper and lower bounds, respectively, for the derived point size.

GL_PO NT_FADE_THRESHOLD SI ZE_SG S
Affects only multisample points. If the derived point size is larger than
the threshold size defined by the
GL_PO NT_FADE_THRESHOLD_SI ZE_SQ S parameter, the derived
point size is used as the diameter of the rasterized point, and the alpha
component is intact. Otherwise, the threshold size is set to be the
diameter of the rasterized point, while the alpha component is
modulated accordingly to compensate for the larger area.

GL_DI STANCE_ATTENUATI ON_SG S
Defines coefficients of the distance attenuation function. In the ARB
version of this extension, use the constant
GL_PO NT_DI STANCE_ATTENUATI ON_ARB.

All parameters of the glPointParameterfSGIS() and glPointParameterfvSGIS()
functions set various values applied to point rendering. The derived point size is defined
to be the size provided as an argument to glPointSize() modulated with a distance
attenuation factor.

Using the Point Parameters Extension

240

To use the point parameter extension, call glPointParameter*SGIS() with the following
arguments:

pname GL_PAO NT_SIZE M N_SG S,
GL_PO NT_SI ZE_MAX_SA S, or
GL_PO NT_FADE_THRESHOLD Sl ZE_SGA S (multisample points only)
GL_DI STANCE_ATTENUATI ON_SA S (In the ARB version of this
extension, use G._PO NT_DI STANCE_ATTENUATI ON_ARB.)

007-2392-003

The Point Parameters Extension

param When pname is G._PO NT_SI ZE_ M N_SG S,
GL_PA NT_SI ZE_MAX_SA S, or
GL_PO NT_FADE_THRESHOLD Sl ZE_SQ@ S, param is respectively set
to the single numeric value you want to set for the minimum size,
maximum size, or threshold size of the point. When pname is
GL_DI STANCE_ATTENUATI ON_SQ S, param is a pointer to an array of
three coefficients in order: 4, b, and ¢, defining the distance attention
coefficients for point size. The distance attenuation equation is described
in section “Point Parameters Background Information” on page 242.

Note: If you are using the extension in multisample mode, you must use smooth points
to achieve the desired improvements, as shown in the following:

gl Hi nt (GL_POl NT_SMOOTH_HI NT, GL_NI CEST)

Point Parameters Example Code

A point parameters example program is available as part of the developer toolbox. It
allows you to change the following attributes directly:

¢ Values of the distance attenuation coefficients (see “Point Parameters Background
Information” on page 242 and the point parameters specification)

e Fade threshold size

¢ Minimum and maximum point size
The following code fragment illustrates how to change the fade threshold.

Example 9-2 Point Parameters Example

Qvoid
decFadeS ze(Q.void)
{
#ifdef GA_SAS point_paraneters
i f (poi nt Paranet er Supported) {
if (fadeSze >0) fadeS ze -= 0. 1;
printf("fadeS ze = %. 2f\n", fadeS ze);
gl Poi nt Paraneterf SA@ §(@_PA NI_FADE THRESHO D SIZE SA S, fadeS ze);
gl ut Post Redi spl ay() ;
} else {
fprintf(stderr,

007-2392-003 241

9: Rendering Extensions

"@._SA S point_paraneters not supported
on this machi ne\n");

}
#el se

fprintf(stderr,

"@_SA S point_paraneters not supported
on this nachine\n");

#endi f

Minimum and maximum point size and other elements can also be changed; see the
complete example program in the Developer Toolbox.

Point Parameters Background Information

242

The raster brightness of a point is a function of the point area, point color, and point
transparency, and the response of the display’s electron gun and phosphor. The point
area and the point transparency are derived from the point size, currently provided with
the size parameter of glPointSize().

This extension defines a derived point size to be closely related to point brightness. The
brightness of a point is given by the following equation:

dist_atten(d) =1/ (a+b*d+ c * dr2)

bright ness(Pe) = Brightness * dist_atten(|Pe|)

Pe is the point in eye coordinates, and Brightness is some initial value proportional to the
square of the size provided with glPointSize(). The raster brightness is simplified to be
a function of the rasterized point area and point transparency:

area(Pe) = brightness (Pe) if brightness(Pe) >= Threshol d_Area
area(Pe) = Theshol d_Area ot herwi se

factor(Pe) = brightness(Pe)/ Threshol d_Area
al pha(Pe) = Al pha * factor(Pe)
Al pha comes with the point color (possibly modified by lighting). Thr eshol d_Ar ea isin

area units. Thus, it is proportional to the square of the threshold you provide through this
extension.

007-2392-003

SGIX_reference_plane—The Reference Plane Extension

Note: For more background information, see the specification of the point parameters
extension.

New Procedures and Functions

The SGIS_point_parameters extension introduces the following functions:
¢ glPointParameterfSGIS()
¢ glPointParameterfvSGI()

The ARB_point_parameters extension introduces the following functions:
¢ glPointParameterfARB()
e glPointParameterfvARB()

SGIX_reference_plane—The Reference Plane Extension

007-2392-003

The reference plane extension, SGIX_reference_plane, allows applications to render a
group of coplanar primitives without depth-buffering artifacts. This is accomplished by
generating the depth values for all the primitives from a single reference plane rather
than from the primitives themselves. Using the reference plane extension ensures that all
primitives in the group have exactly the same depth value at any given sample point, no
matter what imprecision may exist in the original specifications of the primitives or in the
OpenGL coordinate transformation process.

Note: This extension is supported only on InfiniteReality systems.

The reference plane is defined by a four-component plane equation. When
glReferencePlaneSGIX() is called, the equation is transformed by the adjoint of the
composite matrix, the concatenation of model-view and projection matrices. The
resulting clip-coordinate coefficients are transformed by the current viewport when the
reference plane is enabled.

243

9: Rendering Extensions

If the reference plane is enabled, a new z coordinate is generated for a fragment (xf, yf,
zf). This z coordinate is generated from (xf, yf); it is given the same z value that the
reference plane would have at (xf, yf).

Why Use the Reference Plane Extension?

Having such an auto-generated z coordinate is useful in situations where the application
is dealing with a stack of primitives. For example, assume a runway for an airplane is
represented by the following:

* A permanent texture on the bottom

* A runway markings texture on top of the pavement

e Light points representing runway lights on top of everything

All three layers are coplanar, yet it is important to stack them in the right order. Without

a reference plane, the bottom layers may show through due to precision errors in the
normal depth rasterization algorithm.

Using the Reference Plane Extension
If you know in advance that a set of graphic objects will be in the same plane, follow these
steps:
1. Call glEnable() with argument G._REFERENCE_PLANE_SG X.

2. Call glReferencePlane() with the appropriate reference plane equation to establish
the reference plane. The form of the reference plane equation is equivalent to that of
an equation used by glClipplane() (see page 137 of the OpenGL Programming Guide,
Second Edition).

3. Draw coplanar geometry that shares this reference plane.

4. Call glDisable() with argument G._ REFERENCE_PLANE_SG X.

New Function

The SGIX_reference_plane extension introduces the function glReferencePlaneSGIX().

244 007-2392-003

The Shadow Extensions

The Shadow Extensions

007-2392-003

The following are the ARB and SGIX versions of the three shadow extensions:
* ARB_depth_texture

¢ ARB_shadow

¢ ARB_shadow_ambient

e SGIX_depth_texture

¢ SGIX_shadow

¢ SGIX_shadow_ambient

Note: Functionality-wise, the ARB and SGIX versions of these extension are identical.
The SGIX versions are only supported on InfiniteReality systems. The extensions have
been promoted to standard ARB extensions, and new applications should use the
equivalent ARB interface, unless they must run on InfiniteReality systems. The ARB
versions of these extensions are only supported on Silicon Graphics Prism systems.

The following descriptions refer to the SGIX version of the extension. When using the
ARB version, simply replace the SG X suffix on function and token names with ARB,
except (as noted later) for G._SHADOW AMBI ENT_SG X In this case, use
GL_TEXTURE_COWPARE_FAI L_VALUE_ARB instead.

This section describes three SGIX extensions that are used together to create shadows:

SGIX_depth_texture Defines a new depth texture internal format. While this
extension has other potential uses, it is currently used for
shadows only.

SGIX_shadow Defines two operations that can be performed on texture
values before they are passed to the filtering subsystem.

SGIX_shadow_ambient Allows for a shadow that is not black but instead has a
different brightness.

245

9: Rendering Extensions

This section first explores the concepts behind using shadows in an OpenGL program. It
then describes how to use the extension in the following sections:

e “Shadow Extension Overview”
* “Creating the Shadow Map”

* “Rendering the Application From the Normal Viewpoint”

Code fragments from an example program are used throughout this section.

Note: A complete example program, shadowrap. c, is available as part of the
Developer’s Toolbox.

Shadow Extension Overview

246

The basic assumption used by the shadow extension is that an object is in shadow when
something else is closer to the light source than that object is.

Using the shadow extensions to create shadows in an OpenGL scene consists of several
conceptual steps:

1. The application has to check that both the depth texture extension and the shadow
extension are supported.

2. The application creates a shadow map, an image of the depth buffer from the point
of view of the light.

The application renders the scene from the point of view of the light source and
copies the resulting depth buffer to a texture with one of the following internal
formats:

e GL_DEPTH_COVPONENT
e G._DEPTH_COWPONENT16_SA X
e GL_DEPTH_COWPONENT24_SA X
e GL_DEPTH_COWPONENT32_SA X
The SGIX formats are part of the depth texture extension.

007-2392-003

The Shadow Extensions

The application renders the scene from the normal viewpoint. In that process, it sets
up texture coordinate generation and the texture coordinate matrix such that for
each vertex, the r coordinate is equal to the distance from the vertex to the plane
used to construct the shadow map.

Projection depends on the type of light. Normally, a finite light (spot) is most
appropriate. In that case, perspective projection is used. An infinite directional light
may also give good results because it does not require soft shadows.

Note that diffuse lights give only soft shadows and are, therefore, not well suited,
although texture filtering will result in some blurriness. Note that it is theoretically
possible to do an ortho projection for directional infinite lights. The lack of soft
shadowing is not visually correct but may be acceptable.

For this second rendering pass, the application then enables the texture parameter
GL_TEXTURE_COMPARE_SQA X, which is part of the shadow extension and renders
the scene once more. For each pixel, the distance from the light, which was
generated by interpolating the r texture coordinate, is compared with the shadow
map stored in texture memory. The results of the comparison show whether the
pixel being textured is in shadow.

The application can then draw each pixel that passes the comparison with
luminance 1. 0 and each shadowed pixel with a luminance of zero or use the
shadow ambient extension to apply ambient light with a value between 0 and 1 (for
example, 0. 5).

Creating the Shadow Map

007-2392-003

To create the shadow map, the application renders the scene with the light position as the
viewpoint and saves the depth map into a texture image, as illustrated in the following
code fragment:

static void
gener at e_shadow_nmap(voi d)

{

int x, vy;
G.float 10g2 = log(2.0);

x =1 << ((int) (log((float) width) / 10g2));
y =1 << ((int) (log((float) height) / l0g2));
gl Viewport (0, 0, Xx, y);

render _|ight_view);

247

9: Rendering Extensions

/* Read in frame-buffer into a depth texture map */
gl CopyTex| mage2DEXT(GL_TEXTURE 2D, 0, GL_DEPTH_COMPONENT16_SG X,
0, 0, x, y, 0);

gl Viewport (0, 0, width, height);
}

Rendering the Application From the Normal Viewpoint

After generating the texture map, the application renders the scene from the normal
viewpoint but with the purpose of generating comparison data. That is, use glTexgen()
to generate texture coordinates that are identical to vertex coordinates. The texture
matrix then transforms all pixel coordinates back to light coordinates. The depth value is
now available in the r texture coordinate.

Figure 9-2 and Figure 9-3 contrast rendering from the normal viewpoint and the light
source viewpoint.

S— Projection stack

Figure 9-2 Rendering From the Light Source Point of View

248 007-2392-003

The Shadow Extensions

= Texture stack
R

/ Projection stack

) 8

Figure 9-3 Rendering From Normal Viewpoint

During the second rendering pass, the r coordinate is interpolated over the primitive to
give the distance from the light for every fragment. Then the texture hardware compares
r for the fragment with the value from the texture. Based on this test, a value of 0 or 1 is
sent to the texture filter. The application can render shadows as black, or use the shadow
ambient extension described in the next section, to use a different luminance value.

Using the Shadow Ambient Extension

007-2392-003

The shadow ambient extension allows applications to use reduced luminance instead of
the color black for shadows. To achieve this, the extension makes it possible to return a
value other than 0. 0 by the SGIX_shadow operation in the case when the shadow test
passes. With this extension any floating-point value in the range [0. 0, 1. 0] can be
returned. This allows the (untextured) ambient lighting and direct shadowed lighting
from a single light source to be computed in a single pass.

To use the extension, call glTexParameter*() with the following parameter specifications:

pname GL_SHADOW AMBI ENT_SG X
(GL_TEXTURE_COVPARE_FAI L_VALUE in the ARB version)

param A floating-point value between 0. 0 and 1. 0

249

9: Rendering Extensions

After the parameter is set, each pixel that extension is determined to be in shadow by the
shadow extension has a luminance specified by this extension instead of a luminance of
0.0.

SGIX_sprite—The Sprite Extension

250

The sprite extension, SGIX_sprite, provides support for viewpoint-dependent alignment
of geometry. In particular, geometry that rotates about a point or a specified axis is made
to face the eye point at all times. Imagine, for example, an area covered with trees. As the
user moves around in that area, it is important that the user always view the front of the
tree. Because trees look similar from all sides, it makes sense to have each tree face the
viewer (in fact, “look at” the viewer) at all times to create the illusion of a cylindrical
object.

Note: This extension is currently available only on InfiniteReality systems.

Rendering sprite geometry requires applying a transformation to primitives before the
current model view transformation is applied. This transformation matrix includes a
rotation, which is computed based on the following:

e The current model view matrix

* A translation that is specified explicitly (GL_SPRI TE_TRANSLATI ON_Sd X)

In effect, the model view matrix is perturbed only for the drawing of the next set of
objects; it is not permanently perturbed.

This extension improves performance because the flat object you draw is much less
complex than a true three-dimensional object would be. Platform-dependent
implementations may need to ensure that the validation of the perturbed model view
matrix has as small an overhead as possible. This is especially significant on systems with
multiple geometry processors. Applications that intend to run on different systems
benefit from verifying the actual performance improvement for each case.

007-2392-003

SGIX_sprite—The Sprite Extension

Available Sprite Modes

Depending on the sprite mode, primitives are transformed by a rotation, as described in

the following:
GL_SPRI TE_AXI AL_Sd X

GL_SPRI TE_OBJECT_ALI GNED_SG X

GL_SPRI TE_EYE_ALI GNED_SG X

The front of the object is rotated about an axis so
that it faces the eye as much as the axis
constraint allows. This mode is used for
rendering roughly cylindrical objects (such as
trees) in a visual simulation. See Figure 9-4 for
an example.

The front of the object is rotated about a point to
face the eye. The remaining rotational degree of
freedom is specified by aligning the top of the
object with a specified axis in object
coordinates. This mode is used for spherical
symmetric objects (such as clouds) and for
special effects such as explosions or smoke
which must maintain an alignment in object
coordinates for realism. See Figure 9-5 for an
example.

The front of the object is rotated about a point
to face the eye. The remaining rotational degree
of freedom is specified by aligning the top of
the object with a specified axis in eye
coordinates. This is used for rendering sprites
that must maintain an alignment on the screen,
such as 3D annotations. See Figure 9-6 for an
example.

The axis of rotation or alignment, GL_SPRI TE_AXI S_SG X, can be in an arbitrary
direction to support geocentric coordinate frames in which “up” is not along x, y, or z.

007-2392-003

251

9: Rendering Extensions

Figure 9-4 Sprites Viewed with Axial Sprite Mode

Figure 9-5 Sprites Viewed With Object Aligned Mode

Figure 9-6 Sprites Viewed With Eye Aligned Mode

252 007-2392-003

SGIX_sprite—The Sprite Extension

Note: The sprite extension specification describes in more detail how the sprite
transformation is computed. See “Extension Specifications” on page 110 for more
information.

Using the Sprite Extension

007-2392-003

To render sprite geometry, an application applies a transformation to primitives before
applying the current modelview matrix. The transformation is based on the current
modelview matrix, the sprite rendering mode, and the constraints on sprite motion.

To use the sprite extension, follow these steps:

1. Enable sprite rendering by calling glEnable() with the argument
GL_SPRI TE_SA X.

2. Call glSpriteParameteriSGIX() with one of the three possible modes:
e G _SPRITE_AXIAL_SG X
e GL_SPRITE_OBJECT_ALI GNED_SA X
e GL_SPRITE_EYE_ALI GNED_SG X
3. Specify the axis of rotation and the translation.
4. Draw the sprite geometry.
5. Call glDisable() with the argument GL_SPRI TE_SG X and render the rest of the

scene.

The following code fragment is from the spri t e. ¢ program in the OpenGL course
“From the EXTensions to the SOLutions,” which is available through the Developer
Toolbox.

Example 9-3 Sprite Example Program

CGLvoi d
drawScene(Qvoid)
{
int i, slices = §;

gldear(& QLR BUFFERBIT);

253

9: Rendering Extensions

draw(hj ect () ;

gl Enabl e(QL_SPR TE_ SA X);
gl SpriteParaneteri SA X(A_SPRTE MDE SG X, A_SPRTE AXIAL_SG X);

/* axial node (clipped geonetry) */
gl PushMat ri x();
gl Transl atef (.15, .0, .0);

spriteAxis[0] = .2; spriteAxis[1l] = .2; spriteAxis[2] = 1.0;
gl SpriteParaneterfvSA X(A_SPRTE AXIS SA X, spriteAxis);

spriteTrans[0] = .2; spriteTrans[1] = .0; spriteTrans[2] = .0;

gl SpriteParanet erfvSA X(A__SPR TE_TRANSLATI ON SA X, spriteTrans);
drawthj ect () ;

gl PopMatri x();

/* axial mode (non-clipped geonetry) */
gl PushMat ri x();
gl Translatef(.3, .1, .0);

spriteAxis[0] = .2; spriteAxis[1l] = .2; spriteAxis[2] = 0.5;
gl SpriteParaneterfvSA X(A_SPRTE AXIS SA X, spriteAxis);

spriteTrans[0] = .2; spriteTrans[1] = .2; spriteTrans[2] = .0;
gl SpriteParanet erfvSA X(A_SPR TE_TRANSLATI ON SA X, spriteTrans);

drawthj ect () ;
gl PopMatri x();

/* object node */
gl SpriteParaneteri S X(A_SPR TE MDE SA X, @__SPR TE (BIECT_ALI G\ED SA X);

gl PushMat ri x();
gl Translatef (.0, .12, .0);

spriteAxis[0] = .8; spriteAxis[1] = .5; spriteAxis[2] = 1.0;
gl SpriteParaneterfvSA X(A_SPRTE AXIS SA X spriteAxis);

spriteTrans[0] = .0; spriteTrans[1] = .3; spriteTrans[2] = .0;
gl SpriteParanet erfvSA X(A_SPR TE TRANSLATION SA X, spriteTrans);

draw(hj ect () ;
gl PopMatri x();

254 007-2392-003

SGIX_sprite—The Sprite Extension

/* eye mode */
gl SpriteParaneteri S X(A_SPRTE MDE SA X, @__SPR TE EYE ALI G\ED SA X);
gl PushMat ri x();
gl Transl atef (.15, .25, .0);
spriteAxis[0] = .0; spriteAxis[1l] = 1.0; spriteAis[2] = 1.0;
gl SpriteParaneterfvSA X(A._SPRTE AXIS SA X spriteAxis);

spriteTrans[0] = .2; spriteTrans[1] = .2; spriteTrans[2] = .0;
gl SpriteParanet erf vSA X(A_SPR TE_TRANSLATION SA X, spriteTrans);

dr aw(hj ect () ;
gl PopMatri x();

gl Dsable(Q_SPRTE SA X);
gl ut SaapBuffers();

checkError ("drawScene");
}

The program uses the different sprite modes depending on user input.

Sprite geometry is modeled in a standard frame: +Z is the up vector. -Y is the front vector,
which is rotated to point towards the eye.

New Function

The SGIX_sprite extension introduces the function glSpriteParameterSGIX().

