
IRIS Digital Media
Programming Guide

Document Number 007-1799-040

IRIS Digital Media Programming Guide
Document Number 007-1799-040

CONTRIBUTORS

Written by Patricia Creek; Part III written by Carolyn Curtis
Illustrated by Patricia Creek, Dany Galgani, Cheri Brown, David Bertrand,

and Dan Young
Edited by Nancy Schweiger and Christina Cary
Production by Derrald Vogt and Chris Everett
Engineering contributions by John Barco, Brian Beach, Don Bennett, David Bertrand,

Mark Callow, Wiltse Carpenter, Andrew Cherenson, Doug Cook, Jonathan Devine,
Grant Dorman, Dan Fink, Ron Fischer, Jeff Glover, Brian Hill, Bryan James, Bruce
Karsh, Robert Keller, Eva Manolis, Ted Marsh, Spencer Murray, Paul Ning,
Candace Obert, Gordon Oliver, Chris Pirazzi, Scott Porter, Mike Portuesi, Scott
Pritchett, Amit Shoham, Paul Spencer, Dave Story, Archer Sully, Ann Sydeman,
Alex Tang, Mike Travis, I-Ching Wang, Jim Wanslow, and Jim Wiggins.

Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,
Erik Lindholm, and Kay Maitz

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics, Indigo, IRIS, and the Silicon Graphics logo are registered
trademarks and CHALLENGE, Cosmo Compress, Galileo Video, GL, Graphics
Library, Image Vision Library, IndigoVideo, Indigo2, Indigo2 Video, Indy, Indy Cam,
Indy Video, IRIS GL, IRIS Graphics Library, IRIS Indigo, IRIS InSight, IRIX, OpenGL,
Personal IRIS, Sirius Video, Showcase, and VINO are trademarks of Silicon Graphics,
Inc. Aware and the Aware logo are registered trademarks and AudioPlayback,
AudioProducer, AudioPublisher, AudioSuite, Archiver, Audition, BrowsFX,

IRIS Digital Media Programming Guide
Document Number 007-1799-040

MultiRate, Psycoder, and Speed-of-Sound are trademarks of Aware, Inc. Betacam
and Sony are registered trademarks and Hi-8mm is a trademark of Sony Corporation.
Macintosh is a registered trademark and AppleTalk and QuickTime are trademarks
of Apple Computer, Inc. MII is a trademark of Panasonic, Inc. Network License
System and NetLS are trademarks of Apollo Computer Inc., a subsidiary of
Hewlett-Packard Company. Prosonus is a registered trademark of Prosonus. MIPS
and R3000 are registered trademarks of MIPS Technologies, Inc. Open Software
Foundation is a registered trademark and OSF/Motif is a trademark of the Open
Systems Foundation. S-VHS is a trademark of JVC, Inc. UNIX is a trademark of AT&T
Bell Labs. X Window System is a trademark of Massachusetts Institute of Technology.

v

Contents

List of Examples xxiii

List of Figures xxvii

List of Tables xxxi

About This Guide xxxv
What This Guide Contains xxxv
How to Use This Guide xxxix

Where to Start xxxix
Style Conventions xxxix

How to Use the Sample Programs xxxix
Suggestions for Further Reading xl

References for Using Digital Media with Other Libraries xl
References for Adding a User Interface to Your Program xli

PART ONE Digital Media Programming

1. Programming with the IRIS Digital Media Development Environment 5
About the Digital Media Library 6
About the Digital Audio and MIDI Libraries 6
About the Video Library 7
About the IndigoVideo Library 8
About the Compression Library 8
About the Movie Library 9

vi

Contents

2. Programming with the Digital Media Library 13
Digital Media Library Basics 13

Digital Media Type Definitions 13
Digital Media Parameters 15
Compiling and Linking a Digital Media Library Application 15
Debugging a Digital Media Library Application 16

Initializing a Digital Media Application 16
Creating and Destroying Parameter-value Lists 17
Creating Default Audio and Image Configurations 18
Setting and Getting Individual Parameter Values 25
Manipulating Parameter-value Lists 29

Synchronizing Digital Media 33

PART TWO Digital Audio and MIDI Programming

3. Introduction to Digital Audio and MIDI Programming 39

4. Digital Audio System Architecture 43
Indigo Audio System Architecture 43

Indigo Audio Features 43
Indigo Audio I/O Interface 44

Indigo2 and Indy Audio System Architecture 46
Indigo2 and Indy Audio I/O Interface 46
Indy Workstation Layout 47
4-channel Audio I/O Interface 49

Recommendations for Audio Development System Configurations 50
Memory 50
Disk Space 50
Peripherals 51

5. Digital Audio System Software 55
Digital Audio System Software Overview 55

About the Digital Audio Libraries 56
About Shared System-Wide Resources 57

Contents

vii

Tools Available for the Audio Application Developer 60
Graphical User Interface Audio Tools 60
Online Source Code Examples 61
Third-party Audio Software and Sound Libraries 61

Compiling and Linking an Audio Application 62

6. Programming with the Audio Library 67
Audio Library Basics 68

Audio Library Features 68
Audio Library Programming Model 68
Digital Audio Data Representation 69
Handling Audio Library Errors 72
Audio Library Application Programming Concepts 73

Initializing an Audio Library Application 74
About ALports 74
Using ALconfig Structures to Configure ALports 74
Opening and Closing Audio Ports 87

Reading and Writing Audio Data 90
Using Audio Sample Queues 90
Reading and Writing Samples 93
Detecting Errors in the Audio Stream 97

Querying and Controlling the Global Audio Device State 98
Techniques for Working with Global Parameters 102
Sample Code for Querying Features and Values 107

Audio Library Synchronization Facilities 112
Audio Sample Frame Count 112
Relating Audio Sample Frame Count to UST 116

Real-time Programming Techniques for Audio 119
Multiplexing Synchronous I/O 119
Using Scheduling Control to Give Audio High Priority 122
Preventing Memory Swapout 122
Creating Multiple Process Threads 122
Using Shared Arenas and Semaphores 123

viii

Contents

7. Programming with the Audio File Library 127
Audio File Library Basics 128

Audio File Library Programming Model 128
Handling Audio File Library Errors 128
About Audio Files 129

Creating and Configuring Audio Files 132
Creating an Audio File Setup 132
Initializing Audio File Format 133
Initializing Audio Track Data 134
Initializing Instrument Data 140
Initializing Miscellaneous Data 141
Using the Audio Utility Library to Initialize Parameter Lists 143

Opening, Closing, and Updating Audio Files 147
Opening an Audio File 147
Getting an IRIX File Descriptor for an Audio File 148
Closing and Updating Files 149

Reading and Writing Audio Track Information 150
Getting Audio File Format 150
Getting and Setting Audio Track Parameters 152
Seeking, Reading, and Writing Audio Track Frames 160
Reading and Writing Instrument Configurations 163
Handling Miscellaneous Data Chunks 168

Audio File Library Programming Tips 171
Minimizing Data and File Format Dependence 171
Preventing Concurrent Access from Multiple Threads 172
Handling Errors in Multithreaded Applications 176
Sample Audio File Program 177

Contents

ix

8. Programming with the CD Audio Library 183
CD Audio Library Basics 184

CD Frames, Samples, and Subcodes 184
CD Tracks, Indices, and Time Codes 186
CD Seeking, Reading, and Playing 186
CD Parser 186
Opening and Closing the CD-ROM Device 187
Controlling the CD-ROM Drive Caddy 187

Navigating through a CD 187
Getting CD Locations from the End User 188
Getting CD Locations from Calculations Internal to
Your Application 188
Getting the Current CD Location 189
Seeking to a CD Location 189

Using the CD-ROM Drive 190
Playing an Audio CD from the CD-ROM Drive 190
Reading Audio Data from the CD-ROM Drive 191
Controlling the CD Parser 192
Communicating CD Status to the End User 194
CD Time Code Conversion Routines 195

CD Sample Program 196

9. Programming with the DAT Audio Library 203
DAT Audio Library Basics 203

DAT Frames, Samples, and Subcodes 204
DAT Audio Program Numbers and Indices 205
DAT Run Time, Absolute Time, and Program Time 205
DAT Seeking and Reading 205
DAT Parser 205
Opening and Closing the DAT Device for Audio 206

x

Contents

Navigating through a DAT 206
Getting DAT Locations from the End User 207
Getting DAT Locations from Calculations Internal to
Your Application 207
Seeking to a DAT Location 208

Using the DAT Drive 209
Playing a Tape in the DAT Drive 209
Making DAT Recordings for Playback on the DAT Drive 210
Reading Audio Data from the DAT Drive 211
Writing Audio Data to the DAT Drive 211
Controlling the DAT Parser 213
Communicating DAT Status to the End User 217

DAT Sample Program 217
Playing a DAT 217

10. Programming with the MIDI Library 223
MIDI System Architecture 224

Configuring Your System for MIDI Development 224
Connecting Devices to MIDI I/O Interfaces 227
Configuring Serial Ports for MIDI WIth the Port Setup Tool 229

MIDI Library Basics 231
Initializing MIDI Library Programs 231
Compiling and Linking MIDI Library Programs 231
MIDI Library Error Handling 231
MIDI Library Programming Model 232

Opening and Closing MIDI Ports 232
Getting the Name of an Available MIDI Port 232
Opening and Closing MIDI Input and Output Ports 233

Programming MIDI I/O 234
Hands-On MIDI Output Experience 234
About MIDI Events 235
Sending and Receiving MIDI Events 236
Printing MIDI Events 237
Processing MIDI Event Messages 238

Contents

xi

Multiplexing MIDI I/O with File Descriptors 240
Hands-On Multiplexed MIDI I/O Experience 240
Getting a File Descriptor for a MIDI Port 240

Controlling MIDI Timing 241
Controlling MIDI Timing Mode 241
Controlling MIDI Tempo 243
Controlling MIDI Output Buffering 243
Hands-On MIDI File Player Experience 244

Synchronizing MIDI I/O with Other Media 246
Hands-On MIDI and Audio Synchronization Experience 246

PART THREE Video Programming

11. Video Basics 251
Interlacing 251
Broadcast Standards 253
Color Encoding 254

RGB 254
YUV 255
YIQ 255
YC, YC-358, YC-443, or S-Video 256
Composite Video 256

Video Signals 257
Videotape Formats 257

12. Getting Started with the Video Library 261
VL Features 262

How the VL Works with Hardware 262
How the VL Works with Other Software 262

VL System Software Architecture 263
Video Daemon 264
Generic Video Tools 265
Library and Header Files 266

VL Architectural Model of Video Devices 267

xii

Contents

VL Programming Model 269
Opening a Connection to the Video Daemon and Setting up a Data Path 271

Opening a Connection to the Video Daemon 271
Specifying Nodes on the Data Path 272
Creating and Setting Up the Data Path 273

Setting Parameters for Data Transfer to or from Memory 279
Setting Source Node Controls for Data Transfer 280
Setting Drain Node Controls for Data Transfer 284

Displaying Video Data Onscreen 293
Transferring Video Data to and from Devices 294

Creating a Buffer for the Frames 295
Registering the Ring Buffer 296
Starting Data Transfer 296
Reading Data from the Buffer 298

Ending Data Transfer 302
VL Examples 303

Simple Screen Application 304
Video-to-memory Frame Grab 307
Memory-to-video Frame Output 310
Continuous Frame Capture 314

13. Using VL Controls 321
VL Control Type and Values 327
VL Control Fraction Ranges 328
VL Control Classes 328
VL Control Groupings 329
Galileo Video Controls 331

General Controls for Galileo Video 332
Galileo Video IndyCam Controls 336
Galileo Video Encoder and Color-Space Conversion Controls 337
Galileo 601 Video Digital Breakout Box Controls 338

Contents

xiii

VINO Controls 341
VINO Video Control Panel Controls 341
VINO Analog Input Controls 342
VINO IndyCam Controls 343

14. VL Event Handling 347
Querying VL Events 348
Creating a VL Event Loop 350
Creating a Main Loop with Callbacks 351

15. VL Blending 361
The VL Key Generator 362
The VL Blend Node 363
VL Blending Controls 366
VL Keying 367

Galileo Video Luma Keying 368
Galileo Video Chroma Keying 370
Galileo Video Fades, Tiles, and Wipes 371

VL Blending Examples 375
Blending Video and Graphics 375
Creating a Simple Wipe Effect 376

PART FOUR IndigoVideo Programming

16. Introduction to IndigoVideo Programming 381
Using the IndigoVideo Examples 381
References for Video Programming 382

17. Getting Started with the IndigoVideo Library 385
IndigoVideo Basics 385

IndigoVideo 385
IndigoVideo Data Formats 386
IndigoVideo I/O 389

A Simple Program for Getting Started with IndigoVideo 392

xiv

Contents

18. Controlling the IndigoVideo Input Window 399
Setting Input Parameters 399

Selecting an Input Source 400
Selecting the Input Signal Type 401
Freezing and Restarting Video Input 401

Querying Video Parameters 401
Positioning and Scaling the Video Input 402

Setting the Size of the Video Image 403
Positioning the Video Image 405

Preventing Other Programs from Using Video 406
Combining Video and Graphics 406

Video Underlay Mode 407
Video Overlay Mode and Chroma Keying 410

19. Producing IndigoVideo Output 423
Selecting the IndigoVideo Live Output Area 423
Setting Output Parameters 426

Turning Output On and Off 426
Synchronizing Output with Input 426
Filtering Output 426

Generating Single-frame Output 426

20. Capturing Video from IndigoVideo 433
Captured Video Data Formats 434
Capturing a Single Video Frame 436
Capturing Video Frames in Burst Mode 439
Capturing Video Frames in Continuous Mode 441

Entering Continuous Capture Mode 442
Accessing Captured Data 442
Leaving Continuous Capture Mode 444

Using Data Conversion Routines 444
Converting YUV Data to RGB 444
Using 8-bit RGB Capture Data 449

Contents

xv

21. Handling IndigoVideo Events 455
IndigoVideo Event Handling Basics 456
X Event Handling 458
IRIS GL Event Handling 462

22. Using the IndigoVideo Utilities 467
Using svcmd, the IndigoVideo Shell-level Tool 468
Making a Movie File from IndigoVideo and Audio Input 469

PART FIVE Compression Programming

23. Introduction to the Compression Library 475
Overview of the Compression Library 475

Compression Library Applications 476
Compression Library Features 478
Compression Library Basics 478
Compression Library Algorithms 479

Compression Library Data Formats 483
Audio Data Formats 483
Image Data Formats 483
Video Data Formats 484
Movie Data Formats 487
Header Formats 488

24. Getting Started with the Compression Library 491
Overview of the Compression Library API 492

Still Image API 492
Sequential Access API 492
Buffered Access API 492
About File I/O and Error Handling 493

Using the Still Image Interface 494
Using the Sequential Frame Interface 497

Compressing a Sequence of Frames 497
Decompressing a Sequence of Frames 500

xvi

Contents

Using the Buffering Interface 506
Creating a Buffer 507
Managing Buffers 509
Producing and Consuming Data in Buffers 511
Creating a Buffered Record and Play Application 514
Creating Buffered Multiprocess Record and Play Applications 519

Programming with the Cosmo Compress JPEG Codec 521
Cosmo Compress Basics 521
 Cosmo Compress Image Formats 522
Getting Compressed Image Information 524
Memory-to-Memory Compression and Decompression 525
Compressing and Decompressing Video Through External Connections
to Cosmo Compress 527
Controlling JPEG Compressed Image Quality 532

25. Using Compression Library Algorithms and Parameters 537
Using the Compression Library Algorithms 537

Choosing a Compression Library Algorithm 537
Querying Compression Library Algorithms 540

Using the Compression Library Parameters 543
Compression Library Parameter Definitions 544
Setting and Querying Compression Library Parameters 551
Using Frame Type Parameters 559

26. Customizing the Compression Library 563
Adding Custom Algorithms to the Compression Library 563

Managing Buffers for Added Algorithms 568
Reading Data Across Buffer Discontinuities 568

Adding Custom Parameters to the Compression Library 572

Contents

xvii

PART SIX Movie Programming

27. Introduction to the Movie Library 579
Overview of Movie Library Features and Applications 579

Movie Library Features 579
Movie Library Applications 580

Using the Movie Library with Other Silicon Graphics Libraries 581

28. Getting Started with the Movie Library 585
Movie Library Basics 585

Definitions 585
Movie Library Programming Model 587
Movie File Formats 587

Developing a Movie Library Application 588
Outline for Developing a Movie Library Application 588
Compiling and Linking a Movie Library Application 589
Debugging a Movie Library Application 590

Setting and Getting Movie Properties 591
Setting and Getting Movie and Track Parameters 592
Setting and Getting Global Movie Properties 593
Creating a Default Movie Configuration 596
Adding Your Own Parameters to the Movie Library 598

Setting and Getting Track Properties 601
Setting and Getting General Track Properties 601
Setting and Getting Audio Track Properties 603
Setting and Getting Image Track Properties 606

29. File I/O and Editing Movies with the Movie Library 615
Initializing a Movie Library Application 615

Using File Descriptors with Movies 617
Creating a New Movie 617
Checking for the Presence of a Movie 619
Opening an Existing Movie 620

xviii

Contents

Adding, Locating, and Deleting Audio and Image Tracks 622
Adding an Audio or Image Track to a Movie 622
Removing an Audio or Image Track from a Movie 624
Locating an Existing Track 624
Mapping Frames from One Track to Another Track 624

Editing Movies 626
Optimizing a Movie File 627
Using a Buffer for Editing 627
Deleting Frames from a Movie Track 630
Reading and Inserting Compressed Images 631
Copying and Pasting Frames from One Movie into Another 633

Finalizing Changes and Closing Movies 636

30. Playing Movies with the Movie Library 639
Opening a Movie for Playback 640
Creating and Configuring a Playback Window 641

Creating a Window for OpenGL Playback 641
Creating a Window for IRIS GL Playback 641
Configuring the Playback Display 643

Binding a Movie to a Window for Playback 648
Binding a Window to a Movie with an Audio Track 649
Playing Multiple Movies in the Same Window 650

Controlling Movie Playback 651
Starting and Stopping Playback 651
Controlling Audio Playback 651
Looping 653
Playing or Looping a Movie Fragment 657
Scrubbing to a Random Frame During Playback 658

Synchronizing Movie Playback 659
Getting and Setting the Playback Speed 659
Measuring the Current Frame Rate 660
Setting and Getting a Minimum Playback Speed Threshold 660
Forcing Playback of Every Frame 661

Contents

xix

Integrating Movies with IRIS GL Graphics 662
Controlling the Frame Display Automatically 662
Controlling the Frame Display Manually 665

Handling Events 668
Preparing an Event Mask 669
Getting a File Descriptor for the Movie Event Queue 670
Creating the Event Loop 671
Handling Movie Events 672
Handling X Window Events 676
Checking and Correcting for Slow Playback 678

31. Using the Movie Library with QuickTime Movies 681
QuickTime Basics 681

QuickTime Sound 682
QuickTime Compression 682
QuickTime Frame Differencing (Keyframes) 684

Movie Library QuickTime Compatibility Requirements 685
Making a Single-fork Movie 685
Making a Self-contained Movie 686
Transferring Files Between Macintosh and
Silicon Graphics Computers 687

Adding QuickTime Capability to Your Movie Library Application 688
Using the QuickTime Compressor Library 688
Creating a QuickTime Movie 688
Reading Existing QuickTime Movies 693

32. Using the Movie Library Sample Programs 701
About the Sample Programs 701
Creating Movies 705

Creating a Movie from a Sequence of Images 708
Adding or Replacing a Movie Audio Track 708

Editing Movies 709
Displaying Movie Parameters 712

xx

Contents

Playing Movies 712
Creating a Simple Keyboard Interface for Playing Movies 712
Playing Multiple Movies 713
Creating a Movie Screensaver Application 714

Using the SMPTE Time Code Sample Application 717
Converting a SMPTE Time Code String to a Frame Number 717
Converting a Frame Number to a SMPTE Time Code String 718
Converting a Time Specification to a Frame Number 719
Converting a Frame Number to a Time Code 720

A. Audio Specifications 723
Indigo Workstation Audio Hardware Specifications 723

Indigo Analog Audio I/O 724
Indigo Digital Audio I/O 725
Indigo Dedicated Real-time Processor 726

Indigo2 Workstation Audio Hardware Specifications 726
Indigo2 Analog Stereo Line-level Inputs 726
Indigo2 Stereo Microphone Input 727
Indigo2 Analog Stereo Line-level Outputs 727
Indigo2 Analog Stereo Headphone Output/Mono Internal Speaker 727
Indigo2 Digital Audio I/O 728

B. Aware Scalable Audio Compression Software 729
Introduction to Aware Audio Compression Software 729
Aware Software Products Features and Applications 731

Aware Products Available in IRIS Digital Media Libraries 731
Other Digital Media Compatible Aware Audio Products 732

Accessing Aware Audio Compression from the Audio File Library 733
Valid Audio Input Data 733
Compression Defaults 733
Compression Custom Configuration 734

Contents

xxi

Accessing Aware Audio Compression from the Compression Library 736
Compression Schemes 736
Using Compression Library Parameters 737
Usage Hints 740

Aware Audio Compression Software Specifications 741
Installing a NetLS Nodelocked License 743

Glossary 745

Index 779

xxii

Contents

xxiii

List of Examples

Example 2-1 Creating and Destroying a Parameter-value List 18
Example 2-2 Setting Audio Defaults 21
Example 2-3 Setting Image Defaults 25
Example 2-4 Setting Individual Parameter Values 28
Example 2-5 Printing the Contents of a Digital Media

Parameter-value List 32
Example 6-1 Configuring and Opening an ALport 76
Example 6-2 Opening Input and Output ALports 89
Example 6-3 Querying for the Existence of Other Audio Processes 108
Example 6-4 Querying for Input and Output Rates 109
Example 6-5 Querying for 4-channel Capability 111
Example 6-6 Synchronizing Audio Between

Two Output Ports: align.c 115
Example 6-7 Calculating UST 117
Example 7-1 Creating, Filling, Querying and Freeing an AUpvlist 146
Example 7-2 Checking Audio Track Sample Format and

Sample Width 154
Example 7-3 Creating a Semaphore 174
Example 7-4 Recording Stereo from an Audio Port: recordexample.c 177
Example 8-1 Copying CD Data to an Audio File: cdsample.c 196
Example 9-1 Reading DAT Samples 218
Example 10-1 Opening MIDI Input and Output Ports 233
Example 10-2 Sending a MIDI Message 235
Example 10-3 Using MIDI File Descriptors 241
Example 12-1 Sending Live Video to the Screen: simplev2s.c 304
Example 12-2 Video Frame Grabbing: simplegrab.c 307
Example 12-3 Frame Output: simplem2v.c 310
Example 12-4 Continuous Frame Capture: simplecapt.c 314

xxiv

List of Examples

Example 14-1 Using VL Callbacks 352
Example 14-2 VL Event Handling: eventex.c 353
Example 15-1 Setting Up Source, Drain, and Blend Nodes 363
Example 17-1 Opening a Window to Display Live

Video Input: simpleinput,c 393
Example 18-1 Setting up the IndigoVideo Board for PAL Input 400
Example 18-2 Selecting a Video Input Source 400
Example 18-3 Getting the Input Source Number 401
Example 18-4 Creating a Scalable Video Input Window: sizeinput.c 403
Example 18-5 Approximating the Requested Video Window Size 405
Example 18-6 Specifying a Video Window Offset 405
Example 18-7 Getting Exclusive Use of the IndigoVideo Board 406
Example 18-8 Using IndigoVideo Underlay Mode 408
Example 18-9 Using Chroma Keying to Key Out Black Pixels 410
Example 18-10 Using IndigoVideo Overlay Mode: voverlay.c 411
Example 18-11 Using the Chroma Key Map: chromamap.c 414
Example 19-1 Setting the Location of the IndigoVideo

Output Window 424
Example 19-2 Aligning a Video Output Area with an

IRIS GL Window 425
Example 19-3 Sending a RGB Image as a Still Video Frame 427
Example 20-1 Determining the Capture Buffer Size 436
Example 20-2 Grabbing a Single Frame of 8-bit RGB data: rgbgrab.c 437
Example 20-3 Using the SV_GET_FIELD Macro 440
Example 20-4 Capturing Frames in Burst Mode 441
Example 20-5 Initializing Continuous Capture Mode 442
Example 20-6 Accessing and Releasing Captured Frames 443
Example 20-7 Setting Top-to-Bottom pixmode for YUV 445
Example 20-8 Finding Image Data in YUV with Blanking Frames 445
Example 20-9 Grabbing YUV Frames to Save as RGB Images: vgrab.c 446
Example 20-10 Interleaving 8-bit RGB Fields with Inversion 450
Example 20-11 Displaying Interleaved 8-bit RGB Data 450
Example 20-12 Converting 8-bit RGB Capture Data to 32-bit RGB 450

xxv

Example 20-13 Setting up the IRIS GL Color Map to Display 8-bit RGB 451
Example 21-1 X Event Handling for IndigoVideo events: xevents.c 459
Example 21-2 Handling Video Events with IRIS GL Routines 463
Example 24-1 Using a Custom Error Handling Routine 494
Example 24-2 Compressing and Decompressing a Single Frame 496
Example 24-3 Compressing a Series of Frames 500
Example 24-4 Getting the Decompression Scheme from a Header 502
Example 24-5 Decompressing a Series of Frames 505
Example 24-6 Creating and Using an Internal Buffer 508
Example 24-7 Creating and Using an External Buffer 508
Example 24-8 Using Buffers for Playback 514
Example 24-9 Using Buffers for Nonblocking Playback 515
Example 24-10 Using Buffers for Recording 516
Example 24-11 Using Buffers for Nonblocking Recording 517
Example 24-12 Using Buffers for Multiprocess Playback 519
Example 24-13 Using Buffers for Multiprocess Recording 520
Example 24-14 Cosmo Compress Memory-to-Memory Compression 526
Example 25-1 Getting a List of Compression Library Algorithms 542
Example 25-2 Getting a List of Parameters for a

Compressor/Decompressor 553
Example 25-3 Getting the Current Values of Selected Parameters 555
Example 25-4 Using Macros to Get or Set the Value of a

Floating Point Parameter 556
Example 25-5 Getting and Setting Parameter Defaults 557
Example 25-6 Getting and Setting Minimum and Maximum

Parameter Values 558
Example 26-1 Adding Algorithms to the Compression Library 567
Example 26-2 Decompression Buffering 568
Example 26-3 Compression Buffering 568
Example 26-4 Adding Parameters to the Compression Library 573
Example 28-1 Creating and Initializing a Default Movie

Parameter-value List 597
Example 28-2 Adding a User-Defined Global Movie Parameter 599

xxvi

List of Examples

Example 28-3 Adding a User-Defined Image Track Parameter for a
New Track 600

Example 29-1 Creating a Movie 619
Example 29-2 Adding an Audio Track to a Movie 623
Example 29-3 Determining What Size Buffer to Allocate 628
Example 29-4 Reading a Compressed Image from a Movie

into a Buffer 632
Example 30-1 Creating an IRIS GL Playback Window 642
Example 30-2 Binding a Window for Playing Multiple Movies 650
Example 30-3 Enabling and Muting Audio Playback 652
Example 30-4 Designating a Movie as the Primary Audio

Rate Controller 653
Example 30-5 Setting and Getting the Loop Mode 655
Example 30-6 Using mvGrabIrisGL() and mvReleaseIrisGL() 663
Example 30-7 Initializing Movie Playback 667
Example 30-8 Preparing a File Descriptor Set 673
Example 30-9 Handling Movie Frame, Stop, and Error Events 675
Example 30-10 Handling X11 Expose and Resize Window Events 677
Example 31-1 Creating QuickTime Movies with the Movie Library 689
Example 31-2 Converting QuickTime Picture Data to RGBX Format 694

xxvii

List of Figures

Figure 4-1 Audio Icons 44
Figure 4-2 Audio Jacks on the Back Panel of the

Indigo Workstation 45
Figure 4-3 Audio Jacks on the Back Panel of the

Indigo2 Workstation 47
Figure 4-4 Volume Control Buttons on the Front of the Indy

Workstation 48
Figure 4-5 Audio Jacks on the Back Panel of the Indy Workstation 48
Figure 4-6 Cabling Setup for 4-channel Audio on the

Indy Workstation 49
Figure 5-1 Interaction of Digital Audio System Components 55
Figure 5-2 Audio Data Flow 58
Figure 6-1 Audio Samples and Frames 70
Figure 6-2 Audio Sample Queues 91
Figure 6-3 Sample Frame Count as Returned

by ALgetframenumber() 114
Figure 6-4 Using Fill Points 121
Figure 7-1 Audio Data Packing Formats 153
Figure 8-1 CD Audio Sample Structure 185
Figure 9-1 DAT Audio Sample Structure 204
Figure 10-1 MIDI Setup 226
Figure 10-2 Serial Ports on the Back Panel of the

Indigo Workstation 227
Figure 10-3 Serial Ports on the Back Panel of the

Indigo2 Workstation 228
Figure 10-4 Serial Ports on the Back Panel of the Indy Workstation 228
Figure 10-5 Port Setup Icon 229
Figure 10-6 Port Setup Tool 229
Figure 10-7 Serial Port Connections 230

xxviii

List of Figures

Figure 10-8 MIDI Port Configuration 230
Figure 11-1 Fields and Frame 252
Figure 11-2 Relationships Between Color-encoding Methods and Video

Formats 256
Figure 11-3 Composite Video Waveform 257
Figure 12-1 VL System Components 263
Figure 12-2 Simple VL Path 267
Figure 12-3 Simple VL Blending 268
Figure 12-4 Zoom and Decimation 288
Figure 12-5 Clipping an Image 290
Figure 12-6 Zoom, Size, Offset, and Origin 292
Figure 12-7 vlGetNextValid(), vlGetLatestValid(),

and vlPutFree() 299
Figure 15-1 Setting Up the Blend Node 364
Figure 15-2 Galileo Video Alpha Blender 364
Figure 15-3 Blending Analog Video with Part of a Graphics Screen 365
Figure 15-4 Blending Analog Video with Static Frame Data 365
Figure 15-5 Adding Another Drain to Preview the Blend 365
Figure 15-6 Luma Keying Application: Titling 368
Figure 15-7 Relationships Between Galileo Video Luma Keying

Controls 369
Figure 15-8 Chroma Keying Application: TV Weather Map 370
Figure 15-9 Relationships Between Galileo Video Chroma Keying

Controls 371
Figure 15-10 Galileo Video Keying Controls 374
Figure 17-1 Format of 32-bit RGB Pixels 387
Figure 17-2 Format of 8-bit RGB Pixels 387
Figure 17-3 Format of YUV Data Words 388
Figure 17-4 IndigoVideo I/O Ports 389
Figure 17-5 Connecting Video Equipment to the

Indigo Video Board 390
Figure 23-1 Server-Client Compression Applications 477
Figure 24-1 Ring Buffer 506

xxix

Figure 24-2 Snapshots of Buffer State During Producing and
Consuming Processes 512

Figure 24-3 Flow of Data in a Buffered Compression and
Decompression Scheme 513

Figure 26-1 Buffer Architecture for Adding Algorithms 571
Figure 28-1 Typical Movie: somersault.mv 586
Figure 29-1 Movie Library File I/O Routines 616
Figure 29-2 Mapping Frames from One Track to Another 625
Figure 29-3 Inserting Frames into a Track 629
Figure 29-4 Pasting Image Frames from One Movie

into Another Movie 634
Figure 30-1 Playback View Settings 643
Figure 32-1 Comments in Movie Library Sample Programs:

createmovie.c++ 703
Figure 32-2 Modularity of Movie Library Sample Programs:

createmovie.c++ 704
Figure 32-3 Call Graph for createmovie 707
Figure 32-4 Call Graph for editmovie.c 711
Figure 32-5 Call Graph for moviescreen.c 716
Figure Gl-1 SMPTE Color Bars (75%) 750
Figure Gl-2 Color Burst and Chrominance Signal 751
Figure Gl-3 Component Video Signals 753
Figure Gl-4 Horizontal Blanking 759
Figure Gl-5 Horizontal Blanking Interval 760
Figure Gl-6 Waveform Monitor Readings with and without Setup 768
Figure Gl-7 SMPTE Time Code 768
Figure Gl-8 Red or Blue Signal 773
Figure Gl-9 Y or Green Plus Sync Signal 773
Figure Gl-10 Video Waveform: Composite Video Signal

With Setup (Typical NTSC) 774
Figure Gl-11 Video Waveform: Composite Video

Signal (Typical PAL) 775

xxx

List of Figures

xxxi

List of Tables

Table 2-1 Digital Media Parameter Types 14
Table 2-2 Audio Parameters 19
Table 2-3 Audio Defaults 20
Table 2-4 Image Parameters 22
Table 2-5 Image Defaults 24
Table 2-6 DM Library Routines for Setting Parameter Values 26
Table 2-7 DM Library Routines for Getting Parameter Values 27
Table 2-8 Routines for Manipulating Parameter-value

Lists and Entries 29
Table 2-9 Methods for Obtaining Unadjusted System Time 33
Table 6-1 Minimum and Maximum Allowable

Queue Sizes for ALports 79
Table 6-2 Input Conversions for ALreadsamps() 95
Table 6-3 Output Conversions for ALwritesamps() 96
Table 6-4 Error Parameters for ALgetstatus() 98
Table 6-5 Core Global Parameters for AL_DEFAULT_DEVICE 99
Table 6-6 Special Global Parameters for System-Dependent

Audio Capabilities 101
Table 6-7 Global Parameter Name Strings 105
Table 7-1 Mapping of AF Library Components to

AIFF-C/AIFF File Chunks 131
Table 7-2 AFfilesetup Parameters and Defaults 132
Table 7-3 AFfilesetup Instrument Parameter

Constants and Defaults 133
Table 7-4 Settable Compression Parameter Values and Types 138
Table 7-5 Miscellaneous Chunk Types and Parameter Values 142
Table 7-6 Audio Utility Library Set and Get Routines 144

xxxii

List of Tables

Table 7-7 Valid Return Values for Compression
Algorithms and Parameters 157

Table 7-8 Instrument Parameter Constants and Valid Values 164
Table 10-1 MIDI Message Status Bytes 238
Table 11-1 Tape Formats and Video Formats 258
Table 12-1 Header Files for Video Options 266
Table 12-2 Video Library Calls for Data Transfer 271
Table 12-3 VL Event Masks 278
Table 12-4 Data Transfer Controls for Source Nodes 280
Table 12-5 VL_MUXSWITCH Values 281
Table 12-6 Default Sources for VINO Inputs 282
Table 12-7 VINO Timing Choices 283
Table 12-8 Dimensions for Timing Choices 283
Table 12-9 Data Transfer Controls for Drain Nodes 284
Table 12-10 Packing Types and Their Sizes and Formats 287
Table 12-11 VL_RATE Values (Items per Second) 292
Table 12-12 Buffer-Related Calls 298
Table 12-13 Calls for Extracting Data from a Buffer 299
Table 13-1 Device-Independent VL Controls 322
Table 13-2 VL Control Groupings 330
Table 13-3 Galileo Video vcp Controls 332
Table 13-4 Galileo Video IndyCam Controls 336
Table 13-5 Galileo Video Encoder and Color-Space

Conversion Controls 337
Table 13-6 Galileo 601 Video Digital Breakout Box

General Controls 338
Table 13-7 Galileo Video Digital Breakout Box Color-Space

Conversion Controls 339
Table 13-8 Galileo Video DAC controls 340
Table 13-9 VINO vcp Controls 341
Table 13-10 VINO Analog Input Controls 342
Table 13-11 IndyCam Controls 343
Table 14-1 VL Event Handling Routines 348
Table 14-2 VL Event Masks 349

xxxiii

Table 15-1 VL Blend Controls 366
Table 15-2 Galileo Video Luma Keying Controls 369
Table 15-3 Galileo Video Chroma Keying Controls 370
Table 15-4 Controls for Fades, Tiles, and Wipes 372
Table 15-5 Galileo Video Controls Specific to Wipes 373
Table 20-1 Pixel Sizes for Video Data 435
Table 20-2 Fields in the svCaptureInfo Structure 435
Table 21-1 Video Activity Event Variable Names 456
Table 21-2 Video Parameter Change Event Variable Names 457
Table 21-3 Encoding Attribute Values 458
Table 23-1 Video Formats Not Requiring Color Conversion 487
Table 23-2 Parameters Contained in Header Data 488
Table 24-1 Typical Stream Header Contents 502
Table 24-2 Additional Video Stream Header Contents 502
Table 24-3 Cosmo Compress Image Format Parameters 523
Table 24-4 Cosmo Compress Video Field Dimensions 529
Table 24-5 Cosmo Compress Field Widths for

Compression With Decimation 530
Table 24-6 Cosmo Compress Field Widths for Decompression 531
Table 25-1 Capabilities of Image and Video Algorithms 540
Table 25-2 Compression Library Parameters 549
Table 28-1 Movie Defaults 597
Table 28-2 Audio Defaults 603
Table 28-3 Image Defaults 607
Table 28-4 Image Packing Formats 610
Table 30-1 Movie Library Events 669
Table 30-2 Event Structure Fields 670
Table 32-1 SMPTE Time Code Types 717
Table B-1 Built-in Algorithms for Aware Audio Software

Compression Engines 742
Table Gl-1 Videotape Formats 772

xxxiv

List of Tables

xxxv

About This Guide

The IRIS® Digital Media Programming Guide describes the Silicon Graphics®

IRIS Digital Media Development Environment software. The IRIS Digital
Media Development Environment (DMdev) provides an application
programming interface (API) for working with digital audio, MIDI, video,
compression, and movies, using standard and optional Silicon Graphics
workstation hardware and peripherals.

Silicon Graphics also supplies desktop media tools for end users, which are
built on top of DMdev. Media tools are described in the online Media Control
Panels User’s Guide, which you can view from the IRIS InSight™ viewer.

What This Guide Contains

The IRIS Digital Media Programming Guide is divided into six parts,
corresponding to the functions of the libraries:

Part I, “Digital Media Programming,” has two chapters:

• Chapter 1, “Programming with the IRIS Digital Media Development
Environment,” gives an overview of the IRIS Digital Media
Development Environment.

• Chapter 2, “Programming with the Digital Media Library,” describes
the Digital Media (DM) Library, libdmedia, a library that currently
supports parameter setting and ring buffering for applications that use
the DMdev. Currently, you can use the DM routines with the Movie
Library and the Video Library.

Part II, “Digital Audio and MIDI Programming,” has eight chapters;

• Chapter 3, “Introduction to Digital Audio and MIDI Programming,”
introduces the digital audio and MIDI libraries.

xxxvi

About This Guide

• Chapter 4, “Digital Audio System Architecture,” gives a brief overview
of the audio hardware and provides some recommendations for
development configurations.

• Chapter 5, “Digital Audio System Software,” describes the audio
application programming environment and explains how audio
resources are shared.

• Chapter 6, “Programming with the Audio Library,” describes the
structure of the Audio Library and explains how to use it to sample
audio data from analog or digital input sources. Real-time
programming techniques are also discussed.

• Chapter 7, “Programming with the Audio File Library,” describes the
structure of the Audio File Library and explains how to use it to read
and write audio files.

• Chapter 8, “Programming with the CD Audio Library,” describes the
CD Audio Library and explains how to use it to control the CD-ROM
drive for playing and sampling audio from audio compact discs.

• Chapter 9, “Programming with the DAT Audio Library,” describes the
DAT Audio Library and explains how to use it to control the DAT drive
for playing, sampling, and recording audio from digital audio tape.

• Chapter 10, “Programming with the MIDI Library,” describes
connecting MIDI equipment and describes the MIDI Library,
explaining how to use it for implementing and multiplexing MIDI I/O,
and synchronizing MIDI and audio.

Part III, “Video Programming,” has five chapters:

• Chapter 11, “Video Basics,” explains basic video concepts that apply to
both the Video Library and the IndigoVideo Library.

• Chapter 12, “Getting Started with the Video Library,” describes the
Video Library and explains how to use it to perform video input and
output for workstations equipped with standard and optional Silicon
Graphics video hardware.

• Chapter 13, “Using VL Controls,” describes how to use VL controls to
set video parameters for data transfer and video effects.

• Chapter 14, “VL Event Handling,” describes how to handle video
events using the Video Library.

What This Guide Contains

xxxvii

Part IV, “IndigoVideo Programming,” has six chapters:

• Chapter 16, “Introduction to IndigoVideo Programming,” introduces
the IndigoVideo library and gives an overview of the features of the
IndigoVideo board.

• Chapter 17, “Getting Started with the IndigoVideo Library,” describes
basic concepts for using the IndigoVideo board, and presents a sample
video application that displays live video input in a window.

• Chapter 18, “Controlling the IndigoVideo Input Window,” explains
how applications can position and scale the video input. It also explains
how to select different video sources, formats, and broadcast standards.

• Chapter 19, “Producing IndigoVideo Output,” explains how to encode
a portion of your screen to video in real time. This chapter also covers
single-frame output.

• Chapter 20, “Capturing Video from IndigoVideo,” explains how to
capture frames of video to memory.

• Chapter 21, “Handling IndigoVideo Events,” explains how to handle
video events, such as video parameters being changed by another
process.

• Chapter 22, “Using the IndigoVideo Utilities,” explains how to use the
IndigoVideo end-user tools.

Part V, “Compression Programming,” has four chapters:

• Chapter 23, “Introduction to the Compression Library,” introduces the
CL and describes its applications and features. It provides basic
background information on compression technology and on digital
audio and video data formats.

• Chapter 24, “Getting Started with the Compression Library,” describes
how to use the three types of interfaces supplied by the CL and how to
write programs for Cosmo Compress option.

• Chapter 25, “Using Compression Library Algorithms and Parameters,”
explains how to use the CL algorithms and global parameters.

• Chapter 26, “Customizing the Compression Library,” explains how to
add your own algorithms and parameters to the CL.

xxxviii

About This Guide

Part VI, “Movie Programming,” has six chapters:

• Chapter 27, “Introduction to the Movie Library,” introduces the Movie
Library and describes its applications and features.

• Chapter 28, “Getting Started with the Movie Library,” explains how to
set up, compile, and debug Movie Library applications.

• Chapter 29, “File I/O and Editing Movies with the Movie Library,”
explains how to perform movie file I/O and how to edit movies.

• Chapter 30, “Playing Movies with the Movie Library,” describes the
Movie Library playback and event-handling facilities.

• Chapter 31, “Using the Movie Library with QuickTime Movies,”
describes basic concepts for working with QuickTime movies, and then
it explains how to add QuickTime capability to a Movie Library
application. It also describes the optional QuickTime compressor
Library, which provides access to QuickTime compressors for Movie
Library applications.

• Chapter 32, “Using the Movie Library Sample Programs,” describes the
Movie Library sample programs.

Appendices at the back of this guide provide additional information:

• Appendix A, “Audio Specifications,” lists relevant audio and video
hardware specifications.

• Appendix B, “Aware Scalable Audio Compression Software,” explains
how to incorporate into your application the built-in licensable
compression software by Aware®, Inc.

The Glossary at the end of this guide provides definitions for video terms.

How to Use This Guide

xxxix

How to Use This Guide

This guide is written for C language programmers. This guide assumes that
you are somewhat knowledgable about digital media concepts. The
discussion of each library begins by presenting the features, applications,
and basic concepts pertaining to that library. Readers unfamiliar with the
basic concepts can refer to the recommended references for each topic.

Where to Start

If you’re not sure which library to use for a certain application, read
Chapter 1, “Programming with the IRIS Digital Media Development
Environment,” to get a brief overview of the uses and features of each
library.

If you want to find some code that does what you want your application to
do, browse through the List of Examples to locate a code fragment or a sample
program that performs a particular task.

Style Conventions

These style conventions are used in this guide:

Bold functions, routines

Italics arguments, variables, commands, program and file names,
book titles, and emphasis

Courier function prototypes, sample code

Courier Bold user input entered from the keyboard

How to Use the Sample Programs

Code fragments and complete sample programs are used throughout this
guide to demonstrate programming concepts. Source code for the sample
programs is provided in the /usr/people/4Dgifts/examples/dmedia directory,
which is further organized in directories according to topic. For example,
Movie Library programs are in /usr/people/4Dgifts/examples/dmedia/movie.

xl

About This Guide

You must log in as 4Dgifts to be able to compile 4Dgifts programs. README
files in each 4Dgifts directory provide descriptions of the sample programs
and instructions for compiling and running them. You must have the IRIS
Development Option, dev, and the C language software, c, loaded before you
can compile the sample programs. Use the versions command to find out
which software is loaded on your system. See the release notes for each
library for additional system software requirements for those libraries.

You should copy any 4Dgifts program that you intend to modify to your
home directory before making any changes.

Suggestions for Further Reading

This section lists references containing information on programming topics
beyond the scope of this guide, which you may find helpful for developing
your digital media application. Additional reference materials are listed in
the introductory chapters for each library.

References for Using Digital Media with Other Libraries

If you are planning to integrate your digital media application with calls
from the OpenGL™, IRIS Graphics Library™ (GL) or X Window System™

application, you may want to consult the following manuals:

• OpenGL Programming Guide and OpenGL Reference Guide, by Jackie
Neider, Tom Davis, and Mason Woo, Addison-Wesley, 1993

• Graphics Library Programming Guide, by Patricia McLendon Creek,
Silicon Graphics, 1992

• Graphics Library Programming Tools and Techniques, by Patricia
McLendon Creek and Ken Jones, Silicon Graphics, 1993

• IRIS IM Programming Notes, by Patricia McLendon Creek and Ken
Jones, Silicon Graphics, 1993

• The X Window System, Volume 1: Xlib Programming Manual, O’Reilly and
Associates, 1990

• The X Window System, Volume 4: Xt Intrinsics, Motif Edition, O’Reilly and
Associates, 1990

Suggestions for Further Reading

xli

• X Window System: The Complete Reference to Xlib, X Protocol, ICCCM,
XLFD, Third Edition, by Robert W. Scheifler and James Gettys, Digital
Press, 1992

• X Window System Toolkit: The Complete Programmer’s Guide and
Specification, Paul J. Asente and Ralph R. Swick, Digital Press, 1992

References for Adding a User Interface to Your Program

The IRIS Digital Media don’t impose any particular user interface (UI), so
you can use any graphical UI toolkit, such as IRIS IM™ to build your
interface. IRIS IM is Silicon Graphics’ port of the industry-standard
OSF/Motif™ software. Consult these OSF/Motif manuals for more
information:

• OSF/Motif User’s Guide, Revision 1.2, Prentice-Hall, 1993

• OSF/Motif Programmer’s Reference, Revision 1.2, Prentice-Hall, 1992

• OSF/Motif Style Guide, Revision 1.2, Prentice-Hall, 1992

xlii

About This Guide

Chapter 1

PART ONE

Digital Media Programming I

Chapter 1, “Programming with the IRIS Digital Media Development
Environment,” gives an overview of the IRIS Media Libraries.

Chapter 2, “Programming with the Digital Media Library,”
describes the Digital Media (DM) Library, libdmedia, a library that currently
supports parameter setting and ring buffering for applications that use the IRIS
digitial media libraries. Currently, you can use the DM routines with the Movie
Library and the Video Library.

This chapter introduces the IRIS
digital media libraries, briefly
outlining their uses and features.

Programming with the IRIS Digital
Media Development Environment

Chapter 1

5

Chapter 1

1. Programming with the IRIS Digital Media
Development Environment

The IRIS Digital Media Development Environment provides a digital media
software development environment that includes audio, video, movie, and
compression libraries.

This chapter provides an overview of the uses and features of these libraries:

• Digital Media Library, a base library that provides global type
definitions and utility routines for digital media applications; it
currently supports parameter setting and ring buffering

• Digital Audio and MIDI Libraries, a collection of libraries that provides
an API for working with digital audio, audio files, digital compact disc,
digital audio tape, and MIDI

• Video Library, a device-independent API for programming Silicon
Graphics on-board video and video options

• Indigo Video Library, an API for programming the IndigoVideo option
for IRIS Indigo workstations equipped with Entry graphics

• Compression Library, an extensible, algorithm-independent API for
compressing and decompressing audio, video, and images

• Movie Library, a file-format-independent API for reading, writing,
playing, and editing movies

You can use these libraries in conjunction with other Silicon Graphics
libraries, such as the ImageVision™ Library; see the individual library
descriptions to learn which libraries are compatible.

6

Chapter 1: Programming with the IRIS Digital Media Development Environment

About the Digital Media Library

The Digital Media (DM) Library, libdmedia.so, is a library that currently
supports parameter setting and ring buffering for applications that use the
IRIS Digital Media software. Currently, you can use the DM routines with
the Movie Library and the Video Library.

The DM Library features:

• type definitions for digital media

• routines for creating and configuring digital media parameters

• routines for creating and configuring digital media ring buffers

• a debugging version of the library that lets you check for proper usage

About the Digital Audio and MIDI Libraries

Silicon Graphics offers a collection of libraries designed for developers of
digital audio and MIDI software, as well as those seeking to integrate audio
into their existing applications:

• Audio Library (libaudio.a)

• Audio File Library (libaudiofile.so)

• Audio Utility Library (libaudioutil.so)

• CD Audio Library (libcdaudio.a)

• DAT Audio Library (libdataudio.a)

• MIDI Library (libmd.so)

About the Video Library

7

The digital audio libraries can be used separately or in combination. Each
library is tailored to a particular set of tasks, as follows:

About the Video Library

The Video Library (VL) is a collection of device-independent C language
calls for Silicon Graphics workstations equipped with video options, such as
Sirius Video™, Indigo2 Video™, Indy Video™, or Galileo Video ™, or
workstations equipped with on-board video, such as Indy™.

The VL provides generic video tools, including simple tools for importing
and exporting digital data to and from current and future Silicon Graphics
video hardware, as well as to and from third-party video devices that adhere
to the Silicon Graphics architectural model for video devices. Video tools are
described in the Media Control Panels User’s Guide, which you can view using
the IRIS InSight viewer; similar applications are supplied in source-code

Audio Library Provides an API for configuring the audio system,
managing audio I/O between the application
program and the audio hardware, specifying
attributes of digital audio data, and facilitating real-
time programming. See Chapter 6, “Programming
with the Audio Library.”

Audio File Library Provides an API for reading and writing two
standard digital audio file formats, AIFF and
AIFF-C. See Chapter 7, “Programming with the
Audio File Library.”

Audio Utility
Library

Provides convenience routines for creating and
configuring Audio File Library data structures.

CD Audio Library Provides an API for optional Silicon Graphics SCSI
CD-ROM drives. The drive features a special mode
that allows it to read audio CD format as well as
CD-ROM format. See Chapter 8, “Programming
with the CD Audio Library.”

DAT Audio Library Provides an API for optional Silicon Graphics SCSI
DAT drives. See Chapter 9, “Programming with the
DAT Audio Library.”

8

Chapter 1: Programming with the IRIS Digital Media Development Environment

form as examples in the 4Dgifts directory (/usr/people/4Dgifts/examples/
dmedia/video/vl).

The VL provides an API that enables applications to:

• perform video teleconferencing on platforms that support it

• blend computer graphics with frames from videotape or any video
source

• present video in a window on the workstation screen

• digitize video data

Note: The range of VL capabilities you can use depends on the capabilities
of your workstation and the video options installed in it.

About the IndigoVideo Library

The IndigoVideo board provides video input and output for IRIS Indigo
workstations equipped with Entry graphics. The IndigoVideo Library
provides a software interface to the IndigoVideo board, enabling
applications to:

• display live video in a window

• capture live video to system memory

• encode graphics to video in real time

• produce high-quality single-frame video output

About the Compression Library

The Compression Library, libcl.so, provides a flexible, extensible, and
algorithm-independent software interface for compressing and
decompressing audio, video, and image data.

The Compression Library features:

• algorithm independence

• hardware independence

About the Movie Library

9

• support of industry standard algorithms

• support of Silicon Graphics proprietary algorithms

• binary compatibility across Silicon Graphics platforms

The Compression Library provides facilities for working with audio, still
images, sequential frames of data (movies), and a buffering mechanism for
nonsequential compression and decompression.

You can query the Compression Library for the available algorithms, and
you can add your own algorithms and parameters. A pass-through
capability allows you to pass data through the routines without using an
algorithm.

The Compression Library can be used with the Audio File Library, and with
data used by the IRIS Movie Player and Movie Maker tools.

About the Movie Library

The Movie Library, libmovie, is a collection of routines that provides a C
language API for reading, writing, editing, and playing movies on Silicon
Graphics workstations. The API provides a uniform interface to movies of
various formats and lets you convert movies from one format to another.

The Movie Library features:

• the ability to read, write, and play movie files

• a file-format-independent API

• file format conversion capabilities

• support for Silicon Graphics Movie format, versions 2.0 and 3.0

• support for Apple® Computer QuickTime™ movie format

• data compression and decompression

• asynchronous playback support

• flexible playback control

• support for movies embedded in applications software

10

Chapter 1: Programming with the IRIS Digital Media Development Environment

This chapter describes the Digital
Media Library, which currently
supports parameter setting and ring
buffering for digital media
applications.

Programming with the
Digital Media Library

Chapter 2

13

Chapter 2

2. Programming with the Digital Media Library

The Digital Media (DM) Library, libdmedia.so, is a library that provides type
definitions for digital media and currently supports parameter setting and
ring buffering for applications that use the IRIS digital media libraries.

This chapter contains basic concepts for working with the Digital Media
Library. It describes the digital media data types and explains how to use the
digital media parameters.

Digital Media Library Basics

It is not likely that you’ll use the DM Library by itself. Typically, you call DM
Library routines from an application that is written using one or more of the
IRIS digital media libraries. Currently, you can use the DM routines with the
Movie Library and the Video Library.

The DM Library features:

• type definitions for digital media

• routines for creating and configuring digital media parameters

• routines for creating and configuring digital media ring buffers

• a debugging version of the library that lets you check for proper usage

Digital Media Type Definitions

The DM Library provides type definitions for digital media. Data types and
constant names have an uppercase DM prefix; routines have a lowercase dm
prefix.

14

Chapter 2: Programming with the Digital Media Library

The dmedia/dmedia.h header file provides these type definitions:

DMboolean integer for conditionals; DM_FALSE is 0 and DM_TRUE is 1

DMfraction integer numerator divided by integer denominator

DMstatus enumerated type consisting of DM_SUCCESS and
DM_FAILURE

Table 2-1 lists the digital media parameter type definitions that are defined
in dmedia/dm_params.h.

Table 2-1 Digital Media Parameter Types

Parameter Type Meaning

DM_TYPE_ENUM Enumerated type

DM_TYPE_ENUM_ARRAY Array of enumerated types

DM_TYPE_INT Integer value

DM_TYPE_INT_ARRAY Array of integers

DM_TYPE_INT_RANGE Range of integers

DM_TYPE_STRING String

DM_TYPE_STRING_ARRAY Array of strings

DM_TYPE_FLOAT Floating point value

DM_TYPE_FLOAT_ARRAY Array of floats

DM_TYPE_FLOAT_RANGE Range of floats

DM_TYPE_FRACTION Ratio

DM_TYPE_FRACTION_ARRAY Array of fractions

DM_TYPE_FRACTION_RANGE Range of fractions

DM_TYPE_PARAMS Parameter-value list

DM_TYPE_TOC_ENTRY Table-of-contents entry for ring buffers

Digital Media Library Basics

15

Digital Media Parameters

Parameter-value lists are used to store configuration information for movies,
movie tracks, ring buffers, and video paths. A parameter-value list is a list of
pairs, where each pair contains the name of a parameter and the
corresponding value for that parameter.

Typical ways in which you might use a parameter-value list include:

• passing a parameter-value list to a routine that configures a structure

• passing a parameter-value list that contains new parameter settings to a
routine that changes the settings

• using convenience routines provided by one of the IRIS digital media
libraries to set and get parameter values that apply to that library

Every parameter-value list that describes a format includes the parameter
DM_MEDIUM to indicate what kind of data it describes. DM_MEDIUM is
an enumerated type consisting of DM_IMAGE and DM_AUDIO.

The routines described in this chapter follow the general rule that ownership
of data is not passed during procedure calls, except in the routines that create
and destroy parameter-value lists. Functions that take strings copy the
strings if they want to keep them. Functions that return strings or other
structures retain ownership and the caller must not free them.

Compiling and Linking a Digital Media Library Application

Applications that call DM Library routines must include the libdmedia
header files to obtain definitions for the library; however, these files are
usually included in the header file of the library you are using.

This code fragment includes all the libdmedia header files:

#include <dmedia/dmedia.h>
#include <dmedia/dm_audio.h>
#include <dmedia/dm_image.h>
#include <dmedia/dm_params.h>

Link with the DM Library when compiling an application that makes DM
Library calls by including -ldmedia on the link line. It’s likely that you’ll be

16

Chapter 2: Programming with the Digital Media Library

linking with other libraries as well, and because the linking order is usually
specific, follow the linking instructions for the library you are using.

Debugging a Digital Media Library Application

The debugging version of the DM Library checks for library usage violations
by setting assertions that state the requirements for a parameter or value.

To debug your DM application, link with the debugging version of the DM
Library, libdmedia_d.so, by using -ldmedia_d instead of -ldmedia, and then
run your program. Your application will abort with an error message if it
fails an assertion. The message explains the situation that caused the error
and, by implication or by explicit description, suggests a corrective action.

When you have finished debugging your application, you should relink
with the nondebugging library, libdmedia.a, because the runtime checks
imposed by the debugging library cause an undesirable size and
performance overhead for a packaged application.

Initializing a Digital Media Application

This section explains how to use the DM Library routines for:

• creating and destroying parameter-value lists

• creating default audio and image configurations

• setting and getting values in parameter-value lists

• manipulating parameter-value lists

In the initialization section of your application, you create and use
parameter-value lists to configure data structures for your application as
described in the following steps:

1. Create an empty parameter-value list by calling dmParamsCreate().

2. Set the parameter values by one of the methods listed below:

• Use a function that sets up a standard configuration for a particular
type of data: dmSetImageDefaults() for images,
dmSetAudioDefaults() for audio. See “Creating Default Audio

Initializing a Digital Media Application

17

and Image Configurations” on page 18 for a description of this
method.

• Use a generic function such as dmParamsSetInt() to set the values
of individual parameters within an empty parameter-value list or
one that has already been initialized with the standard audio or
image configuration. See “Setting and Getting Individual
Parameter Values” on page 25 for a description of this method.

• Use a library function such as mvSetMovieDefaults() to set a
group of parameters specific to that library. See “Creating a Default
Movie Configuration” in Chapter 28 for a discussion of this
method.

3. Free the parameter-value list and its contents by calling
dmParamsDestroy().

These steps are described in detail in the sections that follow.

Creating and Destroying Parameter-value Lists

Some libraries require you to allocate memory for parameter-value lists, but
with the DM library, you need not allocate memory for parameter-value
lists, because memory management is provided for you by the
dmParamsCreate() and dmParamsDestroy() routines. These routines work
together as a self-contained block within which you create the parameter-
value list, set the parameter value(s) and use them, and then destroy the
structure, freeing its associated memory.

dmParamsCreate() is the only function that can create a parameter-value
list, and dmParamsDestroy() is the only function that can free one. This
means that parameter-value lists are managed correctly when every call to
create one is balanced by a call to destroy one.

The creation function can fail because of lack of memory, so it returns an
error code. The destructor can never fail.

To create an empty parameter-value list, call dmParamsCreate(). Its function
prototype is:

DMstatus dmParamsCreate (DMparams** returnNewList)

18

Chapter 2: Programming with the Digital Media Library

where:

returnNewList is a pointer to a handle that is returned by the DM Library

If there is sufficient memory to allocate the structure, a pointer to the newly
created structure is put into *returnNewList and DM_SUCCESS is returned;
otherwise, DM_FAILURE is returned.

When you have finished using the parameter-value list, you must destroy it
to free the associated memory. To free both the parameter-value list structure
and its contents, call dmParamsDestroy(). Its function prototype is:

void dmParamsDestroy (DMparams* params)

where:

params is a pointer to the parameter-value list you want to destroy

Example 2-1 is a code fragment that creates a parameter-value list called
params, then calls a Movie Library routine, mvSetDefaults(), to initialize the
default movie parameters, and then destroys the list, freeing both the
structure and its contents.

Example 2-1 Creating and Destroying a Parameter-value List

DMparams* params;
if (dmParamsCreate(¶ms) != DM_SUCCESS) {
 printf("Out of memory.\n");
 exit(1);
}
if (mvSetMovieDefaults(params, MV_FORMAT_SGI_3) !=
DM_SUCCESS) {
 printf("Out of memory.\n");
 exit(1);
}
dmParamsDestroy (params);

Creating Default Audio and Image Configurations

There are standard parameters that apply to images (for video and movies)
and standard parameters that apply to audio (for movies). This section
explains how to use the DM Library convenience routines that initialize
parameter-value lists for standard audio and image configurations.

Initializing a Digital Media Application

19

Audio Parameters

Audio uses these parameters:

• audio channels

• audio compression scheme

• audio sample format (e.g., twos-complement binary, floating point)

• audio sample rate

• audio sample width (number of bits per sample)

Table 2-2 lists the audio parameters and the valid values for each (not all
values are supported by all libraries).

See Part II, “Digital Audio and MIDI Programming,” for complete
definitions of the audio parameters.

Table 2-2 Audio Parameters

Parameter Type Values

DM_AUDIO_CHANNELS Integer 1, 2, or 4

DM_AUDIO_COMPRESSION String DM_AUDIO_UNCOMPRESSED (default)
DM_AUDIO_G711_U_LAW
DM_AUDIO_G711_A_LAW
DM_AUDIO_MPEG
DM_AUDIO_MPEG1
DM_AUDIO_MULTIRATE
DM_AUDIO_G722

DM_AUDIO_FORMAT DMaudioformat DM_AUDIO_TWOS_COMPLEMENT
(default)
DM_AUDIO_UNSIGNED
DM_AUDIO_FLOAT
DM_AUDIO_DOUBLE

DM_AUDIO_RATE Double Native rates are 8000, 11025, 16000, 22050, 32000,
44100, and 48000 Hz

DM_AUDIO_WIDTH Integer 8, 16, or 24

20

Chapter 2: Programming with the Digital Media Library

See “Setting and Getting Audio Track Properties” in Chapter 28 for a
description of audio parameters that apply to Movie Library programs.

Setting Audio Defaults

To initialize a parameter-value list with the default audio configuration, call
dmSetAudioDefaults(), passing in the desired sample width, sample rate,
and number of channels. Its function prototype is:

DMstatus dmSetAudioDefaults (DMparams* params, int width,
 double rate, int channels)

where:

params is a pointer to a parameter-value list that was returned from
dmParamsCreate()

width is the number of bits per audio sample: 8, 16, or 24

rate is the audio sample rate; the native audio sample rates are
8000, 11025, 16000, 22050, 32000, 44100, and 48000 Hz

channels is the number of audio channels: 1, 2, or 4

dmSetAudioDefaults() returns DM_SUCCESS if there was enough memory
available to set up the parameters; otherwise, it returns DM_FAILURE.

Table 2-3 lists the parameters and values set by dmSetAudioDefaults().

Table 2-3 Audio Defaults

Parameter Default

DM_MEDIUM DM_AUDIO

DM_AUDIO_WIDTH width

DM_AUDIO_FORMAT DM_AUDIO_TWOS_COMPLEMENT

DM_AUDIO_RATE rate

DM_AUDIO_CHANNELS channels

DM_AUDIO_COMPRESSION DM_AUDIO_UNCOMPRESSED

Initializing a Digital Media Application

21

Determining the Buffer Size Needed to Store an Audio Frame

To determine the audio frame size for a given parameter-value list, call
dmAudioFrameSize(). dmAudioFrameSize() returns the number of bytes
needed to store one audio frame (one sample from each channel). Its
function prototype is:

size_t dmAudioFrameSize (DMparams* params)

Example 2-2 is a code fragment that creates a parameter-value list, fills in the
audio defaults, and then frees the structure and its contents.

Example 2-2 Setting Audio Defaults

DMparams* audioParams;
if (dmParamsCreate(&audioParams) != DM_SUCCESS) {
 printf("Out of memory.\n");
 exit(1);
}
if (dmSetAudioDefaults (audioParams,
 16, /* width (in bits/sample) */
 22050, /* sampling rate */
 2 /* # channels (stereo) */
) != DM_SUCCESS) {
 printf("Out of memory.\n");
 exit(1);
}
printf("%d bytes per audio frame.\n",
 dmAudioFrameSize(audioParams));
dmParamsDestroy(audioParams);

Image Parameters

Images use these parameters:

• image compression scheme

• image dimensions (width and height)

• image interlacing

• image orientation (top-to-bottom vs. bottom-to-top)

• image packing format

• image rate (number of frames per second)

22

Chapter 2: Programming with the Digital Media Library

Table 2-4 lists the image parameters and the valid values for each (not all
values are supported by all libraries).

Table 2-4 Image Parameters

Parameter Values

DM_IMAGE_HEIGHT Integer value

DM_IMAGE_WIDTH Integer value

DM_IMAGE_RATE Floating point value

DM_IMAGE_COMPRESSION DM_IMAGE_UNCOMPRESSED
DM_IMAGE_RLE
DM_IMAGE_RLE24
DM_IMAGE_JPEG
DM_IMAGE_MPEG1
DM_IMAGE_MVC1
DM_IMAGE_MVC2
DM_IMAGE_RTR
DM_IMAGE_HDCC
DM_IMAGE_QT_VIDEO
DM_IMAGE_QT_ANIM

DM_IMAGE_INTERLACING DM_IMAGE_NONINTERLACED (full frame)
DM_IMAGE_INTERLACED_EVEN (two fields,
even field first)
DM_IMAGE_INTERLACED_ODD (two fields,
odd field first)
DM_IMAGE_NONINTERLEAVED (obsolete,
use DM_IMAGE_NONINTERLACED instead)
DM_IMAGE_INTERLEAVED(obsolete, use
DM_IMAGE_INTERLACED_ODD instead)

Initializing a Digital Media Application

23

See “Setting and Getting Image Track Properties” in Chapter 28 for a
description of image parameters that apply to Movie Library programs. See
Table 12-10 in Chapter 12, “Getting Started with the Video Library,” for a
description of image parameters that apply to Video Library programs.

DM_IMAGE_ORIENTATION DM_TOP_TO_BOTTOM
DM_BOTTOM_TO_TOP

DM_IMAGE_PACKING DM_PACKING_RGB
DM_PACKING_RGBX
DM_PACKING_RGBA
DM_PACKING_RGB332 (Indigo Entry graphics)
DM_PACKING_RGB8
DM_PACKING_GRAYSCALE
DM_PACKING_YUV
DM_PACKING_YUV411
DM_PACKING_YUV422
DM_PACKING_YUV422HC
DM_PACKING_APPLE_32
DM_PACKING_APPLE_16
DM_PACKING_Y (equivalent to
DM_PACKING_GRAYSCALE)
DM_PACKING_YCbCr (equivalent to
DM_PACKING_YUV)
DM_PACKING_YCbCr422 (equivalent to
DM_PACKING_YUV422)
DM_PACKING_YCbCr422HC (equivalent to
DM_PACKING_YUV422HC)
DM_PACKING_YUV422DC (equivalent to
DM_PACKING_YUV422HC)
DM_PACKING_YCbCr422DC (equivalent to
DM_PACKING_YUV422HC)

Table 2-4 (continued) Image Parameters

Parameter Values

24

Chapter 2: Programming with the Digital Media Library

Setting Image Defaults

To initialize a parameter-value list with the default image configuration, call
dmSetImageDefaults(), passing in the width and height of the image frame,
and the image packing format. Its function prototype is:

DMstatus dmSetImageDefaults (DMparams* params, int width,
 int height, DMpacking packing)

where:

params is a pointer to a parameter-value list that was returned from
dmParamsCreate()

width is the width of the image

height is the height of the image

packing is the image packing format

Table 2-5 lists the parameters and values set by dmSetImageDefaults().

Table 2-5 Image Defaults

Parameter Default

DM_MEDIUM DM_IMAGE

DM_IMAGE_WIDTH width

DM_IMAGE_HEIGHT height

DM_IMAGE_RATE 15.0

DM_IMAGE_INTERLACING DM_IMAGE_NONINTERLACED

DM_IMAGE_PACKING packing

DM_IMAGE_ORIENTATION DM_BOTTOM_TO_TOP

DM_IMAGE_COMPRESSION DM_IMAGE_UNCOMPRESSED

Initializing a Digital Media Application

25

Determining the Buffer Size Needed to Store an Image Frame

To determine the image frame size for a given parameter-value list, call
dmImageFrameSize(). dmImageFrameSize() returns the number of bytes
needed to store one uncompressed image frame in the given format. Its
function prototype is:

size_t dmImageFrameSize (DMparams* params)

Example 2-3 is a code fragment that creates a parameter-value list, fills in the
image defaults, and then frees the structure and its contents.

Example 2-3 Setting Image Defaults

DMparams* imageParams;
if (dmParamsCreate(&imageParams) != DM_SUCCESS) {
 printf("Out of memory.\n");
 exit(1);
}
if (dmSetImageDefaults(imageParams,
 320, /* width */
 240, /* height */
 DM_PACKING_RGBX) != DM_SUCCESS) {
 printf("Out of memory.\n");
 exit(1);
}
printf("%d bytes per image frame.\n",
 dmImageFrameSize(imageParams));
dmParamsDestroy(imageParams);

Setting and Getting Individual Parameter Values

After creating an empty parameter-value list or a default audio or image
configuration, you can use the routines described in this section to set and
get values for individual elements of a parameter-value list.

There is a routine for setting and getting the parameter values for each
parameter data type defined in the DM Library, as listed in Table 2-1.

All of these functions store and retrieve entries in parameter-value lists.
They assume that the named parameter is present and is of the specified
type; the debugging version of the library asserts that this is the case. All

26

Chapter 2: Programming with the Digital Media Library

functions that can possibly fail return an error code indicating success or
failure. Insufficient memory is the only reason these routines can fail.

Table 2-6 lists the DM Library routines for setting parameter values. These
routines require three arguments:

params a pointer to a parameter-value list

paramName the name of the parameter whose value you want to set

value a value of the appropriate type for the given parameter

Table 2-6 DM Library Routines for Setting Parameter Values

Routine Purpose

dmParamsSetInt() Sets the value of a parameter whose type is DMint

dmParamsSetIntArray() Sets the value of a parameter whose type is
DMintarray

dmParamsSetIntRange() Sets the value of a parameter whose type is
DMintrange

dmParamsSetEnum() Sets the value of a parameter whose type is DMenum

dmParamsSetEnumArray() Sets the value of a parameter whose type is
DMenumarray

dmParamsSetFloat() Sets the value of a parameter whose type is DMfloat

dmParamsSetFloatArray() Sets the value of a parameter whose type is
DMfloatarray

dmParamsSetFloatRange() Sets the value of a parameter whose type is
DMfloatrange

dmParamsSetFract() Sets the value of a parameter whose type is DMfract

dmParamsSetFractArray() Sets the value of a parameter whose type is
DMfractionarray

dmParamsSetFractRange() Sets the value of a parameter whose type is
DMfractionrange

dmParamsSetParams() Sets the value of a parameter whose type is DMparam

dmParamsSetString() Sets the value of a parameter whose type is DMstring

Initializing a Digital Media Application

27

These routines return either DM_SUCCESS or DM_FAILURE.

Table 2-7 lists the DM Library routines for setting parameter values. These
routines require two arguments:

params a pointer to a parameter-value list

paramName the name of the parameter whose value you want to get

Routines that get values return either a pointer to a value or the value itself.
For strings, parameter-value lists, and table-of-contents entries, the pointer
that is returned points into the internal data structure of the parameter-value
list. This pointer should never be freed and is only guaranteed to remain
valid until the next time the list is changed. In general, if you need to keep a
string value around after getting it from a parameter-value list, it should be
copied.

dmParamsSetStringArray() Sets the value of a parameter whose type is
DMstringarray

dmParamsSetTocEntry() Sets the value of a parameter whose type is
DMTocEntry

Table 2-7 DM Library Routines for Getting Parameter Values

Routine Purpose

 dmParamsGetInt() Returns an integer value for the given parameter

dmParamsGetIntArray() Returns a pointer to a value of type DMintarray for
the given parameter

dmParamsGetIntRange() Returns a pointer to a value of type DMintrange for
the given parameter

 dmParamsGetEnum() Returns an integer value for the given parameter

dmParamsGetEnumArray() Returns a pointer to a value of type DMenumarray
for the given parameter

dmParamsGetString() Returns a pointer to a value of type const char for the
given parameter

Table 2-6 (continued) DM Library Routines for Setting Parameter Values

Routine Purpose

28

Chapter 2: Programming with the Digital Media Library

Example 2-4 shows two equivalent ways of setting up a complete image
format description; the first sets the parameter values individually, the
second creates a default image configuration with the appropriate values.

Example 2-4 Setting Individual Parameter Values

DMparams* format;
dmParamsCreate(&format);
dmParamsSetInt (format, DM_IMAGE_WIDTH, 320);
dmParamsSetInt (format, DM_IMAGE_HEIGHT, 240);
dmParamsSetFloat (format, DM_IMAGE_RATE, 15.0);
dmParamsSetString(format, DM_IMAGE_COMPRESSION, DM_IMAGE_UNCOMPRESSED);
dmParamsSetEnum(format, DM_IMAGE_INTERLACING, DM_IMAGE_NONINTERLEAVED);
dmParamsSetEnum (format, DM_IMAGE_PACKING, DM_PACKING_RGBX);
dmParamsSetEnum (format, DM_IMAGE_ORIENTATION, DM_BOTTOM_TO_TOP);
dmParamsDestroy (format);

dmParamsGetStringArray() Returns a pointer to a value of type DMstringarray
for the given parameter

 dmParamsGetFloat() Returns a value of type double for the given
parameter

dmParamsGetFloatArray() Returns a pointer to a value of type DMfloatarray for
the given parameter

dmParamsGetFloatRange() Returns a pointer to a value of type DMfloatrange for
the given parameter

dmParamsGetFract() Returns a value of type DMfraction for the given
parameter

dmParamsGetFractArray() Returns a pointer to a value of type DMfractionarray
for the given parameter

dmParamsGetFractRange() Returns apointer to a value of type DMfractionrange
for the given parameter

dmParamsGetParams() Returns a pointer to a value of type DMparams for
the given parameter

dmParamsGetTocEntry() Returns a value of type DMTocEntry for the given
parameter

Table 2-7 (continued) DM Library Routines for Getting Parameter Values

Routine Purpose

Initializing a Digital Media Application

29

The following is equivalent:

DMparams* format;
dmParamsCreate (&format);
dmSetImageDefaults (format, 320, 240, DM_PACKING_RGBX);
dmParamsDestroy (format);

Manipulating Parameter-value Lists

This section explains how to manipulate parameter-value lists.

Table 2-8 lists the routines that perform operations on parameter-value lists
and the entries within them.

The sections that follow explain how to use each routine.

Determining the Number of Elements in a Parameter-value List

To perform any task that requires your application to loop through the
contents of a parameter-value list—for example, to print out a list of
parameters and their values—you need to know how many parameters are
in the list in order to set up a loop to step through the entries one-by-one.

Table 2-8 Routines for Manipulating Parameter-value Lists and Entries

Routine Purpose

dmParamsCopyAllElems() Copy the entire contents of one list to another

dmParamsCopyElem() Copy one parameter-value pair from one list to
another

dmParamsGetElem() Get the name of a given parameter

dmParamsGetElemType() Get the data type of a given parameter

dmParamsGetNumElems() Get the number of parameters in a list

dmParamsIsPresent() Determine if a given parameter is in the list

dmParamsRemoveElem() Remove a given parameter from the list

30

Chapter 2: Programming with the Digital Media Library

To get the total number of elements present in a parameter-value list, call
dmParamsGetNumElems(). Its function prototype is:

int dmParamsGetNumElems (DMparams* params)

The number of elements and their position in a list is guaranteed to remain
stable unless the list is changed by using one of the “set” functions, by
copying an element into it, or by removing an element from it.

Copying the Contents of One Parameter-value List into Another

To copy the entire contents of the fromParams list into the toParams list, call
dmParamsCopyAllElems(). Its function prototype is:

DMstatus dmParamsCopyAllElems (DMparams* fromParams,
 DMparams* toParams)

If there are any parameters of the same name in both lists, the corresponding
value(s) in the destination list are overwritten. DM_SUCCESS is returned if
there is enough memory to hold the copied data; otherwise, DM_FAILURE
is returned.

Copying an Individual Parameter Value from One List into Another

If a parameter appears in more than one parameter-value list, it is sometimes
more convenient to copy the individual parameter or group of parameters
from one list to another, rather than individually setting the parameter
value(s) for each list.

To copy the parameter-value pair for the parameter named paramName from
the fromParams list into the toParams list, call dmParamsCopyElem(). Its
function prototype is:

DMstatus dmParamsCopyElem (DMparamsfromParams,
 const char* paramName,
 DMparams* toParams)

If there is a preexisting parameter with the same name in the destination list,
that value is overwritten. DM_SUCCESS is returned if there is enough
memory to hold the copied element; otherwise, DM_FAILURE is returned.

Initializing a Digital Media Application

31

Determining the Name of a Given Parameter

To get the name of the entry occupying the position given by index in the
params list, call dmParamsGetElem(). Its function prototype is:

const char* dmParamsGetElem (DMparams* params, int index)

The index must be from 0 to one less than the number of elements in the list.

Determining the Data Type of a Given Parameter

To get the data type of the value occupying the position given by index in the
params list, call dmParamsGetElemType(). Its function prototype is:

DMparamtype dmParamsGetElemType (DMparams* params, int
index)

See Table 2-1 for a list of valid return values.

Determining if a Given Parameter Exists

To determine whether the element named paramName exists in the params
list, call dmParamsIsPresent(). Its function prototype is:

DMboolean dmParamsIsPresent (DMparams* params, const char* pa
ramName)

DM_TRUE is returned if paramName is in params; otherwise, DM_FALSE is
returned.

Removing an Element from a Parameter-value List

To remove the paramName entry from the params list, call
dmParamsRemoveElem(). Its function prototype is:

const char* dmParamsRemoveElem(DMparams* params, const
char* paramName)

The element named paramName must be present.

32

Chapter 2: Programming with the Digital Media Library

Example 2-5 prints the contents of a parameter-value list.

Example 2-5 Printing the Contents of a Digital Media Parameter-value List

void PrintParams(DMparams* params)
{
 int i;
 int numElems = dmParamsGetNumElems(params);

 for (i = 0; i < numElems; i++) {
 const char* name = dmParamsGetElem(params, i);
 DMparamtype type = dmParamsGetElemType(params, i);
 printf(" %20s: ", name);
 switch(type)
 {
 case DM_TYPE_ENUM:
 printf("%d", dmParamsGetEnum(params, name));
 break;
 case DM_TYPE_INT:
 printf("%d", dmParamsGetInt(params, name));
 break;
 case DM_TYPE_STRING:
 printf("%s", dmParamsGetString(params, name));
 break;
 case DM_TYPE_FLOAT:
 printf("%f", dmParamsGetFloat(params, name));
 break;
 case DM_TYPE_FRACTION:
 {
 DMfraction f = dmParamsGetFract(params, name);
 printf("%d/%d", f.numerator, f.denominator);
 }
 break;
 case DM_TYPE_PARAMS:
 printf("... param list ... ");
 break;
 case DM_TYPE_TOC_ENTRY:
 printf("... toc entry ...");
 break;
 default:
 assert(DM_FALSE);
 }
 printf("\n");
 }
}

Synchronizing Digital Media

33

Synchronizing Digital Media

Most digital media applications use more than one medium in conjunction,
for example, audio and video. Handling concurrent media streams requires
the ability to process coincident data. This section explains how the data can
be related to each other for the various IRIS digital media functions that
perform capture and presentation of data.

The Digital digital media libraries provide their own temporal reference,
called unadjusted system time (UST). The UST is an unsigned 64-bit number
that measures the number of nanoseconds since the system was booted. UST
values are guaranteed to be monotonically increasing and are readily
available for all the IRIS digital media libraries.

Typically, the UST is used as a timestamp, that is, it is paired with a specific
item or location in a digital media stream. Because each type of media, and
similarly each of the libraries, possess unique attributes, the UST
information is presented in a different manner in each library. Table 2-9
describes how UST information is provided by each of the libraries.

The DM Library routine, dmGetUST(), returns a high-resolution, unsigned
64-bit number to processes using the digital media subsystem. Typically, you
use the appropriate routine for the library that handles the type of media
being processed, as listed in Table 2-9, rather than dmGetUST(). However,
dmGetUST() is useful for correlating UST to system time for events that are
not related to a media stream, such as pushing a button or making a network
connection.

Table 2-9 Methods for Obtaining Unadjusted System Time

Library UST Method

Digital Media Library dmGetUST()

Audio Library ALgetframenumber() and ALgetframetime()

MIDI Library mdTell() and mdSetTimestampMode()

Video Library ustime field in the DMediaInfo structure

Compression Library ustime field in the CLimageInfo structure

34

Chapter 2: Programming with the Digital Media Library

Chapter 1

PART TWO

Digital Audio and MIDI Programming II

Chapter 3, “Introduction to Digital Audio and MIDI Programming,”
introduces the digital audio and MIDI libraries.

Chapter 4, “Digital Audio System Architecture,”
gives a brief overview of the audio hardware and provides some
recommendations for development configurations.

Chapter 5, “Digital Audio System Software,” describes the audio application
programming environment and explains how audio resources are shared.

Chapter 6, “Programming with the Audio Library,”
describes the structure of the Audio Library and explains how to use it to sample
audio data from analog or digital input sources. Real-time programming
techniques are also discussed.

Chapter 7, “Programming with the Audio File Library,”
describes the structure of the Audio File Library and explains how to use it to
read and write audio files.

Chapter 8, “Programming with the CD Audio Library,”
describes the CD Audio Library and explains how to use it to control the
CD-ROM drive for playing and sampling audio from audio compact discs.

Chapter 9, “Programming with the DAT Audio Library,”
describes the DAT Audio Library and explains how to use it to control the DAT
drive for playing, sampling, and recording audio from digital audio tape.

Chapter 10, “Programming with the MIDI Library,”
describes connecting MIDI equipment and describes the MIDI Library,
explaining how to use it for implementing and multiplexing MIDI I/O, and
synchronizing MIDI and audio.

This chapter outlines the features of
the digital audio system and
describes the audio I/O interface.

Introduction to Digital Audio
and MIDI Programming

Chapter 3

39

Chapter 3

3. Introduction to Digital Audio and MIDI
Programming

Silicon Graphics offers a collection of libraries designed for developers of
digital audio and MIDI software, as well as those seeking to integrate audio
into their existing applications.