007-2392-003 255

Chapter 10

Imaging Extensions

This chapter describes imaging extensions. After some introductory information the
imaging pipeline, the following extensions are described:

“Introduction to Imaging Extensions” on page 257

“EXT_abgr—The ABGR Extension” on page 264
“EXT_convolution—The Convolution Extension” on page 265
“EXT_histogram—The Histogram and Minmax Extensions” on page 268
“EXT_packed_pixels—The Packed Pixels Extension” on page 273
“SGI_color_matrix—The Color Matrix Extension” on page 276
“SGI_color_table—The Color Table Extension” on page 277
“SGIX_interlace—The Interlace Extension” on page 280
“SGIX_pixel_texture—The Pixel Texture Extension” on page 282

Introduction to Imaging Extensions

Platform Dependencies

007-2392-003

This section describes platform dependencies, where extensions are in the OpenGL
imaging pipeline, and the functions that may be affected by one of the imaging
extensions.

Currently, the majority of the imaging extensions are only supported on Fuel,
InfinitePerformance, and InfiniteReality systems. The imaging extensions supported on
Onyx4 and Silicon Graphics Prism systems include only the following:

EXT_abgr
EXT_packed_pixels

257

10: Imaging Extensions

e SGI _color_matrix

The EXT_packed_pixels extension was promoted to a standard part of OpenGL 1.2 and
is available in that form.

Applications on Onyx4 and Silicon Graphics Prism systems can achieve similar
functionality to the SGI_color_table and SGIX_pixel_texture extensions by writing
fragment programs using one-dimensional textures as lookup tables.

Where Extensions Are in the Imaging Pipeline

The OpenGL imaging pipeline is shown in the OpenGL Programming Guide, Second Edition
in the illustration “Drawing Pixels with glDrawPixels*()” in Chapter 8, “Drawing Pixels,
Bitmaps, Fonts, and Images.” The OpenGL Reference Manual, Second Edition also includes
two overview illustrations and a detailed fold-out illustration in the back of the book.

Figure 10-1 is a high-level illustration of pixel paths.

Host Memory

glPixelStore

glDrawPixels

glGetTeximage

Texture

Figure 10-1 OpenGL Pixel Paths

258 007-2392-003

Introduction to Imaging Extensions

Pixel Transfer Paths

007-2392-003

The OpenGL pixel paths show the movement of rectangles of pixels among host
memory, textures, and the framebulffer. Pixel store operations are applied to pixels as
they move in and out of host memory. Operations defined by the glPixelTransfer()
function and other operations in the pixel transfer pipeline apply to all paths among host
memory, textures, and the framebuffer.

Certain pipeline elements, such as convolution filters and color tables, are used during
pixel transfer to modify pixels on their way to and from user memory, the framebuffer,
and textures. The set of pixel paths used to initialize these pipeline elements is
diagrammed in Figure 10-2. The pixel transfer pipeline is not applied to any of these
paths.

259

10: Imaging Extensions

Host Memory

glPixelStore

glGet.
Convolution
Filter

glConvolution
Filter

Stfiglf-—} Color table

Histograml MinMax
.

glCopy
Convolution

Filter

ColorTable

Framebuffer

Figure 10-2 Extensions that Modify Pixels During Transfer
Convolution, Histogram, and Color Table in the Pipeline

Figure 10-3 shows the same path with an emphasis on the position of each extension in
the imaging pipeline itself. After the scale and bias operations and after the shift and
offset operations, color conversion (LUT in Figure 10-3 below) takes place with a lookup
table. After that, the extension modules may be applied. Note how the color table
extension can be applied at different locations in the pipeline. Unless the histogram or
minmax extensions were called to collect information only, pixel processing continues, as
shown in the OpenGL Programming Guide.

260 007-2392-003

Introduction to Imaging Extensions

Index

A
Shift & add

I->RGBA RGBA->RGBA

OpenGL

Figure 10-3 Convolution, Histogram, and Color Table in the Pipeline

Interlacing and Pixel Texture in the Pipeline

Figure 10-4 shows where interlacing (see “SGIX_interlace—The Interlace Extension” on
page 280) and pixel texture (see “SGIX_pixel_texture—The Pixel Texture Extension” on

007-2392-003 261

10: Imaging Extensions

page 282) are applied in the pixel pipeline. The steps after interlacing are shown in more
detail than the ones before to allow the diagram to include pixel texture.

User memory

Figure 10-4 Interlacing and Pixel Texture in the Pixel Pipeline

Merging the Geometry and Pixel Pipeline
The convert-to-fragment stage of geometry rasterization and of the pixel pipeline each
produce fragments. The fragments are processed by a shared per-fragment pipeline that

begins with applying the texture to the fragment color.

Because the pixel pipeline shares the per-fragment processing with the geometry
pipeline, the fragments it produces must be identical to the ones produced by the

262 007-2392-003

Introduction to Imaging Extensions

geometry pipeline. The parts of the fragment that are not derived from pixel groups are
filled with the associated values in the current raster position.

Pixel Pipeline Conversion to Fragments

A fragment consists of x and y window coordinates and its associated color value, depth
value, and texture coordinates. The pixel groups processed by the pixel pipeline do not
produce all the fragment’s associated data; so, the parts that are not produced from the
pixel group are taken from the raster position. This combination of information allows
the pixel pipeline to pass a complete fragment into the per-fragment operations shared
with the geometry pipeline, as shown in Figure 10-5.

current raster position I

tcoord

Figure 10-5 Conversion to Fragments

For example, if the pixel group is producing the color part of the fragment, the texture
coordinates and depth value come from the current raster position. If the pixel group is
producing the depth part of the fragment, the texture coordinates and color come from

the current raster position.

007-2392-003 263

10: Imaging Extensions

The pixel texture extension (see “SGIX_pixel_texture—The Pixel Texture Extension” on
page 282) introduces the switch, highlighted in blue (lighter-colored balls), which
provides a way to retrieve the fragment’s texture coordinates from the pixel group. The
pixel texture extension also allows you to specify whether the color should come from
the pixel group or the current raster position.

Functions Affected by Imaging Extensions

Imaging extensions affect all functions that are associated with the pixel transfer modes
(see Chapter 8, “Drawing Pixels, Bitmaps, Fonts, and Images,” of the OpenGL
Programming Guide). In general, the following operations are affected:

e All functions that draw and copy pixels or define texture images

e All functions that read pixels or textures back to host memory

EXT_abgr—The ABGR Extension

264

The ABGR extension, EXT_abgr, extends the list of host-memory color formats by an
alternative to the RGBA format that uses reverse component order. This is the most
convenient way to use an ABGR source image with OpenGL.

To use this extension, call glDrawPixels(), glGetTexImage(), glReadPixels(), and
glTexImage*() with GL_ABGR_EXT as the value of the format parameter.

The following code fragment illustrates the use of the extension:
/*
* draw a 32x32 pixel inmage at |ocation 10, 10 using an ABGR source

* image. "image" *shoul d* point to a 32x32 ABGR UNSI GNED BYTE i mage
*/

{

unsi gned char *inmage;

gl Rast er Pos2f (10, 10);

gl Drawki xel s(32, 32, G._ABGR EXT, GL_UNSI GNED BYTE, i mage);
}

007-2392-003

EXT_convolution—The Convolution Extension

EXT_convolution—The Convolution Extension

The convolution extension, EXT_convolution, allows you to filter images (for example,
to sharpen or blur the) by convolving the pixel values in a one- or two- dimensional
image with a convolution kernel.

The convolution kernels are themselves treated as one- and two- dimensional images.
They can be loaded from application memory or from the framebuffer.

Convolution is performed only for RGBA pixel groups, although these groups may have
been specified as color indexes and converted to RGBA by index table lookup.

Figure 10-6 shows the equations for general convolution at the top and for separable
convolution at the bottom.

Kh Kw
Dest[ij] = Z ZKeme.-‘[k,.-"]Soume[h K j+i]
/=0 k=0
Kh Kw
Dest[ij] = Z Ver![.-"]z Horiz[k] Source [i+ k 1+]
/=0 k=0

Figure 10-6 Convolution Equations

Performing Convolution

Performing convolution consists of the following steps:

1. If desired, specify filter scale, filter bias, and convolution parameters for the
convolution kernel. For example:

gl Convol uti onPar amet eri EXT(GL_CONVOLUTI ON_2D_EXT,
GL_CONVOLUTI ON_BORDER_MODE_EXT,
GL_REDUCE_EXT /*not hing el se supported at present */);
gl Convol uti onPar anmet er f vEXT(GL_CONVOLUTI ON_2D_EXT,
GL_CONVOLUTI ON_FI LTER_SCALE_EXT, filterscal e);

gl Convol uti onPar anmet er f vEXT(G__CONVOLUTI ON_2D_EXT,
GL_CONVOLUTI ON_FI LTER Bl AS_EXT, filterbias);

007-2392-003 265

10: Imaging Extensions

2. Define the image to be used for the convolution kernel.

Use a 2D array for 2D convolution and a 1D array for 1D convolution. Separable 2D
filters consist of two 1D images for the row and the column.

To specify a convolution kernel, call glConvolutionFilter2DEXT(),
glConvolutionFilterlDEXT(), or glSeparableFilter2DEXT().

The following example defines a 7 x 7 convolution kernel that is in RGB format and
is based on a 7 x 7 RGB pixel array previously defined as r gbBl ur | mage7x7:

gl Convol utionFi | t er 2DEXT(

GL_CONVOLUTI ON_2D_EXT, /*has to be this value*/

GL_RGB, [*filter kernel internal fornmat*/

7, 7, /*wi dt h & height of image pixel array*/
GL_RGB, /*image internal format*/

GL_FLQAT, /*type of inmage pixel data*/

(const voi d*)rgbBl url nage7x7 /* image itsel f*/

)

For more information about the different parameters, see the reference page for the
relevant function.

3. Enable convolution, as shown in the following example:
gl Enabl e(GL_CONVOLUTI ON_2D_EXT)
4. Perform pixel operations (for example, pixel drawing or texture image definition).

Convolution happens as the pixel operations are executed.

Retrieving Convolution State Parameters

If necessary, you can use glGetConvolutionParameter*EXT() to retrieve the following
convolution state parameters:
GL_CONVOLUTI ON_BORDER_MODE_EXT
Convolution border mode. For a list of border modes, see the man page
for glConvolutionParameterEXT().

GL_CONVOLUTI ON_FORMAT _EXT
Current internal format. For lists of allowable formats, see the man
pages for glConvolutionFilter*EXT() and glSeparableFilter2DEXT().

266 007-2392-003

EXT_convolution—The Convolution Extension

GL_CONVOLUTI ON_FI LTER {BI AS, SCALE} EXT
Current filter bias and filter scale factors. The value params must be a
pointer to an array of four elements, which receive the red, green, blue,
and alpha filter bias terms in that order.

GL_CONVOLUTI ON_{ W DTH, HElI GHT} _EXT
Current filter image width.

GL_MAX_CONVOLUTI ON_{ W DTH, HEl GHT} _EXT
Maximum acceptable filter image width and filter image height.

Separable and General Convolution Filters

007-2392-003

A convolution that uses separable filters typically operates faster than one that uses
general filters.

Special facilities are provided for the definition of two-dimensional separable filters. For
separable filters, the image is represented as the product of two one-dimensional images,
not as a full two-dimensional image.

To specify a two-dimensional separable filter, call glSeparableFilter2DEXT(), which has
the following format:

voi d gl Separ abl eFi | t er 2DEXT(GLenum target, GLenum internalformat, GLSi zei width,
GLsi zei height, GLenum format, GLenum type,
const GLvoi d *row, const GLvoi d *column)
The parameters are defined as follows:
target Must be GL_SEPARABLE 2D EXT.

internalformat Specifies the formats of two one-dimensional images that are retained; it
must be one of G__ALPHA, G__LUM NANCE, GL_LUM NANCE_ALPHA,
GL_I NTENSI TY, G__RGB, or G._RGBA.

row Points to two one-dimensional images in memory, is defined by format
and type, is width pixels wide.

column Points to two one-dimensional images in memory, is defined by format
and type, and is height pixels wide.

The two images are extracted from memory and processed just as if
glConvolutionFilterlIDEXT() were called separately for each with the resulting retained

267

10: Imaging Extensions

images replacing the current 2D separable filter images, except that each scale and bias
are applied to each image using the 2D separable scale and bias vectors.

If you are using convolution on a texture image, keep in mind that the result of the
convolution must obey the constraint that the dimensions have to be a power of 2. If you
use the reduce-border convolution mode, the image shrinks by the filter width minus 1;
so, you may have to take that into account ahead of time.

New Functions

The EXT_convolution extension introduces the following functions:
¢ glConvolutionFilter1lDEXT()

¢ glConvolutionFilter2DEXT()

¢ glCopyConvolutionFilterlDEXT()

¢ glCopyConvolutionFilter2DEXT()

¢ glGetConvolutionFilterEXT()

¢ glSeparableFilter2DEXT()

¢ glGetSeparableFilterEXT()

¢ glConvolutionParameterEXT()

EXT_histogram—The Histogram and Minmax Extensions

The histogram extension, EXT_histogram, defines operations that count occurrences of
specific color component values and that track the minimum and maximum color
component values in images that pass through the image pipeline. You can use the
results of these operations to create a more balanced, better-quality image.

Figure 10-7 illustrates how the histogram extension collects information for one of the
color components. The histogram has the number of bins specified at creation, and
information is then collected about the number of times the color component falls within
each bin. Assuming that the example below is for the red component of an image, you
can see that R values between 95 and 127 occurred least often and those between 127 and
159 most often.

268 007-2392-003

EXT_histogram—The Histogram and Minmax Extensions

255

Figure 10-7 How the Histogram Extension Collects Information

Histogram and minmax operations are performed only for RGBA pixel groups, though
these groups may have been specified as color indexes and converted to RGBA by color
index table lookup.

007-2392-003 269

10: Imaging Extensions

Using the Histogram Extension

To collect histogram information, follow these steps:

1. Call glHistogramEXT() to define the histogram, as shown in the following example:
gl Hi st ogr anEXT(GL_H STOGRAM EXT,

256 [* width (nunber of bins) */,
GL_LUM NANCE /* internal format */,
GL_TRUE [* sink */);

The parameters are defined as follows:
width ,Specifies the number of histogram entries. Must be a power of 2.
internalformat Specifies the format of each table entry.

sink Specifies whether pixel groups are consumed by the histogram
operation (GL_TRUE) or passed further down the image pipeline
(GL_FALSE).

2. Enable histogramming by calling
gl Enabl e(GL_HI STOGRAM EXT)

3. Perform the pixel operations for which you want to collect information (drawing,
reading, copying pixels, or loading a texture). Only one operation is sufficient.

For each component represented in the histogram internal format, let the
corresponding component of the incoming pixel (luminance corresponds to red) be
of value c (after clamping to [0, 1). The corresponding component of bin number
round((w dt h- 1) *c) is incremented by 1.

4. Call glGetHistogramEXT(), whose format follows, to query the current contents of
the histogram:

voi d gl Get Hi st ogranEXT(GLenum target, GLbool ean reset, GLenum format,
GLenum type, GLvoid *values)

The parameters are defined as follows:
target Must be GL_HI STOGRAM EXT.

reset Must be GL_TRUE or G._FALSE. If G_._TRUE, each component
counter that is actually returned is reset to zero. Counters that are
not returned are not modified; for example, G._GREENor G._BLUE
counters may not be returned if format is G._ RED and internal
format is GL_RGB.

270 007-2392-003

EXT_histogram—The Histogram and Minmax Extensions

format Must be one of GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA,
G._RGBA, G._RGB, G._ABGR_EXT, G._LUM NANCE, or
GL_LUM NANCE_ALPHA.

type Must be GL_UNSI GNED BYTE, GL_BYTE, GL_UNSI GNED_SHORT,
GL_SHORT, GL_UNSI GNED | NT, GL_| NT, or G._FLQAT.

values Used to return a 1D image with the same width as the histogram. No
pixel transfer operations are performed on this image, but pixel
storage modes that apply for glReadPixels() are performed. Color
components that are requested in the specified format—but are not
included in the internal format of the histogram—are returned as
zero. The assignments of internal color components to the
components requested by format are as follows:

Internal Component Resulting Component

red red

green green

blue blue

alpha alpha

luminance red/luminance

Using the Minmax Part of the Histogram Extension

007-2392-003

The minmax part of the histogram extension lets you find out about minimum and
maximum color component values present in an image. Using the minmax part of the
histogram extension is similar to using the histogram part.

To determine minimum and maximum color values used in an image, follow these steps:

1.

Specify a minmax table by calling gIMinmaxEXT(), whose format follows:

void gl M nmaxEXT(GLenum target, GLenum internalformat, GLbool ean sink)

The parameters are defined as follows:

target

internalformat

Specifies the table in which the information about the image is to be
stored. The value for target must be G._M NVAX_EXT.

Specifies the format of the table entries. It must be an allowed
internal format. See the man page for gIMinmaxEXT().

271

10: Imaging Extensions

sink Determines whether processing continues. G._TRUE or GL_FALSE
are the valid values. If set to G_._TRUE, no further processing
happens and pixels or texels are discarded.

The resulting minmax table always has two entries. Entry 0 is the minimum and
entry 1 is the maximum.

2. Enable minmax by calling the following function:
gl Enabl e(G._M NVAX_EXT)
3. Perform the pixel operation—for example, glCopyPixels().

Each component of the internal format of the minmax table is compared to the
corresponding component of the incoming RGBA pixel (luminance components are
compared to red).

¢ If a component is greater than the corresponding component in the maximum
element, then the maximum element is updated with the pixel component
value.

¢ If a component is smaller than the corresponding component in the minimum
element, then the minimum element is updated with the pixel component
value.

4. Query the current context of the minmax table by calling glGetMinmaxEXT(),
whose format follows:

voi d gl Get M nmaxEXT (GLenum target, GLbool ean reset, GLenum format,
GLenum type, gl voi d *values)
You can also call glGetMinmaxParameterEXT() to retrieve minmax state information;
setting target to GL_MINMAX_EXT and pname to one of the following values:
GL_M NVAX_ FORMAT _EXT Internal format of minmax table

GL_M NVAX_SI NK_EXT Value of sink parameter

Using Proxy Histograms

272

Histograms can get quite large and require more memory than is available to the
graphics subsystem. You can call glHistogramEXT() with target set to

GL_PROXY_HI STOGRAM_EXT to find out whether a histogram fits into memory. The
process is similar to the one explained in the section “Texture Proxy” on page 330 of the
OpenGL Programming Guide, Second Edition.

007-2392-003

EXT_packed_pixels—The Packed Pixels Extension

To query histogram state values, call glGetHistogramParameter*EXT(). Histogram calls
with the proxy target (like texture and color table calls with the proxy target) have no
effect on the histogram itself.

New Functions

The EXT_histogram extension introduces the following functions:

glGetHistogramEXT)()
glGetHistogramParameterEXT()
glGetMinmaxEXT()
glGetMinmaxParameterEXT()
glHistogramEXT()
glMinmaxEXT()
glResetHistogramEXT()
glResetMinmaxEXT()

EXT_packed_pixels—The Packed Pixels Extension

The packed pixels extension, EXT_packed_pixels, provides support for packed pixels in
host memory. A packed pixel is represented entirely by one unsigned byte, unsigned
short, or unsigned integer. The fields within the packed pixel are not proper machine
types, but the pixel as a whole is. Thus, the pixel storage modes, such as

GL_PACK_SKI P_PI XELS, GL_PACK_ROW LENGTH, and so on, and their unpacking
counterparts all work correctly with packed pixels.

007-2392-003

273

10: Imaging Extensions

Why Use the Packed Pixels Extension?

Using Packed Pixels

274

The packed pixels extension lets you store images more efficiently by providing
additional pixel types you can use when reading and drawing pixels or loading textures.
Packed pixels have two potential benefits:

e Save bandwidth.

Packed pixels may use less bandwidth than unpacked pixels to transfer them to and
from the graphics hardware because the packed pixel types use fewer bytes per
pixel.

* Save processing time.
If the packed pixel type matches the destination (texture or framebulffer) type,

packed pixels save processing time.

In addition, some of the types defined by this extension match the internal texture
formats; so, less processing is required to transfer texture images to texture memory.

To use packed pixels, provide one of the types listed in Table 10-1 as the type parameter
to glDrawPixels(), glReadPixels(), and so on.

Table 10-1 Types That Use Packed Pixels

Parameter Token Value GL Data Type
GL_UNSI GNED_BYTE_3_3_2_EXT GLubyt e
GL_UNSI GNED_SHORT_4_4_4_4_EXT GLushort
GL_UNSI GNED_SHORT_5_5_5_1_EXT GLushort
GL_UNSI GNED_I NT_8_8_8_8_EXT GLui nt
GL_UNSI GNED_I NT_10_10_10_2_EXT GLui nt

The already available types for glReadPixels(), glDrawPixels(), and so on are listed in
Table 8-2 “Data Types for glReadPixels or glDrawPixels,” on page 293 of the OpenGL
Programming Guide.

007-2392-003

EXT_packed_pixels—The Packed Pixels Extension

Pixel Type Descriptions

007-2392-003

Each packed pixel type includes a base type (for example, GL_UNSI GNED_BYTE) and a
field width (for example, 3_3_2):

e The base type (GL_UNSI GNED_BYTE, GL_UNSI GNED_SHORT, or
GL_UNSI GNED_| NT) determines the type of “container” into which each pixel’s
color components are packed.

e Thefieldwidths(3_3 2,4 4 4 4,555 1,8 8 8 8,0or10 10 10 2)
determine the sizes (in bits) of the fields that contain a pixel’s color components.
The field widths are matched to the components in the pixel format in left-to-right
order.

For example, if a pixel has the type GL_UNSI GNED_BYTE_3_3_2_EXT and the
format GL_RGB, the pixel is contained in an unsigned byte, the red component
occupies three bits, the green component occupies three bits, and the blue
component occupies two bits.

The fields are packed tightly into their container with the leftmost field occupying
the most-significant bits and the rightmost field occupying the least-significant bits.

Because of this ordering scheme, integer constants (particularly hexadecimal constants)
can be used to specify pixel values in a readable and system-independent way. For
GL_RGBA, and color components red == 1, green ==2, blue_==_3,glp_ha_== 4 has the value
0x1234.

The ordering scheme also allows packed pixel values to be computed with
system-independent code. For example, if there are four variables (red, green, blue,
alpha) containing the pixel’s color component values, a packed pixel of type

GL_UNSI GNED_| NT_10_10_10_2_EXT and format G._ RGBA can be computed with
the following C code:

GLui nt pixel, red, green, blue, alpha;
pi xel = (red << 22) | (green << 12) | (blue << 2) | al pha;

While the source code that manipulates packed pixels is identical on both big-endian and
little-endian systems, you still need to enable byte swapping when drawing packed
pixels that have been written in binary form by a system with different endianness.

275

10: Imaging Extensions

SGI_color_matrix—The Color Matrix Extension

276

The color matrix extension, SGI_color_matrix, lets you transform the colors in the
imaging pipeline with a 4 x 4 matrix. You can use the color matrix to reassign and
duplicate color components and to implement simple color-space conversions.

This extension adds a 4 x 4 matrix stack to the pixel transfer path. The matrix operates
only on RGBA pixel groups; the extension multiplies the 4 x 4 color matrix on top of the
stack with the components of each pixel. The stack is manipulated using the OpenGL
matrix manipulation functions: glPushMatrix(), glPopMatrix(), glLoadIdentity(),
glLoadMatrix(), and so on. All standard transformations—for example, glRotate() or
glTranslate() also apply to the color matrix.

The color matrix is always applied to all pixel transfers. To disable it, load the identity
matrix.

The following is an example of a color matrix that swaps BGR pixels to form RGB pixels:

G.float colorwat[16] = {0.0, 0.0, 1.0, 0.0,

.0, 1.0, 0.0, 0.0

, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0

)

ero
cooo

, , }s

gl Matri xMode(GL_COLOR) ;
gl PushMat ri x();
gl LoadMat ri xf (col or Mat);

After the matrix multiplication, each resulting color component is scaled and biased by
the appropriate user-defined scale and bias values. Color matrix multiplication follows
convolution; convolution follows scale and bias.

To set scale and bias values to be applied after the color matrix, call glPixelTransfer*()
with the following values for pname:
+ G _POST_COLOR_MATRI X_{ RED/ BLUE/ GREEN ALPHA} _SCALE_SG

« GL_POST_COLOR_MATRI X_{ REDY BLUE/ GREEN/ ALPHA} BI AS_SG

007-2392-003

SGI_color_table—The Color Table Extension

SGI_color_table—The Color Table Extension

The color table extension, SGI_color_table, defines a new RGBA-format color lookup
mechanism. It does not replace the color lookup tables provided by the color maps
described in the OpenGL Progr anmi ng Cui de but provides the following additional
lookup capabilities:

¢ Unlike pixel maps, the color table extension’s download operations go through the
glPixelStore() unpack operations in the same way glDrawPixels() does.

* When a color table is applied to pixels, OpenGL maps the pixel format to the color
table format.

If the copy texture extension is implemented, this extension also defines methods to
initialize the color lookup tables from the framebuffer.

Why Use the Color Table Extension?

The color tables provided by the color table extension allow you to adjust image contrast
and brightness after each stage of the pixel processing pipeline.

Because you can use several color lookup tables at different stages of the pipeline (see

Figure 10-3), you have greater control over the changes you want to make. In addition
the extension color lookup tables are more efficient than those of OpenGL because you
may apply them to a subset of components (for example, alpha only).

Specifying a Color Table

To specity a color lookup table, call glColorTableSGI(), whose format follows:

voi d gl Col or Tabl eSA (GLenum target, GLenum internalformat, GLsi zei width,
GLenum format, GLenum fype, const GLvoi d *table)

The parameters are defined as follows:

target Must be GL_COLOR _TABLE_SG ,
GL_POST_CONVOLUTI ON_COLOR_TABLE_SG , or
GL_POST_COLOR MATRI X_COLOR TABLE_SG .

internalformat ~ Specifies the internal format of the color table.

007-2392-003 277

10: Imaging Extensions

278

width Specifies the number of entries in the color lookup table. It must be
Zero or a non-negative power of two.

format Specifies the format of the pixel data in the table.

type Specifies the type of the pixel data in the table.

table Specifies a pointer to a 1D array of pixel data that is processed to
build the table.

If no error results from the execution of glColorTableSGI(), the following events occur:

1.

The specified color lookup table is defined to have width entries, each with the
specified internal format. The entries are indexed as zero through N-1, where N is
the width of the table. The values in the previous color lookup table, if any, are lost.
The new values are specified by the contents of the 1D image to which table points
with format as the memory format and type as the data type.

The specified image is extracted from memory and processed as if glDrawPixels()
were called, stopping just before the application of pixel transfer modes (see the
illustration “Drawing Pixels with glDrawPixels*()” on page 310 of the OpenGL
Programming Guide).

The R, G, B, and A components of each pixel are scaled by the four
GL_COLOR TABLE_SCALE_SA parameters, then biased by the four
GL_COLOR TABLE_BI AS_SA parameters and clamped to [0,1].

The scale and bias parameters are themselves specified by calling
glColorTableParameterivSGI() or glColorTableParameterfvSGI() with the
following parameters:

target Specifies one of the three color tables: G._COLOR TABLE_SG ,
GL_POST_CONVOLUTI ON_COLOR _TABLE_SQ , or
GL_POST_COLOR _MATRI X_COLOR TABLE_SG .

pname Has tobe G._CO_OR _TABLE_SCALE_SG or
GL_COLOR _TABLE_BI AS_SG .

params Points to a vector of four values: red, green, blue, and alpha in that
order.

Each pixel is then converted to have the specified internal format. This conversion
maps the component values of the pixel (R, G, B, and A) to the values included in
the internal format (red, green, blue, alpha, luminance, and intensity).

007-2392-003

SGI_color_table—The Color Table Extension

The new lookup tables are treated as 1D images with internal formats like texture images
and convolution filter images. As a result, the new tables can operate on a subset of the
components of passing pixel groups. For example, a table with internal format
GL_ALPHA modifies only the A component of each pixel group and leaves the R, G, and
B components unmodified.

Using Framebuffer Image Data for Color Tables

If the copy texture extension is supported, you can define a color table using image data
in the framebuffer. Call glCopyColorTableSGI(), which accepts image data from a color
buffer region (width-pixel wide by one-pixel high) whose left pixel has window
coordinates (x,y). If any pixels within this region are outside the window that is
associated with the OpenGL context, the values obtained for those pixels are undefined.

The pixel values are processed exactly as if glCopyPixels() had been called until just
before the application of pixel transfer modes. See the illustration “Drawing Pixels with
glDrawPixels*()” on page 310 of the OpenGL Programming Guide.

At this point, all pixel component values are treated exactly as if glColorTableSGI() had
been called, beginning with the scaling of the color components by

GL_COLOR TABLE_SCALE_SQA . The semantics and accepted values of the target and
internalformat parameters are exactly equivalent to their glColorTableSGI()
counterparts.

Lookup Tables in the Image Pipeline

007-2392-003

The the following lookup tables exist at different points in the image pipeline (see
Figure 10-3):

GL_COLOR_TABLE_SG
Located immediately after index lookup or RGBA to RGBA mapping,
and immediately before the convolution operation.

GL_POST_CONVOLUTI ON_COLOR_TABLE_SG
Located immediately after the convolution operation (including its scale
and bias operations) and immediately before the color matrix operation.

GL_POST_COLOR_MATRI X_COLOR_TABLE_SG
Located immediately after the color matrix operation (including its scale
and bias operations) and immediately before the histogram operation.

279

10: Imaging Extensions

New Functions

To enable and disable color tables, call glEnable() and glDisable() with the color table
name passed as the cap parameter. Color table lookup is performed only for RGBA

groups, though these groups may have been specified as color indexes and converted to
RGBA by an index-to-RGBA pixel map table.

When enabled, a color lookup table is applied to all RGBA pixel groups, regardless of its
associated function.

The SGI_color_table extension introduces the following functions:
¢ glColorTableSGI()

¢ glColorTableParameterivSGI()

¢ glGetColorTableSGI()

¢ glGetColorTableParameterivSGI()

¢ glGetColorTableParameterfvSGI()

SGIX_interlace—The Interlace Extension

280

The interlace extension, SGIX_interlace, provides a way to interlace rows of pixels when
rasterizing pixel rectangles or loading texture images. Figure 10-4 illustrates how the
extension fits into the imaging pipeline.

In this context, interlacing means skipping over rows of pixels or texels in the
destination. This is useful for dealing with interlace video data since single frames of
video are typically composed of two fields: one field specifies the data for even rows of
the frame, the other specifies the data for odd rows of the frame, as shown in the
following illustration:

007-2392-003

SGIX_interlace—The Interlace Extension

Frame (rgster)
Line number

1

Field 1 | —
odd field ——
(2425 lines; 483

no blanking} 485 —
Field 2 .
Even field 6

2425 lines; _
%0 blanking) 23421 ---------

Figure 10-8 Interlaced Video (NTSC, Component 525)

When interlacing is enabled, all the groups that belong to a row m are treated as if they
belonged to the row 2xm. If the source image has a height of i rows, this effectively
expands the height of the image to 2xh rows.

Applications that use the extension usually first copy the first set of rows and then the
second set of rows, as explained in the following sections.

In cases where errors can result from the specification of invalid image dimensions, the
resulting dimensions—not the dimensions of the source image—are tested. For example,
when you use glTexImage2D() with GL_| NTERLACE_SG X enabled, the source image
you provide must be of height (texture_height + texture_border)/2.

Using the Interlace Extension

One application of the interlace extension is to use it together with the copy texture
extension. You can use glCopyTexSubImage2D() to copy the contents of the video field
to texture memory and end up with de-interlaced video. You can interlace pixels from
two images as follows:

1. Call glEnable() or glDisable() with cap set to GL_| NTERLACE_SG X.

2. Set the current raster position to xr, yr, as follows:
gl DrawPi xel s(wi dt h, height, G._RGBA, GL_UNSI GNED_BYTE, 10);

007-2392-003 281

10: Imaging Extensions

3. Copy pixels into texture memory (usually field 1 is first), as follows:
gl CopyTexSubl mage2D (G._TEXTURE_2D, |evel, xoffset, yoffset, x, vy,
wi dth, height)
4. Set raster position to (xr,yr+zoomy), as follows:
gl DrawPi xel s(wi dt h, height, G._RGBA, GL_UNSI GNED_BYTE, 11);
5. Copy the pixels from the second field (usually F1 is next). For this call, set the
following:

y of fset += yzoom
y += height (to get to next field)

This process is equivalent to taking pixel rows (0,2,4,...) of 12 from image 10, and rows
(1,3,5,...) from image I1, as follows:

gl Di sabl e(GL_I NTERLACE_Sd X) ;
/* set current raster position to (xr,yr) */
gl DrawPi xel s(wi dth, 2*height, G._RGBA, G._UNSI GNED BYTE, 12);

SGIX_pixel texture—The Pixel Texture Extension

282

The pixel texture extension, SGIX_pixel_texture, allows applications to use the color
components of a pixel group as texture coordinates, effectively converting a color image
into a texture coordinate image. Applications can use the system’s texture-mapping
capability as a multidimensional lookup table for images. Using larger textures will give
you higher resolution, and the system will interpolate whenever the precision of the
color values (texture coordinates) exceeds the size of the texture.

In effect, the extension supports multidimensional color lookups that can be used to
implement accurate and fast color-space conversions for images. Figure 10-4 illustrates
how the extension fits into the imaging pipeline.

Note: This extension is experimental and will change.

Texture mapping is usually used to map images onto geometry, and each pixel fragment
that is generated by the rasterization of a triangle or line primitive derives its texture
coordinates by interpolating the coordinates at the primitive’s vertexes. Thus, you do not
have much direct control of the texture coordinates that go into a pixel fragment.

007-2392-003

SGIX_pixel_texture—The Pixel Texture Extension

007-2392-003

By contrast, the pixel texture extension gives applications direct control of texture
coordinates on a per-pixel basis, instead of per-vertex as in regular texturing. If the
extension is enabled, glDrawPixels() and glCopyPixels() work differently. For each pixel
in the transfer, the color components are copied into the texture coordinates, as follows:

¢ Red becomes the s coordinate.
¢ Green becomes the t coordinate.
¢ Blue becomes the r coordinate.

* Alpha becomes the g coordinate (fourth dimension).

To use the pixel texture extension, an application has to go through these steps:

1. Define and enable the texture you want to use as the lookup table, as follows:

gl Tex| mage3DEXT(GL_TEXTURE_3D_EXT, args);
gl Enabl e(GL_TEXTURE_3D_EXT);

This texture does not have to be a 3D texture.

2. Enable pixel texture and begin processing images, as follows:

gl Enabl e(GL_PI XEL_TEX_GEN_SG X) ;
gl Dr awPi xel s(args) ;
gl Dr awPi xel s(args)

Each subsequent call to glDrawPixels() uses the predefined texture as a lookup table and
uses those colors when rendering to the screen. Figure 10-5 illustrates how colors are
introduced by the extension.

As in regular texture mapping, the texel found by mapping the texture coordinates and
filtering the texture is blended with a pixel fragment, and the type of blend is controlled
with the glTexEnv() function. In the case of pixel texture, the fragment color is derived
from the pixel group; thus, using the G._ MODULATE blend mode, you could blend the
texture lookup values (colors) with the original image colors. Alternatively, you could
blend the texture values with a constant color set with the glColor*() functions. To do
this, use this function:

voi d gl Pi xel TexGenSGA X(GL.enum node) ;

The valid values of mode, shown in the following, depend on the pixel group and the
current raster color, which is the color associated with the current raster position:

283

Platform Issues

G._RGB If mode is GL_RGB, the fragment red, green, and blue will be derived
from the current raster color, set by the glColor() function. Fragment
alpha is derived from the pixel group.

GL_RGBA If mode is GL_RGBA, the fragment red, green, blue, and alpha will be
derived from the current raster color.

GL_ALPHA If mode is GL_ALPHA, the fragment alpha is derived from the current
raster color and red, green, and blue will be derived from the pixel
group.

GL_NONE If mode is GL_NONE, the fragment red, green, blue, and alpha are derived
from the pixel group.

Note: See the following section “Platform Issues” for currently supported modes.

When using pixel texture, the format and type of the image do not have to match the
internal format of the texture. This is a powerful feature; it means, for example, that an
RGB image can look up a luminance result. Another interesting use is to have an RGB
image look up an RGBA result, in effect, adding alpha to the image in a complex way.

Pixel texture is supported only on Fuel and InfinitePerformance systems. For further
restrictions on the implementation, see your platform release notes and the man page for
glPixelTexGenSGIX(). For new applications targeting Onyx4 and Silicon Graphics
Prism systems, you can achieve similar functionality by writing fragment programs
using the fragment color components as texture coordinates.

When you use 4D textures with an RGBA image, the alpha value is used to derive Q, the
4D texture coordinate. Currently, the Q interpolation is limited to a default G._ NEAREST
mode, regardless of the minfilter and magfilter settings.

Note: When working with mipmapped textures, the effective LOD value computed for
each fragment is 0. The texture LOD and texture LOD bias extensions apply to pixel
textures as well.

SGIX_pixel_texture—The Pixel Texture Extension

New Functions

The SGIX_pixel_texture extension introduces the function glPixelTexGenSGIX().

007-2392-003 285

Chapter 11

Video Extensions

Chapter 6, “Resource Control Extensions,” describes a set of GLX extensions that can be
used to control resources. This chapter provides information on the following set of GLX
extensions that support video functionality:

¢ “SGI_swap_control—The Swap Control Extension” on page 287

¢ “SGI_video_sync—The Video Synchronization Extension” on page 288
e “SGIX_swap_barrier—The Swap Barrier Extension” on page 289

¢ “SGIX_swap_group—The Swap Group Extension” on page 292

* “SGIX_video_resize—The Video Resize Extension” on page 294

SGI_swap_control—The Swap Control Extension

007-2392-003

Provided the time required to draw each frame can be bounded, the swap control
extension, SGI_swap_control, allows applications to display frames at a regular rate . The
extension allows an application to set a minimum period for buffer swaps, counted in
display retrace periods.

To set the buffer swap interval, call gIXSwapIntervalSGI(), which has the following
format:

int gl XSwaplnterval SA (int interval)

Specify the minimum number of retraces between buffer swaps in the interval parameter.
For example, a value of 2 means that the color buffer is swapped at most every other
display retrace. The new swap interval takes effect on the first execution of
glXSwapBuffers() after the execution of gIXSwapIntervalSGI().

287

11: Video Extensions

The functioin gIXSwapIntervalSGI() affects only buffer swaps for the GLX write
drawable for the current context. Note that gIXSwapBuffers() may be called with a
drawable parameter that is not the current GLX drawable; in this case,
glXSwaplIntervalSGI() has no affect on that buffer swap.

New Functions

The SGI_swap_control extension introduces the function gIXSwapIntervalSGI().

SGI_video_sync—The Video Synchronization Extension

The video synchronization extension, SGI_video_sync, allows an application to
synchronize drawing with the vertical retrace of a monitor or, more generically, to the
boundary between to video frames. In the case of an interlaced monitor, the
synchronization is actually with the field rate instead. Using the video synchronization
extension, an application can put itself to sleep until a counter corresponding to the
number of screen refreshes reaches a desired value. This enables an application to
synchronize itself with the start of a new video frame. The application can also query the
current value of the counter.

The system maintains a video sync counter (an unsigned 32-bit integer) for each screen
in a system. The counter is incremented upon each vertical retrace.

The counter runs as long as the graphics subsystem is running;; it is initialized by the
[usr/ gf x/ gf xi ni t command.

Note: A process can query or sleep on the counter only when a direct context is current;
otherwise, an error code is returned. See the man page for gf xi ni t more information.

Using the Video Sync Extension

To use the video sync extension, follow these steps:
1. Create a rendering context and make it current.

2. Call gIXGetVideoSyncSGI() to obtain the value of the vertical retrace counter.

288 007-2392-003

SGIX_swap_barrier—The Swap Barrier Extension

New Functions

3. Call g]IXWaitVideoSyncSGI(), whose format follows, to put the current process to
sleep until the specified retrace counter:

i nt gl XWai t Vi deoSyncSG (int divisor, int remainder,
unsi gned int *count)

The parameters are defined as follows:

divisor, remainder The function gIXWaitVideoSyncSGI() puts the calling
process to sleep until the value of the vertical retrace counter
(count) modulo divisor equals remainder.

count This is a pointer to the variable that receives the value of the
vertical retrace counter when the calling process wakes up.

The SGI_video_sync extension introduces the following functions:
e gIXGetVideoSyncSGI()
e glXWaitVideoSyncSGI()

SGIX _swap_barrier—The Swap Barrier Extension

Note: The OpenGL swap barrier functionality requires special hardware support and is
currently supported only on InfiniteReality graphics.