Part II, “Digital Audio and MIDI Programming,” describes in detail the
application programming interfaces (APIs) for these libraries, which are
included in the IRIS Digital Media Development Environment:

• Audio Library (libaudio.a)

• Audio File Library (libaudiofile.so)

• Audio Utility Library (libaudioutil.so)

• CD Audio Library (libcdaudio.a)

• DAT Audio Library (libdataudio.a)

• MIDI Library (libmd.so)

Each chapter presents the digital audio and MIDI libraries from a task-
oriented perspective. Chapters are organized to cover topics in roughly the
order you are concerned about them as you write audio or MIDI programs.
To illustrate the use of the various component libraries, sample code
fragments and demonstration programs are used throughout.

Digital audio programs typically access analog or digitally recorded sound
data that is either input directly to the workstation audio hardware or stored
on disk, digital audio tape, or CD. The application then manipulates the data
and outputs the result to analog or digital line-out jacks, to disk, or to tape.
MIDI programs read, process, and produce MIDI data streams, which are in
turn interpreted by MIDI devices such as synthesizers and drum machines
that are distributed across a MIDI network. The libraries described in this
part of this guide provide all the necessary features to create audio and MIDI
applications for Silicon Graphics workstations that support audio.

40

Chapter 3: Introduction to Digital Audio and MIDI Programming

Reference documentation on the digital audio and MIDI routines is
contained in online reference pages. These provide a concise, thorough
description of each library function and are available through the use of the
man or Xman command.

This guide assumes that you’re somewhat familiar with principles of digital
audio and MIDI. This section lists additional references that cover
background material and topics beyond the scope of this part.

Although some background material is provided in the chapters on digital
audio and MIDI, you may want to do some more in-depth reading. The
following texts may provide useful supplementary information:

• AES, Journal of the Audio Engineering Society, edited by Daniel R. von
Recklinghausen, Audio Engineering Society.

• The Art of Digital Audio, by John Watkinson, Focal Press, 1988.

• Computer Music Journal, edited by Steven Travis Pope, MIT Press.

• Elements of Computer Music, F. Richard Moore, Prentice-Hall, 1990.

• MIDI Sequencing for Musicians, compiled by the staff of Keyboard
Magazine, H. Leonard Publishing Corp., 1989.

• MIDI Sequencing in C, by Jim Conger, M & T Books, 1989.

• MIDI 1.0 Detailed Specification and Standard MIDI Files 1.0, International
MIDI Association, 5316 W. 57th St., Los Angeles, CA 90056.

• Music Through MIDI, by Michael Boom, Microsoft Press, 1991.

• Musical Applications of Microprocessors, by Hal Chamberlin, Hayden
Books, 1985.

If you plan on using the MIDI C++ classes, you may want to use the
following books as references:

• The Annotated C++ Reference Manual, by Margaret Ellis and Bjarne
Stroustrup, AT&T Bell Laboratories, 1990—the official C++ language
reference manual.

• C++ Primer, by Stanley Lippman, AT&T Bell Laboratories, 1989—An
introductory-level, tutorial-style presentation of C++.

• The C++ Programming Guide—an online manual provided with the
Silicon Graphics C++ library.

This chapter outlines the features of
the digital audio system and
describes the audio I/O interface.

Digital Audio System Architecture

Chapter 4

43

Chapter 4

4. Digital Audio System Architecture

Before you start to program, you should familiarize yourself with your
workstation’s audio hardware and the peripherals with which you will be
working. This chapter describes the audio capabilities and the audio I/O
interfaces available on IRIS Indigo, Indigo2, and Indy workstations. This
chapter also provides recommendations for minimal and optimal
configurations of memory, hard disk, and other peripherals useful for audio
development and testing.

See Appendix A, “Audio Specifications,” and your workstation owner’s
guide for complete details on audio hardware features. See the online release
notes for audiodev, the audio development environment of the IRIS Media
Libraries, for information about system software requirements.

Indigo Audio System Architecture

The standard audio hardware supplied with Indigo workstations supports
24-bit digital stereo and 16-bit analog stereo sound. A dedicated real-time
processor works in tandem with the CPU to ensure that audio timing isn’t
degraded by other system demands.

Indigo Audio Features

Indigo audio features include:

• built-in speaker

• stereo line-level analog input and output

• stereo headphone output

• microphone input with phantom power

• AES/EBU digital audio input and output

44

Chapter 4: Digital Audio System Architecture

• sampling rates include 8000, 11025, 16000, 22050, 32000, 44100, and
48000 Hz.

• independent input and output rates

• output rate can be synchronized to the digital input rate

• low-latency operation for highly interactive applications

Indigo Audio I/O Interface

The audio hardware interface on the back panel of Indigo workstations
includes these 3.5-mm audio input and output jacks, which are labeled with
icons (see Figure 4-1):

• monaural microphone input jack for mic-level audio input

• stereo line-level input (line in) jack for analog audio input from a tape
deck, CD player, or similar source

• stereo line-level output (line out) jack for analog audio output, for
example, to a tape deck or amplifier

• stereo headphone output jack

• stereo digital I/O jack for digital audio input and output

An internal switching mechanism selects one active input source from the
three available inputs. All three outputs are always enabled; each transmits
a copy of the same output signal, but the volume is adjusted on the
headphone/speaker output. Using the headphone jack preempts output to
the internal speaker, which normally outputs the sum of the left and right
signals.

Digital input and output signals are simultaneously transmitted over a
stereo cable. The Audio Engineering Society (AES) standard supports mono
and stereo streams of 20-bit or 24-bit samples. Each of the digital input and
output streams contains two interleaved channels (left and right) of audio
samples.

Figure 4-1 Audio Icons

Indigo Audio System Architecture

45

Figure 4-2 shows the location of the audio jacks on the back panel of the
Indigo workstation.

Figure 4-2 Audio Jacks on the Back Panel of the Indigo Workstation

O

46

Chapter 4: Digital Audio System Architecture

Indigo2 and Indy Audio System Architecture

The audio hardware supplied standard with the Indigo2 and Indy
workstations provides the same basic audio capabilities as that of the Indigo
workstation, plus:

• stereo microphone input

• 4-channel mode that supports full-speed, simultaneous 4-channel
analog input and 4-channel analog output

Indigo2 and Indy Audio I/O Interface

The audio hardware interface on Indigo2 and Indy workstations includes
these 3.5-mm audio input and output jacks (see Figure 4-3 for the Indigo2

back panel layout, and Figure 4-5 for the Indy back panel layout):

• microphone/line-in2 jack for mono and stereo mic-level audio input

• stereo line-in jack for analog audio input from a tape deck, CD player,
or similar source

• stereo line-out jack for analog audio output, for example, to a tape deck
or amplifier

• stereo headphone/line-out2 output jack

• stereo digital in/out jack for digital audio input and output

As in the Indigo workstation, all three outputs are enabled, and an internal
switching mechanism selects one active input source from the three
available inputs. In addition, a software-controllable internal switching
mechanism permits 4-channel audio I/O through the standard I/O
interface. See “4-channel Audio I/O Interface” on page 49 for details on
4-channel audio.

Indigo2 and Indy Audio System Architecture

47

Figure 4-3 shows the location of the audio jacks on the back panel of the
Indigo2 workstation.

Figure 4-3 Audio Jacks on the Back Panel of the Indigo2 Workstation

Indy Workstation Layout

The Indy workstation features a slightly different layout for its audio I/O
interface. Two triangular pushbuttons on the front of the Indy workstation
let you adjust the volume of the internal speaker/headphone output up or
down, as desired. Pressing both buttons at the same time mutes the speaker/
headphone output.

DIGITAL

48

Chapter 4: Digital Audio System Architecture

Figure 4-4 shows the volume control buttons on the front of the Indy
workstation.

Figure 4-4 Volume Control Buttons on the Front of the Indy Workstation

Figure 4-5 shows the location of the audio jacks on the back panel of the Indy
workstation.

Figure 4-5 Audio Jacks on the Back Panel of the Indy Workstation

Power button

Volume buttons

Reset button

Headphone output

Microphone input

Line input

Line output Digital input/output

Indigo2 and Indy Audio System Architecture

49

4-channel Audio I/O Interface

A software-controllable internal switching mechanism permits 4-channel
audio I/O through the standard I/O interface. When a system is operating
in 4-channel mode, the electrical properties of the microphone jack can be
configured to accept either line-level or mic-level input, and the electrical
properties of the headphone jack can be configured to produce line-level
output.

Figure 4-6 shows an Indy workstation cabling setup for 4-channel audio.

Figure 4-6 Cabling Setup for 4-channel Audio on the Indy Workstation

L2

R2

L1

R1

Output

Input

L2

R2

L1

R1

Input

Output

50

Chapter 4: Digital Audio System Architecture

Cables like the ones shown in Figure 4-6 can be purchased from audio
accessory dealers. One end of the cable has 3.5-mm audio plugs that plug
into the Indigo2 or Indy workstation jacks; the other end independently
terminates each of the two independent signals with RCA phono plugs.

Note: Do not confuse these cables with “Y” connectors that route the same
signal to multiple connections.

When the system is configured (either from apanel or from the Audio
Library) to use 4-channel mode, (L1, R1) samples are input to the line-in jack
and (L2, R2) samples are input to the microphone/line-in2 jack. Similarly, in
4-channel mode, (L1, R1) samples are output from the line-out jack, and (L2,
R2) samples are output from the headphone/line-out2 jack.

Recommendations for Audio Development System Configurations

The primary considerations in setting up your system for digital audio
software development are memory and disk space. Because of the large sizes
of audio sample files, disk space in particular is crucial.

Memory

A minimum of 32 MB is recommended for digital audio development. The
more memory installed, the more responsive your workstation will be when
handling large amounts of sample data, as well as during compilation.

Disk Space

Be sure to allow an adequate amount of disk space. These statistics should
help give you an idea of the kind of disk space required for your application:

• mono 8-bit, CCITT/TSB G.711 µ-law encoded 8 kHz (speech quality)
audio = 8 kBytes/sec

• mono 16-bit (15-bit range, 14-bit resolution), CCITT/TSB G.722
compressed 16 kHz (high-quality speech with more computationally
expensive compression) audio = 8 kBytes/sec

Recommendations for Audio Development System Configurations

51

• stereo 16-bit 44.1 kHz (CD-quality digitized analog input) audio =
176 kBytes/sec

• stereo 24-bit 48 kHz (highest-quality digital, 4-byte word) audio =
384 kBytes/sec

• 4-channel 16-bit 44.1 kHz (CD-quality digitized analog input) audio =
352 kBytes/sec

• 4-channel 24-bit 48 kHz (highest-quality digital, 4-byte word) audio =
768 kBytes/sec

A minimum of 600 MB is suggested; 800 MB or more is recommended,
especially if your development work involves storing large amounts of high-
quality sample data on disk.

Peripherals

If you do not already have a CD-ROM drive, you may want to purchase one.
Prosonus , Aware , Inc., and other companies supply CD-ROM libraries of
audio sample data (see “Third-party Audio Software and Sound Libraries”
in Chapter 5 for information on ordering these CD-ROM libraries). You can
also use the drive for sampling from audio CDs (obtain permission before
using copyrighted material).

A DAT drive is recommended both for general data archiving and for
transferring audio from hard disk.

52

Chapter 4: Digital Audio System Architecture

This chapter describes the digital
audio system software features and
explains shared audio resources.

Digital Audio System Software

Chapter 5

55

Chapter 5

5. Digital Audio System Software

This chapter describes the components of the digital audio system software:
digital audio libraries, device drivers, and system-wide resources, and
explains how these components interact. This chapter also describes other
resources available to application developers, such as end-user audio tools,
third-party audio software and sound libraries, and sample programs.

Digital Audio System Software Overview

Figure 5-1 diagrams the interaction between an audio application and the
audio libraries, the device drivers, the IRIX file system, the audio hardware,
and the optional SCSI devices.

Figure 5-1 Interaction of Digital Audio System Components

Audio Library

Audio
application

Audio driver

libaudio

SCSI
DAT drive

Audio File Library
libaudiofile

libaudioutil

IRIX file system SCSI drivers

Audio hardware
SCSI

CD-ROM drive

CD Audio Library
libcdaudio

DAT Audio Library
libdataudio

56

Chapter 5: Digital Audio System Software

About the Digital Audio Libraries

The digital audio libraries can be used separately or in combination. Each
library is tailored to a particular set of tasks, as follows:

Audio Library provides an API for configuring the audio system,
managing audio I/O between the application program
and the audio hardware, specifying attributes of digital
audio data, and facilitating real-time programming. See
Chapter 6, “Programming with the Audio Library.”

Audio File Library provides an API for reading and writing two standard
digital audio file formats, AIFF and AIFF-C. See
Chapter 7, “Programming with the Audio File Library.”

CD Audio Library provides an API for optional Silicon Graphics SCSI CD-
ROM drives. The drive features a special mode that
allows it to read audio CD format as well as CD-ROM
format. See Chapter 8, “Programming with the CD
Audio Library.”

DAT Audio
Library

provides an API for optional Silicon Graphics SCSI
DAT drives. See Chapter 9, “Programming with the
DAT Audio Library.”

Digital Audio System Software Overview

57

About Shared System-Wide Resources

Audio applications share CPU resources with other processes, and they
share audio resources with other audio applications running concurrently.

How Audio Applications Share CPU Resources

CPU resources are managed by the IRIX kernel, which gives some resources
higher priority than others. Programming style can affect CPU usage, so to
get the best performance from your application, use native data formats
whenever possible (to avoid internal conversion), and free system resources
as soon as they are no longer needed (see the individual chapters on each
library for details). You can also request exclusive resources or upgrade the
priority of your application by using the special IRIX real-time
programming techniques described in “Real-time Programming Techniques
for Audio” in Chapter 6.

How Audio Applications Share Audio System Resources

Figure 5-2 shows how the IRIS audio utilities apanel, soundeditor, and
soundfiler share the system’s audio resources. Similarly, your audio
application must share the audio resources with other audio applications
running concurrently.

How Outputs from Multiple Audio Applications Are Combined

In Figure 5-2, three audio applications are running simultaneously. A
recording engineer is using soundeditor to combine live input from a
microphone with a prerecorded sound file stored on the disk. She is using
apanel to monitor the input level and soundfiler to audition sound files
through her headphones.

Note that while the input is selected from among three possible inputs, all of
the outputs are added together and clipped to generate the final output,
which is presented to all three outputs. This means that an audio application
is responsible for determining if other audio applications are running
concurrently, and limiting its output signal accordingly to avoid
unnecessary clipping.

58

Chapter 5: Digital Audio System Software

Figure 5-2 shows how the IRIS audio utilities apanel, soundeditor, and
soundfiler share the system’s audio resources.

Figure 5-2 Audio Data Flow

+Monitor

Audio device driver

Audio hardware

Mic Line in Line out DigitalHeadphones

Internal
speaker

Digital

44.1kHz

44.1kHz44.1kHz

44.1kHz

44.1 kHz44.1 kHz

Sound Filer: 1 outputAudio Panel: 1 input (monitor) Sound Editor: 1 input, 1 output

Digital Audio System Software Overview

59

How Global Audio Settings Are Established and Maintained

The system-wide digital audio hardware and software settings are
initialized to reasonable defaults when the system is powered on and
whenever it is rebooted.

In Figure 5-2, the input rate and output rate are set at 44.1 kHz and remain
fixed unless changed from apanel. soundfiler and soundeditor both allow the
user to control the volume from apanel. soundfiler changes the input and
output rates when needed, and soundeditor has the ability to change the rates
but asks for confirmation before making any changes.

The values of the global audio settings are known collectively as the audio
system state. Certain audio settings can be initialized and modified in
software. The AL has routines for querying which elements of state can be
controlled by software, and for getting and setting the values of the global
state parameters. It is good programming practice to query for the existence
of other audio processes before changing global settings.

Programming Guidelines for Managing System-Wide Resources

Keep these guidelines in mind when writing audio applications:

• Determine the availability of special features before attempting to use
them.

• Monitor the existence of concurrent audio applications and process
output accordingly.

• Manage system-wide settings that rely on personal preference, such as
volume, through a global audio control program such as apanel;
otherwise, query for the existence of other audio processes before
changing settings such as data rates that can affect other applications.

• Manage memory allocation for efficient use of system-wide resources.

60

Chapter 5: Digital Audio System Software

Tools Available for the Audio Application Developer

This section describes additional tools that you may find helpful for
developing audio applications.

Graphical User Interface Audio Tools

End-user audio tools are provided for playing, recording, and manipulating
digital audio signals. These audio tools were created using the digital audio
libraries and therefore support AIFF and AIFF-C file formats. These tools are
provided as part of the standard system software and feature online help.

See the Media Control Panels User’s Guide for a complete description of these
tools:

apanel the audio control panel for selecting inputs, input and
output levels, and sampling rates

cdman for playing audio CDs on a CD-ROM through your
workstation’s audio outputs, and for recording CD audio
tracks to disk

datman for playing and recording digital audio tapes using the
optional internal DAT drive, and for recording DAT audio
tracks to disk

soundeditor a simple editor for viewing, manipulating, and combining
multiple tracks of recorded samples, as live input or from a
sound file

soundfiler an audio file librarian for organizing and previewing
sample sound files and converting between different sound
file formats

In addition, the system Toolchest contains a tool for performing confidence
tests on system components, including the audio system, and the CD-ROM
and DAT drives. See the owner’s guide for your workstation for more
information about confidence tests.

Tools Available for the Audio Application Developer

61

Online Source Code Examples

Source code examples are located online in /usr/people/4Dgifts/examples/
dmedia, in directories labeled audio, cd+dat, dmplay, dmrecord, and midi.
README files in these directories explain how to use and compile these
programs. When a program from one of these directories is included in this
guide, it is referred to as the 4Dgifts programname.c program. Because the
online source for these programs can get updated more frequently than the
printed version of this guide, you should consider the online source code as
the most recent version if there is a discrepancy between them.

Third-party Audio Software and Sound Libraries

This section describes third-party audio software and libraries that are made
available to the developer as part of the IRIS digital media libraries. Contact
the companies directly for licensing and use rights.

Aware Audio Compression Software and Audio Products

Aware, Inc. scalable audio compression software is provided with the and
can be accessed from Audio File Library routines or Compression Library
routines. Two Aware codecs (compressor-decompressors) that provide ISO/
MPEG and Aware MultiRate™ lossless and near-lossless compression are
built into the Audio File Library as compression parameters, and additional
Aware audio compression software can be accessed through other
parameters in the Audio File and Compression Libraries. Aware also offers
other licensable audio products and a CD-ROM library; see Appendix B,
“Aware Scalable Audio Compression Software,” for details.

For more information about Aware products, contact Aware at:

Aware, Inc.
One Memorial Drive
Cambridge, MA 02142
Phone: (617) 577-1700
Fax: (617) 577-1710
Email: sales@aware.com

62

Chapter 5: Digital Audio System Software

The Prosonus Sound Library

The Prosonus Sound Library, which is included with the end user media
tools, contains more than 10 MB of professional quality music and sound
samples. These files are located in /usr/lib/sounds/prosonus, and they
represent a small subset of the music, sound effects, and instrument samples
created by Prosonus. All included files are sampled at 44.1 kHz and stored
in AIFF format. The complete Prosonus Sound Library is separately
available on CD-ROM from Prosonus.

For more information about Prosonus products, contact Prosonus at:

Prosonus
11126 Weddington Street
North Hollywood, CA 91601
Phone: (800) 999-6191 or (818) 766-5221
Fax: (818) 766-6098

Prosonus files are license-free when used in private presentations. They may
be shared via NFS with other Silicon Graphics computers but may not be
copied to other systems. If you intend to ship the Prosonus files with a
product intended for resale or broadcast, copyrights and royalties may
apply. Please contact Prosonus for questions concerning licensing and resale
of Prosonus files.

Compiling and Linking an Audio Application

This section lists compiling and linking commands for digital audio and
MIDI programs.

To compile an Audio Library program, enter:

cc –g ALsample.c -o ALsample –laudio

To compile an Audio File Library program, enter:

cc –g AFLsample.c -o AFLsample –laudiofile -laudioutil -lm

Compiling and Linking an Audio Application

63

The Audio File Library also requires linking with libm.a, the math library,
and with libaudioutil.so, the Audio Utility Library.

To compile a CD Audio Library program, enter:

cc –g CDsample.c -o CDsample –lcdaudio -lds -libmediad

The CD Audio Library also requires linking with libds.a, the SCSI device
library and libmediad, the media library daemon.

To compile a DAT Audio Library program, enter:

cc –g DATsample.c -o DATsample –ldataudio

Programs making use of more than one of these libraries must link to all of
the ones they use (the linking order is often specific):

cc –g prog.c -o prog –laudio -laudiofile -lcdaudio -lds -libmediad

Depending on the application you are writing, you may also have to link
with other libraries such as the GL shared library, the math library, and the
C shared library. You can use fast malloc() routines by including malloc.h and
linking with libmalloc.a.

The audio and MIDI libraries are compatible with both ANSI C and the
standard C. To compile code that is not ANSI-compliant, add –cckr to the
command line.

64

Chapter 5: Digital Audio System Software

This chapter begins by presenting
basic digital audio concepts. It
describes the Audio Library (AL)
programming model and how to use
the AL for audio I/O, and then it
discusses how to apply real-time
programming techniques to audio
applications.

Programming with the Audio Library

Chapter 6

67

Chapter 6

6. Programming with the Audio Library

The Audio Library (AL) provides a uniform application programming
interface (API) for audio input to and output from Silicon Graphics
workstations that feature high-quality digital audio systems.

The AL comprises routines that provide these basic capabilities:

• creating digital audio input and output connections

• reading and writing digital audio data

• querying and controlling digital audio data attributes

• querying and controlling the configuration of the audio system

• handling errors

In this chapter:

• “Audio Library Basics” on page 68 discusses fundamental audio
concepts and explains the features, programming model, error handler,
and audio sampling methods of the Audio Library.

• “Initializing an Audio Library Application” on page 74 explains how to
create and configure audio ports.

• “Reading and Writing Audio Data” on page 90 explains how to read
and write audio samples.

• “Querying and Controlling the Global Audio Device State” on page 98
explains how to query and set global audio parameters.

• “Audio Library Synchronization Facilities” on page 112 explains how to
synchronize audio ports with one another and with other media.

• “Real-time Programming Techniques for Audio” on page 119 explains
how to use IRIX real-time programming facilities in conjunction with
AL routines for providing optimal audio performance.

68

Chapter 6: Programming with the Audio Library

Audio Library Basics

This section discusses the basic concepts and data structures used by the
AL— with particular attention devoted to the programming model, sample
data formats, error handling, and programming concepts.

Audio Library Features

Features of the AL include:

• Binary compatibility—AL programs written on one Silicon Graphics
workstation equipped with an audio system are executable on other
audio-equipped workstations across the product line.

• Shared audio resources—more than one audio application can be active
at a time, and multiple programs can have input and output streams
open concurrently.

• Real-time performance—a special group of AL functions useful
specifically for writing real-time code.

Audio Library Programming Model

The AL programming model has two basic objects:

Audio device The audio hardware used by the AL, which is shared among
audio applications. The audio device contains settings
pertaining to the configuration of both the internal audio
system and the external electrical connections.

ALport A one-way (input or output) audio data connection
between an application program and the host audio system.
An ALport contains:

• an audio sample queue, which stores audio samples
awaiting input or output

• settings pertaining to the attributes of the digital audio
data it transports

Audio Library Basics

69

Some of the settings of an ALport are static; they cannot be
changed once the ALport has been opened. Other settings
are dynamic; they can be changed while an ALport is open.

ALconfig An opaque data structure for configuring these settings of
an ALport:

• audio device (static setting)

• size of the audio sample queue (static setting)

• number of channels (static setting)

• format of the sample data (dynamic setting)

• width of the sample data (dynamic setting)

• range of floating point sample data (dynamic setting)

Digital Audio Data Representation

The digital representation of an audio signal is generated by periodically
sampling the amplitude (voltage) of the audio signal. The samples represent
periodic “snapshots” of the signal amplitude. The Nyquist Theorem
provides a way of determining the minimum sampling frequency required
to accurately represent the information (in a given bandwidth) contained in
an analog signal. Typically, digital audio information is sampled at a
frequency that is at least double the highest interesting analog audio
frequency. See The Art of Digital Audio or a similar reference on digital audio
for more information.

Digital Audio Sample Rates

The sample rate is the frequency at which samples are taken from the analog
signal. Sample rates are measured in hertz (Hz). A sample rate of 1 Hz is
equal to one sample per second. For example, when a mono analog audio
signal is digitized at a 48 kilohertz (kHz) sample rate, 48,000 digital samples
are generated for every second of the signal.

To understand how the sample rate relates to sound quality, consider the fact
that a telephone transmits voice-quality audio in a frequency range of about
320 Hz to 3.2 kHz. This frequency range can be represented accurately with

70

Chapter 6: Programming with the Audio Library

a sample rate of 6.4 kHz. The range of human hearing, however, extends up
to approximately 18–20 kHz, requiring a sample rate of at least 40 kHz.

The sample rate used for music-quality audio, such as the digital data stored
on audio CDs is 44.1 kHz. A 44.1 kHz digital signal can theoretically
represent audio frequencies from 0 kHz to 22.05 kHz, which adequately
represents sounds within the range of normal human hearing. The most
common sample rates used for DATs are 44.1 kHz and 48 kHz. Higher
sample rates result in higher-quality digital signals; however, the higher the
sample rate, the greater the signal storage requirement.

Digital Audio Sample Frames

A sample frame is a set of audio samples that are coincident in time. A sample
frame for mono data is a single sample. A sample frame for stereo data
consists of a left-right sample pair. A sample frame for 4-channel data has
two left-right sample pairs (L1, R1, L2, R2).

Stereo samples are interleaved; left-channel samples alternate with right-
channel samples. 4-channel samples are also interleaved, but each frame has
two left-right sample pairs.

Figure 6-1 shows the relationship between the number of channels and the
frame size of audio sample data.

Figure 6-1 Audio Samples and Frames

L1 R1 L2 R2

L RLR

1-channel data

2-channel data

4-channel data

Frame

Frame

Frame

Audio Library Basics

71

Digital Audio Sample Formats

The AL uses a digital data format called linear pulse code modulation (PCM)
(see the audio references for a definition of this term) to represent digital
audio samples.

The formats supported by the AL and the audio system are:

• 8-bit and 16-bit signed integer

• 24-bit signed, right-justified within a 32-bit integer

• 32-bit and 64-bit floating point

Note: The audio hardware supports 16-bit I/O for analog data and 24-bit
I/O for AES/EBU digital data.

For floating point data, the application program specifies the desired range
of values for the samples; for example, from −1.0 to 1.0.

Digital Audio Input and Output Sample Resolutions

The native data format used by the audio hardware is 24-bit two’s
complement integers. The audio hardware sign-extends each 24-bit quantity
into a 32-bit word before delivering the samples to the Audio Library.

Audio input samples delivered to the Audio Library from the Indigo,
Indigo2, and Indy audio hardware have different levels of resolution,
depending on the input source that is currently active; the AL provides
samples to the application at the desired resolution. You can also write your
own conversion routine if desired.

Microphone/line-level input samples come from analog-to-digital (A/D)
converters, which have 16-bit resolution. These samples are treated as 24-bit
samples with 0’s in the low 8 bits.

AES/EBU digital input samples have either 20-bit or 24-bit resolution,
depending on the device that is connected to the digital input; for the 20-bit
case (the most common), samples are treated as 24-bit samples, with 0’s in
the least significant 4 bits. The AL passes these samples through to the
application if 24-bit two’s complement is specified. If two’s complement
with 8-bit or 16-bit resolution is specified, the AL right-shifts the samples so

72

Chapter 6: Programming with the Audio Library

that they will fit into a smaller word size. For floating point data, the AL
converts from the 24-bit format to floating point, using a scale factor
specified by the application to map the peak integer values to peak float
values.

For audio output, the AL delivers samples to the audio hardware as 24-bit
quantities sign-extended to fill 32-bit words. The actual resolution of the
samples from a given output port depends on the application program
connected to the port. For example, an application may open a 16-bit output
port, in which case the 24-bit samples arriving at the audio processor will
contain 0’s in their least significant 8 bits.

The Audio Library is responsible for converting between the output sample
format specified by an application and the 24-bit native format of the audio
hardware. For 8-bit or 16-bit integer samples, this conversion is
accomplished by left-shifting each sample written to the output port by 16
bits and 8 bits, respectively. For 32-bit or 64-bit floating point samples, this
con version is accomplished by rescaling each sample from the range of
floating point values that is specified by the application to the full 24-bit
range and then rounding the sample to the nearest integer value.

Handling Audio Library Errors

This section describes techniques for error handling in AL applications.

When the AL encounters an error, it:

1. Checks to see whether an error handler is set, and if so, calls the
specified routine.

2. Sets an error code, and returns a failure from the function call.

The default error handler prints a message to stderr. Although these error
messages may be helpful for debugging during the development phase, you
should turn off the default error handler in order to provide more effective
error handling by using the IRIX oserror(3C) system call to retrieve function
return codes.

Audio Library Basics

73

To turn off the default error handler, call ALseterrorhandler(). Its function
prototype is:

ALerrfunc ALseterrorhandler (ALerrfunc efunc)

where:

efunc is a pointer to an alternate error-handling routine of type
ALerrfunc that is declared as:

void errorfunc (long arg1, const char* arg2, [args])

Substituting zero for efunc turns off the error handler.

Most AL routines set error codes when they fail. Throughout this guide, the
return values and relevant error codes are listed along with the description
of each routine. You can retrieve these error codes by calling oserror(3C).
Based on these return codes, programs can adapt or recover, and/or alert the
user by displaying a dialog box type of notifier or by printing information to
the shell window from which the application was launched.

Audio Library Application Programming Concepts

Typically, your AL program must:

• initialize data structures

• set up buffers for passing data between your application and the CPU

• query for available features

• configure and open audio connections

• pass data to and from the ALport and operate on that data

• process errors

• close audio connections

• free system resources

The sections that follow explain these concepts in detail.

74

Chapter 6: Programming with the Audio Library

Initializing an Audio Library Application

To enable audio input and output, your application must create and
configure the required audio I/O connections. This section describes how to
set up and use the AL data structures that provide audio I/O capability.

About ALports

The AL provides an opaque data structure called an ALport for audio I/O
connections. An ALport provides a one-way (input or output) mono, stereo,
or 4-channel audio data connection between an application program and the
host audio system. More than one ALport can be opened by the same
application; the number of ALports that can be active at the same time
depends on the hardware and software configurations you are using.

An ALport consists of a sample queue and static and dynamic state
information. For audio input, the hardware places audio samples in an input
port’s queue at a constant rate, and your application program reads the
samples from the queue. Similarly, for audio output, your application writes
audio samples to an output port’s queue, and the audio hardware removes
the samples from the queue. A minimum of two ALports are necessary to
provide input and output capability for an audio application.

Using ALconfig Structures to Configure ALports

You can open an ALport with the default configuration or you can customize
an ALconfig for configuring an ALport suited to your application needs.

The default ALconfig has:

• a buffer size of 100,000 samples

• stereo data

• a two’s complement sample format

• a 16-bit sample width

These settings provide an ALport that is compatible with CD- and DAT-
quality data, but if your application requires different settings, you must

Initializing an Audio Library Application

75

create an ALconfig with the proper settings before opening a port. The
device, channel, and queue-size settings for an ALport are static—they
cannot be changed after the port has been opened.

The steps involved in configuring and opening an ALport are listed below,
followed by a sample code fragment that illustrates each of these steps. The
sample program is followed by subsections that describe these concepts
more fully and explain the use of each routine listed here.

1. Turn off the default error handler by passing a 0 to
ALseterrorhandler().

2. If the default ALconfig settings are satisfactory, you can simply open a
default ALport by using 0 for the configuration in the ALopenport()
routine; otherwise, create a new ALconfig by calling ALnewconfig().

3. If nondefault values are needed for any of the ALconfig settings, set the
desired values as follows:

■ Call ALsetchannels() to change the number of channels (page 77).

■ Call ALsetqueuesize() to change the sample queue size (page 79).

■ Call ALsetsampfmt() to change the sample data format (page 80).

■ Call ALsetwidth() to change the sample data width (page 82).

■ Call ALsetfloatmax() to set the maximum amplitude of floating
point data (not necessary for integer data formats) (page 84).

4. Open an ALport by passing the ALconfig to the ALopenport() routine.

5. Create additional ALports with the same settings by using the same
ALconfig to open as many ports as are needed.

76

Chapter 6: Programming with the Audio Library

Example 6-1 demonstrates how to configure and open an output ALport
that accepts floating point mono samples.

Example 6-1 Configuring and Opening an ALport

ALconfig audioconfig;
ALport audioport;
int err;

void audioinit /* Configure an audio port */
{
ALseterrorhandler(0);
audioconfig = ALnewconfig();

ALsetsampfmt(audioconfig, AL_SAMPFMT_FLOAT);
ALsetfloatmax(audioconfig, 10.0);
ALsetqueuesize(audioconfig, 44100);
ALsetchannels(audioconfig,AL_MONO);

audioport = ALopenport("surreal","w",audioconfig);
if (audioport == (ALport) 0) {
 err = oserror();
 if (err == AL_BAD_NO_PORTS) {
 fprintf(stderr, " System is out of audio ports\n");
 } else if (err == AL_BAD_DEVICE_ACCESS) {
 fprintf(stderr, " Couldn’t access audio device\n");
 } else if (err == AL_BAD_OUT_OF_MEM) {
 fprintf(stderr, " Out of memory\n");
 }
 exit(1);
}

The sections that follow explain how to use ALconfigs in greater detail.

Creating a New ALconfig

To create a new ALconfig structure that is initialized to the default settings,
call ALnewconfig(). Its function prototype is:

ALconfig ALnewconfig (void)

The ALconfig that is returned can be used to open a default ALport, or you
can modify its settings to create the configuration you need. In Example 6-1,

Initializing an Audio Library Application

77

the channel, queue size, sample format, and floating point data range
settings of an ALconfig named audioconfig are changed.

ALnewconfig() returns an ALconfig structure upon successful completion;
otherwise, it returns 0 and sets an error code that you can retrieve by calling
oserror(3C). Possible errors include:

Setting and Getting the Number of Channels for an ALconfig

An ALport can be configured for one, two, or four audio channels. The
channel setting remains in effect as long as the port is open.

Note: Configuring an ALport to use four channels does not depend on the
hardware configuration of the system on which the application is running.
See “Querying and Controlling the Global Audio Device State” on page 98
for information on configuring the hardware for 4-channel mode.

To set the number of channels for an ALconfig structure, call
ALsetchannels(). Its function prototype is:

int ALsetchannels (ALconfig config, long channels)

where:

config is the ALconfig for which you want to set the channels

channels is the number of channels to configure: 1, 2, or 4

Any ALport that you open with this config will have the number of channels
that you set in channels.

ALsetchannels() returns 0 upon successful completion; otherwise, it returns
−1 and sets an error code that you can retrieve by calling oserror(3C). Possible
errors include:

AL_BAD_OUT_OF_MEM insufficient memory available to allocate
the ALconfig structure

AL_BAD_CONFIG config is either invalid or null

AL_BAD_CHANNELS channels is not 1, 2, or 4

78

Chapter 6: Programming with the Audio Library

To retrieve the channel setting of a given ALconfig structure, call
ALgetchannels(). Its function prototype is:

long ALgetchannels (ALconfig config)

where:

config is the ALconfig structure being queried

ALgetchannels() returns the channel setting of config, upon successful
completion; otherwise, it returns −1 and sets an error code that you can
retrieve by calling oserror(3C). Possible errors include:

Setting and Getting the Sample Queue Size for an ALconfig

Selecting the proper size for the sample queue is very important, because
continuous sound output depends on the ability of the application to fill the
queue at least as fast as the hardware empties it. For example, if the queue is
too small, the application may take too long supply new samples, resulting
in audible breaks that sound like pops or clicks. The size of the queue
determines the maximum delay that can be tolerated while waiting for the
application to get more samples at the given sample rate. To determine how
much space to allocate for the sample queue, consider the data type and rate.
For example, the default queue size of 100,000 samples provides buffer space
for slightly more than one second of 48 kHz stereo audio data, and a little
more than three seconds of 32 kHz mono data. To better understand these
phenomena, see Figure 6-2 on page 91 for an illustration of a sample queue
and read the associated discussion.

Tip: The main point to be concerned about is how full to keep the queue,
regardless of its size. If the queue is full, more time passes before samples are
played. The ideal situation is to keep enough samples in the queue to allow
for the longest possible delay that will be experienced in retrieving the next
batch of samples. See “Real-time Programming Techniques for Audio” on
page 119 for an explanation of how to set the fill threshold for a queue.

AL_BAD_CONFIG config is either invalid or null

Initializing an Audio Library Application

79

The noninclusive values for minimum and maximum allowable queue sizes
for ALports on Indigo, Indigo2, and Indy workstations are listed in Table 6-1.

To specify an ALconfig with a sample queue size other than the default for
an ALport, call ALsetqueuesize(). Its function prototype is:

int ALsetqueuesize (ALconfig config, const long size)

where:

config is the ALconfig structure for which you want to change the
sample queue size

size is the number of sample locations to allocate for the queue

Any ALport that you open with this config will have a queue size of size.

ALsetqueuesize() returns 0 upon successful completion; otherwise, it
returns −1 and sets an error code that you can retrieve by calling oserror(3C).
Possible errors include:

To retrieve the size of the sample queue in a given ALconfig structure, call
ALgetqueuesize(). Its function prototype is:

long ALgetqueuesize (ALconfig config)

where:

config is the ALconfig structure being queried

Table 6-1 Minimum and Maximum Allowable Queue Sizes for ALports

ALport Type Minimum Size Maximum Size

Mono 510 131,069

Stereo 1019 262,139

4-channel on Indigo 2038 524, 278

4-channel on Indigo2 or Indy 1019 262,139

AL_BAD_CONFIG config is either invalid or null

AL_BAD_QSIZE size is either negative or larger than the
maximum allowable queue size

80

Chapter 6: Programming with the Audio Library

ALgetqueuesize() returns the queuesize of config upon successful
completion; otherwise, it returns −1 and sets an error code that you can
retrieve by calling oserror(3C). Possible errors include:

Setting and Getting the Sample Data Format for an ALconfig

The AL allows you to choose between three sample formats:

• two’s complement (default)

• floating point

• double-precision floating point

To set the sample format type of a given ALconfig structure, call
ALsetsampfmt(). Its function prototype is:

int ALsetsampfmt (Alconfig config, long sampleformat)

where:

config is the ALconfig structure for which you want to change the
sample format

sampleformat must be one of three symbolic constants:

Any ALport that you open with this config will have a sample format of
sampleformat.

AL_BAD_CONFIG config is either invalid or null

AL_SAMPFMT_TWOSCOMP two’s complement linear
PCM format, for which
the width is specified by
ALsetwidth()

AL_SAMPFMT_FLOAT 32-bit IEEE double-
precision floating point
scaled linear PCM format

AL_SAMPFMT_DOUBLE 64-bit IEEE double-
precision floating point
scaled linear PCM format

Initializing an Audio Library Application

81

ALsetsampfmt() returns 0 upon successful completion; otherwise, it returns
−1 and sets an error code that you can retrieve by calling oserror(3C). Possible
errors include:

To retrieve the sample format of a given ALconfig structure, call
ALgetsampfmt(). Its function prototype is:

long ALgetsampfmt (ALconfig config)

where:

config is the ALconfig structure being queried

ALgetsampfmt() returns the sampleformat setting of config upon successful
completion; otherwise, it returns −1 and sets an error code that you can
retrieve by calling oserror(3C). Possible errors include:

Setting and Getting the Integer Sample Width for an ALconfig

The sample width represents the degree of precision to which the full-scale
range of an audio signal can be sampled. You can specify the width of two’s
complement integer sample data, but you can’t specify the width of floating
point samples. Thus, setting the sample width has no effect when the sample
format is AL_SAMPFMT_FLOAT or AL_SAMPFMT_DOUBLE; however,
the width setting does have an effect if the sample format is subsequently
changed to AL_SAMPFMT_TWOSCOMP.

AL_BAD_CONFIG config is either invalid or null

AL_BAD_SAMPFMT sampleformat is not one of
AL_SAMPFMT_TWOSCOMP,
AL_SAMPFMT_FLOAT, or
AL_SAMPFMT_DOUBLE

AL_BAD_CONFIG config is either invalid or null

82

Chapter 6: Programming with the Audio Library

The sample width also determines which data type the AL uses when
reading and writing samples. The sample widths available for two’s
complement data, and their associated resolutions and data types, are:

8-bit samples representing a total of 28 quantized signal values. The AL
treats 8-bit samples as packed, signed characters (chars).

16-bit samples representing a total of 216 quantized signal values. The AL
treats 16-bit samples as packed, signed short integers
(shorts).

24-bit samples representing a total of 224 quantized signal values. The AL
treats 24-bit samples as right-justified, sign-extended,
signed 32-bit integers (longs).

For all sample widths, sample values map linearly to intermediate signal
amplitudes.

To specify the sample width setting of two’s complement data for an
ALconfig structure, call ALsetwidth(). Its function prototype is:

int ALsetwidth (ALconfig config, long samplesize)

where:

config is the ALconfig structure for which you want to change the
sample width

samplesize is a symbolic constant denoting the sample width:

Any ALport that you open with this config will have a sample width of
samplesize.

AL_SAMPLE_8 1-byte sample width of range −128 to
127

AL_SAMPLE_16 2-byte sample width of range −32768 to
32767

AL_SAMPLE_24 4-byte sample width of range −8388608
to 8388607

Initializing an Audio Library Application

83

ALsetwidth() returns 0 upon successful completion; otherwise it returns −1
and sets an error code that you can retrieve by calling oserror(3C). Possible
errors include:

To retrieve the current sample width setting of an ALconfig structure, call
ALgetwidth(). Its function prototype is:

long ALgetwidth (ALconfig config)

where:

config is the ALconfig structure being queried

ALgetwidth() returns the samplesize of config upon successful completion;
otherwise, it returns −1 and sets an error code that you can retrieve by calling
oserror(3C). Possible errors include:

Getting and Setting the Floating Point Data Range

If you configure an ALport to use floating point data (a sample format of
either AL_SAMPFMT_FLOAT or AL_SAMPFMT_DOUBLE), you need to
define a maximum value in order to set the upper and lower bounds of the
samples that pass through that port. Setting the floating point maximum
value specifies a symmetrical range that is centered about zero.

Tip: To have more control over the scaling, you can program your
application to perform its own floating point-to-integer conversion before
passing samples through the ALport.

AL_BAD_CONFIG config is either invalid or null

AL_BAD_WIDTH samplesize is not one of AL_SAMPLE_8,
AL_SAMPLE_16, or AL_SAMPLE_24

AL_BAD_CONFIG config is either invalid or null

84

Chapter 6: Programming with the Audio Library

To set the maximum value of floating point data, call ALsetfloatmax(). Its
function prototype is:

int ALsetfloatmax (ALconfig config, double maximum_value)

where:

Samples read into any ALport that you open with this config are scaled to the
range [−maximum_value, maximum_value]. Samples output from this ALport
should be in the range [−maximum_value, maximum_value] to avoid limiting.
The default maximum value is 1.0.

Note: The number of quantization steps that can be represented by floating
point samples is a function of the value of maximum_value. If maximum_value
is too small, you will not be able to represent 216 evenly spaced amplitude
levels.

ALsetfloatmax() has no function when the sample format is
AL_SAMPFMT_TWOSCOMP; however, the maximum_value setting takes
effect if the sample format is subsequently changed to
AL_SAMPFMT_FLOAT or AL_SAMPFMT_DOUBLE.

ALsetfloatmax() returns 0 upon successful completion; otherwise, it returns
−1 and sets an error code that you can retrieve by calling oserror(3C). Possible
errors include:

To retrieve the floating point maximum value, call ALgetfloatmax(). Its
function prototype is:

double ALgetfloatmax (Alconfig config)

where:

config is the ALconfig structure being queried

config is the ALconfig structure for which you want to set the
floating point maximum value

maximum_value is an IEEE double-precision floating point value,
which defines the range of floating point data for the
ALreadsamps() or ALwritesamps() functions

AL_BAD_CONFIG config is either invalid or null

AL_BAD_FLOATMAX maximum_value is zero

Initializing an Audio Library Application

85

ALgetfloatmax() returns the maximum_value of config upon successful
completion; otherwise, it returns 0 and sets an error code that you can
retrieve by calling oserror(3C). Possible errors include:

Retrieving the Setup of an Existing ALport

You can retrieve an ALconfig whose settings match those of an existing
ALport. This is an easy way to create an ALconfig to use for changing the
dynamic settings of an ALport, as described next in “Modifying the Audio
Data Attributes of an Open ALport” on page 85.

To retrieve a new ALconfig structure that is a clone of an existing ALconfig
structure already in use by an existing audio port, call ALgetconfig(). Its
function prototype is:

ALconfig ALgetconfig (ALport port)

where:

port is the audio port whose ALconfig structure is being cloned

You should call ALfreeconfig() to deallocate the ALconfig when it is no
longer needed.

ALgetconfig() returns an ALconfig structure upon successful completion;
otherwise, it returns 0 and sets an error code that you can retrieve by calling
oserror(3C). Possible errors include:

Modifying the Audio Data Attributes of an Open ALport

In general, you don’t change the settings for an ALport while it is open, but
sometimes you might need to modify the audio data attributes of an ALport
while it is open. For example, to create continuous output from multiple
sound files that have different sample widths, such as 8-bit and 16-bit data,
an application might need to change the sample width of the output port to

AL_BAD_CONFIG config is either invalid or null

AL_BAD_PORT port is either invalid or null

AL_BAD_OUT_OF_MEM insufficient memory available to allocate
ALconfig structure

86

Chapter 6: Programming with the Audio Library

match the output data, without closing and reopening the port, in order to
prevent interruptions in the output.

To change the data attributes of an ALport instantaneously, use
ALsetsampfmt(), ALsetfloatmax(), and ALsetwidth() as needed to define
the settings of an ALconfig, which you then pass to the ALsetconfig()
routine. The only settings that can be modified with this method are the
sample format, the sample width, and the maximum floating point value.
You can’t use this method to change the audio device, the queue size, or the
number of channels in an ALport.

ALsetconfig() changes an audio port’s ALconfig structure to match that of a
given ALconfig. Its function prototype is:

int ALsetconfig (ALport port, ALconfig config)

where:

port is the audio port for which you want to change the ALconfig
settings

config is the ALconfig from which the new settings are copied

ALsetconfig() returns 0 upon successful completion; otherwise, it returns −1
and sets an error code that you can retrieve by calling oserror(3C). Possible
errors include:

Freeing Resources Associated with an ALconfig

To minimize memory consumption, you should free the memory associated
with an ALconfig that is no longer needed. An ALconfig is no longer needed
if the application is not going to open any more ports with it.

AL_BAD_PORT port is either invalid or null

AL_BAD_CONFIG config is either invalid or null

AL_BAD_DEVICE port and config have conflicting device
settings

AL_BAD_QSIZE port and config have conflicting values
for queuesize

AL_BAD_CHANNELS port and config have conflicting values
for channels setting

Initializing an Audio Library Application

87

To deallocate an ALconfig structure, call ALfreeconfig(). Its function
prototype is:

int ALfreeconfig (ALconfig config)

where:

config is the ALconfig to deallocate. Freeing an ALconfig structure
does not affect any port(s) that have already been opened
using that ALconfig

ALfreeconfig() returns 0 on successful completion; otherwise, it returns −1
and sets an error code that you can retrieve by calling oserror(3C). Possible
errors include:

Opening and Closing Audio Ports

An ALport provides a one-way (input or output) mono, stereo, or 4-channel
audio data connection between an application program and the host audio
system. More than one ALport can be opened by the same application; the
number of ALports that can be active at the same time depends on the
hardware and software configurations you are using. Open ALports use
CPU resources, so be sure to close an ALport when I/O is completed and
free the ALconfig when it is no longer needed.

Audio ports are opened and closed by using ALopenport() and
ALcloseport(), respectively. Unless you plan to use the default port
configuration, you should set up an ALconfig structure by using
ALnewconfig() and then use the routines for setting ALconfig fields, such as
ALsetchannels(), ALsetqueuesize(), and ALsetwidth() before calling
ALopenport().

AL_BAD_CONFIG config is either invalid or null

88

Chapter 6: Programming with the Audio Library

To allocate and initialize an ALport structure, call ALopenport(). Its function
prototype is:

ALport ALopenport (char *name, char *direction,
 ALconfig config)

where:

name is an ASCII string used to identify the port for humans
(much like a window title in a graphics program). The name
is limited to 20 characters and should be both descriptive
and unique, such as an acronym for your company name or
the application name, followed by the purpose of the port

direction specifies whether the port is for input or output:

config is an ALconfig that you have previously defined or is
null (0) for the default configuration.

Upon successful completion, ALopenport() returns an ALport structure for
the named port; otherwise, it returns a null-valued ALport, and sets an error
code that you can retrieve by calling oserror(3C). Possible errors include:

ALcloseport() closes and deallocates an audio port—any samples remaining
in the port will not be output. Its function prototype is:

int ALcloseport (ALport port)

where:

port is the ALport you want to close

"r" configures the port for reading (input)

"w" configures the port for writing (output)

AL_BAD_CONFIG config is either invalid or null

AL_BAD_DIRECTION direction is invalid

AL_BAD_OUT_OF_MEM insufficient memory available to allocate
the ALport structure

AL_BAD_DEVICE_ACCESS audio hardware is inaccessible

AL_BAD_NO_PORTS no audio ports currently available

Initializing an Audio Library Application

89

Example 6-2 opens an input port and an output port and then closes them.

Example 6-2 Opening Input and Output ALports

input_port = ALopenport("waycoolinput", "r", 0);
if (input_port == (ALport) 0 {

err = oserror();
if (err == AL_BAD_NO_PORTS) {

fprintf(stderr, " System is out of audio ports\n");
} else if (err == AL_BAD_DEVICE_ACCESS) {

fprintf(stderr, " Couldn’t access audio device\n");
} else if (err == AL_BAD_OUT_OF_MEM) {

fprintf(stderr, " Out of memory: port open failed\n");
}
exit(1);

}
...
output_port = ALopenport("killeroutput", "w", 0);
if (input_port == (ALport) 0 {

err = oserror();
if (err == AL_BAD_NO_PORTS) {

fprintf(stderr, " System is out of audio ports\n");
} else if (err == AL_BAD_DEVICE_ACCESS) {

fprintf(stderr, " Couldn’t access audio device\n");
} else if (err == AL_BAD_OUT_OF_MEM) {

fprintf(stderr, " Out of memory: port open failed\n");
}
exit(1);

...
ALcloseport(input_port);
ALcloseport(output_port);

90

Chapter 6: Programming with the Audio Library

Reading and Writing Audio Data

This section explains how an audio application reads and writes audio
samples to and from ALports.

Using Audio Sample Queues

Audio samples are placed in the sample queue of an ALport to await input
or output (see Figure 6-2). The audio system uses one end of the sample
queue; the audio application uses the other end.

During audio input (left side of Figure 6-2), the audio hardware
continuously writes audio samples to the tail of the input queue at the
selected input rate, for example, 44,100 sample pairs per second for 44.1 kHz
stereo data. If the application can’t read the samples from the head of the
input queue at least as fast as the hardware writes them, the queue fills up
and some incoming sample data is irretrievably lost.

During audio output (right side of Figure 6-2), the application writes audio
samples to the tail of the queue. The audio hardware continuously reads
samples from the head of the output queue at the selected output rate, for
example, 44,100 sample pairs per second for 44.1 kHz stereo data, and sends
them to the outputs. If the application can’t put samples in the queue as fast
as the hardware removes them, the queue empties, causing the hardware to
send 0-valued samples to the outputs (until more data is available), which
are perceived as pops or breaks in the sound.

For example, if an application opens a stereo output port with a queue size
of 100,000, and the output sample rate is set to 48 kHz, the application needs
to supply (2 × 48,000 = 96,000) samples to the output port at the rate of at
least 1 set of samples per second, because the port contains enough space for
about one second of stereo data at that rate. If the application fails to supply
data at this rate, an audible break occurs in the audio output.

On the other hand, if an application tries to put 40,000 samples into a queue
that already contains 70,000 samples, there isn’t enough space in the queue
to store all the new samples, and the program will block (wait) until enough
of the existing samples have been removed to allow for all 40,000 new
samples to be put in the queue. The AL routines for reading and writing
block; they do not return until the input or output is complete.

Reading and Writing Audio Data

91

Figure 6-2 shows how input and output ports use audio sample queues.

Figure 6-2 Audio Sample Queues

Application Application

Output ALport

Audio hardware Audio hardware

INPUT OUTPUT

Overflow Underflow

filled = 0
fillable = queuesize

filled = queuesize
fillable = 0

Application writes samples
to output port

Audio hardware removes
samples from queue continuously
(for example, 44,100 pairs/second)

Audio hardware places
samples into queue continuously
(for example, 44,100 pairs/second)

Application reads samples
from input port

Samples sent to full queue are lost

Input ALport

Hardware pulls 0-valued samples from empty queue

Tail

Head

Head

Tail

Head Tail
TailHead

QueueQueue

92

Chapter 6: Programming with the Audio Library

Monitoring the Audio Sample Queue Status to Provide Nonblocking I/O

This section explains how to use the AL routines for monitoring the status of
an ALport’s sample queue.

The AL maintains the following status information about the queue:

filled the number of queue locations that contain valid data

fillable the number of empty locations in the queue

The sum of the empty locations and the full locations is the total size of the
queue:

filled + fillable = queuesize

Checking the filled and fillable statuses before reading and writing prevents
blocking and helps prevent overflow and underflow errors.

ALgetfillable() and ALgetfilled() provide instantaneous information on the
state of an audio port’s queue.

To prevent blocking during output, you can determine how many samples
will fit into the queue by calling ALgetfillable() before writing any samples,
and then write only that many samples to the queue.

To get the number of empty queue locations in a given ALport, call
ALgetfillable(). Its function prototype is:

long ALgetfillable (ALport port)

where:

port is the audio port whose queue is being examined

The value returned indicates how many samples can still be written without
blocking.

To prevent blocking during input, you can determine how many samples are
in the queue by calling ALgetfilled() before reading any samples, then read
only that many samples from the queue. You can also periodically check
ALgetfilled() to find out whether all of your output data has drained before
you shut down a port by calling ALcloseport().

Reading and Writing Audio Data

93

To find out how many queue locations in a given audio port currently have
valid samples in them at a given instant, call ALgetfilled(). Its function
prototype is:

long ALgetfilled (ALport port)

where:

port is the audio port whose queue is being examined

The value returned indicates how many samples can still be read without
blocking if port is an input port or how many samples have yet to be played
if it is an output port.

More Methods for Working with Queues

Besides using these routines, you can use ALgetstatus() to check for
underflow and overflow errors, as described in “Detecting Errors in the
Audio Stream” on page 97.

“Real-time Programming Techniques for Audio” on page 119 discusses how
to use several other routines that allow an application to view and modify
the dynamic state of an audio port. These routines are most useful in
developing real-time audio applications.

Reading and Writing Samples

Audio input is accomplished by reading audio data samples from an input
ALport’s sample queue. Similarly, audio output is accomplished by writing
audio data samples to an output ALport’s sample queue.

ALreadsamps() and ALwritesamps() provide mechanisms for transferring
audio samples to and from sample queues. They are blocking routines, which
means that a program will halt execution within the ALreadsamps() or
ALwritesamps() call until the request to read or write samples can be
completed.

94

Chapter 6: Programming with the Audio Library

Reading Samples from an Input ALport

ALreadsamps() reads a specified number of samples from an input port to a
sample data buffer, blocking until the requested number of samples have
been read from the port. Its function prototype is:

int ALreadsamps(const ALport port, void *samples,
 const long samplecount)

where:

port is an audio port configured for input

samples is a pointer to a buffer into which you want to transfer the
samples read from input. samples is treated as one of the
following types, depending on the configuration of the
ALport:

samplecount is the number of samples to read

To prevent blocking, samplecount must be less than the return value of
ALgetfilled().

Note: When the application is reading samples into an ALport that has
channels set to 4, samplecount must be an integer multiple of the frame size, or
an error will be returned and no samples will be transferred.

When 4-channel data is input on systems that do not support 4 line-level
electrical connections, that is, when setting AL_CHANNEL_MODE to
AL_4CHANNEL is not possible, ALreadsamps() will provide 4 samples per
frame, but the second pair of samples will be set to 0.

char * for integer samples of width AL_SAMPLE_8

short * for integer samples of width AL_SAMPLE_16

long * for integer samples of width AL_SAMPLE_24

float * for floating point samples

double * for double-precision floating point samples

Reading and Writing Audio Data

95

Table 6-2 shows the input conversions that are applied when reading mono,
stereo, and 4-channel input in stereo mode (default) and in 4-channel mode
hardware configurations. Each entry in the table represents a sample frame.

Note: If the summed signal is greater than the maximum allowed by the
audio system, it is clipped (limited) to that maximum, as indicated by the
Clip function.

Writing Samples to an Output ALport

Samples placed in an output queue are played by the audio hardware after
a specific amount of time, which is equal to the number of samples that were
present in the queue before the new samples were written, divided by the
(sample rate × number of channels) settings of the ALport.

Table 6-2 Input Conversions for ALreadsamps()

Hardware Configuration

Input Indigo, and Indigo2 or Indy in
Stereo Mode

Indigo2 or Indy in 4-channel Mode

Frame at
physical inputs

(L1, R1) (L1, R1, L2, R2)

Frame as read by
a mono port

(L1 + R1) /2 (Clip (L1 + L2), Clip (R1 + R2)) /2

Frame as read by
a stereo port

(L1, R1) (Clip (L1 + L2), Clip (R1 + R2))

Frame as read by
a 4-channel port

(L1, R1, 0, 0) (L1, R1, L2, R2)

96

Chapter 6: Programming with the Audio Library

ALwritesamps() writes a specified number of samples to an output port
from a sample data buffer, blocking until the requested number of samples
have been written to the port. Its function prototype is:

int ALwritesamps (ALport port, void *samples,
 long samplecount)

where:

port is an audio port configured for input

samples is a pointer to a buffer from which you want to transfer the
samples to the audio port

samplecount is the number of samples you want to read

Note: When the application is writing samples from an ALport that has
channels set to 4, samplecount must be an integer multiple of the frame size, or
an error will be returned and no samples will be transferred.

Table 6-3 shows the output conversions that are applied when writing mono,
stereo, and 4-channel data to stereo mode (default) and 4-channel mode
hardware configurations.

Table 6-3 Output Conversions for ALwritesamps()

Hardware Configuration

Output Frame as
Written into Port

Indigo, and Indigo2 or Indy in
Stereo Mode

Indigo2 or Indy in
4-channel Mode

Mono Port (L1) (L1, L1) (L1, L1, 0, 0)

Stereo Port (L1, R1) (L1, R1) (L1, R1, 0, 0)

4-channel
Port

(L1, R1, L2, R2) (Clip (L1 + L2), Clip (R1 + R2)) (L1, R1, L2, R2)

Reading and Writing Audio Data

97

Detecting Errors in the Audio Stream

Errors in an input or output audio stream may occur if an application is
unable to read samples from or write samples to a queue fast enough to
satisfy the demands of the real-time hardware.

This section explains how to use two AL routines that let you identify errors
and define custom error-reporting functions.

If a program cannot provide samples to an output port fast enough to keep
up with the hardware, an audible break in the output may be heard.
Likewise, if an application does not read input samples as fast as the
hardware puts them in the queue, some samples will be lost.

The audio system detects such discontinuities in audio sample streams, and
information concerning these breaks can be gathered by the application.
This information can be used to dynamically tune the application execution,
to increase the priority of a process, or merely to alert the user to errors.

ALgetstatus() provides access to information regarding the most recent
error in the audio stream associated with a port. Its function prototype is:

int ALgetstatus (Alport port, long *PVbuffer,
 long bufferlength)

where:

port is the audio port being queried

PVbuffer is an array of longs, the even elements of which should
contain the error parameters you want to read

bufferlength is the number of elements in the PVbuffer array

The odd element directly following each parameter will then be written with
the current values associated with each corresponding parameter.

ALgetstatus() lets you determine the number of errors associated with the
stream, the type of the last error, the length of the last error, and the location
of the error relative to the total lifetime of the port.

The location of the error marks the point in the port’s lifetime, that is, the
time since the port was opened, at which the error was detected. This value

98

Chapter 6: Programming with the Audio Library

is a 48-bit number representing the number of sample frames sent through
the port. The value is generated by concatenating the least significant 24 bits
of the values associated with AL_ERROR_LOCATION_LSP and
AL_ERROR_LOCATION_MSP.

Table 6-4 lists and describes the error parameters.

Querying and Controlling the Global Audio Device State

This section explains how to use the AL routines for querying and modifying
the global audio device state. Your application should query for the
availability of special audio features because different workstations have
different capabilities, and because programming in this way makes it easy to
update your application when new features are added.

Table 6-4 Error Parameters for ALgetstatus()

Error Parameter Description

AL_ERROR_LENGTH Current length in sample frames of the current
error. Consecutive values of this variable may
differ if the current error has not completed. Only
the least significant 24 bits of this variable are
valid.

AL_ERROR_LOCATION_LSP Least significant portion (LSP) of the location of
the beginning of the current error. Only the least
significant 24 bits of this variable are valid.

AL_ERROR_LOCATION_MSP Most significant portion of the location of the
beginning of the current error (in sample frames).
Only the least significant 24 bits of this variable are
valid.

AL_ERROR_NUMBER Number of errors associated with the port since it
was opened.

AL_ERROR_TYPE Type of error that has most recently occurred on
the port. Supported types are
AL_ERROR_INPUT_OVERFLOW and
AL_ERROR_OUTPUT_UNDERFLOW.

Querying and Controlling the Global Audio Device State

99

Because the audio device is a shared resource, it is especially important to
query whether other audio applications are running, so that your
application does not inadvertently change a setting upon which another
application relies. If no other audio applications are running, your program
can use the AL routines described in this section to modify the settings of the
state variables, but an application should always verify that it is the only
audio application in use before changing any system-wide settings.

There is a core set of parameters that exists on every system and special
parameters for capabilities such as 4-channel mode and stereo mic mode that
don’t exist on all configurations. To query for the availability of a noncore
parameter, you have to query for both its existence and whether it supports
the settings that you require. It is not necessary to query for the existence of
core parameters.

Table 6-5 lists the core set of global parameters, describes their roles, and
provides valid values.

Table 6-5 Core Global Parameters for AL_DEFAULT_DEVICE

Global Parameter Description and Valid Values

AL_INPUT_SOURCE Selects the active input source:
AL_INPUT_LINE—line-level input jack
AL_INPUT_MIC—microphone input jack
AL_INPUT_DIGITAL—serial digital input jack

AL_LEFT_INPUT_ATTEN Controls the left input attenuation level for both the line-in level and the microphone level.
Range = 0−255, 0 = no attenuation, 255 = maximum attenuation.

AL_RIGHT_INPUT_ATTEN Controls the right input attenuation level for both the line-in level and the microphone level.
Range = 0−255, 0 = no attenuation, 255 = maximum attenuation.

AL_INPUT_RATE Indicates the sample rate at the analog (line or microphone) inputs. A positive value indicates
a specific sampling rate in Hz. The AL rounds unsupported values to the nearest supported
value.

A negative value indicates a logical value, including AL_RATE_AES_1, meaning to match the
analog sampling rate to the rate at which data is arriving at the digital input.

Note that AL_INPUT_RATE does not apply when the digital input jack is in use. The digital
input data stream has its own sample rate, which is determined strictly by the device
generating the digital data.

100

Chapter 6: Programming with the Audio Library

AL_OUTPUT_RATE Indicates the sample rate at the analog and digital outputs. A positive value indicates a specific
sampling rate in Hz. The AL rounds unsupported values to the nearest supported value.

A negative value indicates a logical value, such as AL_RATE_INPUT_RATE, meaning to match
the output sample rate to the rate used by the currently active input, or AL_RATE_AES_1,
meaning to match the output sample rate to the rate at which samples are arriving at the digital
input.

AL_LEFT_SPEAKER_GAIN Controls the left speaker and headphone volume levels; does not affect line-level and digital
outputs. Range = 0−255, 0 = no gain, 255 = maximum gain. Zero gain does not necessarily mean
zero volume.

AL_RIGHT_SPEAKER_GAIN Controls the right speaker and headphone volume levels; does not affect line-level and digital
outputs. Range = 0−255, 0 = no gain, 255 = maximum gain. Zero gain does not necessarily mean
zero volume.

AL_INPUT_COUNT Read-only value that indicates the number of system-wide open input ALports.

AL_OUTPUT_COUNT Read-only value that indicates the number of system-wide open output ALports.

AL_UNUSED_COUNT Read-only value that indicates the number of system-wide unopened ALports.

AL_MONITOR_CTL Controls monitoring. When monitoring is enabled, audio input is passed through to the output.
Input and output sample rates must be precisely matched to prevent distortion.
AL_MONITOR_ON enables monitoring; AL_MONITOR_OFF disables monitoring.

AL_SPEAKER_MUTE_CTL AL_SPEAKER_MUTE_ON mutes speaker and headphones; AL_SPEAKER_MUTE_OFF
unmutes speaker and headphones. Any change to AL_LEFT_SPEAKER_GAIN or
AL_RIGHT_SPEAKER_GAIN shuts off speaker muting.

Table 6-5 (continued) Core Global Parameters for AL_DEFAULT_DEVICE

Global Parameter Description and Valid Values

Querying and Controlling the Global Audio Device State

101

Table 6-6 lists and describes special parameters that are available on some
systems. You should query for the existence of these parameters and whether
they support the required values before using them.

Table 6-6 Special Global Parameters for System-Dependent Audio Capabilities

Global Parameter Description and Valid Values

AL_CHANNEL_MODE Configures the audio hardware. AL_STEREO
configures the hardware for stereo audio;
AL_4CHANNEL configures the hardware for 4-
channel audio on systems that support it.

AL_MIC_MODE Selects the microphone mode. AL_MONO selects the
mono microphone; AL_STEREO selects stereo mic
input on systems that support it.

AL_LEFT2_INPUT_ATTEN Controls the attenuation for the L2 line-level or mic-
level input.

AL_RIGHT2_INPUT_ATTEN Controls the attenuation for the R2 line-level or mic-
level input.

AL_LEFT_MONITOR_ATTEN Controls the attenuation for the left half of the
monitor signal. Range = 0−255, 0 = no attenuation,
255 = maximum attenuation.

AL_RIGHT_MONITOR_ATTEN Controls the attenuation for the right half of the
monitor signal. Range = 0−255, 0 = no attenuation,
255 = maximum attenuation.

AL_DIGITAL_INPUT_RATE Read-only value; sample rate at which data is
arriving at the digital input. The rate is that signified
by the nonaudio bits of the incoming digital signal; it
is not actually measured. A positive value indicates a
specific sampling rate in Hz.

A negative value indicates a logical value, including
AL_RATE_UNDEFINED, meaning that the audio
system could not determine the digital input data
rate, or the device generating the digital data has
marked the data as having an indeterminate rate.

Note that the digital input data stream contains its
own clock signal; thus, its notion of a given rate will
differ slightly from an internally generated version of
the same rate.

102

Chapter 6: Programming with the Audio Library

Techniques for Working with Global Parameters

The AL routines for working with parameters are:

All of these routines expect a device argument of type long, representing the
particular audio device whose state you want to know or change. The only
currently supported device is AL_DEFAULT_DEVICE.

Several of these routines expect parameter-value buffer (PVbuffer)
arguments. A PVbuffer is simply an array of long integers, where the integers
are logically organized as pairs of elements. The first element of each pair is
a parameter constant defined in the include file audio.h. The second element
of each pair stores a value associated with the parameter. The second
location can be used to pass a value for a parameter into a routine or to return
a value for a given parameter from a routine.

Tip: You don’t have to pass an array containing all of the possible
parameters; create an array that contains only the values of interest.

Some methods for using these routines are:

• If you need a complete list of all available parameters, call
ALqueryparams(). To be certain that you have a large enough buffer to
contain the parameter-value pairs, you can pass a zero in place of the
buffer, then call malloc() to allocate a buffer the size of the returned
value.

• If you are interested only in certain values, create an array that is twice
the size of the number of parameters you are querying, and fill the even
locations with the parameters of interest, then:

– call ALgetparams() to determine the current settings of the state
variables.

ALqueryparams() determines possible hardware parameters

ALgetparams() gets current settings of hardware parameters

ALsetparams() sets hardware parameters

ALgetminmax() gets bounds of hardware parameters

ALgetdefault() gets default values of hardware parameters

ALgetname() returns name for an audio device state variable

Querying and Controlling the Global Audio Device State

103

– fill in the even entries with the values that you want to change, and
then call ALsetparams() to change the values.

• Some parameters might exist but might not allow the needed settings,
so call ALgetminmax() to get the parameter bounds and check to be
sure that the values you want to use exist.

Getting a List of Available Parameters

ALqueryparams() asks the audio device to supply a list of descriptors and
corresponding descriptions for all the currently available global state
variables. Its function prototype is:

long ALqueryparams (long device, long *PVbuffer,
 long bufferlength)

where:

device is the audio device (AL_DEFAULT_DEVICE)

PVbuffer is an array of longs, into which ALqueryparams() writes a
descriptor/description pair for each state variable
associated with device. The even (0, 2, 4, …) entries receive
the descriptors. The odd entries (1, 3, 5, …) receive one of
two description values (negative values indicate read-only
parameters):

bufferlength is the number of elements in the PVbuffer array

± AL_RANGE_VALUE means that the associated
device state variable can
assume a range of values in
which the relative magnitude of
a value has a meaning; that is,
larger values mean an increase
in whatever the parameter
controls

± AL_ENUM_VALUE means that the associated
device state variable assumes
values from an enumerated
type—the range is limited, but
there is no inherent relationship
between values

104

Chapter 6: Programming with the Audio Library

ALqueryparams() returns a long value representing the buffer size
necessary to hold all parameters and their values. If your PVbuffer is of
smaller dimensions than this value, you have not received a complete set of
descriptor/description pairs for device. See Table 6-5 for a list of currently
supported core global parameters. See Table 6-6 for a list of special global
parameters that are not supported on all systems.

ALsetparams() lets you modify the values of many of these global
parameters, though you should take care in using these functions. See the
description of ALsetparams() at the end of this section for details.

Getting the Bounds of Global Parameters

ALgetminmax() obtains maximum and minimum values for a given global
parameter. Its function prototype is:

int ALgetminmax(long device, long param, long *minparam,
 long *maxparam)

where:

device is the audio device (AL_DEFAULT_DEVICE)

param is the parameter whose range you want to know

minparam is a pointer to a variable into which the minimum value will
be written

maxparam is a pointer to a variable into which the maximum value will
be written

Getting the Defaults of Global Parameters

ALgetdefault() returns the default value for a given audio hardware device
state parameter. Its function prototype is:

long ALgetdefault (long device, long parameter)

where:

device is the audio device (AL_DEFAULT_DEVICE)

parameter is the parameter whose default value you want to obtain

Querying and Controlling the Global Audio Device State

105

Getting the Names Corresponding to the Global Parameters

ALgetname() returns a pointer to a null-terminated string that can be used
to label an audio hardware device state parameter. Treat this string as a read-
only string. Its function prototype is:

char* ALgetname (long device, long parameter)

device is the audio device (AL_DEFAULT_DEVICE)

parameter is the parameter whose name you want to know

Table 6-7 lists the global parameter name strings.

Table 6-7 Global Parameter Name Strings

Global Parameter Name String

AL_INPUT_SOURCE "Line/MIC/AES"

AL_LEFT_INPUT_ATTEN "Left Input Atten"

AL_RIGHT_INPUT_ATTEN "Right Input Atten"

AL_INPUT_RATE "Input Rate"

AL_OUTPUT_RATE "Output Rate"

AL_LEFT_SPEAKER_GAIN "Left Output Gain"

AL_RIGHT_SPEAKER_GAIN "Right Output Gain"

AL_INPUT_COUNT "Input Count"

AL_OUTPUT_COUNT "Output Count"

AL_UNUSED_COUNT "Unused Count"

AL_MONITOR_CTL "Monitor Control"

AL_LEFT_MONITOR_ATTEN "Left Monitor Atten"

AL_RIGHT_MONITOR_ATTEN "Right Monitor Atten"

AL_SPEAKER_MUTE_CTL "Speaker Mute Control"

AL_MIC_MODE "Microphone Mode"

106

Chapter 6: Programming with the Audio Library

Getting Current Parameter Settings

ALgetparams() gets the current value(s) of the device parameters referenced
in the PVbuffer. Its function prototype is:

int ALgetparams (long device, long *PVbuffer,
 long bufferlength)

where:

device is the audio device (AL_DEFAULT_DEVICE)

PVbuffer is an array of pairs of longs, the even (0, 2, 4, …) entries of
which should contain the global parameters whose values
you want to obtain

bufferlength is the number of elements in the PVbuffer array

ALgetparams() fills the odd (1, 3, 5, …) entries in the PVbuffer array with the
current values associated with each corresponding parameter.

See Table 6-5 for a description of the currently supported core global
parameters. See Table 6-6 for a list of special global parameters that are not
supported on all systems.

Modifying the Values of the Global Parameters

ALsetparams() sets the current value(s) of one or more audio hardware
device parameters. Its function prototype is:

int ALsetparams (long device, long *PVbuffer,
 long bufferlength)

where:

device is the audio device (AL_DEFAULT_DEVICE)

AL_CHANNEL_MODE "System Channel Mode"

AL_DIGITAL_INPUT_RATE "Digital Input Rate"

Table 6-7 (continued) Global Parameter Name Strings

Global Parameter Name String

Querying and Controlling the Global Audio Device State

107

PVbuffer is an array of pairs of longs, the even (0, 2, 4, …) entries of
which should contain the global parameters whose values
you want to change to the corresponding values listed in the
odd (1, 3, 5, …) entries.

bufferlength is the number of elements in the PVbuffer array

See Table 6-5 for a description of the currently supported core global
parameters. See Table 6-6 for a list of special global parameters that are not
supported on all systems.

When an application program modifies a global state parameter such as the
output sample rate, it may affect other processes on the system that are also
engaged in audio processing. For example, if one application is playing a
44.1 kHz recording through an output port, and a second application
changes the global output sample rate from 44.1 kHz to 16 kHz, the output
of the original application will be distorted.

Sample Code for Querying Features and Values

This section provides sample code fragments that demonstrate the proper
methods to use when querying for certain attributes.

Determining Whether Other Audio Applications Are Running

To determine whether other audio applications are running, query the
system for open input or output ports. To determine the total number of
ports available on your system, add the values returned for
AL_INPUT_COUNT, AL_OUTPUT_COUNT, and AL_UNUSED_COUNT.

108

Chapter 6: Programming with the Audio Library

Example 6-3 demonstrates querying for other active audio output.

Example 6-3 Querying for the Existence of Other Audio Processes
/*
 * ’Nonrude’ behavior is defined as follows: before modifying global values, first check
 * to see whether any other output ports are currently active; if any other processes have
 * open output ports, don’t modify anything.
 */
...
rude = 0;
...
/*
 * Need to determine whether audio is in use. If not, then we
 * can just go ahead and be "rude."
 */
pvbuf[0] = AL_OUTPUT_COUNT;
pvbuf[2] = AL_MONITOR_CTL;
if (ALgetparams(AL_DEFAULT_DEVICE, pvbuf, 4) < 0) {
 if (oserror() == AL_BAD_DEVICE_ACCESS) {
 fprintf(stderr,"%s: Can’t play -- could not access audio hardware.\n");
 return -1;
 }
}
if ((pvbuf[1] == 0) && (pvbuf[3] == AL_MONITOR_OFF)) {
 rude = 1;
 }

Determining the Input and Output Rates

Querying the system for an input or output rate must be done carefully in
order to obtain a valid result. Example 6-4 contains two routines,
get_input_rate() and get_output_rate(), each of which returns a rate either
in Hz or AL_RATE_UNDEFINED if the rate cannot be determined. A
minimal main() program calls the routines. See ratequery.c in /usr/people/
4Dgifts/examples/dmedia/audio for another example of rate querying.

Querying and Controlling the Global Audio Device State

109

Example 6-4 Querying for Input and Output Rates

#include <audio.h>
...
/*
 * These routines expect to be run with the AL error handler shut off.
 * (call ALseterrorhandler(0)).
 */
...
int
get_input_rate()
{
 long buf[6];
...
 buf[0] = AL_INPUT_RATE;
 buf[2] = AL_INPUT_SOURCE;
 buf[4] = AL_DIGITAL_INPUT_RATE;
 ALgetparams(AL_DEFAULT_DEVICE,buf,6);
...
 if (buf[1] == AL_RATE_AES_1 || buf[3] == AL_INPUT_DIGITAL) {
 /*
 * We are clocked off of the digital input. Find the
 * real input rate, if we can.
 */
 if (ALgetdefault(AL_DEFAULT_DEVICE,AL_DIGITAL_INPUT_RATE) >= 0) {
 return buf[5];
 }
 }
 else if (buf[1] > 0) {
 /*
 * Input rate is in Hz and we’re using an analog input -- return rate.
 */
 return buf[1];
 }
 return AL_RATE_UNDEFINED;
}
...
int
get_output_rate()
{
 long buf[4];

 buf[0] = AL_OUTPUT_RATE;
 buf[2] = AL_DIGITAL_INPUT_RATE;
 ALgetparams(AL_DEFAULT_DEVICE,buf,4);

110

Chapter 6: Programming with the Audio Library

 if (buf[1] > 0) {
 /*
 * Output rate is in Hz -- return it.
 */
 return buf[1];
 }
 else {
 /*
 * Output rate is a logical rate -- track down what it means.
 */
 if (buf[1] == AL_RATE_AES_1) {
 /*
 * We are clocked off of the digital input. Find the
 * real input rate, if we can. If we can’t, return AL_RATE_UNDEFINED
 */
 if (ALgetdefault(AL_DEFAULT_DEVICE,AL_DIGITAL_INPUT_RATE) >= 0) {
 return buf[3];
 }
 }
 else if (buf[1] == AL_RATE_INPUTRATE) {
 return get_input_rate();
 }
 return AL_RATE_UNDEFINED;
 }
}
...
main()
{
 int x;
 ALseterrorhandler(0);
 x = get_output_rate();
 if (x == AL_RATE_UNDEFINED) {
 printf("can’t get output rate\n");
 }
 else {
 printf("output rate = %d\n",x);
 }
 x = get_input_rate();
 if (x == AL_RATE_UNDEFINED) {
 printf("can’t get input rate\n");
 }
 else {
 printf("input rate = %d\n",x);
 }
}

Querying and Controlling the Global Audio Device State

111

Determining Whether 4-channel Capability Exists

Although you can open a 4-channel ALport on any system, you cannot
change the system’s electrical configurations if it does not support 4-channel
mode.

To determine whether a system has 4-channel capability, use
ALgetminmax(), then verify that the maximum value is 4.

Example 6-5 demonstrates how to query for 4-channel hardware capability.

Example 6-5 Querying for 4-channel Capability

/*
 * Query to see if we are on a machine with 4-channel
 * HW capability. If so,switch into 4-channel mode.
 * If AL_CHANNEL_MODE both exists (ALgetminmax doesn’t
 * fail) AND has a maximum of 4,then we’re OK.
 *
 * If we wanted to be really nice, we could check,
 * by querying AL_INPUT_COUNT and AL_OUTPUT_COUNT, to
 * see if any other apps were doing audio. If so, we
 * might not want to switch to 4-channel mode, lest
 * we introduce artifacts into their audio streams.
 */
if (ALgetminmax(AL_DEFAULT_DEVICE, AL_CHANNEL_MODE,
 &min, &max) >= 0 && max == 4) {
 long buf[2];
 buf[0] = AL_CHANNEL_MODE;
 buf[1] = 4;
 ALsetparams(AL_DEFAULT_DEVICE, buf, 2);
}
/*
 * Even if we don’t have 4-channel HW capability,
 * the AL will let us use a 4-channel buffer, so
 * we can continue at this point without regard to
 * HW type.
 */

112

Chapter 6: Programming with the Audio Library

Audio Library Synchronization Facilities

The AL provides two different facilities for synchronization:

• The AL allows for multiple audio ports (ALports) to be synchronized in
a sample accurate manner, by using the absolute sample frame count.

• The AL allows audio data to be related to other media based on
common time line, by using the unadjusted system time (UST).

The AL provides a method of determining the absolute sample count of the
current sample frame under program control (that is, the sample frame
which can be read/written with a call to the Audio Library) and a method of
relating UST values to the count of samples which have entered or exited the
audio device.

As mentioned in Chapter 2, “Programming with the Digital Media
Library,”the digital media libraries provide a single time line, UST, through
which media may be related. This time value is the number of nanoseconds
since the operating system was started. As an absolute time value, UST is not
particularly useful. However, it is extremely useful for relating different
media types and for evaluating the relative timing of events.

Audio Sample Frame Count

Absolute sample frame count is the basis for timing within the AL.
Whenever audio is input or output on a device, a count is kept of the sample
frames elapsed. This sample frame count is the absolute number of sampling
periods elapsed since input or output started. If the audio sample rate is set
to 44100 kHz, the sample frame count advances at the nominal rate of 44100
counts per second, regardless of the channel setting for the port (see
ALsetchannels() for more details on setting the number of channels for a
port).

The sample frame count increases regardless of whether an application is
reading or writing audio samples using the ALreadsamps() or
ALwritesamps() function calls, respectively. As long as an audio port
(ALport) is open, the sample frame count advances.

Audio Library Synchronization Facilities

113

The AL function ALgetframenumber() provides a way for an application to
query the absolute sample frame count associated with the current sample
frame to be written (in the case of an output port) or read (in the case of an
input port).

The function prototype for ALgetframenumber() is:

int ALgetframenumber(const ALport port,
 unsigned long long *framenum);

where:

port is the audio port of interest

framenum is a pointer to a 64-bit number in which to hold the resultant
frame count value

If ALgetframenumber() succeeds, 0 is returned; otherwise a −1 is returned.

Since the sample frame count is an absolute value of sample frames entering
or exiting an audio device, two audio ports (ALports) can be synchronized
by reading/writing samples at the identical sample frame count. This “port-
to-port” synchronization is guaranteed to be sample accurate.

In general, ALgetframenumber() does not return equal values for the
sample frame count for different ports. In order to synchronize two audio
ports, you will need to make the sample frame count of the two ports match
by reading/writing samples from/to one of the sample queues. Example 6-
7 demonstrates synchronizing two audio ports.

Note: The absolute sample frame count is valid only if the port in question
does not overflow (in the case of input) or underflow (in the case of output).
When your port underflows or overflows, the value of the sample frame
count continuously changes, and you cannot reliably place samples in the
queue at a desired location. In order to reestablish a valid value for sample
frame count (and hence synchronization) your application must recover
from the underflow or overflow (read or write samples as appropriate) and
then query for the value of sample frame count again.

114

Chapter 6: Programming with the Audio Library

Figure 6-3 shows the relationship of the sample frame count returned by
ALgetframenumber() to sample frames in the queue associated with an
input or output audio port (ALport).

Figure 6-3 Sample Frame Count as Returned by ALgetframenumber()

Input Port Sample Queue:

Audio device

Audio application removes samples

ALgetframenumber() provides the absolute sample frame
count associated with current sample frame the application
will read with ALreadsamps().

places samples at the
first unfilled location
in sample queue

from the first filled location in the sample
queue.

Output Port Sample Queue:

Audio device

Audio application places samples

removes samples from
the first filled location
in sample queue

at the first unfilled location in the sample
queue.

ALgetframenumber() provides the absolute sample frame
count associated with the current sample frame the application
will write with ALwritesamps().

Filled sample frames

Filled sample frames

Application:

Device:

Device:

Application:

Audio Library Synchronization Facilities

115

In Example 6-6, the first two ALwritesamps() calls are used to bring the
audio ports out of an underflow condition. This ensures that subsequent
calls to ALgetframenumber() will result in valid sample frame counts.

Example 6-6 Synchronizing Audio Between Two Output Ports: align.c

/* align.c - synchronize audio of two output audio ports */

#include <stdio.h>
#include <dmedia/audio.h>

main(void)
{
 ALport port_1, port_2;
 short buf_1[10000], buf_2[10000];
 short zilch[10000];
 unsigned long long count_1, count_2, delta_count;
 int i;

 /* get two output ports with default configurations */
 port_1 = ALopenport("port_1", "w", NULL);
 port_2 = ALopenport("port_2", "w", NULL);

 if (port_1 == NULL || port_2 == NULL) {
 printf("oops...no audio ports\n");
 exit(-1);
 }

 /* set up the output sample buffers */
 for (i = 0; i < 10000; i++) {
 buf_1[i] = i;
 buf_2[i] = -i;
 zilch[i] = 0;
 }

 /* bring the output ports out of underflow state */
 ALwritesamps(port_1, zilch, 10000);
 ALwritesamps(port_2, zilch, 5000);

 ALgetframenumber(port_1, &count_1);
 ALgetframenumber(port_2, &count_2);

 /* count_1 should be > count_2 at this point */
 delta_count = count_1 - count_2;
 printf("frame count difference = %lld\n", delta_count);

116

Chapter 6: Programming with the Audio Library

 /* write delta_count frames of zeroes to port_2 */
 ALwritesamps(port_2, zilch, delta_count*2);

 ALgetframenumber(port_1, &count_1);
 ALgetframenumber(port_2, &count_2);
 delta_count = count_1 - count_2;
 printf("frame count difference = %lld\n", delta_count);

 while (1) {
 ALwritesamps(port_1, buf_1, 10000);
 ALwritesamps(port_2, buf_2, 10000);
 ALgetframenumber(port_1, &count_1);
 ALgetframenumber(port_2, &count_2);
 if (count_1 != count_2) {
 printf("lost synchronization of audio port.\n");
 }
 }
 ALcloseport(port_1);
 ALcloseport(port_2);
}

Relating Audio Sample Frame Count to UST

The IRIS digital media libraries provide a time line called unadjusted system
time (UST) for relating media to one another. The UST is a 64-bit count of the
number of nanoseconds elapsed since the workstation operating system was
started.

The AL provides a way for application programs to relate the number of
audio sample frames input to or output from a device to UST values, by
providing a pair of values (UST, sample frame count) simultaneously. The UST
value is the time when the samples in the frame entered the audio device (in
the case of input) or exited the audio device (in the case of output). That is,
the UST is the time at which the samples physically “hit the jacks.” The audio
system software accounts for any latency in hardware and intermediate
buffering.

Audio Library Synchronization Facilities

117

The AL function ALgetframetime() provides both UST and sample frame
count for an audio port (ALport) to an application. The function prototype
for ALgetframetime() is:

int ALgetframetime(const ALport port,
 unsigned long long *fnum,
 unsigned long long *ustime);

where:

port is the audio port of interest

ustime is a pointer to a 64-bit number to hold the value of UST

fnum is a pointer to a 64-bit number to hold the value of sample
frame count

If ALgetframetime() succeeds, it returns 0 to the application; otherwise, it
returns a −1 and sets an error number which can be retrieved with
oserror(3C).

When an application program calls the ALgetframetime() function, the AL
provides the most recent pair of (UST, sample frame count) that it has
calculated. In general, the value of sample frame count returned by
ALgetframetime() is not the same as the sample frame count value returned
by ALgetframenumber(). However, a UST value corresponding to the
sample frame count returned by ALgetframenumber() can be calculated
from (UST, sample frame count) pairs.

Example 6-7 demonstrates calculating the UST value for the next sample to
be read from an input port.

Example 6-7 Calculating UST

/* getust.c - get ustime for first sample in input port */

#include <stdio.h>
#include <audio.h>

118

Chapter 6: Programming with the Audio Library

main(void)
{
 ALport port;
 long long count_1, count_2, ustime_1, ustime_2;
 double nrate;

 nrate = 1e+9/44100.0; /* nanosecs per sample @ 44.1 kHz*/

 port = ALopenport("my_input", "r", NULL);
 if (port == NULL) exit(-1);

 ALgetframenumber(port, (unsigned long long*)&count_2);
 ALgetframetime(port, (unsigned long long*)&count_1,
 (unsigned long long*)&ustime_1);
 ustime_2 = ustime_1 - (count_1 - count_2)*nrate;

 /* ustime_2 corresponds to the first sample frame in port */

 printf("ust(1) = %lld msc(1) = %lld\n",
 ustime_1, count_1);
 printf("ust(2) = %lld msc(2) = %lld\n",
 ustime_2, count_2);

 ALcloseport(port);
}

This example code could have calculated the sample frame rate from
multiple (UST, sample frame count) pairs and used that value instead of
calculating it from the nominal audio frame rate.

Note: The sample frame value returned by ALgetframenumber() is valid
only if the port does not overflow/underflow. In the case of underflow or
overflow, the (UST, sample frame count) pair will continue to be valid (though
you may wish to request a new, more recent, pair). Note, however, that two
back-to-back invocations of ALgetframetime() are not guaranteed to result
in unique (UST, sample frame count) pairs.

For a more involved use of UST and sample frame count, see recordmidi.c++
in /usr/people/4Dgifts/examples/dmedia/midi/syncrecord. This code
demonstrates synchronization of audio and MIDI using the UST to relate the
two streams of data and is discussed further in “Hands-On MIDI and Audio
Synchronization Experience” in Chapter 10.

Real-time Programming Techniques for Audio

119

Real-time Programming Techniques for Audio

The Audio Library provides several routines that modify or return
information about the dynamic state of an audio port. These routines,
together with the select() or poll() IRIX system calls, make it possible to
write applications that can multiplex audio processing tasks with other
processing such as user interfaces, audio signal processing, or graphics.
Other IRIX system calls, such as prctl(), schedctl(), and sproc(), also help
audio applications to achieve efficient real-time performance. This section
discusses these routines and techniques for using them effectively. See the
online book, Topics in IRIX Programming, for a description of the IRIX real-
time programming facilities.

Multiplexing Synchronous I/O

The select() system call makes it possible for an application to multiplex
synchronous I/O tasks. An application passes select() three (optionally null)
lists of file descriptors, along with an optional timeout parameter. select()
blocks until one or more of the following conditions occur:

• one or more of the file descriptors in the “read list” are ready for
reading

• one or more of the file descriptors in the “write list” are ready for
writing

• an exceptional condition is pending for one of the file descriptors in the
“exception list”

• a timeout occurs (if specified)

When select() returns, it replaces the original file descriptor lists with
subsets containing the file descriptors for which requested events have
occurred. See the select(2) man page for details.

The AL provides a mechanism to control the behavior of select() such that
you can wake a process before an output queue runs out of samples or before
an input sample queue overflows. The functions described in this section
control the behavior of select().

120

Chapter 6: Programming with the Audio Library

Getting a File Descriptor for an ALport

ALgetfd() returns an IRIX file descriptor for a port that may be used with the
select() call. Its function prototype is:

int ALgetfd (ALport port)

where:

port is the audio port whose file descriptor you want. This
descriptor can then be used to construct the arguments for
a call to select() or poll()

When using select(), an input port’s file descriptor is used in a read fdset and
an output port’s file descriptor is used in a write fdset.

When using poll(), an input port’s file descriptor is used with the POLLIN
event flag and an output port’s file descriptor is used with the POLLOUT
event flag.

These select() and poll() system calls are used to give up application control
of the CPU until the audio port is emptied or filled past a previously set fill
point (see the description of ALsetfillpoint() below).

Setting and Getting the Fill Point for a Queue

ALsetfillpoint() allows an application to set a threshold level for an input or
output port that controls the behavior of the select() function. Its function
prototype is:

int ALsetfillpoint (ALport port, long fillpoint)

where:

port is the audio port whose fill point you want to set

fillpoint is the fill point value, in number of samples

For an input port, the fill point is the number of locations in the sample
queue that must be filled in order to trigger a return from select(). For an
output port, the fill point is the number of locations that must be free in order
to wake up from select().

Real-time Programming Techniques for Audio

121

When used in conjunction with ALgetfd() and select() or poll(),
ALsetfillpoint() lets you programmatically relinquish control from an audio
application to other processes.

Note: ALreadsamps() and ALwritesamps() may alter the fill point, so you
should (re)set it just before you call select() or poll().

ALgetfillpoint() returns the current fill point of a port. Its function prototype
is:

long ALgetfillpoint (ALport port)

where:

port is the audio port being queried

Figure 6-4 shows how the relationship between the number of samples and
the fill point affects the behavior of the select() call during input and output.

Figure 6-4 Using Fill Points

Filled

Fillable

FIll point FIll point

Filled

Fillable

FIll point

Filled

Fillable

Process stopped in select() call select() returns

Process stopped in select() call select() returns

OUTPUT (writing samples)

INPUT (reading samples)

Filled

Fillable

FIll point

122

Chapter 6: Programming with the Audio Library

Using Scheduling Control to Give Audio High Priority

IRIX provides control of process scheduling through the use of the schedctl()
function. This function allows the program to change its execution priority.
To maintain real-time audio processing, an application may need to be
placed at a high priority relative to other jobs in the system. See the
schedctl(2) manual page and for more information on usage. See “Using
Shared Arenas and Semaphores” on page 123 for an example program that
demonstrates how to use schedctl().

Preventing Memory Swapout

prctl() is an IRIX function that gives you control of certain attributes of a
process. By using the PR_RESIDENT argument, you can make your audio
process immune to kernel memory swapout, thus helping to ensure
uninterrupted audio input and output. See the prctl(2) man page for more
details.

You can also use mpin() or plock() to lock user pages into memory. See the
man pages for those functions for more information.

Creating Multiple Process Threads

The sproc() system call lets you split a process into two threads. sproc() is an
IRIX system call similar to fork(), except that it makes use of shared memory.
The shared memory features of sproc() allow sharing of data, file
descriptors, and address space between the two process threads. When
using sproc() in an application with audio, you can create one thread that
services audio and another thread that handles the user interface. Using
sproc() permits the use of graphical user interfaces without interrupting the
audio data stream. See “Using Shared Arenas and Semaphores” on page 123
for an example program that demonstrates how to use sproc() in
conjunction with an IRIS IM menu (IRIS IM is Silicon Graphics’ port of the
industry-standard OSF/Motif).

Real-time Programming Techniques for Audio

123

Using Shared Arenas and Semaphores

Another real-time programming technique is to use an IRIX shared arena. In
essence, a shared arena is a memory-mapped file that you can access just like
regular memory.

This section provides some hints for working with shared arenas; more
information is available in Topics in IRIX Programming.

Shared arenas allow:

• shared memory between unrelated processes

• shared synchronization tools: locks for controlling access, and
semaphores for process communication

Create a shared arena by calling usinit(). (The “us” prefix stands for user
space.) The first process that calls usinit() creates an arena with the given file
name; subsequent calls to usinit() invoking the same file name attach to the
existing arena.

Using shared memory can create data dependency situations such as
different process writing to the same memory location at the same time, or
one process trying to read from a memory location before another has
finished writing to that location. Areas where a potential data dependency
exists are called critical regions.

Critical regions can be protected with locks, which keep trying until access
is gained, or semaphores, which sleep until access is available. Semaphores
can be used to allow multiple processes into a critical region at the same
time. Processes waiting on a semaphore are queued on a first-come, first-
served basis. To acquire (decrement) a semaphore, call uspsema(); to release
(increment) call usvsema(). When uspsema causes the semaphore count to
go negative, the process will block until some other process calls usvsema().

The motifexample.c program in /usr/people/4Dgifts/examples/dmedia/audio
demonstrates the Audio Library programming concepts presented in this
chapter and some Audio File programming concepts that are discussed in
Chapter 7, “Programming with the Audio File Library.”

124

Chapter 6: Programming with the Audio Library

Several real-time programming techniques are used in motifexample.c:

• The sproc() system call creates two separate threads: a user interface
thread, and an audio thread. The PR_SALL argument specifies the
sharing of all data. Everything that pertains to handling audio is kept in
the separate audio process.

• Scheduling control gives the audio process high-priority, nondegrading
scheduling.

• Memory swapout is prevented by using mpin() to lock samples in
memory.

• A shared memory arena is used to share data.

• Semaphores provide interprocess communication for handling
commands from the application.

• Polling is used to monitor two kinds of events: commands from the
application and the need for more samples in the queue.

This chapter describes how to use the
Audio File Library to store and
retrieve audio on disk in AIFF or
AIFC files.

Programming with the
Audio File Library

Chapter 7

127

Chapter 7

7. Programming with the Audio File Library

The Audio File (AF) Library, libaudiofile.so, provides a uniform programming
interface for reading and writing audio files. Currently, the AF Library
supports the Apple Computer Inc. Audio Interchange File Format (AIFF)
and the Audio Interchange File Format with Compression (AIFF-C).

The AF Library currently supports read-only and write-only file access (but
not both simultaneously). Therefore, to alter an existing file, you must create
a new file and copy data from the original file. Sample code that
demonstrates how to copy the logical components of a file, and other
concepts, is available online in /usr/people/4Dgifts/examples/dmedia/soundfile.

The Audio File Library comprises routines that handle four basic tasks:

• creating and configuring new audio files

• reading and writing track information to and from audio files

• reading and writing instrument configurations to and from audio files

• reading and writing miscellaneous data to and from audio files

In this chapter:

• “Audio File Library Basics” on page 128 discusses the basics of
programming with the AF Library.

• “Creating and Configuring Audio Files” on page 132 explains how to
initialize AF Library data structures.

• “Opening, Closing, and Updating Audio Files” on page 147 explains
how to create and use audio files.

• “Reading and Writing Audio Track Information” on page 150 explains
how to work with audio file tracks.

• “Audio File Library Programming Tips” on page 171 contains
important programming tips for making AF Library programs format
independent and multithread/multiprocessor safe.

128

Chapter 7: Programming with the Audio File Library

Audio File Library Basics

This section explains fundamental AF Library concepts.

Audio File Library Programming Model

The AF Library has two basic data structures:

• AFfilesetup, an audio file setup that stores initialization parameters
used when creating a new audio file handle

• AFfilehandle, an audio file handle that provides access to the audio file

The basic steps required for setting up an audio file for writing are:

1. Initialize an AFfilesetup, by calling AFnewfilesetup().

2. Configure the AFfilesetup for your data, as described in “Creating an
Audio File Setup” on page 132.

3. Open an audio file for reading or writing, as described in “Creating an
Audio File Setup” on page 132 by calling either AFopenfile() or
AFopenfd(). These routines return an AFfilehandle whose data
configuration matches the settings in the AFfilesetup.

Handling Audio File Library Errors

The AF Library provides an error handling mechanism that directs error
messages to stderr. You can replace the default AF Library error handler with
one of your own.

AFseterrorhandler() lets you replace the default error handler function with
one of your own. Its function prototype is:

AFerrfunc AFseterrorhandler(AFerrfunc errfunc)

where errfunc is a pointer to an alternate error handling routine of type
AFerrfunc that is declared as:

void errfunc(long arg1, const char* arg2)

Audio File Library Basics

129

About Audio Files

This section explains basic concepts for working with audio files. It describes
data structures used by the Audio File Library and in particular, the
structure of AIFF-C files and the higher-level abstraction that the AF Library
API uses to read and write AIFF-C (and AIFF) files.

The AF Library breaks audio files into the following four functional
components:

The two portions of an audio file you will make most use of are audio tracks
and instrument configurations.

Audio File Formats

Audio file format is typically indicated by header information preceding the
actual data that describes the nature of the data in that file. The file format of
an audio file constrains the data format of each of its tracks to one of a set of
track formats supported by that file format, but you do not necessarily know
which one. You must therefore set and query the track format for each of an
audio file’s tracks independently of its file format. It is often possible and
desirable to write your application so that it queries only the data format(s)
of the track(s) (instead of querying the file format) of the audio files it opens.

Audio file format Allows applications to identify audio file formats and
format versions.

Audio tracks Contain audio sample data, parameters that
characterize the data format (such as sample rate,
channel configuration, and compression type), and
marker structures that store sample frame locations in
the track for looping and other purposes.

Instrument
configurations

Contain instrument parameters for configuring digital
samples when playing back audio track data, and loop
markers for repeating tracks or portions of a track.

Miscellaneous
data

Include text strings (author, copyright, name,
annotation, and so on) and other non-audio information
(such as MIDI data and application-specific data).

130

Chapter 7: Programming with the Audio File Library

Audio Tracks, Sample Frames, and Track Markers

Audio tracks contain the recorded samples that produce sound when sent to
the audio hardware. These samples are stored linearly for mono recordings
and as interleaved left-right pairs (left channel in even locations, right
channel in odd locations) for stereo recordings. These pairs are called sample
frames (this term is also used for mono tracks, but a sample frame is the same
thing as a sample when mono data is used).

Audio tracks also contain track markers, which can be set to point to arbitrary
locations in the audio track. These markers, which are identified by a long
integer ID number and (optionally) a name string, point to locations
between sample frames.

Audio Track Format Parameters

Data format information, including sample rate, sample format, sample
width, and sample compression type is stored as part of the audio track.
Several kinds of compression are supported (you can also choose not to use
compression). The AF Library automatically compresses samples being
written to a file and decompresses samples read from a file. The ability of the
AF Library to perform compression/decompression of audio data in real
time is dependent on system overhead. To guarantee real-time performance,
you should make use of scheduling control as described in “Using
Scheduling Control to Give Audio High Priority” in Chapter 6.

Instrument Configurations and Loops

Instrument configurations contain a set of parameters that define the aspects
of a sampler, including detuning, key velocity, and gain. They also contain
loop markers, which identify the beginning and ending points of loops that
allow all or part of the audio track to be repeated. These loop markers point
to previously created audio track markers, which in turn refer to locations in
the audio track that comprise the beginning and ending of the loop. AIFF
and AIFF-C files support two kinds of loops, sustain and release, each with a
beginning and ending marker, which can be used in audio tracks and track
markers.

Audio File Library Basics

131

AIFF-C and the AF Library API

Silicon Graphics has adopted AIFF-C as its standard digital audio file
format. AIFF-C is based on Apple Computer’s Audio Interchange File
Format (AIFF), which conforms to the EA IFF 85 Standard for Interchange
Format Files developed by Electronic Arts. Unlike the older AIFF standard,
AIFF-C files can store compressed sample data as well as two’s complement
linear PCM sample data.

AIFF-C provides a standard file format for storing sampled sounds on
magnetic media. The format can store any number of channels of sampled
sound at a variety of sample rates and sample widths. The format is
extensible, allowing future support of new compression types and
application-specific data, while maintaining backward compatibility.

An AIFF-C file is composed of a series of different kinds of data chunks. For
the most part, the AF Library API handles low-level chunk manipulation.
For complete information on the types of chunks supported by AIFF-C, see
the Audio Interchange File Format with Compression (AIFF-C) Specification.

Both AIFF and AIFF-C files consist of similar component structures. The
chunks in an AIFF-C file are grouped together inside a special container
chunk. The EA IFF 85 specification defines several types of container chunks,
but the kind used by AIFF-C is of type 'FORM'.

Table 7-1 shows the mapping between the Audio File Library API functional
components and the low-level AIFF-C/AIFF data chunks.

a. ’COMT’ chunks are not currently supported by the AF Library.

Table 7-1 Mapping of AF Library Components to AIFF-C/AIFF File Chunks

AF Library Functional Component AIFF-C/AIFF Chunks

File format information 'FVER', 'FORM'

Audio tracks 'SSND', 'COMM', 'MARK', 'AESD', 'COMT'a

Instrument configurations 'INST'

Miscellaneous data 'AUTH', 'NAME', '(c) ', 'ANNO',' MIDI ',
'APPL'

132

Chapter 7: Programming with the Audio File Library

Creating and Configuring Audio Files

This section explains how to initialize an AF Library application, including
how to create, configure, and free AF Library data structures for working
with audio files.

Creating an Audio File Setup

The AFfilesetup structure stores initialization parameters used when
creating a new audio file. When you open an audio file for reading or writing
the AF Library returns another structure, an AFfilehandle, which provides
access to the audio file and is used as an argument by all AF Library routines.

AFnewfilesetup() creates and initializes an AFfilesetup structure that you
configure for your data, and then use to open an audio file:

AFfilesetup AFnewfilesetup(void)

AFnewfilesetup() returns a default AFfilesetup structure.

Table 7-2 lists the AFfilesetup configuration parameters and their defaults.

Table 7-2 AFfilesetup Parameters and Defaults

Parameter Default

File format AF_FILE_AIFFC

Audio track AF_DEFAULT_TRACK

Audio track sample format, sample width AF_SAMPFMT_TWOSCOMP, 16-bit

Audio track channels (interleaved) 2 (stereo)

Audio track compression AF_COMPRESSION_NONE

Audio track markers Four markers with IDs: 1,2,3,4

Instrument AF_DEFAULT_INST

Instrument Parameters (See Table 7-3)

Loops Two loops with IDs: 1,2; default mode
is AF_LOOP_MODE_NOLOOP

Creating and Configuring Audio Files

133

Table 7-3 lists the AFfilesetup instrument parameters and their defaults.

Your application should free an AFfilesetup that is no longer needed.
AFfreefilesetup() deallocates an AFfilesetup structure. Its function
prototype is:

void AFfreefilesetup(AFfilesetup setup)

where setup is an AFfilesetup previously created by a call to
AFnewfilesetup(). This does not affect any file previously opened using the
same AFfilesetup structure.

Before using the new AFfilesetup to open an audio file, you might need to
modify the default AFfilesetup in order to create the configuration you want.
The sections that follow explain how to change the default AFfilesetup
configuration.

Initializing Audio File Format

You need to set the file format in an AFfilesetup structure before passing the
structure to AFopenfile().

Table 7-3 AFfilesetup Instrument Parameter Constants and Defaults

Instrument Parameter Constant Default

AF_INST_MIDI_BASENOTE 60

AF_INST_MIDI_HINOTE 127

AF_INST_MIDI_HIVELOCITY 127

AF_INST_MIDI_LONOTE 0

AF_INST_MIDI_LOVELOCITY 1

AF_INST_NUMCENTS_DETUNE 0

AF_INST_NUMDBS_GAIN 0

AF_INST_SUSLOOPID 1 (loop ID for sustain loop)

AF_INST_RELLOOPID 2 (loop ID for release loop)

134

Chapter 7: Programming with the Audio File Library

AFinitfilefmt() configures the file format parameter in an AFfilesetup
structure. Its function prototype is:

void AFinitfilefmt(AFfilesetup setup, long fmt)

where setup is the AFfilesetup structure, and fmt is an integer constant which
specifies an audio format supported by the AF Library. Two valid format
types are currently available:

• AF_FILE_AIFFC (AIFF-C format)

• AF_FILE_AIFF (AIFF format)

A new audio file that is opened by calling AFopenfile() with this AFfilesetup
as an argument will then be formatted accordingly.

Initializing Audio Track Data

This section explains how to change the default settings for audio track
parameters in an AFfilesetup structure before passing the structure to
AFopenfile().

Note: Each of the functions in this section contains a trackid argument, which
identifies an audio track in the AFfilesetup structure being initialized. In the
current release of the AF Library, the value of trackid must always be
AF_DEFAULT_TRACK.

Initializing Audio Track Sample Rate

The AF Library requires that you specify the sample rate for a new file before
you pass the AFfilesetup structure to AFopenfile().

AFinitrate() configures the sample rate in Hz for an audio track in an
AFfilesetup structure. Its function prototype is:

void AFinitrate(AFfilesetup setup, long trackid, double rate)

where setup is the AFfilesetup structure, trackid is a long integer that
identifies an audio track in setup, and rate is a positive double-precision
integer that specifies the sample rate in Hz. For example, to configure setup
for a CD-quality AIFF-C file, initialize the rate for AF_DEFAULT_TRACK to
44100.0.

Creating and Configuring Audio Files

135

Initializing Audio Track Sample Format and Sample Width

AFinitsampfmt() initializes the sample format and width parameters for an
audio track in an AFfilesetup structure. Its function prototype is:

void AFinitsampfmt(AFfilesetup setup, long trackid, long fmt,
 long width)

where setup is the AFfilesetup structure, trackid is a long integer that
identifies an audio track in setup, and fmt is a long integer constant that
denotes a sample format. Currently, only one format is supported:
AF_SAMPFMT_TWOSCOMP. width is a positive long integer value from 1
to 32 that specifies the width (in bits) of the sample data. See “Getting Audio
Track Sample Format and Sample Width” on page 152 for more details about
sample format and sample width.

Note: If the audio track in an AIFF-C file is configured for compression, fmt
and width should match the data format specified by the compression
algorithm. See Table 7-4 for a list of compression algorithms.

Initializing Audio Track Channels

AFinitchannels() configures the number of interleaved audio channels for
an audio track within an AFfilesetup structure. This information is then used
by AFopenfile() when it is called with the AFfilesetup structure as an
argument. Its function prototype is:

void AFinitchannels(AFfilesetup setup, long trackid,
 long channels)

where setup is the AFfilesetup structure, trackid is a long integer that
identifies an audio track in setup, and channels is a long integer representing
the number of interleaved audio channels. Valid values for channels are 1
(mono) or 2 (stereo); the default value is 2.

Initializing AES Data

AES channel status bytes are embedded in AES audio samples to provide
additional information about that data, such as whether an emphasis has
been added to a sample. For example, on early CD recordings, high
frequencies were sometimes emphasized to compensate for the nature of CD
players. You might want to reverse compensate for that emphasis if you are

136

Chapter 7: Programming with the Audio File Library

loading AES stream data directly from a CD player through the AES serial
input of your workstation for playback on a different source, such as DAT.
See the AES3-1985 (ANSI S4.40-1985) document for more information about
AES channel status bytes.

AFinitaeschanneldata() sets a flag, which is off by default, in an AFfilesetup
structure to indicate that space should be reserved for the 24 AES channel
status bytes that are embedded in all AES data. Its function prototype is:

void AFinitaeschanneldata(AFfilesetup setup, long trackid)

where setup is the AFfilesetup structure, and trackid is a long integer that
identifies an audio track in setup.

AFsetaeschanneldata() sets the values of the AES channel status bytes. Its
function prototype is:

void AFsetaeschanneldata(AFfilehandle file, long trackid,
 unsigned char buf[24])

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_DEFAULT_TRACK), and
buf is a 24-element array that specifies the AES channel status bytes. If no
header space has been reserved in the file (by calling
AFinitaeschanneldata() before creating the file), AFsetaeschanneldata()
ignores the data and returns without error.

Initializing Audio Track Compression

AFinitcompression() and AFinitcompressionparams() let you configure an
audio track in an AFfilesetup structure to store compressed audio data. All
compression encoding is handled automatically by AFwriteframes();
therefore your application program need only work with linear PCM data.

Note: AIFF files do not support compression. It is an error to try to open an
AIFF file using an AFfilesetup whose compression setting is other than
AF_COMPRESSION_NONE.

AFinitcompression() lets you select from among several built-in default
codec (compressor-decompressor) configurations that are preconfigured. If
you use AFinitcompression() to select one of the default codecs that are built

Creating and Configuring Audio Files

137

in to the Audio File Library, you don't have to worry about setting the
individual compression parameters, because they are automatically set to
the proper values for each default configuration.

AFinitcompressionparams() lets you chose the codec configuration and set
the associated codec-specific compression parameters yourself, although it
does supply the defaults listed in Table 7-4. If you use
AFinitcompressionparams(), you have to create and fill in an Audio Utility
Library parameter-value list (AUpvlist), as described in “Using the Audio
Utility Library to Initialize Parameter Lists” on page 143.

You may also select from additional audio codecs from Aware, Inc. that
provide ISO/MPEG I and Aware MultiRate I audio compression, which are
built in to the Audio File Library and can be accessed under license from
Aware, Inc. by using the parameters in Table 7-4. See Appendix B, “Aware
Scalable Audio Compression Software,” for more information.

The function prototypes are:

void AFinitcompression(AFfilesetup setup, long track,
 long compression)

long AFinitcompressionparams(AFfilesetup setup, long track,
 long compression,
 AUpvlist pvlist, long numitems)

where:

setup is the AFfilesetup structure that was previously created by
calling AFnewfilesetup().

track is a positive long integer that identifies an audio track in
setup. Because AIFF-C files contain only one audio track per
file, you should use the constant AF_DEFAULT_TRACK to
access the track.

compression is a positive integer symbolic constant that indicates the
type of audio compression being used. See Table 7-4 for a
list of valid compression values.

pvlist is an Audio Utility Library parameter-value list (AUpvlist)
structure, filled with parameters and values related to the
compression scheme compression. Currently, the only
compression schemes that have any parameters are those
supplied by Aware, Inc.

138

Chapter 7: Programming with the Audio File Library

numitems is the number of valid entries in the pvlist.

Table 7-4 lists the valid compression values that you can set for AIFF-C files;
compression must be AF_COMPRESSION_NONE for AIFF files.

a. These values are intended for use with AFinitcompressionparams().

b. These values are intended for use with AFinitcompression().

Table 7-4 Settable Compression Parameter Values and Types

Parameter Value Compression Type

AF_COMPRESSION_NONE No compression.

AF_COMPRESSION_G722 64 Kbps ADPCM for 16 kHz 16-bit.

AF_COMPRESSION_G711_ULAW 64 Kbps PCM encoding for 8 kHz 16-bit.

AF_COMPRESSION_G711_ALAW 64 Kbps PCM encoding for 8 kHz 16-bit.

AF_COMPRESSION_AWARE_MPEGa Aware implementation of ISO/MPEG I-audio, Layers I and II.
The default setting for this parameter is
AF_COMPRESSION_AWARE_DEFAULT_MPEG_II).

AF_COMPRESSION_AWARE_MULTIRATEa Aware MultiRate I lossless or near-lossless algorithm
The default setting for this parameter is
AF_COMPRESSION_AWARE_DEFAULT_MULTIRATE).

AF_COMPRESSION_AWARE_DEFAULT_MPEG_Ib Aware implementation of ISO/MPEG I-audio layer I, joint-stereo,
fixed rate at 192 Kbps per channel.

AF_COMPRESSION_AWARE_DEFAULT_MPEG_IIb Aware implementation of ISO/MPEG I-audio layer II, joint-stereo,
fixed rate at 128 Kbps per channel.

AF_COMPRESSION_AWARE_DEFAULT_MULTIRATEb Aware MultiRate I operating in high-resolution near-lossless (near
perfect reconstruction) mode.

AF_COMPRESSION_AWARE_DEFAULT_LOSSLESSb Aware MultiRate I operating in lossless (perfect reconstruction)
mode.

Creating and Configuring Audio Files

139

Initializing Audio Track Markers

Audio track marker structures store sample frame locations in the track for
looping and other purposes. Markers are identified by a long integer ID
number and (optionally) a name string. Markers point to a location between
two samples in the audio track: position 0 is before the first sample, position
1 is between the first and second sample, and so on. You can assign positions
to the markers by calling AFsetmarkpos(). By default, AFnewfilesetup()
allocates space for four markers, which is sufficient to store the beginning
and end points for both a sustain loop and a release loop.

AFinitmarkids() initializes a list of unique marker IDs corresponding to
marker structures in a given audio track. Its function prototype is:

void AFinitmarkids(AFfilesetup setup, long trackid,
 long markids[], long nmarks)

where setup is the AFfilesetup structure, trackid is a long integer that
identifies an audio track in setup, markids is an array of unique positive long
integers that will be used as handles for the marker structures in the file
opened with setup, nmarks is a long integer that specifies the number of
marker IDs in the markids array, that is, the total number of marker structures
that will be allocated for the audio track. AIFF-C (and AIFF) files can contain
up to 65535 markers in a track.

AFinitmarkname() specifies a name string for a marker structure. Marker
names default to empty strings. Its function prototype is:

void AFinitmarkname(AFfilesetup setup, long trackid,
 long markid, char *name)

where setup is the AFfilesetup structure, trackid is a long integer that
identifies an audio track in setup, markid is a positive long integer that
identifies a marker structure configured previously by AFinitmarkids(),
name is a string that will be written into the marker structure when an audio
file is created by passing setup to AFopenfile().

140

Chapter 7: Programming with the Audio File Library

Initializing Instrument Data

This section explains how to initialize the instrument parameters in an
AFfilesetup structure before passing the structure to AFopenfile().

AFinitinstids() initializes a list of unique instrument IDs that are used to
reference the instrument configurations in an AFfilesetup. Its function
prototype is:

void AFinitinstids(AFfilesetup setup, long instids[],
 long ninsts)

where setup is the AFfilesetup structure, instids is an array of positive long
integers that are used as handles for the instrument configurations in an
audio file, and ninsts is the number of entries in instids.

Note: Currently, the AF Library supports only one instrument configuration
per file, which is the maximum allowed by both AIFF and AIFF-C formats;
therefore, ninsts should be set to either 0 or 1 and instids contains at most one
element, whose value must be AF_DEFAULT_INST. If you set ninsts to 0
(meaning that no instrument configuration will be in the audio file you plan
to open), AFinitinstids() will ignore the instids argument, and instids can be
made a null pointer in this case.

AFinitloopids() initializes a list of unique instrument loop IDs that
correspond to the loops supplied for a specified instrument in an audio file.
Its function prototype is:

void AFinitloopids(AFfilesetup setup, long instid,
 long loopids[], long nloops)

where setup is the AFfilesetup structure, instid is a long integer that identifies
an instrument configuration in an audio track. In the current release of the
AF Library, the value of instid should always be AF_DEFAULT_INST. loopids
is an array of unique, positive long integers that will identify individual
loops within an audio file opened using setup. nloops is a long integer that
indicates the number of elements in loopids.

Creating and Configuring Audio Files

141

The values set in loopids can be used by other AF Library functions to set the
start point, end point, and play mode for each loop (see “Reading and
Writing Instrument Configurations” on page 163).

Note: In the current release of the AF Library, both AIFF and AIFF-C files
must contain exactly 2 loops: a “sustain” loop and a “release” loop. nloops is
currently ignored, since its value is always 2.

Initializing Miscellaneous Data

Use these functions to initialize miscellaneous data chunks in an AFfilesetup
structure, including file name, author, copyright, and annotation strings,
MIDI data, and application-specific data.

AFinitmiscids() initializes a list of unique miscellaneous chunk IDs that are
then used to reference various file format-dependent data chunks in an
audio file. Its function prototype is:

void AFinitmiscids(AFfilesetup setup, long miscids[],
 long nmisc)

where setup is the AFfilesetup structure, miscids is an array of unique,
positive long integers used to reference the miscellaneous data chunks in an
audio file opened using setup, nmisc is the number of elements in miscids, that
is, the total number of miscellaneous chunks in the file configuration. The
default number of miscellaneous IDs in an AFfilesetup structure is 0.

AFinitmisctype() initializes a miscellaneous data chunk with a given ID to
one of a variety of supported chunk types in AIFF and AIFF-C files. Its
function prototype is:

void AFinitmisctype(AFfilesetup setup, long miscid,
 long type)

where setup is the AFfilesetup structure, miscid is a positive long integer that
identifies a miscellaneous chunk in setup, and type is a long integer constant
that defines the chunk type.

142

Chapter 7: Programming with the Audio File Library

Table 7-5 lists the valid parameters for each chunk type.

A single AIFF or AIFF-C file may contain any number of ANNO, APPL, or
MIDI chunks, but only one of each of the other (NAME, AUTH, and (c))
miscellaneous chunks.

AFinitmiscsize() initializes the amount of space reserved for miscellaneous
chunks of data in an AFfilesetup structure. This space is then reserved
(written as a zero-filled area) in the header structure of an audio file that is
opened using the specified AFfilesetup structure.

Use AFwritemisc() to write the data after the file has been opened. The
application program is responsible for managing the contents of the header
space reserved for each chunk. Its function prototype is:

void AFinitmiscsize(AFfilesetup setup, long miscid,
 long size)

where setup is the AFfilesetup structure, miscid is a positive long integer that
identifies a miscellaneous chunk in setup, and size is a non-negative long
integer that specifies the number of bytes to reserve for the chunk data
identified by miscid. It is not necessary to add a trailing “zero pad byte”
normally required by chunks in AIFF/AIFF-C files with odd numbers of
data bytes (see the description for AFreadmisc()); the AF Library handles
this transparently.

Table 7-5 Miscellaneous Chunk Types and Parameter Values

Parameter Value Miscellaneous Chunk Type

AF_MISC_AIFF_ANNO Annotation string

AF_MISC_AIFF_APPL Application-specific data

AF_MISC_AIFF_AUTH Author string

AF_MISC_AIFF_COPY Copyright string

AF_MISC_AIFF_MIDI MIDI data

AF_MISC_AIFF_NAME Name string

Creating and Configuring Audio Files

143

Using the Audio Utility Library to Initialize Parameter Lists

The Audio Utility Library, libaudioutil.so, provides routines for getting and
setting parameters, parameter types, and parameter values contained in
lists. Currently, these routines are used only when initializing and querying
parameters for the built-in licensable audio compression software from
Aware Inc., which is accessible from AF routines. Licenses can be verified by
using the AUchecklicense() routine.

These routines use the Audio Utility Library parameter-value list (AUpvlist)
data structure, which is an array of structures, each of which contains a list
of parameters, parameter types, and parameter values.

Creating and Configuring an Audio Utility Parameter-value List

Use AUpvnew() to create an empty AUpvlist with the specified number of
blank structures. Its function prototype is:

AUpvlist AUpvnew(int numitems)

where:

numitems is an integer number of list items to use when creating a new
AUpvlist—one list item contains the parameter, parameter
type, and parameter value entries.

AUpvnew() returns an empty AUpvlist structure. If an error occurs— either
because numitems is less than or equal to zero, or because of a memory
allocation error—a null pointer, AU_NULL_PVLIST, is returned.

Freeing an Audio Utility Parameter-value List

When an AUpvlist is no longer needed, you should free the memory
associated with it by calling AUpvfree(). Its function prototype is:

int AUpvfree(AUpvlist pvlist)

where pvlist is the structure for which memory should be freed.

144

Chapter 7: Programming with the Audio File Library

Getting and Setting Parameter Values

Use the AUpvlist structure when setting and getting a parameter, its type,
and its value. The “set” routines fill in the structure entries for the designated
list item with the specified information; the “get” routines return the
requested information in pointers corresponding to the item being queried.

Table 7-6 lists and describes the AU Library get and set routines.

The function prototypes of the routines in Table 7-6 are:

int AUpvgetmaxitems(AUpvlist pvlist)

int AUpvgetparam(AUpvlist pvlist, int item, int *param_ptr)

int AUpvgetval(AUpvlist pvlist, int item, void *val_ptr)

int AUpvgetvaltype(AUpvlist pvlist, int item, int *type_ptr)

int AUpvsetparam(AUpvlist pvlist, int item, int param)

int AUpvsetval(AUpvlist pvlist, int item, void *val_ptr)

int AUpvsetvaltype(AUpvlist pvlist, int item, int type)

Table 7-6 Audio Utility Library Set and Get Routines

Routine Description

AUpvgetmaxitems() Returns the number of list entries allocated for pvlist when
it was created by AUpvnew()

AUgetparam() Gets the parameter of the itemth entry in pvlist and returns
it in param_ptr

AUpvgetval() Gets the value of the itemth entry in pvlist and returns it in
val_ptr

AUpvgetvaltype() Gets the value type of the itemth entry in pvlist and returns
it in type_ptr

AUpvsetparam() Sets the parameter of the itemth entry in pvlist to param

AUpvsetval() Sets the value of the itemth entry in pvlist to the value stored
in val_ptr

 AUpvsetvaltype() Sets the type of the value of the itemth entry in pvlist to type

Creating and Configuring Audio Files

145

pvlist is an Audio Utility Library parameter-value list data type
created by a previous call to AUpvnew().

item is an integer zero-based index into an AUpvlist. The index
should be a non-negative value that is less than numitems-1.

type is a symbolic constant describing the type of parameter.
Currently supported types are:

• AU_PVTYPE_LONG—values are longs

• AU_PVTYPE_DOUBLE—values are double-precision
floating points

param is an integer that will become the parameter or the
parameter-value pair.

val is a pointer to a void type. Data is read from this pointer,
interpreted according to the type associated with this entry,
and stored in the AUpvlist.

param_ptr is a pointer to an integer that is filled with the value of the
parameter portion of a parameter-value pair.

value_ptr is a pointer to a void type. Data representing the value
portion of a parameter-value pair is copied to this address
as interpreted by this entry's type.

Verifying a License

Use AUchecklicense() to verify whether a license for a particular audio
product is available. Its function prototype is:

int AUchecklicense(int product, int *errorval,
 char **message)

where:

product is a constant symbol for the product license that is being
queried. Currently defined licenses are:

• AU_LICENSE_AWARE_MPEG_ENCODER

• AU_LICENSE_AWARE_MPEG_DECODER

• AU_LICENSE_AWARE_MULTIRATE_ENCODER

• AU_LICENSE_AWARE_MULTIRATE_DECODER

146

Chapter 7: Programming with the Audio File Library

errorval is a pointer to an integer describing a NetLS error, which
will be set only if the return value is AU_LICENSE_ERR.

message is a pointer to a character pointer, which is changed to point
to an informative string only if the return value is
AU_LICENSE_ERR. The string contains the NetLS error
that occurred and contact information on how to obtain
support or a license.

On successful completion, AUchecklicense() returns AU_LICENSE_OK. If
product is unknown, then AU_BAD_PRODUCT is returned. If a NetLS error
occurs, then AU_LICENSE_ERR is returned and *errorval and *message are
set, describing the error. See Appendix B for more information about NetLS.

Example 7-1 contains a listing of a portion of code from the aifcinfo.c demo
program that is provided in /usr/people/4Dgifts/examples/dmedia/soundfile.
This portion of code creates an AUpvlist with 3 items, fills those items with
the pertinent information, then frees the memory associated with the
AUpvlist when it is no longer required.

Example 7-1 Creating, Filling, Querying and Freeing an AUpvlist

{
AUpvnew(&pvlist, 3);

AUpvsetparam(pvlist, 0, AF_AWARE_PARAM_LAYER);
AUpvsetvaltype(pvlist, 0, AU_PVTYPE_LONG);
AUpvsetparam(pvlist, 1, AF_AWARE_PARAM_BITRATE_POLICY);
AUpvsetvaltype(pvlist, 1, AU_PVTYPE_LONG);
AUpvsetparam(pvlist, 2, AF_AWARE_PARAM_BITRATE_TARGET);
AUpvsetvaltype(pvlist, 2, AU_PVTYPE_LONG);

AFgetcompressionparams(file, AF_DEFAULT_TRACK,
&track_desc->compressiontype, pvlist, 3);

AUpvgetval(pvlist, 0, &track_desc->aware_desc.layer);
AUpvgetval(pvlist, 1,

&track_desc->aware_desc.bitratepolicy);
AUpvgetval(pvlist, 2,

&track_desc->aware_desc.bitratetarget);

AUpvfree(pvlist);
}

Opening, Closing, and Updating Audio Files

147

Opening, Closing, and Updating Audio Files

Before opening a new audio file using AFopenfile(), create and configure an
appropriate AFfilesetup structure (as described in “Creating and
Configuring Audio Files” on page 132). Audio files can be opened either for
reading or writing (but not both simultaneously). In order to change an
existing file, you must copy the contents of the file to a new file, writing edits
as you go. See the sample source code in /usr/people/4Dgifts/examples/dmedia/
soundfile for a demonstration of this process.

Opening an Audio File

AFopenfile() allocates and initializes an AFfilehandle structure for a named
file. The audio track logical read/write pointer used by AFreadframes() and
AFwriteframes() is initialized to point to the location of the first sample in
the audio file. Its function prototype is:

AFfilehandle AFopenfile(char *name, char *mode,
 AFfilesetup setup)

where name is a character string that names the file to be opened, and mode
identifies whether the file is being opened for read or write access. Valid
values for mode are:

• "r" – read-only access

• "w" – write-only access

setup is an AFfilesetup structure previously created using AFnewfilesetup()
and configured using various AF Library initialization functions described
in previous sections. setup is ignored when mode is set to "r".

AFopenfile() returns an AFfilehandle structure for the named file. If an error
occurs, AFopenfile() returns the value AF_NULL_FILEHANDLE.

148

Chapter 7: Programming with the Audio File Library

Getting an IRIX File Descriptor for an Audio File

Another way of opening a file is to call the IRIX system function open() to
open the file, and then get a handle to the file descriptor from the AF Library.

AFopenfd() returns an AFfilehandle structure for a file that has already been
opened. Its function prototype is:

AFfilehandle AFopenfd(int fd, char *mode, AFfilesetup setup)

where fd is an IRIX file descriptor previously returned by open(), mode
identifies whether the file is being opened for read or write access (see
AFopenfile()), and setup is an AFfilesetup structure previously created using
AFnewfilesetup() and configured using various AF Library initialization
functions described in previous sections. setup is ignored when mode is set
to "r".

AFopenfd() returns an AFfilehandle structure for the named file. If an error
occurs, AFopenfd() returns the value AF_NULL_FILEHANDLE.

AFgetfd() returns the IRIX file descriptor associated with the audio file
referred to by the given AFfilehandle structure. Its function prototype is:

int AFgetfd(AFfilehandle file)

where file is the AFfilehandle structure previously created by a call to
AFopenfile().

The file descriptor returned by AFgetfd() is intended for use in a select()
loop. It is not intended to allow reading, writing, and seeking in an audio file
without the knowledge of the Audio File Library. Doing so causes
unpredictable results unless you save and restore the file position whenever
you modify it.

The AF does not reposition the file to the correct place before reading from
(using AFreadframes()) or writing to (using AFwriteframes()) it. If you
modify the file position of the file descriptor given by AFgetfd(), you should
save the file position and restore it to its previous position before reading or
writing data to the file. Alternately, you can use one of two different file
descriptors opened to the same file. The file must be re-opened in order to
get a separate file descriptor (dup(2) will not work because it gives you two
file descriptors that share the same file offset).

Opening, Closing, and Updating Audio Files

149

In addition, if you attempt to write to the file, no matter how the
AFfilehandle was opened, the results are undefined.

Closing and Updating Files

AFclosefile() releases a file's resources back to the system. It also updates the
headers of files opened for write access. The AFfilehandle structure
deallocated by AFclosefile() should not be used by any subsequent AF
Library function calls. Its function prototype is:

long AFclosefile(AFfilehandle file)

where file is the AFfilehandle structure to be deallocated. This structure was
returned by AFopenfile() when the file being closed was created.

AFclosefile() returns a negative value if an error occurs while closing a file
and updating the header fields. If compression was used to write a file, a
negative value indicates that some sample frames were lost due to the filter
delay of the compressor. If no error occurs, the return value is 0.

AFsyncfile() updates the complete contents of an audio file opened for
writing without actually closing the file. This is useful for maintaining
consistent header information between writing samples to the file's audio
track. Its function prototype is:

long AFsyncfile(AFfilehandle file)

where file is the AFfilehandle structure to be updated. This structure was
returned by AFopenfile() when the file being closed was created.

AFsyncfile() returns a negative value if an error occurs while trying to
update file. If the update is successful, or if file was opened as read-only,
AFsyncfile() returns 0.

150

Chapter 7: Programming with the Audio File Library

Reading and Writing Audio Track Information

This section describes functions that read and manipulate audio track data
and parameters in an audio file. Your application should query for audio file
characteristics before opening a file and reading and writing data.

Getting Audio File Format

This section describes functions that query the file format from either a file
handle or from an IRIX file descriptor of an opened audio file.

AFgetfilefmt() returns an integer value indicating the format of the file and
returns a separate version number for AIFF-C files. Its function prototype is:

long AFgetfilefmt(AFfilehandle file, long *version)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), and version is used to return a file format
version number in the form of a non-negative long integer. AIFF files do not
use version numbers, so a value of 0 is always returned as the AIFF version
number.

AFgetfilefmt() returns a non-negative long integer indicating the format of
the file. Currently supported values include:

• AF_FILE_AIFFC (AIFF-C format)

• AF_FILE_AIFF (AIFF format)

but your application should allow for the possibility of other (or unknown)
file formats being returned.

AFidentifyfd() returns the file format of a given IRIX file descriptor. Its
function prototype is:

long AFidentifyfd(int fd)

where fd is an IRIX file descriptor previously returned by open().

AFidentifyfd() returns a long integer value representing the audio file
format (see AFgetfilefmt() for the return values for supported formats). If
AFidentifyfd() does not recognize the format, AF_FILE_UNKNOWN is

Reading and Writing Audio Track Information

151

returned. If the format is not one supported by the AF Library,
AF_FILE_UNSUPPORTED is returned.

To determine whether a file is a sound file that can be opened by the AF,
check for an unrecognizable format rather than a recognizable format. For
example, rather than testing whether the file format is either AF_FILE_AIFF
or AF_FILE_AIFC, use this code:

if (filefmt == AF_FILE_UNSUPPORTED ||
 filefmt == AF_FIILE_UNKNOWN)
 {
 printf("file is not supported by the AF library!");
 exit(0);
}

Applications that branch depending on the file format should still check for
unrecognized formats:

switch (AFidentifyfd(fd))
{
case AF_FILE_AIFF: do_aiff_thing(); break;
case AF_FILE_AIFC: do_aiffc_thing(); break;
case AF_FILE_UNKNOWN:
case AF_FILE_UNSUPPORTED:
 printf("this file is not supported by AF library!!");
 exit(0);
default:
 printf("program cannot handle this file format!");
 exit(0);
}

Tip: Sometimes, instead of checking the file format, you should check the
sampling format and other track parameters from the audio file track, as
described in “Getting and Setting Audio Track Parameters” on page 152. For
example, a program that simply reads 16-bit AF_SAMPFMT_TWOSCOMP
audio data out of an AIFF file should be able to correctly read that type of
data out of a file whose file format is not AIFF, as long as it does not also
intend to read AIFF-specific chunks from the data (for example, certain
MISC and INST chunks). Such a program has no need to call AFidentifyfd()
or AFgetfilefmt() to get the file format.

152

Chapter 7: Programming with the Audio File Library

Getting and Setting Audio Track Parameters

Most audio track parameters (except markers) must be initialized before a
new audio file is opened and cannot be modified after that point, but you
should query an audio file for its track parameters.

Getting Audio Track Sample Rate

AFgetrate() returns the sample rate of an audio track in an opened audio file.
Its function prototype is:

double AFgetrate(AFfilehandle file, long trackid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), and trackid is the ID for the audio track (for
AIFF and AIFF-C files, this value should always be AF_DEFAULT_TRACK).

AFgetrate() returns a double-precision floating point value that describes in
Hz the audio sampling rate of the audio track.

Getting Audio Track Sample Format and Sample Width

AFgetsampfmt() retrieves the sample format and sample width for an audio
track in an opened audio file. Its function prototype is:

void AFgetsampfmt(AFfilehandle file, long trackid,
 long *sampfmt, long *width)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_DEFAULT_TRACK),
sampfmt is a pointer to a long integer denoting the format of the sample data
(for AIFF and AIFF-C files, this value is always
AF_SAMPFMT_TWOSCOMP), and width is a pointer to a long integer that
denotes the sample width in bits (for AIFF and AIFF-C files, this value is
between 1 and 32).

Tip: Do not assume that AF_SAMPFMT_TWOSCOMP is the only value that
can be returned by AFgetsampfmt(). Write your application so that it rejects
files with sample formats it does not support.

Reading and Writing Audio Track Information

153

Sample width may or may not have meaning, depending on the value of
sampfmt. For AF_SAMPFMT_TWOSCOMP data, you can use the sample
width value to determine the data type used to pass samples to
AFwriteframes() and from AFreadframes(): 1–8 bit samples are packed into
chars, 9–16 bit samples are packed into shorts, and 17–32 bit samples are
packed into longs. Data formats whose sample width is not a multiple of
eight are augmented by zero-bit-padding on the right (see Figure 7-1).

There is a special case for reading 24-bit integer data. The AF automatically
converts 3-byte data into 4-byte quantities in a manner that is compatible
with the Audio Library (AL) by sign-extending the left-most bits of 17 to
24-bit data.

Figure 7-1 shows the data packing for twos complement integer data
(AF_SAMPFMT_TWOSCOMP).

Figure 7-1 Audio Data Packing Formats

+−

30−bit data
(right padding)

LSBMSB
Byte 0Byte 1Byte 2Byte 3

+−

0 0
6−bit data
(right pad)

Sample Format

8−bit data
(no padding)

12−bit data
(right pad)

20−bit data
(left sign extend
and right pad)

24−bit data
(left sign extend)

0 0 0 0

0 0 0 0

1−8
char

9−16
short

17−24 int
special
case

25−32
int

32−bit data
(no padding)

0 0

154

Chapter 7: Programming with the Audio File Library

Tip: Don’t assume that the maximum size of integers in files opened by the
AF Library is 32 bits or that the number of bits will be a multiple of 8. Even
for AIFF files, the sample width is not necessarily a multiple of 8. Generally,
this can be ignored, because audio samples that do not take up an integral
number of bytes are left-justified inside the next larger integral number of
bytes (with the remaining bits set to 0). But you should write your
application so that it does not assume the sample width is a multiple of 8, as
demonstrated in Example 7-2.

Example 7-2 checks for the audio track sample format, and then classifies
integer data according to its sample width.

Example 7-2 Checking Audio Track Sample Format and Sample Width

#include <dmedia/audiofile.h>
...
AFfilehandle h = AFopenfile(....);
if (!h) return;

AFgetsampfmt(h, AF_DEFAULT_TRACK, &sampfmt, &sampwidth);

if (sampfmt != AF_SAMPFMT_TWOSCOMP)
 {
 printf("This program can’t read audio files of this "
 sample format");
 exit(0);
 }
/* round sampwidth up to nearest number of bytes */
int nbytes = ((sampwidth-1) / 8) + 1;
switch (nbytes)
 {
 case 1: do_8_thing(); break;
 case 2: do_16_thing(); break;
 case 3: do_24_thing(); break;
 case 4: do_32_thing(); break;
 default:
 printf("This program can’t read audio files of this "
 sample width %d\n", sampwidth);
 exit(0);
 }

Reading and Writing Audio Track Information

155

Getting Audio Track Channels

The number of channels in an audio track is initially set by AFinitchannels()
before the file is created.

AFgetchannels() returns the number of interleaved audio channels in the
audio track of an opened audio file. Its function prototype is:

long AFgetchannels(AFfilehandle file, long trackid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), and trackid is the ID for the audio track (for
AIFF and AIFF-C files, this value should always be AF_DEFAULT_TRACK).
AFgetchannels() returns 1 if trackid is monaural, 2 if it is stereo, or any other
positive integer (even for AIFF/AIFF-C files).

Tip: Your application should be able to handle audio files containing an
arbitrary number of channels. For example, the application could reject a file
that has more than the supported number of channels, or it could combine
channels selectively or use certain channels while ignoring others.

Getting AES Data

AFgetaeschanneldata() retrieves AES channel status information from an
opened audio file. Its function prototype is:

long AFgetaeschanneldata(AFfilehandle file, long trackid,
 unsigned char buf[24])

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_DEFAULT_TRACK), and
buf is a 24-element array that receives the AES channel status bytes.

AFgetaeschanneldata() returns a 1 if there is AES channel data, or a 0 if there
is no data.

Tip: There is no guarantee whether a given file format will contain AES data,
so your application should call AFgetaeschanneldata() to determine
whether AES channel bytes are encoded in an audio file.

156

Chapter 7: Programming with the Audio File Library

Getting Audio Track Compression

This section describes routines that let you get compression information for
an audio track from an AFfilehandle structure.

When reading or writing a file (even an AIFF-C file) containing compressed
data, first call AFgetsampfmt() to get the native sample format of the codec,
and check that it is able to be read/written using that format. The native
sample format of a codec is the sample format of the data it produces on
decompression or expects on compression.

Tip: Your application should reject compressed files with native sample
formats it does not support. Check for an unrecognized format rather than a
defined format. The currently defined codecs all convert the compressed
data to and from 16-bit AF_SAMPFMT_TWOSCOMP data, but you should
not assume that a certain format is guaranteed for future codecs. For
example, if you know that the file is AF_COMPRESSION_G711_ULAW,
then the native format for that codec is 16-bit AF_SAMPFMT_TWOSCOMP.
However, you should call AFgetsampfmt() in any case, to allow for the
possibility of future codecs whose native sample format is something other
than 16-bit signed integer or which have more than one native sample
format (some may be configurable or may vary depending on what kind of
data was originally compressed).

AFgetcompression() and AFgetcompressionparams() return the
compression type used in the audio track of an opened audio file. In
addition, AFgetcompressionparams() scans a requested number of items
and returns codec-specific parameters for the audio track.
AFgetcompression() returns a long integer representing the compression
algorithm used for the audio track’s data; AFgetcompressionparams()
returns this value in the compression pointer.

The function prototypes are:

long AFgetcompression(AFfilehandlefile file, long trackid)

long AFgetcompressionparams(AFfilehandle file, long trackid,
 long *compression, AUpvlist pvlist, long numitems)

where:

file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd().

Reading and Writing Audio Track Information

157

trackid is the ID for the audio track (for AIFF and AIFF-C files, this
value should always be AF_DEFAULT_TRACK).

compression is a pointer to a positive long integer that will be filled in
with the symbolic constant that indicates the type of audio
compression being used for the specified audio track. See
Table 7-7 for a list of possible return values.

pvlist is an AUpvlist structure, to be filled with parameters and
values related to the compression scheme compression.
Currently, the only compression schemes that have any
parameters are those supplied by Aware, Inc.

numitems is the number of valid entries in the pvlist.

Table 7-7 lists the valid return values for AIFF-C files. AIFF files always
return AF_COMPRESSION_NONE.

Table 7-7 Valid Return Values for Compression Algorithms and Parameters

Parameter Value Compression Type

AF_COMPRESSION_UNKNOWN Unrecognized compression scheme

AF_COMPRESSION_NONE No compression

AF_COMPRESSION_G722 64 Kbps ADPCM for 16 kHz 16-bit

AF_COMPRESSION_G711_ULAW 64 Kbps encoding for 8 kHz 16-bit

AF_COMPRESSION_G711_ALAW 64 Kbps encoding for 8 kHz 16-bit

AF_COMPRESSION_AWARE_MPEG Aware implementation of ISO/
MPEG I-audio Layers I and II

AF_COMPRESSION_AWARE_MULTIRATE Aware MultiRate I lossless or near-
lossless algorithm

AF_COMPRESSION_APPLE_ACE3 Not currently supported

AF_COMPRESSION_APPLE_ACE8 Not currently supported

AF_COMPRESSION_APPLE_MAC3 Not currently supported

AF_COMPRESSION_APPLE_MAC6 Not currently supported

158

Chapter 7: Programming with the Audio File Library

The Audio File Library provides built-in codec support for five compression
algorithms: CCITT G.722, CCITT G.711 µ-law and A-law, and the Aware, Inc.
ISO/MPEG I-audio and MultiRate I algorithms. To get more specific
information about the Aware algorithms, such as MPEG I layers, see
Appendix B, “Aware Scalable Audio Compression Software.”

Note: The four Apple compression algorithms listed in Table 7-7 are
proprietary to Apple Computer Inc., and are not currently supported by the
Audio File Library.

AFgetcompressionname() returns a null-terminated string containing the
name of the compression algorithm used for an audio track in an opened
audio file. Its function prototype is:

char *AFgetcompressionname(AFfilehandle file, long trackid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), and trackid is the ID for the audio track (for
AIFF and AIFF-C files, this value should always be AF_DEFAULT_TRACK).

If compression is not used, as is the case with AIFF files,
AFgetcompressionname() returns a null string.

Getting Audio Track Sample Frame Count

AFgetframecnt() returns the total number of sample frames in the audio
track of an opened audio file. Its function prototype is:

long AFgetframecnt(AFfilehandle file, long trackid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(). trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_DEFAULT_TRACK).

AFgetframecnt() returns a long integer value that is the current total of
sample frames in the track.

Getting and Setting Audio Track Markers

This section describes functions that get information about the markers in a
given audio track and explains how to set the position of those markers.
Markers point to positions between adjacent sample frames. For a track

Reading and Writing Audio Track Information

159

containing n sample frames, position 0 is before the first sample frame, and
position n is after the last sample frame in the track.

AFgetmarkids() retrieves an array of marker IDs from a given audio track in
an opened audio file. It returns the number of marker structures in the
specified audio track. Its function prototype is:

long AFgetmarkids(AFfilehandle file, long trackid,
 long markids[])

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_DEFAULT_TRACK), and
markids is an array of long integers that receives the marker IDs for the
marker structures in the audio track.

AFgetmarkids() returns a non-negative integer value specifying the number
of marker structures in the given audio track.

Tip: Check for unrecognized mark return values rather than recognized
values. Write your application so that it expects any number of marks and
any type of mark (not just the currently defined types) and rejects files
containing marks it does not support.

Typically, you call AFgetmarkids() twice. The first time, you pass markids a
null pointer and check the return value of the function. This value tells you
how many locations to allocate in the markids array, which you pass back to
AFgetmarkids() to obtain the list of marker IDs.

AFgetmarkname() returns the name string of a given marker within the
audio track of an opened audio file. Its function prototype is:

char *AFgetmarkname(AFfilehandle file, long trackid,
 long markid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_DEFAULT_TRACK), and
markid is the ID of the marker whose name you want to retrieve.

AFgetmarkname() returns a null-terminated character string that is the
name associated with the given markid.

160

Chapter 7: Programming with the Audio File Library

AFgetmarkpos() returns the frame location of a given marker in the audio
track of an opened audio file. Its function prototype is:

long AFgetmarkpos(AFfilehandle file, long trackid, long
markid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_DEFAULT_TRACK), and
markid is the ID of the marker whose position you want to discover.

AFgetmarkpos() returns a non-negative long integer value indicating the
position of the marker in the track.

AFsetmarkpos() sets the frame location of a given marker in the audio track
of an audio file opened for write access. Its function prototype is:

void AFsetmarkpos(AFfilehandle file, long track, long markid,
 long markpos)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_DEFAULT_TRACK),
markid is the ID of the marker whose position you want to move, and markpos
is a non-negative long integer that describes the position to which you want
to move the marker in the track.

Seeking, Reading, and Writing Audio Track Frames

This section describes functions that position the read pointer in a file's
audio track and functions that read and write frames. You can read and seek
only from a file opened for reading. Similarly, you can write frames only to
a file opened for writing.

Seeking to a Position in an Audio File Track

When a file is opened for read access by AFopenfile() or AFopenfd(), the
logical track pointer for the audio track is initialized to point to the first
frame in the track. This location can be changed by calling AFseekframe().
Before returning, AFreadframes() moves the logical track pointer so that it
points to the frame following the one last copied into frames.

Reading and Writing Audio Track Information

161

Caution: The logical track pointer is not the same thing as the IRIX file
pointer which you position by calling the IRIX lseek(2) command.

AFseekframe() moves the logical track pointer in the audio track of an audio
file opened for read-only access to a specified frame. Its function prototype
is:

long AFseekframe(AFfilehandle file, long trackid,
 long offset)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_DEFAULT_TRACK), and
offset is the number of frames from the beginning of the track that the pointer
will be moved to. This value is between 0 and the total number of frames in
the track, minus 1. The total number of frames in the track can be determined
by calling AFgetframecnt().

When AFseekframe() succeeds, it returns the actual offset value; otherwise,
it returns a negative value.

Reading Audio Frames from an Audio Track

AFreadframes() copies sample frames from an audio file opened for reading
to a buffer. Its function prototype is:

long AFreadframes(AFfilehandle file, long trackid,
 void *frames, long count)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), trackid is the ID for the audio track (for AIFF
and AIFF-C files, this value should always be AF_DEFAULT_TRACK),
frames is a pointer to a buffer into which you want to transfer copies of
sample frames from file, and count is the number of sample frames you want
to read from file.

AFreadframes() returns a long value indicating the number of frames
successfully read from the audio track.

The data copied into frames must be interpreted according to the sample
format and sample width parameter returned by AFgetsampfmt() and
channel count returned by AFgetchannels(), as described in “Getting Audio

162

Chapter 7: Programming with the Audio File Library

Track Sample Format and Sample Width” on page 152. For
AF_SAMPFMT_TWOSCOMP, AFreadframes() copies the frames to the
buffer using the smallest data type (char, short, or long) that capable of
holding the data. AFreadframes() automatically decompresses data
encoded using any of the supported compression algorithms. (For Aware
compression, an Aware license must be installed.)

Tip: Query for the sample format, sample width, and channels. Don’t
assume that a particular file format determines the sample format, sample
width, or number of channels. Provide a mechanism for detecting and
handling unsupported file configurations.

Writing Audio Frames to an Audio Track

When a file is opened for write access by AFopenfile() or AFopenfd(), the
logical track pointer for the file’s audio track is initialized to point to the first
frame in the track. Before returning, AFwriteframes() moves the logical
track pointer so that it points to the frame following the one last copied into
samples.

Caution: The logical track pointer is not the same thing as the IRIX file
pointer which you position by calling the IRIX lseek(2) command.

AFwriteframes() copies frames from a buffer to an audio file opened for
writing. Its function prototype is:

long AFwriteframes(const AFfilehandle file, long track,
 void samples, const long count)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), track is a long integer which identifies the
audio track (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_TRACK), samples is a pointer to a buffer containing sample
frames that you want to write to file, and count is the number of sample
frames you want to write to file.

For AF_SAMPFMT_TWOSCOMP data, AFwriteframes() expects the frames
to be buffered using the smallest data type (char, short, or long) capable of
holding the data. AFwriteframes() automatically compresses data encoded
using any of the supported compression algorithms.

Reading and Writing Audio Track Information

163

AFwriteframes() returns a long value indicating the number of frames
successfully written to the audio track. The return value is normally greater
than or equal to 0; however, when a codec is being used and buffered data
cannot be written to disk, that data is lost. In such a case, AFwriteframes()
returns a negative value, indicating the number of sample frames lost.

Reading and Writing Instrument Configurations

Use the functions in this section to retrieve and manipulate instrument
configuration data and parameters.

Getting and Setting Instrument Parameters

Use the functions described in this section to retrieve and set the instrument
configuration parameters of an audio file. The parameters can be read from
any opened audio file and written to any audio file opened as write-only.

AFgetinstids() retrieves an array of instrument IDs corresponding to the
instrument chunks in a given audio file. It returns the number of instrument
chunks in the file. Its function prototype is:

long AFgetinstids(AFfilehandle file, long instids[])

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), and instids is an array of long integer
instrument IDs that reference instrument chunks within the file.

Typically, you call AFgetinstids() twice. The first time, you pass instids a null
pointer and check the return value of the function. This value tells you how
many locations to allocate in the instids array, which you pass back to
AFgetinstids() to obtain the list of instrument IDs.

Note: The AF Library currently supports only AIFF and AIFF-C file types,
so the number of instrument chunks is always either 0 or 1. If the file does
contain an instrument chunk, its ID will always be AF_DEFAULT_INST for
AIFF and AIFF-C files. But other instrument configurations could be
returned in future releases of the AF Library.

Tip: Write your application so that it checks for and rejects instrument
configurations that you don’t want to support.

164

Chapter 7: Programming with the Audio File Library

AFgetinstparamlong() retrieves a long instrument configuration parameter
value from an instrument configuration in an open audio file. Its function
prototype is:

long AFgetinstparamlong(AFfilehandle file, long instid,
 long param)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(). instid is the instrument ID for the instrument
configuration chunk (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_INST). param is a symbolic constant that identifies an
instrument parameter. See Table 7-3 and Table 7-8 for a list of valid
parameter constants and values associated with them.

AFgetinstparamlong() returns the long integer value associated with the
parameter specified in param. If instid or param is not valid, the value
returned is 0.

Table 7-8 lists the instrument parameter constants and their valid values.

Table 7-8 Instrument Parameter Constants and Valid Values

Instrument Parameter Constant Valid Values

AF_INST_MIDI_BASENOTE 0–127

AF_INST_NUMCENTS_DETUNE −50 to 50

AF_INST_MIDI LONOTE 0–127

AF_INST_MIDI_HINOTE 0–127

AF_INST_MIDI_LOVELOCITY 1–127

AF_INST_MIDI_HIVELOCITY 1–127

AF_INST_NUMDBS_GAIN −32768 to 32767

AF_INST_SUSLOOPID Any positive long integer value

AF_INST_RELLOOPID Any positive long integer value

Reading and Writing Audio Track Information

165

Tip: Check for unrecognized instrument configuration and parameters
rather than recognized types. Write your application so that it expects any
type of instrument configuration (not just the currently defined types) and
rejects files containing instruments it does not recognize.

AFsetinstparamlong() writes a long instrument configuration parameter
value to a given instrument configuration chunk in an audio file that has
been opened for writing. Its function prototype is:

void AFsetinstparamlong(AFfilehandle file, long instid,
 long param, long value)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), instid is the instrument ID for the instrument
configuration chunk (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_INST), param is a symbolic constant that identifies an
instrument parameter, and value is the long integer value you want to assign
to parameter named by param. See Table 7-3 and Table 7-8 for a list of valid
parameter constants and values associated with them.

Getting and Setting Loop Information

This section describes functions that retrieve and set the positions of
instrument loops within an opened audio file. The loop information may be
read from any opened audio file and written to any audio file opened as
write-only. To get and set instrument loop IDs, use AFgetinstparamlong()
and AFsetinstparamlong(), as described in “Reading and Writing
Instrument Configurations” on page 163.

AFgetloopmode() returns the loop mode of a given loop in the instrument
configuration of an opened audio file. Its function prototype is:

long AFgetloopmode(AFfilehandle file, long instid, long
loopid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), instid is the instrument ID for the instrument
configuration chunk (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_INST), and loopid is the ID number associated with the loop
whose mode you wish to read.

166

Chapter 7: Programming with the Audio File Library

AFgetloopmode() returns a long integer value representing the loop mode.
Current valid values for loop mode are:

• AF_LOOP_MODE_NOLOOP (no loop)

• AF_LOOP_MODE_FORW (forward loop)

• AF_LOOP_MODE_FORWBAKW (alternating forward/backward)

AFsetloopmode() sets the loop mode of a given loop in the instrument
configuration of an audio file opened as write-only. Its function prototype is:

void AFsetloopmode(AFfilehandle file, long instid,
 long loopid, long mode)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), instid is the instrument ID for the instrument
configuration chunk (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_INST), loopid is the ID number associated with the loop
whose mode you wish to write, and mode is the long integer value you wish
to set for the loop mode. See AFgetloopmode() for the list of valid mode
values.

AFgetloopstart() returns an audio track marker ID associated with the
starting point of a given instrument loop. Its function prototype is:

long AFgetloopstart(AFfilehandle file, long instid, long
loopid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), instid is the instrument ID for the instrument
configuration chunk (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_INST), and loopid is the ID number associated with the loop
whose starting point you wish to read.

AFgetloopstart() returns a long integer value, which is a marker ID in the
audio track. See “Getting and Setting Audio Track Markers” on page 158 in
“Reading and Writing Audio Track Information” on page 150 for
information on how to manipulate the position of the markers referred to by
the marker IDs.

Reading and Writing Audio Track Information

167

AFsetloopstart() causes an audio track marker ID to be associated with the
starting point of a given instrument loop. Its function prototype is:

void AFsetloopstart(AFfilehandle file, long instid,
 long loopid, long markid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), instid is the instrument ID for the instrument
configuration chunk (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_INST), loopid is the ID number associated with the loop
whose starting point you wish to write, and markid is the audio track marker
that you wish to assign as the starting point of the given loop.

AFgetloopend() returns an audio track marker ID associated with the
ending point of a given instrument loop. Its function prototype is:

long AFgetloopend(AFfilehandle file, long instid, long
loopid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), instid is the instrument ID for the instrument
configuration chunk (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_INST), and loopid is the ID number associated with the loop
whose ending point you wish to read.

AFgetloopend() returns a long integer value which is a marker ID in the
audio track. See “Getting and Setting Audio Track Markers” on page 158 in
“Reading and Writing Audio Track Information” on page 150 for
information on how to manipulate the position of the markers referred to by
the marker IDs.

AFsetloopend() causes an audio track marker ID to be associated with the
ending point of a given instrument loop. Its function prototype is:

void AFsetloopend(AFfilehandle file, long instid,
 long loopid, long markid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), instid is the instrument ID for the instrument
configuration chunk (for AIFF and AIFF-C files, this value should always be
AF_DEFAULT_INST), loopid is the ID number associated with the loop
whose ending point you wish to write, and markid is the audio track marker
that you wish to assign as the ending point of the given loop.

168

Chapter 7: Programming with the Audio File Library

Tip: Loop queries can return any configuration of loops within an
instrument, not just the fixed value of 2 in AIFF/AIFF-C files. Have your
application check for and reject loop configurations it does not support.

Handling Miscellaneous Data Chunks

The following sections describe how to read to, write from, and get
information about the miscellaneous data chunks in an audio file.

Getting Miscellaneous Data Parameters

This section describes functions that get information about the number, size
and type of miscellaneous data chunks in an opened audio file.

AFgetmiscids() returns the number of miscellaneous data chunks in a file
and an array containing the IDs of each miscellaneous chunk. Its function
prototype is:

long AFgetmiscids(AFfilehandle file, long miscids[])

file is the AFfilehandle structure previously created by a call to AFopenfile()
or AFopenfd(). miscids is an array of positive long integers that contains the
IDs for the miscellaneous data chunks in file.

AFgetmiscids() returns a long integer value equal to the number of
miscellaneous data chunks in file.

To fill the miscids array with the corresponding IDs, you first call
AFgetmiscids() with a null miscids pointer, and then allocate a miscids buffer
according to the return value. You can then call AFgetmiscids() again,
passing the properly dimensioned miscids buffer to obtain the list of IDs.

AFgetmisctype() returns the type of a given miscellaneous chunk. Its
function prototype is:

long AFgetmisctype(AFfilehandle file, long chunkid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), and chunkid is a positive long integer
miscellaneous chunk ID from the miscids array returned by AFgetmiscids().

Reading and Writing Audio Track Information

169

AFgetmisctype() returns a long integer constant that describes the chunk
type. See Table 7-5 for the list of valid chunk types and constants. If the
chunk is not of any of the types listed in Table 7-5, AFgetmisctype() will
return the value AF_MISC_AIFF_UNRECOGNIZED.

Tip: The set of chunk types may expand at any time. Check for
unrecognized chunk types rather than recognized chunk types. Write your
application so that it expects any type of MISC chunk (not just the currently
defined types) and rejects miscellaneous chunks it does not recognize.

AFgetmiscsize() returns the size of a given miscellaneous data chunk in
bytes. Its function prototype is:

long AFgetmiscsize(AFfilehandle file, long chunkid)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), and chunkid is a positive long integer
miscellaneous chunk ID from the miscids array returned by AFgetmiscids().

AFgetmiscsize() returns a long integer value that describes the size of the
data in the chunk in bytes. This number does not take into account null-
terminators in strings, so you will need to add one to the value returned
when actually reading string data (see AFreadmisc()).

Reading, Writing, and Seeking Miscellaneous Data

This section describes functions that read and write miscellaneous data and
to position the read/write location pointer within the data portion of a
miscellaneous chunk. The AFfilehandle structure maintains a logical read/
write pointer for each miscellaneous data chunk in the file. Each pointer is
initialized to point at the first data byte with the chunk when the
AFfilehandle structure is created.

Tip: To avoid file corruption, don’t copy MISC chunks from one file to
another unless the content of those chunks is known. A chunk can contain
references to other parts of the file that have been modified by the
application, in which case attempting to copy it without properly modifying
its contents would cause an error.

170

Chapter 7: Programming with the Audio File Library

AFreadmisc() reads data from a given miscellaneous chunk into a buffer,
and returns the number of bytes read. Its function prototype is:

long AFreadmisc(AFfilehandle file, long chunkid,
 void *buf, long nbytes)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), chunkid is a positive long integer miscellaneous
chunk ID from the miscids array returned by AFgetmiscids(), buf is a pointer
to a buffer that will receive the data from the miscellaneous chunk, and
nbytes is the number of bytes you want to read from the audio file into buf,
beginning at the current position of file's logical read pointer for the data in
miscid. AFreadmisc() will not read past the end of the chunk’s data area.
After reading the data, AFreadmisc() updates the position of the read/write
pointer to point to the data byte following the last one read.

AFwritemisc() writes data from a buffer to a given miscellaneous chunk,
and returns the number of bytes successfully written. Its function prototype
is:

long AFwritemisc(AFfilehandle file, long chunkid,
 void *buf, long nbytes)

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), chunkid is a positive long integer miscellaneous
chunk ID from the miscids array returned by AFgetmiscids(), buf is a pointer
to a buffer that contains the data you want to write to the miscellaneous
chunk, and nbytes is the number of bytes you want to write to the audio file
from buf, beginning at the current position of file’s logical write pointer for
the data in miscid. AFwritemisc() will not write past the end of the chunk’s
data area. After writing the data, AFreadmisc() updates the position of the
read/write pointer to point to the data byte following the last one written.

It is up to the application to fill the data area of a chunk with consistent
information (for example, if you don’t use all the bytes you allocated in a
MIDI data chunk, you need to fill the remaining bytes with no-ops).

AFseekmisc() moves the logical read/write pointer for a miscellaneous
chunk to a specified offset from the beginning of the chunk’s data area. Its
function prototype is:

void AFseekmisc(AFfilehandle file, long chunkid, long offset)

Audio File Library Programming Tips

171

where file is the AFfilehandle structure previously created by a call to
AFopenfile() or AFopenfd(), chunkid is a positive long integer miscellaneous
chunk ID from the miscids array returned by AFgetmiscids(), offset is a non-
negative long integer specifying the number of bytes past the start of the
data area the read/write pointer should be moved, and offset should always
be less than the size of the total data area (in bytes).

AFseekmisc() returns the new location of the logical read/write pointer,
measured as the number of bytes from the beginning of the chunk data area.

Audio File Library Programming Tips

This section describes important Audio File Library programming tips:

• “Minimizing Data and File Format Dependence” on page 171 describes
how to maximize application compatibility by minimizing format
dependence.

• “Preventing Concurrent Access from Multiple Threads” on page 172
explains how to write a multithreaded AF application in order to
prevent simultaneous access to an AFfilehandle from multiple threads.

• “Handling Errors in Multithreaded Applications” on page 176 explains
how to prevent an error handler from reporting simultaneous errors
from a multithreaded application.

Minimizing Data and File Format Dependence

Currently, the Audio File Library supports the AIFF and AIFF-C file formats.
As the AF Library evolves to support new file formats (beyond AIFF and
AIFF-C) and new data formats (beyond 2's complement integer and
compressed data formats), file-format dependent applications will require
more modifications to maintain compatibility than file-format independent
programs. Making your application file format independent decreases the
likelihood of compatibility problems with future releases of the library and
minimizes future modifications. Programming tips presented throughout
this chapter call attention to methods you can use to make your application
format independent.

172

Chapter 7: Programming with the Audio File Library

Preventing Concurrent Access from Multiple Threads

The AF is not multithread/multiprocessor safe. Making multiple,
simultaneous, uncoordinated AF calls on different AFfilehandles from
different threads is possible and correct. Each AFfilehandle completely
encapsulates the state (except for error handling, which is global) needed to
perform operations on that AFfilehandle. In contrast, making multiple,
simultaneous, uncoordinated AF calls on the same AFfilehandle from
different threads is currently possible, but it is not proper programming
practice.

In the following code, two threads are using one AFfilehandle:

It is possible that these calls would be executed in the following order, in
which case both threads would read the wrong data.:

The only way to ensure that concurrent operations take place in the correct
order is to use a process coordination facility such as semaphore locking.

Thread 1 Thread2

 • Some amount of time • Some amount of time

 • No semaphore locking • No semaphore locking

 • •

AFseekframe(h,track,place1; AFseekframe(h,track,place2);

AFreadframes(h,track,...); AFreadframes(h,track,...);

 • Some amount of time • Some amount of time

 • No semaphore locking • No semaphore locking

 • •

AFseekframe(h,track,place1); ||

AFreadframes(h,track,...); || AFseekframe(h,track,place2);

|| AFreadframes(h,track,...);

Audio File Library Programming Tips

173

Proper multithreading looks like this:

IRIX guarantees that only one of the Lock Semaphore calls will succeed
immediately. The thread whose lock does not succeed waits in the Lock
Semaphore call (and thus does not proceed to the AFseekframe() call) until
the other thread has unlocked the semaphore (after it has finished seeking
and reading). When the first thread unlocks the semaphore, the thread that
is waiting can now proceed.

Follow these steps to add semaphore locking to a multithreaded application:

1. Use usnewsema(3P) to code to create a semaphore whose value is 1.

2. Use uspsema(3P) to lock the semaphore.

3. Use usvsema(3P) to unlock the semaphore.

Thread 1 Thread 2

 • •

 • Some amount of time • Some amount of time

 • •

Lock Semaphore that guards h Lock Semaphore that guards h

AFseekframe(h,track,place1; AFseekframe(h,track,place2);

AFreadframes(h,track,...); AFreadframes(h,track,...);

Unlock Semaphore that guards h Unlock Semaphore that guards h

 • •

 • Some amount of time • Some amount of time

 • •

174

Chapter 7: Programming with the Audio File Library

Example 7-3 is a code fragment that demonstrates how to create a
semaphore for protecting critical regions.