The swap barrier extension, SGIX_swap_barrier, allows applications to synchronize the
buffer swaps of different swap groups—that is, on different machines. For information
on swap groups, see “SGIX_swap_group—The Swap Group Extension” on page 292.

Why Use the Swap Barrier Extension?

007-2392-003

For example, two Onyx InfiniteReality systems may be working together to generate a
single visual experience. The first Onyx system may be generating an “out the window
view” while the second Onyx system may be generating a sensor display. The swap
group extension would work well if the two InfiniteReality graphics pipelines were in

289

11: Video Extensions

the same system, but a swap group cannot span two Onyx systems. Even though the two
displays are driven by independent systems, you still want the swaps to be
synchronized.

The swap barrier solution requires the user to connect a physical coaxial cable to the
Swap Ready port of each InfiniteReality pipeline. The multiple pipelines should also be
genlocked together (synchronizing their video refresh rates). Genlocking a system means
synchronizing it with another video signal serving as a master timing source.

You can use the swap barrier extension through the OpenGL Performer API rather than
calling the extension directly.

Using the Swap Barrier Extension

290

A swap group is bound to a swap barrier. The buffer swaps of each swap group using
that barrier will wait until every swap group using that barrier is ready to swap (where
readiness is defined in “Buffer Swap Conditions” on page 291). All buffer swaps of all
groups using that barrier will take place concurrently when every group is ready.

The set of swap groups using the swap barrier include not only all swap groups on the
calling application’s system, but also any swap groups set up by other systems that have
been cabled together by the Swap Ready ports of their graphics pipeline. This extension
extends the set of conditions that must be met before a buffer swap can take place.

Applications call gIXBindSwapBarriersSGIX(), which has the following format:
voi d gl XBi ndSwapBarri er SG X(Di spl ay *dpy, GLXDrawabl e drawable, int barrier)

The function gIXBindSwapBarriersSGIX() binds the swap group that contains drawable
to barrier. Subsequent buffer swaps for that group will be subject to this binding until the
group is unbound from barrier. If barrier is zero, the group is unbound from its current
barrier, if any.

To find out how many swap barriers a graphics pipeline (an X screen) supports,
applications call gIXQueryMaxSwapbarriersSGIX(), which has the following syntax:

Bool gl XQuer yMaxSwapBarriersSG X (Di splay *dpy, int screen, int max)

The function gIXQueryMaxSwapBarriersSGIX() returns in max the maximum number
of barriers supported by an implementation on screern.

007-2392-003

SGIX_swap_barrier—The Swap Barrier Extension

Buffer Swap Conditions

007-2392-003

The function gIXQueryMaxSwapBarriersSGIX() returns GL_ TRUE if it succeeds and
GL_FALSE if it fails. If it fails, max is unchanged.

While the swap barrier extension has the capability to support multiple swap barriers
per graphics pipeline, InfiniteReality (the only graphics hardware currently supporting
the swap barrier extension) provides only one swap barrier.

Before a buffer swap can take place when a swap barrier is used, some new conditions
must be satisfied. The conditions are defined in terms of when a drawable is ready to
swap and when a group is ready to swap.

¢ Any GLX drawable that is not a window is always ready.

* When a window is unmapped, it is always ready.

¢ When a window is mapped, it is ready when both of the following are true:
— A buffer swap command has been issued for it.
— Its swap interval has elapsed.

¢ A group is ready when all windows in the group are ready.

* Before a buffer swap for a window can take place, all of the following must be
satisfied:

— The window is ready.
— If the window belongs to a group, the group is ready.
— If the window belongs to a group and that group is bound to a barrier, all

groups using that barrier are ready.

Buffer swaps for all windows in a swap group will take place concurrently after the
conditions are satisfied for every window in the group.

Buffer swaps for all groups using a barrier will take place concurrently after the
conditions are satisfied for every window of every group using the barrier, if and only if
the vertical retraces of the screens of all the groups are synchronized (genlocked). If they
are not synchronized, there is no guarantee of concurrency between groups.

Both gIXBindSwapBarrierSGIX() and gIXQueryMaxSwapBarrierSGIX() are part of the
X stream.

291

11: Video Extensions

New Functions

The SGI_swap_barrier extension introduces the following functions:
¢ glBindSwapBarrierSGIX()
¢ glQueryMaxSwapBarriersSGIX()

SGIX_swap_group—The Swap Group Extension

The swap group extension, SGIX_swap_group, allows applications to synchronize the
buffer swaps of a group of GLX drawables. The application creates a swap group and
adds drawables to the swap group. After the group has been established, buffer swaps
to members of the swap group will take place concurrently.

In effect, this extension extends the set of conditions that must be met before a buffer
swap can take place.

Why Use the Swap Group Extension?

Synchronizing the swapping of multiple drawables ensures that buffer swaps among
multiple windows (potentially on different screens) swap at exactly the same time.

Consider the following example:

r ender (left_window) ;

r ender (right_window) ;

gl XSwapBuf f er s(left_window) ;
gl XSwapBuf f er s(right_window) ;

The left_window and right_window are on two different screens (different monitors) but
are meant to generate a single logical scene (split across the two screens). While the
programmer intends for the two swaps to happen simultaneously, the two
glXSwapBuffers() calls are distinct requests, and buffer swaps are tied to the monitor’s
rate of vertical refresh. Most of the time, the two gIXSwapBuffers() calls will swap both
windows at the next monitor vertical refresh. Because the two gIXSwapBuffers() calls
are not atomic, the following cases are possible:

e The first gIXSwapBuffers() call may execute just before a vertical refresh, allowing
left_window to swap immediately.

292 007-2392-003

SGIX_swap_group—The Swap Group Extension

Swap Group Details

007-2392-003

* The second glXSwapBuffers() call is made after the vertical refresh, forcing
right_window to wait a full vertical refresh (typically a 1/60th orl/72th of a second).

Someone watching the results in the two windows would very briefly see the new
left_window contents, but alongside the old right_window contents. This “stutter” between
the two window swaps is always annoying and at times simply unacceptable.

The swap group extension allows applications to “tie together” the swapping of multiple
windows. Joining the left_window and right_window into a swap group ensures that the
windows swap together atomically. This could be done during initialization by making
the following call:

gl XJoi nSwapG oupSA X(dpy, left_window, right_window);

Subsequent windows can also be added to the swap group. For example, if there was also
a middle window, it could be added to the swap group by making the following call:

gl XJoi nSwapG oupSG X(dpy, middle_window, right_window) ;

The only routine added by the swap group extension is glXJoinSwapGroupSGIXJ(),
which has following format:

voi d gl XJoi nSwapG oupSA X(Di spl ay *dpy, GLXDrawabl e drawable,
GLXDr awabl e member)

Applications can call gIXJoinSwapGroupSGIX() to add drawable to the swap group
containing member as a member. If drawable is already a member of a different group, it is
implicitly removed from that group first. If member is None, drawable is removed from its
swap group, if any.

Applications can reference a swap group by naming any drawable in the group; there is
no other way to refer to a group.

Before a buffer swap can take place, a set of conditions must be satisfied. Both the
drawable and the group must be ready, satisfying the following conditions:

e GLX drawables, except windows, are always ready to swap.

* When a window is unmapped, it is always ready.

* When a window is mapped, it is ready when both of the following are true:

293

11: Video Extensions

New Function

— A buffer swap command has been issued for it.

— Its swap interval has elapsed.
A group is ready if all windows in the group are ready:.
The function glXJoinSwapGroupSGIX() is part of the X stream. Note that a swap group
is limited to GLX drawables managed by a single X server. If you have to synchronize

buffer swaps between monitors on different machines, you need the swap barrier
extension (see “SGIX_swap_barrier—The Swap Barrier Extension” on page 289).

The SGIX_swap_group extension introduces the function gljoinSwapGroupSGIX().

SGIX_video _resize—The Video Resize Extension

294

Note: This extension is only supported on InfiniteReality systems.

The video resize extension, SGIX_video_resize, is an extension to GLX that allows the
framebuffer to be dynamically resized to the output resolution of the video channel when
glXSwapBuffers is called for the window that is bound to the video channel. The video
resize extension can also be used to minify (reduce in size) a framebuffer image for
display on a video output channel (such as NTSC or PAL broadcast video). For example,
a 1280 x 1024 computer-generated scene could be minified for output to the
InfiniteReality NTSC/PAL encoder channel. InfiniteReality performs bilinear filtering of
the minified channel for reasonable quality.

As a result, an application can draw into a smaller viewport and spend less time
performing pixel fill operations. The reduced size viewport is then magnified up to the
video output resolution using the SGIX_video_resize extension.

In addition to the magnify and minify resizing capabilities, the video resize extension

allows 2D panning. By overrendering at swap rates and panning at video refresh rates,
it is possible to perform video refresh (frame) synchronous updates.

007-2392-003

SGIX_video_resize—The Video Resize Extension

Controlling When the Video Resize Update Occurs

Whether frame synchronous or swap synchronous update is used is set by calling
glXChannelRectSyncSGIX(), which has the following format:

i nt gl XChannel Rect SyncSG X (Di splay *dpy, int screen,int channel,

GLenum synctype) ,

The synctype parameter can be either GLX_SYNC_FRAME_SG Xor
GLX_SYNC SWAP_Sd X

The extension can control fill-rate requirements for real-time visualization applications
or to support a larger number of video output channels on a system with limited
framebuffer memory.

Using the Video Resize Extension

007-2392-003

To use the video resize extensions, follow these steps:

1.
2.

Open the display and create a window.

Call gIXBindChannelToWindowSGIX() to associate a channel with an X window
so that when the X window is destroyed, the channel input area can revert to the
default channel resolution.

The other reason for this binding is that the bound channel updates only when a
swap takes place on the associated X window (assuming swap sync updates—see
“Controlling When the Video Resize Update Occurs” on page 295).

The function has the following format:

i nt gl XBi ndChannel ToW ndowSG X(Di spl ay *display, int screen,
i nt channel, W ndow window)

The parameters are defined as follows:

display Specifies the connection to the X server.
screen Specifies the screen of the X server.
channel Specifies the video channel number.

295

11: Video Extensions

296

window Specifies the window that is to be bound to channel. Note that
InfiniteReality systems support multiple output channels (two or
eight depending on the Display Generator board type). Each
channel can be dynamically resized independently.

Call gIXQueryChannelDeltasSGIX() to retrieve the precision constraints for any
frame buffer area that is to be resized to match the video resolution. In effect,
glXQueryChannelDeltasSGIX() returns the resolution at which one can place and
size a video input area.

The function has the following format:

i nt gl XQueryChannel Del t asSGA X(Di spl ay *display, int screen, int channel,
int *dx, int *dy, int *dw, int *dh)

The parameters are defined as follows:

display Specifies the connection to the X server.
screen Specifies the screen of the X server.
channel Specifies the video channel number.

dx, dy, dw, dh Specify the precision deltas for the origin and size of the area
specified by gIXChannelRectSGIX().

Call XSGIvcQueryChannelInfo() (an interface to the X video control extension) to
determine the default size of the channel.

Open an X window, preferably with no borders.
Start a loop in which you perform the following activities:

= Based on performance requirements, determine the area that will be drawn. If
the application is fill-limited, make the area smaller. You can make a rough
estimate of the fill rate required for a frame by timing the actual rendering time
in milliseconds. On InfiniteReality systems, the SGIX_ir_instrument] OpenGL
extension can be used to query the pipeline performance to better estimate the
fill rate.

« Call glViewPort(), providing the width and height, to set the OpenGL viewport
(the rectangular region of the screen where the window is drawn). Base this
viewport on the information returned by gIXQueryChannelDeltasSGIX().

« Call gIXChannelRectSGIX() to set the input video rectangle that will take effect
the next swap or next frame (based on glXChannelRectSyncSGIX() setting).
The coordinates of the input video rectangle are those of the viewport just set
up for drawing. This function has the following format:

007-2392-003

SGIX_video_resize—The Video Resize Extension

Example

007-2392-003

i nt gl XChannel Rect SG X(Di splay *display, int screen,
int channel, int x, int y, int w, int h)

The parameters are defined as follows:
display—Specifies the connection to the X server
screen—Specifies the screen of the X server.
channel—Specifies the video channel number.

x, y, w, h—Specify the origin and size of the area of the window that will be
converted to the output resolution of the video channel. (x,y) is relative to the
bottom left corner of the channel specified by the current video combination.

= Draw the scene.

« Call gIXSwapBuffers() for the window in question.

The following example from the man page for glxChannelRectSGIX() illustrates how to
use the extension:

Example 11-1 Video Resize Extension Example
XSA vcChannel | nfo *pChanl nfo = NULL;

open display and screen ...
gl XBi ndChannel ToW ndowSA X(di spl ay, screen, channel , wi ndow) ;
gl XQuer yChannel Del t asSA X(di spl ay, screen, channel, &dx, &y, &w, &lh);

XSA vcQuer yChannel | nfo(di spl ay, screen, channel, &pChanlnfo);

pChanl nf o- >sour ce. x;
pChanl nf o- >sour ce. y;
pChanl nf o- >sour ce. wi dt h;
pChanl nf o- >sour ce. hei ght ;

ITs=<X
o

open an X wi ndow (preferably with no borders so will not get
nmoved by wi ndow manager) at location X Y,WH (X coord system

while(...)
{

...determ ne area(w dth, height) that will be drawn based on...
...requirements. Make area smaller if application is fill limted..

297

11: Video Extensions

w
h

width - (width %dw);
hei ght - (height %dh);

gl Viewport(0,0,w, h);
gl XChannel Rect SA X(di spl ay, screen, channel, 0,0,w,h);
draw scene ...

gl XSwapBuf fers(displ ay, wi ndow) ;

New Functions

The SGIX_video_resize extension introduces the following functions:
¢ gIXBindChannelToWindowSGIX()

¢ gIXChannelRectSGIX()

¢ glXChannelRectSyncSGIX()

¢ gIXQueryChannelRectSGIX()

298 007-2392-003

Chapter 12

Miscellaneous OpenGL Extensions

This chapter explains how to use several extensions that are not easily grouped with
texturing, imaging, or GLX extensions. Example code is provided as needed. The
following extensions are described:

e “GLU_EXT_NURBS_tessellator—The NURBS Tessellator Extension” on page 299
e “GLU_EXT_object_space—The Object Space Tess Extension” on page 303
¢ “SGIX_instruments—The Instruments Extension” on page 307

e “SGIX_list_priority—The List Priority Extension” on page 305

GLU_EXT _NURBS tessellator—The NURBS Tessellator Extension

The NURBS tessellator extension, GLU_EXT_nurbs_tessellator, is a GLU extension that
allows applications to retrieve the results of a tessellation. The NURBS tessellator is
similar to the GLU polygon tessellator; see “Polygon Tessellation,” starting on page 410
of the OpenGL Programming Guide, Second Edition.

NURBS tessellation consists of OpenGL Begin, End, Color, Normal, Texture, and Vertex
data. This feature is useful for applications that need to cache the primitives to use their
own advanced shading model or to accelerate frame rate or perform other computations
on the tessellated surface or curve data.

007-2392-003 299

12: Miscellaneous OpenGL Extensions

Using the NURBS Tessellator Extension

To use the extension, follow these steps:

1. Define a set of callbacks for a NURBS object using this function:
voi d gl uNur bsCal | back(GLUnur bsQbj *nurbsObj, GLenum which,
void (*fn)());

The parameter which can be either GLU_ERRCR, a data parameter, or one of the
following nondata parameters:

GLU_NURBS BEG N_EXT GLU NURBS_BEG N_DATA EXT
GLU_NURBS_VERTEX_EXT GLU NURBS VERTEX_DATA EXT
GLU_NORMAL_EXT GLU_NORVAL_DATA EXT
GLU_NURBS_COLOR_EXT GLU_NURBS_COLOR DATA_EXT
GLU_NURBS_TEXTURE_COORD EXT GLU NURBS_TEXTURE_COORD _DATA _EXT
GLU_END_EXT GLU_END_DATA EXT

2. Call gluNurbsProperty() with a property parameter of G.U_NURBS_MODE_EXT and
a value parameter of GLU_NURBS_TESSELLATOR_EXT or
GLU_NURBS_RENDERER_EXT.

In rendering mode, the objects are converted or tessellated to a sequence of OpenGL
primitives, such as evaluators and triangles, and sent to the OpenGL pipeline for
rendering. In tessellation mode, objects are converted to a sequence of triangles and
triangle strips and returned to the application through a callback interface for
further processing. The decomposition algorithms used for rendering and for
returning tessellations are not guaranteed to produce identical results.

3. Execute your OpenGL code to generate the NURBS curve or surface (see “A Simple
NURBS Example” on page 455 of the OpenGL Programming Guide, Second Edition.)

4. During tessellation, your callback functions are called by OpenGL with the
tessellation information defining the NURBS curve or surface.

300 007-2392-003

GLU_EXT_NURBS_tessellator—The NURBS Tessellator Extension

Callbacks Defined by the Extension

There are two forms of each callback defined by the extension: one with a pointer to
application-supplied data and one without. If both versions of a particular callback are
specified, the callback with userData will be used.The userData is a copy of the pointer
that was specified at the last call to gluNurbsCallbackDataEXT().

The callbacks have the following formats:

voi d begi n(GLenum type) ;

voi d vertex(G.float *wvertex);

voi d normal (GLfl oat *normal);

voi d col or (G.fl oat *color);

voi d texCoord(GLfloat *texCoord);

voi d end(void);

voi d begi nDat a(GLenum type, voi d* userData) ;

voi d vertexData(G.fl oat *wvertex, void* userData);
voi d normal Dat a(GLf | oat *mnormal, voi d* userData);
voi d col or Dat a(GLf | oat *color, voi d* userData);
voi d texCoordDat a(GLfl oat *texCoord, void* userData)
voi d endDat a(voi d* userData) ;

voi d error (G.enum errno) ;

The first 12 callbacks allows applications to get primitives back from the NURBS
tessellator when G_LU_NURBS MODE_EXT is set to GLU_NURBS_TESSELLATOR_EXT.

These callbacks are not made when GLU_NURBS_MODE_EXT is set to
GLU_NURBS_RENDERER_EXT.

All callback functions can be set to NULL even when GLU_NURBS_MODE_EXT is set to

GLU_NURBS TESSELLATOR_EXT. When a callback function is set to NULL, this function
will not be invoked and the related data, if any, will be lost.

007-2392-003 301

12: Miscellaneous OpenGL Extensions

Table 12-1 provides additional information on each callback.

Table 12-1 NURBS Tessellator Callbacks and Their Description

Callback

Description

GLU_NURBS BEG N_EXT
GLU_NURBS_BEG N _DATA_ EXT

GLU_NURBS_VERTEX_EXT
GLU_NURBS_VERTEX_DATA EXT

GLU_NURBS_NORMAL_EXT
GLU_NURBS_NORMAL_DATA_EXT

GLU_NURBS_COLOR_EXT
GLU_NURBS_COLOR DATA_ EXT

Indicates the start of a primitive. type is one of
GL_LINES,G@_LINE STRI PS,G._TRI ANGLE_FAN,
GL_TRI ANGLE_STRI P G._TRI ANGLES, or
GL_QUAD_STRIP.

The default begin() and beginData() callback functions
are NULL.

Indicates a vertex of the primitive. The coordinates of the
vertex are stored in the parameter vertex. All the
generated vertices have dimension 3; that is,
homogeneous coordinates have been transformed into
affine coordinates.

The default vertex() and vertexData() callback functions
are NULL.

Is invoked as the vertex normal is generated. The
components of the normal are stored in the parameter
normal. In the case of a NURBS curve, the callback
function is effective only when you provide anormal map
(GLU_MAP1_NORMAL). In the case of a NURBS surface, if
anormal map (GLU_MAP2_NORMAL) is provided, then the
generated normal is computed from the normal map. If a
normal map is not provided, then a surface normal is
computed in a manner similar to that described for
evaluators when GL_AUTO_NORMAL is enabled. The
default normal() and normalData() callback functions are
NULL.

Is invoked as the color of a vertex is generated. The
components of the color are stored in the parameter color.
This callback is effective only when you provide a color
map (GL_MAP1_COLOR 4 or GL_MAP2_COLOR _4). The
color value contains four components: R, G, B, or A.The
default color() and colorData() callback functions are
NULL.

302

007-2392-003

GLU_EXT _object_space—The Object Space Tess Extension

Table 12-1 NURBS Tessellator Callbacks and Their Description (continued)

Callback Description

GLU_NURBS_TEXCOCORD_EXT Is invoked as the texture coordinates of a vertex are
GLU_NURBS_TEXCOORD DATA EXT generated. These coordinates are stored in the parameter
tex_coord. The number of texture coordinates can be 1, 2,
3, or 4 depending on which type of texture map is
specified (G._MAP* _TEXTURE_COORD_1,
GL_MAP* _TEXTURE_COORD 2,
GL_MAP* _TEXTURE_COCRD 3,
GL_MAP*_TEXTURE_COCRD_4 where * can be either 1 or
2). If no texture map is specified, this callback function
will not be called.

The default texCoord() and texCoordData() callback
functions are NULL.

GLU_NURBS_END EXT Isinvoked at the end of a primitive. The default end() and
GLU_NURBS_END DATA EXT endData() callback functions are NULL.
CLU_NURBS_ERROR_EXT Is invoked when a NURBS function detects an error

condition. There are 37 errors specific to NURBS
functions. They are named GLU_NURBS_ERRORI through
GLU_NURBS_ERROR37. Strings describing the meaning
of these error codes can be retrieved with
gluErrorString().

GLU_EXT_object_space—The Object Space Tess Extension

The object space tess extension, GLU_EXT_object_space_tess, adds two object space
tessellation methods for GLU nurbs surfaces. NURBS are discussed in the section “The
GLU NURBS Interface” on page 455 of the OpenGL Programming Guide, Second Edition.

The existing tessellation methods GLU_PATH_LENGTHand GLU_PARAMETRI C_ERRCR
are view-dependent because the error tolerance is measured in the screen space (in
pixels). The extension provides corresponding object space tessellation methods that are
view-independent in that the error tolerance measurement is in the object space.

007-2392-003 303

12: Miscellaneous OpenGL Extensions

GLU_SAMPLI NG_METHOD specifies how a NURBS surface should be tessellated. The
value parameter may be set to one of of the following;:

« GLU_PATH LENGTH
« GLU_PARAMETRI C_ERRCR
e GLU DOMAI N_DI STANCE

e GLU OBJECT PATH LENGTH EXT

e GLU OBJECT_PARAMVETRI C_ERROR EXT

To use the extension, call gluNurbsProperty() with an argument of
GLU_OBJECT_PATH_LENGTH_EXT or GLU OBJECT_PARAMETRI C_ERROR EXT.
Table 12-2 contrasts the methods provided by the extension with the existing methods.

Table 12-2 Tessellation Methods

Method

Description

GLU_PATH_LENGTH

GLU_PARAVETRI C_ERROR

GLU_DOMVAI N_DI STANCE

The surface is rendered so that the maximum length,
in pixels, of edges of the tessellation polygons is no
greater than what is specified by

GLU_SAMPLI NG_TOLERANCE.

The surface is rendered in such a way that the value
specified by GLU_PARAVETRI C_TOLERANCE
describes the maximum distance, in pixels, between
the tessellation polygons and the surfaces they
approximate.

Allows you to specify in parametric coordinates how
many sample points per unit length are taken in u, v
dimension.

304

007-2392-003

SGIX_list_priority—The List Priority Extension

Table 12-2 Tessellation Methods (continued)

Method Description

GLU_OBJECT_PATH_LENGTH_EXT Similar to GLU_PATH_LENGTH except that it is
view-independent; that is, it specifies that the surface
is rendered so that the maximum length in object
space of edges of the tessellation polygons is no
greater than what is specified by
GLU_SAMPLI NG_TOLERANCE.

GLU_OBJECT_PARAMETRI C_ERROR_EXT Similar to G_.U_PARAMETRI C_ERROR, except that it
is view-independent; that is, it specifies that the
surface is rendered in such a way that the value
specified by GLU_PARAVETRI C_TOLERANCE
describes the maximum distance, in object space,
between the tessellation polygons and the surfaces
they approximate.

The default value of GLU_SAMPLI NG_METHODis GLU_PATH_LENGTH.

GLU_SAMPLI NG_TOLERANCE specifies the maximum distance in pixels or in object
space when the sampling method is set to G.U_PATH_LENGTHor
GLU_OBJECT_PATH_LENGTH_EXT. The default value for GLU_SAMPLI NG_TOLERANCE
is 50. 0.

GLU_PARAMETRI C_TOLERANCE specifies the maximum distance in pixels or in object
space when the sampling method is set to G.U_PARAMETRI C_ERROR or
GLU_OBJECT_PARAMETRI C_ERROR_EXT. The default value for

GLU_PARAMETRI C_TOLERANCE is 0. 5.

SGIX_list_priority—The List Priority Extension

Note: This extension is only supported on Fuel, Tezro, InfinitePerformance, and
InfiniteReality systems.

The list priority extension, SGIX_list_priority, provides a mechanism for specifying the
relative importance of display lists. This information can be used by an OpenGL
implementation to guide the placement of display list data in a storage hierarchy; that is,

007-2392-003 305

12: Miscellaneous OpenGL Extensions

lists that have higher priority reside in “faster” memory and are less likely to be swapped
out to make space for other lists.

Using the List Priority Extension

306

To guide the OpenGL implementation in determining which display lists should be
favored for fast executions, applications call glListParameter*SGIX(), which has the
following format:

gl Li st Paranet er f SG X(ui nt [list, enum pname, float params)

The parameters are defined as follows:

list The display list
pname G_LIST_PRIORITY_SG X
params The priority value

The priority value is clamped to the range [0. O, 1. O] before it is assigned. Zero indicates
the lowest priority and, hence, the least likelihood of optimal execution. One indicates
the highest priority and, hence, the greatest likelihood of optimal execution.

Attempts to prioritize nonlists are silently ignored. Attempts to prioritize list 0 generates
a GL_I NVALI D_VALUE error.

To query the priority of a list, call glGetListParameterivSGIX(), which has the following
format:

gl Get Li st Paranet eri vSGA X(ui nt [ist, enum pname, int *params)

The parameters are defined as follows:
list The display list
pname G_LIST PRIORITY_SA X

If list is not defined, then the value returned is undefined.

Note: On InfiniteReality systems, it makes sense to give higher priority to those display
lists that are changed frequently.

007-2392-003

SGIX_instruments—The Instruments Extension

New Functions

The SGIX_list_priority extension introduces the following functions:

glListParameterSGIX()
glGetListParameterSGIX()

SGIX_instruments—The Instruments Extension

Note: This extension is only supported on InfiniteReality systems.

The instruments extension, SGIX_instruments, allows applications to gather and return
performance measurements from within the graphics pipeline by adding
instrumentation.

Why Use SGIX_instruments?

007-2392-003

There are two reasons for using the instruments extension:

Load monitoring

If you know that the pipeline is stalled or struggling to process the amount of data
passed to it so far, you can take appropriate steps, such as the following;:

— Reduce the level of detail of the remaining objects in the current frame or the
next frame.

— Adjust the framebuffer resolution for the next frame if video resize capability is
available.

Tuning

The instrumentation may give you tuning information; for example, it may provide
information on how many triangles were culled or clipped before being rasterized.

Load monitoring requires that the instrumentation and the access of the measurements

be efficient; otherwise, the instrumentation itself will reduce performance more than any
load-management scheme could hope to offset. Tuning does not have the same
requirements.

307

12: Miscellaneous OpenGL Extensions

Using the Extension

Specifying the Buffer

308

The instruments extension provides a call to set up a measurements return buffer similar
to the feedback buffer. However, unlike feedback and selection (see glSelectBuffer() and
glFeedbackBuffer()), the instruments extension provides functions that allow
measurements to be delivered asynchronously so that the graphics pipeline need not be
stalled while measurements are returned to the client.

Note that the extension provides an instrumentation framework, but no instruments.
The set of available instruments varies between OpenGL implementations and can be
determined by querying the GL_EXTENSI ONS string returned by glGetString() for the
names of the extensions that implement the instruments.

This section describes using the extension in the following subsections:
* “Specifying the Buffer”

e “Enabling, Starting, and Stopping Instruments”

¢ “Measurement Format”

e “Retrieving Information”

To specify a buffer in which to collect instrument measurements, call
glInstrumentsBufferSGIX() with size set to the size of the buffer as a count of GLints.
The function has the following format:

voi d gl I nstrunentsBufferSA X(GLsizei size, GLint *buffer)

The buffer will be prepared in a way that allows it to be written asynchronously by the
graphics pipeline.

If the same buffer was specified on a previous call, the buffer is reset; that is,
measurements taken after the call to glinstrumentsBufferSGIX() are written to the start
of the buffer.

If buffer is zero, then any resources allocated by a previous call to prepare the buffer for
writing will be freed. If buffer is non-zero but is different from a previous call, the old
buffer is replaced by the new buffer and any allocated resources involved in preparing
the old buffer for writing are freed.

007-2392-003

SGIX_instruments—The Instruments Extension

The buffer address can be queried with glGetPointerv() using the argument
GL_INSTRUMENT_BUFFER_POINTER_SGIX (note that glGetPointerv() is an OpenGL
1.1 function).

Enabling, Starting, and Stopping Instruments

Measurement Format

007-2392-003

To enable an instrument, call glEnable() with an argument that specifies the instrument.
The argument to use for a particular instrument is determined by the OpenGL extension
that supports that instrument. (See “Instruments Example Pseudo Code” on page 311.)

To start the currently enabled instrument(s), call glStartInstrumentsSGIX(). To take a
measurement, call gIReadInstrumentsSGIX(). To stop the currently enabled instruments
and take a final measurement, call glStopInstrumentsSGIX(). The three functions have
the following formats:

void gl StartlnstrunentsSA X(void)
voi d gl Readl nstrunent sSA X(GLi nt marker)
voi d gl StoplnstrunentsSA X(GLi nt marker)

The marker parameter is passed through the pipe and written to the buffer to ease the task
of interpreting it.

If no instruments are enabled executing, glStartInstrumentsSGIX(),
glStopInstrumentsSGIX(), or glReadInstruments() will not write measurements to the
buffer.

The format of any instrument measurement in the buffer obeys the following
conventions:

* The first word of the measurement is the glEnable() enum for the instrument itself.

* The second word of the measurement is the size in GLints of the entire
measurement. This allows any parser to step over measurements with which it is
unfamiliar. Currently, there are no implementation-independent instruments to
describe.

Implementation-dependent instruments are described in the Machine
Dependencies section of the man page for glinstrumentsSGIX(). Currently, only
InfiniteReality systems support any instruments.

309

12: Miscellaneous OpenGL Extensions

Retrieving Information

310

In a single measurement, if multiple instruments are enabled, the data for those
instruments can appear in the buffer in any order.

To query the number of measurements taken since the buffer was reset, call glGet() using
GL_I NSTRUMENT_MEASUREMENTS_SG X

To determine whether a measurement has been written to the buffer, call
glPollInstrumentsSGIX(), which has the following format:

GLint gl PollInstrunentsSA X(GLint *markerp)

If a new measurement has appeared in the buffer since the last call to
glPollInstrumentsSGIX(), 1 is returned, and the value of marker associated with the
measurement by glStopInstrumentsSGIX() or glReadInstrumentsSGIX() is written
into the variable referenced by markerp. The measurements appear in the buffer in the
order in which they were requested. If the buffer overflows, glPollInstrumentsSGIX()
may return —1 as soon as the overflow is detected even if the measurement being polled
did not cause the overflow. An implementation may also choose to delay reporting the
overflow until the measurement that caused the overflow is the one being polled. If no
new measurement has been written to the buffer and overflow has not occurred,
glPollInstrumentsSGIX() returns 0.

Note that while in practice an implementation of the extension is likely to return markers
in order, this functionality is not explicitly required by the specification for the extension.

To get a count of the number of new valid GLints written to the buffer, call
glGetInstrumentsSGIX(), which has the following format:

GLint gl GetlnstrunmentsSA X(void)

The value returned is the number of GLints that have been written to the buffer since the
last call to glGetInstrumentsSGIX() or glInstrumentsBufferSGIX(). If the buffer has
overflowed since the last call to glGetInstrumentsSGIX(), -1 is returned for the count.
Note that glGetInstrumentsSGIX() can be used independently of
glPollInstrumentsSGIX().

007-2392-003

SGIX_instruments—The Instruments Extension

Instruments Example Pseudo Code

007-2392-003

Example 12-1 provides pseudo code for using the instruments extension.

Example 12-1

Instruments Example Pseudo Code

#ifdef A._SA X instrunents
#defi ne MARKERL 1001
#def i ne MARKER2 1002

{

static Aint buffer[64];
Gvoi d *buf p;
int id, countO, countl, r;

/* define the buffer to hold the measurements */
gl I nst runent sBuf f er SG X(si zeof (buf fer)/si zeof (Aint), buffer);

/* enabl e the instruments fromwhich to take neasurenents */
gl Enabl e(<an enumfor a supported instrunent, such as
Q| R I NSTRUMENTL_SA X>) ;

gl StartlnstrumentsSA X();

/* insert & conmands here */
gl Readl nst r unent sSA X(VARKERL) ;
/* insert Q. conmands here */
gl St opl nst runent sSA X(MARKER?) ;

/* query the nunber of neasurenents since the buffer was specified*/
gl Get I nt eger v(A_| NSTRUMENT_MEASUREMENTS SA X &) ;
/* nowr shoul d equal 2 */

/* query the pointer to the instrunment buffer */
gl Get Poi nt er vEXT(G__| NSTRUMENT_BUFFER_SA X, &buf p) ;
/* now buf p should be equal to buffer */

/*

* we can call gl GetlnstrunentsSA X before or after the calls to
* gl PollInstrumentsSA X but to be sure of exactly what

* measurenents are in the buffer, we can use Poll | nstrumentsSA X
*/

count0 = gl GetlnstrunentsSA X();

/* Since 0, 1, or 2 neasurenents mght have been returned to

* the buffer at this point, countO will be 0, 1, or 2 tines

* the size in @Qints of the records returned fromthe

* currently-enabl ed instrurents.

311

12: Miscellaneous OpenGL Extensions

New Functions

* |f the buffer overflowed, countO will be -1.
*/

while (!I(r =gl PolllnstrumentsSA X(& d))) ;

/*if ris -1, w have overflowed. If it is 1, id wll

* have the value of the narker passed in with the first

* measurenent request (should be MARKERL). Wile it is O,
* no neasurenent has been returned (yet).

*/

while (!I(r =gl PolllnstrumentsSA X(& d))) ;
/* see the note on the first poll; id now shoul d equal NARKER2 */

countl = gl GetlnstrumentsSA X();
/* the sumof countO and countl should be 2 tines the size in Q.ints

* of the records returned for all instruments that we have enabl ed.
*/

#endi f

The SGIX_instruments extension introduces the following functions:

glInstrumentsBufferSGIX()

glStartInstrumentsSGIX()

glStopInstrumentsSGIX()

glReadInstrumentsSGIX()

glPollInstrumentsSGIX()

glGetInstrumentsSGIX()

312

007-2392-003

Chapter 13

007-2392-003

Vertex and Fragment Program Extensions

In addition to many extensions to the classical fixed-function OpenGL rendering
pipeline, Onyx4 and Silicon Graphics Prism systems support the following extensions
for vertex and fragment programs:

¢ ARB_vertex_program
* ARB_fragment_program

Collectively, vertex and fragment programs are referred to as graphics pipeline programs
or just pipeline programs.

These extensions allow applications to replace most of the normal fixed-function
transformation, lighting, rasterization, and texturing operations with
application-defined programs that execute on the graphics hardware. The extensions
enable a nearly unlimited range of effects previously available only through offline
rendering or by multipass fixed-function algorithms.

This chapter describes how to define and use vertex and fragment programs and
includes an overview of the programming language in which these programs are
specified. This chapter also briefly describes the following obsolete (legacy) vertex and
fragment program extensions supported only for compatibility:

e ATI fragment_ shader
e EXT vertex_shader
The structure of this chapter differs from that of the other chapters that describe

extensions because of the level of detail given to programming the vertex and fragament
programs. This chapter uses the following structure:

* “The Vertex and Fragment Program Extensions” on page 314
¢ “Using Pipeline Programs” on page 316

* “The Legacy Vertex and Fragment Program Extensions” on page 382

313

13: Vertex and Fragment Program Extensions

The Vertex and Fragment Program Extensions

The ARB_vertex_program and ARB_fragment_program extensions allow applications
to replace respectively the fixed-function vertex processing and fragment processing
pipeline of OpenGL 1.3 with user-defined programs.

Why Use Pipeline Programs?

The fixed-function rendering pipeline of OpenGL 1.3 together with the wide range of
OpenGL extensions supported by Onyx4 and Silicon Graphics Prism systems is very
flexible, but the achievable rendering effects are constrained by the hardwired
algorithms of the fixed-function pipeline. If an application needs to use a custom lighting
model, to combine multiple textures in a way not expressable by register combiners, or
to do anything else that is difficult to express within the fixed-function pipeline; it should
consider if the desired effect can be expressed as a vertex and/or fragment program.

While pipeline programs are not yet expressable in a fully general-purpose,
Turing-complete language, the limited programmability provided is more than adequate
for many advanced rendering algorithms. The capabilities of pipeline programs are
rapidly growing as more general-purpose languages are supported by graphics
hardware.

Alternatives to Pipeline Programs

314

Before pipeline programs, the most common way to implement advanced rendering
algorithms, while still taking advantage of graphics hardware, was to decompose the
algorithm into a series of steps, each expressable as a single rendering pass of the
fixed-function OpenGL pipeline. By accumulating intermediate results in pixel buffers,
aux bulffers, or textures, very complex effects could be built up by such multipass
rendering.

This approach is widely used in older programs and in languages such as the SGI

OpenGL Shader, a compiler which turns a high-level shading language program into a
equivalent series of fixed-function rendering passes.

007-2392-003

The Vertex and Fragment Program Extensions

The disadvantages of multipass rendering are the following:
¢ Performance

Multiple rendering passes usually require re-transforming geometry for each pass.
The multiple passes consume additional CPU-to-graphics bandwidth for
re-copying geometry and consume additional graphics memory and bandwidth for
storing intermediate results; all of these requirements reduce performance.

¢ Complexity

Converting a complex rendering algorithm into multiple fixed-function passes can
be a tedious task that requires a deep understanding of the capabilities of the
graphics pipeline. The meaning of the resulting passes is difficult to infer even with
knowledge of the algorithm. Also, restructuring applications to perform multipass
rendering is often necessary. While software like the SGI OpenGL Shader can assist
in these steps, it is still less obvious to do complex multipass rendering than to
simply express the algorithm as a single vertex or fragment program.

e Accuracy

The accuracy achievable with multipass rendering is constrained by the limited
precision of the intermediate storage (for example, pixel buffers, aux buffers,
textures, etc.) used to accumulate intermediate results between passes. Typically,
the internal precision of the vertex and fragment processing pipelines is much
higher than the external precision (8-12 bits/color component) in which
intermediate data can be stored. Errors are generated when clamping intermediate
data to external precision, and those errors can rapidly accumulate in the later
rendering passes.

For all these reasons, pipeline programs are the preferred way of expressing rendering
algorithms too complex to fit in a single fixed-function rendering pass. However, in
many cases, the fixed-function pipeline is still more than adequate for application needs.
You must also be cautious because current graphics hardware only supports pipeline
programs of a limited length and complexity and because performance may degrade
rapidly if certain types of programmable operations are combined or expressed in the
wrong order.

007-2392-003 315

13: Vertex and Fragment Program Extensions

Using Pipeline Programs

The vertex and fragment program extensions are much more complicated than most
fixed-function OpenGL extensions. This section describes the extensions in the following
subsections:

¢ “Managing Pipeline Programs” on page 316

¢ “How Programs Replace Fixed Functionality” on page 318
* “Structure of Pipeline Programs” on page 319

¢ “Pipeline Program Input and Output” on page 329

* “Vertex and Fragment Attributes” on page 329

* “Vertex and Fragment Program Parameters” on page 333
e “Vertex and Fragment Program Output” on page 344

e “Program Parameter Specification” on page 347

* “Generic Vertex Attribute Specification” on page 348

* “Generic Program Matrix Specification” on page 351

¢ “Program Instruction Summary” on page 351

* “Program Resource Limits and Usage” on page 372

e “Other Program Queries” on page 375

e “Sample Code” on page 377

e “Errors” on page 380

Managing Pipeline Programs

316

Pipeline programs are represented by object names (of type GLui nt) that are managed
in exactly the same fashion as texture and display list names with the following routines
for allocating unused program names, deleting programs, and testing if a name refers to
a valid program:

voi d gl GenProgransARB(GLsi zei n, GLuint *programs);
voi d gl Del et eProgranmsARB(GLsi zei n, const GLuint *programs),
GLbool ean gl I sProgr amARB(GLui nt program) ,

007-2392-003

Using Pipeline Programs

Binding Programs

To bind a program name as the currently active vertex or fragment program, make the
following call:

voi d gl Bi ndProgr amARB(GLenum farget, GLui nt programs)

Set the argument farget to GL_VERTEX_PROGRAM_ARB or
GL_FRAGVENT_PROGRAM _ARB. Similar to texture objects, there is a default program
name of 0 bound for each type of program in the event that the application does not bind
a generated name.