Example 7-3 Creating a Semaphore

#include <ulocks.h>

AFfilehandle h; /* global file handle */
usema_t *HSema; /* global semaphore to protect h */

/* Initialize semaphore support -- do this once. */
 {
 usptr_t *usptr;
 char *arenafile;

 /* Use the fastest type (nondebugging) semaphores. */
 usconfig(CONF_LOCKTYPE, US_NODEBUG);

 /* Create a shared arena to hold the semaphore. */

 arenafile = tmpnam(NULL);
 usptr = usinit(arenafile);

 /*
 Create the semaphore with count 1 in that arena.
 There is 1 resource (h) initially available. */

 HSema = usnewsema(usptr,1);

 /* No need to refer to arena again, so unlink file */

 unlink(arenafile);
 }

Audio File Library Programming Tips

175

To use the semaphore created in Example 7-3 do this:

Semaphore locking can prevent a worst-case scenario such as seeking from
the second thread before the first thread has finished reading. Currently, an
AF application without semaphores might not cause any problems when
making simultaneous, uncoordinated AF calls on the same AFfilehandle
from different threads. But this is because—by chance—the CPU scheduler
timing has arranged the process timing so that both threads don’t use the
handle at the same time. Another time, the CPU scheduling might not be
favorable, so it’s best to protect the critical regions with semaphores.

In summary, you cannot make multiple, simultaneous, uncoordinated AF
calls on the same AFfilehandle from different threads, even if the order of
execution of those calls does not matter. Doing so is likely to cause a core
dump, or at least corruption of the AFfilehandle. The application is
responsible for implementing any semaphore protection that is needed; such
protection is not built in to the AF calls themselves.

Thread 1 Thread 2

 • •

 • Some amount of time • Some amount of time

 • •

uspsema(HSema); /* lock */ uspsema(HSema); /* lock */

AFseekframe(h,track,place1; AFseekframe(h,track,place2);

AFreadframes(h,track,...); AFreadframes(h,track,...);

usvsema(HSema); /* unlock */ usvsema(HSema); /* unlock */

 • •

 • Some amount of time • Some amount of time

 • •

176

Chapter 7: Programming with the Audio File Library

Handling Errors in Multithreaded Applications

You cannot make multiple, simultaneous, uncoordinated AF calls from
different threads that affect the library's global state—namely, the error
handler function. If two threads simultaneously try to set the error handler
(even if it is the same error handler), the behavior is undefined.

If you write your own error handler and then make multiple, simultaneous,
uncoordinated AF calls on different file handles from different threads (and
both AF calls issue an error simultaneously), then two instances of your error
handler are called in a simultaneous, uncoordinated manner in both threads.
If this situation is possible in your program, you should use semaphores in
your error handler (in addition to the semaphores in your main program) to
prevent simultaneous error reporting or handling.

Audio File Library Programming Tips

177

Sample Audio File Program

Example 7-4 contains a listing of recordexample.c, in /usr/people/4Dgifts/
examples/dmedia/audio/ program, which records stereo data from an audio
port. If you incorporate this code in a program, use the method of rate
querying shown in ratequery.c instead of the method used in recordexample.c.

Example 7-4 Recording Stereo from an Audio Port: recordexample.c

#include <stdio.h>
#include <signal.h>
#include <dmedia/audio.h>
#include <dmedia/audiofile.h>

/*
 * small example program: "recordexample"
 *
 * record an AIFF-C file from an audio input port
 * stop recording when user sends an interrupt
 *
 * file is configured for 16-bit stereo data at the current
 * sampling rate of the audio hardware
 *
 * usage: "recordexample <filename>"
 */
int caught_sigint;

/*
 * catch interrupt signal
 */
static void
catch_sigint()
{
 caught_sigint++;
}

main(int argc, char **argv)
{
 char *myname; /* name of this program */
 char *portname; /* audio port name */
 ALconfig portconfig; /* audio port configuration */
 ALport port; /* audio port */
 long portchannels; /* audio port channels */
 long portrate; /* audio port sampling rate */

178

Chapter 7: Programming with the Audio File Library

 long portsampwidth; /* audio port sample width */
 long portsampfmt; /* audio port sample format */
 AFfilesetup filesetup; /* audio file setup */
 AFfilehandle file; /* audio file handle */
 char *filename; /* audio file name */
 long filechannels; /* audio file channels */
 double filerate; /* audio file sampling rate */
 long filesampwidth; /* audio file sample width */
 long filesampfmt; /* audio file sample format */
 long pvbuf[2]; /* parameter-value buffer */
 void *buf; /* sample transfer buffer */
 int numframeswrit; /* number of frames written */
 int done; /* flag */
 int samplesperbuf; /* samples transfered per loop */
 int framesperbuf; /* sample frames transfered per loop */
 int samplespersec; /* samples transfered per sec */

 myname = argv[0];
 portname = myname;

 if (argc != 2)
 {
 fprintf(stderr, "Usage: %s filename\n", myname);
 exit(1);
 }

 sigset(SIGINT, catch_sigint);

 filename = argv[1];
 /*
 * get the global IRIS Audio Processor input rate
 */
 pvbuf[0] = AL_INPUT_RATE;
 ALgetparams(AL_DEFAULT_DEVICE, pvbuf, 2);
 portrate = pvbuf[1];

 /*
 * initialize the audio port and audio file configuration
 */
 portchannels = AL_STEREO; /* port channels */
 portsampwidth = AL_SAMPLE_16; /* port sample width */
 portsampfmt = AL_SAMPFMT_TWOSCOMP; /* port sample format */
 filechannels = 2; /* file channels */
 filesampwidth = 16; /* file sample width */
 filesampfmt = AF_SAMPFMT_TWOSCOMP; /* file sample format */

Audio File Library Programming Tips

179

 /*
 * configure file sample rate to match IRIS audio processor input rate
 */
 switch (portrate)
 {
 case AL_RATE_48000: filerate = 48000.0; break;
 case AL_RATE_44100: filerate = 44100.0; break;
 case AL_RATE_32000: filerate = 32000.0; break;
 case AL_RATE_22050: filerate = 22050.0; break;
 case AL_RATE_16000: filerate = 16000.0; break;
 case AL_RATE_11025: filerate = 11025.0; break;
 default:
 case AL_RATE_8000: filerate = 8000.0; break;
 }
 /*
 * compute the number of input samples equal to half a
 * second and allocate a transfer buffer
 */
 samplespersec = ((long)filerate) * 2; /* stereo */
 samplesperbuf = samplespersec / 2; /* half second buffer */
 framesperbuf = samplesperbuf / 2; /* stereo */
 buf = (short *)malloc(samplesperbuf * sizeof(short));
 /*
 * open the audio port
 */
 portconfig = ALnewconfig();
 ALsetchannels(portconfig, portchannels);
 ALsetwidth(portconfig, portsampwidth);
 ALsetqueuesize(portconfig, samplesperbuf);
 port = ALopenport(portname, "r", portconfig);
 /*
 * configure an audio file
 */
 filesetup = AFnewfilesetup();
 AFinitfilefmt(filesetup, AF_FILE_AIFFC);

 AFinitchannels(filesetup, AF_DEFAULT_TRACK, filechannels);
 AFinitrate(filesetup, AF_DEFAULT_TRACK, filerate);
 AFinitsampfmt(filesetup, AF_DEFAULT_TRACK,
 AF_SAMPFMT_TWOSCOMP, filesampwidth); /*in bits */
 /*
 * open the audio file
 */
 file = AFopenfile(filename, "w", filesetup);

180

Chapter 7: Programming with the Audio File Library

 /*
 * play the buffer
 */
 done = 0;
 caught_sigint = 0;
 while (!done && !caught_sigint)
 {
 ALreadsamps(port, buf, samplesperbuf);
 if ((numframeswrit
 = AFwriteframes(file, AF_DEFAULT_TRACK,
 buf, framesperbuf)) < framesperbuf)
 {
 done++;
 }
 }

 AFclosefile(file); /* this is important: it updates the file header */
 ALcloseport(port);
 exit(0);
}

This chapter describes the CD Audio
Library, which lets you play and
sample audio from CDs using your
CD-ROM drive.

Programming with the
CD Audio Library

Chapter 8

183

Chapter 8

8. Programming with the CD Audio Library

The IRIS Media Libraries have two libraries that help you retrieve and
process digital audio and related information from two sources. This chapter
describes the CD Audio Library, libcdaudio.a, which gives you access to the
data on an audio compact disc (CD), including nonaudio information.
Chapter 9, “Programming with the DAT Audio Library,” describes the DAT
Audio Library, libdataudio, which helps you process audio information
stored on digital audio tape (DAT).

Because these libraries deal with digital audio information, they contain
many analogous routines for processing audio data. But the libraries diverge
when it comes to writing audio data and controlling their respective devices.
libcdaudio includes calls that control the CD-ROM drive; the DAT drive uses
the standard IRIX device drivers.

In this chapter:

• “CD Audio Library Basics” on page 184 explains basic concepts for
using the CD Audio Library.

• “Navigating through a CD” on page 187 explains getting locations from
and seeking to locations on a CD.

• “Using the CD-ROM Drive” on page 190 explains how to use the CD-
ROM drive for playing audio CDs, reading and parsing CD
information, and communicating CD status to the end user.

• “CD Sample Program” on page 196 presents a CD sample program.

184

Chapter 8: Programming with the CD Audio Library

CD Audio Library Basics

The CD Audio Library lets you:

• control the CD-ROM drive (eject CDs, prohibit ejection of CDs)

• read or play information from that drive

• parse and process digital information

This section describes the basic concepts that underlie libcdaudio. Because
both CDs and DATs digitally encode an audio signal as a series of samples,
the concepts and terms used when dealing with these media are similar;
however, there are differences between the two.

CD Frames, Samples, and Subcodes

Per second of playing time, a CD contains 75 CD frames, each containing 588
stereo audio frames (that is, pairs of left and right channel audio samples). A
CD frame has both audio and nonaudio information. The sum of the
nonaudio information in a frame composes a single complete chunk of
subcode. When in audio mode and reading from a CD, you need complete
subcodes. Thus, in audio mode, a CD frame is the smallest parcel of
information you can read from a CD.

To give you controlled access to either the audio data or the subcode in a CD
frame, libcdaudio hands you a CDFRAME structure:

typedef struct cdframe {
char audio[CDDA_DATASIZE];
struct subcodeQ ;subcode;

} ;CDFRAME;

An audio sample is linearly encoded in a 16-bit two’s-complement format.
Because a complete stereo audio sample contains two interleaved channels,
it takes four bytes of audio[] to contain a complete stereo audio sample.

CD Audio Library Basics

185

Figure 8-1 shows the structure of a CD audio sample.

Figure 8-1 CD Audio Sample Structure

The byte ordering of the samples in audio[] is the raw data from the CD; its
byte ordering is reversed from that on the Indigo workstation. The sampling
rate at which CD audio data is originally recorded is 44.1 kHz; therefore,
CDDA_DATASIZE (the size of audio[]) is defined as 2352. This allows for 588
stereo audio samples per CD frame, which, at 75 frames per second, allows
for a sample rate of 44.1 kHz.

The subcode member has three information modes:

mode1 for reporting on the track, index, and timing for the current
CD track; or, if the current track is the nonaudio lead-in
track (see “CD Tracks, Indices, and Time Codes” on
page 186), mode1 contains a table of contents for the CD

mode2 for reporting the catalog number for the CD as well as an
absolute CD frame count

mode3 for reporting the International Standard Recording Code
(ISRC) identification information: country, owner, year, and
serial number

Thus, the subcodeQ structure in the CDFRAME structure contains a union
of three structures: mode1, mode2, and mode3. Which mode is used depends
on the information from the CD.

For more information on the CDFRAME structure and the subcodeQ
structure, see the CDFRAME(4) man page.

least significant
byte, left channel

audio[0]

most significant
byte, left channel

audio[1]

least significant
byte, right channel

audio[2]

most significant
byte, right channel

audio[3]

186

Chapter 8: Programming with the CD Audio Library

CD Tracks, Indices, and Time Codes

As many as 99 audio program tracks are allowed on a CD. These tracks are
numbered 01 through 99. Two nonaudio tracks of general interest are also
available: the lead-in track (numbered 00) and the lead-out track (numbered
AA). Track 00, the lead-in track, contains a table of contents in its subcodes.

A track can have up to 99 subdivisions containing audio information. These
subdivisions use the index numbers 01 through 99. Index number 00 is used
for the pause between the tracks. The time code gives the current minute,
second, and CD frame for the current track. The subcodeQ structure with
mode1 uses a cdtimecode structure to contain time codes.

CD Seeking, Reading, and Playing

Accessing information from a CD-ROM drive is analogous to accessing
information from a standard disk drive. To read a particular piece of
information from the CD, you must move to that location. The process of
moving to a location on the CD is known as seeking.

Reading from a CD-ROM drive is analogous to reading from a disk drive—
you copy information from the device to a memory-resident buffer for
further processing.

Playing the CD is a variation on reading it. But instead of transferring the
information to a buffer for processing, the information is dumped out the
audio jacks on the back of the CD-ROM drive, with a minimum of buffering
and with no real chance to process it. For information on processing audio
from a CD through the workstation’s audio hardware, see “Reading Audio
Data from the CD-ROM Drive” on page 191.

CD Parser

The parser lets your application change state in response to changes in the
subcode data on a CD. This lets you deal with the audio data in a way that
is based on its content. To use the parser, you must give it callback routines
that can deal the subcode changes that interest you. Then you set up a loop
that reads CD frames from the CD and calls the parser for each CD frame.

Navigating through a CD

187

The parser checks the subcode in every submitted CD frame. If the parts of
the subcode you care about have changed from the previous CD frame, the
parser executes one of your callbacks and hands it the new subcode
information. Within your callback, you can examine the subcode
information and change the state of your application as needed.

Opening and Closing the CD-ROM Device

The CD-ROM device does not use a standard IRIX device driver. So, a
session with the CD-ROM device starts by calling CDclose(). For detailed
information on these routines, see the man pages CDopen(3) and CDclose(3).

Controlling the CD-ROM Drive Caddy

To give your application control over the caddy-eject feature on the CD-
ROM drive, libcdaudio defines the following routines:

For more information on these routines, see the appropriate man pages.

Navigating through a CD

To move through a CD, you use one of the libcdaudio calls: CDseek(),
CDseektrack(), or CDseekblock(). But before you can call these routines,
you need to know where you are going. For most applications, locations can
come from either of two sources, the end user or calculations internal to your
application.

CDeject() to eject the caddy from the CD-ROM drive

CDpreventremoval() to lock the CD-ROM drive eject button to prevent
end users from ejecting the caddy at an
inopportune moment

CDallowremoval() to unlock the CD-ROM drive eject button

188

Chapter 8: Programming with the CD Audio Library

Seek destinations can be in any one of three forms:

• integer CD frame counts

• <minute, second, CD frame> integer triples

• "minute:second:CD frame" ASCII strings

The ASCII format is the one you receive from an end user of your
application; the other two formats are used for internal calculation.

Getting CD Locations from the End User

If your application wants to give end users the option of seeking to a CD
location defined in terms of time, your application can prompt the user for
the time and then call CDatomsf() to convert the ASCII string to a <minute,
second, CD frame> triple that you can use for seeking. You can also let the
user specify a track number, convert that track number to an integer and
seek to that track.

Getting CD Locations from Calculations Internal to Your
Application

Generally, the pure CD frame count is the most convenient format to use
when comparing two locations.

To convert to pure CD frame counts, call:

You can then make your calculations and determine the destination to which
you want to seek. Despite the convenience of pure CD frame counts for
calculation, they are not suitable for seeking. To seek, you must call
CDframetomsf() to convert the pure CD frame count to a <minute, second,
CD frame> triple.

CDmsftoframe() to convert a <minute, second, CD frame> triple
into a pure CD frame count

CDtctoframe() to generate a pure CD frame count from a
cdtimecode structure

CDatomsf() followed by
CDmsftoframe()

to convert an ASCII "minute:second:CD frame"
string into a pure frame count

Navigating through a CD

189

It is also possible to make comparisons between locations expressed in terms
of minutes, seconds, and CD frames. In that case, you can convert locations
into <minute, second, CD frame> triples by calling:

After making these calculations, the location is in terms suitable for seeking.

Getting the Current CD Location

To get your current location within a CD, call CDgetstatus(). This routine
takes a CDSTATUS structure and fills it with information on current track,
minute, second, CD frame, and additional data. To make it easier to compare
your current location to another location, you should express the locations
in terms of pure CD frame counts. But depending on how you got a location,
it could be expressed as three separate integers giving the minute, second,
and CD frame, or as an ASCII string, or as a cdtimecode structure. For more
information on this routine, see the appropriate man pages.

Seeking to a CD Location

Seeking sets up the read pointer to retrieve data from a particular location on
the CD. You can define the seek location in terms of:

track To seek to a track, call CDseektrack().

absolute time To seek to a location defined in terms of minute, second, and
CD frame, call CDseek().

logical block To seek to a location defined in terms of a logical block
number, call CDseekblock(). (On a CD-ROM, one logical
block contains a single CD frame, which is 588 stereo audio
samples plus one complete subcode.)

CDatomsf() to convert an ASCII string to a
<minute, second, CD frame> triple

CDframetomsf() to convert a pure CD frame count to a
<minute, second, CD frame> triple

CDtctoframe() followed by
CDframetomsf()

to convert a time code to a
<minute, second, CD frame> triple

190

Chapter 8: Programming with the CD Audio Library

To do a series of consecutive seeks, your first seek can be defined in any of
the formats mentioned above. But, because all seek routines return the
logical block number of the next logical block, it is often more convenient to
define the subsequent seeks in terms of logical blocks.

If you want to do all seeks using CDseekblock(), but your first seek is
defined in terms of time, call CDmsftoblock() to convert time to logical
block number.

Note: Although logical blocks and CD frames are the same size, you cannot
use CD frame counts as if they were logical block counts. The CD frame
counts are relative to the start of the CD. A logical block count is offset from
the start of the CD. In addition, the size of the offset varies from device to
device.

Using the CD-ROM Drive

This section explains how to use the CD Audio Library routines for:

• playing an audio CD from the CD-ROM drive

• reading audio data from the CD-ROM drive

• parsing CD information

• communicating CD status to the end user

Playing an Audio CD from the CD-ROM Drive

This section explains how to use these libcdaudio routines to play audio from
the CD-ROM as if it were a standard CD player:

CDplay() plays an audio CD through CD-ROM audio jacks

CDtogglepause() toggles a CD-ROM drive between pause and play

CDstop() stops play of an audio CD in CD-ROM

CDplaytrack() plays a single track of an audio CD through CD-
ROM audio jacks

Using the CD-ROM Drive

191

When these routines play a CD, they direct the sound to the drive’s
headphones and to the audio jacks.

Reading Audio Data from the CD-ROM Drive

Once you have set the read pointer with a call to one of the seek routines, you
are ready to read data from the CD. But how much data should you read at
a time in order to create a continuous flow of data from the CD? To
determine this, call CDbestreadsize(). The returned value of this function is
the number of CD frames to request in your read call. To actually read data
from the CD, call CDreadda().

Because libcdaudio already includes routines for playing audio data from the
CD, you might think that you would never need to read from the CD;
however, the libcdaudio play routines allow for only a very simple CD-player
application—one that cannot even display the current program time while
the CD is playing.

Thus, if you are writing a real-world application, you probably want to read
samples from the CD into the workstation’s memory through the CD-ROM’s
SCSI interface, play the audio samples from the audio hardware using the
Audio Library, parse the CD frames for the current program time, and
display the program time in a continuously updated field of the control
panel for your application.

To do this, you can write your own play routine that executes as a cd_audio
callback. You should also write a cd_ptime callback to get the current
program time and to update your “program time” display.

CDplayabs() plays an audio CD through CD-ROM audio jacks
starting at a particular minute, second, and CD
frame

CDplaytrackabs() plays a single track of an audio CD starting at a
particular minute, second, and CD frame

192

Chapter 8: Programming with the CD Audio Library

Controlling the CD Parser

After you have read data from the CD into a buffer, you can start to process
it. Typically, how you process the audio data depends on what its associated
subcodes tell you about the data. To make it possible for your application to
avoid dealing with the complex CDFRAME structure directly, libcdaudio
includes a parser.

If you write a loop that passes all read CD frames through the parser, the
parser can examine all CD frames for changes in the subcode. When the
parser finds a change (seeing a subcode for the first time counts as a change),
it executes the appropriate callback routine—depending on what sort of
subcode change occurred—and passes the new subcode data into your
callback routine.

The CD parser distinguishes among eight categories of subcode
information. Thus, if you are interested in subcode changes for only one
category of subcode data, the parser does not bother your application with
subcode changes that you consider irrelevant.

Allocating and Initializing the CD Parser

To allocate and initialize the parser data structures, call CDcreateparser(). To
reset the parser after the user changes the CD in the CD-ROM drive, call
CDresetparser(). This clears out any information the parser has about the
last CD frame but leaves the callback routines in place.

Defining Callbacks for the CD Parser

When you define a callback for the parser, write a function of the form:

MyCDSomethingCallBack(void* arg, CDDATATYPES type,
void* data) {
/* your code here */

}

The parser uses the third parameter to pass in information it reads from the
subcodes. The parser uses the second parameter to pass in the type of
callback it thinks it is calling. You can use this to assign the same function to
different types of callbacks. Internally, you can switch on the type. This

Using the CD-ROM Drive

193

feature is useful if two callbacks are essentially the same, with the exception
of a few lines.

The parser does not use the first parameter. You can use that to pass in
information if your application needs to call the callback directly.

Adding Callbacks to the CD Parser

To add callback routines to the parser, call CDaddcallback(). If you do not
specify a callback for a category, the parser assumes that you are not
interested in changes of that type. You can add callbacks that respond to
changes in any of the following categories of subcode data:

cd_audio callbacks respond to changes in the audio data in a CD
frame. You can use this class of callback to notify you when
you are beyond the lead-in track and have started to see
audio samples. When the parser calls this routine, it passes
in the audio sample data. If this callback routine is a play
routine for your application, it should write the audio
sample to an audio port using the Audio Library. See the
ALwritesamps(3) man page and Chapter 6, “Programming
with the Audio Library.”

cd_pnum callbacks respond to changes in the program number. You
can use this callback to notice when you have moved from
one program (track) to the next.

cd_index callbacks respond to changes in the index number. You can
use this callback to notice when you have moved from one
subsection of a track to the next.

cd_ptime callbacks respond to changes in the program time. You can
use this callback to continuously update a “program time
display” in a CD-playing application.

cd_atime callbacks respond to changes in the absolute time elapsed
since the start of the CD. You can use this callback to
continuously update your application’s information about
total elapsed time.

cd_catalog callbacks respond to changes in the catalog number for the
CD. Because this information should not change within the
CD, this sort of callback executes only once—typically
during the lead-in track for the CD.

194

Chapter 8: Programming with the CD Audio Library

cd_ident callbacks respond to changes in the ISRC identification
number for the recording on the CD. Because this
information should not change within the CD, this sort of
callback executes only once—typically during the lead-in
track for the CD.

cd_control callbacks respond to changes in the control bits. These bits
can tell you things such as whether the CD is copy protected
and whether preemphasis is off or on. Because this
information should not change within the CD, this sort of
callback executes only once—typically during the lead-in
track.

For more information on each callback type, see the CDaddcallback(3) man
page.

Deleting and Changing a CD Parser Callback

To delete a callback, call CDremovecallback(). To change a callback, call
CDremovecallback() followed by CDaddcallback().

Parsing CD Frames

To submit a group of CD frames to the parser, your loop should set up a loop
that calls CDparseframe() for each frame that you have read into your
buffer.

Freeing the Memory Allocated for the Parser

If you are done with the parser and want to free the memory it uses, call
CDdeleteparser() to delete the parser.

Communicating CD Status to the End User

In addition to playing a CD or processing the information read from a CD,
your application probably needs to tell the user something about the CD
(even if it is only the number of the current track). Also, sometimes your
application must take data from the end user and convert it to a form that
the CD-ROM device can understand.

Using the CD-ROM Drive

195

To get information for the end user, call:

The CD frames, however, sometimes contain information that is not
accessible to the routines mentioned above. For example, the subcodes of
track 00 on a CD contain a table of contents. To access this information, you
can inspect the subcodes in the CDFRAME structures, or, better still, you can
submit that track to the parser. If you have added callbacks for the categories
of subcode information that you want, the parser passes that information
into your callbacks.

To help you present the information the parser hands to your callbacks (or
that you read directly from a CDFRAME structure), libcdaudio contains the
routines:

For more information on the CDFRAME structure and the format of its data,
set the CDFRAME(4) man page.

CD Time Code Conversion Routines

Other libcdaudio routines that you might find useful are:

CDgettrackinfo() to get information about a particular track

CDgetstatus() to get information about the CD as a whole

CDsbtoa() for converting the 6-bit ISRC country and owner code to
an ASCII string

CDtimetoa() for expressing the contents of a cdtimecode structure as an
ASCII string

CDframetotc() for converting a CD frame number to a time code

CDatotime() for converting an ASCII string to a time code

196

Chapter 8: Programming with the CD Audio Library

CD Sample Program

Example 8-1 contains a listing of cdsample.c, a program that lets you copy
timed amounts of data from a CD to an audio file.

Example 8-1 Copying CD Data to an Audio File: cdsample.c

/*
 * cdsample--command line tool to read audio data off CD,
 * record it in an AIFF file. Hacked together from various
 * other sample programs.
 *
 * Compile with
 * cc -o cdsample cdsample.c -lcdaudio -lds -laudiofile -lm
 */

#include <sys/types.h>
#include <cdaudio.h>
#include <audio.h>
#include <audiofile.h>
#include <stdio.h>
#include <string.h>

AFfilehandle audiofile;
openAudioFile(char *filename)
{
 AFfilesetup filesetup;

 filesetup = AFnewfilesetup();
 AFinitfilefmt(filesetup, AF_FILE_AIFFC);
 AFinitchannels(filesetup, AF_DEFAULT_TRACK, 2);
 AFinitrate(filesetup, AF_DEFAULT_TRACK, 44100.0);
 AFinitsampfmt(filesetup, AF_DEFAULT_TRACK, AF_SAMPFMT_TWOSCOMP, 16);
 AFinitcompression(filesetup, AF_DEFAULT_TRACK, AF_COMPRESSION_G722);
 audiofile = AFopenfile(filename, “w”, filesetup);
}
closeAudioFile()
{
 AFclosefile(audiofile);
}

CD Sample Program

197

writeAudioFile(void *arg, CDDATATYPES type, short *audio)
{
 AFwritesamps(audiofile, AF_DEFAULT_TRACK, audio, CDDA_NUMSAMPLES);
}

void parseTime(char *timestr, int *min, int *sec)
{
 char *tmp, buf[5];
 int n;
 tmp = strchr(timestr, ‘:’);
 if (tmp == NULL) {
 *sec = atoi(timestr);
 } else {
 *tmp = ‘\0’;
 tmp++;
 *min = atoi(timestr);
 *sec = atoi(tmp);
 }
}

main(int argc, char **argv)
{
 CDPLAYER *cd;
 CDPARSER *cdp;
 CDSTATUS status;
 CDTRACKINFO trackinfo;
 CDFRAME buf[12];
 int i, n;
 int track, numframes, frame;
 char *filename;
 char *tmp, strbuf[12];
 int startmin, startsec, endmin, endsec, totalsec;
 extern int errno;

 if (argc != 5) {
 fprintf(stderr, “Usage: cdsample filename track start_time end_time\n”);
 exit(1);
 }

 filename = argv[1];
 track = atoi(argv[2]);

198

Chapter 8: Programming with the CD Audio Library

 /*
 * Note that we do not check if the arguments are sane ...
 */
 parseTime(argv[3], &startmin, &startsec);
 parseTime(argv[4], &endmin, &endsec);
 if ((cd = CDopen(NULL, “r”)) == NULL) {
 fprintf(stderr, “Can’t open CD device\n”);
 exit(1);
 }
 if ((cdp = CDcreateparser()) == NULL) {
 fprintf(stderr, “Can’t create parser\n”);
 exit(1);
 }

 /*
 * Set up a callback function to process the CD data.
 * In this case, CDparseframe() will feed the data to the
 * writeAudioFile() function (defined above).
 */
 CDsetcallback(cdp,cd_audio,(CDCALLBACKFUNC) writeAudioFile, 0);

 openAudioFile(filename);

 /*
 * Determine the number of frames in the requested
 * snippet (75 frames/sec)
 */
 numframes = ((endmin * 60 + endsec) - (startmin * 60 + startsec)) * 75;
 if (CDgetstatus(cd, &status) == 0) {
 fprintf(stderr, “Couldn’t get status\n”);

exit(1);
 } else {
 if (!status.scsi_audio) {
 fprintf(stderr, “This CD-ROM can’t do SCSI audio\n”);
 exit(1);
 }
 /*
 * Convert relative time (in track) to absolute time
 * (on disk) so we can seek to the proper position.
 */
 CDgettrackinfo(cd, track, &trackinfo);
 totalsec = (trackinfo.start_min + startmin) * 60 +
 trackinfo.start_sec + startsec;
 startmin = totalsec / 60;
 startsec = totalsec % 60;

CD Sample Program

199

 CDseek(cd, startmin, startsec, 0);
 for (frame=0;frame<numframes;frame += 12) {
 n = CDreadda(cd, buf, 12);
 if (n < 0) {
 fprintf(stderr, “Error reading CD data\n”);
 exit(1);
 }
 if (n == 0) /* We’re at the end of the disc */
 break;
 for (i = 0; i < 12; i++)
 CDparseframe(cdp, &buf[i]);
 }
 CDclose(cd);
 closeAudioFile();
 exit(0);
 }
}

200

Chapter 8: Programming with the CD Audio Library

This chapter describes the DAT
Audio Library, which lets you play,
record, and sample audio from
digital audio tapes (DATs) using your
DAT drive.

Programming with the
DAT Audio Library

Chapter 9

203

Chapter 9

9. Programming with the DAT Audio Library

This chapter describes the DAT Audio Library, libdataudio, which you can
use to process audio information stored on digital audio tape (DAT).

In this chapter:

• “DAT Audio Library Basics” on page 203 explains basic concepts for
using libdataudio.

• “Navigating through a DAT” on page 206 explains getting locations
from and seeking to locations on a DAT.

• “Using the DAT Drive” on page 209 explains how to use the DAT drive
for playing and recording DATs, reading, writing and parsing DAT
information, and communicating DAT status to the end user.

• “DAT Sample Program” on page 217 presents a DAT sample program.

DAT Audio Library Basics

The DAT Audio Library (libdataudio) supports processing the data from a
digital audio tape (DAT). Because the device driver for the DAT drive is a
standard IRIX tape device driver, the libdataudio library does not need the
special positioning and status calls. Instead, you can use the standard
open(), close(), read(), write(), and ioctl() system calls.

This section describes the basic concepts that underlie libdataudio. Because
both CDs and DATs digitally encode an audio signal as a series of samples,
the concepts and terms used when dealing with these media are similar;
however, there are some differences between them.

204

Chapter 9: Programming with the DAT Audio Library

DAT Frames, Samples, and Subcodes

A DAT contains 33.33 DAT frames per second of playing time. A DAT frame
has both audio and nonaudio information. The sum of the nonaudio
information in a DAT frame composes a single complete DAT subcode.
When in audio mode and reading from a DAT, you need complete subcodes.
Thus, in audio mode, a DAT frame is the smallest parcel of information you
should read from a DAT.

To give you controlled access to either the audio data or the subcode in a
DAT frame, libdataudio hands you a DTFRAME structure:

typedef struct dtframe {
char audio[DTDA_DATASIZE];
struct dtsubcode sc;

} DTFRAME;

A DAT audio sample is linearly encoded in a 16-bit two’s-complement
format. Because a complete stereo audio sample contains two interleaved
channels, it takes four bytes of audio[] to contain a complete stereo audio
sample (see Figure 9-1).

Figure 9-1 DAT Audio Sample Structure

The byte ordering of audio sample frames in audio[] is based on the raw data
from the DAT; its byte ordering is reversed from that on the IRIS
workstation. DTDA_DATASIZE (the size of audio[]) is defined as 5760. This
allows for 1440 audio sample frames per DAT frame, which, at 33.33 DAT
frames per second, is enough to deal with audio sampled at rates of up to
48 kHz.

The subcode member uses a dtsubcode structure to contain the subcode read
from the DAT. The subcodes contain information on sampling frequency, the
number of channels, table of contents, catalog number, and more. For more
information on the dtsubcode structure, see the DATFRAME(3) man page.

least significant
byte, left channel

audio[0]

most significant
byte, left channel

audio[1]

least significant
byte, right channel

audio[2]

most significant
byte, right channel

audio[3]

DAT Audio Library Basics

205

DAT Audio Program Numbers and Indices

A DAT can have as many as 99 audio programs, each typically
corresponding to a single song or musical piece. These programs are
numbered 01 through 99. An audio program can have up to 99 subdivisions
containing audio information. These subdivisions use the index numbers 01
through 99. Index number 00 is used for the pause between the audio
programs.

DAT Run Time, Absolute Time, and Program Time

A time code gives the hour, minute, second, and DAT frame offset into a
DAT. When dealing with program time, the time code is a measure of the
time elapsed since the start of the audio program. When dealing with
absolute time, the time code measures the time elapsed since the start of the
DAT. When dealing with run time, the time code measures the time elapsed
since the beginning of the recording and contains several audio programs.

DAT Seeking and Reading

Accessing information from a DAT drive is analogous to reading
information from a standard tape drive. To read a particular piece of
information from the DAT, you must move to that location. The process of
moving to a location on the DAT is known as seeking. Reading from the DAT
is analogous to reading from a tape drive. You copy information from the
device to a memory-resident buffer for further processing.

DAT Parser

The parser lets your application change state in response to changes in the
subcode data on a DAT. This lets you deal with the audio data in a way that
is based on its content. To use the parser, you must give it callback routines
that can deal with the subcode changes that interest you. Then you set up a
loop that reads DAT frames from the DAT and calls the parser for each DAT
frame.

206

Chapter 9: Programming with the DAT Audio Library

The parser checks the subcode in every submitted DAT frame. If the parts of
the subcode you care about have changed from the previous DAT frame, the
parser executes one of your callbacks and hands it the new subcode
information. Within your callback, you can examine the subcode
information and change the state of your application as needed.

Opening and Closing the DAT Device for Audio

The DAT device driver is a standard IRIX device, so you can use the generic
open(), close(), and ioctl() calls that you would use for any other tape device;
however, unlike a standard tape drive, the DAT drive has an audio mode in
addition to a straight data mode.

To put the DAT drive in audio mode, use ioctl() with MTIOCTOP and an
mtop type structure, but set the mt_count member of the mtop structure to 1
before submitting that mtop structure to ioctl(). For example:

struct mtop mt_com;
mt_com.mt_op = MTAUD;
mt_com.mt_count = 1; /* 1 == audio mode, 0 == data mode */
ioctl(fd, MTIOCTOP, &mt_com);

Navigating through a DAT

To move through a DAT tape, you use ioctl(), a standard IRIX system call.
But before you can call ioctl(), you need to know where you are going. For
most applications, destinations can come from either of two sources, the end
user or calculations internal to your application.

Destinations from the end user come to your application in the form of
ASCII strings. Destinations from internal calculations typically come in the
form of a DAT frame count or, sometimes, as four values that specify the
location in terms of hours, minutes, seconds, and DAT frames.
Unfortunately, these forms are not suitable for seeking, so you must convert
them before you can use them.

Navigating through a DAT

207

Getting DAT Locations from the End User

If your application wants to give end users the option of seeking to a DAT
location defined in terms of time, your application can prompt the user for
the time and then call DTatotime() to convert the string to a time code that
you can submit to ioctl() for seeking.

Getting DAT Locations from Calculations Internal to Your
Application

Generally, the pure DAT frame count is the most convenient format to use
when comparing two locations.

To convert to pure DAT frame counts, call:

You can then make your calculations and call DTframetotc() to convert the
DAT frame count to a time code suitable for seeking.

It is also possible to make comparisons between locations expressed in terms
of hours, minutes, seconds, and DAT frames. In that case, you can convert all
locations into hours, minutes, seconds, DAT frames format by calling:

After making your calculations, convert the destination to a time code
suitable for seeking by calling DThmsftoframe() followed by
DTframetotc().

DTtctoframe() to extract a pure DAT frame count from a
dttimecode structure

DThmsftoframe() to convert hours, minutes, seconds, and DAT
frames to a pure DAT frame count

DTatohmsf() followed
by DThmsftoframe()

to convert an ASCII string to a pure DAT frame
count

DTatohmsf() to convert an ASCII string to hours, minutes,
seconds, and DAT frames

DTframetohmsf(to convert a pure frame count to hours,
minutes, seconds, and frames

DTtctoframe() followed by
DTframetohmsf()

to convert a time code to hours, minutes,
seconds, and frames

208

Chapter 9: Programming with the DAT Audio Library

Seeking to a DAT Location

To seek to a location on a DAT, call ioctl() with MTSETAUDIO and an
mtaudio type structure.

To specify the type of seek, set the seektype member of the mtaudio type
structure to the appropriate MTAUDPOSN_* constant:

To seek to a particular audio program on the DAT, set seektype to
MTAUDPOSN_PROG, and use pno1, pno2, and pno3 members to pass in the
three BCD numbers that identify the audio program you want. Program
numbers range from 001 to 799. The pno1 member contains the most
significant digit and pn3 contains the least significant digit. Thus, to seek to
program 578, set the pn* members as follows:

struct mtaudio AudioProgNum;

AudioProgNum.pn1 = 5;
AudioProgNum.pn2 = 7;
AudioProgNum.pn3 = 8;

To seek to a location on the tape defined in terms of time, set the mtaudio
seektype member to MTAUDPOSN_ABS, MTAUDPOSN_RUN, or
MTAUDPOSN_PTIME and then specify the time location in the mtaudio
members:

atime for MTAUDPOSN_ABS

rtime for MTAUDPOSN_RUN

ptime for MTAUDPOSN_PTIME

MTAUDPOSN_PROG to seek to a program number

MTAUDPOSN_ABS to seek to an absolute time

MTAUDPOSN_RUN to seek to a running time

MTAUDPOSN_PTIME to seek to a program time (within program)

Using the DAT Drive

209

These atime, rtime, and ptime members contain structures of type
mtaudtimecode:

struct mtaudtimecode {
 unchar hhi:4, hlo:4; /* hours */
 unchar mhi:4, mlo:4; /* minutes */
 unchar shi:4, slo:4; /* seconds */
 unchar fhi:4, flo:4; /* DAT frame # */
};

The hhi and hlo members expect two digits that specify the hour to which
you want to seek. The valid range for these two digits is from 00 to 99. The
mhi and mhl expect the two digits that specify the minute to which you want
to seek. The valid range for these two digits if from 00 to 59. The shi and slo
expect the two digits that specify the second to which you want to seek. The
valid range for these two digits is from 00 to 59. The fhi and fhl expect the two
digits that specify the DAT frame to which you want to seek. The valid range
for these two digits is from 00 to 33.

Using the DAT Drive

This section explains how to use the DAT Audio Library routines for:

• playing a DAT

• recording a DAT

• reading and writing audio data from a DAT

• parsing DAT information

• communicating DAT status to the end user

Playing a Tape in the DAT Drive

Playing audio from a DAT is a little more complicated than playing a CD. For
example, the sample rate for all CDs is 44.1 kHz; however, DAT audio may
have been recorded at a sampling rate of 48 kHz, 44.1 kHz, or 32 kHz.
Fortunately, a DAT records its sampling rate in the subcodes at the start of
the tape, so you can read this sampling rate from the DAT before you must
write DAT audio samples to the audio port.

210

Chapter 9: Programming with the DAT Audio Library

In outline, a simple DAT-playing application must:

1. Define a callback routine for dt_sampfreq.
When the parser calls this routine, it passes in the frequency just read
from the tape. Your callback should set a global variable to the
frequency it gets from the parser. (See the DTaddcallback(3) man page.)

2. Define a callback routine for dt_audio.
When the parser calls this routine, it passes in the audio data from the
DAT frame just parsed. The callback routine should write this data to
the audio port using the sampling rate set by the dt_sampfreq callback.

3. Open the audio port.

4. Open the DAT drive.

5. Create a parser.

6. Add your dt_sampfreq and dt_audio callbacks to the parser.

7. Read samples from the DAT.

8. Parse the samples.

9. Write the samples to an audio port using the Audio Library.

When the application first starts reading the tape, it sees the frequency, calls
your dt_sampfreq callback, and hands it the sampling frequency. As the
parser continues to parse DAT frames, it also sees the audio data and
executes your dt_audio callback for each new DAT frame containing audio.

For an example of a simple program that plays a tape in the DAT drive, see
“DAT Sample Program” on page 217. For more information on using the
audio port, see Chapter 6, “Programming with the Audio Library.”

Making DAT Recordings for Playback on the DAT Drive

When making recordings on DAT recorders that you want to play on a
Silicon Graphics DAT drive, you must make sure you record at least one of
the time codes. Most recorders will let you record audio without any time
codes, so be certain you record the time codes. Record in standard mode; the
DAT drive does not support long play (LP) mode or 4-channel (4CH) mode
tapes.

Using the DAT Drive

211

Reading Audio Data from the DAT Drive

To read audio data from the DAT drive, you need to open the DAT drive and
put it in audio mode. Then you can call the standard IRIX read() system call
as you would for any other tape device. The only complicating factor is that
you need to ensure that you read complete DAT frames. This is not
particularly difficult if you declare your receiving buffer to be an array of
DTFRAME structures.

For example:

DTFRAME MyDATbuffer[4];

declares a buffer of four DTFRAME structures. If you then do a read such as:

n = read(MyDATtapeDevice, MyDATbuffer, sizeof(MyDATbuffer)
);

you read in complete DAT frames and can easily access those complete DAT
frames when you want to parse them.

Writing Audio Data to the DAT Drive

To write audio data to the DAT drive, you need to open the DAT drive and
put it in audio mode. Then you can call the standard IRIX write() system call
as you would for any other tape device. Writing the tape is just a matter of
writing DAT frames to the tape.

But setting the contents of the DAT frames is not just a matter of gathering
together your audio samples. You must write subcode information that
specifies things such as the sampling rate at which the audio was recorded.
You must also update the DAT time code for each DAT frame that you write
to the tape.

To help you set the subcode information for the DAT frames you want to
write, libdataudio contains these routines:

DTsetdate() to set a date pack to the current time (useful for timestamps)

DTinctime() to increment a DAT time code

DTtcvalid() to check that a time code is valid (use it after calling
DTinctime())

212

Chapter 9: Programming with the DAT Audio Library

For more information on the time code routines, see the appropriate man
pages. For information on what you can write into the DAT frame subcodes,
see the DTFRAME(4) man page. For additional information about properly
writing DAT subcodes, see the DAT specification.

Ensuring that your DAT Recording Is Recognized as Audio

The DAT drive determines whether a tape is audio by looking for valid
audio DAT frames. These frames must contain at least one valid time code
field (absolute time, run time, or program time). When making recordings
on DAT recorders that you want to later play on the Silicon Graphics DAT
drive, you must make sure you record one of these time codes and that you
record in standard mode.

Recording the DAT Lead-in Area

The DAT specification requires that a tape begin with a special lead-in area
of 100 DAT frames. Recording 100 frames ensures that the real recording will
not begin over the plastic leader on the tape.

The following procedure provides the proper lead-in area:

1. create an empty DTFRAME

2. set the program number contained in the DAT frame to 0x0BB
(beginning-of-tape, or BOT, code)

3. set the START bit in the control ID

4. set the subcode packs to 0x0AA (readable, not valid)

5. fill the audio data block with zeros

6. rewind the tape and repeatedly write the DAT frame at least 100 times

Recording Digital Audio over Digital Data Storage (DDS) Tapes

This section explains special precautions that must be taken when recording
audio onto a tape that has previously been used as a data (DDS) tape.

When you insert a DDS tape into the DAT drive, it is rewound to the logical
beginning-of-tape (BOT). On data tapes, the logical BOT differs from the
physical BOT by approximately 10 centimeters (30 seconds). If you attempt

Using the DAT Drive

213

to write data to the drive in audio mode, writing begins at the logical BOT.
When you then rewind and play this tape, there is an initial 30-second gap
before playback starts. If the tape is removed and then reinserted into a DAT
drive, it is recognized as a data tape because DDS format data exists between
the physical BOT and the DDS logical BOT.

Note: With the current DAT drives (firmware revision 2.63), the following
procedure is necessary to work around the problem: Check to see if the tape
in the drive is DDS media and at BOT. If so, switch the drive to audio mode
and write a frame of data to move the tape off logical BOT, and then issue a
rewind. This rewinds the tape all the way back to the physical BOT.

Example Programs Demonstrating DAT Recording

Two sample programs are available to help you with DAT recording:

• cdtodat.c, in /usr/people/4Dgifts/examples/dmedia/cd+dat

This program copies audio from a CD to a DAT. It contains example
code for recording to DAT, including handling of the lead-in area and
recording over data tapes.

• verifydat.c, in /usr/people/4Dgifts/examples/dmedia/cd+dat

This program verifies that a DAT has been recorded correctly and has
continuously running absolute time code.

Controlling the DAT Parser

After you have read in data from a DAT, you can start to process it. Typically,
how you process the audio data depends on what its associated subcodes tell
you about the data (for example, the sample rate at which the audio was
recorded). If you want, you can directly examine the subcode associated
with each DAT frame and respond appropriately.

The DTFRAME structure, however, is large and complicated and subject to
change. libdataudio includes a parser so that your application can avoid
dealing with the DTFRAME structure directly.

If you write a loop that passes all the read DAT frames through the parser,
the parser can examine all the DAT frames for changes in the subcode. When
the parser finds a change (seeing a subcode for the first time counts as a

214

Chapter 9: Programming with the DAT Audio Library

change), it executes the appropriate callback routine—depending on what
sort of subcode change occurred—and passes the new subcode data into
your callback routine.

The DAT parser distinguishes among 14 categories of subcode information.
Thus, if you are interested in subcode changes for only one category of
subcode data, the parser does not bother your application with subcode
changes that you consider irrelevant.

Allocating and Initializing the DAT Parser

To allocate and initialize the data structures for the DAT parser, you must
call DTcreateparser().

To reset the parser after the user changes the tape in the DAT drive, call
DTresetparser(). This clears out any information the parser has about the
last DAT frame but leaves the callback routines in place.

Defining Callbacks for the DAT Parser

When you define a callback for the parser, you must write a function of the
form:

My_dat_SomethingCallBack(void* arg, DTDATATYPES type,
void* data)
{
/* your code here */

}

The parser uses the third parameter to pass in information it read from the
subcodes. The parser uses the second parameter to pass in the type of
callback it thinks it is calling. You can use this to assign the same function to
different types of callbacks. Internally, you can switch on the type. This
feature is useful if two callbacks are the same except for a few lines.

The parser does not use the first parameter. You can use that to pass in
information if your application needs to call the callback directly.

Using the DAT Drive

215

Adding and Removing DAT Parser Callbacks

To add callback routines to the parser, call DTaddcallback(). If you do not
specify a callback for a category, the parser assumes you are not interested in
changes of that type.

You can add callbacks that respond to changes in any of the following
categories of subcode data:

dt_audio callbacks respond to changes in the audio data in a DAT
frame. You can use this class of callback to notify you when
you have gotten past the lead-in track and have started to
see audio samples. When the parser calls this routine, it
passes in the audio sample data. If this callback routine is a
play routine for your application, it should write the audio
sample to an audio port using the Audio Library. See the
ALwritesamps(3) man page and Chapter 6, “Programming
with the Audio Library.”

dt_pnum callbacks respond to changes in the program number. You
can use this callback to notice when you have moved from
one program (track) to the next.

dt_index callbacks respond to changes in the index number. You can
use this callback to notice when you have moved from one
subsection of a track to the next.

dt_ptime callbacks respond to changes in the program time. You can
use this callback to continuously update a “program time
display” in a DAT-playing application.

dt_atime callbacks respond to changes in the absolute time elapsed
since the start of the DAT. You can use this callback to
continuously update your application’s information about
total elapsed time.

dt_rtime callbacks respond to changes in the run time elapsed since
the start of a recording on the DAT. You can use this callback
to continuously update your application’s information
about total elapsed time since the start of a recording.

216

Chapter 9: Programming with the DAT Audio Library

dt_prortime callbacks are like dt_rtime callbacks in that they respond to
changes in the elapsed run time—however, the parser
hands the callback more information than it gives to a
dt_rtime callback—this type of callback is intended for
professional uses

dt_mainid callbacks respond to changes in the contents of the ID field

dt_sampfreq callbacks respond to changes in the subcodes that describe
the sampling frequency for the recording on the DAT

dt_toc callbacks respond to changes in the subcode data that
describe the table of contents for the tape

Note: When parsing the DAT, you should note a separate
subcode for each entry in the table of contents.

dt_date callbacks respond to changes in the timestamp for a
recording

dt_catalog callbacks respond to changes in the DAT catalog number

dt_ident callbacks respond to changes in the ISRC identification
number for the recording on the DAT

dt_probinary callbacks respond to changes in the IEC (SMPTE) or Pro
DIO time codes

For more information on each subcode category, see the DTaddcallback(3)
man page and the DAT specification.

Deleting or Changing a DAT Parser Callback

To delete a callback, call DTremovecallback(). To change a callback, call
DTremovecallback() followed by DTaddcallback().

Parsing DAT Frames

To submit a group of DAT frames to the parser, set up a loop that calls
DTparseframe() for each DAT frame that you have read into your buffer.

DAT Sample Program

217

Freeing the Memory Reserved for the DAT Parser

If you are done with the parser and want to free the memory it uses, call
DTdeleteparser() to delete the parser.

Communicating DAT Status to the End User

Whether you get status information for the DAT directly from the
DTFRAME structure or from one of your parser-callback routines, you need
to convert that information to an ASCII string.

libdataudio includes these conversion routines:

DTsbtoa() to convert a 6-bit country and owner code to an ASCII string

DTtimetoa() to convert a time code to an ASCII string

DTpnotodec() to convert a BDC program number to a decimal, which you
can then check and convert to ASCII if appropriate

For more information on these routines, see the relevant man pages.

DAT Sample Program

This section contains datplay.c, a simple program for reading and processing
DAT data.

Playing a DAT

Example 9-1 reads samples from the DAT and uses the parser and two
callbacks to process the data read. One callback, frequency(), extracts the
sampling rate from the subcodes on the DAT. The other callback,
playaudio(), extracts audio samples from the frames and writes them to the
audio port.

218

Chapter 9: Programming with the DAT Audio Library

Example 9-1 Reading DAT Samples

/* DAT example from digital audio and MIDI programming guide */

#include <stdio.h>
#include <sys/fcntl.h>
#include <sigfpe.h> /* Floating point exception error handling package */
 /* with this you’ll need to compile w/ -lfpe */

#include <dataudio.h> /* DAT audio library. */
 /* with this you’ll need to compile w/ -ldataudio */

#include <audio.h> /* audio library */
 /* with this you’ll need to compile w/ -laudio */

static int sampsperframe = DTDA_NUMSAMPS48K; /* Number of samples you’ll */
 /* get in 1 DAT frame when */
 /* the sampling rate is at */
 /* 48kHz. */

ALport audioport; /* Audio port to output the */
 /* DAT sample data */

/* Our dt_audio callback */
/* It gets called when there’s a change in the audio data in a frame. */

playaudio(void *arg, DTDATATYPES type, short *audio)
{
 ALwritesamps(audioport, audio, sampsperframe);
 /* Send the audio samples read out to the audio port */
}

/* Our dt_sampfreq callback. */
/* It gets called when there’s a change in the subcodes that describe the */
/* sampling frequency for the recording on the DAT. */
frequency(void *arg, DTDATATYPES type, int *freq)
{
 switch (*freq)
 {
 case DT_FREQ48000:
 sampsperframe = DTDA_NUMSAMPS48K; /* Number of samples you’ll */
 /* get in 1 DAT frame when */
 /* the sampling rate is at */
 /* 48kHz. */
 break;

DAT Sample Program

219

 case DT_FREQ44100:
 sampsperframe = DTDA_NUMSAMPS44K; /* Number of samples you’ll */
 /* get in 1 DAT frame when */
 /* the sampling rate is at */
 /* 44kHz. */
 break;
 case DT_FREQ32000:
 sampsperframe = DTDA_NUMSAMPS32K; /* Number of samples you’ll */
 /* get in 1 DAT frame when */
 /* the sampling rate is at */
 /* 32kHz. */
 break;
 }

main()
{
int tape = open("/dev/nrtape", O_RDONLY);
 /* Open the file descriptor for reading data off of */
 /* DAT Tape assumed to be /dev/nrtape. */

DTPARSER *dtp = DTcreateparser(); /* Initialize DAT parser. */

DTFRAME buf[4]; /* Will describe content of current */
 /* DAT frame. This is what gets */
 /* sent to the DAT parser. */
 /* See man pagfe for DATFRAME for */
 /* detailed info. */

struct mtop mt_com; /* Message structure for magntic */
 /* tape device interface for use in */
 /* passing to the ioctl command. De-*/
 /* fined in /usr/include/sys/mtio.h */
 /* See mtio and dataudio man pages. */
}
int i, n;
 audioport = ALopenport("DAT Test", "w", 0); /* Open audio port. */
 if (dtp) /* Check for DAT parser. */
 {
 DTsetcallback(dtp, dt_audio, (DTCALLBACKFUNC)playaudio, 0);
 /* Set up function to be called when there’s */
 /* a change in audio information. */

 DTsetcallback(dtp, dt_sampfreq, (DTCALLBACKFUNC)frequency, 0);
 /* Set up function to be called when there’s */
 /* a change in sampling frequency information.*/

220

Chapter 9: Programming with the DAT Audio Library

 /* Make sure we get sane underflow exception handling */

 sigfpe_[_UNDERFL].repls = _ZERO;
 handle_sigfpes(_ON, _EN_UNDERFL, NULL, _ABORT_ON_ERROR, NULL);
 /* See man page for sigfpe */

 }
 else
 exit(1); /* Can’t do much without a DAT parser. */

 if (tape >= 0) /* Check for tape reading OK. */
 {

 mt_com.mt_op = MTAUD; /* Set up MT(io) AUD(io) message to tell */
 /* DAT drive to turn audio mode on/off. */
 mt_com.mt_count = 1; /* 1 == audio mode, 0 == data mode */

 ioctl(tape, MTIOCTOP, &mt_com); /* Perform M(agnetic) T(ape) I/O */
 /* C(ontrol) T(ape) OP(eration). */
 /* This is needed for both */
 /* reading and writing audio to */
 /* or from the DAT drive. */

 for (;;)
 {
 n = read(tape, buf, sizeof(buf)); /* Read frame of DAT audio */
 /* data from the tape’s */
 /* file descriptor. */
 if (n < 0)
 {
 printf("Couldn’t read DAT tape.\n"); /* Report error */
 exit(2);
 }
 if (n == 0) /* We’re at the end of the tape */
 break;
 for (i = 0; i < 4; i++)
 DTparseframe(dtp, &buf[i]); /* Sort out what info was in */
 /* the frame we just read and */
 /* invoke the callbacks we */
 /* specified previously. */
 }
 exit(0);
 }
 exit(3); /* Can’t do much without a tape to read from */
}

This chapter describes the MIDI
Library, which provides MIDI access.

Programming with the MIDI Library

Chapter 10

223

Chapter 10

10. Programming with the MIDI Library

The MIDI Library, libmd.so, provides an API for sending, receiving, and
processing musical instrument digital interface (MIDI) messages through
the serial interface of Silicon Graphics IRIS Indigo, Indigo2, and Indy
workstations.

The MIDI Library features

• timed input and output of MIDI data

• buffered I/O with user-adjustable buffering time

• active sensing and system-exclusive data handling

• simultaneous access to MIDI devices from multiple programs

• the ability to have multiple input and output streams open
concurrently

• a correlation to other media streams with unadjusted system time
(UST)

• sample applications online in /usr/people/4Dgifts/examples/dmedia/midi

Hands-on experiences are presented throughout this chapter:

• “Hands-On MIDI Output Experience” on page 234 demonstrates
sending MIDI messages.

• “Hands-On Multiplexed MIDI I/O Experience” on page 240
demonstrates a MIDI thru box.

• “Hands-On MIDI File Player Experience” on page 244 demonstrates a
multithreaded MIDI file player with a graphical user interface.

• “Hands-On MIDI and Audio Synchronization Experience” on page 246
demonstrates synchronized MIDI playback and recording.

224

Chapter 10: Programming with the MIDI Library

In this chapter:

• “MIDI System Architecture” on page 224 describes the system
configurations and I/O interfaces for MIDI.

• “MIDI Library Basics” on page 231 discusses basic MIDI concepts and
the main MIDI Library data structures.

• “Opening and Closing MIDI Ports” on page 232 explains how to open
and close MIDI ports and how to get a file descriptor for a MIDI port.

• “Programming MIDI I/O” on page 234 explains how to implement
basic MIDI I/O functions.

• “Multiplexing MIDI I/O with File Descriptors” on page 240 explains
how to use file descriptors to multiplex synchronous I/O.

• “Controlling MIDI Timing” on page 241 describes timestamping modes
and explains how to specify and scale MIDI tempo.

• “Synchronizing MIDI I/O with Other Media” on page 246 explains
how to use Unadjusted System Time (UST) for synchronizing MIDI
timing with other media streams. It contains synchronized MIDI
recording and playback applications that use the MIDI and Audio
libraries in conjunction.

MIDI System Architecture

This section describes system configurations for MIDI development and the
MIDI input and output interfaces.

Configuring Your System for MIDI Development

The most essential peripheral for MIDI development is a serial-to-MIDI
converter. You can use any Apple Macintosh compatible serial-to-MIDI
converter. Many MIDI converters include additional features, including
SMPTE-to-MIDI conversion (which is useful for synchronizing MIDI to tape
and film), and built-in MIDI patchbays for switching between multiple MIDI
inputs and outputs. You should choose your serial-to-MIDI converter based
on the functionality you expect your users to require.

MIDI System Architecture

225

Once you have selected a MIDI converter, you will need some MIDI devices
to attach to it. The kind and number of MIDI devices you choose to create
your MIDI network depends largely on the scope of the application you are
writing and your budget. A single keyboard synthesizer may be sufficient
for your needs if you are writing a very simple sequencer, but for more
complex programs, you should have a keyboard, several rack-mount
synthesizer modules, an alternate MIDI controller (such as a wind
controller), and a mixer with enough channels for all the instruments you
have (so you can hear the results).

If you are not satisfied with listening through headphones or through your
workstation’s internal speaker, you should probably invest in an amplifier
and/or a pair of powered speakers. A multi-track tape recorder may also be
useful for testing your application if it will ultimately be used for recording
music. You should plan on testing your application using the kind of
equipment that you anticipate the end users of your application to have.

Figure 10-1 shows one possible MIDI setup.

226

Chapter 10: Programming with the MIDI Library

Figure 10-1 MIDI Setup

,,,,
,,,,

,,,,
,,,,

,,,,
,,,,

@@
@@

@@
@@@

@

@
@@@
@@

@@
@@@@
@@

@@
@@@@
@@

@@
@@@@
@@

@@
@@@@
@@

@@
@@@@
@@

@@
@@

AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA??
??
??

???
???
???
???

MIDI

Interface

Synthesizer

Keyboard

Controller

Drum

Machine

Audio

Mixer

Power

Amplifier

SpeakerSpeaker

MIDI

Out

(x2)

MIDI

In

MIDI

In

MIDI

Out

Audio

Out
From

Serial

Port

Audio

Out

Audio

OutAudio

In

(x2)

AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA??
??
??

???
???
???
???

MIDI

In

MIDI System Architecture

227

Connecting Devices to MIDI I/O Interfaces

The MIDI Library is currently supported on the Indigo, Indigo2, and Indy
workstations. The two serial ports on your workstation are configured for
MIDI from the Port Setup tool, as described in “Configuring Serial Ports for
MIDI WIth the Port Setup Tool” on page 229.

Any Apple Macintosh-compatible serial-to-MIDI interface operates when
connected to either or both of the serial ports. Many of these interfaces offer
additional useful features, such as SMPTE time-code conversion and
integrated software-configurable MIDI patching.

Figure 10-2 shows the serial ports on the back panel of the Indigo
workstation.

Figure 10-2 Serial Ports on the Back Panel of the Indigo Workstation

Note: Do not use the keyboard port for MIDI.

O

1

2

228

Chapter 10: Programming with the MIDI Library

Figure 10-3 shows the serial ports on the back panel of the Indigo2

workstation.

Figure 10-3 Serial Ports on the Back Panel of the Indigo2 Workstation

Figure 10-4 shows the serial ports on the back panel of the Indy workstation.

Figure 10-4 Serial Ports on the Back Panel of the Indy Workstation

Serial ports

Serial ports

MIDI System Architecture

229

Configuring Serial Ports for MIDI WIth the Port Setup Tool

Before you can run a MIDI application, you must first configure your
workstation’s serial ports for MIDI by using the Port Setup tool. The Port
Setup tool provides a GUI for configuring connections to your system’s
serial ports. Once set up, a serial port remains configured for MIDI, even if
the system reboots, until you reset it from the Port Setup tool.

To configure a serial port for MIDI:

1. Open the System Manager and select the System Administration tools
from the Tools menu.

2. Click the Port Setup icon, shown in Figure 10-5.

Figure 10-5 Port Setup Icon

Figure 10-6 shows the Port Setup tool.

Figure 10-6 Port Setup Tool

3. Select the available serial port by clicking its icon.

4. Click Connect.

230

Chapter 10: Programming with the MIDI Library

Figure 10-7 shows the device connections available from the Port Setup tool.

Figure 10-7 Serial Port Connections

5. Select the MIDI device by clicking its icon.

6. Click Set Up.

The system displays the MIDI Port Configuration menu shown in
Figure 10-8, asking you to confirm whether you want to start MIDI.

Figure 10-8 MIDI Port Configuration

7. Click OK to start MIDI on the selected port.

MIDI Library Basics

231

MIDI Library Basics

This section discusses fundamental MIDI concepts and describes the
primary data structures used by the MIDI Library.

MIDI is a control protocol, as opposed to a data protocol, meaning that a
MIDI network does not carry audio signals, but rather instructions that tell
MIDI instruments how to behave. MIDI information is transmitted in the
form of an event: a control instruction (or message), combined with time
information (called a timestamp). Typical messages are note on and note off
(describing the beginning and ending time of a certain musical note) and
values for continuous controllers such as sustain pedals, modulation wheels,
and pitch bend controllers.

Initializing MIDI Library Programs

Before calling any MD Library routines, you must initialize the MIDI Library
by calling mdInit(), which returns the number of available MIDI ports.

If the MIDI daemon is not running, mdInit() returns −1. See “Configuring
Serial Ports for MIDI WIth the Port Setup Tool” on page 229 for instructions
on configuring the serial ports and starting and stopping the MIDI daemon.

Compiling and Linking MIDI Library Programs

To compile a MIDI Library program, enter:

cc –g MLsample.c -o MLsample –lmd

You should also link with any other libraries, such as the Audio Library, that
your application uses.

MIDI Library Error Handling

All libmd functions return −1 on error, and set oserror(3C) appropriately.

232

Chapter 10: Programming with the MIDI Library

MIDI Library Programming Model

The MIDI Library has two basic data structures:

MDport An opaque structure containing information about the state
of MIDI data and timing, as well as the state of all options
for the port.

MDevent A public structure containing fields for regular and
system-exclusive MIDI messages, timestamps, and message
lengths.

Opening and Closing MIDI Ports

The MDport, or MIDI port, is the basic MIDI I/O structure in the MIDI
Library. An MDport provides a one-way (input-only or output-only)
connection to a MIDI device. Each port can transmit or receive on as many
as 32 independent MIDI channels, 16 per serial port. The use of separate
MIDI channels allows complex orchestration of MIDI instruments, when
each MIDI device is “tuned” to a different channel.

Getting the Name of an Available MIDI Port

Once the MIDI Library has been initialized by calling mdInit(), you can get
the name of an available port by calling mdGetName():

char *mdGetName(int portno)

Then you can build a menu of available MIDI ports for your application.
mdGetName() returns the name string associated with portno or NULL, if
portno does not refer to an existing port.

For example, if MIDI has been initialized with the following command:

startmidi -n ttyd2 -d /dev/ttyd2

mdInit() returns 1, and mdGetName(0) returns the "ttyd2" string.

Opening and Closing MIDI Ports

233

Opening and Closing MIDI Input and Output Ports

The MIDI Library has task-specific calls for opening MDports:
mdOpenInPort() opens an input port and mdOpenOutPort() opens an
output port. Their function prototypes are:

MDport mdOpenInPort(char *name)

MDport mdOpenOutPort(char *name)

Each returns a handle to the appropriate type of port.

Use the name returned by mdGetName() to indicate a particular MIDI
device to which a port is to be connected, as demonstrated in Example 10-1.

Example 10-1 Opening MIDI Input and Output Ports

#include "dmedia/md.h"

main()
{
 int nports, x;
 MDport inport, outport;
…
 nports = mdInit();
 printf("%d devices available\n", nports);

 inport = mdOpenInPort(0);
 if (inport == NULL)
 printf("open failed\n");

 outport = mdOpenOutPort(0);
 if (outport == NULL)
 printf("open failed\n");
…
}

The initial state of a newly-opened port is undefined, except for the
timestamping mode, which is MD_DELTASTAMP.

You can open up to 64 MDports, less the number of devices. For example, if
you have both serial ports configured for MIDI, you can open 62 MDports.
When a port is no longer needed, call mdClosePort() to close the port and
free its associated resources.

234

Chapter 10: Programming with the MIDI Library

Programming MIDI I/O

This section explains how to implement the most basic tasks for MIDI
applications: sending and receiving MIDI messages.

Hands-On MIDI Output Experience

To begin, try playing a sound through the MIDI equipment connected to
your system. The sample application plays a sound by sending a MIDI
message. To test whether you can send MIDI output, try this:

1. If you have not already done so, connect your MIDI equipment to your
workstation’s serial port, and configure the port for MIDI, as described
in “Connecting Devices to MIDI I/O Interfaces” on page 227.

2. to launch the scale program, which sends a musical scale through the
MIDI output.

Note: The application will not launch if you don’t have your MIDI
equipment connected and set up.

See scale.c, in /usr/people/4Dgifts/examples/dmedia/midi/simple to view the code
that plays the musical scale.

A tone is played through the MIDI output by specifying the note to play and
its duration, and then sending a note on event to sound the tone, followed by
another event to end the sound (often, a note on with zero velocity is used to
silence a note).

Example 10-2 shows the playnote() routine from scale.c, which creates a
MIDI event structure (mdEvent) named mdv. The mdv structure contains a
3-byte message, a timestamp, and the message length. The 3-part message
consists of the MD_NOTEON event, or’ed to a channel, followed by the note
and its velocity. See “About MIDI Events” on page 235 for a description of
the mdEvent structure.

The message is given an initial timestamp of 0. After the specified time
interval has elapsed, the note’s velocity is set to zero and then a zero velocity
note on message is sent to silence the output.

Programming MIDI I/O

235

Example 10-2 Sending a MIDI Message

#include "dmedia/midi.h"
…
playnote (MDport port, char note, unsigned long long time,
 char channel, char velocity)
{
 mdEvent mdv;

 mdv.msg[0] = MD_NOTEON | (channel & 0xf);
 mdv.msg[1] = note;
 mdv.msg[2] = velocity;

 mdv.stamp = 0;
 mdv.msglen = 3;

 if (mdSend(port, &mdv, 1) < 0) {
 exit(-1);
 }
 mdv.stamp = time;
 mdv.msg[2] = 0;

 if (mdSend(port, &mdv, 1) < 0) {
 exit(-1);
 }
}

MIDI event structures are described in “About MIDI Events” on page 235.

About MIDI Events

MIDI events are contained in the MIDI Library mdEvent data structure:

typedef struct __mdevent {
 char msg[4]; /* channel message data */
 char *sysexmsg; /* sysex message data */
 unsigned long long stamp; /* time stamp in nanosecs */
 int msglen; /* length of data, sysex only */
} mdEvent;

msg is an array of characters representing the data of a
non-system-exclusive message, which can include status,
note, and controller information and is from 1 to 3 bytes in
length.

236

Chapter 10: Programming with the MIDI Library

sysexmsg is a pointer to a string of characters representing a block of
system-exclusive (SYSEX) data, which can include bulk
data such as instrument patch configuration parameters
and can be of arbitrary length. When SYSEX data is
received, msg[0] is set to MD_SysEx (0xf0), and then the
actual data storage is allocated with mdMalloc(); similarly,
it must be released with mdFree().

stamp is the timestamp of the event, in nanoseconds or in ticks, if
you are using one of the tick modes.

msglen is used by system-exclusive messages to indicate the length
of the SYSEX packet, or when sending multiple messages in
a single event. For single events, msglen should be set to 0.

The timestamp for the MIDI event, which is the time at which the event did
or should occur, is reckoned from either a fixed time or the previous event’s
time. The MIDI Library supports two types of timestamping:

• relative stamping, in which time is reckoned for all events as an interval
from an initial specified time. This is useful for sequencers.

• delta stamping, in which time for each individual event is reckoned as
the interval since the last event occurred. This is useful for insertions of
events in lists.

See “Controlling MIDI Timing” on page 241 for information about setting
the timestamping mode and other parameters.

Sending and Receiving MIDI Events

This section explains how to send and receive MIDI events.

Sending MIDI Events

To send a MIDI event from a MIDI output port, call mdSend(). Its function
prototype is:

int mdSend(MDport port, MDevent *buf, int count)

Depending on the port’s timestamping mode, MIDI events have either
relative or delta timestamps, or no timestamps at all. If temporal buffering is

Programming MIDI I/O

237

used, mdSend() blocks, waiting for the output to catch up, until the amount
of time represented by the sum of the timestamps in the event buffer exceeds
the timeout value set by mdSetTemporalBuffering().

If no errors occur, mdSend() returns the number of messages successfully
sent; otherwise, it returns either 0, indicating that an error occurred and no
messages were sent, or −1 times the number of messages not sent. mdSend()
sleeps if the output queue size limit is exceeded.

Receiving MIDI Events

To receive a MIDI event into a MIDI input port, call mdReceive(). Its
function prototype is:

int mdReceive(MDport port, MDevent *buf, int count)

mdReceive() allocates storage for messages coming into the designated port,
except for system-exclusive messages; these require the application to
allocate and free the necessary storage. mdReceive() copies the message(s)
and timestamp(s) into a buffer, and returns either the number of messages
read from the given port or −1, if an error occurred.

Handling System-Exclusive MIDI Events

SYSEX messages are received in chunks of up to 1 kilobyte. To check for
SYSEX messages, scan for the EOX marker in buf.sysexmsg[buf.msglen-1].
When receiving sysex messages, buf.msg[0] is set to 0xf0 for each chunk
received, while the actual data is stored in buf.sysexmsg.

Printing MIDI Events

To print the messages in the MIDI event buffer, you must first convert them
to a human-readable format by calling mdPrintEvent(). Its function
prototype is:

int mdPrintEvent(char *buf, mdEvent *evbuf, int count)

buf is a pointer to buffer allocated by the application. It should
be large enough to contain the formatted representation of
all the events in evbuf. Eighty bytes per message is sufficient.

238

Chapter 10: Programming with the MIDI Library

evbuf is a pointer to the event buffer

count is the number of events to format

The message format is:

timestamp : channel : status type (string) : byte 1 : byte 2

If the message is a note on or note off, then the note name (for example, A3) is
printed in the field occupied by byte 1; otherwise, the numeric value is
printed.

Processing MIDI Event Messages

A MIDI message is an array of 2 or 3 bytes. The first byte contains the status
in the high nibble, and the channel in the low nibble. The remaining 1 or 2
bytes contain the values.

Setting and Getting MIDI Message Status

The status byte determines the type of message and its length. Table 10-1
lists the name, length, and purpose of each status byte.

To set the status, call mdSetStatus(); to get the status, call mdGetStatus().

Table 10-1 MIDI Message Status Bytes

Status Length Byte 1 Byte 2

MD_CHANNELMODESELECT 2

MD_CHANNELPRESSURE 2

MD_CONTROLCHANGE 2 Controller number Controller value

MD_NOTEOFF 3

MD_NOTEON 3 Note number Velocity

MD_PITCHBENDCHANGE 3 MSB LSB

MD_POLYKEYPRESSURE 3

MD_PROGRAMCHANGE 2 Program number Unused

Programming MIDI I/O

239

Setting and Getting MIDI Message Channel

The channel is the low nibble of the high byte. It takes a value of 0 through
15, which corresponds to a MIDI channel range of 1 through 16.

The functions for setting and getting the channel are:

int mdGetChannel(char *msg)

void mdSetChannel(char *msg, int x)

There are sixteen channels for each serial port (device 0 and device 1).
Channels 0–15 are sent on device 0, and channels 16–31 are sent on device 1.

Setting and Getting MIDI Message Value

Byte1 and Byte2 are the values associated with the message.
Message-specific information (for example, note names for note on and note
off messages and channel numbers for channel messages), is contained in
these bytes. The functions that set and get MIDI message values are:

void mdSetByte1(char *msg, int x)

void mdSetByte2(char *msg, int x)

int mdGetByte1(char *msg)

int mdGetByte2(char *msg)

See the following references for MIDI message codes:

• MIDI 1.0 Detailed Specification and Standard MIDI Files 1.0, International
MIDI Association, 5316 W. 57th St., Los Angeles, CA 90056.

• MIDI Sequencing in C, by Jim Conger, ISBN 1-55851-045-1, M & T Books,
1989. Available from:

M&T Books
A Division of M&T Publishing, Inc.
501 Galveston Drive
Redwood City, CA 94063

240

Chapter 10: Programming with the MIDI Library

Multiplexing MIDI I/O with File Descriptors

You can multiplex MIDI input and output by using the IRIX select(2) system
call to wait on MD file descriptors. Using this technique allows your
workstation to function as a MIDI thru box.

Hands-On Multiplexed MIDI I/O Experience

To send and receive MIDI messages through your workstation:

1. If you have not already done so, connect your MIDI equipment to your
workstation’s serial port, and configure the port for MIDI, as described
in “Connecting Devices to MIDI I/O Interfaces” on page 227.

2. to launch the thru sample program, which receives MIDI events and in
turn sends them out through an mdOutport.

Note: The application will not launch if you don’t have your MIDI
equipment connected and set up.

See thru.c, in /usr/people/4Dgifts/examples/dmedia/midi/simple to view the code
that implements MIDI-thru capability.

Getting a File Descriptor for a MIDI Port

File descriptors can be used with the IRIX select(2) or poll(2) system calls to
multiplex input and output of MIDI messages with other I/O devices. To get
a file descriptor for an MDport, call mdGetFd(), which returns a file
descriptor associated with the port:

int mdGetFd(MDport port)

Example 10-3 is an excerpt from thru.c that demonstrates putting the file
descriptor returned by mdGetFd() into a file descriptor set and using select
to wait on the file descriptor set. Using select requires including the
sys/select.h header file.

Controlling MIDI Timing

241

Example 10-3 Using MIDI File Descriptors

#include "dmedia/md.h"
#include "sys/select.h"

main()
{
 int nports, x;
…
 fd_set inports, outports;
 int nfds, highfd;

 nports = mdInit();
…
 FD_SET(mdGetFd(inport),&inports);
 FD_SET(mdGetFd(outport),&outports);
 highfd = mdGetFd(outport) + 1;

 while(1) {
 nfds = select(highfd,&inports,0,0,0);
 …
 }
}

Controlling MIDI Timing

The MIDI Library provides for timed input and output of MIDI data.
Messages are timestamped on input and are scheduled for output on the
basis of their timestamp. Output scheduling can be disabled.

You can synchronize I/O for MIDI streams with other media streams by
correlating timestamps in terms of unadjusted system time (UST).

Controlling MIDI Timing Mode

You can choose to time MIDI events using either actual time or musical
beats, also called ticks. The default mode of an MDport is delta
timestamping, which measures the time elapsed from the previous event,
but you can reset it to use any mode. To get a port’s timestamping mode, call
mdGetStampMode(); to set a port’s timestamping mode, call
mdSetStampMode().

242

Chapter 10: Programming with the MIDI Library

The MIDI Library has three modes in which timing is controlled by actual
time:

The MIDI Library has two modes in which timing is controlled by beats:

Time is measured from the time the MDport was opened. You can reset the
reference time by calling mdSetOrigin(), which sets the start time to the
64-bit UST that you specify. The result depends on the value used:

0 Sets the start time to the system’s current UST.

< 0 Sets the start time to the number of nanoseconds before the
current UST. This allows streams of files to be restarted in
the middle of the data

> UST Sets the start time to some time in the future.

Upon successful completion, mdSetOrigin returns 0; otherwise it returns −1
and sets an error code that you can retrieve with oserror(3C). To get the start
time, call mdGetOrigin().

Setting the reference time to match a UST value is useful in MIDI recording,
for setting the recording start time to correspond to the arrival of an audio

MD_NOSTAMP Causes the output timestamps to be ignored.
Input timestamps are undefined.

MD_DELTASTAMP Causes each input event to be timestamped with
the number of milliseconds from the previous
event, and interprets output timestamps in the
same way.

MD_RELATIVESTAMP Causes input timestamps to be marked relative to
a time specified by mdSetOrigin(). Output
timestamps are also reckoned against the same
origin time.

MD_RELATIVETICKS Allows the ticks to be reckoned from an origin
time that is set with mdSetOrigin().

MD_DELTATICKS Uses simple delta timestamps. Ticks are defined in
terms compatible with Standard MIDI files; for
example, pulses per quarter note (PPQ). Ticks are
controlled by mdSetTempo() and
mdSetDivision().

Controlling MIDI Timing

243

signal at the input jacks. See “Hands-On MIDI and Audio Synchronization
Experience” on page 246 for a demonstration of this technique.

Controlling MIDI Tempo

You can vary the tempo for ports whose timestamping mode is in ticks.
Tempo is expressed in microseconds per beat, as in Standard MIDI Files
(SMF). Tempo and division values specify the conversion from MIDI clock
ticks to real time values for the MIDI driver. Divisions represent the
subsamples per beat, or pulses per quarter note (PPQ). This is useful for
MIDI sequencing.

To set the tempo, call mdSetTempo(); to get the tempo, call mdGetTempo().

To set the divisions per beat (pulses per quarter note), call mdSetDivision();
to get the divisions per beat, call mdGetDivision().

To convert a timestamp from ticks to nanoseconds, taking into account the
port’s tempo, call mdTicksToNanos(). Similarly, to convert from
nanoseconds to ticks, call mdNanosToTicks().

Sometimes you need to adjust the tempo when audio is not synchronized or
to compensate for a slow tape deck when recording MIDI. You can specify a
tempo scale factor by calling mdSettemposcale(). When messages whose
timestamps are expressed in ticks are written to a port that has a tempo scale
factor, the timestamps are multiplied by the scale factor before being queued
for output. This allows for nondestructive tempo matching.

Controlling MIDI Output Buffering

The MIDI driver buffers data according to time. An application that
responds to user interaction must compensate for the fact that events can be
sent to the MIDI port faster than they can actually be transmitted. By default,
the MIDI library does not allow a process to get more than 2 seconds ahead
of the actual output.

You can control how much playback can get ahead of data transmission by
specifying the amount of temporal buffering. To set the number of

244

Chapter 10: Programming with the MIDI Library

milliseconds an application can get ahead of its output, that is, the time to
drain an MDport, call mdSetTemporalBuffering().

When the event timestamps exceed the specified timeout value, mdSend()
sleeps until the output catches up.

To determine the amount of time an application can get ahead of its output,
call mdGetTemporalBuffering().

You can pause output momentarily or even completely silence output when
necessary.

To stop pending output on a port and return the UST value or the tick of the
last message sent to or from a port, call mdPause(). mdPause() immediately
halts output.

Sometimes you may need to do more than simply pause the output. You can
send a panic event for a given port by calling mdPanic(), which sends an all
notes off message and a reset controllers message on each channel.

Hands-On MIDI File Player Experience

The MIDI file player sample application illustrates the use of the timing
concepts presented in this section—it lets the user change the tempo of a
MIDI file, pause playback, or drag a slider to start playback at a random
location.

To play MIDI files using the MIDI file player:

1. If you have not already done so, connect your MIDI equipment to your
workstation’s serial port, and configure the port for MIDI, as described
in “Connecting Devices to MIDI I/O Interfaces” on page 227.

2. Enter Mfp to launch the MIDI file player.

Note: The application will not launch if you don’t have your MIDI
equipment connected and set up.

See player.c++, in /usr/people/4Dgifts/examples/dmedia/midi/mfp to view the
playback source code.

Controlling MIDI Timing

245

The MIDI file player application uses three threads: one to manage the user
interface (UI), one to manage the playback, and one to update the song
position. These threads use shared memory; semaphores are used to protect
critical regions so that both processes don’t try to access the same data
simultaneously.

The playback thread waits on the semaphore. Processes that are waiting on
a semaphore are queued on a first-come, first-served basis. When the UI
process acquires the semaphore, playback stops; when it releases the
semaphore, playback starts. An important point to note is that the playback
loop uses uscpsema(), which tests the semaphore and returns immediately
if it can’t be acquired. This provides an opportunity where it is known to be
safe to pause the output. Without doing this, it is possible to send the pause
command without having the playback thread acknowledge it, because it is
busy sending data.

Another interesting point to note is that error checking is performed to
determine whether the application is sending more data than can be
handled; if so, the playback thread releases the semaphore and polls the
MIDI port until enough data has drained to allow more data to be sent.

The song position thread loops until either the stop button is hit or the song
finishes. If a sequence is paused, the position resets to 0, so you need to save
the starting position, then add it back in when resuming playback.

The MIDI file player uses non-blocking I/O so that stopping a sequence is
possible without flushing currently queued data. If mdSend() is waiting for
either room or time to send data, that data is sent as soon as the currently
waiting data is flushed.

When setting the division and tempo, the division must always be set first,
because the constants set in the driver by the tempo change, depending on
the division.

When setting the origin time, putting the position of the file in a signed
quantity avoids a compiler warning. Multiplying the start time by −1 allows
the file to start playing in the middle without waiting for the first timestamp
to expire.

246

Chapter 10: Programming with the MIDI Library

When pausing playback, keep track of the timestamp of the MIDI message
that was most recently sent and add it to the previous pause time, so that
playback will resume from the proper location in the file.

Synchronizing MIDI I/O with Other Media

You can synchronize I/O for MIDI streams with other media streams by
correlating timestamps in terms of unadjusted system time (UST).

One technique is to set the MIDI port to use relative timestamping, and then
use mdSetOrigin() to set the port’s origin time to match the UST of the
media stream to which you want to synchronize.

Alternatively, you can obtain the UST for a MIDI event and compare it to the
UST of another media stream counter. To return the UST or tick of the last
event sent out, call mdTell().

Hands-On MIDI and Audio Synchronization Experience

To try a synchronized audio and MIDI application:

1. If you have not already done so, connect your MIDI equipment to your
workstation’s serial port, and configure the port for MIDI, as described
in “Connecting Devices to MIDI I/O Interfaces” on page 227.

2. Click on syncrecord to launch a sample application that demonstrates
synchronized audio and MIDI recording.

Note: The application will not launch if you don’t have your MIDI
equipment connected and set up.

See recordmidi.c++ and playmidi.c++, in
/usr/people/4Dgifts/examples/dmedia/midi/syncrecord to view the code that
implements the synchronized MIDI record and play application.

Chapter 1

PART THREE

Video Programming III

Chapter 11, “Video Basics,”
explains basic video concepts that apply to both the Video Library and the
IndigoVideo Library.

Chapter 12, “Getting Started with the Video Library,”
describes the Video Library and explains how to use it to perform video input
and output for workstations equipped with standard and optional Silicon
Graphics video hardware.

Chapter 13, “Using VL Controls,”
describes how to use VL controls to set video parameters for data transfer and
video effects.

Chapter 14, “VL Event Handling,”
 describes how to handle video events using the Video Library.

This chapter explains how to use the
VL controls to set and adjust video
parameters.

Video Basics

Chapter 11

251

Chapter 11

11. Video Basics

Computer graphics and video differ in a number of ways; understanding the
differences can help you produce better results with the VL and your Silicon
Graphics video option. This chapter introduces some of the important terms
and concepts used in conjunction with video. For more detail about a
particular term, see the Glossary included in this guide.

Video differs from computer graphics in these ways:

• interlacing

• broadcast standards

• color encoding

• video signals

• tape formats

Interlacing

Unlike the way the screen is typically drawn for computer graphics, most
video signals are interlaced: each time the video screen is refreshed, only half
of the horizontal lines are drawn. That is, each frame is composed of two
fields.

During one screen refresh, the video monitor draws the first field, which
contains all the odd-numbered lines; during the next refresh, it draws the
second field, which contains all the even-numbered lines. Therefore, two
refresh cycles are required to draw one frame.

The display rate of interlaced video signals can be measured either in terms
of field rate, or refresh rate, or in terms of frame rate, which equals half of the
field rate, because each frame contains two fields.

252

Chapter 11: Video Basics

Figure 11-1 shows a frame and its two fields for NTSC, the broadcast
standard used in North America and some other parts of the world.

Figure 11-1 Fields and Frame

In contrast, the Silicon Graphics workstation monitor is typically
noninterlaced: it draws every line each time it refreshes the screen. Refresh
rates vary, depending on the type of monitor your Silicon Graphics
workstation has. The video output capability of the graphics subsystem for
some Silicon Graphics workstation models supports interlaced monitor
formats, including component RGB at 525 and 625 lines per frame.

.

.

.

1
2
3
4
5

.

.

.

482
483
484
485

FrameFrame (raster)
line number

Field 1

Field 2

Odd Field
(242.5 lines;

Even Field
(242.5 lines;

no blanking)

no blanking)

NTSC/

PAL/

Component 525

Component 625

.

.

.

2
3
4
5

.

.

.

572
573
574
575

FrameFrame (raster)
line number

2
4
.

572
574

.

.

.

1
3
5
.

573
575

.

.

.

Field 2

Field 1

Frame (raster)
line number

Odd Field
(287.5 lines;

Even Field
(287.5 lines;

no blanking)

no blanking)

1/2

1/2

1/2

6
.

1/2

1/2

2
4
.

482
484

.

.

.

1
3
5
.

483
485

.

.

.

Frame (raster)
line number

1/2

6
.

1

Broadcast Standards

253

Broadcast Standards

Broadcast standards, or video timing formats, are ways of encoding video
information for broadcast to television receivers. These standards are also
used to describe the display capabilities of video monitors and are thus also
called video timing formats or video output formats (VOFs). The three
broadcast standards are:

NTSC Named after the National Television Systems Committee,
which developed it, this standard is used in all of North and
South America, except Brazil, and in much of East Asia.

PAL (Phase Alternated by Line) This standard is used in western
Europe, including the United Kingdom but excluding
France, and in East Asia, including Australia.

SECAM (Sequentiel Couleur avec Memoire) This standard is used in
France, eastern Europe, the Near East and Mideast, and
parts of Africa and the Caribbean.

Note: NTSC implementations can vary slightly by country; PAL and
SECAM implementations can vary considerably.

NTSC employs a total of 525 horizontal lines per frame, with two fields per
frame of 262.5 lines each. Each field refreshes at 60Hz (actually 59.94Hz).
NTSC encodes brightness, color, and synchronizing information in one
signal.

PAL employs a total of 625 horizontal lines per frame, with two fields per
frame of 312.5 lines per frame. Each field refreshes at 50Hz. PAL encodes
brightness, color, and synchronizing information in one signal also, but in a
different way from NTSC.

SECAM transmits the same number of lines at the same rate as PAL, but
transmits each color difference signal on alternate lines, using the frequency
modulation of the subcarrier.

These numbers of horizontal lines—525 and 625, respectively—are a
shorthand description of what actually happens. For NTSC, the first (odd)
field starts with a whole line and ends with a half line; the second (even) field
starts with a half line and ends with a whole line. Each NTSC field contains
242.5 active lines and 20 lines of vertical blanking.

254

Chapter 11: Video Basics

Similarly, for PAL, the first (even) field starts with a half line and ends with
a whole line; the second (odd) field starts with a whole line and ends with a
half line. Each PAL field contains 287.5 active lines and 25 lines of vertical
blanking.

In each case, the numbers 525 and 625 refer to transmitted lines; the active
video lines are fewer—typically, 485 for NTSC and 575 for PAL. The
remaining lines are used for delimiting frame boundaries and for
synchronization and other information.

To minimize frame flickering and reduce the bandwidth of the video signal,
the active video lines are interlaced, as explained earlier in this chapter.

NTSC and PAL can be recorded digitally; these recording techniques are
referred to as D2 525 (digital NTSC) and D2 625 (digital PAL).

Color Encoding

Color-encoding methods are:

• RGB (component)

• YUV (component)

• YIQ (component)

• YC (separate luminance (Y) and chrominance (C)), YC-358, YC-443,
S-Video

• composite video

RGB

RGB is the color-encoding method used by most graphics computers, as well
as some professional-quality video cameras. The three colors red, green, and
blue are generated separately; each is carried on a separate wire.

Color Encoding

255

YUV

YUV, a form of which is used by the PAL video standard and by Betacam and
D1 cameras and VCRs, is also a component color-encoding method, but in a
different way from RGB. In this case, brightness, or luminance, is carried on
a signal known as Y, and color, or chrominance, is carried on the U and V
signals. The two chrominance signals U and V are two-phase amplitude-
modulated: the U component modulates the subcarrier at an angle of 0
degrees, but the V component modulates it at 90 degrees or 180 degrees on
alternate lines. The color burst is also line-alternated at +135 and -135
degrees relative to the U signal.

The YUV matrix multiplier derives colors from RGB via the following
formula:

Y = .299R + .587 G + .114 B
CR = R-Y
CB = B-Y

in which Y represents luminance and R-Y and B-Y represent the color
difference signals used by this format. In this system, which is sometimes
referred to as Y/R-Y/B-Y, R-Y corresponds to CR and V, and B-Y
corresponds to CB and U. R-Y and B-Y are obtained by subtracting
luminance (Y) from the red (R) and blue (B) camera signals, respectively. CR,
CB, V, and U are derived through different normalization methods,
depending on the video format used. The U and V signals are carried on the
same signal.

YUV component color encoding can be recorded digitally, according to the
CCIR 601 standard; this recording technique is referred to as D1.

YIQ

YIQ color encoding, which is typically used by the NTSC video format,
encodes color onto two signals called I and Q (for intermodulation and
quadrature, respectively). These two signals have different phase
modulation in NTSC transmission. Unlike the U and V components of YUV,
I and Q are carried on different bandwidths.

256

Chapter 11: Video Basics

The YIQ formula is as follows:

Y = .299 R + .587 G + .114 B (the same as for YUV)
I = .596 R - .275 G - .321 B
Q = .212 R - .523 G + .311 B

YC, YC-358, YC-443, or S-Video

YC, a two-wire signal, results when I and Q are combined into one signal,
called chrominance. YC-358 is the most common NTSC version of this
luminance/chrominance format; YC-443 is the most common PAL version.
These formats are also known as S-Video; S-Video is one of the formats used
for S-VHS™ videotape recorders.

Composite Video

The composite color-encoding schemes combine the brightness and color
signals into one signal for broadcast. NTSC and PAL both combine
brightness and color but use different methods.

Figure 11-2 shows the relationships between color-encoding methods and
video formats.

Figure 11-2 Relationships Between Color-encoding Methods and Video Formats

RGB

YUV

YIQ

D2 625

YC-358

PAL

D1 525, D1 625

YC-443

NTSC

Video Signals

257

Video Signals

The video signal, whatever the broadcast standard being used, carries other
information besides video (luminance and chrominance) and audio. For
example, horizontal and vertical synchronization information is required, as
well as a color phase reference, which is called color sync burst. Figure 11-3
shows a composite video signal waveform.

Figure 11-3 Composite Video Waveform

Videotape Formats

Videotape recorders are available for analog and digital recording in various
formats. They are further classified by performance level, or market:
consumer, professional, and broadcast. In addition, during postproduction
(editing, including addition of graphics), the original footage can be
transferred to digital media; digital videotape formats are available for

Active Video Active Video

100% Sync

50% Sync

0% Sync

Line Lock
0 Phase Point

Burst Lock
0 Phase Point

Back Porch

+7.5 IRE

0 IRE
Black Level
Blanking Level

Setup or

Leading Edge
of Sync

Pedestal

258

Chapter 11: Video Basics

composite and component video formats. There are no official standards for
videotape classifications.

Table 11-1 summarizes the formats.

Although the VL and other software for Silicon Graphics video options do
not distinguish between videotape formats, you need to know what kind of
connector your video equipment uses. For example, the Galileo board has
composite and S-Video connectors.

Most home VCRs use composite connectors. S-Video, on the other hand,
carries the color and brightness components of the picture on separate wires;
hence, S-Video connectors are also called Y/C connectors. Most S-VHS and
Hi-8mm VCRs feature S-Video connectors.

Table 11-1 Tape Formats and Video Formats

Electronics Consumer Professional Broadcast Postproduction

Analog VHS cassette
(composite)

U-Matic (SP)
cassette, 3/4-
inch (composite)

Type C reel-to-
reel, 1-inch
(composite)

S-VHS
(YC, composite)

Type B (Europe)
(composite)

S-Video (YC-358) S-Video (YC-358)

Beta (composite)

8mm
(composite)

Hi-8mm™
(YC, composite)

Hi-8mm (YC)

Betacam
(component)

Betacam SP
(YUV, YIQ,
composite)

MII™
(YUV, YIQ,
composite)

Digital D1 525 (YUV)

D1 625 (YUV)

D2 525 (NTSC)

D2 625 (PAL)

This chapter explains how to begin
developing a VL application,
including setting up paths, nodes,
and controls for transferring video
data.

Getting Started with the Video Library

Chapter 12

261

Chapter 12

12. Getting Started with the Video Library

The Video Library (VL) is a collection of device-independent C language
calls for Silicon Graphics® workstations equipped with video options, such
as Sirius Video™, Indigo2 Video™, Indy Video™, or Galileo Video ™, or
workstations equipped with on-board video (VINO™: video in, no out),
such as Indy™. The VL includes generic video tools, including simple tools
for importing and exporting digital data to and from current and future
Silicon Graphics products, as well as to and from third-party video devices
that adhere to the Silicon Graphics architectural model for video devices.

VL calls enable you to perform video teleconferencing on platforms that
support it, to blend computer-generated graphics with frames from
videotape or any video source, and to present video in a window on the
workstation screen and to digitize video data.

Note: The range of VL capabilities you can use depends on the capabilities
of your workstation and the video options installed in it.

Topics in this chapter include:

• VL Features

• VL System Software Architecture

• VL Architectural Model of Video Devices

• VL Programming Model

• Opening a Connection to the Video Daemon and Setting up a Data Path

• Setting Parameters for Data Transfer to or from Memory

• Displaying Video Data Onscreen

• Transferring Video Data to and from Devices

• Ending Data Transfer

262

Chapter 12: Getting Started with the Video Library

The chapter concludes with example code illustrating a simple screen
application and frame grabs (video to memory, memory to video, and
continuous frame capture).

VL Features

How the VL Works with Hardware

The VL includes calls for querying features of all supported Silicon Graphics
video options. The VL supports conversion from one video format to
another (for example, YUV to RGB or RGB to YUV).

In some cases, the VL can support multiple devices of the same or of
different types. For example, the CHALLENGE™ architecture supports
multiple Sirius Video boards; Indy supports its built-in video (VINO) and
the Indy Video option.

How the VL Works with Other Software

The Video Library works with other Silicon Graphics libraries, such as the
OpenGL, the IRIS GL and the IRIS ImageVision Library (IL). Software
supplied with optional video hardware provides additional video
capabilities through extensions to the VL. For example, Sirius Video
software includes controls specific to that hardware.

The VL allows programs to get events 60 times per second on a quiescent
system; it also enables programs to share resources or to gain exclusive use
of resources. It supports input and output of video data to or from locked-
down memory at the nominal frame rate. Frame rate depends on the
capabilities of the hardware you are using.

Note: The VL does not depend on the X Window System, but you can use X
Window System libraries or toolkits to create a windowing interface.

VL System Software Architecture

263

VL System Software Architecture

This section describes features of these VL system components and tools:

• video daemon

• generic video tools

• library and header files

Figure 12-1 diagrams the interaction between the VL, the video daemon, the
kernel, the hardware, and the X Window System server.

Figure 12-1 VL System Components

The VL communicates with the IRIX kernel for device initialization, vertical
retrace, setup, and maintenance of any device-supported direct memory
access (DMA).

Besides these components, the VL includes a collection of applications that
support device configuration and control setting and retrieval, generic tools
that display video on a workstation, and video control panels.

Video
application

Video
Library

Video
daemon

IRIX kernel

interface
X GL

264

Chapter 12: Getting Started with the Video Library

Video Daemon

The video daemon, /usr/etc/videod, which has device-dependent and device-
independent portions, handles video device management and status
information.

Device Management

Management that the video daemon performs includes:

• multiple device management

Some hardware devices support multiple video products in one
system. The video daemon is responsible for establishing and
coordinating the availability of all video devices installed.

• multiple client access to multiple devices

The library supports connections from multiple client applications and
manages their access to a limited number of video devices.

• dispatching events

As events are handled and noted by devices, the daemon notifies
applications that have expressed interest in those events.

• handling events

As events are generated by the various devices, the daemon initiates
any action required by an event before it hands the event off to
interested applications.

• maintaining exclusive use

Types of data or control usage for video clients in a Video Library
application are Done Using, Read-only, Lock, and Shared. These usage
levels apply only to write access on controls, not read access. Any
application can open and read the control’s values at any time.

• client cleanup on exit

When a client exits or is terminated abnormally, its connection to the
daemon is broken; the daemon performs any cleanup required of the
system. Any exclusive-use modes that have been set are cleared;
interested clients are notified that the device is no longer in exclusive
use. Controls set by the client might persist, but are not guaranteed to
remain after the client closes the connection.

VL System Software Architecture

265

Status Information

Status information for which the video daemon is responsible includes:

• system status of video devices

The video devices installed in a system can be queried as to availability
and control status.

• video positioning (offset) information

• control setting and retrieval

Device-independent and device-dependent controls are set and
retrieved through the video daemon.

Generic Video Tools

The generic video tools include:

videopanel (vcp) Use this graphical user interface to set controls, such as hue
or contrast, on devices. The panel resizes itself dynamically
to reflect available video devices.

videoin Use the video input window tool to view video in a
window.

videoout Use the video output tool to output video from a
rectangular or full-screen area of the screen on hardware
that supports the screen-to-video path.

vlinfo Use the video info tool to display information about video
devices available through the VL, such as the name of the
server, number of devices on the server, and the types and
ID numbers of nodes, sources, and drains on each device.

vidtomem Use this tool to capture a single frame (the current video
input) or a specified number of frames, depending on the
hardware limits for burst capture, and write the data to
disk. Capture size can also be specified. The data can be
translated or left as raw data, which can be used by the
memtovid tool.

memtovid Use this tool to output single frames (images) to video out
on hardware that supports the memory-to-video path.

266

Chapter 12: Getting Started with the Video Library

The vlinfo, vidtomem, and memtovid tools are command-line tools. In addition
to their man pages, these tools have explanations in the Media Control Panels
User’s Guide, which you can view using the IRIS InSight viewer; similar
applications are supplied in source-code form as examples in the 4Dgifts
directory (/usr/people/4Dgifts/examples/dmedia/video/vl).

Note: Additional video tools may be available for specific on-board video or
video options; see the documentation for those products.

Library and Header Files

The client library is /usr/lib/libvl.a. The header files for the VL are in /usr/
include/dmedia/vl; the main file is vl.h. This file contains the main definition of
the VL API and controls that are common across all hardware.

Device-dependent files use the form vl_XXX.h, where XXX is replaced with
the device-dependent name. Table 12-1 lists header files for hardware
options that use the VL. These files contain additional controls specific to the
devices.

Table 12-1 Header Files for Video Options

Hardware Header File

Galileo Video, Indigo2 Video, Indy Video vl_ev1.h

Sirius Video vl_sirius.h

Video capability built into Indy workstation
(VINO: video in, no out)

vl_vino.h

VL Architectural Model of Video Devices

267

VL Architectural Model of Video Devices

The two central concepts for VL are:

• path: an abstraction for a way of moving data around

• node: an endpoint of the path, such as a video source (such as a VTR),
video drain (such as the screen), a device (such as Indy Video), or the
blender in which video sources are combined for output to a drain

VL routines explained in this chapter enable you to build a fully connected
topology of sources and drains.

A path defines the useful connections between video sources and video
drains. Figure 12-2 shows a simple path in which a frame from a videotape
is displayed in a workstation window.

Figure 12-2 Simple VL Path

Some Silicon Graphics platforms are capable of supporting more than one
video device; for example, Indy supports VINO and Indy Video. Each video
device has its own data paths with sources and drains. The application is
responsible for looking at the capabilities of the platform and choosing the
video device it will run on.

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

Source Drain

VTR

268

Chapter 12: Getting Started with the Video Library

Figure 12-3 shows a more complex path with two video sources: a frame
from a videotape and a computer-generated image are blended and output
to a workstation window. This path is set up in stages.

Figure 12-3 Simple VL Blending

Source1

Source2

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

VTR

Blender

Drain

Source1 Drain

Source2

Source1 Drain

/*Create the screen to video path */
vlPath = vlCreatePath(vlScr, devicenum, src_scr, drn_vid);

/* Add the video source node */
vlAddNode(vlSvr, vlPath, src_vid);

/* Add a blend node */
vlAddNode(vlSvr, vlPath, blend_node);

VL Programming Model

269

VL Programming Model

The VL recognizes five classes of objects:

• devices, each including sets of nodes

• nodes: sources, drains, and internal nodes

• paths, connecting sources and drains

• controls, or parameters that modify how data flows through nodes; for
example:

– video device parameters, such as blanking width, gamma value,
horizontal phase, sync source

– video data capture parameters

– blending parameters

• buffers, for sending and receiving frame data to and from host memory;
the VL buffers are implemented as ring buffers containing a number of
blocks; each maintains a pointer, a size, and pointers to the head
(oldest) and tail (newest) valid data

Data transfers fall into two categories:

• transfers involving memory (video to memory, memory to video),
which require setting up a ring buffer

• transfers not involving memory (such as video to screen and graphics
to video), which do not require a ring buffer (such transfers are not
supported on VINO)

Syntax elements are as follows:

• VL types and constants begin with uppercase VL; for example,
VLServer

• VL functions begin with lowercase vl; for example, vlOpenVideo()

270

Chapter 12: Getting Started with the Video Library

For the two categories of data transfer, based on the VL programming
model, the process of creating a VL application consists of these steps:

1. opening a connection to the video daemon (vlOpenVideo()); if
necessary, determining which device the application will use
(vlGetDevice(), vlGetDeviceList())

2. specifying nodes on the data path (vlGetNode())

3. creating the path (vlCreatePath())

4. optional step: adding more connections to a path (vlAddNode())

5. setting up the hardware for the path (vlSetupPaths())

6. specifying path-related events to be captured (vlSelectEvents())

7. setting input and output parameters (controls) for the nodes on the
path (vlSetControl())

8. transfers involving memory: creating a ring buffer to hold data for
memory transfers (vlGetTransferSize(), vlCreateBuffer())

9. transfers involving memory: registering the buffer (vlRegisterBuffer())

10. starting the data transfer (vlBeginTransfer())

11. transfers involving memory: getting the data (vlGetNextValid() or
vlGetLatestValid(), vlGetActiveRegion(), vlPutFree()) to manipulate
frame data

12. cleanup (vlEndTransfer(), vlDeregisterBuffer(), vlDestroyPath(),
vlDestroyBuffer(), vlCloseVideo())

Opening a Connection to the Video Daemon and Setting up a Data Path

271

Table 12-2 lists calls explained in this chapter.

Opening a Connection to the Video Daemon and Setting up a Data Path

Preliminary procedures required to create the data path are:

• opening the device

• specifying nodes on the data path

• creating and setting up the data path

Each procedure is explained separately.

Opening a Connection to the Video Daemon

The first thing a VL application must do is open the device with
vlOpenVideo(). Its function prototype is:

VLServer vlOpenVideo(const char *sName)

where sName is the name of the server to which to connect; set it to a NULL
string for the local server. For example:

svr = vlOpenVideo("")

Table 12-2 Video Library Calls for Data Transfer

All Transfers Transfers Involving Memory Setting Controls

vlOpenVideo()
vlGetDevice()
vlGetDeviceList()
vlGetNode()
vlCreatePath()
vlAddNode()
vlRemoveNode()
vlSetupPaths()
vlSelectEvents()
vlBeginTransfer()
vlEndTransfer()
vlDestroyPath()
vlCloseVideo()

vlGetTransferSize()
vlCreateBuffer()
vlRegisterBuffer()
vlGetNextValid()
vlGetLatestValid()
vlPutValid()
vlGetNextFree()
vlGetActiveRegion()
vlPutFree()
vlGetDMediaInfo()
vlGetImageInfo()
vlDeregisterBuffer()
vlDestroyBuffer()

vlSetControl()
vlGetControl()
vlControlList()
vlGetControlInfo()

272

Chapter 12: Getting Started with the Video Library

Specifying Nodes on the Data Path

Use vlGetNode() to specify nodes; this call returns the node’s handle. Its
function prototype is:

VLNode vlGetNode(VLServer vlServer, int type, int kind, int
number)

where:

VLNode is a handle for the node, used when setting controls or
setting up paths

vlServer names the server (as returned by vlOpenVideo())

type specifies the type of node:

• VL_SRC: source

• VL_DRN: drain

• VL_DEVICE: device for device-global controls

Note: If you are using VL_DEVICE, the kind should be
set to 0.

• VL_INTERNAL: internal node, such as the blend node

kind specifies the kind of node:

• VL_VIDEO: connection to a video device; for example,
a video tape deck or camera

• VL_GFX: graphics system (Sirius Video only)

• VL_MEM: region of workstation memory

• VL_SCREEN: workstation screen (Galileo Video,
Indigo2 Video, and Indy Video only)

• VL_TEXTURE: texture RAM (Sirius Video only)

• VL_BLENDER: a blender node

Note: The use of VL_BLENDER is explained in
Chapter 15, “VL Blending,” later in this guide.

• VL_ANY: use any available node

number is the number of the node in cases of two or more identical
nodes, such as two video source nodes

Opening a Connection to the Video Daemon and Setting up a Data Path

273

To use the default node kind, use VL_ANY.

nodehandle = vlGetNode(svr, VL_SRC, VL_VIDEO, VL_ANY);

To discover which node the default is, use the control
VL_DEFAULT_SOURCE after getting the node handle the normal way. The
default video source is maintained by the VL. For example:

vlGetControl(svr, path, VL_ANY, VL_DEFAULT_SOURCE, &ctrlval);
nodehandle = vlGetNode(svr, VL_SRC, VL_VIDEO,
ctrlval.intVal);

In the second line above, the last argument is a struct that gets the value.

Note: If either VINO analog channel is active when the first video
application starts, the default is analog; otherwise, the default is digital.

Creating and Setting Up the Data Path

Once nodes are specified, use VL calls to:

• determine the device ID (optional step)

• create the path

• get the device ID

• add nodes (optional step)

• set up the data path

• specify the path-related events to be captured

Determining the Device ID

In this optional step, use one of the following calls to determine the device
on which the data path will be created, depending on the situation.

• If you do not know which device of several available is appropriate for
the data path, get the device list with vlGetDeviceList(). Its function
prototype is:

int vlGetDeviceList(VLServer vlServer, VLDevList * devlist)

274

Chapter 12: Getting Started with the Video Library

• If you know the device you want, parse devlist to get its handle.
Otherwise, the VL selects the first device that the path you have
specified can run on.

Use this step for systems with multiple devices of different capabilities;
for example, on an Indy workstation with VINO and Indy Video, for
full frame rate capture, specify VINO, though both devices support the
video input path.

The struct for nodeinfo in vl.h is:

typedef struct __vlNodeInfo {
 char name[VL_NAME_SIZE]; /* name of node */
 int type; /* see list above */
 int number; /* number of this node */
 int kind; /* see list above */
} VLNodeInfo;

The struct for dev in vl.h is:

typedef struct __vlDevice {
 VLDev dev;
 char name[VL_NAME_SIZE]; /* name of device */
 uint numNodes; /* number of nodes on this device */
 VLNodeInfo *nodes; /* list of nodes */
} VLDevice;

The struct for devlist in vl.h is:

typedef struct __vlDevList {
 uint numDevices; /* number of devices */
 VLDevice *devices; /* list of devices */
} VLDevList;

Creating the Path

Use vlCreatePath() to create the data path. Its function prototype is:

VLPath vlCreatePath(VLServer vlServer, VLDev vlDev
 VLNode src, VLNode drn)

Opening a Connection to the Video Daemon and Setting up a Data Path

275

This code fragment creates a path if the device is unknown:

if ((path = vlCreatePath(svr, VL_ANY, src, drn)) < 0) {
 vlPerror(_progName);
 exit(1);
}

This code fragment creates a path that uses a device specified by parsing a
devlist:

if ((path = vlCreatePath(svr, devlist[devicenum].dev, src,
 drn)) < 0) {
 vlPerror(_progName);
 exit(1);
}

Note: If the path contains one or more invalid nodes, vlCreatePath() returns
VLBadNode.

Getting the Device ID

If you specify VL_ANY as the device when you create the path, use
vlGetDevice() to discover the device ID selected. Its function prototype is:

VLDev vlGetDevice(VLServer vlServer, VLPath path)

For example:

devicenum = vlGetDevice(svr, path);
deviceName = devlist.devices[devicenum].name;
printf("Device is: %s/n", deviceName);

Adding a Node

For this optional step, use vlAddNode(). Its function prototype is:

int vlAddNode(VLServer vlServer, VLPath path, VLNodeId node)

where:

vlServer names the server to which the path is connected

vlPath is the path as defined with vlCreatePath()

node is the node ID

276

Chapter 12: Getting Started with the Video Library

This example fragment adds a source node and a blend node:

vlAddNode(vlSvr, vlPath, src_vid);
vlAddNode(vlSvr, vlPath, blend_node);

Setting Up the Data Path

Use vlSetupPaths() to set up the data path. Its function prototype is:

int vlSetupPaths(VLServer vlServer, VLPathList paths,
 u_int count, VLUsageType ctrlusage,
 VLUsageType streamusage)

where:

vlServer names the server to which the path is connected

paths specifies a list of paths you are setting up

count specifies the number of paths in the path list

ctrlusage specifies usage for path controls:

• VL_SHARE: other paths can set controls on this node;
this control is the desired setting for other paths,
including vcp, to work

Note: When using VL_SHARE, pay attention to events.
If another user has changed a control, a
VLControlChanged event occurs.

• VL_READ_ONLY: controls cannot be set, but can only
be read; for example, this control can be used to
monitor controls

• VL_LOCK: prevents other paths from setting controls
on this path; controls cannot be used by another path

• VL_DONE_USING: the resources are no longer
required; the application releases this set of paths for
other applications to acquire

streamusage specifies usage for the data:

• VL_SHARE: transfers can be preempted by other
users; paths contend for ownership

Opening a Connection to the Video Daemon and Setting up a Data Path

277

Note: When using VL_SHARE, pay attention to events.
If another user has taken over the device, a
VLStreamPreempted event occurs.

• VL_READ_ONLY: the path cannot perform transfers,
but other resources are not locked; set this value to use
the path for controls

• VL_LOCK: prevents other paths that share data
transfer resources with this path from transferring;
existing paths that share resources with this path will
be preempted

• VL_DONE_USING: the resources are no longer
required; the application releases this set of paths for
other applications to acquire

This example fragment sets up a path with shared controls and a locked
stream:

if (vlSetupPaths(svr, (VLPathList)&path, 1, VL_SHARE,
 VL_LOCK) < 0)
{
 vlPerror(_progName);
 exit(1);
}

Specifying the Path-related Events to Be Captured

Use vlSelectEvents() to specify the events you want to receive. Its function
prototype is:

int vlSelectEvents(VLServer vlServer, VLPath path,
VLEventMask eventmask)

where:

vlServer names the server to which the path is connected.

path specifies the data path.

eventmask specifies the event mask; Table 12-3 lists the possibilities.

278

Chapter 12: Getting Started with the Video Library

 Table 12-3 lists and describes the VL event masks.

Table 12-3 VL Event Masks

Symbol Meaning

VLStreamBusyMask Stream is locked

VLStreamPreemptedMask Stream was grabbed by another application

VLAdvanceMissedMask Time was already reached

VLSyncLostMask Irregular or interrupted signal

VLSequenceLostMask Field or frame dropped

VLControlChangedMask A control has changed

VLControlRangeChangedMask A control range has changed

VLControlPreemptedMask Control of a node has been preempted, typically
by another user setting VL_LOCK on a path that
was previously set with VL_SHARE

VLControlAvailableMask Access is now available

VLTransferCompleteMask Transfer of field or frame complete

VLTransferFailedMask Error; transfer terminated; perform cleanup at
this point, including vlEndTransfer()

VLEvenVerticalRetraceMask Vertical retrace event, even field

VLOddVerticalRetraceMask Vertical retrace event, odd field

VLFrameVerticalRetraceMask Frame vertical retrace event

VLDeviceEventMask Device-specific event, such as a trigger on a
Galileo Video device

VLDefaultSourceMask Default source changed

Setting Parameters for Data Transfer to or from Memory

279

For example:

vlSelectEvents(svr, path, VLTransferCompleteMask);

Event masks can be ORed together. For example:

vlSelectEvents(svr, path, VLTransferCompleteMask |
VLTransferFailedMask);

Setting Parameters for Data Transfer to or from Memory

Transferring data to or from memory requires creating a ring buffer; its size
is determined by the size of the frame data you are transferring.

To set frame data size and to convert from one video format to another, apply
controls to the nodes. The use of source node and drain node controls is
explained separately in this section.

Note: All controls are available for all platforms unless otherwise noted. The
reference “Galileo Video” includes Indigo2 Video and Indy Video, unless
otherwise noted.

280

Chapter 12: Getting Started with the Video Library

Setting Source Node Controls for Data Transfer

Important data transfer controls for source nodes are summarized in
Table 12-4. They should be set in the order in which they appear in the table.

The use of VL_MUXSWITCH and VL_TIMING is explained in further detail
in the following sections.

Table 12-4 Data Transfer Controls for Source Nodes

Control Values Basic Usage

VL_MUXSWITCH See Table 12-5 Determines physical input for
path

VL_TIMING Default: timing produce
 by active signal

VL_TIMING_525_SQ_PIX
VL_TIMING_625_SQ_PIX

VL_TIMING_525_CCIR601
VL_TIMING_625_CCIR601

VL_TIMING_525_4FSC
VL_TIMING_625_4FSC

Set or get video timing

For Betacam, MII, composite
tape formats:
Analog: 12.27 MHz, 646 x 486
Analog: 14.75 MHz, 768 x 576

For D1 tape formats:
Digital component:
13.50 MHz, 720 x 486
Digital component:
13.50 MHz, 720 x 576

For D2 tape formats:
4X NTSC subcarrier:
14.32 MHz, 768 x 486
4X PAL subcarrier:
17.72 MHz, 948 x 576

VL_SIZE Coordinates Set or get active unmodified
video area

VL_SYNC_SOURCE Galileo Video:
Composite 1: set 0
Composite 2: set 1
Composite 3: set 2

Indigo2 Video and Indy
Video:
Composite 1: set 0
Composite 2: set 2

Not applicable to VINO

Setting Parameters for Data Transfer to or from Memory

281

Using VL_MUXSWITCH

Use VL_MUXSWITCH to switch between physical inputs on a single path.
Table 12-5 summarizes values for VL_MUXSWITCH, which vary,
depending on the platform.

For Indy Video, the default source depends on which input is active; that is,
which input has equipment that is both plugged in and powered on. In other
words, the VL assumes that you want to use the piece of equipment that is
plugged in and powered on, without you having to tell it so. If the S-Video
input is active, it is the default. If the composite input is active, it is the
default. If both S-Video and composite equipment are inactive and the
IndyCam is active (plugged in), the IndyCam is the default. Composite
becomes the default video in two cases: if it is active or if all other inputs are
inactive.

Table 12-5 VL_MUXSWITCH Values

Platform Values

Galileo Video S-Video input 1: set 0; input 2: set 1; input 3: set 2
Composite input 1: set 3; input 2: set 4; input 3: set 5
Y/R-Y/B-Y input 1: set 6; input 2: set 7

Indigo2 Video and Indy Video Y/C (RCA jacks): set 0
Y/C (S-Video connector): set 1
Composite input 1: set 3; input 2: set 5

VINO Node VL_VINO_SRC_DV_IN:
VL_VINO_INDYCAM
VL_VINO_CCIR601

Node VL_VINO_SRC_AV_IN:
VL_VINO_COMPOSITE
VL_VINO_SVIDEO

282

Chapter 12: Getting Started with the Video Library

You can control the default by unplugging or plugging in equipment and/
or turning equipment power on or off. For example:

• set S-Video active by switching on the equipment plugged into the S-
Video input

• set composite active by switching off the equipment plugged into the S-
Video input

Of course, you can change the settings—this just gives you an idea of what
default to expect. If equipment is plugged in to all the inputs, the default
VINO input is established by the precedence listed in top-down order in
Table 12-6.

Table 12-6 Default Sources for VINO Inputs

Input S-Video Composite IndyCam

S-Video Active N/A N/A

Composite Inactive Active N/A

IndyCam Inactive Inactive Active

Composite Inactive Inactive Inactive

Setting Parameters for Data Transfer to or from Memory

283

Using VL_TIMING

Table 12-7 summarizes VL_TIMING choices for combinations of nodes and
mux switches for VINO.

Timing type expresses the timing of video presented to a source or drain.
Table 12-8 summarizes dimensions for VL_TIMING.

Table 12-7 VINO Timing Choices

Node Value VL_MUXSWITCH Value Timing Choices

VL_VINO_SRC_DV_IN VL_VINO_INDYCAM

VL_VINO_CCIR601

VL_TIMING_525_SQ_PIX (NTSC)

VL_TIMING_525_SQ_PIX (NTSC)
VL_TIMING_625_SQ_PIX (PAL)
VL_TIMING_525_CCIR601(digital NTSC)
VL_TIMING_625_CCIR601 (digital PAL)

VL_VINO_SRC_AV_IN VL_VINO_COMPOSITE

VL_VINO_SVIDEO

VL_TIMING_525_SQ_PIX (NTSC)
VL_TIMING_625_SQ_PIX (PAL)

VL_TIMING_525_SQ_PIX (NTSC)
VL_TIMING_625_SQ_PIX (PAL)

Table 12-8 Dimensions for Timing Choices

Timing
Maximum
Width

Maximum
Height

First
Active
Line
(Offset=0)

VL_TIMING_525_SQ_PIX (12.27 MHz) 640 480 22

VL_TIMING_625_SQ_PIX (14.75 MHz) 768 576 32

VL_TIMING_525_CCIR601 (13.50 MHz) 720 480 1

VL_TIMING_625_CCIR601(13.50 MHz) 720 576 1

VL_TIMING_525_SQ_PIX (12.27 MHz)
(with input VL_VINO_INDYCAM)

640 480 2

284

Chapter 12: Getting Started with the Video Library

Setting Drain Node Controls for Data Transfer

Important data transfer controls for drain nodes are summarized in Table 12-
9. They should be set in the order in which they appear in the table.

Table 12-9 Data Transfer Controls for Drain Nodes

Control Basic Usage Video Nodes Memory Nodes Screen Nodes

VL_FORMAT Video format on the
physical connector

See “Using
VL_FORMAT”

VL_TIMING Video timing See Table 12-4
for values

Not applicable Not applicable

VL_CAP_TYPE Setting type of field(s) or
frame(s) to capture; see
“Interlacing” in Chapter 11

Not applicable VL_CAPTURE_NONINTERLEAVED
VL_CAPTURE_INTERLEAVED
VL_CAPTURE_EVEN_FIELDS
VL_CAPTURE_ODD_FIELDS

Not applicable

VL_PACKING Pixel packing (conversion)
format

Not applicable Changes pixel format of captured
data; see Table 12-10 for values

Not applicable

VL_ZOOM Decimation or zoom factor
(fraction)

Galileo Video:
1/1, 1/2, 1/3, 1/4, 1/5,
1/6, 1/7, 1/8, 2/1, 4/1

VINO:
1/1, 1/2, 1/3, 1/4, 1/5,
1/6, 1/7, 1/8

Not applicable Decimation or zoom: resizes data to
remain within limits

Decimation or zoom:
resizes data to remain
within limits

VL_SIZE Clipping size Full size of
video; read
only

Clipped size Clipped size

VL_OFFSET Position within larger area Position of
active region

Offset relative to video offset Pan within the video

VL_ORIGIN Position within video Not applicable Not applicable Screen position of first
pixel displayed; not
applicable to VINO

Setting Parameters for Data Transfer to or from Memory

285

These controls are highly interdependent, so the order in which they are set
is important. In most cases, the value being set takes precedence over other
values that were previously set. For all devices, VL_PACKING must be set
first. For VINO, set offset before size. Note that changes in one parameter
may change the values of other parameters set earlier; for example, clipped
size may change if VL_PACKING is set after VL_SIZE.

To determine default values, use vlGetControl() to query the values on the
video source or drain node before setting controls. The initial offset of the
video node is the first active line of video.

Similarly, the initial size value on the video source or drain node is the full
size of active video being captured by the hardware, beginning at the default
offset. Because some hardware can capture more than the size given by the
video node, this value should be treated as a default size.

For all these controls, it pays to track return codes. If the value returned is
VLValueOutOfRange, the value set will not be what you requested.

To specify the controls, use vlSetControl(), for which the function prototype
is:

int vlSetControl(VLServer vlServer, VLPath vlPath,
 VLNode node, VLControlType type,
 VLControlValue * value)

The use of VL_FORMAT, VL_PACKING, VL_ZOOM, VL_SIZE,
VL_OFFSET, VL_RATE, and VL_CAP_TYPE is explained in more detail in
the following sections.

VL_WINDOW Setting window ID for
video in a window

Not applicable Not applicable Window ID; not
applicable to VINO

VL_RATE Field or frame transfer
speed

Depends on
capture type as
specified by
VL_CAP_TYPE

Not applicable Not applicable

Table 12-9 (continued) Data Transfer Controls for Drain Nodes

Control Basic Usage Video Nodes Memory Nodes Screen Nodes

286

Chapter 12: Getting Started with the Video Library

Using VL_FORMAT

To specify video input and output formats of the video signal on the physical
connector, use VL_FORMAT. Each video platform has a video format native
to it; for example, YUV 4:2:2 is native to Galileo Video and RGB is native to
Sirius Video. The native format is always the fastest for that platform. To
discover the native format for your video platform, consult the release notes
or other documentation for the product.

Note: To convert formats, use VL_PACKING, which is explained in the next
section.

When VL_FORMAT is applied to a source or drain that is a VL_MEM
(memory) node, it selects the format of the video stored in memory. This may
imply a software conversion of the video data after the transfer is completed.

Values for VL_FORMAT for Galileo Video are:

• VL_FORMAT_RGB (output only)

• VL_FORMAT_BETACAM (input and output)

• VL_FORMAT_SMPTE_YUV (input and output)

Setting Parameters for Data Transfer to or from Memory

287

Using VL_PACKING

To convert a video output format to another in memory, use the control
VL_PACKING. Packing type expresses the packing in memory of the video
data at the source or drain.

Packing types are summarized in Table 12-10, which shows the most
significant byte on the left. An X means don’t care; this bit is not used.

Note: The packing names follow the naming conventions used by the IRIS
GL; other libraries such as the OpenGL may use different names.

For example:

VLControlValue val;

val.intVal = VL_PACKING_RGB;
vlSetControl(svr, path, memdrn, VL_PACKING, &val);

Table 12-10 Packing Types and Their Sizes and Formats

Type Size Format
MSB --LSB

VL_PACKING_RGB_332_P 8-bit word BBGGGRRR (four pixels packed into a 32-bit word)

VL_PACKING_RGBA_8 32-bit word AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR

VL_PACKING_RGB_8 24-bit word XXXXXXXX BBBBBBBB GGGGGGGG RRRRRRRR

VL_PACKING_Y_8_P 8-bit word YYYYYYYY (four pixels packed into a 32-bit word)

VL_PACKING_YVYU_422_8 32-bit word UUUUUUUU YYYYYYYY VVVVVVVV YYYYYYYY

288

Chapter 12: Getting Started with the Video Library

Using VL_ZOOM

VL_ZOOM controls the expansion or decimation of the video image. Values
greater than one expand the video; values less than one perform decimation.
Figure 12-4 illustrates zooming and decimation.

Figure 12-4 Zoom and Decimation

Note: Zooming, that is, VL_ZOOM values greater than one, is not supported
on VINO.

VL_ZOOM takes a nonzero fraction as its argument; do not use negative
values. For example, this fragment captures half-size decimation video to
memory:

val.fractVal.numerator = 1;
val.fractVal.denominator = 2;
if (vlSetControl(server, memory_path, memory_drain_node,
VL_ZOOM, &val)){
 vlPerror("Unable to set zoom");
 exit(1);
}

Caution: Not all video devices support all aspects of zooming. If you use a
control on a video device that does not support it, a VLValueOutOfRange
error is returned. Use vlGetControl() to show what your results were.

Zoom

Decimation

Original image factor: 2/1

factor: 1/2

Setting Parameters for Data Transfer to or from Memory

289

Note: For a source, zooming takes place before blending; for a drain,
blending takes place before zooming.

This fragment captures half-size decimation video to memory, with clipping
to 320 × 240 (NTSC size minus overscan).

val.fractVal.numerator = 1;
val.fractVal.denominator = 2;
if (vlSetControl(server, memory_path, memory_drain_node,

VL_ZOOM, &val))
{
 vlPerror("Unable to set zoom");
 exit(1);
}
val.xyVal.x = 320;
val.xyVal.y = 240;
if (vlSetControl(server, memory_path, memory_drain_node,

VL_SIZE, &val))
{
 vlPerror("Unable to set size");
 exit(1);
}

This fragment captures xsize × ysize video with as much decimation as
possible, assuming the size is smaller than the video stream.

if (vlGetControl(server, memory_path, video_source, VL_SIZE,
&val))
{
 vlPerror("Unable to get size");
 exit(1);
}
if (val.xyVal.x/xsize < val.xyVal.y/ysize)
 zoom_denom = (val.xyVal.x + xsize - 1)/xsize;
else
 zoom_denom = (val.xyVal.y + ysize - 1)/ysize;
val.fractVal.numerator = 1;
val.fractVal.denominator = zoom_denom;
if (vlSetControl(server, memory_path, memory_drain_node,
VL_ZOOM,

&val))
{
 /* allow this error to fall through */
 vlPerror("Unable to set zoom");
}

290

Chapter 12: Getting Started with the Video Library

val.xyVal.x = xsize;
val.xyVal.y = ysize;
if (vlSetControl(server, memory_path, memory_drain_node,
VL_SIZE,

&val))
{
 vlPerror("Unable to set size");
 exit(1);
}

Using VL_SIZE

VL_SIZE controls how much of the image sent to the drain is used, that is,
how much clipping takes place. This control operates on the zoomed image;
for example, when the image is zoomed to half size, the limits on the size
control change by a factor of 2. Figure 12-5 illustrates clipping.

Figure 12-5 Clipping an Image

Clipping a zoomed image

Clipping an unzoomed image

Image to fit into this space

Placement of clipping area
depends on the value of VL_OFFSET

Original image

Setting Parameters for Data Transfer to or from Memory

291

For example, to display PAL video in a 320 × 240 space, clip the image to that
size, as shown in the following fragment:

VLControlValue value;
value.xyval.x=320;
value.xyval.y=240;
vlSetControl(svr, path, drn, VL_SIZE, &value);

Note: Because this control is device-dependent and interacts with other
controls, always check the error returns. For example, if offset is set before
size and an error is returned, set size before offset.

Using VL_OFFSET

VL_OFFSET puts the upper left corner of the video data at a specific
position; it sets the beginning position for the clipping performed by
VL_SIZE. The values you enter are relative to the origin.

VL_OFFSET operates on the unzoomed image; it does not change if the
zoom factor is changed.

This example places the data ten pixels down and ten pixels in from the left:

VLControlValue value;
value.xyval.x=10;
value.xyval.y=10;
vlSetControl(svr, path, drn, VL_OFFSET, &value);

To capture the blanking region, set offset to a negative value.

292

Chapter 12: Getting Started with the Video Library

Using VL_RATE and VL_CAP_TYPE

VL_RATE determines the data transfer rate by field or frame, depending on
the capture type as specified by VL_CAP_TYPE, as shown in Table 12-11.

Figure 12-6 shows the relationships between the source and drain zoom,
size, offset, and origin.

Figure 12-6 Zoom, Size, Offset, and Origin

Table 12-11 VL_RATE Values (Items per Second)

VL_CAP_TYPE Value VL_RATE Value

VL_CAPTURE_NONINTERLEAVED
only

NTSC: 10, 12, 20, 24, 30, 36, 40, 48, 50, 60

PAL: 5, 10, 15, 20, 25

VL_CAPTURE_INTERLEAVED,
VL_CAPTURE_EVEN_FIELDS, and
VL_CAPTURE_ODD_FIELDS

NTSC: 5, 6, 10, 12, 15, 18, 20, 24, 25, 30

PAL: 10, 20, 30, 40, 50

VL_SIZE

VL_ORIGIN (VL_DRN=SCR only)

VL_ZOOM

VL_OFFSET

Subset of video source:
zoomed portion (zoom factor)

VL_SIZE

VL_OFFSET

Source

Drain

Displaying Video Data Onscreen

293

Displaying Video Data Onscreen

To set up a window for live video on Galileo Video, Indigo2 Video, or Indy
Video, follow these steps, as outlined in the example program simplev2s.c.

Note: This information does not apply to VINO. Because the video resident
in the Indy workstation has no screen node, use the memory node. Capture
the video and use the lrectwrite() function or the analogous X or OpenGL
function.

1. Open an X display window; for example:

if (!(dpy = XOpenDisplay("")))
 exit(1);

2. Connect to the video daemon; for example:

 if (!(svr = vlOpenVideo("")))
 exit(1);

3. Create a window to show the video; for example:

vwin = XCreateSimpleWindow(dpy, RootWindow(dpy, 0), 10,
 10, 640, 480, 0,
 BlackPixel(dpy,DefaultScreen(dpy)),
 BlackPixel(dpy, DefaultScreen(dpy));
XMapWindow(dpy, vwin);
XFlush(dpy);

4. Create a source node on a video device and a drain node on the screen;
for example:

src = vlGetNode(svr, VL_SRC, VL_VIDEO, VL_ANY);
drn = vlGetNode(svr, VL_DRN, VL_SCREEN, VL_ANY);

5. Create a path on the first device that supports it; for example:

if((path = vlCreatePath(svr, VL_ANY, src, drn)) < 0)
 exit(1);

6. Set up the hardware for the path and define the path usage; for
example:

vlSetupPaths(svr, (VLPathList)&path, 1, VL_SHARE,
 VL_SHARE);

7. Set the X window to be the drain; for example:

val.intVal = vwin;
vlSetControl(svr, path, drn, VL_WINDOW, &val);

294

Chapter 12: Getting Started with the Video Library

8. Get X and VL into the same coordinate system; for example:

XTranslateCoordinates(dpy, vwin, RootWindow(dpy,
DefaultScreen(dpy)), 0, 0,&x, &y, &dummyWin);

9. Set the live video to the same location and size as the window; for
example:

val.xyVal.x = x;
val.xyVal.y = y;
vlSetControl(svr, path, drn, VL_ORIGIN, &val);
XGetGeometry(dpy, vwin, &dummyWin, &x, &y, &w, &h, &bw,
&d);
val.xyVal.x = w;
val.xyVal.y = h;
vlSetControl(svr, path, drn, VL_SIZE, &val);

10. Begin the data transfer:

vlBeginTransfer(svr, path, 0, NULL);

11. Wait until the user finishes; for example:

printf("Press return to exit.\n");
c = getc(stdin);

12. End the data transfer, clean up, and exit:

vlEndTransfer(svr, path);
vlDestroyPath(svr, path);
vlCloseVideo(svr);

Transferring Video Data to and from Devices

The processes for data transfer are:

• creating a buffer for the frames (transfers involving memory)

• registering the ring buffer with the path (transfers involving memory)

• starting data transfer

• reading data from the buffer (transfers involving memory)

Each process is explained separately.

Transferring Video Data to and from Devices

295

Creating a Buffer for the Frames

Once you have specified frame parameters in a transfer involving memory
(or have determined to use the defaults), create a buffer for the frames.

Like other libraries in the IRIS digital media development environment, the
VL uses ring buffers. Ring buffers provide a way to read and write varying
sizes of frames of data. A frame of data consists of the actual frame data and
an information structure describing the underlying data, including device-
specific information.

When a ring buffer is created, constraints are specified that control the total
size of the data segment and the number of information buffers to allocate.

A head and a tail flag are automatically set in a ring buffer so that the latest
frame can be accessed. A sector is locked down if it is not called; that is, it
remains locked until it is read. When the ring buffer is written to and all
sectors are occupied, data transfer stops. The sector last written to remains
locked down until it is released.

The ring buffer can accommodate data of varying size. You can specify a ring
buffer at a fixed size or can determine the size of the data in the buffer.

To determine frame data size, use vlGetTransferSize(). Its function
prototype is:

long vlGetTransferSize(VLServer svr, VLPath path)

For example:

transfersize = vlGetTransferSize(svr, path);

where transfersize is the size of the data in bytes.

To create a ring buffer for the frame data, use vlCreateBuffer(). Its function
prototype is:

VLBuffer vlCreateBuffer(VLServer vlServer, VLPath path,
 VLNode node, int numFrames)

where:

VLBuffer is the handle of the buffer to be created

296

Chapter 12: Getting Started with the Video Library

vlServer names the server to which the path is connected

path specifies the data path

node specifies the memory node containing data to transfer to or
from the ring buffer

numFrames specifies the number of frames in the buffer

For example:

buf = vlCreateBuffer(svr, path, src, 1);

Registering the Ring Buffer

Use vlRegisterBuffer() to register the ring buffer with the data path. Its
function prototype is:

int vlRegisterBuffer(VLServer vlServer, VLPath path,
 VLNode memnodeid, VLBuffer buffer)

where:

vlServer names the server to which the path is connected

path specifies the data path

memnodeid specifies the memory node ID

buffer specifies the ring buffer handle

For example:

vlRegisterBuffer(svr, path, drn, Buffer);

Starting Data Transfer

To begin data transfer, use vlBeginTransfer(). Its function prototype is:

int vlBeginTransfer(VLServer vlServer, VLPath path,
 int count, VLTransferDescriptor* xferDesc)

where:

vlServer names the server to which the path is connected

Transferring Video Data to and from Devices

297

path specifies the data path

count specifies the number of transfer descriptors

Tailor the data transfer by means of transfer descriptors. This example
fragment transfers the entire contents of the buffer immediately.

xferDesc.mode = VL_TRANSFER_MODE_DISCRETE;
xferDesc.count = imageCount;
xferDesc.delay = 0;
xferDesc.trigger = VLTriggerImmediate;

The transfer descriptors are:

xferDesc.mode Transfer method:

• VL_TRANSFER_MODE_DISCRETE: a specified
number of frames are transferred (burst mode)

• VL_TRANSFER_MODE_CONTINUOUS (default):
frames are transferred continuously, beginning
immediately or after a trigger event occurs (such as a
frame coincidence pulse), and continues until transfer
is terminated with vlEndTransfer()

• VL_TRANSFER_MODE_AUTOTRIGGER: frame
transfer takes place each time a trigger event occurs;
this mode is a repeating version of
VL_TRANSFER_MODE_DISCRETE

xferDesc.count Number of frames to transfer; if mode is
VL_TRANSFER_MODE_CONTINUOUS, this value is
ignored

xferDesc.delay Number of frames from the trigger at which data transfer
begins

xferDesc.trigger Set of events to trigger on; an event mask. This transfer
descriptor is always required. VLTriggerImmediate
specifies that transfer begins immediately, with no pause for
a trigger event

298

Chapter 12: Getting Started with the Video Library

This fragment shows the default descriptor, which is the same as passing in
a null for the descriptor pointer. Transfer begins immediately; count is
ignored.

xferDesc.mode = VL_TRANSFER_MODE_CONTINUOUS;
xferDesc.count = 0;
xferDesc.delay = 0;
xferDesc.trigger = VLTriggerImmediate;

Reading Data from the Buffer

If your application uses a buffer, use various VL calls for reading frames,
getting pointers to active buffers, freeing buffers, and other operations.
Table 12-12 lists the buffer-related calls.

Table 12-12 Buffer-Related Calls

Call Purpose

vlGetNextValid() Returns a handle on the next valid frame of data

vlGetLatestValid() Reads only the most current frame in the buffer, discarding the
rest

vlPutValid() Puts a frame into the valid list (memory to video)

vlPutFree() Puts a valid frame back into the free list (video to memory)

vlGetNextFree() Gets a free buffer into which to write data (memory to video)

vlBufferDone() Informs you if the buffer has been vacated

vlBufferReset() Resets the buffer so that it can be used again

Transferring Video Data to and from Devices

299

Figure 12-7 illustrates the difference between vlGetNextValid() and
vlGetLatestValid(), and their interaction with vlPutFree().

Figure 12-7 vlGetNextValid(), vlGetLatestValid(), and vlPutFree()

Table 12-13 lists the calls that extract information from a buffer.

Caution: None of these calls has count or block arguments; appropriate
calls in the application must deal with a NULL return in cases of no data
being returned.

Table 12-13 Calls for Extracting Data from a Buffer

Call Purpose

vlGetActiveRegion() Gets a pointer to the data region of the buffer (video to
memory); called after vlGetNextValid() and
vlGetLatestValid()

vlGetDMediaInfo() Gets a pointer to the DMediaInfo structure associated with
a frame; this structure contains timestamp and field count
information

vlGetImageInfo() Gets a pointer to the DMImageInfo structure associated
with a frame; this structure contains image size information

vlGetNextValid() vlGetLatestValid()

Starting buffer and
pointer status

Call

get data from here

Result

get data from here

clear sector

300

Chapter 12: Getting Started with the Video Library

In summary, for video-to-memory transfer use:

buffer = vlCreateBuffer(svr, path, memnode1);
vlRegisterBuffer(svr, path, memnode1, buffer);
vlBeginTransfer(svr, path, 0, NULL);
info = vlGetNextValid(svr, buffer);
/* OR vlGetLatestValid(svr, buffer); */
dataptr = vlGetActiveRegion(svr, buffer, info);

/* use data for application */
…
vlPutFree(svr, buffer);

For memory-to-video transfer, use:

buffer = vlCreateBuffer(svr, path, memnode1);
vlRegisterBuffer(svr, path, memnode1, buffer);
vlBeginTransfer(svr, path, 0, NULL);
buffer = vlGetNextFree(svr, buffer, bufsize);
/* fill buffer with data */
…
vlPutValid(svr, buffer);

These calls are explained in separate sections.

Reading the Frames to Memory from the Buffer

Use vlGetNextValid() to read all the frames in the buffer or get a valid frame
of data. Its function prototype is:

VLInfoPtr vlGetNextValid(VLServer vlServer, VLBuffer
vlBuffer)

Use vlGetLatestValid() to read only the most current frame in the buffer,
discarding the rest. Its function prototype is:

VLInfoPtr vlGetLatestValid(VLServer vlServer, VLBuffer
vlBuffer)

After removing interesting data, return the buffer for use with vlPutFree()
(video to memory). Its function prototype is:

int vlPutFree(VLServer vlServer, VLBuffer vlBuffer)

Transferring Video Data to and from Devices

301

Sending Frames from Memory to Video

Use vlGetNextFree() to get a free buffer to which to write data. Its function
prototype is:

VLInfoPtr vlGetNextFree(VLServer vlServer,
 VLBuffer vlBuffer, int size)

After filling the buffer with the data you want to send to video output, use
vlPutValid() to put a frame into the valid list for output to video (memory to
video). Its function prototype is:

int vlPutValid(VLServer vlServer, VLBuffer vlBuffer)

Caution: These calls do not have count or block arguments; appropriate
calls in the application must deal with a NULL return in cases of no data
being returned.

Getting DMediaInfo and Image Data from the Buffer

Use vlGetActiveRegion() to get a pointer to the active buffer. Its function
prototype is:

void * vlGetActiveRegion(VLServer vlServer,
 VLBuffer vlBuffer, VLInfoPtr ptr)

Use vlGetDMediaInfo() to get a pointer to the DMediaInfo structure
associated with a frame. This structure contains timestamp and field count
information. The function prototype for this call is:

DMediaInfo * vlGetDMediaInfo(VLServer vlServer,
 VLBuffer vlBuffer, VLInfoPtr ptr)

Use vlGetImageInfo() to get a pointer to the DMImageInfo structure
associated with a frame. This structure contains image size information. The
function prototype for this call is:

DMImageInfo * vlGetImageInfo(VLServer vlServer,
 VLBuffer vlBuffer, VLInfoPtr ptr)

302

Chapter 12: Getting Started with the Video Library

Ending Data Transfer

To end data transfer, use vlEndTransfer(). Its function prototype is:

int vlEndTransfer(VLServer vlServer, VLPath path)

To accomplish the necessary cleanup to exit gracefully, use:

• for transfer involving memory: vlDeregisterBuffer(), vlDestroyPath(),
vlDestroyBuffer()

• for all transfers: vlCloseVideo()

The function prototype for vlDeregisterBuffer() is:

int vlDeregisterBuffer(VLServer vlServer, VLPath path,
 VLNode memnodeid, VLBuffer ringbufhandle)

where:

vlServer is the server handle

path is the path handle

memnodeid is the memory node ID

ringbufhandle is the ring buffer handle

The function prototypes for vlDestroyPath(), vlDestroyBuffer() and
vlCloseVideo() are, respectively:

int vlDestroyPath(VLServer vlServer, VLPath path)

int vlDestroyBuffer(VLServer vlServer, VLBuffer vlBuffer)

int vlCloseVideo(VLServer vlServer)

This example ends a data transfer that used a buffer:

vlEndTransfer(svr, path);
vlDeregisterBuffer(svr, path, memnodeid, buffer);
vlDestroyPath(svr, path);
vlDestroyBuffer(svr, buffer);
vlCloseVideo(svr);

VL Examples

303

VL Examples

The example code in this section illustrates:

• a simple screen application

• a video-to-memory frame grab

• a memory-to-video frame output

• a continuous frame capture

Source code for these programs is in /usr/people/4Dgifts/examples/dmedia/
video/vl.

Note: To simplify the code, these examples do not check returns. The
programmer should, however, always check returns.

304

Chapter 12: Getting Started with the Video Library

Simple Screen Application

Example 12-1 shows how to send live video to the screen (for systems that
have a video output port).

Example 12-1 Sending Live Video to the Screen: simplev2s.c

/*
 * File: simplev2s.c
 *
 * Usage: simplev2s
 *
 * Description: Simplev2s demonstrates live video to screen.
 * This application only runs on video hardware
 * that has a video output port. It will not run
 * on a VINO video board.
 *
 * Functions: SGI Video Library functions used
 *
 * vlOpenVideo()
 * vlGetNode()
 * vlCreatePath()
 * vlSetupPaths()
 * vlSetControl()
 * vlBeginTransfer()
 * vlEndTransfer()
 * vlDestroyPath()
 * vlCloseVideo()
 */
#include <stdlib.h>
#include <stdio.h>
#include <strings.h>
#include <X11/X.h>
#include <X11/Xlib.h>
#include <Xm/MwmUtil.h>
#include <X11/Xutil.h>
#include <vl/vl.h>

VL Examples

305

main(int argc, char **argv)
{
 VLServer svr;
 VLPath path;
 Display *dpy;
 Window vwin;
 VLNode src, drn;
 VLControlValue val;
 char *progname, *ptr;
 int x, y, c;
 uint w, h, bw, d;
 Window dummyWin;
 XSizeHints size_hints;
 XClassHint class_hints;

 /* get basename of argv */
 if ((ptr = strrchr(*argv, ’/’)) != NULL) progname = ++ptr;
 else progname = *argv;

 /* Open an X display */
 if (!(dpy = XOpenDisplay("")))
 exit(1);

 /* Connect to the video daemon */
 if (!(svr = vlOpenVideo("")))
 exit(1);

 /* Create a window to show the video */
 vwin = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy),
 10, 10, 640, 480, 0,
 BlackPixel(dpy, DefaultScreen(dpy)),
 BlackPixel(dpy, DefaultScreen(dpy)));

 /* Ignore window manager placement set the window to 10, 10 */
 size_hints.flags = USPosition;
 size_hints.x = 10;
 size_hints.y = 10;

 /* set class properties for 4Dwm desktop */
 class_hints.res_name = progname;
 class_hints.res_class = progname;
 XSetClassHint(dpy, vwin, &class_hints);
 XSetWMNormalHints(dpy, vwin, &size_hints);
 XMapWindow(dpy, vwin);
 XFlush(dpy);

306

Chapter 12: Getting Started with the Video Library

 /* Create a source node on a video device */
 src = vlGetNode(svr, VL_SRC, VL_VIDEO, VL_ANY);

 /* Create a drain node on the screen */
 drn = vlGetNode(svr, VL_DRN, VL_SCREEN, VL_ANY);

 /* Create a path on the first device that supports it */
 if((path = vlCreatePath(svr, VL_ANY, src, drn)) < 0)
 exit(1);

 /* Set up the hardware for and define the usage of the path */
 vlSetupPaths(svr, (VLPathList)&path, 1, VL_SHARE, VL_SHARE);

 /* Set the X window to be the drain */
 val.intVal = vwin;
 vlSetControl(svr, path, drn, VL_WINDOW, &val);

 /* Get X and VL into the same coordinate system */
 XTranslateCoordinates(dpy, vwin, DefaultRootWindow(dpy),
 0, 0,&x, &y, &dummyWin);

 /* Set the live video to the same location and size as the X window */
 val.xyVal.x = x;
 val.xyVal.y = y;
 vlSetControl(svr, path, drn, VL_ORIGIN, &val);

 XGetGeometry(dpy, vwin, &dummyWin, &x, &y, &w, &h, &bw, &d);
 val.xyVal.x = w;
 val.xyVal.y = h;
 vlSetControl(svr, path, drn, VL_SIZE, &val);

 /* Begin the data transfer */
 vlBeginTransfer(svr, path, 0, NULL);

 /* Wait until the user presses a key */
 printf("Press return to exit.\n");
 c = getc(stdin);

 /* End the data transfer */
 vlEndTransfer(svr, path);

 /* Clean up and exit */
 vlDestroyPath(svr, path);
 vlCloseVideo(svr);
}

VL Examples

307

Video-to-memory Frame Grab

Example 12-2 demonstrates video frame grabbing.

Example 12-2 Video Frame Grabbing: simplegrab.c

/*
 * File: simplegrab.c
 * Usage: simplegrab
 * Description: simplegrab grabs a video frame to memory and screen
 * Functions: IRIS Video Library functions used
 *
 * vlOpenVideo()
 * vlGetNode()
 * vlCreatePath()
 * vlSetupPaths()
 * vlSetControl()
 * vlCreateBuffer()
 * vlRegisterBuffer()
 * vlGetActiveRegion()
 * vlGetNextValid()
 * vlPutFree()
 * vlBeginTransfer()
 * vlEndTransfer()
 * vlDeregisterBuffer()
 * vlDestroyPath()
 * vlDestroyBuffer()
 * vlCloseVideo()
 * vlPerror()
 */
#include <stdlib.h>
#include <stdio.h>
#include <gl/gl.h>
#include <dmedia/vl.h>

char *_progName;

/* Report errors */
void
error_exit(void)
{
 vlPerror(_progName);
 exit(1);
}

308

Chapter 12: Getting Started with the Video Library

void
main(int argc, char **argv)
{
 VLServer svr;
 VLPath path;
 VLNode src, drn;
 VLControlValue val;
 VLBuffer buffer;
 VLInfoPtr info;
 char *dataPtr;
 int c;
 int xsize;
 int ysize;
 long win;

 _progName = argv[0];

 foreground();

 /* Connect to the daemon */
 if (!(svr = vlOpenVideo("")))
 error_exit();

 /* Set up a drain node in memory */
 drn = vlGetNode(svr, VL_DRN, VL_MEM, VL_ANY);

 /* Set up a source node on any video source */
 src = vlGetNode(svr, VL_SRC, VL_VIDEO, VL_ANY);

 /* Create a path using the first device that will support it */
 path = vlCreatePath(svr, VL_ANY, src, drn);

 /* Set up the hardware for and define the usage of the path */
 if ((vlSetupPaths(svr, (VLPathList)&path, 1,
 VL_SHARE, VL_SHARE)) < 0)
 error_exit();

 /* Set the packing to RGB */
 val.intVal = VL_PACKING_RGB_8;
 vlSetControl(svr, path, drn, VL_PACKING, &val);

 /* Get the video size */
 vlGetControl(svr, path, drn, VL_SIZE, &val);
 xsize = val.xyVal.x;
 ysize = val.xyVal.y;

VL Examples

309

 /* Set up and open a GL window to display the data */
 prefsize(xsize,ysize);
 win = winopen("Simplegrab Window");
 RGBmode();
 pixmode(PM_TTOB, 1);
 gconfig();

 /* Create and register a buffer for 1 frame */
 buffer = vlCreateBuffer(svr, path, drn, 1);
 if (buffer == NULL)
 error_exit();
 vlRegisterBuffer(svr, path, drn, buffer);

 /* Begin the data transfer */
 if (vlBeginTransfer(svr, path, 0, NULL))
 error_exit();

 /* Wait for a frame */
 do {
 info = vlGetNextValid(svr, buffer);
 } while (!info);

 /* Get a pointer to the frame */
 dataPtr = vlGetActiveRegion(svr, buffer, info);

 /* Write the data to the screen */
 lrectwrite(0,0, xsize-1, ysize-1, (ulong *)dataPtr);

 /* Finished with frame, unlock the buffer */
 vlPutFree(svr, buffer);

 /* End the data transfer */
 vlEndTransfer(svr, path);

 /* Wait until the user presses a key */
 printf("Press <Enter> to exit: ");
 c = getc(stdin);

 /* Cleanup before exiting */
 vlDeregisterBuffer(svr, path, drn, buffer);
 vlDestroyBuffer(svr, buffer);
 vlDestroyPath(svr, path);
 vlCloseVideo(svr);
}

310

Chapter 12: Getting Started with the Video Library

Memory-to-video Frame Output

Example 12-3 sends a frame to the video output (for systems that have a
video output port).

Example 12-3 Frame Output: simplem2v.c

/*
 * Files: simplem2v.c
 *
 * Usage: simplem2v <filename>
 *
 * Description: Simplem2v sends a frame of image data from memory
 * to the video output. Image data must be in YUV422
 * format. Images in this format may be generated by
 * running the vidtomem application with the -r option
 * on an Indy Video board.
 * Simplem2v only runs on video hardware that has a
 * video output port. It will not run on a VINO video
 * board.
 *
 *
 * Functions: SGI Video Library functions used
 *
 * vlOpenVideo()
 * vlGetNode()
 * vlCreatePath()
 * vlSetupPaths()
 * vlRegisterBuffer()
 * vlCreateBuffer()
 * vlGetTransferSize()
 * vlGetNextFree()
 * vlGetActiveRegion()
 * vlBufferDone()
 * vlBeginTransfer()
 * vlEndTransfer()
 * vlDeregisterBuffer()
 * vlDestroyBuffer()
 * vlDestroyPath()
 * vlCloseVideo()
 * vlGetErrno()
 * vlPerror()
 * vlStrError()
 */

VL Examples

311

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/errno.h>
#include <dmedia/vl.h>

#define MIN(x,y) ((x>y)?y:x)

extern int errno;
main(int argc, char **argv)
{
 VLServer svr;
 VLPath MEMtoVIDPath;
 VLNode src, drn;
 VLBuffer buf;
 VLInfoPtr info;
 struct stat status_buffer;
 char *dataPtr;
 ulong transferSize;
 int ret, fd;
 int c;
 char *_progName;
 char *fileName;

 _progName = argv[0];

 if (argc != 2)
 {
 fprintf(stderr,"%s <filename>\n", _progName);
 exit(1);
 }

 fileName = argv[1];

 /* Connect to the daemon */
 if (!(svr = vlOpenVideo("")))
 {
 fprintf(stderr,"%s: can’t open video: %s\n", _progName,
 vlStrError(vlGetErrno()));
 exit(1);
 }

312

Chapter 12: Getting Started with the Video Library

 /* Set up a source node in memory */
 src = vlGetNode(svr, VL_SRC, VL_MEM, VL_ANY);
 /* Set up a video drain node on the first device that has one */
 drn = vlGetNode(svr, VL_DRN, VL_VIDEO, VL_ANY);

 /* Create a path using the selected devices */
 MEMtoVIDPath = vlCreatePath(svr, VL_ANY, src, drn);

 /* Set up the hardware for and define the usage of the path */
 if (vlSetupPaths(svr, (VLPathList)&MEMtoVIDPath, 1, VL_SHARE, VL_SHARE)<0)
 {
 fprintf(stderr,"%s: can’t setup path: %s\n", _progName,
 vlStrError(vlGetErrno()));
 exit(1);
 }

 /* Find out what size this path supports */
 transferSize = vlGetTransferSize(svr,MEMtoVIDPath);

 /* Create a ring buffer for the data transfers */
 buf = vlCreateBuffer(svr, MEMtoVIDPath, src, 1);

 /* Associate the ring buffer with the path */
 vlRegisterBuffer(svr, MEMtoVIDPath, src, buf);

 /* Get the next free frame in the buffer, reserve it for data */
 do
 {
 info = vlGetNextFree(svr, buf, transferSize);
 } while (!info && !vlBufferDone(buf));

 /* Get a pointer to where the data will go */
 dataPtr = vlGetActiveRegion(svr, buf, info);

 /* Open raw YUV data file */
 fd = open(fileName, O_RDONLY);
 if (!fd)
 {
 fprintf(stderr,"%s: cannot open file %s.\n", _progName, fileName);
 exit(1);
 }

VL Examples

313

 /* Get the file’s size (image size of this data)*/
 if (fstat(fd,&status_buffer) == -1)
 {
 perror(fileName);
 exit(1);
 }
 /* Make sure the hardware supports this image size */
 if (status_buffer.st_size != transferSize)
 {
 fprintf(stderr,"%s: The image is not the right size for this device\n",
 _progName);
 exit(1);
 }

 /* Read in the data */
 ret = read(fd, dataPtr, transferSize);
 close(fd);

 /* Check the size of the data read in */
 if (ret != transferSize)
 {
 fprintf(stderr, "%s: Unable to read the image data\n", _progName);
 exit(1);
 }

 /* Put the data into the ring buffer */
 vlPutValid(svr, buf);

 /* Begin the data transfer */
 vlBeginTransfer(svr, MEMtoVIDPath, 0, NULL);

 /* Wait until user presses a key */
 printf("Hit return to exit.\n");
 c = getc(stdin);

 /* End the data transfer */
 vlEndTransfer(svr, MEMtoVIDPath);

 /* Clean up and exit */
 vlDeregisterBuffer(svr, MEMtoVIDPath, src, buf);
 vlDestroyPath(svr, MEMtoVIDPath);
 vlDestroyBuffer(svr, buf);
 vlCloseVideo(svr);
}

314

Chapter 12: Getting Started with the Video Library

Continuous Frame Capture

Example 12-4 demonstrates continuous frame capture.

Example 12-4 Continuous Frame Capture: simplecapt.c

/*==================A Simple Continuous Capture Application==========
 *
 *
 * File: simpleccapt.c
 *
 * Usage: simpleccapt
 *
 * Description: simpleccapt captures a stream of video to memory
 *
 * Functions: IRIS Video Library functions used
 *
 * vlOpenVideo()
 * vlGetNode()
 * vlCreatePath()
 * vlSetupPaths()
 * vlSetControl()
 * vlCreateBuffer()
 * vlRegisterBuffer()
 * vlGetActiveRegion()
 * vlGetNextValid()
 * vlPutFree()
 * vlBeginTransfer()
 * vlEndTransfer()
 * vlDeregisterBuffer()
 * vlDestroyPath()
 * vlDestroyBuffer()
 * vlCloseVideo()
 * vlPerror()
 */
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <gl/gl.h>
#include <dmedia/vl.h>

char *_progName;

VL Examples

315

/* Report errors */
void
error_exit(void)
{
 vlPerror(_progName);
 exit(1);
}

void
main(int argc, char **argv)
{
 VLServer svr;
 VLPath path;
 VLNode src, drn;
 VLControlValue val;
 VLBuffer buffer;
 VLInfoPtr info;
 char *dataPtr;
 int c;
 int xsize;
 int ysize;
 long win;

 _progName = argv[0];

 foreground();
 /* Connect to the daemon */
 if (!(svr = vlOpenVideo("")))
 error_exit();

 /* Set up a drain node in memory */
 drn = vlGetNode(svr, VL_DRN, VL_MEM, VL_ANY);

 /* Set up a source node on any video source */
 src = vlGetNode(svr, VL_SRC, VL_VIDEO, VL_ANY);

 /* Create a path using the first device that will support it */
 path = vlCreatePath(svr, VL_ANY, src, drn);

 /* Set up the hardware for and define the usage of the path */
 if ((vlSetupPaths(svr, (VLPathList)&path, 1, VL_SHARE, VL_SHARE)) < 0)
 error_exit();

316

Chapter 12: Getting Started with the Video Library

 /* Set the packing to RGB */
 val.intVal = VL_PACKING_RGB_8;
 vlSetControl(svr, path, drn, VL_PACKING, &val);

 /* Get the video size */
 vlGetControl(svr, path, drn, VL_SIZE, &val);
 xsize = val.xyVal.x;
 ysize = val.xyVal.y;

 /* Set up and open a GL window to display the data */
 prefsize(xsize,ysize);
 win = winopen("Simpleccapt Window");
 RGBmode();
 pixmode(PM_TTOB, 1);
 gconfig();

 /* Create and register a buffer for 1 frame */
 buffer = vlCreateBuffer(svr, path, drn, 1);
 if (buffer == NULL)
 error_exit();
 vlRegisterBuffer(svr, path, drn, buffer);

 /* Begin the data transfer */
 if (vlBeginTransfer(svr, path, 0, NULL))
 error_exit();

 printf("Type <control-c> to exit.\n");

 for(;;) {
 do {
 sginap(1); /* wait a tick */
 info = vlGetNextValid(svr, buffer);
 } while (!info);

 /* Get a pointer to the frame */
 dataPtr = vlGetActiveRegion(svr, buffer, info);

 /* Write the data to the screen */
 lrectwrite(0,0, xsize-1, ysize-1, (ulong *)dataPtr);

 /* Finished with frame, unlock the buffer */
 vlPutFree(svr, buffer);
 }

VL Examples

317

 /* End the data transfer */
 vlEndTransfer(svr, path);

 /* Cleanup before exiting */
 vlDeregisterBuffer(svr, path, drn, buffer);
 vlDestroyBuffer(svr, buffer);
 vlDestroyPath(svr, path);
 vlCloseVideo(svr);
}

318

Chapter 12: Getting Started with the Video Library

This chapter explains how to use the
VL controls to set and adjust video
parameters.

Using VL Controls

Chapter 13

321

Chapter 13

13. Using VL Controls

VL controls enable you to:

• specify data transfer parameters, such as the frame rate or count

• specify the capture region and decimation, or output window

• specify video format and timing

• adjust signal parameters, such as hue, brightness, vertical sync,
horizontal sync

• specify sync source

Topics in this chapter include:

• VL Control Type and Values

• VL Control Fraction Ranges

• VL Control Classes

• VL Control Groupings

• Galileo Video Controls

• VINO Controls

Device-independent controls are documented in /usr/include/dmedia/vl.h.
Device-dependent controls are documented in the respective header files for
the devices: dmedia/vl_vino.h (VINO), dmedia/vl_ev1.h (Galileo Video), and
dmedia/vl_sv1.h (Sirius Video).

322

Chapter 13: Using VL Controls

Table 13-1 lists device-independent VL controls alphabetically, along with
their values or ranges. See the Sirius Video Owner’s and Programming Guide for
Sirius Video controls.

Note: All controls are available for all platforms unless otherwise noted. The
reference “Galileo Video” includes Indigo2 Video and Indy Video, unless
otherwise noted.

Table 13-1 Device-Independent VL Controls

Control Sets VINO Indigo2 Video
and Indy
Video

Galileo
Video

VL_BLEND_A Input source for foreground
(channel A) image

N/A VLNode type derived from vlGetNode();
must be one of the source nodes

VL_BLEND_B Input source for
background (channel B)
image

N/A VLNode type derived from vlGetNode();
must be one of the source nodes

VL_BLEND_A_ALPHA Input source for foreground
(channel A) alpha

N/A N/A N/A

VL_BLEND_B_ALPHA Input source for
background (channel B)
alpha

VLNode type derived from vlGetNode(); must be one of the source
nodes

VL_BLEND_A_FCN Blend function that controls
mixing of foreground
(channel A) signals

N/A VL_BLDFCN_ZERO
VL_BLDFCN_ONE
VL_BLDFCN_A_ALPHA:
(foreground alpha)/255
VL_BLDFCN_MINUS_A_ALPHA:
1 - ((foreground alpha) / 255)

VL_BLEND_B_FCN Blend function that controls
mixing of background
(channel B) signals

N/A VL_BLDFCN_ZERO
VL_BLDFCN_ONE
VL_BLDFCN_B_ALPHA:
(background alpha)/255
VL_BLDFCN_MINUS_B_ALPHA:
1 - ((background alpha) / 255)

VL_BLEND_A_NORMALIZE Follows Porter-Duff model
(background (channel A)
pixels premultiplied by
their corresponding alphas
before blending)

N/A N/A N/A

323

VL_BLEND_B_NORMALIZE Premultiplies foreground
(channel B) by alpha

N/A 0 = off
1 = on

0 = off
1 = on

VL_BLEND_OUT_NORMALIZE Scaled output from blender N/A N/A N/A

VL_BRIGHTNESS Brightness N/A N/A N/A

VL_CAP_TYPE Type of frame(s) or field(s)
to capture; see “Interlacing”
in Chapter 11

VL_CAPTURE_NONINTERLEAVED
VL_CAPTURE_INTERLEAVED
VL_CAPTURE_EVEN_FIELDS
VL_CAPTURE_ODD_FIELDS

VL_CONTRAST N/A N/A N/A

VL_DEFAULT_SOURCE Default source for the video
path

VL_VINO_SRC_DV_IN
VL_VINO_SRC_AV_IN

If either VINO analog
channel is active when
the first video
application starts, the
default is analog;
otherwise, the default is
digital (corresponding to
the IndyCam).

Analog: set 0
Digital 1: set 1
Digital 2: set 2
Indigo2 Video, Indy Video:
Analog only: set 0

VL_FORMAT Video format N/A VL_FORMAT_RGB
(output only)
VL_FORMAT_BETACAM
(input and output)
VL_FORMAT_SMPTE_YUV
 (input and output)

VL_FREEZE Data transfer freeze;
suspends transfer at the
memory drain node, with
no picture regeneration

0 = off
1 = on

0 = off
1 = on

0 = off
1 = on

VL_H_PHASE Horizontal phase N/A Integer
VL_EV1_H_PHASE

VL_HUE Hue; the control panel vcp
does numerator and
denominator calculations

(-180,178 19/32) in steps of 1 13/32 degrees

Table 13-1 (continued) Device-Independent VL Controls

Control Sets VINO Indigo2 Video
and Indy
Video

Galileo
Video

324

Chapter 13: Using VL Controls

VL_MUXSWITCH Switch between inputs on a
single path, corresponding
to the physical connector to
the option

Analog node
VL_VINO_SRC_AV_I
VL_VINO_COMPOSITE
VL_VINO_SVIDEO

Digital node
VL_VINO_SRC_DV_IN:
VL_VINO_INDYCAM
VL_VINO_CCIR601

Y/C (RCA
jacks)
set 0

Y/C (S-Video
connector):
set 1

Composite
input 1: set 3;
input 2: set 5

S-Video
input 1: set 0
input 2: set 1
input 3: set 2

Composite
input 1: set 3
input 2: set 4;
input 3: set 5

Y/R–Y/B–Y
input 1: set 6
input 2: set 7

VL_OFFSET On VL_VIDEO nodes, the
offset to the active region of
the video; on all other
nodes, the offset within the
video

Because the default is 0,0,
use negative values to get
blanking data

Coordinates; default is 0,0

VL_ORIGIN Upper left corner of image
in drain (usually a
window); the offset within
the node;

N/A Coordinates; default is 0,0

Table 13-1 (continued) Device-Independent VL Controls

Control Sets VINO Indigo2 Video
and Indy
Video

Galileo
Video

325

VL_PACKING Packing of video data at
source or drain

VL_PACKING_ABGR_8
VL_PACKING_AUYV_8
VL_PACKING_AYU_AYV_10
VL_PACKING_A_2_BGR_10
VL_PACKING_A_2_UYV_10
VL_PACKING_BGR_332
VL_PACKING_BGR_332_IP
VL_PACKING_MAX
VL_PACKING_RBG_323
VL_PACKING_RGBA_8
VL_PACKING_RGB_10
VL_PACKING_RGB_332
VL_PACKING_RGB_332_IP
VL_PACKING_RGB_332_P (VINO default)
VL_PACKING_RGB_565
VL_PACKING_RGB_565_IP
VL_PACKING_RGB_565_P
VL_PACKING_RGB_8
VL_PACKING_RGB_8_P
VL_PACKING_VUY_411_SV
VL_PACKING_YUVA_4444_10
VL_PACKING_YUVA_4444_8
VL_PACKING_YUV_444_10
VL_PACKING_YUV_444_8
VL_PACKING_YVYU_422_8
VL_PACKING_Y_8_IP
VL_PACKING_Y_8_P

VL_RATE Transfer rate in fields or
frames

With a VL_CAP_TYPE of VL_CAPTURE_NONINTERLEAVED only:
NTSC: 5, 6, 10, 12, 15, 18, 20, 24, 25, 30
PAL: 5, 10, 15, 20, 25

With a VL_CAP_TYPE of VL_CAPTURE_INTERLEAVED,
VL_CAPTURE_EVEN_FIELDS, or
VL_CAPTURE_ODD_FIELDS:
NTSC: 10, 12, 20, 24, 30, 36, 40, 48, 50, 60
PAL: 10, 20, 30, 40, 50

VL_SIGNAL N/A N/A N/A

VL_SIZE On VL_VIDEO nodes, the
size of the video; on all
other nodes, the clipped
size of the video

Coordinates; default depends on signal

Table 13-1 (continued) Device-Independent VL Controls

Control Sets VINO Indigo2 Video
and Indy
Video

Galileo
Video

326

Chapter 13: Using VL Controls

Note: For information on controls for keying, blending, or wipes, see
Chapter 15, “VL Blending.”