Defining and Enabling Programs

007-2392-003

To define the contents of a vertex or fragment program for the currently bound program
name, make the following call:

voi d gl Prograntt ri ngARB(GLenum target, GLenum format, GLsizei length, const
GLvoi d *string);

The arguement values are defined as follows:

target Has the same meaning as for glBindProgram ARB().

format Specifies the encoding of the program string and must be
GL_PROGRAM_FORVMAT_ASCI | _ARB, indicating a 7-bit ASCII character
string.

string Contains the program string. If string is a valid program (as described in

section “Structure of Pipeline Programs” on page 319), the program
bound to target will be updated to execute the program when the
corresponding target is enabled.

length Specifies the length of the string. Because the length is specified in the
call, string need not have a trailing NULL byte, unlike most C language
strings.

To use the currently bound vertex or fragment program (substituting it for the
corresponding fixed functionality, as described in the next section) or to return to using
the fixed-function pipeline, call glEnable() or glDisable(), respectively, with parameters
GL_VERTEX_PROGRAM ARB or G._FRAGVENT_PROGRAM _ARB.

317

13: Vertex and Fragment Program Extensions

How Programs Replace Fixed Functionality
Vertex programs substitute for the following OpenGL fixed vertex processing
functionality:
* Modelview and projection matrix vertex transformations
e Vertex weighting and blending (if the ARB_vertex_blend extension is supported)
e Normal transformation, rescaling, and normalization
¢ Color material
® Per-vertex lighting
e Texture coordinate generation and texture matrix transformations

e Per-vertex point size computations (if the ARB_point_parameters extension is
supported)

* Per-vertex fog coordinate computations (if the EXT_fog_coord extension is
supported)

e User-defined clip planes

¢ Normalization of G._ AUTO_NORMAL evaluated normals

e All of the preceding functionality when computing the current raster position
The following fixed vertex processing functionality is always performed even when
using vertex programs:

e Clipping to the view frustum

* Perspective divide (division by w)

e The viewport transformation

¢ The depth range transformation

e Front and back color selection (for two-sided lighting and coloring)

¢ Clamping the primary and secondary colors to [0,1]

e Primitive assembly and subsequent operations

e Evaluators (except for GL_AUTO_NORVAL)

318 007-2392-003

Using Pipeline Programs

Structure of Pipeline

007-2392-003

Fragment programs substitute for the following OpenGL fixed fragment processing
functionality:

¢ Texture application (including multitexture, texture combiner, shadow mapping,
and any other fixed-function texturing extensions)

¢ Color sum (if the EXT_secondary_color extension is supported)

e Fog application

Programs

Both vertex and fragment programs are expressed in a low-level, register-based language
similar to a traditional CPU assembler language. However, the registers are four-element
vectors, supporting vector data types such as homogeneous coordinates (X, Y, Z, W
components) and colors (R, G, B, A components). The instruction sets for both types of
programs are augmented to support common mathematical and graphical operations on
these four-element vectors.

A pipeline program has the following structure:
program-type

statement1
statement?2

statementn
END

For vertex programs, program-type must be ! | ARBvpl. 0. For fragment programes, it
must be ! | ARBf p1. 0.

Statements may be one of the following:

* Program options

¢ Naming statements

¢ Program instructions

The statements must be terminated by semicolons (;). Whitespace (spaces, tabs, newlines,
and carriage returns) is ignored, although programs are typically written with one

319

13: Vertex and Fragment Program Extensions

Program Options

320

statement per line for clarity. Comments, which are ignored, are introduced with the #
character and continue to the next newline or carriage return.

When executing programs, instructions are processed in the order they appear in the
program string. There are no looping or branching constructs in either vertex or fragment
programs.

Statements that control extended language features are called option statements. The
following is an example:

Vertex programis position-invariant
OPTI ON ARB_posi tion_invariant;

The following are the currently defined program options:
e Fog application options (fragment programs only)

* Precision hint options (fragment programs only)

e Position-Invariant option (vertex programs only)

Future OpenGL extensions may introduce additional program options; such options are
only valid if the corresponding extension is supported by the implementation.

Fog Application Options (fragment programs only)

These options allow use of the OpenGL fixed-function fog model in a fragment program
without explicitly performing the fog computation.

If a fragment program specifies one of the options ARB_f og_exp, ARB_f og_exp2, or
ARB_f og_l i near, the program will apply fog to the program’s final clamped color
output using a fog mode of GL_EXP, GL_EXP2, or GL_LI NEAR, respectively.

Using fog in this fashion consumes extra program resources. The program will fail to
load under the following conditions:

* You specify a fog option and the number of temporaries the program contains
exceeds the implementation-dependent limit minus one.

* You specify a fog option and the number of attributes the program contains exceeds
the implementation-dependent limit minus one.

007-2392-003

Using Pipeline Programs

007-2392-003

* You specify a fog option and the number of parameters the program contains
exceeds the implementation-dependent limit minus two.

* You specify the ARB_f 0g_exp option and the number of instructions or ALU
instructions the program contains exceeds the implementation-dependent limit
minus three.

* You specify the ARB_f og_exp2 option and the number of instructions or ALU
instructions the program contains exceeds the implementation-dependent limit
minus four.

* You specify the ARB_f og_l i near option and the number of instructions or ALU
instructions the program contains exceeds the implementation-dependent limit
minus two.

* You specify more than one of the fog options.
Precision Hint Options (fragment programs only)

Fragment program computations are carried out at an implementation- dependent
precision. However, some implementations may be able to perform fragment program
computations at more than one precision and may be able to trade off computation
precision for performance.

If a fragment program specifies the ARB_pr eci si on_hi nt _f ast est program option,
implementations should select precision to minimize program execution time with
possibly reduced precision. If a fragment program specifies the

ARB_pr eci si on_hi nt _ni cest program option, implementations should maximize
the precision with a longer execution time.

Only one precision control option may be specified by any given fragment program. A
fragment program that specifies both the ARB_pr eci si on_hi nt _f ast est and
ARB_pr eci si on_hi nt _ni cest program options will fail to load.

Position-Invariant Option (vertex programs only)

If a vertex program specifies the ARB_posi ti on_i nvari ant option, the program is
used to generate all transformed vertex attributes, except for position. Instead, clip
coordinates are computed, and user clipping is performed as in the fixed-function
OpenGL pipeline. Use of position-invariant vertex programs should be used when the
transformed position of a vertex will be the same whether vertex program mode is
enabled or fixed-function vertex processing is performed. This allows mixing both types
of vertex processing in multipass rendering algorithms.

321

13: Vertex and Fragment Program Extensions

Naming Statements

322

When the position-invariant option is specified in a vertex program, vertex programs are
not allowed to produce a transformed position. Therefore, r esul t . posi t i on may not
be bound or written by such a program. Additionally, the vertex program will fail to load
if the number of instructions it contains exceeds the implementation-dependent limit
minus four.

Statements that associate identifiers with attributes, parameters, temporaries, or
program output are called naming statements. The following are the six types of naming
statements:

e Attribute statements

e Parameter statements
¢ Temporary statements
e Address statements

e Alias statements

* Output statements

e Attribute Statements

Attribute statements bind an identifier to a vertex or fragment attribute supplied to the
program. Attributes are associated with the particular vertex or fragment being
processed, and their values typically vary for every invocation of a program. They are
defined in OpenGL through commands such as glVertex3£() or glColor4ub(), or in the
case of fragments, generated by vertex processing.

A few examples of attributes are vertex position, color, and texture coordinates; or
fragment position, color, and fog coordinate. Section “Vertex and Fragment Attributes”
on page 329 provides a complete list of vertex and fragment attributes. The following are
examples of attribute statements:

Bind vertex position (e.g. glVertex) to attribute ‘position’
ATTRI B position = vertex. position;

#

Bind fragnment texture coordinate set one to attribute ‘texcoord’
ATTRI B texcoord = fragnent.texcoord[1];

Attributes are read-only within a program.

007-2392-003

Using Pipeline Programs

007-2392-003

Parameter Statements
Parameter statements bind an identifier to a program parameter. Parameters have the
following four types:
* Program environment parameters
Constants that are shared by all vertex programs.
¢ Program local parameters
Constants that are restricted to a single vertex or fragment program.
* OpenGL state values

Items such as transformation matrices, or lighting, material, and texture coordinate
generation parameters.

¢ Constants declared within a program

Comma-delimited lists of one to four values enclosed in braces. If fewer than four
values are specified, the second, third, and fourth values default to 0. 0, 0. 0, and
1. O, respectively; or they are single values not enclosed in braces, in which case all
four components of the parameter are initialized to the specified value.

Parameter statements may also be declared as arrays, which are initialized from
subranges of program parameters or state, which are themselves arrays.

Section “Vertex and Fragment Program Parameters” on page 333 provides a complete list
of program environment parameters, program local parameters, and OpenGL state that
may be used as parameters. The following are examples of parameter statements:

‘var’ is bound to program environnment paraneter 1
PARAM var = program env[1];

'‘vars’ is bound to program environnent paranmeters 0-3
PARAM var s[4] = programenv[O. . 3];

‘lvar’ is bound to program | ocal paraneter 2
PARAM | var = program | ocal [2] ;

'‘anbient’ is bound to the anbient color of light 1
PARAM anbi ent = state.light[1].anbient;

‘cplane’ is bound to the coefficients of user clip plane 0O
PARAM cpl ane = state.clip[O0].plane;

323

13: Vertex and Fragment Program Extensions

324

‘coeffs’ is bound to the four constant values -1,0 1.0, e, pi
PARAM coeffs = { -1.0, 1.0, 2.71828, 3.14159 };

‘ones’ is bound to the constant values 1.0, 1.0, 1.0, 1.0
PARAM ones = 1.0;

Parameters are read-only within a program.
Temporary Statements

Temporary statements declare temporary variables; these are read /write registers used
only within a single execution of a program. Initially, the contents of temporaries are
undefined. Temporaries are declared as in the following examples:

Declare a single tenmporary
TEMP tenpl,

Declare multiple tenporaries in a single statenent
TEMP tenp2, tenp3;

The maximum number of temporaries that can be declared in a single program is
implementation-dependent and is described further in section “Program Resource
Limits and Usage” on page 372.

Address Statements

Address statements declare address registers; these are read /write registers used only
within a single execution of a vertex program and allow a form of indirect accessing into
parameter arrays. Address statements are only supported in vertex programs.

Address registers are declared either singly or a in multiple fashion like temporaries but
using the ADDRESS statement, as in the following example:

Declare two address registers ‘addr’ and ‘index’
ADDRESS addr, i ndex;

Only the first component of an address register (. X) is used. For an address register
addr, this component is referred to as addr . X. Section “Program Instructions” on
page 326 further describes register component selection. As shown in the following
example, address registers are loaded with the ARL command:

Load address register with the 2nd conmponent (.y) of tenporary tenpO
ARL addr.x, tenpO.y;

007-2392-003

Using Pipeline Programs

007-2392-003

The value loaded is converted to an integer by clamping towards negative infinity.

Given a parameter array and an address register, a particular element of the array can be
selected based on the address register by using the subscript notation [addr . X+offset],
where offset is a value in the range —64..63. The following example illustrates the use of
the subscript notation:

Parans is bound to the first 8 elenents of the program | ocal
paraneters.
PARAM par ans[8] = program | ocal [0..7];

Move paraneter at index addr.x+2 into register tenpO
MV t enp0, parans[addr. x+2];

Alias Statements

Alias statements declare identifiers that are defined to have the same meaning as another
already declared identifier of any type. They do not count towards program resource
limits. For example, a temporary can be aliased as follows:

Declare tenporary ‘tenpQ’
TEMP t enpO;

Declare alias ‘alias’ for tenp0. ‘alias’ and ‘tenpO’ nmay be used
i nterchangably
ALI AS alias = tempO;

Output Statements

Output statements declare identifiers that bind to program output. Output depends on
the type of program.

For vertex programs, output includes values such as transformed vertex position,
primary and secondary colors, transformed texture coordinates, which are passed on to
rasterization. After rasterization, interpolated results of this output are available as
attributes of fragment programs or are used in fixed-function fragment processing in
place of the attributes resulting from fixed-function vertex processing.

For fragment programs, output includes color(s) and depth values, which are passed on
to raster processing in place of the colors and depths generated by fixed-function
fragment processing. Section “Pipeline Program Input and Output” on page 329
describes program output further.

325

13: Vertex and Fragment Program Extensions

Program Instructions

326

The following are examples of output statements:

Bind vertex output position (e.g., transforned vertex coordinates)
to register ‘w ndowpos’
QUTPUT wi ndowpos = result. position;

Bind fragnent output depth (e.g., Z value) to register ‘depth’
QUTPUT depth = result. depth;

Output is write-only within a program.

Pipeline program instructions are either four-element vector or scalar operations
performed on one, two, or three source operands and one destination operand. The
operands may be either attribute, parameter, or temporary registers. The general format
of instructions is one of the following;:

mnemonic dstreg,srcregl
mnemonic dstreg,srcregl,srcreg2

mnemonic dstreg, srcregl,srcreg2, srcreg3

The fields are defined as follows:

mnemonic The instruction name
dstreg The destination register name
srcregi Source register names

Section “Program Instruction Summary” on page 351 provides a complete list of
instructions supported by vertex and fragment programs.

Scalar Component Selection

When a scalar source operand is required, identify it by appending one of . X, . Yy, . z, or
. Wto the register name to select the first, second, third, or fourth components,
respectively, of the source register. These selectors are intended to refer to the X, Y, Z, and
W components of a register being used as a XYZW vector. The following example
computes the cosine of the second component of the source register coor d:

CCS result, coord.y;

007-2392-003

Using Pipeline Programs

007-2392-003

In fragment programs, but not in vertex programs, the selectors . r, . g, . b, and . a may
be used interchangably with the corresponding . X, . y, . z, and . wselectors. These
selectors are intended to refer to the red, green, blue, and alpha components of a register
being used as an RGBA color. The following example computes the base 2 logarithm of
the fourth component of the source register col or :

L& result, color.a
Vector Component Negation and Swizzling

Any source register may be modified by prepending a minus sign (-) to the register name.
Each component is negated and the resulting vector used as input to the instruction. For
example, the following two statements are equivalent:

Conpute result = srcO - srcl

SUB result, src0O, srcl;

Conmpute result = srcO + (-srcl) = srcO - srcl
ADD result, srcO, -srcil;

In addition, components of a source register may be arbitrarily selected and reordered
before being used as input to an instruction. This operation is called swizzling. To swizzle
a source register, append a four-letter suffix of . ???? to the register name, where each
? may be one of the component selectors X, y, z, or w In fragment programs, but not in
vertex programs , the selectors r, g, b, or a may also be used.

The selectors map components of the source register; the first, second, third, and fourth
selectors determine the source of the first, second, third, and fourth components,
respectively, of the actual register value passed to the instruction. For example, the
following code reverses the components of a register:

PARAM src = { 1.0, 2.0, 3.0, 4.0 };

TEMP resul t;

MOV result, src.wzyx;

result now contains { 4.0, 3.0, 2.0, 1.0}

Swizzling may copy a component of the source register into multiple components of the
instruction input by replicating selectors. For example, the following code replicates the
first and third components of a register:

PARAM src = { 1.0, 2.0, 3.0, 4.0 };

TEMP resul t;

MOV result, src.xxzz;

result now contains { 1.0, 1.0, 3.0, 3.0}

327

13: Vertex and Fragment Program Extensions

328

To replicate a single component of a register into all four components of the instruction
input, a shorthand notation using a single component selector may be used. The
following code is equivalent to replicating the same component selector four times:

PARAM src = { 1.0, 2.0, 3.0, 4.0 };

TEMP resul t;

src.y is equivalent to src.yyyy

MOV result, src.y;

result now contains { 2.0, 2.0, 2.0, 2.0}

Destination Write Masking

Program instructions write a four-component result vector to a single destination
register. Writes to individual components of the destination register may be controlled
by specifying a component write mask. To mask a destination register, append a period (.)
followed by selectors for the components to be written (between one and four). The
selectors must be unique and must appear in the order xyzw In fragment programs, but
not in vertex programs, the r gba selectors may also be used. For example, the following
line writes only the first and third components of a vector and leaves the second and
fourth components unchanged:

MOV result.xz, src
Fragment Program Destination Clamping

In fragment programs, but not in vertex programs, instructions may be modified to clamp
values to the range [0, 1] before writing to the unmasked components of a destination
register. Clamping is particularly useful when operating in the [0, 1] color space limits
of the output framebuffer, when using texture coordinates, when computing address
register offsets, or for other purposes. Fragment program instructions support clamping
by appending the suffix _SAT to the instruction mnemonic. Clamping the RGB
components to [0, 1] and using write masks to leave the A component of the
destination unchanged, the following example copies a color vector:

PARAM color = { -0.1, 0.7, 1.2, 1.0 };

TEMWP result;

MOV_SAT result.rgb, color;
result now contains { 0.0, 0.7, 1.0, ??? }

Constants
Numeric constants may be used in place of source registers. For instructions requiring

scalar input, replace the register name with a single, floating point number. For
instructions requiring vector input, replace the register name with a constant vector

007-2392-003

Using Pipeline Programs

defined in the same fashion as constants in parameter statements. The following are
examples of scalar and vector constants in instructions:

Conpute cosine of constant value 2.0

CCS result, 2.0;

Subtract 1.0 from each el enment of src
SUB result, src, { 1.0, 1.0, 1.0, 1.0 };

Pipeline Program Input and Output

The preceding description of program structure includes mechanisms for binding input
to and output from programs. This section describes the complete set of input and output
available to pipeline programs. It is important to remember that vertex and fragment
programs have different input and output, because they replace different portions of the
OpenGL fixed-function pipeline.

The input available to programs includes attributes specific to a vertex or fragment (such
as position, color, or texture coordinates) and parameters, which are constant values
associated with a single program or collectively with all programs.

The output that is generated by programs are results passed on to later stages of the
graphics pipeline, such as transformed vertices and texture coordinates, lit colors, or
fragment depth values.

Vertex and Fragment Attributes

Vertex Attributes

007-2392-003

This section lists all possible attributes for vertex and fragment programs and includes a
description of the component usage and examples of commands creating the
corresponding OpenGL state.

Vertex attributes are specified by the application using OpenGL immediate-mode
commands such as glVertex3f() or vertex array commands such as giINormalPointer().
Attributes of a vertex are made available to a vertex program when it is executing for that
vertex and can be accessed in instructions either by binding their names with the ATTRI B
naming statement or directly by use of the attribute name.

329

13: Vertex and Fragment Program Extensions

330

In addition to the builtin OpenGL attributes such as position, normal, color, and texture
coordinates, vertex programs may be passed additional per-vertex values by using
generic vertex attributes. Generic attributes are four-component vectors specified using a
new set of OpenGL commands. The maximum number of generic attributes supported
is implementation-dependent, but must be at least 16. Generic attributes are specified in
OpenGL using the commands described in section “Generic Vertex Attribute
Specification” on page 348.

In a vertex program, many generic attributes are aliased onto builtin OpenGL attributes.
When declaring attributes in the program, only one of the builtin attribute or the
corresponding generic attribute aliased onto the builtin may be bound. Attempting to
bind both a builtin and the corresponding generic attribute results in an error when
loading the program. Not all generic attributes have builtin attribute aliases, and
conversely so.

Table 13-1 lists the vertex program attributes. In the table, the notation 7 refers to
additional implementation-specific resources beyond those explicitly numbered. The
possible values of n depend on the maximum number of texture coordinate sets, generic
vertex attributes, vertex weights, or vertex indices supported by the implementation. For
example, if the implementation supports 24 generic vertex attributes, values of n for
vertex. attri b[n] range from 0 to 23.