For detailed information on using VL_CAP_TYPE, VL_FORMAT,
VL_MUXSWITCH, VL_OFFSET, VL_PACKING, VL_RATE, VL_SIZE,
VL_TIMING, and VL_ZOOM, see “Setting Parameters for Data Transfer to
or from Memory” in Chapter 12.

VL_SYNC Sync mode N/A VL_SYNC_INTERNAL
VL_SYNC_GENLOCK

VL_SYNC Slave sync mode N/A N/A VL_EV1_SYNC_SLAVE

VL_SYNC_SOURCE Sets sync source for analog
breakout box

N/A

only one sync input

Composite 1:
set 0
Composite 2:
set 2

Composite 1: set 0
Composite 2: set 1
Composite 3: set 2

VL_TIMING Video timing Default: timing produced by active signal

For Betacam, MII, composite tape formats:
Analog: 12.27 MHz, 646 x 486 (NTSC): VL_TIMING_525_SQ_PIX
Analog: 14.75 MHz, 768 x 576 (PAL): VL_TIMING_625_SQ_PIX (VINO
default)

For D1 tape formats:
Digital component: 13.50 MHz, 720 x 486: VL_TIMING_525_CCIR601
Digital component: 13.50 MHz, 720 x 576: VL_TIMING_625_CCIR601

For D2 tape formats:
4X NTSC subcarrier, 14.32 MHz, 768 x 486: VL_TIMING_525_4FSC
4X PAL subcarrier, 17.72 MHz, 948 x 576: VL_TIMING_625_4FSC

VL_V_PHASE Vertical phase N/A Integer Integer

VL_WINDOW Window ID for video in a
window (screen node only)

N/A Integer Integer

VL_ZOOM Zoom factor for video
stream; fractions greater
than 1 expand the picture,
fractions less than one
reduce the picture

1/1, 1/2, 1/3, 1/4, 1/5,
1/6, 1/7, 1/8

4/1, 2/1, 1/1,
1/2, 1/3, 1/4,
1/5, 1/6, 1/7,
1/8

4/1, 2/1, 1/1, 1/2, 1/3, 1/4,
1/5, 1/6, 1/7, 1/8

Table 13-1 (continued) Device-Independent VL Controls

Control Sets VINO Indigo2 Video
and Indy
Video

Galileo
Video

VL Control Type and Values

327

VL Control Type and Values

The type of VL controls is:

typedef long VLControlType;

Common types used by the VL to express the values returned by the controls
are:

typedef struct __vlControlInfo {
 char name[VL_NAME_SIZE]; /* name of control */
 VLControlType type; /* e.g. WINDOW, HUE */
 VLControlClass ctlClass; /* SLIDER, DETENT, KNOB, BUTTON */
 VLControlGroup group; /* BLEND, VISUAL QUALITY, SYNC */
 VLNode node; /* associated node */
 VLControlValueType valueType; /* what kind of data */
 int valueCount; /* how many data items */
 uint numFractRanges; /* number of ranges */
 VLFractionRange *ranges; /* range of values of control */

 uint numItems; /* number of enumerated items */
 VLControlItem *itemList; /* the actual enumerations */
} VLControlInfo;

To store the value of different controls, libvl.a uses the struct:

typedef union {
 VLFraction fractVal;
 VLBoolean boolVal;
 int intVal;
 VLXY xyVal;
 uint pad[24];
} VLControlValue;

typedef struct {
 int x, y;
} VLXY;

typedef struct {
 int numerator;
 int denominator;
} VLFraction;

The control info structure is returned by a vlGetControlInfo() call, and it
contains many of the items discussed above.

328

Chapter 13: Using VL Controls

VLControlInfo.number is the number of the VLControlInfo.node that the info
pertains to. There may be several controls of the same type on a particular
node, but usually there is just one.

VLControlInfo.numFractRanges is the number of fraction ranges for a
particular control. The names correspond 1-to-1 with the rangeNames, up to
the number of range names, numRangeNames. That is, there may be fewer
names than ranges, but never more.

VL Control Fraction Ranges

The VL uses fraction ranges to represent the values possible for a control. A
VLFractionRange generated by the VL is guaranteed never to generate a
fraction with a zero denominator, or a fractional numerator or denominator.

For a VLProgressionType of VL_LINEAR, numerator.increment and
denominator.increment are guaranteed to be greater than zero, and the limit is
always guaranteed to be {numerator,denominator}.base, plus some integral
multiple of {numerator,denominator}.increment.

The type definition for fraction types in the header file is:

typedef struct {
 VLRange numerator;
 VLRange denominator;
} VLFractionRange;

VL Control Classes

The VL defines control classes for user-interface developers. The classes are
hints only; they are the VL developer's idea of how the control is commonly
represented in the real world.

#define VL_CLASS_NO_UI 0
#define VL_CLASS_SLIDER 1
#define VL_CLASS_KNOB 2
#define VL_CLASS_BUTTON 3
#define VL_CLASS_TOGGLE 4
#define VL_CLASS_DETENT_KNOB 5
#define VL_CLASS_LIST 6

VL Control Groupings

329

In the list above, VL_CLASS_NO_UI is often used for controls that have no
user-interface metaphor and are not displayed in the video control panel or
saved in the defaults file.

The VL controls can be read-only, write-only, or both. The VL includes these
macros:

#define VL_CLASS_RDONLY 0x8000 /* control is read-
only */
#define VL_CLASS_WRONLY 0x4000 /* control is write-
only */

#define VL_IS_CTL_RDONLY(x) ((x)->class & VL_CLASS_RDONLY)
#define VL_IS_CTL_WRONLY(x) ((x)->class & VL_CLASS_WRONLY)
#define VL_IS_CTL_RW(x) (!(VL_IS_CTL_RDONLY(x) &&
 VL_IS_CTL_WRONLY(x)))

to test these conditions:

#define VL_CLASS_MASK 0xfff

typedef unsigned long VLControlClass; /* from list above */

VL Control Groupings

Like control class, control grouping is an aid for the user-interface developer.
The groupings are the VL developer's idea of how the controls would be
grouped in the real world. These groupings are implemented in the video
control panel vcp.

The type definition for groupings is:

typedef char NameString[80];
#define VL_CTL_GROUP_PATH 9 /* Path Controls */

The maximum length of a control or range name is VL_NAME_SIZE.

330

Chapter 13: Using VL Controls

Table 13-2 summarizes the VL control groupings.

Table 13-2 VL Control Groupings

Grouping Includes controls for...

VL_CTL_GROUP_BLENDING Blending; for example, VL_BLEND_B

VL_CTL_GROUP_VISUALQUALITY Visual quality of sources or drains; for example, VL_H_PHASE or
VL_V_PHASE

VL_CTL_GROUP_SIGNAL Signal of sources or drains; for example, VL_MUXSWITCH or VL_HUE

VL_CTL_GROUP_CODING Encoding or decoding sources or drains; for example, VL_TIMING or
VL_FORMAT

VL_CTL_GROUP_SYNC Synchronizing video sources or drains; for example, VL_SYNC

VL_CTL_GROUP_ORIENTATION Orientation or placement of video signals; for example, VL_ORIGIN

VL_CTL_GROUP_SIZING Setting the size of the video signal; for example, VL_SIZE

VL_CTL_GROUP_RATES Setting the rate of the video signal; for example, VL_RATE

VL_CTL_GROUP_WS Specifying the windowing system of the workstation; for example,
VL_WINDOW

VL_CTL_GROUP_PATH Specifying the data path through the system; these controls, often marked
with the VL_CLASS_NO_UI, are often internal to the VL, with no direct
access for the user

VL_CTL_GROUP_SIGNAL_ALL Specifying properties of all signals

VL_CTL_GROUP_SIGNAL_COMPOSITE Specifying properties of composite signals

VL_CTL_GROUP_SIGNAL_COMPONENT Specifying properties of component signals

VL_CTL_GROUP_SIGNAL_CLUT_COMPOSITE Specifying properties of composite color lookup table (CLUT) controls

VL_CTL_GROUP_SIGNAL_CLUT_COMPONENT Specifying properties of component CLUT controls

VL_CTL_GROUP_KEYING Specifying properties of chroma or luma keying controls, such as
VL_KEYER_FG_OPACITY

VL_CTL_GROUP_PRO Specifying values not commonly found on the front panel of a real-world
video device; for example, a wipe control

VL_CTL_GROUP_MASK Masking optional bits to extract only the control group

Galileo Video Controls

331

Galileo Video Controls

VL controls that are used only for Galileo Video and VINO on the Indy
workstation fall into several categories:

• general controls for Galileo Video and VINO

• Galileo Video encoder and color-space conversion controls

• Galileo 601 Video digital breakout box controls

• VINO analog input controls

• IndyCam controls

Note: Galileo Video keying controls are documented in Chapter 15, “VL
Blending.”

Each category is explained separately in this section.

332

Chapter 13: Using VL Controls

General Controls for Galileo Video

The Galileo Video controls are summarized in Table 13-3 in alphabetical
order.

Table 13-3 Galileo Video vcp Controls

Galileo Video Purpose

VL_EV1_AGC_CONTROL Sets automatic gain control speed for chrominance for composite or Y/C

VL_EV1_ALPHA_NOT_PIXEL
Value:

Determines whether information is derived from the alpha out or the pixel out
channel

VL_EV1_ANTI_DITHER
Value: (0,1) where 0 = off, 1 = on

Removes interference between frequency components generated by dithered
graphics images (Y/C and composite out only) and chrominance frequency present
in video signals by using a notch filter in luminance

VL_EV1_APERTURE Sets aperture factors for luminance for composite and Y/C inputs

VL_EV1_BANDPASS Selects bandpass filters for luminance for composite and Y/C inputs

VL_EV1_BLANK_LINE
Range: (0,63)

Sets first unblanked line on all analog video outputs

VL_EV1_BLEND_B_FLAT Sets a flat backgroud color

VL_EV1_BLEND_B_U Sets the U value of a flat background color

VL_EV1_BLEND_B_V Sets the V value of a flat background color

VL_EV1_BLEND_B_Y Sets the Y value of a flat background color

VL_EV1_BLEND_H_FILT Controls blending

VL_EV1_BLEND_SHADOW_GAIN Controls blending

VL_EV1_BLEND_SHADOW_OFFSET Controls blending

VL_EV1_BLEND_SHADOW_ON Controls blending

VL_EV1_BOTTOM_FLUTTER For CCIR 601 (13.5 MHz) sampling only, compensates for horizontal phase jump on
the selected line number

VL_EV1_C_GAIN
Range: (0,255)

Adjusts burst and chrominance output level of composite and Y/C simultaneously

VL_EV1_CHROMA_BAND
Value: enhanced = 0, standard = 1

Selects standard chrominance bandwidth of about 1.3 MHz or enhanced bandwidth
(nonstandard) of about 2.5 MHz for composite and Y/C outputs

Galileo Video Controls

333

VL_EV1_CHROMA_DELAY For CCIR 601 (13.5 MHz) sampling only, changes composite or Y/C chrominance
delay without affecting luminance delay

VL_EV1_CHROMA_GAIN Fine-tunes chroma gain for composite and Y/C inputs

VL_EV1_COLOR_IN_ON

VL_EV1_COLOR_KILL_THRES Controls level at which burst amplitude decides if composite or Y/C input is color or
monochrome when color mode is automatically set

VL_EV1_COLOR_OUT_ON Makes composite or Y/C output into monochrome by turning off color burst and
chrominance

VL_EV1_CORING Selects coring levels for luminance for composite and Y/C inputs

VL_EV1_DEINTERLACE For graphics to video, turns off interlace for flicker reduction; for video to graphics,
interlaces video image

VL_EV1_DELAY_SYNC
Range: (0,63)

Same as VL_EV1_H_OFFSET but with a narrow range: resolution in pixel clock steps

VL_EV1_DOMINANCE_FIELD
Value: 0 = odd field, 1 = even field

Triggers on odd or even fields

VL_EV1_FILTER Filters decimated video images to smooth jagged edges

VL_EV1_GENLOCK_SRC

VL_EV1_H_OFFSET Delays timing of entire video signal (sync and picture) relative to timing reference
such as genlock; no effect in slave mode for output timing

VL_EV1_H_PHASE
Range: (0,63)

In genlock output timing, provides a small-range horizontal phase adjustment for all
outputs; in slave output timing mode, moves both h-phase and horizontal picture
position for composite and Y/C output (no effect on RGB or Y/R-Y/B-Y in slave
mode)

VL_EV1_H_PICTURE_POSITION Controls horizontal position of input picture: 2 pixel steps for composite and Y/C
resolution; 1 pixel step for Y/R-Y/B-Y input resolution

VL_EV1_LOCK_PORT0

VL_EV1_LUMA_DELAY Changes composite or Y/C luminance delay without affecting chrominance delay

Table 13-3 (continued) Galileo Video vcp Controls

Galileo Video Purpose

334

Chapter 13: Using VL Controls

VL_EV1_PEAK_WHITE Sets expected peak white amplitude; sets setup/no setup (pedestal) on black for Y or
Y/R-Y/B-Y input

Betacam: use 714 mV
SMPTE and EBU: use 700 mV or no setup

VL_EV1_PREFILTER Boosts luminance frequency response for composite and Y/C formats

VL_EV1_QUALITY Allows locking to unstable video source, such as videotape recorders with no
timebase correction

VL_EV1_RGB_GAIN
Range: (0,63)

Adjusts output level of Y/R-Y/B-Y simultaneously (no effect on sync pulse
amplitude)

VL_EV1_SCH_PHASE
Range: (0,255)

Adjusts SC-H phase +/- 180 degrees

VL_EV1_SUB_FREQ
Range: (0,255); total range
+/- 450 ppm

Provides fine adjustment of composite and Y/C output color subcarrier frequency

VL_EV1_SVHS_CHROMA

Values; the first is the default:
VL_EV1_COLOR_MODE_AUTO
VL_EV1_COLOR_MODE_COLOR
VL_EV1_COLOR_MODE_MONO

Selects automatic detection of color or monochrome from the burst, forces
monochrome, or forces color

VL_EV1_SYNC_LEVEL
Value: 286 mV = 0, 300 mV = 1

Selects sync pulse amplitude on G/Y output

VL_EV1_SYNC_SLAVE Selects the slave sync mode when genlocking is not required. In this mode, the Galileo
board is slaved to the input source. This is the best mode for capturing images because
it provides the highest capture rate.

VL_EV1_TBC_MODE
Value: (0,1) where 0 = off, 1 = on

When video input and output timings are not frequency-locked, removes small
timing errors in analog video input; video input must go directly into a video
framebuffer for proper operation; can also be used to achieve frame synchronization;
makes no digital input unavailable

VL_EV1_TRIGGER_LINE
Range: (0,100)

Determines line number on which trigger event happens

VL_EV1_TRIGGER_POLARITY
Values: 0 = negative, 1 = positive

Determines whether a trigger event occurs on a 0 to 1 or a 1 to 0 transition

Table 13-3 (continued) Galileo Video vcp Controls

Galileo Video Purpose

Galileo Video Controls

335

VL_EV1_UV_LEVEL
Value: high = 0, low = 1

Changes R-Y and B-Y analog output levels to accommodate different standards, such
as Beta, SMPTE, and EBU; set to low for RGB out

VL_EV1_U_GAIN_ROUGH
Range: (0,63)

Controls gain of B-Y component input in coarse steps

VL_EV1_U_GAIN_VERNIER
Range: (0,63)

Controls gain of B-Y component input in fine steps

VL_EV1_V_GAIN_ROUGH
Range: (0,63)

Controls gain of R-Y component input in coarse steps

VL_EV1_V_GAIN_VERNIER
Range: (0,63)

Controls gain of R-Y component input in fine steps

VL_EV1_V_OFFSET Delays timing of entire video signal (sync and picture) relative to timing reference
such as genlock; no effect in slave mode for output timing

VL_EV1_VNOISE_REDUCER Selects mode of vertical noise reduction

VL_EV1_YC_GAIN
Range: (0,255)

Adjusts output level (sync, burst, luminance, and chrominance) of composite and Y/
C simultaneously

VL_EV1_YG_SYNC
Value: (0,1) where 0 = off, 1 = on

Turns sync pulse on or off

Table 13-3 (continued) Galileo Video vcp Controls

Galileo Video Purpose

336

Chapter 13: Using VL Controls

Galileo Video IndyCam Controls

Table 13-4 lists the Galileo Video IndyCam controls.

Table 13-4 Galileo Video IndyCam Controls

Galileo Video Control Values Sets

VL_EV1_INDYCAM_AGCENA 0 = off
1 (default) = on

Automatic gain control (AGC)

VL_EV1_INDYCAM_AWBCTL 0 (momentary default) = off
1 = on

Automatic white balance

VL_EV1_INDYCAM_BLUE_BALANCE 0,255,255; set by camera’s white balance Blue balance

VL_EV1_INDYCAM_BLUE_SATURATION

VL_EV1_INDYCAM_BRIGHTNESS Read-only value determined by input
from IndyCam

Luma level (read-only)

VL_EV1_INDYCAM_GAIN 0,255,255; set by AGC in camera Gain

VL_EV1_INDYCAM_RED_BALANCE 0,255,255; set by camera’s white balance Red balance

VL_EV1_INDYCAM_SATURATION 0,170,170 Saturation

VL_EV1_INDYCAM_SHUTTER VL_EV1_INDYCAM_SHUTTER_60
VL_EV1_INDYCAM_SHUTTER_100
VL_EV1_INDYCAM_SHUTTER_125
VL_EV1_INDYCAM_SHUTTER_250
VL_EV1_INDYCAM_SHUTTER_500
VL_EV1_INDYCAM_SHUTTER_1000
VL_EV1_INDYCAM_SHUTTER_2000
VL_EV1_INDYCAM_SHUTTER_4000
VL_EV1_INDYCAM_SHUTTER_10000
Default:
VL_EV1_INDYCAM_SHUTTER_1000

Shutter speed

VL_EV1_INDYCAM_SHUTTER_SNAP

Galileo Video Controls

337

Galileo Video Encoder and Color-Space Conversion
Controls

Encoder controls for Galileo Video encode digital video from the system into
the analog data stream. The controls are summarized in Table 13-5.

Table 13-5 Galileo Video Encoder and Color-Space Conversion Controls

Encoder control Color-space conversion control Purpose

VL_EV1_ENC_BLANK VL_EV1_CSC_BLANK Sets digital level for
blanking

VL_EV1_ENC_BLACK VL_EV1_CSC_BLACK Sets digital level for
black

VL_EV1_ENC_WHITE VL_EV1_CSC_WHITE Sets digital level for
white

VL_EV1_ENC_UVGAIN VL_EV1_CSC_UVGAIN Sets color difference
gain factor

VL_EV1_ENC_QUANTIZE VL_EV1_CSC_QUANTIZE Sets number of
quantization levels;
set to maximum for
no effect

VL_EV1_ENC_LOAD VL_EV1_CSC_LOAD Loads default table

N/A VL_EV1_CSC_SUBADDR Selects component
table to load with
custom setup

338

Chapter 13: Using VL Controls

Galileo 601 Video Digital Breakout Box Controls

General controls for the Galileo 601 Video Digital Breakout Box are
summarized in Table 13-6.

See the dmedia/cl_cosmo.h header file for Cosmo Compress video parameters
(CL_COSMO_VIDEO_*) that work with the Galileo 601 Video Digital
Breakout Box and the Compression Library.

Table 13-6 Galileo 601 Video Digital Breakout Box General Controls

Control Purpose

VL_EV1_DBOB_INPUT Selects serial or parallel input

VL_EV1_DBOB_INPUT2 Selects serial or parallel input/output

VL_EV1_DBOB_VBSELECT
Value: 0 = normal, 1 = narrow

Determines whether vertical blanking
information passes through the Galileo 601
Video option: normal setting blanks out the
vertical blanking information; narrow setting
passes it through

VL_EV1_DBOB_PIXEL_MODE
Values:
0 = 13.5 (601CCIR), 1 = square

Sets Galileo 601 Video pixel format

VL_EV1_DBOB_PIXEL_FORMAT Selects analog output format on digital
breakout box outputs

VL_EV1_DBOB_LINE
Values: 0 = 525, 1 = 625

Sets 525 (NTSC) or 625 (PAL) timing

VL_EV1_DBOB_DELAY
Range: (0,255)

Sets analog output delay on Galileo 601 Video

Galileo Video Controls

339

Color-Space Conversion Controls

Table 13-7 summarizes color-space conversion controls for the Galileo 601
Video Digital Breakout Box.

Table 13-7 Galileo Video Digital Breakout Box Color-Space Conversion Controls

Control Purpose

VL_EV1_DBOB_CSC_BLANK Sets digital level for blanking

VL_EV1_DBOB_CSC_BLACK Sets digital level for black

VL_EV1_DBOB_CSC_WHITE Sets digital level for white

VL_EV1_DBOB_CSC_UVGAIN Sets color difference gain factor

VL_EV1_DBOB_CSC_QUANTIZE Sets number of quantization levels; set to
maximum for no effect

VL_EV1_DBOB_CSC_LOAD Loads default table

VL_EV1_DBOB_CSC_SUBADDR Selects component table to load with
custom setup

340

Chapter 13: Using VL Controls

Galileo Video DAC Controls

Table 13-8 summarizes the Galileo Video digital-to-analog converter (DAC)
controls; all but the last two appear in the All submenu of the vcp Pro menu.
The range for each control is (0,63).

Table 13-8 Galileo Video DAC controls

Control Sets

VL_EV1_DBOB_DAC_0 Y or green channel gain

VL_EV1_DBOB_DAC_1 Y or green channel offset

VL_EV1_DBOB_DAC_2 B-Y or blue channel gain

VL_EV1_DBOB_DAC_3 B-Y or blue channel offset

VL_EV1_DBOB_DAC_4 R-Y or red channel gain

VL_EV1_DBOB_DAC_5 R-Y or red channel offset

VL_EV1_DBOB_DAC_6 Chroma gain; not in vcp (no UI)

VL_EV1_DBOB_DAC_7 Chroma offset (no UI)

VINO Controls

341

VINO Controls

This section describes the VINO controls.

VINO Video Control Panel Controls

Table 13-9 lists the general VINO controls.

Table 13-9 VINO vcp Controls

VINO Purpose

VL_VINO_APERTURE; default 1 Sets aperture factors for luminance for composite and Y/C inputs

VL_VINO_BANDPASS; default 0 Selects bandpass filters for luminance for composite and Y/C inputs

VL_VINO_CHROMA_AGC; default 0 Sets automatic gain control speed for chrominance for composite or Y/C

VL_VINO_CHROMA_GAIN
default: 44

Fine-tunes chroma gain for composite and Y/C inputs

VL_VINO_COLOR_KILL_THRES
default: 30 dB

Controls level at which burst amplitude decides if composite or Y/C input is color or
monochrome when color mode is automatically set

VL_VINO_CORING; default 0 Selects coring levels for luminance for composite and Y/C inputs

VL_VINO_H_PICTURE_POSITION
default: 244 (both NTSC and PAL)

Controls horizontal position of input picture: 2 pixel steps for composite and Y/C
resolution; 1 pixel step for Y/R-Y/B-Y input resolution

VL_VINO_LUMA_DELAY; default 0 Changes composite or Y/C luminance delay without affecting chrominance delay

VL_VINO_PREFILTER; default 0 Boosts luminance frequency response for composite and Y/C formats

VL_VINO_COLOR_MODE

Values; the first is the default:
VL_VINO_COLOR_MODE_AUTO
VL_VINO_COLOR_MODE_COLOR
VL_VINO_COLOR_MODE_MONO

Selects automatic detection of color or monochrome from the burst, forces
monochrome, or forces color

VL_VINO_VNOISE_REDUCER

Values:
normal: set 0 (the default)
search: set 1
auto: set 2
bypass: set 3

Selects mode of vertical noise reduction

342

Chapter 13: Using VL Controls

VINO Analog Input Controls

Table 13-10 summarizes input controls specific to VINO.

Table 13-10 VINO Analog Input Controls

Control Range Default:
60 Hz (NTSC)

Default:
50 Hz (PAL)

Use

VL_VINO_HREF_GENERATION (0,1)
0 = off, 1 = on

1 1 Shifts the line 8 pixels to the right.

VL_VINO_PAL_SENS Fraction range:
0,255,1

N/A 144 In PAL timing, the chroma
modulation phase inverts every
line. Dropouts off the tape can
disrupt this pattern. Use this
control to set the recovery time
constant (maximum for poor
quality tape).

VL_VINO_AUFD (0,1)
0 = off, 1 = on

1 1 Sets automatic field detect.

VL_VINO_ZOOM_X (0,1)
0 = off, 1 = on

0 0 Specifies zoom or decimation in x
direction only, to maintain aspect
ratio for capturing only even or odd
fields.

VL_VINO_ALPHA (0,255) 255 255 Sets value placed in user’s
framebuffers for the alpha value of
the RGBA pixel format. Can be
changed while capture is in
progress. See Graphics Library
documentation for typical uses.

VL_VINO_EVEN_OFFSET 0..MaxHeight 0 0 Sets offset or clipping value
separately for even fields; for
example, if this control is set to 2
and VL_VINO_ODD_OFFSET is
set to 0, the following lines are
captured in NTSC: odd line 21,
even line 26, odd line 23, even line
28.

VL_VINO_ODD_OFFSET 0..MaxHeight 0 0 Sets offset or clipping value
separately for odd fields.

VINO Controls

343

VINO IndyCam Controls

The controls for the IndyCam are summarized in Table 13-11.

Table 13-11 IndyCam Controls

VINO Values Sets

VL_VINO_INDYCAM_AGCENA 0 = off
1 (default) = on

Automatic gain control (AGC)

VL_VINO_INDYCAM_AWBCTL 0 (momentary default) = off
1 = on

Automatic white balance

VL_VINO_INDYCAM_BLUE_BALANCE 0,255,255; set by camera’s white balance Blue balance

VL_VINO_INDYCAM_BRIGHTNESS Read-only value determined by input
from IndyCam

Luma level (read-only)

VL_VINO_INDYCAM_GAIN 0,255,255; set by AGC in camera Gain

VL_VINO_INDYCAM_RED_BALANCE 0,255,255; set by camera’s white balance Red balance

VL_VINO_INDYCAM_SATURATION 0,170,170 Saturation

VL_VINO_INDYCAM_SHUTTER VL_VINO_INDYCAM_SHUTTER_60
VL_VINO_INDYCAM_SHUTTER_100
VL_VINO_INDYCAM_SHUTTER_125
VL_VINO_INDYCAM_SHUTTER_250
VL_VINO_INDYCAM_SHUTTER_500
VL_VINO_INDYCAM_SHUTTER_1000
VL_VINO_INDYCAM_SHUTTER_2000
VL_VINO_INDYCAM_SHUTTER_4000
VL_VINO_INDYCAM_SHUTTER_10000
Default:
VL_VINO_INDYCAM_SHUTTER_1000

Shutter speed

344

Chapter 13: Using VL Controls

This chapter explains how to handle
video events.

VL Event Handling

Chapter 14

347

Chapter 14

14. VL Event Handling

The VL provides several ways of handling data stream events, such as
completion or failure of data transfer, vertical retrace event, loss of the path
to another client, lack of detectable sync, or dropped fields or frames. The
method you use depends on the kind of application you’re writing:

• For a strictly VL application, use:

– vlSelectEvents() to choose the events to which you want the
application to respond

– vlAddCallback() to specify the function called when the event
occurs

– your own event loop or a main loop (vlMainLoop()) to dispatch the
events

• For an application that also accesses another program or device driver,
or if you’re adding video capability to an existing X or OpenGL
application, set up an event loop in the main part of the application and
use the IRIX file descriptor (FD) of the event(s) you want to add.

Topics in this chapter include:

• Querying VL Events

• Creating a VL Event Loop

• Creating a Main Loop with Callbacks

This chapter concludes with an example illustrating a main loop and event
loops.

348

Chapter 14: VL Event Handling

Querying VL Events

General VL event handling routines are summarized in Table 14-1.

The event type is an integer. vlEventToName() allows you to get the
character string with the name of the event, so that you can use the event
name, for example, in messages.

Table 14-1 VL Event Handling Routines

Routine Use

vlGetFD() Get a file descriptor for a VL server

vlNextEvent() Gets the next event; blocks until you get the next event
from the queue

vlCheckEvent() Like a nonblocking vlNextEvent(), this call checks to see
if you have an event waiting of the type you specify and
reads it off the queue without blocking

vlPeekEvent() Copies the next event from the queue but, unlike
vlNextEvent(), does not update the queue, so that you
can see the event without processing it

vlSelectEvents() Selects video events of interest

vlPending() Queries whether there is an event waiting for the
application

vlEventToName() Gets the character string with the name of the event; for
example, to use in messages

vlAddCallback() Adds a callback; use for VL events

vlRemoveCallback() Removes a callback for the events specified if the client
data matches that supplied when adding the callback

vlRemoveAllCallbacks() Removes all callbacks for the specified path and events

vlCallCallbacks() Creates a handler; used when creating a main loop or
using a supplied, non-VL main loop

vlRegisterHandler() Registers an event handler; use for non-VL events

vlRemoveHandler() Removes an event handler

Querying VL Events

349

Table 14-2 summarizes VL event masks.

Call vlGetFD() to get a file descriptor usable from select(2) or poll(2).

Call vlSelectEvents() to express interest in one or more event. For example:

vlSelectEvents(svr, path, VLTransferCompleteMask);

Table 14-2 VL Event Masks

Symbol Meaning

VLStreamBusyMask Stream is locked

VLStreamPreemptedMask Stream was grabbed by another application

VLAdvanceMissedMask Time was already reached

VLSyncLostMask Irregular or interrupted signal

VLSequenceLostMask Field or frame dropped

VLControlChangedMask A control has changed

VLControlRangeChangedMask A control range has changed

VLControlPreemptedMask Control of a node has been preempted, typically
by another user setting VL_LOCK on a path that
was previously set with VL_SHARE

VLControlAvailableMask Access is now available

VLTransferCompleteMask Transfer of field or frame complete

VLTransferFailedMask Error; transfer terminated; perform cleanup at
this point, including vlEndTransfer()

VLEvenVerticalRetraceMask Vertical retrace event, even field

VLOddVerticalRetraceMask Vertical retrace event, odd field

VLFrameVerticalRetraceMask Frame vertical retrace event

VLDeviceEventMask Device-specific event, such as a timing change
on a Galileo Video node

VLDefaultSourceMask Default source changed

350

Chapter 14: VL Event Handling

Event masks can be or’ed together. For example:

vlSelectEvents(svr, path, VLTransferCompleteMask |
 VLTransferFailedMask);

Depending on whether you want to block processing or not, use
vlNextEvent() (blocking) or vlCheckEvent() (nonblocking) to get the next
event.

Use vlPeekEvent() to see what the next event in the queue is without
removing it from the queue. For example, the part of the code that actually
gets the event from the event loop uses vlNextEvent(), whereas another part
of the code that just wants to know about it, for example, for priority
purposes, uses vlPeekEvent().

Creating a VL Event Loop

You can set an event loop to run until a specific condition is fulfilled. The
routine vlSelectEvents() allows you to specify which event the application
will receive.

Using an event loop requires creating an event mask to specify the events you
want. The VL event mask symbols are combined with the bitwise OR
operator. For example, to set an event mask to express interest in either
transfer complete or control changed events, use:

VLTransferCompleteMask | VLControlChangedMask

To create an event loop, follow these steps:

1. Define the event; for example:

VLEvent ev;
…

2. Set the event mask; for example:

vlSelectEvents(vlServer, path, VLTransferCompleteMask |
VLControlChangedMask)

3. Block on the transfer process until at least one event is waiting:

for(;;){
vlNextEvent(vlServer, &ev);

Creating a Main Loop with Callbacks

351

4. Create the loop and define the choices; for example:

switch(ev.reason){
 case VLTransferComplete:
 …
 break;
 case VLControlChanged:
 …
 break;
 }
}

Creating a Main Loop with Callbacks

vlMainLoop() is provided as a convenience routine for the application
programmer and constitutes the main loop of VL applications. This routine
first reads the next incoming video event; it then dispatches the event to the
appropriate registered procedure. Note that the application does not return
from this call.

Applications are expected to exit in response to some user action. There is
nothing special about vlMainLoop(); it is simply an infinite loop that calls
the next event and then dispatches it. An application can provide its own
version of this loop, for example, to test a global termination flag or to test
that the number of top-level widgets is larger than zero before circling back
to the call to the next event.

To specify callbacks, that is, routines which are called when a particular VL
event arrives, use vlAddCallback(). Its function prototype is:

int vlAddCallback(VLServer vlServer, VLEvent * event,
 void * clientdata, VLEventMask events,
 VLCallbackProc callback, void *clientData)

Example 14-1 illustrates the use of vlAddCallback().

352

Chapter 14: VL Event Handling

Example 14-1 Using VL Callbacks

main()
{
 …
 /* Set up the mask for control changed events and Stream preempted events */
 if (vlSelectEvents(vlSvr, vlPath, VLTransferComplete | VLStreamPreemptedMask))
 doErrorExit(“select events”);

 /* Set ProcessEvent() as the callback for VL events */
 vlAddCallback(vlSvr, vlPath, VLTransferCompleteMask | VLStreamPreemptedMask,
 ProcessEvent, NULL);

 /* Start the data transfer immediately (i.e. don’t wait for trigger) */
 if (vlBeginTransfer(vlSvr, vlPath, 0, NULL))
 doErrorExit(“begin transfer”);

 /* Get and dispatch events */
 vlMainLoop();
}

/* Handle VL events */
void
ProcessEvent(VLServer svr, VLEvent *ev, void *data)
{
 switch (ev->reason)
 {
 case VLTransferComplete:
 /* Get the valid video data from that frame */
 dataPtr = vlGetActiveRegion(vlSvr, transferBuf, info);
 /* Done with that frame, free the memory used by it */
 vlPutFree(vlSvr, transferBuf);
 frameCount++;
 break;

 case VLStreamPreempted:
 fprintf(stderr, “%s: Stream was preempted by another Program\n”,
 _progname);
 docleanup(1);
 break;

 default:
 break;
 }
}

Creating a Main Loop with Callbacks

353

Delete a callback with vlRemoveCallback() or vlRemoveAllCallbacks().
Their function prototypes are:

int vlRemoveCallback(VLServer vlServer, VLPath * path,
 VLEventMask events, VLCallbackProc callback, void
*clientData)

int vlRemoveAllCallbacks(VLServer vlServer, VLPath * path, VLEventMask events)

The functions vlAddHandler() and vlRemoveHandler() are analogous to
vlAddCallback() and vlRemoveCallback(), respectively. Use them for non-
VL events.

Example 14-2 illustrates how to create a main loop and event loops.

Caution: To simplify the code, this example does not check returns. The
programmer should, however, always check returns.

Example 14-2 VL Event Handling: eventex.c

/*================An Event Driven Application==========
 *
 *
 * File: eventex.c
 *
 * Usage: eventex
 *
 * Description: event demonstrates VL eventloop with the IRIS GL
 *
 * Functions: IRIS Video Library functions used
 *
 * vlOpenVideo()
 * vlGetNode()
 * vlCreatePath()
 * vlSetupPaths()
 * vlSetControl()
 * vlCreateBuffer()
 * vlRegisterBuffer()
 * vlRegisterHandler()
 * vlAddCallback()
 * vlSelectEvents()
 * vlMainLoop()
 * vlGetActiveRegion()
 * vlGetNextValid()
 * vlPutFree()

354

Chapter 14: VL Event Handling

 * vlBeginTransfer()
 * vlEndTransfer()
 * vlDeregisterBuffer()
 * vlDestroyPath()
 * vlDestroyBuffer()
 * vlCloseVideo()
 * vlPerror()
 */
#include <stdlib.h>
#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>
#include <dmedia/vl.h>

/*
 * Function Prototypes
 */
void error_exit(void);
void ProcessEvent(VLServer svr, VLEvent *ev, void *data);
void ProcessGlEvent(int fd, void *win);
void exit_capture(void);

/*
 * Global Variables
 */
char *_progName;
VLBuffer buffer;
VLServer svr;
VLPath path;
VLNode src, drn;
int xsize;
int ysize;

/* Report errors */
void
error_exit(void)
{
 vlPerror(_progName);
 exit(1);
}

Creating a Main Loop with Callbacks

355

void
main(int argc, char **argv)
{
 VLControlValue val;
 int c;
 long win;

 _progName = argv[0];

 foreground();

 /* Connect to the daemon */
 if (!(svr = vlOpenVideo("")))
 error_exit();

 /* Set up a drain node in memory */
 drn = vlGetNode(svr, VL_DRN, VL_MEM, VL_ANY);

 /* Set up a source node on any video source */
 src = vlGetNode(svr, VL_SRC, VL_VIDEO, VL_ANY);

 /* Create a path using the first device that will support it */
 path = vlCreatePath(svr, VL_ANY, src, drn);

 /* Set up the hardware for and define the usage of the path */
 if ((vlSetupPaths(svr, (VLPathList)&path, 1, VL_SHARE,
 VL_SHARE)) < 0)
 error_exit();

 /* Set the packing to RGB */
 val.intVal = VL_PACKING_RGB_8;
 vlSetControl(svr, path, drn, VL_PACKING, &val);

 /* Get the video size */
 vlGetControl(svr, path, drn, VL_SIZE, &val);
 xsize = val.xyVal.x;
 ysize = val.xyVal.y;

 /* Set up and open a GL window to display the data */
 prefsize(xsize,ysize);
 win = winopen("Eventex Window");
 RGBmode();
 pixmode(PM_TTOB, 1);
 gconfig();

356

Chapter 14: VL Event Handling

 /*
 * Allow these key presses, mouseclicks, etc to be
 * entered in the event queue
 */
 qdevice(ESCKEY);
 qdevice(WINSHUT);
 qdevice(WINQUIT);

 /* Create and register a buffer for 1 frame */
 buffer = vlCreateBuffer(svr, path, drn, 1);
 if (buffer == NULL)
 error_exit();
 vlRegisterBuffer(svr, path, drn, buffer);

 /* Begin the data transfer */
 if (vlBeginTransfer(svr, path, 0, NULL))
 error_exit();

 /*
 * Specify what path-related events we want to receive.
 * In this example we only want transfer complete events.
 */
 vlSelectEvents(svr, path, VLTransferCompleteMask);

 /* Set ProcessEvent() is the callback for transfer complete */
 vlAddCallback(svr, path, VLTransferCompleteMask, ProcessEvent,
 NULL);

 /* Set ProcessGlEvent() as the GL event handler */
 vlRegisterHandler(svr, qgetfd(), (VLEventHandler)ProcessGlEvent,
 (VLPendingFunc) qtest, (void *)win);

 /* Loop and dispatch events */
 vlMainLoop();
}

Creating a Main Loop with Callbacks

357

/* Handle video library events */
void ProcessEvent(VLServer svr, VLEvent *ev, void *data)
{
 VLInfoPtr info;
 char *dataPtr;

 switch (ev->reason)
 {
 case VLTransferComplete:
 info = vlGetNextValid(svr, buffer);
 if(!info)
 break;

 /* Get a pointer to the frame */
 dataPtr = vlGetActiveRegion(svr, buffer, info);

 /* Write the data to the screen */
 lrectwrite(0,0, xsize-1, ysize-1, (ulong *)dataPtr);

 /* Finished with frame, unlock the buffer */
 vlPutFree(svr, buffer);
 break;

 default:
 printf("Got Event %d\n", ev->reason);
 break;
 }
}

358

Chapter 14: VL Event Handling

/* Handle graphics library events */
void ProcessGlEvent(int fd, void *win)
{
 static short val;

 switch (qread(&val))
 {
 /* Quit */
 case ESCKEY:
 if (val == 1) /* Respond to keydowns only */
 exit_capture();
 break;

 case WINSHUT:
 case WINQUIT:
 exit_capture();
 break;

 default:
 break;
 }
}

void
exit_capture()
{
 /* End the data transfer */
 vlEndTransfer(svr, path);

 /* Disassociate the ring buffer from the path */
 vlDeregisterBuffer(svr, path, drn, buffer);

 /* Destroy the path, free the memory it used */
 vlDestroyPath(svr,path);

 /* Destroy the ring buffer, free the memory it used */
 vlDestroyBuffer(svr, buffer);

 /* Disconnect from the daemon */
 vlCloseVideo(svr);

 exit(0);

This chapter explains how to use the
VL to perform blending operations.

VL Blending

Chapter 15

361

Chapter 15

15. VL Blending

This chapter explains how to combine video frame information and
computer-generated graphics, if your equipment supports such operations.

Use the VL to perform three types of blending:

• Chroma keying: overlaying one image on another by choosing a key
color. For example, if chroma keying is set to blue, image A might show
through image B everywhere the color blue appears in image B. A
common example is the TV weather reporter standing in front of the
satellite weather map. The weather reporter, wearing any color but
blue, stands in front of a blue background; keying on blue shows the
satellite picture everywhere blue appears. Because there is no blue on
the weatherperson, he or she appears to be standing in front of the
weather map.

• Luma keying: overlaying one image on another by choosing a level of
luminance. For example, to overlay bright text (such as a caption) on
video, a graphics source is created with the text on a dark background.
The video source is made to show through the dark areas of the
graphics; the bright text remains on top of the video.

• Transitions: fades, tiles, and wipes, such as single, double, or corner
wipes, for which you can set the angle or center.

This chapter explains how the VL performs blending. Topics in this chapter
include:

• The VL Key Generator

• The VL Blend Node

• VL Blending Controls

• VL Keying

The chapter concludes with example application programs.

362

Chapter 15: VL Blending

The VL Key Generator

Blending in the VL is based on values that the key generator assigns to each
pixel in the sources to be blended. The key generator generates a key for each
pixel in the two source nodes (foreground and background):

• If luma keying is set, the key generator assesses the brightness of each
pixel.

• If chroma keying is set, the key generator assesses the color of each
pixel.

• If spatial, or transition, keying (fade, tile, wipe) is set, the key generator
assesses the (x,y) coordinates for each pixel.

In addition, the key generator determines the alpha value (opacity) of a pixel
and sets a value for it ranging from 0 (completely transparent) to 1
(completely opaque). This alpha value can be used downstream for further
layering operations.

Key generation is usually for one alpha source only. The other alpha source
can be constant or can come from a matte signal or from graphics on systems
that support alpha rendering.

The VL Blend Node

363

The VL Blend Node

Blending takes place in the VL’s internal blend node, which is created with the
vlGetNode() function.

Note: Not all connections are possible on all video options.

The code fragment in Example 15-1 sets up source, drain and blend nodes.

Example 15-1 Setting Up Source, Drain, and Blend Nodes

/* variable definitions */
{
 VLServer svr;
 VLPath path;
 VLNode src, drn;
 VLControlValue val;
 int x, y, c;
 uint w, h, bw{

/* Open a video device */
svr = vlOpenVideo(“”)

/* Set up drain nodes on the screen and video */
drn_scr = vlGetNode(vlSvr, VL_DRN, VL_SCREEN, VL_ANY);
drn_vid = vlGetNode(vlSvr, VL_DRN, VL_VIDEO, VL_ANY);

/* Set up source nodes on the screen and video */
src_scr = vlGetNode(vlSvr, VL_SRC, VL_SCREEN, VL_ANY);
src_vid = vlGetNode(vlSvr, VL_SRC, VL_VIDEO, vin);

/* Set up internal blending node */
blend_node = vlGetNode(vlSvr, VL_INTERNAL, VL_BLENDER,
 VL_ANY);

364

Chapter 15: VL Blending

Figure 15-1 diagrams the blender setup.

Figure 15-1 Setting Up the Blend Node

The blend node mixes the foreground and background video signals by
applying a blend function to the foreground and background pixels.

Figure 15-2 diagrams the Galileo Video alpha blender.

Figure 15-2 Galileo Video Alpha Blender

Blender
Source2

Source1 Drain

Source2

Source1 Drain

Source1 Draindrn_scr = vlGetNode(vlSvr, VL_DRN, VL_SCREEN, VL_ANY);
drn_vid = vlGetNode(vlSvr, VL_DRN, VL_VIDEO, VL_ANY);
src_scr = vlGetNode(vlSvr, VL_SRC, VL_SCREEN, VL_ANY);
src_vid = vlGetNode(vlSvr, VL_SRC, VL_VIDEO, vin);

blend_node = vlGetNode(vlSvr, VL_INTERNAL, VL_BLENDER, VL_ANY);

*
Key

generator

*

*

ffg(a)

VL_BLEND_A_FCN (x part)
sets this function

*

*

+

fbg(a)

VL_BLEND_B_FCN (y part)
sets this function

VL_BLEND_B_NORMALIZE
sets this switch

+ Alpha out

Pixel out

Foreground pixel
(source set by
VL_BLEND_A)

Background pixel
(source set by
VL_BLEND_B)

Background alpha
(source set by
VL_BLEND_B_ALPHA)

a

*

The VL Blend Node

365

The blend node then sends the data to the drain node. For example, blending
analog video with part of a graphics screen and sending it to video out can
be diagrammed as shown in Figure 15-3.

Figure 15-3 Blending Analog Video with Part of a Graphics Screen

Blending analog video with static frame data and sending it to video out can
be diagrammed as shown in Figure 15-4.

Figure 15-4 Blending Analog Video with Static Frame Data

Adding another drain, such as a screen location at which to preview the
output, can be diagrammed as shown in Figure 15-5.

Figure 15-5 Adding Another Drain to Preview the Blend

In Figure 15-5, the source called Screen in and the drain called Screen out are
shaded to indicate that although they are separate and distinct nodes, they
overlap physically; that is, they are set for the same screen location.

Blender
Screen in

Analog video in Video out

Blender
Memory

Analog video in Video out

Blender
Screen in

Analog video in Screen out

Screen in Video out

Same screen region

366

Chapter 15: VL Blending

VL Blending Controls

The VL uses blending controls to set blending options.

All blending controls—that is, all the controls discussed in this chapter—
apply only to blend nodes, except for VL_EV1_ALPHA_NOT_PIXEL, which
applies to drain nodes. The order of blending and zooming depends on the
node type: for a source, zooming takes place before blending; for a drain,
blending takes place before zooming.

All controls are available for all platforms unless otherwise noted. See the
Sirius Video Owner’s and Programming Guide for Sirius Video blending
controls.

Note: The reference “Galileo Video” includes Indigo2 Video and Indy Video,
unless otherwise noted.

Table 15-1 summarizes the VL controls for blending.

Table 15-1 VL Blend Controls

Control Values Selects

VL_BLEND_A_FCN
type intVal

VL_BLDFCN_ZERO
VL_BLDFCN_ONE
VL_BLDFCN_B_ALPHA
 (background alpha)/255
VL_BLDFCN_MINUS_B_ALPHA:
 1 − ((background alpha) / 255)

Blend function that controls mixing of foreground
signals

VL_BLEND_B_FCN
type intVal

VL_BLDFCN_ZERO
VL_BLDFCN_ONE
VL_BLDFCN_A_ALPHA
 (foreground alpha)/255
VL_BLDFCN_MINUS_A_ALPHA
 1 − ((foreground alpha) / 255)

Blend function that controls mixing of background
signals

VL_BLEND_A
type intVal

VLNode type, derived from
vlGetNode(); must be one of the
two source nodes

Input source for foreground image

VL_BLEND_B
type intVal

VLNode type, derived from
vlGetNode(); must be one of the
two source nodes

Input source for background image

VL Keying

367

VL Keying

For each kind of keying—luma keying, chroma keying, and transitions—
further VL controls enable you to specify the properties of the blend.

Note: Keying parameters are implemented as device-dependent VL
controls; this section explains Galileo Video (including Indigo2 Video and
Indy Video) keying controls.

The values for the Galileo Video “master” keyer control
VL_EV1_KEYER_MODE determine the type of keying performed:

• luma keying: VL_EV1_KEYERMODE_LUMA

• chroma keying: VL_EV1_KEYERMODE_CHROMA

• transitions, that is, fades, tiles, or wipes:
VL_EV1_KEYERMODE_SPATIAL

For example, the following fragment specifies that chroma keying is to be
performed:

VL_BLEND_A_ALPHA
type intVal

VLNode type, derived from
vlGetNode(); must be one of the
two source nodes

Input source for foreground alpha; cannot be used on
Galileo Video, Indigo2 Video, or Indy Video

VL_BLEND_B_ALPHA
type intVal

VLNode type, derived from
vlGetNode(); must be one of the
two source nodes

Input source for background alpha

VL_BLEND_A_NORMALIZE
type boolVal

(0,1)
0 = off, 1 = on

Follows Porter-Duff model (background pixels
premultiplied by their corresponding alphas before
blending)

VL_BLEND_B_NORMALIZE
type boolVal

(0,1)
0 = off, 1 = on

Follows Porter-Duff model

VL_BLEND_OUT_NORMALIZE
type boolVal

(0,1)
0 = off, 1 = on

Follows Porter-Duff model

Table 15-1 (continued) VL Blend Controls

Control Values Selects

368

Chapter 15: VL Blending

vlSetControl(vlSvr, vlPath, blend_node, VL_EV1_KEYER_MODE
 VL_EV1_KEYERMODE_CHROMA);

Keying controls fall into three groups:

• luma keying

• chroma keying

• fades, tiles, and wipes

Each type is explained separately in this section.

Galileo Video Luma Keying

Luma keying is typically used to overlay a fixed image on video, such as the
name and title of an individual being interviewed, a cable channel’s logo, or
a symbol that denotes an ongoing news story during a newscast. Figure 15-
6 diagrams an application.

Figure 15-6 Luma Keying Application: Titling

Kim Lee
Agriculture

xxx

Background

ForegroundKim Lee
Agriculture

Kim Lee
Agriculture

xxx xxxxx

xxx

xxx xxxxxBlend

VL Keying

369

The four Galileo Video luma keying controls are summarized in Table 15-2;
each is of type intVal.

Figure 15-7 diagrams the relationships between these controls.

Figure 15-7 Relationships Between Galileo Video Luma Keying Controls

Table 15-2 Galileo Video Luma Keying Controls

Control Range Sets

VL_EV1_KEYER_VALUE_LUMA (0,255) Central luma value. This control sets the luma value at which the background
shows through the foreground.

VL_EV1_KEYER_RANGE_LUMA (0,255) One-sided range of the center value. This control determines the range of luma
values where the background shows through the foreground.

VL_EV1_KEYER_FG_OPACITY (0,255) Opacity of the foreground, thus limiting the value of foreground alpha at any point.

VL_EV1_KEYER_DETAIL (-8,7) Sharpness of transition between foreground and background allowing blurring of
edges. The value -8 yields the most gradual transition, +7 the sharpest.

255

2550

All
foreground

All
background

Mixture

Alpha

Pixel luma

level set by VL_EV1_KEYER_FG_OPACITY

sharpness of transition set by VL_EV1_KEYER_DETAIL

yr
yv

yv = VL_EV1_KEYER_VALUE_LUMA
yr = VL_EV1_KEYER_RANGE_LUMA

370

Chapter 15: VL Blending

Galileo Video Chroma Keying

Chroma keying overlays one image on another based on the color value.
Figure 15-8 diagrams a common application.

Figure 15-8 Chroma Keying Application: TV Weather Map

Table 15-3 summarizes the controls for Galileo Video chroma keying and
gives their ranges. These controls are all of type intVal.

Note: VL_EV1_KEYER_FG_OPACITY has no effect on Galileo Video in
chroma key mode.

Table 15-3 Galileo Video Chroma Keying Controls

Control Range Sets

VL_EV1_KEYER_VALUE_CHROMA_U (-226,226) Central U value at which the background shows through the
foreground.

VL_EV1_KEYER_RANGE_CHROMA_U (0,452) One-sided range of U where the background shows through the
foreground.

VL_EV1_KEYER_VALUE_CHROMA_V (-179,179) Central V value at which the background shows through the
foreground.

VL_EV1_KEYER_RANGE_CHROMA_V (0,358) One-sided range of V where the background shows through the
foreground.

VL_EV1_KEYER_DETAIL (-8,7) Sharpness of transition between foreground and background

Blend

VL Keying

371

Figure 15-9 diagrams the relationships between these controls.

Figure 15-9 Relationships Between Galileo Video Chroma Keying Controls

Galileo Video Fades, Tiles, and Wipes

The values used with the control VL_EV1_WIPE_TYPE determine the type
of blending performed:

• from all-foreground to all-background: VL_EV1_WIPETYPE_FADE

• from all-foreground to all-background by randomly tiling screen with
rectangles of a specified size: VL_EV1_WIPETYPE_TILE

• wipe to cross the screen as a vertical, diagonal, or horizontal “front,”
with a specified angle: VL_EV1_WIPETYPE_SINGLE

• wipe in two orthogonal directions simultaneously (two single wipes at
the same time): VL_EV1_WIPETYPE_DOUBLE

• wipe in two orthogonal directions, with the perpendicular position
locked to the normal, or in-line position:
VL_EV1_WIPETYPE_CORNER

255

0

Alpha

Pixel u

sharpness of transition set by VL_EV1_KEYER_DETAIL

uv = VL_EV1_KEYER_VALUE_CHROMA_U
ur = VL_EV1_KEYER_RANGE_CHROMA_U

-226 226

Pixel v
179

Foreground

Background

vv = VL_EV1_KEYER_VALUE_CHROMA_V
vr = VL_EV1_KEYER_RANGE_CHROMA_V

vr

ur

uv

vv

-179

372

Chapter 15: VL Blending

For example, the following fragment specifies that a fade is to be performed:

VLControlType val;
val.intVal = VL_EV1_WIPETYPE_FADE;
vlSetControl(vlSvr, vlPath, blend_node, VL_EV1_WIPE_TYPE,
 val);

Fades, tiles, and wipes go from all-foreground (VL_EV1_WIPE_POSN=0) to
all-background (VL_EV1_WIPE_POSN=1000), unless
VL_EV1_WIPE_INVERT control is set, in which case they go from all-
background (VL_EV1_WIPE_POSN = 0) to all-foreground
(VL_EV1_WIPE_POSN = 1000).

Table 15-4 summarizes controls common to all wipe types.

Table 15-4 Controls for Fades, Tiles, and Wipes

Control Values Sets

VL_EV1_WIPE_POSN
type fractVal

numerator (0,1000)
denominator (1000)

Amount of progress of wipe, from none (numerator = 0) to full
(numerator = 1000).

VL_EV1_WIPE_REPT
type intVal

(0,15) Number of repetitions of pattern in direction of wipe, usually
louvers on single, corner, or double wipe, and length of one
side of rectangles for a tile wipe.
Note: This control does not apply to fades.

VL_EV1_WIPE_INVERT
type intVal

(0,1)
0 = off, 1 = on

Reversal of foreground and background regions of a wipe.
When set to 0, wipes proceed from foreground (position =
minimum) to background (position = maximum). When set to
1, wipes proceed from background (position = minimum) to
foreground (position = maximum).

This value is buffered (does not go into effect) until another
blending control is set.

VL Keying

373

Table 15-5 summarizes the controls specific to wipes or that work differently
for wipes. Some of these controls work in conjunction with each other.

Table 15-5 Galileo Video Controls Specific to Wipes

Control Values Sets

VL_EV1_WIPE_ANGLE
type intVal

VL_EV1_WIPEANGLE_E
VL_EV1_WIPEANGLE_NE
VL_EV1_WIPEANGLE_N
VL_EV1_WIPEANGLE_NW
VL_EV1_WIPEANGLE_W
VL_EV1_WIPEANGLE_SW
VL_EV1_WIPEANGLE_S
VL_EV1_WIPEANGLE_SE

Wipe vector direction, that is, the direction the wipe appears to be
proceeding in as its position increases.

Note: VL_EV1_WIPEANGLE_N and VL_EV1_WIPEANGLE_S
do not work for the wipe types VL_EV1_WIPETYPE_DOUBLE
and VL_EV1_WIPETYPE_CORNER on Galileo Video.

VL_EV1_WIPE_FUZZ
type intVal

(-8,7) Sharpness of wipe transition band. As for
VL_EV1_KEYER_DETAIL, -8 is most gradual, +7 is sharpest.

VL_EV1_WIPE_SYMMETRY
type intVal

(0,1)
0 = off, 1 = on

Wipe symmetry (on or off) so that wipe proceeds in both
directions at once from the center line. Effect depends on type of
wipe: no effect for fades or tiling; enables VL_EV1_WIPE_CENT
for single, double, and corner wipes; enables
VL_EV1_WIPE_CENT_PERP control for double and corner
wipes.

VL_EV1_WIPE_POSN_PERP
type fractVal

numerator (0,1000)
denominator (1000)

Amount of progress of wipe, from none (numerator = 0) to full
(numerator = 1000), along a direction perpendicular to normal
wipe position VL_EV1_WIPE_POSN.

VL_EV1_WIPE_CENT
type fractVal

numerator (0,1000)
denominator (1000)

Offset that is center of a symmetrical wipe along wipe position. 0
means center is where VL_EV1_WIPE_POSN is 0, and 1000
means center is where VL_EV1_WIPE_POSN is 1000. For this
control to work for single, double, and corner wipes,
VL_EV1_WIPE_SYMMETRY must be on.

VL_EV1_WIPE_CENT_PERP
type fractVal

numerator (0,1000)
denominator (1000)

Offset that is center of a symmetrical wipe along a perpendicular
wipe position. 0 means center is where VL_WIPE_POSN_PERP is
0, and 1000 means center is where VL_WIPE_POSN_PERP is
1000. VL_WIPE_SYMMETRY must be on for this control to work
for double and corner wipes.

VL_EV1_WIPE_REPT_PERP
type intVal

(0,15) Number of repetitions perpendicular to wipe direction for single,
double, and corner wipes, and length of other side of rectangles
for tile wipe.

374

Chapter 15: VL Blending

Figure 15-10 shows relationships between the Galileo Video keying controls.

Figure 15-10 Galileo Video Keying Controls

Note: Controls are enclosed in lozenges;

VL_EV1_KEYER_VALUE_LUMA

values are not.

VL_EV1_KEYERMODE_LUMA

VL_EV1_KEYERMODE_CHROMA

VL_EV1_KEYERMODE_SPATIAL

VL_EV1_KEYER_RANGE_LUMA

VL_EV1_KEYER_VALUE_CHROMA_U

VL_EV1_KEYER_VALUE_CHROMA_V

VL_EV1_KEYER_RANGE_CHROMA_U

VL_EV1_KEYER_RANGE_CHROMA_V

VL_EV1_KEYER_DETAIL

VL_EV1_WIPE_FUZZ

VL_EV1_KEYER_MODE

* Applies only when VL_EV1_WIPE_SYMMETRY is set.

VL_EV1_KEYER_FG_OPACITY

VL_EV1_KEYER_DETAIL

VL_EV1_WIPE_TYPE

VL_EV1_WIPE_ANGLE

VL_EV1_WIPE_POSN

VL_EV1_WIPE_POSN_PERP

VL_EV1_WIPE_CENT

V
L_

E
V

1_
W

IP
E

T
Y

P
E

_F
A

D
E

V
L_

E
V

1_
W

IP
E

T
Y

P
E

_T
IL

E

V
L_

E
V

1_
W

IP
E

T
Y

P
E

_S
IN

G
LE

V
L_

E
V

1_
W

IP
E

T
Y

P
E

_D
O

U
B

LE

V
L_

E
V

1_
W

IP
E

T
Y

P
E

_C
O

R
N

E
R

VL_EV1_WIPE_CENT_PERP

VL_EV1_WIPE_REPT

VL_EV1_WIPE_REPT_PERP

VL_EV1_WIPE_SYMMETRY

VL_EV1_WIPE_INVERT

X X X

X XX X X

X XX X X

X X X

* * *

X X X

X

X

X

*

X XX X X

X

*

VL Blending Examples

375

VL Blending Examples

This section explains two example programs from /usr/people/4Dgifts/
examples/dmedia/video/vl:

• simpleblend.c

• simplewipe.c

Because the programs are lengthy, they are not duplicated here. Look at the
source code in a separate window, or print them out to look at while you
read their descriptions.

Caution: To simplify the code, these examples do not check returns. The
programmer should, however, always check returns.

Blending Video and Graphics

simpleblend.c, which blends video with graphics and outputs it to both a
graphics window and video out. The program:

• constrains the window’s aspect ratio

• checks that the device the user requested is in the device list

• sets up a path between the source (screen) and the drain (video)

• adds video source and a screen drain nodes to create the blend

• sets the keyer mode, keyer source, and blend controls

• displays the drain window and sets the video to appear in it

• specifies appropriate event handling

• starts data transfer

• specifies that video is updated if the user changes the size of the
window

376

Chapter 15: VL Blending

Creating a Simple Wipe Effect

Like simpleblend.c, simplewipe.c blends video with graphics and outputs it to
a graphics window and video out. When the user presses the w key, it
executes a wipe.

Specifically, in addition to doing everything that simpleblend.c does,
simplewipe.c:

• sets up blend parameters (VL_WIPE_TYPE, VL_WIPE_ANGLE,
VL_WIPE_CENT, VL_WIPE_REPT)

• calls a loop that sets the keyer mode to spatial and sets the position in
the loop; doswitchloop() and dowipe() execute the loop

• checks for the w key and calls dowipe(), which in turn calls
doswitchloop()

Chapter 1

PART FOUR

IndigoVideo Programming IV

Chapter 16, “Introduction to IndigoVideo Programming,”
introduces the IndigoVideo library and gives an overview of the features of the
IndigoVideo board.

Chapter 17, “Getting Started with the IndigoVideo Library,”
describes basic concepts for using the IndigoVideo board, and presents a sample
video application that displays live video input in a window.

Chapter 18, “Controlling the IndigoVideo Input Window,”
 explains how applications can position and scale the video input. It also explains
how to select different video sources, formats, and broadcast standards.

Chapter 19, “Producing IndigoVideo Output,”
explains how to encode a portion of your screen to video in real time. This
chapter also covers single-frame output.

Chapter 20, “Capturing Video from IndigoVideo,”
explains how to capture frames of video to memory.

Chapter 21, “Handling IndigoVideo Events,”
explains how to handle video events, such as video parameters being changed
by another process.

Chapter 22, “Using the IndigoVideo Utilities,”
 explains how to use the IndigoVideo end-user tools.

This chapter introduces the
IndigoVideo Library, which is the
software interface to the IndigoVideo
board for Indigo Entry graphics
workstations.

Introduction to IndigoVideo
Programming

Chapter 16

381

Chapter 16

16. Introduction to IndigoVideo Programming

The IndigoVideo board provides video input and output for IRIS Indigo
workstations equipped with Entry Graphics. The IndigoVideo Library
provides a software interface to the IndigoVideo board, enabling
applications to:

• display live video in a window

• capture live video to system memory

• encode graphics to video in real time

• produce high-quality single-frame video output

The IndigoVideo Library provides a C language API; this part of this guide
describes the use of those routines. The IndigoVideo library header file, /usr/
include/svideo.h, is compatible with the ANSI-C standard; however, the
IndigoVideo library does not comply with ANSI-C namespace conventions.

For an introduction to basic video concepts, read Chapter 11, “Video Basics,”
in Part III, “Video Programming,” of this guide, and consult the Glossary at
the end of this guide for definitions of video terms.

Part IV, “IndigoVideo Programming,”presents the IndigoVideo library from
a task-oriented perspective. Chapters are organized to cover topics in
roughly the order you would be concerned about them as you write
IndigoVideo programs.

Using the IndigoVideo Examples

The code examples in this part of this guide are online in the directory /usr/
people/4Dgifts/examples/dmedia/video/indigovideo. The README file in that
directory gives an overview of the programs and instructions for compiling
and running them. You must use the 4Dgifts login to compile and run these
programs.

382

Chapter 16: Introduction to IndigoVideo Programming

References for Video Programming

For more information on video, consult these references:

• Television Engineering Handbook, Benson, K. Blair, McGraw-Hill (New
York) 1986.

• Television Technology: Fundamentals and Future Prospects, Noll, A.
Michael, Artech House (MA) 1988.

• Lenk’s Video Handbook: Operation and Troubleshooting, Lenk, John D.,
McGraw-Hill (New York), 1991.

• Basic Television and Video Systems, Fifth Edition, Grob, Bernard,
McGraw-Hill (New York), 1984.

This chapter explains basic concepts
for programming with the
IndigoVideo Library, including
setting up video I/O through the
IndigoVideo board.

Getting Started with the
IndigoVideo Library

Chapter 17

385

Chapter 17

17. Getting Started with the IndigoVideo Library

This chapter describes the features and capabilities of the IndigoVideo board
and presents an annotated sample program that displays live video input in
a graphics window to help you get started with the IndigoVideo Library.

In this chapter:

• “IndigoVideo Basics” on page 385 describes the features and I/O
functions of the IndigoVideo board.

• “A Simple Program for Getting Started with IndigoVideo” on page 392
presents a simple IndigoVideo application that demonstrates the use of
the most basic IndigoVideo Library routines.

For an introduction to basic video concepts, read Chapter 11, “Video Basics,”
in Part III, “Video Programming,” and consult the Glossary at the end of this
guide for definitions of video terms.

IndigoVideo Basics

This section describes the IndigoVideo board and its I/O interface.

IndigoVideo

The IndigoVideo board attaches to the Indigo Entry Graphics board in your
Indigo workstation. On the back of the board is an I/O panel with a number
of video connectors, which you can use to attach video devices to the
IndigoVideo board. The IndigoVideo board translates video signals into a
form usable by the IRIS Indigo workstation. It also does the reverse,
translating graphics from the IRIS Indigo display into video signals.

386

Chapter 17: Getting Started with the IndigoVideo Library

Broadcast Standards

The IndigoVideo hardware supports the two most popular broadcast
standards, the National Television Systems Committee (NTSC) composite
video standard and the Phase Alternated by Line (PAL) standard.

Video and Videotape Formats

You can record video signals in a variety of videotape formats: S-VHS and
Hi-8mm are two examples of common videotape formats. Although
IndigoVideo doesn’t distinguish between individual tape formats, you need
to know what kind of connector your video equipment uses. The
IndigoVideo board has two kinds of input connectors: composite and S-Video.

Most home VCRs use composite connectors. S-Video, on the other hand,
carries the color and brightness components of the picture on separate wires;
hence, S-Video connectors are also called Y/C connectors. Most S-VHS and
Hi-8mm VCRs feature S-Video connectors.

In addition to composite and S-Video output, the IndigoVideo board
provides analog RGB output, in which the image data is carried as three
separate components: red, green, and blue intensity. The RGB output can be
used in conjunction with an external encoder to produce formats that
IndigoVideo does not support, or it can be used to drive an external video
monitor.

See “Videotape Formats” in Chapter 11 for more information about
videotape formats, which are summarized in Table 11-1 in that chapter.

IndigoVideo Data Formats

This section describes the image data formats used by IndigoVideo.
IndigoVideo uses three formats for image data: 32-bit RGB, 8-bit RGB, and
4:1:1 YUV. You should note that data coming from or going to the
IndigoVideo board is always ordered top-to-bottom. The IRIS Indigo, on the
other hand, commonly stores image data with lines ordered bottom-to-top.
Both IRIS Indigo and IndigoVideo store pixels from left to right within lines.

In the diagrams that follow, the bits are numbered from right to left, with the
least significant (rightmost) bit numbered zero.

IndigoVideo Basics

387

32-bit RGB

IndigoVideo uses 32-bit RGB format for single frame output, and it is
produced by some of the video capture convenience routines. This format
could also be called 24-bit RGB data, since each 32-bit pixel consists of 24 bits
of RGB data and 8 bits of unused space.

The format of these pixels is shown in Figure 17-1.

Figure 17-1 Format of 32-bit RGB Pixels

32-bit RGB is produced by the functions svCaptureOneFrame(),
svYUVtoRGB(), and svRGB8toRGB32(). The IRIS GL lrectwrite() function
also uses this format, but it expects rows of pixels to be ordered bottom-to-
top unless the default ordering has been changed using the IRIS GL
pixmode() function. As noted above, data sent to the IndigoVideo board
using the svPut24Frame() function should be ordered top-to-bottom. The
svYUVtoRGB() and svRGB8toRGB32() functions will return data ordered
top-to-bottom unless the invert parameter is TRUE.

8-bit RGB

The 8-bit RGB format stores 2 bits of blue and 3 bits each of red and green in
an 8-bit pixel. The format of the 8-bit RGB pixels is shown in Figure 17-2.

Figure 17-2 Format of 8-bit RGB Pixels

When you capture 8-bit RGB frames using IndigoVideo, you receive them
with the fields uninterleaved, that is, the data contains all of the even lines
(from top to bottom) followed by all of the odd lines.

B G R

31 23 15 7 0

R GB

7 0

388

Chapter 17: Getting Started with the IndigoVideo Library

4:1:1 YUV

The 4:1:1 YUV format is much closer in form to the original video signal than
the RGB formats described above. The YUV format is also much more
complicated. Each pixel is described by three components: one luminance
value (Y) and a pair of chrominance values (U and V); however, there are
four luminance samples to each pair of chrominance samples has (hence
4:1:1 YUV). This means that sets of 4 pixels share the same chrominance
values but have individual luminance values.

To further complicate matters, data from odd and even lines are interleaved
within individual 32-bit words. The format of these words is shown in
Figure 17-3.

Figure 17-3 Format of YUV Data Words

Each 32-bit word consists of 8 bits of unused space, followed by one Y
sample (8 bits) and 2 bits each of U and V from the odd line, then a Y sample
and 2 bits each of U and V from the even line.

By collecting the chrominance data from 4 consecutive 32-bit words, you get
a pair of chrominance samples for the odd line, and a pair of chrominance
samples for the even line. The upper 2 bits of U and V come in the first word,
the next highest set of bits comes in the next word, and so on. By putting
these chrominance samples together with the 4 odd and 4 even luminance
samples, you can reconstruct 8 YUV pixels. You can derive 8-bit red, green,
and blue values from the YUV values using the following formulas:

R = 1.164 × (Y − 16) + 1.596 × (V − 128)
G = 1.164 × (Y − 16) − 0.392 × (U − 128) −0.813 × (V − 128)
B = 1.164 × (Y − 16) + 2.017 × (U − 128)

Y YU V U V

31 23 15 7 0

odd line

even line

IndigoVideo Basics

389

As with the other forms of video data, lines of YUV data are ordered top-to-
bottom.

IndigoVideo I/O

Figure 17-4 shows the IndigoVideo I/O panel, which is accessible from the
back of the Indigo workstation.

IndigoVideo Board Input Port Specifications

At the top of the panel are three pairs of input connectors, labeled 1, 2, and
3. Each pair is made up of a composite video connector and an S-Video
connector. You can use only one of the connectors in a given pair at a time—
if you connect a composite video source and an S-Video source to the same
input pair, the IndigoVideo hardware will not be able to decode either source
properly.

The three input port pairs on the IndigoVideo board have the following
specifications:

• Composite VIDEO: 1.0 Vpp, 75 , sync negative

• S-VIDEO: DIN 4-pin

Below the input connectors, there are three output connectors—one
composite connector, one S-Video connector, and one RGB connector.

IndigoVideo Board Output Port Specifications

The three output ports on IndigoVideo board have the following
specifications:

• Composite VIDEO output: 1.0 Vpp, 75 , sync negative

• S-VIDEO output: DIN 4-pin

• RGB output: 15 pin D-connector, .714 Vpp, 75

The sync specification is:

• Sync: RS-170 television sync: −4Vpp @ 75

Outputs

VIDEO

or

S VIDEO

VIDEO

or

S VIDEO

VIDEO

or

S VIDEO

VIDEO

S VIDEO

RGB

Inputs

1

2

3

Figure 17-4 IndigoVideo I/O
Ports

390

Chapter 17: Getting Started with the IndigoVideo Library

Figure 17-5 shows video equipment connected to the I/O panel of the
IndigoVideo board.

Figure 17-5 Connecting Video Equipment to the Indigo Video Board

The next two sections briefly describe how the IndigoVideo board operates.

Video Input

Five basic steps are used to convert a video input signal to pixels that can be
displayed on the Indigo workstation:

1. The IndigoVideo board synchronizes with the video source by looking
for sync information in the video signal (see Figure 11-3).

2. The analog video signal is converted to a digital signal.

O

Inputs

1

2

VIDEO

S VIDEO

3

VIDEO
OUT

S VIDEO
OUT

VIDEO

S VIDEO

VIDEO

S VIDEO

RGB

1

2

NETWORK

Camcorder

Laser Disc

IndigoVideo Basics

391

3. The digital signal is decoded into a series of pixels in 4:1:1 YUV
colorspace.

A colorspace is simply a way of encoding color information. In RGB
colorspace, a color is defined by its red, green, and blue levels. In YUV
colorspace, a color is defined by its luminance and by two chrominance
components that determine its color. 4:1:1 means that the chrominance
components are subsampled; that is, for each four Y samples, there is
only one U sample and one V sample.

4. The YUV pixels are converted to 24-bit RGB pixels.

5. The 24-bit pixels are dithered down to 8-bit pixels.

Before they can be displayed on the Indigo workstation, the video
pixels must be reduced to 8-bit RGB pixels. IndigoVideo accomplishes
this by dithering the video image. Dithering uses a small number of
colors to simulate a larger number of colors using patterns of different
colored pixels; for example, a pattern of red and yellow pixels can be
used to represent orange.

6. The video image is scaled down, if necessary.

Video Output

In live video output mode, IndigoVideo receives 8-bit RGB pixels from the
Indigo graphics subsystem. These 8-bit pixels are converted to 24-bit RGB
pixels using a set of look-up tables. These 24-bit pixels drive a set of digital-
to-analog converters, which produce the analog RGB output, and also a
digital encoder, which produces composite and S-Video output. The digital
encoder also generates a composite sync signal, which can be used to
synchronize video devices with the IndigoVideo board. The timing for this
signal can be generated by the IndigoVideo board itself, or it can be derived
from either the input source or from a separate composite sync signal
connected to input #3.

392

Chapter 17: Getting Started with the IndigoVideo Library

A Simple Program for Getting Started with IndigoVideo

This section presents a sample program to help you get started with writing
a simple video application. Source code for the sample programs is located
in the /usr/people/4Dgifts/examples/dmedia/video/indigovideo directory, which is
also referred to as 4Dgifts. You must have the svideodev option installed to get
the gifts source, svideodev.sw.gifts. You also must have the IRIS Development
Option, dev, and the C language software, c, loaded before you can compile
the sample programs (use the versions command to find out which software
is loaded on your system). See the Svideo Release Notes for complete system
software requirements. Login as 4Dgifts to compile the examples and copy
files to your home directory before modifying them.

Example 17-1 contains a listing of simpleinput.c, a program that opens up a
window and displays live video input. This process has five basic steps:

1. Create a GL/X window.

2. Open the video device.

3. Set video parameters.

4. Associate video input with the GL/X window.

5. Wait for the user to quit.

To compile simpleinput.c, enter:

cc -o simpleinput simpleinput.c -lsvideo -lXext -lgl_s

You must link with the IndigoVideo Library (-lsvideo) to use the
IndigoVideo software. The linking order is specific: -lsvideo must appear
first, followed by -lXext to link with the X extensions Library.

Programs that use IRIS GL windowing and event handling must include gl/
gl.h and gl/device.h and must link with the shared IRIS GL (-lgl_s). Programs
that use that use the X Window System must include X11/Xlib.h before
including svideo.h, and must link with the X11 shared library (-lX11_s).

Note: This program uses IRIS GL windowing and event handling; however,
a mixed-model GL/X window and X11 event handling is recommended for
greater portability.

A Simple Program for Getting Started with IndigoVideo

393

Note: CPU-intensive programs that use IRIS GL windowing and event
handling should do a qtest() followed by sginap() if no events are waiting.

Example 17-1 Opening a Window to Display Live Video Input: simpleinput,c

#include <stdlib.h>
#include <svideo.h>
#include <gl/gl.h>
#include <gl/device.h>

main()
{
 long win, dev, params[2];
 short val;
 SVhandle V;

 /* Step 1: Open window */
 prefsize(SV_NTSC_XMAX, SV_NTSC_YMAX);
 win = winopen("video test");

 /* Step 2: Open video device */
 if ((V = svOpenVideo()) == NULL) {
 svPerror("open");
 exit(1);
 }

 /* Step 3: Set video source */
 params[0] = SV_SOURCE;
 params[1] = SV_SOURCE1;
 if (svSetParam(V, params, 2) < 0) {
 svCloseVideo(V);
 svPerror("set param");
 exit(1);
 }

 /* Step 4: Associate video input with window */
 if (svBindGLWindow(V, win, SV_IN_REPLACE) < 0) {
 svPerror("bind gl window");
 svCloseVideo(V);
 exit(1);
 }

394

Chapter 17: Getting Started with the IndigoVideo Library

 /* Step 5: wait for user to quit */
 qdevice(ESCKEY);
 qdevice(WINQUIT);
 qdevice(WINSHUT);
 while (1) {
 dev = qread(&val);
 switch (dev) {
 case ESCKEY:
 if (val) /* exit on key up */
 break;
 case WINQUIT:
 case WINSHUT:
 svCloseVideo(V);
 exit(0);
 break;
 }
 }
}

This program isn’t very flexible—it assumes that a composite NTSC video
source is connected to input #1—however, it demonstrates the basic
principles of programming with the IndigoVideo Library. Here’s a step-by-
step description of what the program does:

1. The program opens a window in which to display the video. First it
specifies the preferred size for the window using prefsize(), then it calls
winopen() to create the window. The winopen() routine returns a
window identifier, which is used in step 4 to associate the video input
with the window. The symbolic constants SV_NTSC_XMAX and
SV_NTSC_YMAX represent the dimensions of an NTSC video frame.

2. The program opens the video device. The svOpenVideo() routine
returns a video handle that is passed to other routines in the
IndigoVideo Library. This step also demonstrates the use of the
IndigoVideo error reporting routine, svPerror().

3. The program sets up the IndigoVideo board to receive video input from
source #1. This is the default input, so you could omit this step;
however, this step is included to demonstrate the use of the
svSetParam() routine. The svSetParam() routine can be used to select
input source, broadcast standard, and more. Note that it is not
necessary to set these parameters before associating video input with a
window; video parameters can be changed at any time. Also note that
once set up, live video display requires no CPU intervention.

A Simple Program for Getting Started with IndigoVideo

395

One of the arguments to svSetParam() is an array of long integers.
Even-numbered elements of this array represent parameters to be
changed, and the corresponding odd-numbered elements represent
parameter values. In this program, the parameter being set is
represented by the symbolic constant SV_SOURCE, and the value is
represented by the symbolic constant SV_SOURCE1.

4. After the setup is complete, the program attaches the video input to the
window, using the svBindGLWindow() routine. This routine takes
three arguments: a video handle, a window identifier, and a third
argument indicating how to display the video input. The sample
program uses the symbolic constant SV_IN_REPLACE for the third
argument, indicating that video should replace the contents of the
window. The other possible values for the third argument are
SV_IN_UNDER, for video underlay, SV_IN_OVER, for video overlay,
and SV_IN_OFF, to deactivate video display in the window.

5. Finally, the program enters an IRIS GL event handling loop, displaying
video input until the user elects to quit by pressing the <Esc> key. Once
set up, live video display requires no CPU intervention. When the user
exits, the program closes the video device by using the svCloseVideo()
routine. This routine deallocates the data structures associated with the
video handle.

More sophisticated event handling methods are presented later in this
guide—new development should use X event handling rather than IRIS
GL event handling. See Chapter 21, “Handling IndigoVideo Events,”for
more information on handling events.

396

Chapter 17: Getting Started with the IndigoVideo Library

This chapter explains how to set up
IndigoVideo input, including:

• designating an input source

• creating and configuring an
input window

• gaining exclusive use of the
IndigoVideo board

• combining video and graphics

Controlling the IndigoVideo
Input Window

Chapter 18

399

Chapter 18

18. Controlling the IndigoVideo Input Window

Chapter 17, “Getting Started with the IndigoVideo Library,” showed you
how to create a video input window. This chapter presents more details on
the process and demonstrates how to control various aspects of the video
display.

In this chapter:

• “Setting Input Parameters” on page 399 explains how to set input
parameters that provide information about the input source and signal
for the IndigoVideo board.

• “Querying Video Parameters” on page 401 describes how to obtain
information about the IndigoVideo board status.

• “Positioning and Scaling the Video Input” on page 402 explains how to
create and configure the video input window.

• “Preventing Other Programs from Using Video” on page 406 explains
how to take control of the IndigoVideo board for exclusive use.

• “Combining Video and Graphics” on page 406 provides suggestions for
using video with graphics, including overlays and underlays.

Setting Input Parameters

You can use the svSetParam() routine to set a number of different video
parameters. This section describes some of the parameters that affect the
video input window. See svGetParam(3V) for a complete list of parameters.

svSetParam() takes three arguments: a video handle, an array of long
integers specifying parameters and values, and an argument specifying the
length of the array. The values in the array are interpreted in pairs: the first
member of each pair represents the parameter to be changed; the second
member represents the new value for that parameter. The code fragment in

400

Chapter 18: Controlling the IndigoVideo Input Window

Example 18-1 sets up the IndigoVideo board to receive PAL input over an S-
Video connector.

Example 18-1 Setting up the IndigoVideo Board for PAL Input

SVhandle V;
long param[4];

/* . . . */
param[0] = SV_BROADCAST;
param[1] = SV_PAL;
param[2] = SV_VIDEO_MODE;
param[3] = SV_SVIDEO;
svSetParam(V, param, 4);

Selecting an Input Source

You can plug up to three video inputs into the IndigoVideo board and select
between them by changing the SV_SOURCE parameter with svSetParam().
Set SV_SOURCE to SV_SOURCE1, SV_SOURCE2, or SV_SOURCE3. These
constants correspond to the input connectors labeled 1, 2, and 3. The code
fragment in Example 18-2 demonstrates setting up the input source.

Example 18-2 Selecting a Video Input Source

void setSource(SVhandle V, int source)
{

long param[2];
if (source < 1 || source > 3) {

/* error */
}
param[0] = SV_SOURCE;
switch (source) {

case 1: param[1] = SV_SOURCE1;
break;

case 2: param[1] = SV_SOURCE2;
break;

case 3: param[1] = SV_SOURCE3;
break;

}
svSetParam(V, param, 2);

}

Querying Video Parameters

401

Selecting the Input Signal Type

To enable the IndigoVideo board to display video input correctly, you must
set it to the correct broadcast standard and format. These may be set using
svSetParam(). The broadcast standard parameter, SV_BROADCAST, may be
set to one of two values: SV_NTSC for NTSC video, or SV_PAL for PAL
video. The SV_VIDEO_MODE parameter controls input format; it can be set
to SV_COMP for composite video input, or SV_SVIDEO for S-Video input.

You can also set the default video mode and broadcast standard for each
input source using the Video Control Panel. This procedure is explained in
Chapter 22, “Using the IndigoVideo Utilities.”

Freezing and Restarting Video Input

Freeze the video input by setting the SV_FREEZE parameter to TRUE. Doing
so holds the current frame in the IndigoVideo frame buffer. Setting
SV_FREEZE to FALSE restarts live input.

Querying Video Parameters

You can determine the value of a parameter by using the svGetParam()
routine. This routine takes exactly the same arguments as svSetParam(), but
instead of reading new parameter values from the array, it fills in the current
parameter values in the appropriate places.

The code fragment in Example 18-3 displays the number of the currently
selected input source.

Example 18-3 Getting the Input Source Number

SVhandle V;
long param[2];
int source;

/* ... */
param[0] = SV_SOURCE;
svGetParam(V, param, 2);

402

Chapter 18: Controlling the IndigoVideo Input Window

switch(param[1]) {
case SV_SOURCE1: source = 1;
 break;
case SV_SOURCE2: source = 2;
 break;
case SV_SOURCE3: source = 3;
 break;

}
printf("Current video source is %d\n", source);

In addition to the input parameters already mentioned, two special read-
only parameters can be used in conjunction with svGetParam() to get
information about the video source (if any) connected to the current input:

 SV_SIGNAL_STD
can be used to query the broadcast standard used by the
current source. The parameter value returned is one of:

SV_NTSC for NTSC input
SV_PAL for PAL input
SV_NOSIGNAL if there is no signal on the current input
source

 SV_SIGNAL_COLOR
can be used to query whether the current input signal
contains color information. The returned value is either
TRUE or FALSE.

Positioning and Scaling the Video Input

By default, the IndigoVideo software displays video input at full resolution,
with the origin of the video image at the upper left corner of the video input
window. You can set the size and position of the video image using the
svSetSize() and svWindowOffset() routines. If you call one of these routines
after binding video to a window, you must rebind the video using either
svBindWindow() or svBindGLWindow() for the change to take effect.

Note: The IndigoVideo positioning and scaling routines take arguments in
pixels, not in IRIS GL coordinates. Because arguments to svSetSize() and
svWindowOffset() are not in IRIS GL coordinates, they are not affected by
the current IRIS GL transformation matrix.

Positioning and Scaling the Video Input

403

Setting the Size of the Video Image

You can set the size of the video image within certain constraints:

• The aspect ratio of the image (ratio of horizontal size to vertical size)
must remain constant.

• The image can be scaled only in increments of 8 pixels of horizontal size
and 6 pixels of vertical size.

• The image cannot be larger than the video frame size (640 by 480 pixels
for NTSC, 768 by 576 pixels for PAL).

To allow the user to resize the video input window, you can use the IRIS GL
minsize(), maxsize(), and stepunit() routines to constrain the window to a
useful size.

Example 18-4 contains a listing of sizeinput.c, in /usr/people/4Dgifts/examples/
dmedia/video/indigovideo, which implements a user-resizable video input
window.

Example 18-4 Creating a Scalable Video Input Window: sizeinput.c

/*
 * Scalable GL Video Input Window
 */

#include <stdlib.h>
#include <svideo.h>
#include <gl/gl.h>
#include <gl/device.h>

main()
{
 short val;
 long win, dev, x, y;
 SVhandle V;

 /* Open window */
 minsize(80, 60);
 stepunit(8, 6);
 maxsize(SV_NTSC_XMAX, SV_NTSC_YMAX);
 keepaspect(SV_NTSC_XMAX, SV_NTSC_YMAX);
 win = winopen("video in");

404

Chapter 18: Controlling the IndigoVideo Input Window

 if ((V = svOpenVideo()) == NULL) {
 svPerror("open");
 exit(1);
 }
 getsize(&x, &y);
 svSetSize(V, x, y);
 if (svBindGLWindow(V, win, SV_IN_REPLACE) < 0) {
 svPerror("bindwindow");
 svCloseVideo(V);
 exit(1);
 }

 /* Event loop */
 qdevice(ESCKEY);
 qdevice(WINQUIT);
 qdevice(WINSHUT);
 while (1) {
 dev = qread(&val);
 switch (dev) {
 case REDRAW:
 getsize(&x, &y); /* may have been resized */
 svSetSize(V, x, y);
 /* Re-bind window to scale input */
 if (svBindGLWindow(V, win, SV_IN_REPLACE) < 0){
 svPerror("bindwindow");
 svCloseVideo(V);
 exit(1);
 }
 break;

 case ESCKEY:
 case WINQUIT:
 case WINSHUT:
 svCloseVideo(V);
 winclose(win);
 exit(0);
 break;
 }
 }
}

Positioning and Scaling the Video Input

405

In the preceding example, the window is constrained to sizes supported by
the IndigoVideo software. The event loop handles the resizing of the video
input. When the program receives a REDRAW event, which could indicate a
size change, it determines the new size of the window, calls svSetSize() to
scale the video input appropriately, and rebinds the video input to the
window.

If you use svSetSize() to specify a size that IndigoVideo cannot produce, it
will select the closest possible size. To determine what size will result from a
given pair of arguments, use the svQuerySize() routine. The code fragment
in Example 18-5 finds the closest match to the desired size and resizes the
window accordingly.

Example 18-5 Approximating the Requested Video Window Size

SVhandle V;
long win;
int x, y, new_x, new_y;

/* ... */
svQuerySize(V, x, y, &new_x, &new_y);
prefsize(new_x, new_y);
winconstraints();
svSetSize(V, new_x, new_y);
svBindGLWindow(V, win, SV_IN_REPLACE);

Positioning the Video Image

By default, the origin of the live video image is at the upper left corner of the
live video input window. You can change this position using the
svWindowOffset() routine. To do this, specify vertical and horizontal
offsets, in pixels, from the upper left corner of the input window to the upper
left corner of the video image. These values may be negative, meaning that
you can use a small window to “pan” across the video image. The code
fragment in Example 18-6 demonstrates the use of svWindowOffset():

Example 18-6 Specifying a Video Window Offset

SVhandle V;
int xoffset, yoffset, win;

/* ... */
svWindowOffset(V, xoffset, yoffset);
svBindGLWindow(V, win, SV_IN_REPLACE);

406

Chapter 18: Controlling the IndigoVideo Input Window

Note: The live video image cannot be positioned such that any part of the
image is off the edge of the screen. Thus, if you have a window in the upper
left corner of the screen, negative window offsets will be ignored. The entire
video image must remain within the screen dimensions, even if you are
viewing only a small portion of the image.

Preventing Other Programs from Using Video

To prevent other programs from changing video parameters while your
program is running, you can request exclusive use of the IndigoVideo board
by calling the svUseExclusive() routine with a value of TRUE for the onoff
parameter, as demonstrated in Example 18-7.

Example 18-7 Getting Exclusive Use of the IndigoVideo Board

SVhandle V;
int status;

/* ... */
status = svUseExclusive(V, TRUE, SV_INPUT)
if (status == -1) {

svPerror("Couldn’t get exclusive use");
/* error handling*/

}

While one process has exclusive use of the IndigoVideo board, any other
process that makes a call to the IndigoVideo Library will receive an error.

To get out of exclusive use mode, call svUseExclusive() FALSE.

Combining Video and Graphics

You can combine video and graphics in a window using either of two modes:
video underlay or video overlay. In video replace mode, which has been
used in this guide until now, all of the pixels in the video image are
displayed. In video underlay and overlay modes, video pixels replace only
selected graphics pixels. In video underlay mode, the decision whether to
display a video pixel or a graphics pixel at a given location is based on the
value of the graphics pixel. In video overlay mode, this decision is based on
the value of the video pixel—meaning that in video underlay mode you

Combining Video and Graphics

407

specify which parts of your graphic image should be replaced by video; in
video overlay mode you specify which parts of the video image should be
replaced by graphics.

Video underlay mode is typically used for such applications as video titling,
where you want to display text or graphics superimposed over video. See
Figure 15-6 on page 368 in Chapter 15, “VL Blending,” for an illustration of
this technique, but use the method described in this section for producing
this effect with the IndigoVideo board.

You might use video overlay mode for a “TV weatherman” effect,
superimposing a live video image over a computer-generated backdrop. See
Figure 15-8 on page 370 in Chapter 15, “VL Blending,”for an illustration of
this technique, but use the method described in this section for producing
this effect with the IndigoVideo board.

Video Underlay Mode

In video underlay mode, video pixels replace graphics pixels that have a
value of zero. In IRIS GL programs that use RGB mode, video pixels replace
black graphics pixels. In X programs, and in IRIS GL programs that use color
map mode, video replaces the color that is mapped to zero. There are
advantages and disadvantages to both IRIS GL modes.

RGB Mode IRIS GL Programs

RGB mode allows you to take better advantage of the IRIS GL’s special 3D
effects such as lighting and shading; however, all black pixels are replaced
by video, so you can’t display black objects over video. Furthermore, in RGB
mode, the Indigo workstation simulates 24-bit color using a dithering
algorithm, which produces several black pixels in any expanse of a dark
color. This means that dark objects appear partially transparent, which is
usually the opposite of the desired effect. This effect is particularly
noticeable in double-buffered mode. Getting the effect you want in RGB
mode can require some experimentation.

408

Chapter 18: Controlling the IndigoVideo Input Window

A detailed description of IRIS GL lighting and shading routines is beyond
the scope of this guide, but here are some hints for producing good-looking
graphics in RGB mode:

• When drawing Gouraud shaded polygons, use fairly light colors—they
appear more opaque than darker colors because light colors do not
dither to black.

• When drawing lighted objects, use more than one light. With one light,
objects are defined by the contrast between light and shadow; however,
in video underlay mode, the shadows will look transparent. If you use
two lights of contrasting colors on opposite sides of an object, you can
define the object using the contrast between the two colors. For
example, light a sphere from above using a white light, and fill the
shadow by lighting it from below using a blue light. In some cases,
using more than one light can affect the graphics performance.

The Graphics Library Programming Guide covers Gouraud shading and IRIS
GL lighting in the chapters “Display and Color Modes,” and “Lighting.”

Color Map Mode IRIS GL Programs

Color map mode provides a certain flexibility in that it allows you to use any
color you want without the side effects dithering can produce; however, it is
much more difficult to produce lighted or Gouraud shaded polygons in
color map mode. For applications that do not require these effects, you’re
better off using color map mode. The Graphics Library Programming Guide
chapters listed in the previous section also describe lighting and Gouraud
shading in color map mode.

Example 18-8 demonstrates the use of video underlay mode with IRIS GL
color map mode. The program effectively clips the video input to a circle by
drawing a circle of color zero on a white background.

Example 18-8 Using IndigoVideo Underlay Mode

#include <gl/gl.h>
#include <svideo.h>
#include <gl/device.h>

Combining Video and Graphics

409

void
drawScene(void)
{

color(7);
clear();
color(0);
arcf(320.0, 240.0, 200.0, 1.0, 0.0);

}

main(void)
{

long win, dev;
short val;
SV_nodeP V;
prefsize(640, 480);
win = winopen("Video underlay test");
ortho2(1, 640, 1, 480);
if ((V = svOpenVideo()) == NULL) {

svPerror("open video");
exit(1);

}
if (svBindGLWindow(V, win, SV_IN_UNDER) < 0) {

svPerror("bind window");
svCloseVideo(V);
exit(2);

}
drawScene();
qdevice(ESCKEY);
qdevice(WINQUIT);
qdevice(WINSHUT);
while(1) {

dev = qread(&val);
 switch (dev) {

case ESCKEY:
case WINQUIT:
case WINSHUT:
 svCloseVideo(V);
 exit(0);
 break;
case REDRAW:
 drawScene();
 break;

}
}

}

410

Chapter 18: Controlling the IndigoVideo Input Window

Video Overlay Mode and Chroma Keying

In video overlay mode, video pixel values can be “keyed” out. Video pixels
replace graphics pixels, except where the value of a video pixel matches one
of the keyed values. This allows you to select certain colors in the video
image to be replaced by graphics.

The IndigoVideo board has a 256-entry array of chroma keys, called the
chroma key map. This array is indexed by pixel value (the 8-bit RGB pixels are
treated as 8-bit unsigned integers), so entry zero in the chroma key map
corresponds to pixels of value zero (black pixels). If the value of this entry is
1, black video pixels will be keyed out. If the value is zero, black video pixels
will be displayed.

You can load a new chroma key map by using the svLoadMap() routine. The
chroma key map is passed to svLoadMap() as a 256-entry array of rgb_tuple
structures, which are red, green, blue triplets. The red portion of the array is
used for the chroma key map, and the rest of the array is ignored. The code
fragment in Example 18-9 keys out black pixels by turning on the chroma
key for pixel value zero.

Example 18-9 Using Chroma Keying to Key Out Black Pixels

rgb_tuple chromamap[256];
SVhandle V;

/* ... */
chomamap.red[0] = 1;
svLoadMap(V, SV_CHROMA_KEY_MAP, chromamap);

Example 18-10 and Example 18-11 contain listings of two 4Dgifts programs
that work together. Example 18-10, voverlay.c, demonstrates how to use
IndigoVideo overlay mode. Example 18-11, chromamap.c, demonstrates how
to use the chroma key map to set chroma key entries that voverlay.c can use.

Combining Video and Graphics

411

Example 18-10 Using IndigoVideo Overlay Mode: voverlay.c

/*
 * voverlay.c:
 *
 * "pool" ball that "bounces" around a 2-d "surface".
 * RIGHTMOUSE stops ball
 * MIDDLEMOUSE increases y velocity
 * LEFTMOUSE increases x velocity
 *
 * Adapted to show IndigoVideo overlay mode. To use, also compile and run
 * the chromamap.c example. As you set chroma key entries with chromamap,
 * the graphics generated by this program will begin to appear.
 */

#include <stdio.h>
#include <svideo.h>
#include <gl/gl.h>
#include <gl/device.h>

long xmaxscrn, ymaxscrn; /* maximum size of screen in x and y */

#define XMIN 100
#define YMIN 100
#define XMAX 900
#define YMAX 700

long xvelocity = 0, yvelocity = 0;

main()
{
 Device dev;
 short val;
 long sizex, sizey;

 initialize();

412

Chapter 18: Controlling the IndigoVideo Input Window

 while (TRUE) {
 while (qtest()) {
 dev = qread(&val);
 switch (dev) {
 case REDRAW: /* redraw window re: move/resize/push/pop */
 reshapeviewport();
 ortho2(XMIN - 0.5, XMAX + 0.5, YMIN - 0.5, YMAX + 0.5);
 drawball();
 break;
 case LEFTMOUSE: /* increase xvelocity */
 if (xvelocity >= 0)
 xvelocity++;
 else
 xvelocity--;
 break;
 case MIDDLEMOUSE: /* increase yvelocity */
 if (yvelocity >= 0)
 yvelocity++;
 else
 yvelocity--;
 break;
 case RIGHTMOUSE: /* stop ball */
 xvelocity = yvelocity = 0;
 break;
 case ESCKEY:
 gexit();
 exit(0);
 }
 }
 drawball();
 }
}

initialize() {
 SVhandle V;
 long win;

 xmaxscrn = getgdesc(GD_XPMAX)-1;
 ymaxscrn = getgdesc(GD_YPMAX)-1;
 prefposition(xmaxscrn/4,xmaxscrn*3/4,ymaxscrn/4,ymaxscrn*3/4);
 win = winopen("voverlay");
 winconstraints();

 doublebuffer();
 gconfig();

Combining Video and Graphics

413

 shademodel(FLAT);

 ortho2(XMIN - 0.5, XMAX + 0.5, YMIN - 0.5, YMAX + 0.5);

 qdevice(ESCKEY);
 qdevice(LEFTMOUSE);
 qdevice(MIDDLEMOUSE);
 qdevice(RIGHTMOUSE);

 /* Open video device */
 if ((V = svOpenVideo()) == NULL) {
 svPerror("open");
 exit(1);
 }
 /* Associate video input with this window */
 if (svBindGLWindow(V, win, SV_IN_OVER) < 0) {
 svPerror("bindwindow");
 exit(1);
 }
}

drawball() {
 static xpos = 500,ypos = 500;
 long radius = 50;

 color(BLUE);
 clear();
 xpos += xvelocity;
 ypos += yvelocity;
 if (xpos > XMAX - radius ||
 xpos < XMIN + radius) {
 xpos -= xvelocity;
 xvelocity = -xvelocity;
 }
 if (ypos > YMAX - radius ||
 ypos < YMIN + radius) {
 ypos -= yvelocity;
 yvelocity = -yvelocity;
 }
 color(YELLOW);
 circfi(xpos, ypos, radius);
 swapbuffers();
}

414

Chapter 18: Controlling the IndigoVideo Input Window

Example 18-11 contains a listing of chromamap.c, a program that
demonstrates how to manipulate the chroma key map for programs that use
video overlay.

Example 18-11 Using the Chroma Key Map: chromamap.c

/*
 * chromamap.c
 *
 * This program demonstrates how to manipulate the IndigoVideo
 * chroma key map for programs that use the video overlay feature.
 * It shows the colors that correspond to the 256 entries in the map,
 * where 0 is the lower left corner and 255 is the upper right.
 * Clicking the left mouse button over a color toggles the value for that
 * entry. An X mark in a box means that color will be keyed out (i.e.,
 * the underlying graphics will show through.) A pull-down menu can
 * be used to clear or set all of the entries. The program initializes
 * all entries to 0 when it starts up.
 *
 * To demonstrate keying, compile and run the voverlay program in
 * this directory. As you set entries in the key map, the graphics
 * in voverlay will begin to appear. If you set all of the entries,
 * only the graphics will appear. If you clear all of the entries,
 * only video will appear.
 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>
#include <svideo.h>

static SVhandle V;
static SVcolorMap keymap;

static long rgb8to32[256];

#define grey9() cpack(0x00E0E0E0)
#define grey7() cpack(0x00B0B0B0)
#define grey5() cpack(0x00808080)
#define bordercolor() grey5()

static long xsize, ysize;
static long xorg, yorg;
#define YSIZE 16
#define XSIZE 16

Combining Video and Graphics

415

#define BORDERSIZE 0.25
#define MOUSEXMAP(x) (((XSIZE+2*BORDERSIZE)*((x)-xorg))/(xsize))
#define MOUSEYMAP(y) (((YSIZE+2*BORDERSIZE)*((y)-yorg))/(ysize))

static void
drawX(int i, int j)
{
 grey7();
 move2i(i,j);
 draw2i(i+1,j+1);
 move2i(i,j+1);
 draw2i(i+1,j);
}

static void
drawborder(int i, int j)
{
 bordercolor();
 move2i(i,j);
 draw2i(i+1,j);
 draw2i(i+1,j+1);
 draw2i(i,j+1);
 draw2i(i,j);
}

static void
drawcolor(int i, int j)
{
 cpack(rgb8to32[(j*XSIZE)+i]);
 rectfi(i,j,i+1,j+1);
}

static void
showmap(void)
{
 int i, j;

 /* Clear background */
 grey9();
 clear();

 ortho2(-BORDERSIZE, XSIZE+BORDERSIZE, -BORDERSIZE,YSIZE+BORDERSIZE);

416

Chapter 18: Controlling the IndigoVideo Input Window

 /* Draw colored boxes for the 256 RGB colors */
 for (j=0; j<YSIZE; j++) {
 for (i=0; i<XSIZE; i++) {
 drawcolor(i,j);
 if (keymap[i+(j*XSIZE)].red) {
 drawX(i,j);
 }
 }
 }

 /* Draw borders around all the boxes */
 bordercolor();
 if ((xsize/XSIZE)>4) {
 for (j=0; j<=YSIZE; j++) {
 move2i(0,j);
 draw2i(XSIZE,j);
 }
 for (j=0; j<=XSIZE; j++) {
 move2i(j,0);
 draw2i(j,YSIZE);
 }
 }
}
static void
fillmap(int fill)
{
 int i;
 for (i = 0; i < SV_CMAP_SIZE; i++)
 keymap[i].red = fill;
 showmap();
 if (svLoadMap(V, SV_CHROMA_KEY_MAP, keymap) < 0)
 printf("load map failed\n");
}

Combining Video and Graphics

417

main(void)
{
 short val;
 int menu;
 int r, g, b;
 float mx, my;

 /* Open video device */
 if ((V = svOpenVideo()) == NULL) {
 svPerror("open");
 exit(1);
 }

 /* Create mapping of 8-bit RGB to 32-bit equivalents */
 for (r=0; r<8; r++) {
 for (b=0; b<4; b++) {
 for (g=0; g<8; g++) {
 rgb8to32[(r<<5)|(b<<3)|g] =
 ((r<<5)|(r<<2)|(r>>1)) |
 (((g<<5)|(g<<2)|(g>>1)) << 8) |
 (((b<<6)|(b<<4)|(b<<2)|b) << 16);
 }
 }
 }

 keepaspect(XSIZE, YSIZE);
 winopen("chromamap");
 RGBmode();
 gconfig();

 qdevice(LEFTMOUSE);
 qdevice(MOUSEX);
 qdevice(MOUSEY);
 qdevice(MENUBUTTON);
 menu = defpup("chromamap %t|clear all|set all|exit");

 getsize(&xsize,&ysize);
 getorigin(&xorg,&yorg);

 /* Put map in known state */
 fillmap(0);

418

Chapter 18: Controlling the IndigoVideo Input Window

 while (1) {
 switch(qread(&val)) {
 case REDRAW:
 reshapeviewport();
 getsize(&xsize,&ysize);
 getorigin(&xorg,&yorg);
 showmap();
 break;

 case MOUSEX:
 mx = MOUSEXMAP(val) - .25;
 if (mx < 0.0)
 mx = 0.0;
 else if (mx >= XSIZE)
 mx = XSIZE-1;
 break;

 case MOUSEY:
 my = MOUSEYMAP(val) - .25;
 if (my < 0.0)
 my = 0.0;
 else if (my >= YSIZE)
 my = YSIZE-1;
 break;

 case LEFTMOUSE:
 /* Toggle the entry’s key */
 if (val) {
 int i = (int)mx + (int)my * XSIZE;

 keymap[i].red = !keymap[i].red;

 drawcolor((int)mx, (int)my);
 if (keymap[i].red) {
 drawX((int)mx, (int)my);
 }
 drawborder((int)mx, (int)my);

 if (svLoadMap(V, SV_CHROMA_KEY_MAP, keymap) < 0)
 printf("load map failed\n");
 }
 break;

Combining Video and Graphics

419

 case MENUBUTTON:
 if (val) {
 switch (dopup(menu)) {
 case 1:
 fillmap(0);
 break;
 case 2:
 fillmap(1);
 break;
 case 3:
 exit(0);
 }
 }
 break;

 }
 }
}

420

Chapter 18: Controlling the IndigoVideo Input Window

This chapter explains how to set up
IndigoVideo output, including:

• designating an output area

• outputting one frame at a time

Producing IndigoVideo Output

Chapter 19

423

Chapter 19

19. Producing IndigoVideo Output

Producing live video output from the IndigoVideo board is simple. The
IndigoVideo board constantly encodes a portion of the screen to video unless
output has been explicitly turned off. You can also use IndigoVideo to
produce single-frame output. In single-frame output mode, both live input
and live output are disabled.

In this chapter:

• “Selecting the IndigoVideo Live Output Area” on page 423 explains
how to designate a portion of the screen to be output to video.

• “Setting Output Parameters” on page 426 explains how to set up the
output configuration.

• “Generating Single-frame Output” on page 426 explains how to output
video one frame at a time.

Selecting the IndigoVideo Live Output Area

Select the portion of the screen to be output using the svOutputOffset()
routine. This routine specifies the upper left corner of the output “window.”
The broadcast standard parameter (SV_BROADCAST) determines the size
of the output area—640 by 480 pixels for NTSC, 768 by 576 pixels for PAL.
svOutputOffset() does not create an actual window, and the output area is
not in any way delineated on the Indigo workstation monitor.

424

Chapter 19: Producing IndigoVideo Output

Example 19-1 demonstrates setting the location of the IndigoVideo output
area.

Example 19-1 Setting the Location of the IndigoVideo Output Window

#include <stdio.h>
#include <stdlib.h>
#include <svideo.h>

/*
 * Simple Output Window
 * Change output location of NTSC video window
 */

main(int argc, char *argv[])
{

int xstart, ystart;
SVhandle V;

if (argc != 3) {
fprintf(stderr, "Usage: %s x_start y_start\n",
argv[0]);
exit(1);

}
xstart = atoi(argv[1]);
ystart = atoi(argv[2]);

/* open video device */
if ((V = svOpenVideo()) == NULL) {

svPerror("open");
exit(1);

}

/* change location of output window */
svOutputOffset(V, xstart, ystart);
exit(0);

}

You can use this program to record the output of any graphics program to
videotape.

Selecting the IndigoVideo Live Output Area

425

To select an output window:

1. Use xwininfo(1) to get the location of the desired window on the screen
by entering:

xwininfo

2. Place the mouse cursor in the window that you want information about
and click any of the mouse buttons. xwininfo displays information
about the selected window, including the coordinates of its upper left
corner:

xwininfo ==> Window id: 0x3400001 (Hubert)
==> Absolute upper-left X: 14
==> Absolute upper-left Y: 156
...

3. You can then use these coordinates as arguments to vout to place the
output area over the selected window:

vout 14 156

To incorporate video output into a program, you can use the code fragment
from Example 19-2 to place the upper left corner of the output area at the
upper left corner of the current IRIS GL window.

Example 19-2 Aligning a Video Output Area with an IRIS GL Window

long x, y, xsize, ysize, screensize;
SVhandle V;

/* ... */
getorigin(&x, &y);
getsize(&xsize, &ysize);
screensize = getgdesc(GD_YPMAX);
y = screensize - (y + ysize);
svOutputOffset(V, x, y);

Your program should recalculate the output offset whenever a “REDRAW”
event is received so that the program relocates the output area whenever you
move the window.

426

Chapter 19: Producing IndigoVideo Output

Setting Output Parameters

This section explains how to set parameters that affect live video output.

Turning Output On and Off

The SV_VIDEO_OUTPUT parameter can be used to turn live video output
on and off. The default value for SV_VIDEO_OUTPUT is TRUE. Setting
SV_VIDEO_OUTPUT to FALSE disables live video output.

Synchronizing Output with Input

The IndigoVideo board normally synchronizes video input and output so
that they have the same field rates. This is necessary if you are doing any
input; however, when you are using the IndigoVideo board for output only,
you will get better results if you disable this synchronization by setting
SV_SLAVE to FALSE. The default value for SV_SLAVE is TRUE.

Filtering Output

When encoding dithered graphics to video, you may encounter vertical
bands on the composite output. You can eliminate these by setting
SV_OUTPUT_FILTER to TRUE. The default value for SV_OUTPUT_FILTER
is FALSE.

Generating Single-frame Output

In single-frame output mode, the IndigoVideo board is configured as a 24-
bit RGB framebuffer, and both live input and live output are disabled.
Sending the board a still frame automatically reconfigures the board into
single-frame output mode.

Use the svPutFrame() routine to send a still frame to the IndigoVideo board.
The data must be in the format used by the IRIS GL lrectwrite() routine (32-
bit pixels, ordered 0x00BBGGRR, that is, 1 empty byte, followed by 1 byte
each of blue, green, and red).

Generating Single-frame Output

427

The rows of pixels must be ordered top-to-bottom. The video capture
routines also use this 32-bit RGB format. See Chapter 20, “Capturing Video
from IndigoVideo,” for information on the video capture routines, and
“IndigoVideo Data Formats” in Chapter 17 for information on the data
formats used by IndigoVideo.

Exit single-frame mode by calling svPutFrame() with a NULL frame pointer.

Example 19-3 reads an RGB image file and sends it to the IndigoVideo board
as a still frame.

Example 19-3 Sending a RGB Image as a Still Video Frame

/*
 * Use video card as a 24 bit RGB framebuffer.
 * ipaste SGI image file to screen, vpaste image file to
video
 */

#include <stdio.h>
#include <stdlib.h>
#include <svideo.h>
#include <gl/image.h>

static void imgerror(char *);
static long getvideoparam(SVhandle, long);
static void sgiimage_to_buf(IMAGE *, unsigned long *,
 unsigned long, unsigned long);

int main(int argc, char *argv[])
{

unsigned long *rgb_buf, x_size, y_size;
IMAGE* ip;
SVhandle V;
int pal_mode = 0;
char line[30];
if (argc != 2) {

fprintf(stderr, "Usage: %s imagefile\n", argv[0]);
exit(1);

}
i_seterror(imgerror);

428

Chapter 19: Producing IndigoVideo Output

/* Open video device */
if ((V = svOpenVideo()) == NULL {

svPerror(“open”);
exit(1);

}
/* Size image according to broadcast standard */
pal_mode = (getvideoparam(V, SV_BROADCAST) == SV_PAL);
if (pal_mode) {

x_size = SV_PAL_XMAX;
y_size = SV_PAL_YMAX;

} else {
x_size = SV_NTSC_XMAX;
y_size = SV_NTSC_YMAX;

}
/* Open image */
if((ip = iopen(argv[1],"r")) <= (IMAGE*)0) {

fprintf(stderr, "could not open image file %s\n",
 argv[1]);
exit(1);

}

rgb_buf = (unsigned long *)malloc(x_size * y_size *
sizeof(long));

/* Convert to RGB buffer */
sgiimage_to_buf(ip, rgb_buf, x_size, y_size);

iclose(ip);

/* Output 24-bit RGB image */
if (svPutFrame(V, (char *)rgb_buf) < 0) {

svPerror("putframe");
svCloseVideo(V);
exit(1);

}
printf("Type <Enter> to exit:");
(void) gets(line);
exit(0);

}
static void
imgerror(char *s)
{

fputs(s, stderr);
}

Generating Single-frame Output

429

/* center SGI image file in buffer */
static void
sgiimage_to_buf(IMAGE *ip, unsigned long *rgb_buf, unsigned
long bxsize, unsigned long bysize)
{

short *red, *green, *blue, *r, *g, *b;
int bxstart, ixstart, bystart, iystart;
int iy, by, x, nx, ny;
unsigned long *rgb;
red = malloc(ip->xsize * sizeof(short));
green = malloc(ip->xsize * sizeof(short));
blue = malloc(ip->xsize * sizeof(short));
bzero(rgb_buf,bxsize*bysize*sizeof(long));
if (ip->xsize > bxsize) {

bxstart = 0;
ixstart = (ip->xsize - bxsize)/2;
nx = bxsize;

} else {
ixstart = 0;
bxstart = (bxsize - ip->xsize)/2;
nx = ip->xsize;

}
if (ip->ysize > bysize) {

bystart = 0;
iystart = (ip->ysize - bysize)/2;
ny = bysize;

} else {
iystart = 0;
bystart = (bysize - ip->ysize)/2;
ny = ip->ysize;

}
for (iy=iystart, by=bystart; iy<iystart + ny; iy++, by++)
{

getrow(ip, red, iy, 0);
getrow(ip, green, iy, 1);
getrow(ip, blue, iy, 2);

rgb = &rgb_buf[(by*bxsize) + bxstart];
r = &red[ixstart];
g = &green[ixstart];
b = &blue[ixstart];
for (x = 0; x < nx; x++) {
 *rgb++ = (*b++ << 16) | (*g++ << 8) | *r++;
}

}

430

Chapter 19: Producing IndigoVideo Output

free(red);
free(green);
free(blue);

return 0;
}

static long
getvideoparam(SVhandle V, long arg)
{
 long pvbuf[2];
 pvbuf[0] = arg;
 if (svGetParam(V, pvbuf, 2) < 0)
 svPerror(“svGetParam”);
 return pvbuf[1];
}

This chapter explains how to capture
video using the IndigoVideo board.

Capturing Video from IndigoVideo

Chapter 20

433

Chapter 20

20. Capturing Video from IndigoVideo

This chapter explains how to capture video using the IndigoVideo board.
The IndigoVideo Library provides these three methods for capturing video:

• single frame

• burst mode

• continuous mode

In this chapter:

• “Captured Video Data Formats” on page 434 provides a brief
introduction to the data formats for capturing video.

• “Capturing a Single Video Frame” on page 436 describes the single-
frame capture method. You can easily capture a single frame of video
with just one call to the convenience routine svCaptureOneFrame().

• “Capturing Video Frames in Burst Mode” on page 439 describes the
burst-mode capture method. In burst mode, IndigoVideo captures a
buffer full of sequential frames at full frame rate in most formats. You
can use burst mode capture in conjunction with a computer-
controllable video device to read in segments of video and stop the
deck while your program processes the buffer full of frames.

• “Capturing Video Frames in Continuous Mode” on page 441 describes
the continuous-mode capture method. In continuous mode,
IndigoVideo captures frames of video into a queue at less than full
frame rate. In this mode, you can capture reduced size and reduced
frame rate video directly to disk, allowing you to collect images for a
movie without a computer-controllable video device. In continuous
capture mode, you can capture frames at no more than half the normal
frame rate.

• “Using Data Conversion Routines” on page 444 describes how to
convert video data for graphics display.

434

Chapter 20: Capturing Video from IndigoVideo

Captured Video Data Formats

This section describes the data formats used by the IndigoVideo Library
capture routines. For more information on these formats, see “IndigoVideo
Data Formats” in Chapter 17. The data formats are listed below, along with
the symbolic constants that the IndigoVideo Library uses to identify them.

SV_RGB8_FRAMES
This is the default format. In this mode, IndigoVideo
captures 8-bit RGB frames. The fields that make up these
frames are not interleaved; that is, all of the odd lines in the
image come first, followed by all the even lines. 8-bit RGB
frames are dithered unless the SV_DITHER parameter is set
to FALSE.

SV_YUV411_FRAMES_AND_BLANKING_BUFFER
In this mode, the IndigoVideo board captures full-size YUV
frames, complete with the data carried in the blanking
interval of the video signal. YUV format provides the best
resolution and the most accurate color representation of the
available options. The blanking portion of the video signal
is sometimes used to carry extra information, such as the
closed captioning provided on some television broadcasts.
The blanking buffer takes the form of an extra 22 lines of
data preceding the picture data; therefore, frames in this
format are 640 by 502 pixels (NTSC) or 768 by 598 pixels
(PAL). Use the svFindVisibleRegion() routine to find the
first line of the image data following the blanking buffer.

SV_RGB32_FRAMES
This format is not produced directly by IndigoVideo, but is
produced by the convenience routines
svCaptureOneFrame() and svYUVtoRGB(). In these
frames, each pixel is represented by a 32-bit word
containing 24 bits of RGB data.

SV_YUV411_FRAMES
This format consists of interleaved 4:1:1 YUV frames
without the blanking data mentioned above. This format is
not produced directly by the IndigoVideo hardware, so it
cannot be captured in burst capture mode; however, the
other capture routines produce this format. Use
svYUVtoRGB() to convert YUV frames to 24-bit RGB.

Captured Video Data Formats

435

Table 20-1 summarizes the storage requirements for the various data
formats:

Several of the capture routines take an svCaptureInfo structure as an
argument. The fields in the svCaptureInfo structure are listed in Table 20-2.

Note that the width and height members of the svCaptureInfo structure are
input-output parameters; that is, if you set them to an unsupported size such
as 321 by 243 pixels, they will be set to the nearest approximation of the
requested size by the capture routines.

If you are capturing 8-bit RGB frames, and you do not specify width and
height, the IndigoVideo Library will use the width and height of the live
video input window, if one is active. The video capture routines set the size
of the video image to the requested size, so if you have a live video input
window active, you may have to reset the size of the video image after
capturing frames.

Table 20-1 Pixel Sizes for Video Data

Format Bytes per Pixel

8-bit RGB 1

32-bit RGB 4

YUV 2

Table 20-2 Fields in the svCaptureInfo Structure

Field Value

format format (one of the symbolic constants listed above)

width width of captured frames, in pixels

height height of captured frames, in pixels

size size of the capture buffer, in frames

samplingrate used for continuous capture

436

Chapter 20: Capturing Video from IndigoVideo

Capturing a Single Video Frame

The IndigoVideo Library provides a convenient way to capture a single
frame of video in any of the supported formats. The svCaptureOneFrame()
routine captures data into a user-allocated buffer. This buffer must be big
enough to hold a single frame in the specified format.

You can use the svQueryCaptureBufferSize() routine to determine the size
of buffer required by svCaptureOneFrame(), then use malloc() to reserve a
buffer of the appropriate size, as demonstrated in Example 20-1.

Example 20-1 Determining the Capture Buffer Size

SVhandle V;
svCaptureInfo capInfo;
char *buffer;
int width, height, bufSize;
 /* ... */
capInfo.format = SV_RGB8_FRAMES;
capInfo.width = width;
capInfo.height = height;
(void) svQueryCaptureBufferSize(V, &capInfo, &bufSize);
buffer = malloc(bufSize);

Example 20-2 contains a listing of the /usr/people/4Dgifts/examples/dmedia/
video/indigovideo program rgbgrab.c, which demonstrates the use of
svCaptureOneFrame(). This program lets the user click the left mouse
button to grab a frame of 8-bit RGB data and display it in a window. See
oneframe.c for an example of capturing other data formats.

Capturing a Single Video Frame

437

Example 20-2 Grabbing a Single Frame of 8-bit RGB data: rgbgrab.c

/*
 * Simple frame grabbing using video capture.
 *
 * To use: click on the left mouse button in either window
 * to grab a frame and display it.
 */

#include <stdio.h>
#include <stdlib.h>
#include <svideo.h>
#include <gl/gl.h>
#include <gl/device.h>

#define RGBBUFSIZE (SV_NTSC_XMAX*SV_NTSC_YMAX)
static char captureData[RGBBUFSIZE], rgbbuf[RGBBUFSIZE];

main()
{
 SVhandle V;
 long dev, live_win, still_win;
 short val;
 int w, h;

 /* Open window */
 foreground();
 prefsize(SV_NTSC_XMAX, SV_NTSC_YMAX);
 still_win = winopen("Grabbed frame");
 RGBmode();
 gconfig();
 pixmode(PM_SIZE, 8);
 prefsize(SV_NTSC_XMAX, SV_NTSC_YMAX);
 live_win = winopen("Live video");

 /* Open video device */
 if ((V = svOpenVideo()) == NULL) {
 svPerror("open");
 exit(1);
 }
 /* Associate video input with this window */
 if (svBindGLWindow(V, live_win, SV_IN_REPLACE) < 0) {
 svPerror("bindwindow");
 svCloseVideo(V);
 exit(1);
 }

438

Chapter 20: Capturing Video from IndigoVideo

 printf("Use leftmouse to grab frame\n");

 /* Event loop */
 qdevice(LEFTMOUSE);
 qdevice(WINQUIT);
 qdevice(WINSHUT);
 qdevice(ESCKEY);
 while (1) {
 dev = qread(&val);
 switch (dev) {
 case LEFTMOUSE:
 if (val != 1) /* button-press */
 break;
 w = SV_NTSC_XMAX;
 h = SV_NTSC_YMAX;
 if (svCaptureOneFrame(V, SV_RGB8_FRAMES,
 &w, &h, (char *)captureData) < 0) {
 svPerror("captureburst");
 exit(-1);
 }
 svInterleaveFields(TRUE, captureData, rgbbuf, w,
h);
 winset(still_win);
 lrectwrite(0, 0, w-1, h-1, (unsigned long *)
rgbbuf);
 winset(live_win);
 break;

 case ESCKEY:
 if (val) /* exit on key up */
 break;
 case WINQUIT:
 case WINSHUT:
 svCloseVideo(V);
 winclose(live_win);
 winclose(still_win);
 exit(0);
 break;
 }
 }
}

Capturing Video Frames in Burst Mode

439

Capturing Video Frames in Burst Mode

Use the svCaptureBurst() routine to capture a contiguous series of frames
into a previously allocated buffer. In burst mode, you can capture full-sized
YUV frames with blanking buffers or 8-bit RGB frames at full or reduced
size. Initiating a burst capture puts the IndigoVideo board into exclusive
mode, which remains set until the capture is complete or an error occurs.

You must pass svCaptureBurst() a pointer to an svCaptureInfo structure,
which determines the number and type of frames to be captured. This
svCaptureInfo structure can also be passed to svQueryCaptureBufferSize()
to determine how much memory to allocate for the capture buffer.

The fields in the svCaptureInfo structure are listed in Table 20-2. Remember
that the width and height members of the svCaptureInfo structure are input-
output parameters; if you set them to an unsupported size, they will be set
to the nearest approximation of the requested size when you call
svQueryCaptureBufferSize() or svCaptureBurst().

The final argument to svCaptureBurst() is an optional pointer to a bitvector
for the SV_RGB8_FRAMES format, which can be used to determine whether
any fields have been dropped during the capture. Fields must occasionally
be dropped during capture to avoid visible tearing in the image due to scan
rate conversion. The SV_FIELDDROP parameter controls whether fields are
dropped, see svGetParam(3) for details.

Every captured frame is represented by a pair of status bits (one for each
field) in the bitvector. Each bit is set to either SV_EVEN_FIELD or
SV_ODD_FIELD. Every frame should consist of an even field followed by an
odd field; if this is not true, then one or more fields have been dropped
during the capture. Use the SV_GET_FIELD macro, which is defined in
svideo.h, to determine the even or odd value for a specific field.

440

Chapter 20: Capturing Video from IndigoVideo

The code fragment in Example 20-3 prints the even/odd values for the fields
that make up the frames from a captured burst.

Example 20-3 Using the SV_GET_FIELD Macro

for (f = 0; f < info->size; f++) {
 printf("%s-%s ",

SV_GET_FIELD(framevec, 2*f) == SV_EVEN_FIELD ? "even" :
"odd",
SV_GET_FIELD(framevec, 2*f+1) == SV_EVEN_FIELD ? "even" :
"odd");

}
putchar(’\n’);

The status bits are filled in starting with the least significant bit in the first
byte of the bitvector. You must allocate one byte of bitvector for every four
frames or fraction thereof. Use the SV_BITVEC_SIZE macro to calculate the
size of the buffer in bytes for a given number of frames.

The format can be either 8-bit RGB or YUV with blanking buffer. This is
because data is transferred directly from IndigoVideo to memory, and the
IndigoVideo hardware produces only these two formats.

If you need 32-bit RGB frames, you can capture YUV frames and use
svFindVisibleRegion() and svYUVtoRGB() to convert the data, as
discussed in “Converting YUV Data to RGB” on page 444.

See the burstcapt.c sample program in /usr/people/4Dgifts/examples/dmedia/
video/indigovideo for a demonstration of how to capture and display a burst
of frames in either format.

The number of frames that can be captured in burst mode is limited to what
will fit in the memory buffer, which has a maximum size of 8 MB. The frame
size affects how many frames will fit in the buffer, because larger frames
have more data.

Note: Currently, svCaptureBurst() can only capture YUV frames with
blanking data at half the full frame rate.

Capturing Video Frames in Continuous Mode

441

The code fragment in Example 20-4 shows how to use svCaptureBurst().

Example 20-4 Capturing Frames in Burst Mode

SVhandle V;
char *buffer, *bitVector;
int numberOfFrames=8, bufSize, bitVectorSize;
svCaptureInfo capInfo;
/* ... */
capInfo.format = SV_YUV411_FRAMES;
capInfo.width = SV_PAL_XMAX;
capInfo.height = SV_PAL_YMAX;
capInfo.size = numberOfFrames;
(void) svQueryCaptureBufferSize(V, &capInfo, &bufSize);
buffer = malloc(bufSize);
bitVectorSize = numberOfFrames / 4 + 1;
bitVector = malloc(bitVectorSize);
if (svCaptureBurst(V, &capInfo, buffer, bitVector) < 0) {

svPerror("capture burst");
} else { /* process frames */
}

Capturing Video Frames in Continuous Mode

In continuous capture mode, IndigoVideo writes frames of video into a
queue while your program reads frames out of the queue. To enter
continuous capture mode, call svInitContinousCapture(), which allocates
memory for the capture queue and begins capturing frames. You can read
frames from the queue using the svGetCaptureData() routine. Once you are
done with a frame, you must release it using svUnlockCaptureData(). When
you are done capturing frames, call svEndContinuousCapture() to leave
continuous capture mode.

Continuous capture mode does not give you full frame rate—the maximum
frame rate achievable in this mode is one half the normal frame rate. The
samplingrate member of the svCaptureInfo structure specifies the number of
frames seen for each frame captured. Thus, a sampling rate of two captures
gives you every other frame, and a sampling rate of four captures gives you
every fourth frame.

442

Chapter 20: Capturing Video from IndigoVideo

Entering Continuous Capture Mode

Use svInitContinousCapture() to enter continuous capture mode.

The code fragment in Example 20-5 demonstrates how to initialize
continuous capture. See the contcapt.c sample program in /usr/people/4Dgifts/
examples/dmedia/video/indigovideo for a complete program using continuous
capture.

Example 20-5 Initializing Continuous Capture Mode

SVhandle V;
int success;
int width=320, height=240, queueSize=16, samplingRate=2;
svCaptureInfo capInfo;

/* ... */
capInfo.format = SV_RGB8_FRAMES;
capInfo.width = width;
capInfo.height = height;
capInfo.size = queueSize;
capInfo.samplingrate = samplingRate;
success = svInitContinuousCapture(V, capInfo);

svInitContinousCapture() allocates the frame capture queue and takes
control of the IndigoVideo board using the svUseExclusive() routine. If
another program already has exclusive use of the board,
svInitContinousCapture() returns -1; if it succeeds,
svInitContinuousCapture() returns 0. In this example, 8-bit RGB frames are
being captured at half size and half frame rate.

Call svEndContinuousCapture() after you have completed video capture, to
release control of the board. If you release control of the video board using
svUseExclusive() during continuous capture mode, continuous capture
mode is automatically terminated.

Accessing Captured Data

To access the next frame in the video capture queue, use the
svGetCaptureData() routine. When you’re done with the frame, release it
using svUnlockCaptureData(), so that IndigoVideo can reuse the memory.

Capturing Video Frames in Continuous Mode

443

The code fragment in Example 20-6 demonstrates how to access and release
captured frames.

Example 20-6 Accessing and Releasing Captured Frames

SVhandle V;
void *data;
long fieldID;
long curFrame, maxFrames;

/* ... */
while (TRUE) {

svGetCaptureData(V, &data, &fieldID);
if (data == NULL) {

/* no frame available yet */
sginap(1);

} else {
/* process data */
svUnlockCaptureData(V, data);
curFrame++;
if (curFrame == maxFrames) break;

}
}

The data parameter is pointed to the next frame in the queue, and the fieldID
parameter is filled in to indicate the ID of the first field in the frame. If there
are no frames in the queue, the data parameter is set to NULL (this will
happen if you are processing frames faster than they are captured).

Because there are two fields in each frame, the fieldID value increases by 2 for
each video frame. Therefore, for a sampling rate of S, the fieldID should
increase by 2 × S between captured frames. If the fieldID increases by more
than 2 × S between captured frames, you have missed one or more frames.
This could be because the system load is high, or because the queue has filled
up, forcing the IndigoVideo board to drop frames.

Although you don’t have to unlock a frame before you get the next one, it’s
a good idea; if you keep a lot of frames locked, you will probably force the
IndigoVideo software to drop frames. At any rate, you should unlock frames
in the same order in which you received them. The IndigoVideo software
writes the frames in order, and if it encounters a locked frame, it will block
until the frame is unlocked.

444

Chapter 20: Capturing Video from IndigoVideo

The data parameter points to memory in the queue, which may be
overwritten as soon as you release the element. Once you have the queue
element, you’ll probably want to write it to disk or copy it to a location where
it won’t be overwritten.

Leaving Continuous Capture Mode

To leave continuous capture mode, call svEndContinuousCapture(), as
demonstrated below:

SVhandle V;
/* ... */

svEndContinuousCapture(V);

Using Data Conversion Routines

This section describes the convenience routines for converting data from
IndigoVideo into other formats. For more information on the various data
formats that IndigoVideo uses, see “IndigoVideo Data Formats” in
Chapter 17.

Converting YUV Data to RGB

The IndigoVideo Library provides a utility routine, svYUVtoRGB(), for
converting YUV frames to RGB format. This routine produces 32-bit pixels,
as used by the IRIS GL lrectwrite() routine. Each pixel contains 24 bits of
RGB data and 8 bits of unused space. (In the YUV format, a pixel takes up
only 16 bits, so if you’re trying to record frames to disk as fast as possible,
you should store the YUV data directly and convert it later.)

Rows of pixels in the YUV frames are ordered top-to-bottom. This differs
from the default ordering used by the IRIS GL lrectwrite() routine, which is
bottom-to-top. If you set the invert parameter to TRUE, the svYUVtoRGB()
routine will return an RGB frame with lines ordered bottom-to-top. If invert
is FALSE, svYUVtoRGB() will not perform this inversion (this is useful
because the X Window System expects the top-to-bottom ordering).

Using Data Conversion Routines

445

Alternately, if you want to display the frame, you can set up lrectwrite() to
use top-to-bottom ordering by using the IRIS GL pixmode() routine, as
shown in Example 20-7.

Example 20-7 Setting Top-to-Bottom pixmode for YUV

boolean invert = FALSE;
int width, height;
long *yuv_buf;
long rgb_buf;

/*... */
rgb_buf = malloc(width*height*sizeof(*rgbbuf));
if (svYUVtoRGB(invert, yuv_buf, rgb_buf, width, height)==-1)
{

/* error */
}
pixmode(PM_TTOB, 1); /* pixel ordering top-to-bottom */
lrectwrite(0, 0, width-1, height-1, rgb_buf);

Note: This code may not work on some older IRIS workstations.

If you capture YUV frames with blanking data, you can use
svFindVisibleRegion() to locate the start of the YUV image data, as
demonstrated in Example 20-8.

Example 20-8 Finding Image Data in YUV with Blanking Frames

SVhandle V;
void *frame_with_blanking, *frame;
long fieldID;

/* ... */
svGetCaptureData(V, &frame_with_blanking, &fieldID);
svFindVisibleRegion(V, frame_with_blanking, &frame);
svUnlockCaptureData(frame_with_blanking);

/* process frame */

Example 20-9 contains a listing of vgrab.c, in /usr/people/4Dgifts/examples/
dmedia/video/indigovideo, which demonstrates how to convert grabbed YUV
frames to RGB images.

446

Chapter 20: Capturing Video from IndigoVideo

Example 20-9 Grabbing YUV Frames to Save as RGB Images: vgrab.c

/*
 * vgrab.c
 * Grab YUV frames, save as SGI RGB images
 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/image.h>
#include <gl/device.h>
#include <svideo.h>

#define GRABFILE "out.rgb"
#define RGBBUFSIZE
(SV_PAL_XMAX*SV_PAL_YMAX*sizeof(long))
static char rgbbuf[RGBBUFSIZE];

/*
 * Dump rgb data to image file
 */
void
dumpImage(char *data, int xsize, int ysize)
{
 IMAGE *image;
 short rbuf[SV_PAL_XMAX];
 short gbuf[SV_PAL_XMAX];
 short bbuf[SV_PAL_XMAX];
 int x, y, z;
 image = iopen(GRABFILE, "w", RLE(1), 3, xsize, ysize, 3);
 for (y=0;y<ysize;y++) {
 for(x=0;x<xsize;x++) {
 bbuf[x] = *(data+1);
 gbuf[x] = *(data+2);
 rbuf[x] = *(data+3);
 data += 4;
 }
 putrow(image, rbuf, y, 0);
 putrow(image, gbuf, y, 1);
 putrow(image, bbuf, y, 2);

 }
 iclose(image);
}

Using Data Conversion Routines

447

main(int argc, char **argv)
{
 short val;
 long livewin, stillwin, x, y;
 int width, height;
 SVhandle V;
 long param[2];
 int videoon = 1;

 /* Open video device */
 if ((V = svOpenVideo()) == NULL) {
 svPerror("open");
 exit(1);
 }

 /* Determine window size based on signal standard */
 param[0] = SV_BROADCAST;
 svGetParam(V, param, 2);
 if (param[1] == SV_PAL) {
 width = SV_PAL_XMAX;
 height = SV_PAL_YMAX;
 } else {
 width = SV_NTSC_XMAX;
 height = SV_NTSC_YMAX;
 }

 /* Open windows */
 foreground();
 prefsize(width, height);
 stillwin = winopen("Grabbed frame");
 RGBmode();
 gconfig();

 /* Set video window background to black */
 cpack(0x0);
 clear();
 maxsize(width, height);
 keepaspect(width, height);
 stepunit(8, 6);
 livewin = winopen("video in");
 RGBmode();
 gconfig();

 getsize(&x, &y);
 svSetSize(V, x, y);

448

Chapter 20: Capturing Video from IndigoVideo

 /* Associate video input with livewin */
 if (svBindGLWindow(V, livewin, SV_IN_REPLACE) < 0) {
 svPerror("bindwindow");
 exit(1);
 }

 printf("Click on left mouse button to grab frame\n");
 qdevice(LEFTMOUSE);
 qdevice(WINQUIT);
 qdevice(WINSHUT);
 qdevice(ESCKEY);

 while (1) {
 switch (qread(&val)) {
 case LEFTMOUSE:
 if (val != 1)
 break;

 svCaptureOneFrame(V, SV_RGB32_FRAMES, &width,
 &height, rgbbuf);
 winset(stillwin);
 lrectwrite(0, 0, width-1, height-1,
 (unsigned long *) rgbbuf);
 winset(livewin);
 if (svSetSize(V, x, y) < 0) {
 svPerror("setsize");
 exit(1);
 }
 /* Re-bind window to re-scale output */
 if (svBindGLWindow(V, livewin,
 SV_IN_REPLACE) < 0) {
 svPerror("bindwindow");
 exit(1);
 }
 dumpImage(rgbbuf, width, height);
 printf("saved image to file %s\n", GRABFILE);
 break;

Using Data Conversion Routines

449

 case REDRAW:
 reshapeviewport();
 getsize(&x, &y);
 svSetSize(V, x, y);
 /* Re-bind window to re-scale output */
 if (svBindGLWindow(V, livewin,
 SV_IN_REPLACE) < 0) {
 svPerror("bindwindow");
 exit(1);
 }
 break;
 case ESCKEY:
 if (val) /* exit on key up */
 break;
 case WINQUIT:
 case WINSHUT:
 winclose(stillwin);
 winclose(livewin);
 svCloseVideo(V);
 exit(0);
 break;
 }
 }
}

Using 8-bit RGB Capture Data

The fields in a frame of 8-bit RGB data captured with svGetCaptureData()
are not interleaved; all the even rows of pixels are stored before all the odd
rows of pixels. In addition, the rows within the fields are ordered top-to-
bottom. The IndigoVideo Library provides a convenience routine,
svInterleaveFields(), to interleave, and optionally invert, the fields. It
produces 8-bit RGB data rather than SV_RGB_FRAMES data.

450

Chapter 20: Capturing Video from IndigoVideo

Example 20-10 demonstrates how to invert fields and interleave them.

Example 20-10 Interleaving 8-bit RGB Fields with Inversion

boolean invert = TRUE;
char *fields, *rgb8frame;
int width, height;

/* ... */
frame = malloc(width*height);
svInterleaveFields(invert, fields, rgb8frame,width, height)

Once interleaved, you can display the 8-bit RGB data directly on an Indigo
workstation with Entry graphics that has the svideo software installed, by
using the RGBmode(), pixmode(), and lrectwrite() routines, as
demonstrated in Example 20-11.

Example 20-11 Displaying Interleaved 8-bit RGB Data

char *rgb8frame;
int width, height;
 /* ... */
RGBmode();
gconfig();
pixmode(PM_SIZE, 8);
lrectwrite(0, width-1, 0, height-1, rgb8frame);

To display the 8-bit RGB data on other systems, convert it to the more
common 32-bit RGB format by using the svRGB8toRGB32() routine, which
converts the data to 32-bit in addition to interleaving, and, optionally,
inverting the fields, as demonstrated in Example 20-12.

Example 20-12 Converting 8-bit RGB Capture Data to 32-bit RGB

char *rgb8fields;
long *rgb32frame;
int width, height;
boolean invert = TRUE;
 /* ... */
rgb32frame = malloc(width*height*sizeof(*rgb32frame));
svRGB8toRGB32(invert, rgb8fields, rgb32frame, width, height);

The svRGB8toRGB32() works on 8-bit RGB field data only in the format
captured by the IndigoVideo board. Like svInterleaveFields(), it will
interleave, and, optionally, invert the data (bottom-to-top) if the invert
parameter is true.

Using Data Conversion Routines

451

If you don’t want to convert the 8-bit RGB data, you can display it on any
system by treating the 8-bit pixels as 8-bit color index values. In Example 20-
13, the code fragment, from the /usr/people/4Dgifts/examples/dmedia/video/
indigovideo program vmirror.c, sets up the IRIS GL color map to display 8-bit
RGB data:

Example 20-13 Setting up the IRIS GL Color Map to Display 8-bit RGB

/* Change GL color map to display IndigoVideo RGB8 data */
static void
makevideomap(void)
{
 int r, g, b;
 for (r=0; r<8; r++) {
 for (b=0; b<4; b++) {
 for (g=0; g<8; g++) {
 mapcolor((r<<5)|(b<<3)|g,
 (r<<5)|(r<<2)|(r>>1),
 (g<<5)|(g<<2)|(g>>1),
 (b<<6)|(b<<4)|(b<<2)|b);
 }
 }
 }
 gflush();
}

452

Chapter 20: Capturing Video from IndigoVideo

This chapter explains how to handle
events for the IndigoVideo board.

Handling IndigoVideo Events

Chapter 21

455

Chapter 21

21. Handling IndigoVideo Events

Programs that use live video need to be notified when the setup or status of
the IndigoVideo board changes. This chapter explains how to use either the
X Window System or IRIS GL event mechanisms to provide your application
with notification of status changes to the IndigoVideo board.

The X and IRIS GL event mechanisms are different, but they serve the same
purpose. X event handling methods distinguish between video activity events
and parameter change events; IRIS GL event handling methods lump these
event classes together as a single pseudodevice. Wherever possible, X event
handling should be used rather than IRIS GL event handling to provide
greater portability and flexibility. See the IRIS IM Programming Guide, which
you can read online using the IRIS InSight viewer, for more details about X
event handling versus IRIS GL event handling.

In this chapter:

• “IndigoVideo Event Handling Basics” on page 456 provides an
overview of video events and the event-handling routines in the
IndigoVideo library.

• “X Event Handling” on page 458 describes some event handling
methods provided by the X Window System. To learn more about these
methods, and to find out about other methods, consult the references
recommended at the beginning of this guide.

• “IRIS GL Event Handling” on page 462 describes pure IRIS GL event
handling. Skip this section if you are developing a new IndigoVideo
application, and use the methods described in “X Event Handling” on
page 458 instead.

456

Chapter 21: Handling IndigoVideo Events

IndigoVideo Event Handling Basics

Programs receive video activity events only if they use live video, that is,
only if they have executed an svBindWindow() or svBindGLWindow() call.

The four reasons for which the window system generates a video activity
event are:

• video started

This event indicates that video has started in this window. It is
generated when your program succeeds in turning on video using
svBindWindow() or svBindGLWindow().

• video stopped

This event indicates that video has stopped in this window. It is
generated when your program turns off video using svBindWindow()
or svBindGLWindow() with an argument of SV_IN_OFF.

• video busy

Your program tried to turn on video in this window using
svBindWindow() or svBindGLWindow(), but failed because another
program had exclusive use of the IndigoVideo board.

• video preempted

Your program had video running in this window, but it was preempted
by another program calling svBindWindow() or svBindGLWindow().

These event reasons are identified by global variables, listed in Table 21-1.

Table 21-1 Video Activity Event Variable Names

Reason Variable Name

Video started SvVideoStarted

Video stopped SvVideoStopped

Video busy SvVideoBusy

Video preempted SvVideoPreempted

IndigoVideo Event Handling Basics

457

The five types of parameter change events are:

• active attribute change

This event indicates that a process has given up live video input; for
example, by exiting, or by calling svBindWindow() or
svBindGLWindow() with an argument of SV_IN_OFF.

• signal change

This event is generated whenever a process changes the broadcast
standard and/or video mode by calling svSetParam(). Changing input
sources can also generate this event, as IndigoVideo changes to the
default broadcast standard and video mode for the new input source.

• video frozen/unfrozen

This event is generated whenever a process freezes or unfreezes video
by calling svSetParam().

• input source changed

This event is generated whenever a process changes the input source by
calling svSetParam().

• other parameters changed

This event is generated whenever a process changes any other variable
by calling svSetParam().

These event reasons are identified by the global variables listed in Table 21-2.

Table 21-2 Video Parameter Change Event Variable Names

Reason Variable Name

Active attribute SvActiveAttribute

Signal change SvEncodingAttribute

Video frozen/unfrozen SvFreezeAttribute

Source change SvSourceAttribute

Other parameter change SvParamChangeAttribute

458

Chapter 21: Handling IndigoVideo Events

X Event Handling

To provide X event handling, you must include the appropriate X11 header
files, and you must link your program with the X extensions library (-lXext),
the X shared library (-lX11_s), and any X toolkits that you use.

Before your program can receive video-related X events, you must call the
svSelectXEvents() function.

There are two types of video events, indicated by the following variables:

SvVideoActivityEventNumber
Describes video events such as video starting, or video
stopping, that affect only a specific window. The reason field
of the video activity event is set to one of the values listed in
Table 21-1. Only programs that use live video receive video
activity events.

SvParamChangeEventNumber
Describes parameter change events that apply to board
settings. The attribute field of the param change event is set
to one of the values listed in Table 21-2. In addition, the
value field is set to the new value of the changed parameter
(if applicable). In the case of SvEncodingAttribute events,
the value field is set to one of the values listed in Table 21-3.

Example 21-1 contains a listing of xevents.c, which demonstrates the use of X
events. First, an event mask is set up, to establish interest in exposure, key,
and video related events. A connection to the X server is established and a
video device is opened with the proper window size for the signal being
received. The program prints status messages about the events as they occur.

Table 21-3 Encoding Attribute Values

Variable Broadcast Standard Video Mode

SvNTSCComposite NTSC Composite

SvNTSCSVideo NTSC S-Video

SvPALComposite PAL Composite

SvPALSVideo PAL S-Video

X Event Handling

459

Example 21-1 X Event Handling for IndigoVideo events: xevents.c

/*
 * xevents.c
 *
 * This X11 program displays live video from the IndigoVideo board and shows
 * how to decode X11 video-related event information.
 *
 * Hit the escape or the ’q’ keys to exit.
 */

#include <stdio.h>
#include <stdlib.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <svideo.h> /* must be included after <X11/Xlib.h> */

/* We’re interested in exposure, key and video-related events */
#define EVENTMASK (ExposureMask|KeyPressMask|StructureNotifyMask)

main(int argc, char *argv[])
{
 Window rootwin, win;
 Display *display;
 XEvent event;
 int screen, width, height;
 SVhandle V;
 long param[2];

 /* Open connection to X server */
 if ((display = XOpenDisplay(0)) == NULL) {
 fprintf(stderr, "%s: cannot connect to X server", argv[0]);
 if (getenv("DISPLAY") == NULL)
 fprintf(stderr,
 ", ‘DISPLAY’ environment variable not set.\n");
 else
 fprintf(stderr, " %s\n", XDisplayName(0));
 exit(1);
 }

 /* Open video device */
 if ((V = svOpenVideo()) == NULL) {
 svPerror("open");
 exit(1);
 }

460

Chapter 21: Handling IndigoVideo Events

 /* Determine the window size from the signal standard */
 param[0] = SV_BROADCAST;
 svGetParam(V, param, 2);
 if (param[1] == SV_PAL) {
 width = SV_PAL_XMAX;
 height = SV_PAL_YMAX;
 } else {
 width = SV_NTSC_XMAX;
 height = SV_NTSC_YMAX;
 }
 printf("Default window size: %d by %d\n", width, height);

 /* Create appropriate-sized window */
 screen = DefaultScreen(display);
 rootwin = RootWindow(display, screen);
 win = XCreateSimpleWindow(display, rootwin, 100, 100, width, height,
 5, BlackPixel(display, screen), BlackPixel(display, screen));

 /* Set the window and icon names for the window manager before mapping it */
 XStoreName(display, win, "X Video Event Handler");
 XSetIconName(display, win, argv[0]);
 XSelectInput(display, win, EVENTMASK);
 XMapWindow(display, win);

 /* Associate video with window */
 if (svBindWindow(V, display, win, SV_IN_REPLACE) < 0) {
 svPerror("bindwindow");
 svCloseVideo(V);
 exit(1);
 }

 /* Receive video-related X events */
 svSelectXEvents(V, display);

 /* Event loop */
 while (1) {
 XNextEvent(display, &event);

 if (event.type == Expose) {
 printf("Expose event\n");
 if (svBindWindow(V, display, win, SV_IN_REPLACE) < 0) {
 svPerror("bindwindow");
 svCloseVideo(V);
 exit(1);
 }

X Event Handling

461

 } else if (event.type == KeyPress) { /* See if we’re done */
 XKeyEvent *kev = (XKeyEvent *) &event;
 KeySym keysym;
 char buf[4];

 XLookupString(kev, buf, 1, &keysym, 0);
 printf("Key pressed: ’%c’ (%d)\n", buf[0], buf[0]);
 if (buf[0] == ’Q’ || buf[0] == ’q’ || buf[0] == ’\033’) {
 printf("Quitting...\n");
 svCloseVideo(V);
 exit(0);
 }

 } else if (event.type == SvVideoActivityEventNumber) {
 SVvideoActivityEvent *ev = (SVvideoActivityEvent *) & event;

 if (ev->reason == SvVideoStarted) {
 printf("Video started\n");
 } else if (ev->reason == SvVideoStopped) {
 printf("Video stopped\n");
 } else if (ev->reason == SvVideoBusy) {
 printf("Video busy\n");
 } else if (ev->reason == SvVideoPreempted) {
 printf("Lost video\n");
 } else {
 printf("unknown video activity (%d)?\n", ev->reason);
 }

 } else if (event.type == SvParamChangeEventNumber) {
 SVparamChangeEvent *ev = (SVparamChangeEvent *) &event;

 if (ev->attribute == SvActiveAttribute) {
 /* value always 0 */
 if (svBindWindow(V, display, win, SV_IN_REPLACE) < 0) {
 svPerror("bindwindow");
 svCloseVideo(V);
 exit(1);
 }
 printf("Active attribute: re-bound video\n");

462

Chapter 21: Handling IndigoVideo Events

 } else if (ev->attribute == SvEncodingAttribute) {
 printf("Encoding change: %d = ", ev->value);
 if (ev->value == SvNTSCComposite) {
 printf("NTSC composite\n");
 } else if (ev->value == SvPALComposite) {
 printf("PAL composite\n");
 } else if (ev->value == SvNTSCSVideo) {
 printf("NTSC SVideo\n");
 } else if (ev->value == SvPALSVideo) {
 printf("PAL SVideo\n");
 } else {
 printf("?\n");
 }
 } else if (ev->attribute == SvFreezeAttribute) {
 printf("Freeze attribute: %s\n", ev->value ? "on" : "off");
 } else if (ev->attribute == SvSourceAttribute) {
 printf("Input source change: %d\n", ev->value + 1);
 } else if (ev->attribute == SvParamChangeAttribute) {
 printf("Parameter changed\n"); /* value always 1 */
 } else {
 printf("unknown param attribute (%d) ?\n", ev->attribute);
 }
 }
 }
}

IRIS GL Event Handling

Handling IRIS GL events is fairly simple. To receive video-related events,
use the IRIS GL qdevice() function to queue events from the VIDEO
pseudodevice, and use qread() to read the events from the queue.

When you get an event from the event queue using the IRIS GL qread()
function, you must pass the function a pointer to a short integer. qread()
returns a value indicating the device that generated the event, and fills in the
reason for the event in the space pointed to by the argument. In the case of a
video event, the reason will correspond to one of the constants listed in
Table 21-1 or Table 21-2.

IRIS GL Event Handling

463

The event loop in Example 21-2 handles video events, printing a message
when video is preempted by another process and rebinding the video when
it is released by another process.

Example 21-2 Handling Video Events with IRIS GL Routines

long window_id, device;
SVhandle vidnode;
short reason;

/* ... */

qdevice(VIDEO);
qdevice(WINQUIT);
qdevice(WINSHUT);
while(TRUE) {

device=qread(&reason);
switch(device) {

case VIDEO:
if (reason == SvVideoPreempted)
 printf("Lost video\n");
else if (reason == SvActiveAttribute) {
 svBindGLWindow(vidnode, window_id,
 SV_IN_REPLACE);
 printf("Re-bound video\n");
}
break;

case WINSHUT:
case WINQUIT:

exit(0);
}

}

464

Chapter 21: Handling IndigoVideo Events

This chapter explains how to use
IndigoVideo utilities for creating
video shell scripts and for creating
movie files from video imported
from IndigoVideo captures.

Using the IndigoVideo Utilities

Chapter 22

467

Chapter 22

22. Using the IndigoVideo Utilities

This chapter briefly describes the utilities and end-user tools that are
available for running applications written for the IndigoVideo board. These
utility programs provide a convenient way of accessing many of the
IndigoVideo board’s functions. In addition, you may find them helpful as a
reference when debugging your IndigoVideo Library programs.

Two graphical user interface (GUI) tools are available for controlling video:
Video Control Panel (vpanel) and Video Pro Panel (vpro). You can use the
Video Control Panel by itself for viewing live video input, grabbing frames
of video, and encoding graphics to video, or you can use vpanel in
conjunction with your IndigoVideo Library programs. As long as your
program does not use exclusive-use mode, you can use vpanel to switch
input sources and control display effects, such as dithering and hue. The
Video Pro Panel provides access to IndigoVideo’s low-level parameters. All
the parameters that can be set using the Video Pro Panel are listed on the
svSetParams(3V) manual page.

Live video windows for input (videoin) and output (videoout) can be
launched separately from a command line or from vpanel. See the videoin(1)
and videout(1) man pages for details.

See the Media Control Panels User’s Guide, which is accessible from the InSight
viewer, for complete instructions on using the Video Control Panel, Video
Pro Panel, and the live video windows. Be sure to read the Svideo Release
Notes for important information about software updates and notes about
special situations and workarounds.

This chapter explains how to use two other utilities: svcmd, an interactive
shell-level tool that lets you access IndigoVideo Library routines from a shell
command line or a shell script, and svtomovie, a program that lets you turn
video input into movie files that you can play using the Movie Maker tool.

468

Chapter 22: Using the IndigoVideo Utilities

In this chapter:

• “Using svcmd, the IndigoVideo Shell-level Tool” explains how to use
svcmd. The IndigoVideo shell-level tool provides a command-line
interface to most of the functions of the IndigoVideo Library, including
single-frame output (but not including DMA). You can use the shell-
level tool to control IndigoVideo functions from a shell script.

• “Making a Movie File from IndigoVideo and Audio Input” on page 469
explains how to use svtomovie to create movies that can be viewed with
Movie Player.

Using svcmd, the IndigoVideo Shell-level Tool

You can use the shell-level tool, svcmd, to control the IndigoVideo board from
the command line. You can also use svcmd in shell scripts to automate
repetitive tasks. You can use the shell-level tool in one of two ways: either by
specifying a single operation on the command line, or by using svcmd’s
interactive mode.

To get a listing of svcmd commands, enter:

svcmd -h

To execute a single command, use the syntax:

svcmd command [parameters]

For example, to set the input source to 1, enter:

svcmd inputsource 1

To start svcmd in interactive mode, use the -i flag. To exit svcmd, use the quit
or exit command. For example, to set the input source to 2 and the video
mode to composite, type:

svcmd -i
svcmd >> inputsource 2
svcmd >> videomode comp
svcmd >> quit

For more information on svcmd, see the svcmd(1) manual page.

Making a Movie File from IndigoVideo and Audio Input

469

Making a Movie File from IndigoVideo and Audio Input

You can use IndigoVideo input and optional audio input to make a movie.
Movies are files that can be played on the Indigo workstation from the Movie
Player tool. The svtomovie program provides everything you need to make a
movie using your IndigoVideo board, audio input if you wish, and a little
imagination.

To start svtomovie from a shell command line, enter:

svtomovie [options] filename

to which the system replies:

svtomovie: Press <ENTER> when you are ready to collect video:

You must now “queue” the video source, that is, advance it to the location
where the recording is to begin. You can use vpanel to set up the video source
and apanel to set up the audio source—svtomovie responds to control from
both of these tools.

When you press <Enter>, svtomovie collects video, and optionally audio, and
writes it to the file you specified in filename.

When svtomovie finishes capturing the video (and audio) frames, it rewrites
the movie file to a playable format. You can play your new movie with
Movie Player or edit it with Movie Maker.

The svtomovie options are:

 -a Turn audio off; audio is on by default. This makes a silent
movie and has the possible advantage of capturing more
video data, because the audio capturing is disabled and is
not using CPU bandwidth.

-b Use burst mode for capture; continuous mode is the default.
Burst mode is useful to get short bursts of 30 frames per
second. It captures only 30 frames per second, and can
capture directly to only a maximum 8MB memory buffer;
hence, there is no audio, and, depending on the chosen size,
a limited number of frames.

 -d Turn diagnostic messaging on; diagnostics are off by
default. See svtomovie(1) for a list of diagnostics.

470

Chapter 22: Using the IndigoVideo Utilities

-f framerate Specifies movie frame rate; the default rate is 15 frames per
second. This option is ignored if -b is used. In continuous
capture mode, the only legal values for this parameter are
15, 10, 6, 5, 3, 2, and 1. All other values will gather data at
one of these rates but movie playback will be at the
requested rate. In burst capture mode, the only legal value
is 30. All other values will be ignored.

 -m Turn audio monitoring on; audio monitoring is off by
default. This option is ignored if -a or -b is used.

-n numframes Specifies number of frames of movie; 100 is the default.

 -s Use stereo audio input; mono is the default. This option is
ignored if -a or -b is used.

 -w width Specifies the video width in pixels; 320 is the default. Height
is chosen to preserve 8:6 aspect ratio.

Chapter 1

PART FIVE

Compression Programming V

Chapter 23, “Introduction to the Compression Library,”
introduces the CL and describes its applications and features. It provides basic
background information on compression technology and on digital audio and
video data formats.

Chapter 24, “Getting Started with the Compression Library,”
describes how to use the three types of interfaces supplied by the CL.

Chapter 25, “Using Compression Library Algorithms and Parameters,”
explains how to use the CL algorithms and global parameters.

Chapter 26, “Customizing the Compression Library,”
explains how to add your own algorithms and parameters to the CL.

This chapter introduces the
Compression Library, which
provides an algorithm-independent,
extensible interface to image, audio,
video, and movie compression.

Introduction to the
Compression Library

Chapter 23

475

Chapter 23

23. Introduction to the Compression Library

The Compression Library, libcl.so, provides a flexible, extensible, and
algorithm-independent software interface for compressing and
decompressing audio, video, and image data. Developers may also choose
to incorporate the licensable built-in interface to third-party audio
compression software from Aware, Inc., which is described in Appendix B,
“Aware Scalable Audio Compression Software.”

Using the Compression Library (CL) involves three concepts, each of which
are discussed in a separate chapter in this part of this guide:

• using the application interface (API)

• using algorithms and parameters

• using/adding algorithms

In this chapter:

• “Overview of the Compression Library” on page 475 describes the
features and applications of the CL and provides fundamental
information essential for working with compression.

• “Compression Library Data Formats” on page 483 describes the data
formats that you are likely to encounter when using the CL.

Overview of the Compression Library

Compression is the process of shrinking the size of the data without
changing its content significantly. Compact data can be stored more
efficiently and can be transmitted faster than raw data. For example, certain
compression methods can allow you to store 10 to 20 times as many
compressed images in the space required to store a single uncompressed
image. Compression extends the capabilities of digital media delivery and
storage systems because it encodes data more efficiently.

476

Chapter 23: Introduction to the Compression Library

Compression Library Applications

Compression Library applications are far-reaching. The primary goal of the
CL is to improve the data delivery and storage capabilities of applications
that use digital media.

The Compression Library can be used with the Audio File Library, and data
used by the IRIS MediaMosaic™ tools, Movie Player and Movie Maker.
Other applications include:

• Information delivery and storage, including multimedia presentations,
publications, interactive training, archiving, and annotation. For
example, you can use MoviePlayer as the playback mechanism for an
information delivery application. Showcase™ can be used as the base
medium from which to launch separate executables of the MoviePlayer
to play back prerecorded movies.

• Telecommunications (video/voice mail, phone, and teleconferencing)

Compression allows faster transmission of data. This is especially
useful when the data rate is limited by the transmission medium. Cost
savings can also be realized when transmitting data over a medium
where you are billed on the basis of either access time or number of
bytes transferred.

• Animation previewing

Images can be compressed frame-by-frame, as they are rendered, for
previewing 2D and 3D graphics animations in live action before
recording to video tape. Previewing saves time for animators because
they don’t have to render and record a full-data animation to tape every
time they want to check the motion sequence.

• Movie (audio and video) editing

Movie editing can be done entirely in the digital domain using a tool
such as MovieMaker, instead of editing a tape recording. Compression
lets you store more data and decompress it as you open files for editing.

Overview of the Compression Library

477

Figure 23-1 shows a few of the applications that are possible in a server-
client environment.

Figure 23-1 Server-Client Compression Applications

Server

Archive Retrieval

Teleconference

Network Broadcast

Editing

478

Chapter 23: Introduction to the Compression Library

Compression Library Features

The Compression Library features:

• algorithm independence

• hardware independence

• support of industry standard algorithms

• support of Silicon Graphics proprietary algorithms

• binary compatibility across Silicon Graphics platforms

Because the CL is algorithm-independent, you need to know only the basic
application interface (API) to use any of the supplied algorithms. You can
query the library for the available algorithms, and you can add your own
algorithms to the library. A pass-through capability allows you to pass data
through the routines without using an algorithm.

The libcl API provides facilities for working with audio, still images,
sequential frames of data (movies), and a buffering mechanism for random
access of compressed data.

The buffering facility allows independent buffering of compressed data and
decompressed frames, with synchronous or asynchronous access, either
external or internal to the library. Separate processes can be used for
supplying data, compressing/decompressing, and retrieving data.

The API also uses a set of global state parameters, similar to those found in
the Audio Library, libaudio, to establish and manipulate compression
attributes.

Compression Library Basics

This section introduces compression technology and compression
standards. It provides useful background information that you should know
before using the Compression Library.

Overview of the Compression Library

479

Lossy versus Lossless Compression Methods

Compressed data isn’t always a perfect representation of the original data.
Information can be lost in the compression process. A lossless compression
method retains all of the information present in the original data. A lossy
compression method does not preserve 100% of the information in the
original method. Some methods incur more loss than others, so the amount
of loss that can be tolerated by your application might affect your decision
about which compression method to use.

Note: In general, video compression algorithms are designed to work on
camera-generated images. Computer-generated images often contain text
and line drawings that compression algorithms can’t compress as well as
smooth-shaded computer images, which approximate camera video.

Compression Standards

Standards provide a common ground for developers to share technology.
Standards for the audio and video industries are constantly being developed
and changed in response to new technology. The Compression Library
supports these standards through the use of algorithms and parameters.

Compression Library Algorithms

Algorithms are provided within libcl for audio and video standards and for
Silicon Graphics proprietary algorithms that have significant benefits. You
can query the library for the available algorithms, and you can add your own
algorithms to the library. Algorithms are grouped according to the type of
data they operate on: still images, motion video, or audio.

Still Image Algorithms

Although any algorithm can be used for still images, the JPEG (Joint
Photographic Experts Group)-baseline algorithm, which is referred to simply
as JPEG for the remainder of this guide, is the best for most applications.

JPEG is a compression standard for compressing full-color or grayscale
digital images. JPEG is most useful for still images; it is usable, but slow
when performed in software, for video. You can use the Cosmo Compress

480

Chapter 23: Introduction to the Compression Library

option, a hardware JPEG accelerator, in conjunction with the Compression
Library for compressing video to and decompressing video from memory or
for compressing to and decompressing from a special video connection to
Galileo Video, IndyVideo, or Indigo2 video.

JPEG is a lossy algorithm, meaning that the compressed image is not a
perfect representation of the original image, but you may not be able to
detect the differences with the naked eye.

The amount of compression and the quality of the resulting image are
independent of the image data. The quality depends on the compression
ratio. The Compression Library lets you select the compression ratio that
best suits your application needs.

JPEG is designed for still images and is usable, but slow, for video. JPEG is
typically used to compress each still frame during the writing or editing
process, with the intention being to apply another type of compression to the
final version of the movie or to leave it uncompressed. JPEG works better on
high-resolution, continuous-tone images such as photographs, than on
crisp-edged, high-contrast images like line drawings.

Movie Algorithms

For the best quality in a final movie, all image manipulation and storage
should be with uncompressed images until the final movie is produced, at
which time the images can be compressed. Repeatedly compressing,
decompressing, and then recompressing images reduces the image quality.