Table 13-1 Builtin and Generic Vertex Program Attributes

Builtin

Component Builtin
Generic Binding Builtin Binding Usage Description OpenGL Command
vertex.attrib vertex.position xy,zw) Object-space gl Vertex3£()
[0] vertex position
vertex.attrib vertex.weight (wyw,w,w) Vertex weights glWeightfARB()
[1] 0-3
vertex.attrib vertex.weight[n] (wyw,w,w) Additional glWeightfARB()
[1] vertex weights

n-n+3

vertex.attrib vertex.normal (xyz1) Normal vector ~ gINormal3£()
[2]
vertex.attrib vertex.color (vgb,a) Primary color glColordub()

[3]

007-2392-003

Using Pipeline Programs

007-2392-003

Table 13-1 Builtin and Generic Vertex Program Attributes (continued)

Builtin
Component Builtin

Generic Binding Builtin Binding Usage Description OpenGL Command
vertex.attrib vertex.color. (rgb,a) Primary color glColordub()
[3] primary
vertex.attrib vertex.color. (rgb,a) Secondary color glSecondaryColor3u
[4] secondary bEXT()
vertex.attrib vertex.fogcoord (£,0,0,1) Fog coordinate glFogCoordEXT()
[5]
vertex.attrib Generic
[6] attribute 6 (not

aliased)
vertex.attrib Generic
[7] attribute 7 (not

aliased)
vertex.attrib vertex.texcoord (strq) Texture glTexCoord3£()
[8] coordinate set 0
vertex.attrib vertex.texcoord[0] (strq) Texture glTexCoord3£()
[8] coordinate set 0
vertex.attrib vertex.texcoord[1] (strq) Texture glMultiTexCoord(TE
[9] coordinate set 1 XTUREL,...)
vertex.attrib vertex.texcoord[2] (strq) Texture glMultiTexCoord(TE
[10] coordinate set2 XTURE2,...)
vertex.attrib vertex.texcoord[3] (strq) Texture glMultiTexCoord(TE
[11] coordinate set 3 XTURES3,...)
vertex.attrib vertex.texcoord[4] (strq) Texture glMultiTexCoord(TE
[12] coordinate set4 XTURE4,...)
vertex.attrib vertex.texcoord[5] (strq) Texture glMultiTexCoord(TE
[13] coordinate set5 XTURES,...)
vertex.attrib vertex.texcoord[6] (strq) Texture glMultiTexCoord(TE
[14] coordinate set 6 XTURES,...)
vertex.attrib vertex.texcoord[7] (strq) Texture glMultiTexCoord(TE
[15] coordinate set 7 XTURE?7,...)

331

13: Vertex and Fragment Program Extensions

Fragment Attributes

332

Table 13-1 Builtin and Generic Vertex Program Attributes (continued)

Builtin
Component Builtin
Generic Binding Builtin Binding Usage Description OpenGL Command
vertex.attrib vertex.texcoord[n] (strq) Additional glMultiTexCoord(TE
[8+n] texture XTUREO0+7,...)
coordinate sets
vertex. matrixi ndex (i,iii) Vertex matrix glMatrixIndexubvA
indices 0-3 RB()
vertex. matrixi ndex (i,iii) Additional glMatrixIndexubvA
[n] vertex matrix RB()
n-n+3
vertex.attrib Depends on n xy,zw) Additional
[7] generic
attributes

Fragment attributes are initially generated by either vertex program output or by the
fixed-function OpenGL vertex pipeline if vertex programs are disabled.

Depending on the type of primitive being drawn and on the shading model (GL_FLAT
or GL_SMOOTH) selected, the resulting values may be interpolated on a per-fragment
basis during rasterization and fragment generation. Unlike vertex attributes, there are no

generic fragment attributes.

Attributes of a fragment are made available to a fragment program when it is executing
for that fragment and can be accessed in instructions either by binding their names with

the ATTRI B naming statement or directly by use of the attribute name.

In Table 13-2, the notation n refers to additional implementation-specific texture
coordinates beyond those explicitly numbered. The possible values of n range from zero
up to the maximum number of texture coordinate sets supported by the implementation

minus one.

007-2392-003

Using Pipeline Programs

Table 13-2

Fragment Program Attributes

Attribute Binding

Component Usage

Description

fragnent.
fragment.
fragnent.
fragnent.
fragnent.
f ragnent

fragnent.

col or

col or.primry
col or. secondary
t excoord

t excoor d[n]

. fogcoord

position

(r.g/b,a)
(r.g/b,a)
(r.g/b,a)
(strq)
(str,q)
(£,0,0,1)

xy,z,1/w)

Primary color

Primary color
Secondary color

Texture coordinate set 0
Texture coordinate set 1
Fog distance/coordinate

Window position

Vertex and Fragment Program Parameters

007-2392-003

Parameters are additional values made available during the execution of programs.
When rendering a single primitive, such as a triangle, the vertex and fragment attribute
values will differ for every vertex making up the triangle and for every fragment
generated by triangle rasterization. However, parameter values will be the same for
every vertex and for every fragment.

As cited earlier, the following are the four types of parameters:

¢ Program environment parameters

Shared by all programs of a particular type; that is, there is one set of environment
parameters for vertex programs and a different set for fragment programs.

* Program local parameters

Specific to a single bound program.

* OpenGL state values

Items such as matrices, and material and light properties are available.

e Constants

Special cases of program local parameters

333

13: Vertex and Fragment Program Extensions

Program environment and local parameters are four-component vectors specified using
anew set of OpenGL commands described in section “Program Parameter Specification”
on page 347. The maximum number of parameters supported is
implementation-dependent but must be at least 96 each for the vertex program
environment and program locals and 24 each for the fragment program environment and
program locals. Constants may be specified otherwise.

Program Environment and Local Parameters

OpenGL State Parameters

334

Program parameters can be accessed in instructions either by binding their names with
the PARAMnaming statement or directly by use of the parameter name. Parameter names
are identical for vertex and fragment programs, although the values differ for the two
types of programs. Table 13-3 shows the parameter names.

Table 13-3 Program Environment and Local Parameters

Parameter Binding Component Usage Description

program env| aj (xy,z,w) Program environment parameter a

program env|a. . b] (xy,z,w) Program environment parameters a
through b

program | ocal [a] (xy,z,w) Program local parameter a

program | ocal [a. . b] xy,zw) Program local parameters a through b

In Table 13-3, the notation [@] refers to a single parameter indexed by the constant value
a, and the notation [a. . b] refers to an array of parameters indexed by the constant
values a and b, which may be bound to a corresponding array using the PARAM
statement. When specifying arrays, b must be greater than a, and both a and b must be
within the range of supported parameter indices for that type of parameter.

Most OpenGL state can be accessed in instructions either by binding state names with
the PARAMnaming statement or directly by use of the state name. OpenGL state falls into
several different categories, which are discussed separately in the following subsections:

¢ Material Property Bindings
¢ Light Property Bindings

007-2392-003

Using Pipeline Programs

007-2392-003

¢ Texture Coordinate Generation Property Bindings

* Texture Enviroment Property Bindings

¢ Fog Property Bindings

¢ Clip Plan Property Bindings

¢ Point Property Bindings

¢ Depth Property Bindings

¢ Matrix Property Bindings

Most OpenGL state categories are available to both vertex and fragment programs, but a
few categories are available only to vertex programs, or only to fragment programs.

OpenGL state categories restricted to one type of program are identified in their
respective subsection.

Material Property Bindings

Material property bindings provide access to the OpenGL state specified with
glMaterialf(). Table 13-4 shows the possible bindings.

Table 13-4 Material Property Bindings

Parameter Binding Component Usage Description

state. materi al . anbi ent (rgb,a) Front ambient material color
state.material . di ffuse (rgb,a) Front diffuse material color
state. materi al . specul ar (rgb,a) Front specular material color
state. materi al . en ssi on (rgb,a) Front emissive material color
state. materi al . shi ni ness (s,0,0,1) Front material shininess
state. materi al . front. anbi ent (rgb,a) Front ambient material color
state.material . front.di ffuse (rgb,a) Front diffuse material color
state.material . front. specul ar (rgb,a) Front specular material color
state.material .front.emssion (rgb,a) Front emissive material color
state.material.front.shininess (s0,0,1) Front material shininess
state. materi al . back. anbi ent (rgb,a) Back ambient material color

335

13: Vertex and Fragment Program Extensions

336

Table 13-4 Material Property Bindings (continued)

Parameter Binding Component Usage Description

state. materi al . back. di ffuse (rgb,a) Back diffuse material color
state. materi al . back. specul ar (rgb,a) Back specular material color
state. materi al . back. em ssi on (rgb,a) Back emissive material color
state. materi al . back. shi ni ness (s,0,0,1) Back material shininess

For material shininess, the . X component is filled with the material’s specular exponent,
and the . y, . z, and . wcomponents are filled with 0, 0, and 1, respectively. Bindings
containing . back refer to the back material; all other bindings refer to the front material.

Material properties can be changed between glBegin() and glEnd(), either directly by
calling glMaterialf() or indirectly through color material. However, such property
changes are not guaranteed to update parameter bindings until the following glEnd()
command. Parameter variables bound to material properties changed between glBegin()
and glEnd() are undefined until the following glEnd() command.

Light Property Bindings

Light property bindings provide access to the OpenGL state specified with glLightf()
and glLightModelf() and to some derived properties generated from light and light
model state values. Table 13-5 shows the possible light property bindings.

Table 13-5 Light Property Bindings

Parameter Binding Component Usage Description
state.light[n].anbient (rgb,a) Light 11 ambient color
state.light[n].diffuse (rgb,a) Light n diffuse color
state.light[n].specul ar (rgb,a) Light 72 specular color
state.light[#n].position xy,z,w) Light n position light n
attenuation
state.light[#n].attenuation (a,b,ce) Light n attenuation constants

and spot light exponent

007-2392-003

Using Pipeline Programs

007-2392-003

Table 13-5 Light Property Bindings (continued)

Parameter Binding

Component Usage Description

state.light[#n].spot.direction

state.light[#n]. hal f

state. |ightnodel
state. |ightnodel
state. | ight nodel

state. | ight nodel

. anbi ent
. scenecol or
.front. scenecol or

. back. scenecol or

state.lightprod[#n].anbient

state.lightprod[n].diffuse

state.lightprod[#n].specular

state.lightprod[#n].front.anbi ent

state.lightprod[n].front.diffuse

state.lightprod[#n].front.specul ar

state.lightprod[n].back. ambi ent

state.lightprod[#n].back.diffuse

state.lightprod[n].back. specul ar

(X,y,2,¢)

xyz1)
(r.g/b,a)
(r.g/b,a)
(rg/b,a)
(rgb,a)
(rgb,a)

(rgb,a)

(rgb,a)

(rgb,a)

(rgb,a)

(rgb,a)

(rgb,a)

(rgb,a)

(rgb,a)

Light 7 spot direction and
cutoff angle cosine

Light 7 infinite half-angle
Light model ambient color
Light model front scene color
Light model front scene color
Light model back scene color

Light 72 / front material
ambient color product

Light 72 / front material
diffuse color product

Light 72 / front material
specular color product

Light 72 / front material
ambient color product

Light 72 / front material
diffuse color product

Light 72 / front material
specular color product

Light 7 / back material
ambient color product

Light 7 / back material
diffuse color product

Light 7 / back material
specular color product

The [n] syntax indicates a specific light (G._LI GHTn).

For the following bindings, the . X, . y,. z, and . wcomponents are filled with the red,
green, blue, and alpha components, respectively, of the corresponding light color:

337

13: Vertex and Fragment Program Extensions

338

e state.light[#n].anbient
e state.light[n].diffuse

e state.light[n].specular

Forstate.light[n].position,the.X,.y, .z, and . wcomponents are filled with
the X, Y, Z, and W components, respectively, of the corresponding light position.

Forstate.light[#n].attenuation,the.X,.y, and. z components are filled with
the corresponding light constant, linear, and quadratic attenuation parameters. The . w
component is filled with the spot light exponent of the corresponding light.

Forstate.light[n].spot.direction,the.X,.y, and. z components variable are
filled with the . X, . y,and . z components of the spot light direction of the corresponding
light, respectively. The . wcomponent is filled with the cosine of the spot light cutoff
angle of the corresponding light.

Forstate.light[n].hal f,the.x,.y, and. z components of the program parameter
variable are filled with the X, y, and z components, respectively, of the following
normalized infinite half-angle vector:

h_inf =] P+ (0, 0, 1) ||

The . wcomponent of is filled with 1. In the computation of h_i nf, P consists of the X,
Y, and Z coordinates of the normalized vector from the eye position to the eye-space light
position. h_i nf is defined to correspond to the normalized half-angle vector when using
an infinite light (W coordinate of the position is zero) and an infinite viewer. For local
lights or a local viewer, h_i nf is well-defined but does not match the normalized
half-angle vector, which will vary depending on the vertex position.

Forstate.|ightnodel . anbi ent,the. X,.y,. z,and . wcomponents of the program
parameter variable are filled with the red, green, blue, and alpha components of the light
model ambient color, respectively.

For st ate. |ightnodel . scenecol or or

state. | ightnodel.front.scenecol or, the. x,.y, and . Z components of the
program parameter variable are filled with the red, green, and blue components
respectively of the front scene color, defined by the following:

c_scene = a_Cs * a_cm+ e_cm

007-2392-003

Using Pipeline Programs

007-2392-003

The operand a_cs is the light model ambient color, a_cmis the front ambient material
color, and e_cmis the front emissive material color with computations performed
separately for each color component. The . wcomponent of the program parameter
variable is filled with the alpha component of the front diffuse material color.

For st at e. | i ght nodel . back. scenecol or, a similar back scene color computed
using back-facing material properties is used. The front and back scene colors match the

values that would be assigned to vertices using conventional lighting if all lights were
disabled.

For bindings beginning with st at e. | i ght prod[n] , the . X, . y,and . Z components of
the program parameter variable are filled with the red, green, and blue components,
respectively, of the corresponding light product. The three light product components are
the products of the corresponding color components of the specified material property
and the light color of the corresponding light (see Table 13-5). The . wcomponent of the
program parameter variable is filled with the alpha component of the specified material

property.

Light products depend on material properties, which can be changed between glBegin()
and glEnd(). Such property changes are not guaranteed to take effect until the following
glEnd() command. Program parameter variables bound to light products whose
corresponding material property changes between glBegin() and glEnd() are undefined
until the following glEnd() command.

Texture Coordinate Generation Property Bindings
Texture coordinate generation property bindings are only available within vertex
programs. They provide access to the OpenGL state specified with glTexGenf().

Table 13-6 shows the possible texture coordinate generation property bindings.

Table 13-6 Texture Coordinate Generation Property Bindings

ParameterBinding Component Usage Description

state.texgen[n].eye.s (ab,c,d) glTexGen() eye linear plane
coefficients, s coord, unit n

state.texgen[n].eye.t (ab,c,d) glTexGen() eye linear plane
coefficients, t coord, unit n

state.texgen[n].eye.r (ab,c,d) glTexGen() eye linear plane
coefficients, r coord, unit n

339

13: Vertex and Fragment Program Extensions

340

Table 13-6 Texture Coordinate Generation Property Bindings (continued)

ParameterBinding Component Usage Description

state.texgen[n].eye.q (ab,c,d) glTexGen() eye linear plane
coefficients, q coord, unit n

state.texgen[n].object.s (ab,d) glTexGen() object linear plane
coefficients, S coord, unit n

state.texgen[n].object.t (ab,c,d) glTexGenl() object linear plane
coefficients, t coord, unit n

state.texgen[n].object.r (ab,d) glTexGenl() object linear plane
coefficients, r coord, unit n

state.texgen[n].object.q (ab,d) glTexGenl() object linear plane
coefficients, q coord, unit n

The [n] syntax indicates a specific texture unit. If omitted, values for texture unit zero will
be bound.

Forthest at e. t exgen[n] . obj ect bindings, the. X, . y,. z,and . wcomponents of the
parameter variable are filled with the p1, p2, p3, and p4 values, respectively, specified to
glTexGen() as the GL_OBJECT_LI| NEAR coefficients for the specified texture coordinate
.s,.t,.r,.q.

For the st at e. t exgen[] . eye bindings, the . X, .y, . z, and . wcomponents of the
parameter variable are filled with the p1’, p2’, p3’, and p4’ values, respectively, specified
to glTexGen() as the GL_EYE_LI NEAR coefficients for the specified texture coordinate
.s,.t,.r,.q.

Texture Environment Property Bindings
Texture environment property bindings are only available within fragment programs.

They provide access to the texture environment color specified with glTexEnvf().
Table 13-7 shows the possible texture environment property bindings.

007-2392-003

Using Pipeline Programs

007-2392-003

Table 13-7 Texture Environment Property Bindings

Parameter Binding Component Usage Description
st ate.texenv. col or (rgb,a) Texture environment zero color
state.texenv[n].color (rgb,a) Texture environment # color

The [n] syntax indicates a specific texture unit. If omitted, values for texture unit zero will
be bound.

Forstate.texenv[n].col or,the. x,.y,.z, and . wcomponents of the parameter
variable are filled with the red, green, blue, and alpha components, respectively, of the
corresponding texture environment color. Note that only legacy texture units within the
range specified by GL_MAX_TEXTURE_UNI TS have texture environment state. Texture
image units and texture coordinate sets do not have associated texture environment
state.

Fog Property Bindings

Fog property bindings provide access to the OpenGL state specified with glFogf().
Table 13-8 shows the possible fog property bindings.

Table 13-8 Fog Property Bindings

Parameter Binding Component Usage Description
state. fog.col or (rgb,a) RGB fog color
st ate. f og. par ans (d,s,er) Fog density, linear start and end,

and 1/(end - start)

Forst at e. f 0g. col or, the. X, . y,. z,and .w components of the parameter variable are
filled with the red, green, blue, and alpha, respectively, of the fog color.

For st at e. f og. par ans, the . X, . y, and . z components of the parameter variable are
filled with the fog density, linear fog start, and linear fog end parameters, respectively.
The . wcomponent is filled with 1 / (end — start), where end and start are the linear fog end
and start parameters, respectively.

341

13: Vertex and Fragment Program Extensions

342

Clip Plane Property Bindings

Clip plane property bindings are only available within vertex programs. They provide
access to the OpenGL state specified with glClipPlane(). Table 13-9 shows the possible
clip plane property bindings.

Table 13-9 Clip Plane Property Bindings

Parameter Binding Component Usage Description

state.clip[n].plane (ab,c,d) Clip plane 1 coefficients

The [n] syntax indicates a specific clip plane (G._CLI P_PLANER).

Forstate.clip[n].plane, the. x,.y,.z, and . wcomponents of the parameter
variable are filled with the eye-space transformed coefficients p1’, p2’, p3’, and p4’,
respectively, of the corresponding clip plane.

Point Property Bindings

Point property bindings are only available within vertex programs. They provide access
to the OpenGL state specified with the glPointParameterfvARB() command (if the
ARB_point_parameters extension is supported). Table 13-10 shows the possible point
property bindings.

Table 13-10 Point Property Bindings

Parameter Binding Component Usage Description

state. point.size (s,n,x,f) Point size, minimum and
maximum size clamps, and fade
threshold

state. point.attenuation (a,b,c,1) Point size attenuation constants

For st at e. poi nt. si ze, the. x,.Yy,. z,and . wcomponents of the parameter variable
are filled with the point size, minimum point size, maximum point size, and fade
threshold, respectively.

For state.point.attenuation, the . X, . y,and . z components of the parameter variable are

filled with the constant, linear, and quadratic point size distance attenuation parameters
(a, b, and c), respectively. The . wcomponent is filled with 1.

007-2392-003

Using Pipeline Programs

007-2392-003

Depth Property Bindings

Depth property bindings are only available within fragment programs. They provide
access to the OpenGL state specified with glDepthRange(). Table 13-11 shows the
possible depth property bindings.

Table 13-11 Depth Property Bindings

Parameter Binding Component Usage Description

st at e. dept h. range (n,£,d,1) Depth range near, far, and far — near (d)

For st at e. dept h. range, the . x and . y components of the parameter variable are
filled with the mappings of near and far clipping planes to window coordinates,
respectively. The . z component is filled with the difference of the mappings of near and
far clipping planes, far — near. The . wcomponent is filled with 1.

Matrix Property Bindings

Matrix property bindings provide access to the OpenGL state specified with commands
that load and multiply matrices, such as glMatrixMode() and glLoadMatrixf().

Table 13-12 shows the possible matrix property bindings.

Table 13-12 Matrix Property Bindings

Parameter Binding Description

state. matri x. nodel vi ew n] Modelview matrix n

state. matrix. projection Projection matrix

state. matrix. mp Modelview projection matrix
state. matri x.texture[n] Texture matrix n

state. matri x. pal ette[n] Modelview palette matrix n
state. matri x. prograni nj Program matrix 7

The [n] syntax indicates a specific matrix number. For . nodel vi ewand . texture, a
matrix number is optional, and matrix zero will be bound if the matrix number is
omitted. The field .program refers to generic program matrices, which are defined as
described in section “Generic Program Matrix Specification” on page 351. The field

. pal et t e refers to the matrix palette defined with the ARB_matrix_palette extension;

343

13: Vertex and Fragment Program Extensions

since this extension is not currently supported on Onyx4 and Silicon Graphics Prism
systems, these state values may not be bound.

The base matrix bindings may be further modified by a inverse/transpose selector and a
row selector. If the beginning of a parameter binding matches any of the matrix binding
names listed in Table 13-12, the binding corresponds to a 4x4 matrix (instead of a
four-element vector, as is true of other parameter bindings). If the parameter binding is
followed by . i nver se, . transpose, or. i nvtr ans, the inverse, transpose, or
transpose of the inverse, respectively, of the specified matrix is selected. Otherwise, the
specified matrix selected. If the specified matrix is poorly conditioned (singular or nearly
S0), its inverse matrix is undefined.

The binding name st at e. mat ri x. mvp refers to the product of modelview matrix zero
and the projection matrix, as defined in the following:

WP = P * MO0
The operand P is the projection matrix and M0 is the modelview matrix zero.

If the selected matrix is followed by . r owf 4] , the . X, . y,. z,and . wcomponents of the
parameter variable are filled with the four entries of row a of the selected matrix. In the
following example, the variable nD is set to the first row (row 0) of modelview matrix 1,
and nl is set to the last row (row 3) of the transpose of the projection matrix:

PARAM D
PARAM il

state. matri x. nodel vi ewf 1] . rowf 0] ;
state. matri x. projection.transpose.row 3];

For parameter array bindings, multiple rows of the selected matrix can be bound. If the
selected matrix binding is followed by . r owf a..b] , the result is equivalent to specifying
matrix rows a through b in order. A program will fail to load if a is greater than b. If no
row selection is specified, rows 0 through 3 are bound in order. In the following code, the
array nR has two entries, containing rows 1 and 2 of program matrix zero, and n8 has
four entries, containing all four rows of the transpose of program matrix zero:

PARAM e[] { state.matrix.prograniO0].row 1..2] };
PARAM 8] { state.matrix. prograniO].transpose };

Vertex and Fragment Program Output

Output used by later stages of the OpenGL pipeline can be accessed in instructions either
by binding output names with the QUTPUT statement or directly by use of the output
name. Output from vertex and fragment programs is described in this section.

344 007-2392-003

Using Pipeline Programs

Vertex Program Output

007-2392-003

Table 13-13 lists the possible types of vertex program output. Components labelled * are
unused.

Table 13-13 Vertex Program Output

Output Binding Component Usage Description
result.position xy,zw) Position in clip coordinates
result.color (rgb,a) Front-facing primary color
resul t.color.primry (rgb,a) Front-facing primary color
result.col or.secondary (rgb,a) Front-facing secondary color
result.col or.front (rgb,a) Front-facing primary color
result.color.front.prinmary (rgb,a) Front-facing primary color
result.color.front.secondary (rgb,a) Front-facing secondary color
resul t.col or. back (rgb,a) Back-facing primary color
resul t.col or. back. primary (rgb,a) Back-facing primary color
resul t.col or. back. secondary (rgb,a) Back-facing secondary color
result.fogcoord (£5%* Fog coordinate

resul t. pointsize (s,%%* Point size
result.texcoord (s;trq) Texture coordinate, unit 0
resul t.texcoord[n] (strq) Texture coordinate, unit 1

Forresul t. position,updates to the. X, .y, . z, and . wcomponents of the result
variable modify the X, Y, Z, and W components, respectively, of the transformed vertex’s
clip coordinates. Final window coordinates are generated for the vertex based on its clip
coordinates.

For bindings beginning with r esul t. col or, updatestothe. X,.y,.z,and . w
components of the result variable modify the red, green, blue, and alpha components,
respectively, of the corresponding vertex color attribute. Color bindings that do not
specify front or back are consided to refer to front-facing colors. Color bindings that do
not specify primary or secondary are considered to refer to primary colors.

345

13: Vertex and Fragment Program Extensions

Forresul t. fogcoor d, updates to the . x component of the result variable set the
transformed vertex’s fog coordinate. Updates to the . y, . z, and . wcomponents of the
result variable have no effect.

Forresul t. poi nt si ze, updates to the . X component of the result variable set the
transformed vertex’s point size. Updates to the . y, . z, and . wcomponents of the result
variable have no effect.

Forresult.texcoordorresult.texcoord[n],updatestothe.X,.y,.z,and. w
components of the result variable set the s, t, r, and g components, respectively, of the
transformed vertex’s texture coordinates for texture unit n. If [#] is omitted, texture unit
zero is selected.

All output is undefined at each vertex program invocation. Any results, or even
individual components of results, that are not written during vertex program execution
remain undefined.

Fragment Program Output

346

Table 13-14 lists the possible types of fragment program output. Components labelled *
are unused.

Table 13-14 Fragment Program Output

Output Binding Component Usage Description

resul t.col or (rgb,a) Color

result.col or[n] (rgb,a) Color for draw buffer n
resul t. depth **,d,*) Depth coordinate

Forresult.color orresult.col or[n],updatestothe. x,.y,.z,and . w
components of the result variable modify the red, green, blue, and alpha components,
respectively, of the fragment’s output color for draw buffer n. If [1] is omitted, the output
color for draw buffer zero is modified. However, note that the [1] notation is only
supported if program option ATl _dr aw_buf f er s is specified and if the
ATI_draw_buffers extension is supported.

If resul t. col or is not both bound by the fragment program and written by some
instruction of the program, the output color of the fragment program is undefined.

007-2392-003

Using Pipeline Programs

Each color output is clamped to the range [0,1] and converted to fixed-point before being
passed on to further fixed-function processing.

Forresul t. dept h, updates to the . z component of the result variable modify the
fragment’s output depth value. If r esul t . dept h is not both bound by the fragment
program and written by some instruction of the program, the interpolated depth value
produced by rasterization is used as if fragment program mode is not enabled. Writes to
any component of depth other than the . z component have no effect.

The depth output is clamped to the range [0,1] and converted to fixed-point, as if it were
a window Z value before being passed on to further fixed-function processing.

Program Parameter Specification

007-2392-003

The preceding section “Vertex and Fragment Program Parameters” on page 333
describes program parameters in terms of how they are accessed within a pipeline
program. To set the value of a program parameter, call one of the following commands:

voi d gl Prograntiocal Par anet er 4f ARB(GLenum target, GLuint index, GLfloat x,
G.float y, Gfloat z G.float w);
voi d gl Prograniocal Par anet er 4f vARB(GLenum target, GLui nt index,
const G.float *params),
voi d gl Prograniocal Paranet er 4dARB(GLenum target, GLui nt index, GLdoubl e x,
G.doubl e y, G.double z, G.double w);
voi d gl Prograntiocal Par anet er 4dvARB(GLenum target, GLui nt index,
const G.doubl e *params);
voi d gl ProgranEnvPar anet er 4f ARB(GLenum farget, GLui nt index, GLfloat x,
Gfloat y, Gfloat z, G.float w);
voi d gl ProgranEnvPar anet er 4f vARB(GLenum farget, GLui nt index,
const G.float *params),
voi d gl ProgranEnvPar anet er 4dARB(GLenum farget, GLui nt index, GLdoubl e x,
GLdoubl e y, G.double z, G.double w);
voi d gl ProgranEnvPar anet er 4dvARB(GLenum target, GLui nt index,
const G.doubl e *params),

The glProgramLocal*() commands update the value of the program local parameter
numbered index belonging to the program currently bound to target, and the
glProgramEnv*() commands update the value of the program environment parameter
numbered index for target. The argument target may be either
GL_VERTEX_PROGRAM ARB or GL_ FRAGVENT_PROGRAM_ARB.

347

13: Vertex and Fragment Program Extensions

The scalar forms of the commands set the first, second, third, and fourth components of
the specified parameter to the passed X, y, z and wvalues. The vector forms of the
commands set the values of the specified parameter to the four values pointed to by
params.

To query the value of a program local parameter, call one of the following commands:

voi d gl Get Progranlocal Par anet er f vARB(GLenum farget, GLui nt index,
GLf | oat *params) ;

voi d gl Get Programnlocal Par anet er dvARB(GLenum farget, GLui nt index,
GLdoubl e *params) ;

To query the value of a program environment parameter, call one of the following
commands:

voi d gl Get Progr anEnvPar amet er f vARB(GLenum target, GLui nt index,
GLfl oat *params),

voi d gl Get Progr anEnvPar anmet er dvARB(GLenum target, GLui nt index,
GLdoubl e *params) ;

For both local and environment parameters, the four components of the specified
parameter are copied to the target array params.

The number of program local and environment parameters supported for each target
type may be queried as described in section “Program Resource Limits and Usage” on
page 372.

Generic Vertex Attribute Specification

Commands

348

The section “Vertex and Fragment Attributes” on page 329 describes vertex attributes in
terms of how they are accessed within a vertex program. This section lists the commands
for specifying vertex attributes and also describes attribute aliasing.

To set the value of a vertex attribute, call one of the following commands:

void gl VertexAttri b1sARB(GLui nt index, G.short x);

void gl VertexAttriblf ARB(GLui nt index, G.float x);

voi d gl VertexAttri b1dARB(GLui nt index, GLdouble x);

void gl VertexAttrib2sARB(GLui nt index, GLshort x, GLshort y);
voi d gl VertexAttrib2f ARB(GLui nt index, G.float x, GLfloat E

007-2392-003

Using Pipeline Programs

007-2392-003

voi d
voi d
voi d
voi d

voi d

voi d

voi d

voi d

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

gl Vert exAttri b2dARB(GLui nt index, GLdouble x, GLdouble ¥);

gl VertexAttri b3sARB(GLui nt index, GLshort x, Gshort y, Gshort z);
gl VertexAttri b3f ARB(GLui nt index, GL.float x, G.float y, Gfloat z);
gl VertexAttri b3dARB(GLui nt index, GLdouble x, GLdouble y,

GLdoubl e 2);

gl VertexAttri b4sARB(GLui nt index, G.short x, GLshort y, Gshort z,
GLshort w);

gl Vert exAttri b4af ARB(GLui nt index, G.float x, G.float y, G.float z,
G.fl oat w);

gl VertexAttri b4dARB(GLui nt index, GLdouble x, GLdouble y,
GLdoubl e z, GLdouble w);

gl Vert exAttri b4NubARB(GLui nt index, GLubyte x, GLubyte y,

GLubyte z, GLubyte w);

gl VertexAttri b1svARB(GLui nt index, const G.short *v);

gl VertexAttri blf vARB(GLui nt index, const G.float *v);

gl VertexAttri bldvARB(GLui nt index, const GLdouble *7v);

gl VertexAttri b2svARB(GLui nt index, const G.short *0v);

gl VertexAttri b2f vARB(GLui nt index, const G.float *v);

gl VertexAttri b2dvARB(GLui nt index, const GL.double *7v);

gl VertexAttri b3svARB(GLui nt index, const GLshort *v);

gl VertexAttri b3f vARB(GLui nt index, const G.float *?v);

gl VertexAttri b3dvARB(GLui nt index, const GLdouble *7v);

gl VertexAttri b4bvARB(GLui nt index, const G.byte *v);

gl VertexAttri b4svARB(GLui nt index, const G.short *7v);

gl VertexAttri b4i vARB(GLui nt index, const GLint *v);

gl VertexAttri b4ubvARB(GLui nt index, const GLubyte *7v);

gl Vert exAttri b4usvARB(GLui nt index, const G.ushort *v);

gl VertexAttrib4ui vARB(GLui nt index, const GLuint *7v);

gl VertexAttri baf vARB(GLui nt index, const G.float *v);

gl VertexAttri b4advARB(GLui nt index, const G.double *7v);

gl Vert exAttri b4NovARB(GLui nt index, const GLbyte *v);

gl VertexAttri b4NsvARB(GLui nt index, const GLshort *7v);

gl Vert exAttri b4Ni vARB(GLui nt index, const GLint *v);

gl VertexAttri b4NubvARB(GLui nt index, const GLubyte *7v);

gl VertexAttri b4NusvARB(GLui nt index, const GLushort *v);

gl Vert exAttri b4Nui vVARB(GLui nt index, const GLuint *7v);

These commands update the value of the generic vertex attribute numbered index. The
scalar forms set the first, second, third, and fourth components of the specified attribute
to the passed x, y, z and wvalues, and the vector forms set the values of the specified
attribute to the values pointed to by v.

349

13: Vertex and Fragment Program Extensions

Attribute Aliasing

350

If fewer than four values are passed (for the glVertexAttrib1*(), gl VertexAttrib2*(), and
glVertexAttrib3*() forms of the commands), unspecified values of y and z default to
0. 0, and unspecified values of wdefault to 1. 0.

The glVertexAttrib4N*() forms of the commands specify attributes with fixed-point
coordinates. The specified fixed-point values are scaled to the range [0,1] (for unsigned
forms of the commands) of to the range [-1,1] (for signed forms of the commands) in the
same fashion as for the glNormal*() commands.

The number of vertex attributes supported for each target type may be queried as
described in section “Program Resource Limits and Usage” on page 372.

Setting generic vertex attribute 0 specifies a vertex; the four vertex coordinates are taken
from the values of attribute 0. A glVertex*() command is completely equivalent to the
corresponding glVertexAttrib() command with an index of zero. Setting any other
generic vertex attribute updates the current values of the attribute. There are no current
values for vertex attribute 0.

Implementations may, but do not necessarily, use the same storage for the current values
of generic and certain conventional vertex attributes. When any generic vertex attribute
other than 0 is specified, the current values for the corresponding conventional attribute
aliased with that generic attribute, as described in the Table 13-1, become undefined.
Similarly, when a conventional vertex attribute is specified, the current values for the
corresponding generic vertex attribute become undefined. For example, setting the
current normal will leave generic vertex attribute 2 undefined, and conversely so.

Generic vertex attributes may also be specified when drawing by using vertex arrays. An
array of per-vertex attribute values is defined by making the following call:

voi d gl VertexAttribPoi nter ARB(GLui nt index, GLint size, GLenum fype,
GLbool ean normalized, GLsizei stride, const GLvoid *pointer);

The arguments are defined as follows:
size Specifies the number of elements per attribute and must be 1, 2, 3, or 4.

type Specifies the type of data in the array and must be one of GL_BYTE,
GL_UNSI GNED_BYTE, GL_SHORT, GL_UNSI GNED_SHORT, GL_| NT,
GL_UNSI GNED_I NT, GL_FLCQAT, or G._DOUBLE.

007-2392-003

Using Pipeline Programs

stride, pointer ~ Specifies the offset in basic machine units from one attribute value to the
next in the array starting at pointer. As with other vertex array
specification calls, a stride of zero indicates that fog coordinates are
tightly packed in the array.

normalized Specifies if fixed-point values will be normalized. If normalized is
GL_TRUE, fixed-point values will be normalized (in the same fashion as
the gl VertexAttrib4N*() commands just described). Otherwise,
fixed-point values are used unchanged.

To enable or disable generic vertex attributes when drawing vertex arrays, call one of the
following commands:

voi d gl Enabl eVertexAttri bArrayARB(GLui nt index);

voi d gl Di sabl eVertexAttri bArrayARB(GLui nt index);

The number of program local and environment parameters supported for each target
type may be queried as described in section “Program Resource Limits and Usage” on
page 372.

Generic Program Matrix Specification

Programs may use additional matrices, referred to as generic program matrices, from the
OpenGL state. These matrices are specified using the same commands—for example,
glLoadMatrixf()—as for other matrices such as modelview and projection. To set the
current OpenGL matrix mode to operate on generic matrix n, call glMatrixMode() with
a mode argument of G._MATRI XO_ARB + n.

The number of program matrices supported may be queried as described in section
“Program Resource Limits and Usage” on page 372.
Program Instruction Summary

The tables in this section summarize the complete instruction set supported for pipeline
programs. In the Input and Output columns, the tables use the following notation:

v Indicates a floating-point vector input or output.

s Indicates a floating-point scalar input.

007-2392-003 351

13: Vertex and Fragment Program Extensions

352

sS85 Indicates a scalar output replicated across a four-component result
vector.
a Indicates a single address register component.

Note: As described in section “Program Instructions” on page 326, most fragment
program instructions support clamping when writing instruction output by appending
the suffix _SAT to the instruction mnemonic.

Table 13-15 summarizes instructions supported in both fragment and vertex programs.

Table 13-15 Program Instructions (Fragment and Vertex Programs)

Instruction Input Input Output Description

ABS \4 \4 Absolute value

ADD \'AY v Add

DP3 \'A SsSs Three-component dot
product

DP4 \AY SSS5 Four-component dot product

DPH \AY SSSS Homogeneous dot product

DST v,V v Distance vector

EX2 s SSSs Exponentiate with base 2

FLR \4 \4 Floor

FRC \4 \4 Fraction

L& s SSSS Logarithm base 2

LIT v v Compute light coefficients

MAD V,V,V v Multiply and add

MAX v,V v Maximum

M N v,V \ Minimum

MoV \4 \4 Move

MUL \A v Multiply

007-2392-003

Using Pipeline Programs

Table 13-15 Program Instructions (Fragment and Vertex Programs) (continued)
Instruction Input Input Output Description

POW S,s SSss Exponentiate

RCP s SSS8 Reciprocal

RSQ S SsSs Reciprocal square root

SGE v,V v Set on greater than or equal

SLT AAY v Set on less than

SUB AT v Subtract

swe \4 \4 Extended swizzle

XPD v,V v Cross product

Table 13-16 summarizes instructions supported only in fragment programs.

Table 13-16 Program Instructions (Fragment Programs Only)

Instruction Input Output Description

CwP V,V,V v Compare

Cos s SSSS Cosine with reduction to [-pi,pi]
KI'L v v Kill fragment

LRP V,V,V v Linear interpolation

SCS s Ss-- Sine/cosine without reduction
SIN S SSss Sine with reduction to [-pi,pi]
TEX v,u,t \Y4 Texture sample

TXB v,u,t v Texture sample with bias

TXP vut v Texture sample with projection

007-2392-003

353

13: Vertex and Fragment Program Extensions

354

Table 13-17 summarizes instructions supported only in vertex programs.

Table 13-17 Program Instructions (Vertex Programs Only)

Instruction Input Output Description

ARL S a Address register load

EXP S v Exponential base 2
(approximate)

LOG S v Logarithm base 2
(approximate)

The following subsections describe each instruction in detail:
* “Fragment and Vertex Program Instructions”

¢ “Fragment Program Instructions”

* “Vertex Program Instructions”

As shown in the preceding tables, most instructions are supported in both vertex and
fragment programs.

Each subsection contains pseudo code describing the instruction. Instructions will have
up to three operands, referred to as op0, op1, and op2.

Operands are loaded according to the component selection and modification rules. For a
vector operand, these rules are referred to as the VectorLoad() operation. For a scalar
operand, they are referred to as the ScalarLoad() operation.

The variables t mp, t p0, t np1, and t Nnp2 describe scalars or vectors used to hold
intermediate results in the instruction.

Most instructions will generate a result vector called r esul t . The result vector is then
written to the destination register specified in the instruction possibly with destination
write masking and, if the _SAT form of the instruction is used, with destination
clamping, as described previously.

007-2392-003

Using Pipeline Programs

Fragment and Vertex Program Instructions

007-2392-003

The instructions described here are supported in both fragment and vertex programs.

ABS—Absolute Value

The ABS instruction performs a component-wise absolute value operation on the single
operand to yield a result vector.

Pseudo code:

tnp = Vector Load(op0);

result.x = fabs(tnp.x);
result.y = fabs(tnp.y);
result.z = fabs(tnp. z);
result.w = fabs(tnp.w);
ADD—Add

The ADD instruction performs a component-wise add of the two operands to yield a

result vector.

Pseudo code:

tnp0 = Vect or Load(op0) ;
t