The Compression Library supports the following algorithms for motion
video compression/decompression:

CL_MPEG_VIDEO
Moving Pictures Expert Group is a standard that is designed
for extreme compression of motion video while
maintaining high image quality. It is a lossy algorithm that
is capable of producing higher compression ratios than both
JPEG and MVC1.

MPEG I is designed to give the best possible quality for a
1.2 million bits per second (Mbps) data rate for audio as
well as video data. Other data rates are possible.

Overview of the Compression Library

481

The quality depends on the sophistication of the encoder.
Quality (subjectively evaluated) between VHS and S-VHS
can be achieved for images whose frame size is 352 × 240
with the 1.2 Mbps data rate, which is possible to obtain
from a CD-ROM in real time.

MPEG is an asymmetric coding technique—compression
requires considerably more processing power than
decompression because MPEG examines the sequence of
frames and compresses it in a optimized way, including
compressing the difference between frames using motion
estimation.

The compressed data stream is designed so that the video
can be played forward or backward. This makes MPEG
well suited for video publishing, where a video is
compressed once and decompressed many times for
playback.

CL_MVC1 Motion Video Compressor 1 is a Silicon Graphics proprietary
algorithm that is a good general-purpose compression
scheme. It is a color-cell compression technique that works
well for video, but can cause fuzzy edges in high-contrast
animation. MVC1 is a fairly lossy algorithm that does not
produce compression ratios as high as JPEG, but it is well
suited to movies.

CL_MVC2 Motion Video Compressor 2 provides results similar to MVC1
in terms of image quality. MVC2 compresses the data more
than MVC1, but takes longer to perform the compression.
Playback is faster for MVC2, because there is less data to
read in, and decompression is faster than for MVC1.

CL_RLE 8-bit Run Length Encode is a lossless algorithm for
compressing 8-bit RGB. It is the only algorithm currently
available to directly compress 8-bit RGB data (CL_RGB332).
Although this algorithm is lossless, it doesn’t save as much
space as the other compression algorithms—typically less
than 2:1 compression is achieved. The libcl implementation
of RLE does not use a standard RLE method. This is a
lossless compression method that uses run-length encoding
(RLE). Run-length encoding compresses images by storing
a color and its run-length (the number of pixels of that color)

482

Chapter 23: Introduction to the Compression Library

every time the color changes. It is a good technique for
animations where there are large areas that have identical
colorsRun-length encoding replaces pixel values that are
repeated for several pixels in a row with a single pixel at the
first occurrence of a particular value, followed by a repeat
count representing the number of subsequent pixels of the
same value.

CL_RLE24 24-bit Run Length Encode is a lossless algorithm for
compressing 24-bit RGB.

CL_RTR1 Real Time Record is a Silicon Graphics proprietary algorithm
designed for recording directly from a camera or VTR to
disk or digital audio tape (DAT) by compressing on the fly.
The quality achieved is dependent upon the processor
performance and video hardware that is available.

Audio Algorithms

The Compression Library supports two audio algorithms that are based on
international standards:

CCITT/TSB G.711 µ-law
compresses 16-bit audio to 8-bit audio using a geometric
function that takes advantage of the fact that human
hearing is more sensitive to differences at lower volume
levels. It is designed for rapid compression and
decompression at a 2:1 compression ratio.

CCITT /TSB G.711 A-law
compresses 16-bit audio to 8-bit audio using a different
geometric function that takes advantage of the fact that
human hearing is more sensitive to differences at lower
volume levels. It is designed for rapid compression and
decompression at a 2:1 compression ratio.

In America, µ-law compression is generally used. In Europe, A-law is more
prevalent.

Compression Library Data Formats

483

Compression Library Data Formats

This section provides a brief introduction to digital media formats. It
describes the fundamental nature of digital data and introduces some basic
terminology that you should know before using the Compression Library.

Many different formats exist for audio, image, and video data. The
Compression Library supports the most common formats, but it doesn’t
restrict you to using one of these formats. In fact, you can define your own
unique format to suit your application needs. For example, you can define a
file format that contains interleaved frames of audio and video for a movie
application, or you can define a file format that contains multiple tracks of
audio data for an audio-mixing application.

The following sections describe some of the data formats you are likely to
encounter when developing applications that use the Compression Library.

Audio Data Formats

Audio data occurs in a stream, which can be divided into units called blocks.
Audio data can be monaural (mono), which has one channel embedded in the
audio stream, or stereo, which has two channels embedded in the audio
stream. In a stereo audio stream, the left and right channels are interleaved.
The Compression Library provides support for both mono and stereo audio.
Parameters are used to distinguish between the two data types.

Depending on the original source of the audio, it may have other
distinguishing characteristics such as the resolution. See Part II, “Digital
Audio and MIDI Programming,” for more information about audio data
formats.

Image Data Formats

Image data is contained in a frame. You need to supply the height and width
of an image frame when using the libcl routines that compress/decompress
image and video data. The ordering of pixels within the frame depends
upon the source of the data. Top-to-bottom is the default data orientation for

484

Chapter 23: Introduction to the Compression Library

Compression Library routines. You can use the CL_ORIENTATION
parameter to specify how pixels are ordered.

The Compression Library works with data that is contained in frames. A
frame is defined as a sample at one instant of time so that:

1 audio sample: mono 8 bit = 1 byte
mono 16 bit= 2 bytes
stereo 8 bit = 2 bytes
stereo 16 bit = 4 bytes

1 video frame: width ∗ height ∗ components ∗ bitsPerComponent/8 = n bytes

Video Data Formats

Video data is a stream of sequential frames of image data. Some video
formats have special frames called keyframes that contain information for a
block of frames that is treated as a single unit. There are a variety of video
formats. The Compression Library supports a set of formats for all
algorithms.

Video data can be either color or black-and-white. If you are working with
video data, you should be familiar with such terms as component video,
composite video, chrominance, luminance, and RGBA data.

Implicit color space conversion occurs whenever the specified original format
does not match the specified internal format, that is, the format that is
compressed directly. Conversion from the original format to the internal
format occurs on compression, and conversion from the internal format to
the original format occurs on decompression. A different original format can
be used on decompression than was used on compression.

Note: The parameter CL_BEST_FIT can be used when compressing to
automatically choose the best internal format for a given original format.

Compression Library Data Formats

485

The Compression Library supports these video formats:

CL_RGBA R, G, B, and A data are 8-bit components packed into the 32-
bit word as:

0xAABBGGRR

where:

AA contains the 1-byte alpha value.
BB contains the 1-byte blue value.
GG contains the 1-byte green value.
RR contains the 1-byte red value.

RGBA component values range from 0 to 0xFF (255). For
this format, compressionFormat.components should be set to
4.

CL_RGBX R, G, B, and X (don’t care) data are packed into the 32-bit
word as for CL_RGBA. Note that with this format, only the
R, G, and B values are compressed.

CL_RGB R, G, and B data are packed into a 24-bit word. Note that
with this format, the RGB triplets may cross the 32-bit word
boundaries.

CL_RGB332 R, G, and B data are packed into an 8-bit byte as:

0xrrrbbggg

where:

rrr is three bits of red.
bb is two bits of blue.
ggg is three bits of green.

CL_GRAYSCALE
Four 8-bit luminance bytes are packed in a 32-bit word.

CL_Y Equivalent to CL_GRAYSCALE.

486

Chapter 23: Introduction to the Compression Library

CL_YUV Three 8-bit components, Y, U, and V, are packed into 24 bits
as:

0xUUYYVV

where:

UU contains the chroma-blue value.
YY contains the luminance value.
VV contains the chroma-red value.

CL_YCbCr A synonym for YUV1. Y is for luminance, Cb (chroma-blue),
and Cr (chroma-red) are for chroma.

CL_YUV422 Two luminance components are packed into a 32-bit word
with one U-V pair. In other words, the chroma components
are sampled with half of the horizontal rate of the luma,
which is known as 4:2:2 sampling. Two pixels are
represented by this 32-bit word as (Y1, U1, V1) and (Y2, U1,
V1). The order of the components is:

0xU1Y1V1Y2

where:

U1 contains the chroma-blue value.
Y1 contains the first luminance value.
V1 contains the chroma-red value.
Y2 contains the second luminance value.

CL_YUV422DC
(duplicate chroma) The chroma is subsampled by 2
vertically in addition to horizontally, and is packed the
same as CL_YUV422, except that U and V are duplicated on
the odd lines. CL_IMAGE_WIDTH must be even when using
this format. This format is convenient for storing 4:1:1
sampled data, which is analogous to 4:2:2 sampling with the
addition of half-sampling of the chroma vertically.
Sometimes 4:1:1 is used to indicate full vertical and one-
quarter horizontal sampling.

1 The video specification of YUV and YCbCr dictates a scale factor for each component
when converting between these formats. For convenience, the CL defines them as
equal.

Compression Library Data Formats

487

Table 23-1 shows the formats that are supported directly, that is, formats that
do not require color conversion—for each algorithm that is currently
implemented in libcl.

Movie Data Formats

The Compression Library supports the movie formats used by the Movie
Maker and Movie Player tools.

Table 23-1 Video Formats Not Requiring Color Conversion

Algorithm Format

UNCOMPRESSED Any format

JPEG CL_YUV and CL_GRAYSCALE

MVC1 CL_RGBX and CL_GRAYSCALE

MPEG CL_YUV422DC

RLE CL_RGB332

RTR1 CL_YUV, CL_YUV422, CL_YUV422DC, and
CL_GRAYSCALE

488

Chapter 23: Introduction to the Compression Library

Header Formats

Sometimes data is prefaced by a header that contains information about the
data. The CL provides routines for extracting header information, which can
also contain CL state parameters.

A typical header begins with a start code and a size:

Header Start Code
Header size (in bytes)

followed by parameter-value pairs such as those listed in Table 23-2.

Other parameters are possible, see Chapter 25, “Using Compression Library
Algorithms and Parameters,” for a complete list of parameters available.

Table 23-2 Parameters Contained in Header Data

Parameter Information Supplied

CL_ALGORITHM_ID Algorithm scheme

CL_ALGORITHM_VERSION Version of the algorithm

CL_INTERNAL_FORMAT Format of images immediately before compression

CL_NUMBER_OF_FRAMES Number of frames in the sequence

CL_FRAME_RATE Frame rate

CL_IMAGE_WIDTH Width (image and video data only)

CL_IMAGE_HEIGHT Height (image and video data only)

This chapter describes how to use the
three interfaces that exist in the CL:

• still image, for compressing
individual images

• sequential, for compressing data
streams

• buffered, for independent
compression and decompression

Getting Started with the
Compression Library

Chapter 24

491

Chapter 24

24. Getting Started with the Compression Library

This chapter describes how to use the Compression Library API to compress
and decompress image, audio, and video data. The Compression Library
API has three basic interfaces:

• still image access

• sequential frame access

• buffered random frame access

In addition, the Compression Library supports Cosmo Compress, an
optional hardware JPEG video codec, which connects to the Galileo family
of video devices to allow real-time JPEG video capture and playback.

In this chapter:

• “Overview of the Compression Library API” on page 492 describes the
three types of interfaces provided by the CL and explains how to use
them. It also describes the CL error handling facility.

• “Using the Still Image Interface” on page 494 explains how to compress
still images with a single call.

• “Using the Sequential Frame Interface” on page 497 explains how to
compress or decompress sequential data using a compressor or
decompressor.

• “Using the Buffering Interface” on page 506 explains how to use
internal or external buffering to implement random access or
multithreaded compression or decompression applications.

• “Programming with the Cosmo Compress JPEG Codec” on page 521
explains how to add Cosmo Compress support to your application.

492

Chapter 24: Getting Started with the Compression Library

Overview of the Compression Library API

This section describes how each type of interface is used and provides error
handling information.

Still Image API

The single image method is designed to make still image compression as
simple as possible. It is the simplest, yet most limited of the three. It consists
of two calls, one for compression and one for decompression. No interframe
compression/decompression, such as the method that takes advantage of
similarities between frames in MPEG, is possible with this interface.

Sequential Access API

The sequential interface is designed for audio/video-streaming applications
where the input is live, or where there is no control over playback and when
the amount of compressed data for each frame is known in advance; in fact,
an error is reported if insufficient data is passed. This interface is more
complex, requiring a series of compress or decompress calls to be
encapsulated within an open-close block. Each compressor or decompressor
keeps state information appropriate to the selected compression algorithm
in parameters that you can query and set.

Buffered Access API

The buffered interface is designed for:

• VCR-like control over the audio/video stream

• maximum efficiency by buffering compressed data and uncompressed
frames

• blocking and nonblocking access

• transparent buffering for hardware acceleration or for multiprocessor
operation

• multithreaded applications

Overview of the Compression Library API

493

This interface includes the calls of the sequential interface, plus buffer-
management routines to access the compressed data and the uncompressed
frame buffers.

The buffer management routines allow blocking and nonblocking access
and accumulation of compressed data and decompressed frames. The
compression or decompression modules can each be placed in separate
processes. Separating the processes allows the compression or
decompression process to get ahead a few frames, which is advantageous for
algorithms such as MPEG, which compress the data using techniques that
take advantage of similarities between frames, and it also facilitates
hardware acceleration.

About File I/O and Error Handling

In the CL, file I/O is handled by the caller. The CL has an error handler that
prints error messages to stderr. Most CL routines return a negative error code
upon failure.

You can override the default error handling routine and establish an
alternate compression error handling routine using clSetErrorHandler().

The function prototype for clSetErrorHandler() is:

CL_ErrFunc clSetErrorHandler(CL_ErrFunc efunc)

where:

efunc is a pointer to an error handling routine declared as:

void ErrorFunc(CLhandle handle, int code, const
char* fmt,...)

The returned value is a pointer to the previous error handling routine.

494

Chapter 24: Getting Started with the Compression Library

The code fragment in Example 24-1 demonstrates how to silence error
reporting for a section of code.

Example 24-1 Using a Custom Error Handling Routine

#include <cl.h>
...
CL_ErrFunc originalErrorHandler;
void SilentCLError(CLhandle handle, int errorCode,

const char* fmt, ...)
{
/* ignore all CL errors */
}

...
originalErrorHandler = clSetErrorHandler(silentCLError);
/* cl errors here will go unnoticed */

...
clSetErrorHandler(originalErrorHandler);
/* back to normal reporting of CL errors */
...

Using the Still Image Interface

A simple interface exists for compressing or decompressing still images with
a single call. To compress a still image, use clCompressImage(), which
compresses the data from the specified frameBuffer, stores the compressed
image in compressedData, and stores its resulting size in compressedBufferSize.

Pass to clCompressImage() the compression scheme; the width, height, and
format of the image; the desired compression ratio; pointers to reference the
buffer containing the image and the buffer that is to store the compressed
data; and a pointer to return the size of the compressed data.

You should allocate a buffer large enough to store the compressed data. In
most cases, a buffer the size of the source image plus the maximum header
size, which you can get by calling clQueryMaxHeaderSize(), is sufficient.
When calculating the data storage of the source image, you can use the CL
macro CL_BytesPerPixel() to determine the number of bytes per pixel for
certain packing formats.

Using the Still Image Interface

495

The function prototypes for the compress and decompress image routines
are:

int clCompressImage(int compressionScheme, int width,
int height, int originalFormat, float compressionRatio,
void *frameBuffer, int *compressedBufferSizePtr,
void *compressedData)

int clDecompressImage(int decompressionScheme, int width,
int height, int originalFormat,int
compressedBufferSize,
void *compressedData, void *frameBuffer)

where:

compressionScheme
is the compression or decompression scheme to use.

width is the width of the image.

height is the height of the image.

originalFormat is the format of the original image to (de)compress. For
video, use CL_RGB, CL_RGBX, CL_RGBA, CL_RGB332,
CL_GRAYSCALE, CL_YUV, CL_YUV422, or
CL_YUV422DC. For audio, use CL_MONO or
CL_STEREO_INTERLEAVED.

compressionRatio
is the target compression ratio. The resulting quality
depends on the value of this parameter and on the
algorithm that is used. Use 0.0 to specify a nominal value.
The nominal values for some of the algorithms are:

frameBuffer is a pointer to the frame buffer that contains the
uncompressed image data.

compressedBufferSizePtr
is a pointer to the size, in bytes, of the compressed data
buffer. If it is specified as a nonzero value, the size indicates

MVC1 5.3:1

JPEG 15.0:1

MPEG 48.0:1

496

Chapter 24: Getting Started with the Compression Library

the maximum size of the compressed data buffer. The value
pointed to is overwritten by clCompressImage() when it
returns the actual size of the compressed data.

compressedBufferSize
is the size of the compressed data in bytes.

compressedBuffer
is a pointer to the compressed data buffer.

Use clDecompressImage() to decompress an image. clDecompressImage()
decompresses the data that is stored in compressedBuffer, whose size is
compressedBufferSize, and stores the resulting image in frameBuffer.

The values of the state parameters that are used in conjunction with the other
compression library calls have no effect on these routines, but their defaults
do. The arguments width, height, originalFormat, and compressionRatio
function the same as the state parameters by the same names but are given
as direct arguments to facilitate the single-command interface.

Example 24-2 demonstrates how to compress and decompress a color image
using the JPEG algorithm. The image is 320 pixels wide by 240 pixels high
and its data is in the RGBX format.

Example 24-2 Compressing and Decompressing a Single Frame

/* Compress and decompress a 320 by 240 RGBX image with JPEG
*/
int frameIndex, compressedBufferSize,
maxCompressedBufferSize;
int *compressedBuffer, frameBuffer[320][240];

/* malloc a big enough buffer */
maxCompressedBufferSize = 320 * 240 *
CL_BytesPerPixel(CL_RGBX)
 +
clQueryMaxHeaderSize(CL_JPEG);
compressedBuffer = (int *)malloc(maxCompressedBufferSize);

/* Compress and decompress it */
clCompressImage(CL_JPEG, 320, 240, CL_RGBX, 15.0,
 frameBuffer, &compressedBufferSize, compressedBuffer);
clDecompressImage(CL_JPEG, 320, 240, CL_RGBX,
 compressedBufferSize, compressedBuffer, frameBuffer);

Using the Sequential Frame Interface

497

Using the Sequential Frame Interface

This section describes how to work with sequential frames of audio or video
data. See “Using the Buffering Interface” on page 506 for a description of
how to work with nonsequential data, or for situations where the
decompression rate is different from the compression rate.

Compressing a Sequence of Frames

To compress sequential data and audio/video streams, use a compressor. A
compressor is an abstraction that modularizes compression operations.

To compress a sequence of frames:

1. Open a compressor to establish the beginning of a sequence of
compression calls.

2. Compress frames one at a time, storing the compressed data after each
frame has been compressed.

3. Close the compressor to deallocate the resources associated with that
compressor.

Each of these steps is discussed in detail in the following sections.

Opening a Compressor

Call clOpenCompressor() to open a compressor for a given algorithm. Its
function prototype is:

int clOpenCompressor(int scheme, CLhandle *handlePtr)

where:

scheme is the compression scheme to use.

handlePtr is a pointer, which is overwritten by the returned handle of
the compressor that is used by subsequent calls to identify
the compressor.

More than one compressor can be open at a time. Use the handle that is
returned in handle to identify a specific compressor.

498

Chapter 24: Getting Started with the Compression Library

Compressing Frames

After a compressor has been opened, call clCompress() to compress the data.
Pass to clCompress() the handle returned by clOpenCompressor(), the
number of frames to be compressed, and pointers to reference the frame
buffer containing the data frames, the size of the data, and the location of the
buffer that is to store the compressed data.

The function prototype for clCompress() is:

int clCompress(CLhandle handle, int numberOfFrames,
void *frameBuffer, int *compressedDataSize,
void *compressedBuffer);

where:

handle is a handle to the compressor

numberOfFrames
is the number of frames to compress: generally 1 for video
data, an appropriate block size for audio data, or either
CL_CONTINUOUS_BLOCK or
CL_CONTINUOUS_NONBLOCK in order to continue
compression until either the frame buffer is marked done or
clCloseCompressor() is called. With
CL_CONTINUOUS_NONBLOCK, the call to clCompress()
returns immediately while the compression occurs in a
separate thread; CL_CONTINUOUS_BLOCK blocks until
compression is completed.

frameBuffer is a pointer to the location of the buffer that contains the
data that is to be compressed. Using a NULL argument here
invokes the buffered interface that is described in “Using
the Buffering Interface” on page 506. An error is reported if
no buffer exists. Some compressors allow a value of
CL_EXTERNAL_DEVICE, indicating a direct connection to
an external audio or video source.

compressedDataSize
is a pointer to the returned size of the compressed data in
bytes.

Using the Sequential Frame Interface

499

compressedBuffer
is a pointer to the location where the compressed data is to
be written. Using a NULL argument here invokes the
buffered interface that is described in “Using the Buffering
Interface” on page 506.

Call clCompress() once to compress numberOfFrames sequential frames.
clCompress() reads the raw data from the location pointed to by frameBuffer
and writes the compressed data to the location pointed to by
compressedBuffer. clCompress() returns either the number of frames
successfully compressed, or in the case of
CL_CONTINUOUS_NONBLOCK, returns SUCCESS immediately.

The size of the compressed data is stored in compressedDataSize, even if this
size exceeds the COMPRESSED_BUFFER_SIZE state parameter. If
COMPRESSED_BUFFER_SIZE is less than the actual size returned by
clCompress(), then the data returned in compressedBuffer is not complete.

An application-allocated compressed buffer must be at least
COMPRESSED_BUFFER_SIZE bytes. This parameter should be determined
by calling clGetParams() after the frame buffer dimensions are defined by
clSetParams(). It is not required to set the COMPRESSED_BUFFER_SIZE,
because the default is the largest possible compressed data size, which is
computed from the given parameters.

Closing a Compressor

To close a compressor, call clCloseCompressor() with the handle of the
compressor you wish to close. This frees resources associated with the
compressor.

The code fragment in Example 24-3 demonstrates how to compress a series
of frames using the CL_MVC1 algorithm. A compressor is opened, then a
compression loop is entered, where frames are accessed one at a time and
compressed using the selected algorithm, then written to a data buffer. The
compressor is closed when all of the frames have been compressed.

500

Chapter 24: Getting Started with the Compression Library

Example 24-3 Compressing a Series of Frames

#include <dmedia/cl.h>

int pbuf[][2] = {
 CL_IMAGE_WIDTH, 0,
 CL_IMAGE_HEIGHT, 0,
 CL_COMPRESSED_BUFFER_SIZE, 0
};
 ...
/* Compress a series of frames */
clOpenCompressor(CL_MVC1, &handle);

/* set parameters */
pbuf[0][1] = 320;
pbuf[1][1] = 240;
clSetParams(handle, (int *)pbuf, 4);
/* allocate the required size buffer */
clGetParams(handle, (int *)pbuf, 6);
compressedBuffer = malloc(pbuf[2][1]);

for(i = 0; i < numberOfFrames; i++)
{
 /* Get a frame from somewhere */
 ...
 clCompress(handle, 1, frameBuffer, &compressedBufferSize,
 compressedBuffer);
 /* Write the compressed data to somewhere else. */
 ...
}
clCloseCompressor(handle);

Decompressing a Sequence of Frames

Decompressing sequential data and audio/video streams requires the use of
a decompressor. A decompressor is an abstraction that modularizes
decompression operations.

To decompress a sequence of frames:

1. Query the stream header to get the compression scheme used.

2. Open a decompressor to establish the beginning of a sequence of
decompression calls.

Using the Sequential Frame Interface

501

3. Decompress frames one at a time, storing the decompressed data after
each frame has been decompressed.

4. Close the decompressor to deallocate the resources associated with that
decompressor.

Each of these steps is discussed in detail in the following sections.

Getting Stream Information

To determine which scheme to pass to the decompressor, use
clQueryScheme() to get the scheme from the 16 bytes of the stream header
(see Table 24-1 for a list of typical header contents, and Table 24-2 for a list of
additional video stream header contents). clQueryScheme() returns the
scheme, or the (negative) error code when an error occurs.

Once you determine the scheme, you can open the decompressor and read
the header using clReadHeader(), which returns the actual size of the
header, or zero if none is detected. Use clQueryMaxHeaderSize(), which
returns the maximum size of the header, or zero if none is detected, to
determine the size of the header to send to clReadHeader(). You should free
the space used for the header buffer when you are finished with it.

clReadHeader() is generally called before clCreateBuf() to help calculate the
compressed buffer size. It uses the data passed to it without affecting the
buffering. clReadHeader() also sets up any state parameters that can be
determined from the header.

The function prototypes are:

int clQueryScheme(void *header)

int clQueryMaxHeaderSize(int scheme)

int clReadHeader(CLhandle handle, int headerSize,void
*header)

where:

header is a pointer to a buffer containing at least 16 bytes of the
header.

scheme is the decompression scheme to use.

handle is a handle to the decompressor.

502

Chapter 24: Getting Started with the Compression Library

headerSize is the maximum size of the header in bytes.

header is a pointer to a buffer containing the header.

A typical header begins with a start code and a size, followed by parameter-
value pairs such as those listed in Table 24-1.

In addition, video algorithms usually supply the width and height
parameters listed in the header, as shown in Table 24-2.

The code fragment in Example 24-4 demonstrates how to query a stream
header and read its contents.

Example 24-4 Getting the Decompression Scheme from a Header

#include <cl.h>
...
int decompressionScheme;
...
/*
 * Determine the scheme from the first 16 bytes of the
 * header(from the beginning of video data)
*/

Table 24-1 Typical Stream Header Contents

Parameter Information supplied

CL_ALGORITHM_ID Algorithm scheme

CL_ALGORITHM_VERSION Version of the algorithm

CL_INTERNAL_FORMAT Format of images immediately before compression

CL_NUMBER_OF_FRAMES Number of frames in the sequence

CL_FRAME_RATE Frame rate

Table 24-2 Additional Video Stream Header Contents

Parameter Information Supplied

CL_IMAGE_WIDTH Width

CL_IMAGE_HEIGHT Height

Using the Sequential Frame Interface

503

header = malloc(16);
read(inFile, header, 16);
decompressionScheme = clQueryScheme(header);
if(decompressionScheme < 0) {

fprintf(stderr, “Unknown compression scheme in stream
header.0);

exit(0);
}
free(header);

clOpenDecompressor(decompressionScheme, &decompressorHdl);

/* Find out how big the header can be. */
headerSize = clQueryMaxHeaderSize(decompressionScheme);
if(headerSize > 0) {
/* Read the header from the beginning of video data */
header = malloc(headerSize);
lseek(inFile, 0, SEEK_SET);

Opening a Decompressor

Call clOpenDecompressor(), with the desired compression scheme and a
pointer for returning a handle, to open a decompressor for a given
algorithm. Its function prototype is:

int clOpenDecompressor(int scheme, CLhandle *handlePtr)

where:

scheme is the decompression scheme to use

handlePtr is a pointer to the returned handle of the decompressor that
is used by subsequent calls to identify the decompressor.

More than one decompressor can be open at a time. Use the handle that is
returned in handle to identify a specific decompressor.

Decompressing Frames

After a decompressor has been opened, call clDecompress() to decompress
the data. Pass to clDecompress() the handle returned by
clOpenDecompressor(), the number of frames to be decompressed, the size
of the data, and pointers to reference the decompressed data and the frame
buffer that contains the compressed frames.

504

Chapter 24: Getting Started with the Compression Library

The function prototype for clDecompress() is:

int clDecompress (CLhandle handle, int numberOfFrames,
 int compressedDataSize, void
*compressedData
 void *frameBuffer);

where:

handle is a handle to the decompressor.

numberOfFrames
is the number of frames to decompress: generally 1 for
video data, an appropriate block size for audio data, or
either CL_CONTINUOUS_BLOCK or
CL_CONTINUOUS_NONBLOCK in order to continue
decompression until either the frame buffer is marked done
or clCloseDecompressor() is called. With
CL_CONTINUOUS_NONBLOCK, the call to
clDeCompress() returns immediately while the
compression occurs in a separate thread;
CL_CONTINUOUS_BLOCK blocks until compression is
completed. Using a NULL argument invokes the buffered
interface that is described in “Using the Buffering Interface”
on page 506.

compressedDataSize
is a pointer to the returned size of the decompressed data in
bytes.

compressedData
is a pointer to the location where the decompressed data is
to be written.

frameBuffer is a pointer to the location of the frame buffer that contains
the data that is to be decompressed. Some compressors
allow a value of CL_EXTERNAL_DEVICE, indicating a
direct connection to an external audio or video source.
Using a NULL argument invokes the buffered interface that
is described in “Using the Buffering Interface” on page 506.
An error is reported if no buffer exists.

Using the Sequential Frame Interface

505

Closing a Decompressor

To close a decompressor, call clCloseDecompressor() with the handle of the
decompressor you wish to close.

The code fragment in Example 24-5 demonstrates how to decompress a
series of 320 × 240 (32-bit) RGBX frames by using the CL_MVC1 algorithm.
A decompressor is opened, then a decompression loop is entered, where
frames are accessed one at a time and decompressed by using the selected
algorithm, then written to a location such as the screen. The decompressor is
closed when all of the frames have been compressed.

Example 24-5 Decompressing a Series of Frames

#include <cl.h>
...
int compressedBufferSize;
int compressedBuffer[320][240], frameBuffer[320][240];
int width, height, k;
static int paramBuf[][2] = {
 CL_IMAGE_WIDTH, 0,
 CL_IMAGE_HEIGHT, 0,
 CL_ORIGINAL_FORMAT, 0,
};
width = 320;
height = 240;

clOpenDecompressor(CL_MVC1, &decompressorHdl);
paramBuf[0][1] = width;
paramBuf[1][1] = height;
paramBuf[2][1] = CL_RGBX;
clSetParams(decompressorHdl, (int *)paramBuf,

sizeof(paramBuf) / sizeof(int));

for (k = 0; k < numberOfFrames; k++)
{ /* Decompress each frame and display it */
 dataSize = GetCompressedVideo(k, frameSize, data);
 clDecompress(decompressorHdl, 1, dataSize, data,

frameBuffer);
 lrectwrite(0, 0, width-1, height-1,

(unsigned int *)frameBuffer);
}
/* Close Decompressor */
clCloseDecompressor(decompressorHdl);

506

Chapter 24: Getting Started with the Compression Library

Using the Buffering Interface

Buffers are used to manage compression and decompression for data that is
accessed randomly, or when it is necessary to separate the task into several
processes or across multiple processors. Buffering allows the accumulation
of compressed data to be independent of that of decompressed frames. The
buffering interface can be used for multithreaded applications.

Buffers are implemented as ring buffers in libcl. A ring buffer contains a
number of blocks of arbitrary size. It maintains a pointer to the buffer
location, a size, and pointers to the Head of newest and Tail of oldest valid
data. Separate processes can be producing (adding to the buffer) and
consuming (removing from the buffer).

Figure 24-1 shows a conceptual drawing of a ring buffer.

Figure 24-1 Ring Buffer

The circle represents the ring buffer. The shaded part of the circle contains
frames or data, depending on the buffer type; the blank part is free space.
The size of the data (or the number of frames) available and the size of the
space (or the number of frames of space) are shown by the arrows within the
circles. Head marks the location where new data or frames, depending on
the buffer type, are inserted. Tail marks the location where the oldest data or
frames, depending on the buffer type, are removed. The head and tail march
around the circle as data or frames, depending on the buffer type, are
produced and consumed. The double vertical bar at the top signifies the
discontinuity between the end of the buffer and the beginning of the buffer
in linear physical memory.

Size

Space
HeadTail

Using the Buffering Interface

507

Creating a Buffer

The buffer management routines allow buffer space to be allocated by the
library (internal) or by the application (external). A buffer often already
exists in memory where the frames exist (on compression) or need to be
placed (on decompression). External buffering allows this to happen
without having to copy the data to or from an internal buffer. An external
buffer is managed entirely within libcl as a ring buffer.

Use clCreateBuf() to create an internal or external buffer. Use
clDestroyBuf() to destroy an internal or external buffer. If clDecompress()
or clCompress() is called with NULL for the compressed data or frame
buffer parameters, then the buffer specified by clCreateBuf() is used. An
error is reported if no buffer was created.

The function prototypes are:

CLbufferHdl * clCreateBuf (CLhandle handle, int bufferType,
 int blocks, int blockSize, void **bufferPtr)

int clDestroyBuf (CLbufferHdl bufferHdl)

where:

handle is the handle to the compressor or decompressor

bufferType specifies the type of the ring buffer, which can be either:

• CL_FRAME for a frame buffer

• CL_DATA for a data buffer

blocks specifies the number of blocks in the buffer

blockSize specifies the size in bytes of the block. This value is either 1
for data buffering or a multiple of the frame size for frame
buffering

bufferPtr is a pointer to a pointer to the ring buffer. If it points to a
NULL pointer, it specifies an internally allocated buffer, and
the value it points to receives the buffer pointer

bufferHdl is a handle to the buffer

508

Chapter 24: Getting Started with the Compression Library

The handle returned in bufferHdl is used in subsequent buffering calls, with
which you can get the buffer handle, and get the compressor or
decompressor handle.

Use clQueryBufferHdl() to get the buffer handle from a compressor or
decompressor handle. Its function prototype is:

CLbufferHdl clQueryBufferHdl(CLhandle handle,
 int bufferType, void **bufferPtr2)

Use clQueryHandle() to get the compressor or decompressor handle from a
buffer handle. Its function prototype is:

CLhandle clQueryHandle(CLbufferHdl bufferHdl)

The code fragment in Example 24-6 demonstrates how to create and use an
internal buffer.

Example 24-6 Creating and Using an Internal Buffer

#include <cl.h>
CLhandle handle;
CLbufferHdl bufferHdl;
void *buffer;
 ...
clOpenCompressor(CL_MVC1, &handle);

/* Create a buffer of 10 blocks of size 10000 */
buffer = NULL;
bufferHdl = clCreateBuf(handle, CL_DATA, 10, 10000, &buffer);
bufferHdl = clQueryBufferHdl(handle, CL_DATA, &buffer);
handle = clQueryHandle(bufferHdl);
 ...
clDestroyBuf(bufferHdl);
clCloseCompressor(handle);

The code fragment in Example 24-7 demonstrates how to create and use an
external buffer.

Example 24-7 Creating and Using an External Buffer

#include <cl.h>
CLhandle handle;
CLbufferHdl bufferHdl;
void *buffer;

Using the Buffering Interface

509

clOpenCompressor(CL_MVC1, &handle);

/* Create a buffer of 10 blocks of size 10000 */
buffer = malloc(10*10000);
bufferHdl = clCreateBuf(handle, CL_DATA, 10, 10000, &buffer);
bufferHdl = clQueryBufferHdl(handle, CL_DATA, &buffer);
handle = clQueryHandle(bufferHdl);
 ...
clDestroyBuf(bufferHdl);
clCloseCompressor(handle);

Managing Buffers

The buffer management routines are used for both uncompressed (or
decompressed) frames and compressed data. When used for compressed
data, they return the number of blocks (of selectable byte size) of valid
contiguous data (or free space for data). When used for frames, they return
the actual number of valid contiguous frames (or free space for frames).

Use clQueryFree() to find out how much free space is available and where it
is located.

Use clUpdateHead() to notify the library that data has been placed in the
ring buffer and to update the head pointer.

Use clQueryValid() to find out how many blocks of valid data are available
and where they are located.

Use clUpdateTail() to notify the library that valid data has been consumed
from the ring buffer and that data is no longer needed.

Use clDoneUpdatingHead() to notify a decompressor that no more data will
be arriving, in which case clDecompress() returns when the buffer empties.

The function prototypes are:

int clQueryFree (CLbufferHdl bufferHdl, int space
 void **freeData, int *wrap)

int clUpdateHead (CLbufferHdl bufferHdl, int amountToAdd);

int clQueryValid (CLbufferHdl bufferHdl, int amount,
 void **ValidData, int *wrap)

510

Chapter 24: Getting Started with the Compression Library

int clUpdateTail (CLbufferHdl bufferHdl, int amountToRelease)

int clDoneUpdatingHead (CLbufferHdl bufferHdl)

where:

bufferHdl is a handle to a compressor buffer.

space is the number of blocks of free space in the frame buffer to
wait for. If it is zero, then the current number of blocks of
space is returned without waiting.

freeData is a pointer to the returned pointer to the location where
data or frames can be placed.

wrap is the number of blocks that have wrapped to the beginning
of the ring buffer (see Figure 24-2 and the accompanying
discussion). If it is greater than zero, then the end of the ring
buffer has been reached and the routine return value will
not increase (on subsequent calls) until either
clUpdateHead() for free space or clUpdateTail() for valid
data has been called.

amountToAdd is the number of blocks of free space that were written by
the caller and are ready to be consumed by the library.

amount is the number of blocks of valid data in the data buffer to
wait for. If it is zero, then the number of blocks currently
available is returned without waiting.

validData is a pointer to the returned pointer to the location where
valid data can be retrieved.

amountToRelease
is the number of blocks of valid data that were consumed by
the call and can be reused by the library.

Each compressor or decompressor can have a (compressed) data buffer and
a (uncompressed) frame buffer.

The block size for the uncompressed frame buffer must be a multiple of the
size of one frame. This value, multiplied by the number of blocks specified,
determines how many frames ahead a decompressor can get if you allow it
to work ahead.

Using the Buffering Interface

511

Producing and Consuming Data in Buffers

Figure 24-2 on page 512 shows snapshots of the buffer state over time as a
sequence of produce and consume processes operate on the buffer. Initially,
the buffer is empty and both Head and Tail point to the beginning of the
buffer. When Head and Tail are equal, the buffer is either empty or full—in
this case, the buffer is empty. The library keeps track of whether the buffer is
empty or full internally.

In the first frame of Figure 24-2, a process begins producing—adding data to
the buffer. First, a call is made to clQueryFree() to determine how much free
space is available. An amount equal to the entire buffer size is returned. Data
is written to the buffer, then the location of Head is updated to point to the
beginning of the next available free space.

In the second frame of Figure 24-2, the next call to clQueryFree() returns the
free space that exists from Head to Tail. More data is written and the Head is
updated once again.

In the third frame of Figure 24-2, a process begins consuming—taking data
from the buffer. A call is made to clQueryValid() to determine the amount of
valid data in existence. The size of the data that was written by the producers
so far is returned. Data is read from the beginning of the buffer to the desired
location, and Tail is updated to point to the next location containing valid
data.

The final frame of Figure 24-2 shows what happens when the free space is
not contiguous. When the next producer queries for the available free space,
two pieces of free space exist—one on each side of the buffer discontinuity.
The first piece of free space, which is from Head to the end of the buffer, is
returned as usual. The second piece of free space, which is from the
beginning of the buffer to Tail, is returned in the wrap argument. You can’t
write data across the buffer boundary, so it must be written to the buffer in
two steps. First write the data until the end of the buffer is reached, then
write the data from the beginning of the buffer until all of the data has been
used. Head can then be updated to point to the next available free space.

The process for reading data across the frame discontinuity is analogous.

512

Chapter 24: Getting Started with the Compression Library

Figure 24-2 Snapshots of Buffer State During Producing and Consuming
Processes

HeadTail HeadTail

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Head

Tail Tail

Head

Tail

Head

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Initial State Write data
clUpdateHead()

clQueryFree()

Write data clUpdateHead()

clQueryValid()

Read data

clUpdateTail()

clQueryFree()
Write data fromWrite data until clUpdateHead()

returns entire buffer

Producing

clQueryFree()

Producing

Consuming

Producing

beginning of bufferend of buffer is
reachedreturns free space

plus a wrap
value that is
greater than
zero

Using the Buffering Interface

513

Figure 24-3 shows the architecture of the buffer management. Rectangles
represent code modules that can be placed in separate synchronized
processes. The buffer management routines are shown within the boxes.
Arrows show the flow of data from the modules to and from the buffers

.

Figure 24-3 Flow of Data in a Buffered Compression and Decompression Scheme

clQueryFree(dataHdl)

clUpdateHead(dataHdl)

clQueryValid(frameHdl)

clUpdateTail(frameHdl)

Size

Space

Size

Space Head

Tail

Tail
Head

Playback

Play

Record

Source

Compressor
Decompressor

clDecompress()

Storage

Size

Space

Size

Space Head

Tail

Tail

Head

Storage

clQueryFree(frameHdl)

clUpdateHead(frameHdl)

clCompress()

clQueryValid(dataHdl)

clUpdateTail(dataHdl)

data

data

frames

frames

frames

frames

data

data

514

Chapter 24: Getting Started with the Compression Library

Creating a Buffered Record and Play Application

This section provides several examples of how to use buffering. Blocking
and nonblocking playback and record examples are provided.

Creating a Basic Buffered Playback Application

The code fragment in Example 24-8 demonstrates how to use buffers for a
playback application. The amount of space is queried, the data is read
directly into the data buffer, and the decompressor is notified of the change.
The data can then be decompressed and retrieved by querying the number
of frames, displaying them directly from the frame buffer, then releasing the
consumed frames.

Example 24-8 Using Buffers for Playback

#include <cl.h>
 ...
actualLen = clQueryFree(decompressorHdl, len, &buf, &wrap);
read(fd, buf, actualLen);
len = clUpdateHead(dataHdl, actualLen);

clDecompress(decompressorHdl, 1, 0, NULL, NULL);

actualNumberOfFrames = clQueryValid(frameHdl, numberOfFrames,
 &frameBuffer, &wrap);
ConsumeFrames(actualNumberOfFrames, frameBuffer);
numberOfFrames = clUpdateTail(bufferHdl,
actualNumberOfFrames);

clUpdateHead() indicates to the library that the data has been placed in the
data buffer, but does not copy the data.

clDecompress() reads compressed data from the data buffer and writes
uncompressed frames to the frame buffer. If space for a frame exists in the
frame buffer, then it begins decompressing directly to the frame buffer. It
consumes data from the data buffer until there is no more data, then it sleeps
for a while and periodically continues to check for data until there is enough
data. When it finishes decompressing a frame, it updates the frame buffer
pointers and returns. clDecompress() does not return until decompression
is complete or until an error occurs.

Using the Buffering Interface

515

If no more data will be added to the buffer, the application can call
clDoneUpdatingHead() so that the library will not stall.

clQueryValid() returns the pointer into the frame ring buffer. clUpdateTail()
is required to free the internal frame buffer space, which you don’t want to
happen until after you consume it. The pointer to the next valid frame is kept
internally, and only the actual number of frame buffers that have been
decompressed are returned.

The size (or numberOfFrames) returned by the routines are for the contiguous
data (or frames, depending on the buffer type). The wrap argument of the
clQuery() routines returns the actualLen (or numberOfFrames) that have
wrapped to the beginning of the buffer.

The frame accesses will not cross the buffer boundary, and the wrap
argument does not need to be used if both:

• the allocated size of the frame ring buffer is a multiple of the size of a
frame times the numberOfFrames that will be requested

• the same number of frames will always be requested

If the len (or numberOfFrames) passed to the clQuery() routines is greater
than zero, the routine blocks until that much data (or that many frames) is
available. If it is less than or equal to zero, then the routine returns
immediately with whatever data is available. In either case, the buffer
pointers are not adjusted until the clUpdate() routines are called.

Creating a Nonblocking Buffered Playback Application

The code fragment in Example 24-9 demonstrates how to implement
nonblocking playback.

Example 24-9 Using Buffers for Nonblocking Playback

actualLen = clQueryFree(decompressorHdl, 0, &buf, &wrap);
if((actualLen > MIN_READ_SIZE) || (wrap > 0)) {
 read(fd, buf, actualLen);
 len = clUpdateHead(decompressorHdl, actualLen);
}
/* Go do something else */
 ...

516

Chapter 24: Getting Started with the Compression Library

Each call to clQueryFree() returns the same buf pointer, but increasing values
of actualLen until MIN_READ_SIZE is reached, whereupon
clUpdateHead(dataHdl) updates the pointers and the next call to
clQueryFree() returns a different buf pointer and a reset actualLen. If wrap
becomes greater than zero, the end of the buffer has been reached and
actualLen will not get any larger, so the amount remaining in the buffer must
be consumed.

Creating a Buffered Record Application

The code fragment in Example 24-10 demonstrates how to use buffers for
recording.

Example 24-10 Using Buffers for Recording

actualNumberOfFrames = clQueryFree(bufferHdl, numberOfFrames,
 &frameBuffer, &wrap);
ProduceFrames(actualNumberOfFrames, frameBuffer);
numberOfFrames = clUpdateHead(bufferHdl,
actualNumberOfFrames);

clCompress(compressorHdl, 1, NULL, 0, NULL);

actualBufSize = clQueryValid(compressorHdl, bufSize, &buf,
 &wrap);
write(fd, buf, actualBufSize);
bufSize = clUpdateTail(compressorHdl, actualBufSize);

The amount of free space is queried, the frames are read directly into the
frame buffer, and the compressor is notified of the change. The frames can
then be compressed and the data can be retrieved by querying the amount
of the data, consuming directly from the data buffer, then releasing the
consumed data.

clUpdateHead() indicates that the frames have been placed in the frame
buffer, but does not copy the data.

clCompress() reads from the frame buffer and writes to the data buffer. If a
frame exists in the frame buffer, then it begins compressing directly from the
frame buffer. It places compressed data in the data buffer until there is no
more room, then it blocks until there is enough room. When it completes
compression of a frame, it updates the frame buffer pointers and returns.

Using the Buffering Interface

517

clCompress() does not return until compression is complete (or an error
occurs).

clQueryValid() returns the pointer into the data ring buffer. clUpdateTail()
is required to free the internal data buffer space, which you don’t want to
happen until after you consume it—in this case, by writing it. The pointer to
valid data is kept internally, and clUpdateTail() returns only the actual
number of bytes released.

The amount/numberOfFrames returned by the routines are for contiguous
data/ frames. The wrap parameter of the clQuery() routines returns the
amount/numberOfFrames that have wrapped to the beginning of the buffer.

If the allocated size of the frame ring buffer is a multiple of the size of a frame
times the numberOfFrames that will be requested, assuming that the same
number of frames is always requested, then the frame accesses will not cross
the buffer boundary, and the wrap parameter does not need to be used.

If the amount passed to the clQuery() routines is greater than zero, then the
routine blocks until that much data is available. If it is less than or equal to
zero, then the routine returns immediately with whatever data is available.
In either case, the buffer pointers are not adjusted until the clUpdate()
routine is called.

Creating a Nonblocking Buffered Record Application

The code fragment in Example 24-11 demonstrates how to use buffers for
nonblocking recording.

Example 24-11 Using Buffers for Nonblocking Recording

actualLen = clQueryValid(dataHdl, 0, &buf, &wrap);
if((actualLen > MIN_READ_SIZE) || (wrap > 0)){

write(fd, buf, actualLen);
len = clUpdateTail(dataHdl, actualLen);

}

Each call to clQueryValid() returns the same buf pointer, but increasing
values of actualLen until MIN_READ_SIZE is reached, whereupon
clUpdateTail() updates the pointers, and the next call to clQueryValid()
returns a different buf pointer and a reset actualLen. If wrap becomes greater

518

Chapter 24: Getting Started with the Compression Library

than zero, then the end of the buffer has been reached, and actualLen will not
get any larger, so the amount remaining in the buffer must be consumed.

Note that the consuming, compressing or decompressing, and producing
have been separated into different sets of calls. The most powerful use of the
interface is to separate these functional groupings into shared processes
using sproc() or to allocate them to separate (shared data) processors. See
sproc(2) for more information about using sproc().

The buffers are set up by clCreateBuf(). In order to use data input buffering,
clDecompress() receives NULL for compressedData. In order to use frame
output buffering, clDecompress() receives NULL for frameBuffer.

clCompress() reads from the frame buffer and writes to the data buffer. If a
frame exists in the frame buffer, then it begins compressing directly from the
frame buffer. It places compressed data in the data buffer until there is no
more room, then it sleeps for a while and checks again until there is enough
room. When it finishes compressing a frame, it updates the frame buffer
pointers and returns. clCompress() does not return until compression is
complete or until an error occurs.

Using the Buffering Interface

519

Creating Buffered Multiprocess Record and Play
Applications

In the examples in the previous section, consuming, compressing or
decompressing, and producing have been separated into different sets of
calls. The most powerful use of the buffering interface is to separate these
functional groups into shared processes using sproc() or to allocate them to
separate (shared data) processors.

The code fragment in Example 24-12 demonstrates how to implement
multiprocess playback. The functions in boldface can be implemented as
separate processes.

Example 24-12 Using Buffers for Multiprocess Playback

ProduceDataProcess()
 actualLen = clQueryFree(dataHdl, len, &buf, &wrap);
 read(fd, buf, actualLen);
 len = clUpdateHead(dataHdl, actualLen);

DecompressProcess()
 clDecompress(decompressorHdl, 1, 0, NULL, NULL);

ConsumeFrameProcess()
 actualNumberOfFrames = clQueryValid(frameHdl,
 numberOfFrames, &frameBuffer, &wrap);
 lrectwrite(0, 0, width - 1, height - 1, frameBuffer);
 numberOfFrames =
clUpdateTail(frameHdl,actualNumberOfFrames);

520

Chapter 24: Getting Started with the Compression Library

The code fragment in Example 24-13 demonstrates how to use buffers for
multiprocess recording. The functions in boldface can be implemented as
separate processes.

Example 24-13 Using Buffers for Multiprocess Recording

ProduceFrameProcess()
 actualNumberOfFrames = clQueryFree(frameHdl,
 numberOfFrames, &frameBuffer, &wrap);
 lrectread(0, 0, width - 1, height - 1, frameBuffer);
 numberOfFrames = clUpdateHead(frameHdl,
 actualNumberOfFrames);

CompressProcess()
 clCompress(compressorHdl, 1, NULL, &compressedDataSize,
 NULL);

ConsumeDataProcess()
 actualBufSize = clQueryValid(dataHdl, bufSize,&buf, &wrap);
 write(fd, buf, actualBufSize);
 bufSize = clUpdateTail(dataHdl, actualBufSize);

This allows the application nonblocking access to compression and
decompression. The application will almost always use
ProduceDataProcess() for playback and the ProduceFrameProcess() for
record, since the single process will block forever within clDecompress()/
clCompress() if insufficient data or frames, depending on the buffer type,
are supplied. The other processes can be made parts of the main() process.
These processes could also be spread across multiple processors.

Programming with the Cosmo Compress JPEG Codec

521

Programming with the Cosmo Compress JPEG Codec

Cosmo Compress is an optional hardware JPEG accelerator for workstations
equipped with Galileo Video options, including: Galileo Video for Indigo2

and Indigo R4000 computers, Indigo2 Video, Indy Video, and Sirius Video.
Cosmo Compress is capable of compressing to and decompressing from
memory, or directly through a special video connection to Galileo Video
options.

Cosmo Compress JPEG is a lossy compression scheme based on
psychovisual studies of human perception. Picture information that is
generally not noticeable is dropped out, reducing the storage requirement
anywhere from 2 to 100 times. Cosmo Compress implements a subset of the
JPEG standard especially for video-originated images (baseline JPEG,
interleaved YCrCb 8-bit components).

Cosmo Compress Basics

See the Cosmo Compress Execution Environment Release Notes for important
prerequisite information and installation instructions. Your workstation
must be equipped with the following hardware and software components in
order to be able to use Cosmo Compress:

• Cosmo Compress option and Cosmo Compress software

• Video option with output capability

• Iris Development Option software

You can program Cosmo Compress from the Compression Library (CL),
using either the buffered or sequential interface along with JPEG-specific
and Cosmo-specific CL parameters.

Cosmo Compress has four different modes of operation:

• compressing video from an external video device into a memory buffer

• decompressing video from a buffer to an external video device

• compressing an image stored in memory into another area of memory

• decompressing a stored compressed image into a buffer

522

Chapter 24: Getting Started with the Compression Library

To add Cosmo Compress support to your application:

1. Include the dmedia/cl_cosmo header in order to get definitions for Cosmo
Compress:

#include <dmedia/cl_cosmo.h>

2. Set Cosmo Compress specific compression parameters:

■ Set image formats as described in “Cosmo Compress Image
Formats” on page 522

■ Enable CL_ENABLE_IMAGEINFO as described in “Getting
Compressed Image Information” on page 524.

3. Specify CL_JPEG_COSMO as the scheme argument for
clOpenCompressor() when opening a compressor or
clOpenDecompressor() when opening a decompressor. Only one
application can have Cosmo Compress open at a time—an error will be
returned to the program if another application has Cosmo Compress
open.

4. Compress or decompress frames.

 Cosmo Compress Image Formats

This section describes CL image parameters supported by Cosmo Compress.
Cosmo Compress works with video fields, 2 of which compose a video
frame.

Cosmo Compress requires that input images have height and width
dimensions that are multiples of 8 pixels because the JPEG compression
algorithm processes images in blocks of 8x8 pixels. The CL associates two
sets of image dimensions with an instance of a video compressor or
decompressor: one set for uncompressed images (CL_IMAGE_WIDTH and
CL_IMAGE_HEIGHT), and one set for compressed images
(CL_INTERNAL_IMAGE_WIDTH and
CL_INTERNAL_IMAGE_HEIGHT).

For memory-to-memory compression, CL_IMAGE_WIDTH always equals
CL_INTERNAL_IMAGE_WIDTH, and CL_IMAGE_HEIGHT always
equals CL_INTERNAL_IMAGE_HEIGHT.

Programming with the Cosmo Compress JPEG Codec

523

Table 24-3 summarizes the image format parameters

Table 24-3 Cosmo Compress Image Format Parameters

Image Attribute Description Parameter(s) Values

Pixel format Cosmo Compress supports
32-bit RGB only for memory-
memory transfers and YCrCb
4:2:2 only for video-memory
transfers.

CL_ORIGINAL_FORMAT CL_RGBX (memory-memory)

CL_YUV (video-memory)

Interlacing Cosmo Compress operates on
interlaced NTSC or PAL
video data for video-to-
memory compression and
memory-to-video
decompression. Even and
odd fields are compressed as
separate images.

DM_IMAGE_INTERLACING NTSC or CCIR(525):
DM_IMAGE_INTERLACED_EVEN

PAL or CCIR(625):
DM_IMAGE_INTERLACED_ODD

Image orientation Cosmo Compress
compresses/decompresses
images that have top-to-
bottom orientation. By
default, lrectwrite(3g) draws
images with bottom-to-top
orientation. Use pixmode(3g)
to set graphics orientation to
PM_TTOB in order to
correctly display top-to-
bottom images.

CL_ORIENTATION CL_TOP_DOWN

DM_TOP_TO_BOTTOM (for SGI
movies)

Uncompressed
image dimensions

Uncompressed image height
(in pixels).

CL_IMAGE_HEIGHT Range: 16–336, in multiples of 8.
(NTSC must use either 240 or 248)
Default: 248

Uncompressed image width
(in pixels)

CL_IMAGE_WIDTH 640 (NTSC), 720 (CCIR(525) and
CCIR(625)), 768 (PAL). Default: 640

Compressed
image dimensions

Compressed image height (in
pixels)

CL_INTERNAL_IMAGE_HEIGHT Range: 16–336, in multiples of 8.

Uncompressed image width
(in pixels)

CL_INTERNAL_IMAGE_WIDTH 320 (NTSC), 360 (CCIR(525) and
CCIR(625)), 384 (PAL). Default: 320

524

Chapter 24: Getting Started with the Compression Library

Getting Compressed Image Information

The CL provides a function exclusively for Cosmo Compress that lets you
get information such as the size, timestamp, and a relative image index value
for images (fields or frames) as they are compressed or decompressed
through Cosmo Compress. When compressing from external video, the
timestamp returned represents the time at which the first line of the
uncompressed field arrived at the Cosmo Compress board.

To get compressed image information:

1. Call clSetParam() to set the CL_ENABLE_IMAGEINFO parameter to
TRUE before compressing or decompressing any frames.

2. Call clGetNextImageInfo() to get a structure containing information
about the compressed image:

int clGetNextImageInfo(CL_Handle handle,
 CLimageInfo *info, int sizeofimageinfo)

handle specifies an open handle which is actively compressing
or decompressing

info is a pointer where a CLimageInfo structure is to be
placed

sizeofimageinfo specifies the size of the CLimageInfo structure in bytes

The CLimageInfo structure is defined in dmedia/cl.h and has the
following fields:

typedef struct {
 unsigned size; /* size of compressed image in bytes */
 unsigned long long ustime; /* time in nanoseconds */
 unsigned imagecount; /* media stream counter */
 unsigned status; /* additional status information */
} CLimageInfo;

The ustime field returns a meaningful value only when compressing
from or decompressing to an external device. The status field is
reserved for future use.

Programming with the Cosmo Compress JPEG Codec

525

Note: Currently, in order to get valid JPEG data, an application using the
CL_JPEG_COSMO compressor must enable clGetNextImageInfo() by
setting CL_ENABLE_IMAGEINFO, and then read a CLimageInfo structure
corresponding to each compressed image, before calling clCompress to read
the compressed image data.

When using the CL_JPEG_COSMO decompressor, you don’t need to read
CLimageInfo structures. When clGetNextImageInfo() is enabled, the CL
uses a small internal buffer to queue the structures during decompression.
When this queue fills, the oldest structures are overwritten by new ones.

clGetNextImageInfo() blocks only when it is waiting for the first valid
decompressed field to exit the CL_JPEG_COSMO decompressor.

Memory-to-Memory Compression and Decompression

You can use Cosmo Compress to compress images from a memory archive
to a buffer. For example, you can use Cosmo Compress to compress images
from a movie file to a buffer, and then insert the JPEG-compressed images
into a movie file to create a compressed movie. Taking this idea a step
further, you can then use Cosmo Compress to scale down the images as it
decompresses them, in order to display thumbnail images similar to the ones
in Movie Player. See vidmemcomp.c in /usr/people/4Dgifts/examples/dmedia/
compression/vidmemcomp for example code that demonstrates these concepts.

Memory-to-Memory Compression

To compress frames into memory using Cosmo Compress:

1. Set the CL image parameters to characterize the input image data.

2. Open a CL_JPEG_COSMO compressor.

3. Compress frames into memory. Each frame contains 2 fields.

When compressing images from memory into a buffer, Cosmo Compress
supports image widths of 16–768 and image heights of 16–336, in multiples
of 8. You cannot scale images when compressing into memory, therefore,
CL_IMAGE_WIDTH equals CL_INTERNAL_IMAGE_WIDTH, and
CL_IMAGE_HEIGHT equals CL_INTERNAL_IMAGE_HEIGHT.

526

Chapter 24: Getting Started with the Compression Library

The uncompressed data format must be 32-bit RGB (CL_RGBX), and the
uncompressed image size cannot be larger than PAL video.

Note: NTSC frames have a width of 243, but Cosmo Compress supports
only input image widths that are multiples of 8. For NTSC, you must specify
an image width of either 240 (causing the image to be cropped 3 lines from
the bottom) or 248 (causing the image to be padded with 5 extra lines).
Output image widths do not have to be multiples of 8.

Example 24-14 demonstrates memory-to-memory compression of NTSC
video.

Example 24-14 Cosmo Compress Memory-to-Memory Compression

#include <dmedia/cl.h>
...
 int pbuf[][2] = {
 CL_IMAGE_WIDTH, 0,
 CL_IMAGE_HEIGHT, 0,
 CL_COMPRESSED_BUFFER_SIZE, 0
 };
 ...
 /* Compress a series of frames */
 clOpenCompressor(CL_JPEG_COSMO, &handle);

 /* set parameters */
 pbuf[0][1] = 640;
 pbuf[1][1] = 240;
 clSetParams(handle, (int *)pbuf, 4);

 /* allocate the required size buffer */
 clGetParams(handle, (int *)pbuf, 6);
 compressedBuffer = malloc(pbuf[2][1]);

 for(i = 0; i < numberOfFrames; i++)
 {
 /* Get a frame from somewhere */
 ...
 clCompress(handle, 1, frameBuffer,
 &compressedBufferSize, compressedBuffer);
 /* Write the compressed data to somewhere else. */
 ...
 }
 clCloseCompressor(handle);

Programming with the Cosmo Compress JPEG Codec

527

After compressing the images, you can use mvInsertCompressedImage() to
insert the compressed images into a movie file, as described in “Reading and
Inserting Compressed Images” in Chapter 29. Since the JPEG images are
stored in fields, you must read two fields for every frame.

Memory-to-Memory Decompression

To decompress JPEG images from memory using Cosmo Compress:

1. Set the CL image parameters to characterize the output image data.

2. Open a CL_JPEG_COSMO decompressor.

3. Decompress frames into a buffer. Each frame contains 2 fields.

You can shrink the images as they are decompressed, which is useful for
displaying thumbnail images. When decompressing images from memory
into a buffer, Cosmo Compress supports image widths of 16–768 and image
heights of 16–336. Scaling can be arbitrary, that is, you can scale the image
dimensions down by any amount, and the output image dimensions do not
have to be multiples of 8. To shrink images as they are decompressed, make
the uncompressed image dimensions (CL_IMAGE_WIDTH and
CL_IMAGE_HEIGHT) less than the corresponding compressed image
dimensions (CL_INTERNAL_IMAGE_WIDTH and
CL_INTERNAL_IMAGE_HEIGHT).

Compressing and Decompressing Video Through
External Connections to Cosmo Compress

You can use Cosmo Compress as a real-time JPEG codec between your
application and an external video device. This section explains how to use
Cosmo Compress to compress images from an external video connection
into memory and decompress JPEG images from memory to a video device.

528

Chapter 24: Getting Started with the Compression Library

Video-to-Memory Compression

To capture video from an external video device using Cosmo Compress:

1. Connect the video device to the appropriate port. For example, use
either analog port 1 or digital port 1. Video port connections are
managed from the videopanel control panel.

2. Open a connection to the video server by calling vlOpenVideo("").

3. Create the video transfer paths.

■ Get the source (VL_SRC) node for the video signal connection by
calling vlGetNode().

■ Get the drain(VL_DRN) node for the Cosmo Compress connection
by calling vlGetNode().

■ Create the path from source to drain by calling vlCreatePath().

■ Set up the path to share (VL_SHARE) data by calling
vlSetupPaths().

Tip: Cosmo Compress is not a video node; it is a separate device.
Therefore the VL does not have a Cosmo VLnode for video paths. The
port to which Cosmo Compress is connected (for example, the digital
video output) is the video drain node.

4. Set the appropriate video synchronization mode. Use slave mode
(VL_EV1_SYNC_SLAVE) when capturing from the analog port; use
internal mode (VL_SYNC_INTERNAL) when capturing from the
digital port.

5. Set the CL parameters for image dimensions, quality factor, and
compressed image information (CL_ENABLE_IMAGEINFO).

6. Open a CL_JPEG_COSMO compressor.

7. Call clGetNextImageInfo() to get a structure containing information
about the compressed image.

8. Start the video transfer.

9. Use the CL buffered interface to compress frames by calling
clCompress() with CL_CONTINUOUS_NONBLOCK as the framecount
parameter and CL_EXTERNAL_DEVICE as the frameBuffer parameter.

Programming with the Cosmo Compress JPEG Codec

529

Note: Instead of using CL_CONTINUOUS_NONBLOCK, you can call
clCompress() from a separate thread within the program. clCompress()
does not return until the transfer is complete.

See cosmo_capture.c in /usr/people/4Dgifts/examples/dmedia/dmrecord for an
example of capturing external video through Cosmo Compress.

Video fields entering Cosmo Compress from the direct video connection are
captured into an array of field buffers. The field buffers support field widths
from 640 to 768 and field heights from 16 to 336. Field dimensions depend
on the video timing, as shown in Table 24-4.

Table 24-4 shows video field dimensions for the video formats supported by
Cosmo Compress.

Lines in the field buffers following the end of valid video data are filled with
indeterminate data (that is, they are not blacked out).

When the compressed image height is less than the height of the incoming
video fields, the video fields are clipped from the bottom before they are sent
to the compressor. When the compressed image height is greater than the
height of the incoming video fields, additional lines of indeterminate data
are appended to the valid video data before the data is sent to the
compressor.

Note: NTSC fields have a height (243 pixels) which is not a multiple of 8. For
NTSC capture, you can choose to have your application either throw away 3
lines from the bottom of each field (240 pixel height) or append 5 extra lines
to the bottom of each field (248 pixel height) prior to compression.

Table 24-4 Cosmo Compress Video Field Dimensions

Video Format WIdth (pixels) Height (pixels)

NTSC 640 243

PAL 768 288

CCIR(525) 720 243

CCIR(625) 720 288

530

Chapter 24: Getting Started with the Compression Library

You can scale the captured image to half-size before compressing it. This
allows for an additional increase in data compression by factor of 4.

Specify vertical decimation by setting the compressed image height
(CL_INTERNAL_IMAGE_HEIGHT) to half the size of the uncompressed
image height (CL_IMAGE_HEIGHT). Compressed image heights can range
from 16 to 168 and uncompressed image heights can range from 32 to 336.

Specify horizontal decimation by setting the compressed image width
(CL_INTERNAL_IMAGE_WIDTH) to half the size of the uncompressed
image width (CL_IMAGE_WIDTH) as indicated in Table 24-5.

During video compression from an external device, CLimageInfo.imagecount
is initialized to 1 when the first field is received by the compressor after
calling clCompress(). The count advances when a new field arrives. If the
compression data buffer fills up, then a field will be dropped, but the
imagecount continues to increase. An application can thus detect a dropped
field by noticing a jump in the imagecount field of more than one. The ustime
indicates the time the uncompressed field entered the compressor.

Memory-to-Video Decompression

The connections for decompressing from memory to an external video are
set up similar to those for capturing video, except that a decompressor is
opened. See clInit.c in /usr/people/4Dgifts/examples/dmedia/dmplay for example
code that initializes the CL for JPEG decompression (optionally through
Cosmo Compress) from memory to external video.

Table 24-5 Cosmo Compress Field Widths for Compression With Decimation

Video Format CL_IMAGE_WIDTH (pixels) CL_INTERNAL_IMAGE_WIDTH (pixels)

NTSC 640 320

PAL 768 384

CCIR(525) 720 360

CCIR(625) 720 360

Programming with the Cosmo Compress JPEG Codec

531

Video playback of the decompressed frames requires media
synchronization. See dmplay.c and streamDecompress.c in /usr/people/4Dgifts/
examples/dmedia/dmplay for more information.

Uncompressed fields leaving the JPEG decompressor may optionally be
scaled up by a factor of 2 in the horizontal and/or vertical dimensions.
NTSC, PAL or CCIR(525)/CCIR(625) fields are then scanned out of the array
of field buffers. Horizontal scaling is performed by pixel replication, vertical
scaling is performed by line doubling. If the uncompressed fields leaving the
decompressor have fewer lines than the field height required by the NTSC,
PAL or CCIR(525)/CCIR(625) connection (after optional pistoling),
additional lines of indeterminate (not blacked out) data will be scanned out
of the field buffers to pad out bottoms of the uncompressed images. If the
uncompressed fields leaving the decompressor have more lines than the
NTSC/PAL/CCIR(525)/CCIR(625) field height (after optional pistoling),
lines will be clipped from the bottom of the uncompressed images.

Specify horizontal scaling by setting the uncompressed image width
(CL_IMAGE_WIDTH) that is twice the compressed image width
(CL_INTERNAL_IMAGE_WIDTH) as indicated in Table 24-6.

Specify vertical scaling by setting the uncompressed image height
(CL_IMAGE_HEIGHT) to twice the size of the compressed image height
(CL_INTERNAL_IMAGE_HEIGHT). Compressed image heights can range
from 16 to 168 and uncompressed image heights can range from 32 to 336.

During video decompression to an external device, CLimageInfo.imagecount
reflects the count of fields sent by the application to the decompressor. The
ustime indicates the time that field left the decompressor. In certain
situations, fields are repeated on output, in which case the imagecount will

Table 24-6 Cosmo Compress Field Widths for Decompression

Video Format CL_IMAGE_WIDTH (pixels) CL_INTERNAL_IMAGE_WIDTH (pixels)

NTSC 640 320

PAL 768 384

CCIR(525) 720 360

CCIR(625) 720 360

532

Chapter 24: Getting Started with the Compression Library

remain the same, but the ustime will increase. Cosmo Compress
decompression has a 1 frame delay through Galileo/IndyVideo before the
field actually leaves the machine.

When transferring to or from external video, the video can be played
continuously (default) or single-stepped a field or frame at a time. In either
mode, the frame output is composed of either a single field replicated twice
or two different fields. Specify the frame control by setting
CL_COSMO_VIDEO_TRANSFER_MODE.

For continuous transfer, set CL_COSMO_VIDEO_TRANSFER_MODE to
CL_COSMO_VIDEO_TRANSFER_AUTO_1_FIELD for the first field in a
frame, and CL_COSMO_VIDEO_TRANSFER_AUTO_2_FIELD for the
second field in a frame.

For manual control, set CL_COSMO_VIDEO_TRANSFER_MODE to
CL_COSMO_VIDEO_TRANSFER_MANUAL_1_FIELD, and
CL_COSMO_VIDEO_TRANSFER_MANUAL_2_FIELD.

In manual video transfer mode, the output frame can be set to either advance
or repeat the current frame or field, as specified by
CL_COSMO_VIDEO_FRAME_CONTROL.

You can control compression or decompression with
CL_COSMO_CODEC_CONTROL. Setting
CL_COSMO_CODEC_CONTROL to CL_COSMO_STOP halts compression
or decompression. If clCompress() or clDecompress() was called with
CL_CONTINUOUS_BLOCK, the function returns. If clCompress() or
clDecompress() was called with CL_CONTINUOUS_NONBLOCK, the
associated thread terminates.

Controlling JPEG Compressed Image Quality

JPEG is a tunable algorithm—you can trade quality for compression ratio
and vice-versa. You can specify a hint (CL_COMPRESSION_RATIO) for an
approximate compression ratio or you can set more explicit quality factors,
as described next.

Programming with the Cosmo Compress JPEG Codec

533

The source image is compressed in three basic steps.

1. Data is transformed from spatial to frequency form in eight-by- eight
blocks using a discrete cosine transform (DCT).

2. The frequency coefficients are filtered down by a linear quantization.

3. The coefficients are Huffman-encoded into a bit stream.

The process is reversed for decompression.

The quantization step controls the trade-off between image quality and size.
A table called the JPEG quantization table is used to scale each of the 64 DCT
coefficients. The luminance (Y) and the chrominance (Cr and Cb)
components each use a separate table.

The CL provides two methods for controlling image quality from these
quantization tables. You can specify an overall JPEG quality factor
(CL_JPEG_QUALITY_FACTOR) for scaling the default JPEG quantization
tables or you can manually set the quantization tables
CL_JPEG_QUANTIZATION_TABLES.

The JPEG algorithm does not allow you to specify exact compression ratios
(or bit rate targets), so the CL_EXACT_COMPRESSION_RATIO parameter
is not supported by the CL JPEG codecs.

Specifying a JPEG Quality Factor

You can use the CL_JPEG _QUALITY_FACTOR parameter to specify a JPEG
quantization table scale factor that represents a rough percentage of the
image detail preservation. This is one method to control the image loss and
therefore the compression ratio for the Cosmo Compress JPEG algorithm.

Each time the quality factor is set, the reference quantization tables are
scaled and downloaded into the codec. The formula used to obtain the scale
factor is:

scalefactor = 50/quality (quality < 50)
scalefactor = 2 - 2*quality/100; (otherwise)

The default quality is CL_JPEG_QUALITY_DEFAULT, which represents a
good-quality compressed image. A quality factor of 1 results in coarse
quantization, a high compression ratio, and very poor image quality.

534

Chapter 24: Getting Started with the Compression Library

A quality factor of 100 results in the finest possible quantization, a low
compression ratio (perhaps even image expansion), and near-perfect image
quality. The most useful quality factor is typically in the range of 25–95.

To bypass scaling, specify CL_JPEG_QUALITY_NO_SCALE.

Defining and Using Custom JPEG Quantization Tables

You can customize the JPEG quantization tables by using the
CL_JPEG_QUANTIZATION_TABLES parameter. To set the tables, specify
an unsigned short *qtables[4] argument. For each j, qtables[j] must either be
NULL or point to a unsigned short[64] area of memory that represents a
JPEG-baseline quantization table in natural scanning order. These custom
tables are then stored as reference tables, and then scaled versions of them
based on the current CL_JPEG_QUALITY_FACTOR are downloaded into
the codec, becoming the tables associated with the ID j.

When getting the value of CL_JPEG_QUANTIZATION_TABLES, the CL
allocates the required memory and returns the currently used tables, as
indicated by CL_JPEG_COMPONENT_TABLES, scaled by the value of
CL_JPEG_QUALITY_FACTOR. Your application is responsible for freeing
the memory allocated to return these tables.

You can specify the quantization tables on a per-component basis, by using
the CL_JPEG_COMPONENT_TABLES parameter. It specifies the IDs of the
AC Huffman table, DC Huffman table, and quantization table to be used for
each component. Currently, you cannot change this parameter for Cosmo
Compress—it is set up for YUV422 processing. This setting uses AC
Huffman table 0, DC Huffman table 0, and quantization table 0 for
component 0; AC huffman table 1, DC huffman table 1, and quantization
table 1 for components 1 and 2.

This chapter describes how to use
these components of the CL:

• algorithms for JPEG, MPEG,
RLE, RTR, MVC1, and
CCITT/TSB G.711 µ-law and
A-law compression schemes

• parameters for configuring data
and algorithms

Using Compression Library
Algorithms and Parameters

Chapter 25

537

Chapter 25

25. Using Compression Library Algorithms and
Parameters

This chapter describes how to use the Compression Library algorithms and
parameters.

In this chapter:

• “Using the Compression Library Algorithms” on page 537 describes
the algorithms available in the CL and explains how to use them.

• “Using the Compression Library Parameters” on page 543 describes the
CL global parameters and explains how to use them.

Using the Compression Library Algorithms

This section describes how to use the algorithms that are supplied with libcl.
See Chapter 26, “Customizing the Compression Library,” for information on
adding and using your own algorithms.

To use one of the algorithms supplied with libcl, you need to select an
appropriate algorithm for your application and specify it in the compress or
decompress routines.

Choosing a Compression Library Algorithm

Perhaps the most important aspect of developing an application that uses
libcl is selecting the appropriate algorithm to use for the application. The
algorithm affects the data size and quality and the rate of compression and
decompression, so it is important to consider how an algorithm will affect
the end result and to consider whether a particular algorithm will achieve
the desired effect. A certain amount of experimentation may be necessary.

538

Chapter 25: Using Compression Library Algorithms and Parameters

If you are interested in a particular quality level, you need to set the
compression ratio to achieve that quality; if you are primarily interested in a
particular data size or data rate, you need to set the compression ratio to
achieve the desired data size or rate.

Here are some suggestions for typical application categories:

Note: The performance is quoted for Indigo workstations with 33Mhz
MIPS® R3000® processors only.

• Algorithms for Multimedia Information Delivery Applications

Video The key factors to consider when choosing a video
compression algorithm for multimedia applications are
playback speed, data size or rate, and quality.

MPEG gives the best video quality for a given data size
or rate, but playback speed is limited by the CPU.
MVC1 is usually the best choice if MPEG is not fast
enough. If an expensive frame-by-frame VCR is not
available, recording in real time to disk is important,
which can be done with RTR1.

Audio µ-law and A-law audio compression are appropriate for
some movies. If higher quality is desired, a license for
Aware Inc.’s audio compression can be obtained (see
Aware (5)).

• Algorithms for Telecommunications Applications

Video The key factors to consider when choosing a video
compression algorithm for video/voice mail, video
teleconferencing, and other telecommunications
applications are the combined compression-
decompression speed, data size/rate, and to a lesser
extent, quality.

MVC1 gives the best result for video of about 10 frames
per second for a 160 by 120 frame size at the cost of a
very high data rate. More performance can be achieved
by using grayscale.

Using the Compression Library Algorithms

539

Audio Either µ-law or A-law audio compression at 8KHz can
be used with satisfactory results, or the audio can be left
uncompressed if the degradation in sound quality is
such that it renders the voice data unusable.

• Algorithms for Previewing Animations

Video The key factors when choosing a video compression
algorithm for previewing 2D and 3D animations are
playback speed, quality, and, to a lesser extent, data
size/rate. MVC1 gives the appropriate speed and
quality.

Audio Audio compression is usually not an issue for these
applications.

• Algorithms for Editing Movies

Video The key factors to consider when choosing a video
compression algorithm for movie editing applications
are decompression speed, image quality, data size/rate,
and compression speed.

For motion video applications, MVC1 is the best
choice, especially when the playback is provided by
the MoviePlayer tool. MVC1 provides rapid
decompression. Playback speed can be traded off with
image quality. When recording from video hardware to
disk, recording in real time to disk is important if a
frame-by-frame VCR is not available—leading to the
use of RTR1

Audio The current audio compression algorithms are not
particularly suited to editing. Uncompressed audio is
recommended.

540

Chapter 25: Using Compression Library Algorithms and Parameters

Table 25-1 summarizes the compression and performance relationships of
the image and motion video algorithms. Compression, decompression, and
codec performance measurements are in frames per second (FPS), as
measured for 320 by 240 frames on Indigo workstations with 33Mhz MIPS
R3000 processors only.

Querying Compression Library Algorithms

This section explains how you can get a list of available algorithms for an
audio or video compressor or decompressor, along with the name and type
of algorithm, or find the identifier for an algorithm given its name. Other
features of the algorithms can also be queried by the application at run time.
Querying algorithms, rather than having hard-coded setups, makes it
possible to have an algorithm-independent interface, which lets you take

a. Decompressed frame per second is the measured performance, including reading the data from disk, decompressing it, and writing it to the
screen.

b. NYM—Not Yet Measured.

Table 25-1 Capabilities of Image and Video Algorithms

Algorithm

Typical
compression
ratio from
24-bit RGB

Average
bits
per
pixel

Bits per
second at
15 frames
per second

Bytes
per
frame
compression Compress Decompressa Codec

Uncompressed 1:1 24 27.65Mb 230.4KB

RLE 8 bit 4.8:1 5 5.76Mb 48KB 6 FPS 11.5 FPS 3.9 FPS

MVC1 5.33:1 4.5 5.2Mb 43.2KB 3 FPS 25 FPS 2.8 FPS

MVC1
Grayscale

8:1 3 3.456Mb 28.8KB 7 FPS 28 FPS 5.6 FPS

RTR1 6:1 4 4.608Mb 38.4KB NYMb 2.5 FPS 2.0 FPS

RTR1
Grayscale

9:1 2.67 3.072Mb 25.6KB NYM 8 FPS NYM

JPEG 16:1 1.5 1.728Mb 14.4KB 1.1 FPS 1.8 FPS 0.7 FPS

MPEG 48:1 0.5 0.576Mb 4.8KB << 1 FPS 4.75 FPS <<1 FPS

Using the Compression Library Algorithms

541

advantage of future algorithms as they are implemented without
redesigning your code.

Getting a List of Algorithms

Use clQueryAlgorithms() to get a list of algorithms for the compressor or
decompressor identified by handle. clQueryAlgorithms() returns the size of
the buffer needed to contain the list of algorithms and their types.

If the size of the algorithmTypeBuffer is smaller than the returned value, a
partial list of the algorithms and their types is returned, and you must
enlarge the algorithmTypeBuffer in order to receive a complete list.

The function prototype for clQueryAlgorithms() is:

int clQueryAlgorithms (int algorithmMediaType,
 int *algorithmTypebuffer, int
bufferLength)

where:

algorithmMediaType
is the media type of the algorithm, which can be either of the
following values:

algorithmTypeBuffer
is a pointer to an array of ints into which
clQueryAlgorithms() can write algorithm name/type pairs
for each parameter associated with handle. The even
(0,2,4,...) entries receive the algorithm name. The odd
entries (1,3,5,...) receive the types. The returned types take
on one of three values:

CL_AUDIO specifies an audio algorithm

CL_VIDEO specifies a video algorithm

CL_COMPRESSOR for compression

CL_DECOMPRESSOR for decompression

CL_CODEC for both compression and
decompression

542

Chapter 25: Using Compression Library Algorithms and Parameters

bufferLength is the length of the buffer, in ints, pointed to by
paramValueBuffer. If bufferLength is zero, then
paramValueBuffer is ignored and only the return value is
valid.

Getting an Algorithm Scheme or Name

Use clQuerySchemeFromHandle() or clQuerySchemeFromName() to
return the algorithm scheme identifier used by the other compression
functions. Use clGetAlgorithmName() to return the algorithm name. Their
function prototypes are:

int clQuerySchemeFromHandle(CLhandle handle)

int clQuerySchemeFromName(int algorithmMediaType, char *name)

char *clGetAlgorithmName(int scheme)

where:

handle is a handle to a compressor or a decompressor

algorithmMediaType
is the media type of the algorithm, which can be either of the
following values:

name is the algorithm name

scheme is the algorithm scheme

Example 25-1 demonstrates how to query the CL for a list of algorithms—in
this case, video algorithms. The necessary buffer size is returned in the first
call to clQueryAlgorithms(), then malloc() is used to allocate enough buffer
space to store the returned list of video algorithms.

Example 25-1 Getting a List of Compression Library Algorithms

#include <dmedia/cl.h>
#include <malloc.h>

int *buffer, bufferLength;
char *name;
/*

CL_AUDIO specifies an audio algorithm

CL_VIDEO specifies a video algorithm

Using the Compression Library Parameters

543

* Get a buffer containing all the video algorithms and types
*/
bufferLength = clQueryAlgorithms(CL_VIDEO, NULL, 0);
buffer = (int *)malloc(bufferLength * sizeof(int));
clQueryAlgorithms(CL_VIDEO, buffer, bufferLength);

scheme = clQuerySchemeFromName(handle);
name = clGetAlgorithmName(scheme);

Getting License Information

Use clQueryLicense() to obtain license information about an algorithm. The
returned message is text intended for inclusion in a message box that is
displayed for a user, explaining how to license an algorithm. Failure returns
the license error code.

The function prototype is:

int clQueryLicense (int scheme, int functionality,
 char **message)

where:

scheme is the algorithm scheme.

functionality is the type of algorithm, which can be one of:

• CL_COMPRESSOR for compression

• CL_DECOMPRESSOR for decompression

• CL_CODEC for both compression and decompression

message is a pointer to a returned pointer to a character string
containing a message.

Using the Compression Library Parameters

The CL has a group of routines for working with a set of state variables
called “parameters” that are unique for each instantiation. These routines
are similar to a set of routines in the audio library. You can get and set
parameters, either individually or as a group; however, all of the parameters
have reasonable defaults that are algorithm-dependent and need not be set.

544

Chapter 25: Using Compression Library Algorithms and Parameters

The Compression Library works with data that is contained in frames. A
frame is defined as a sample in time so that:

1 audio sample: mono 8 bit = 1 byte
mono 16 bit = 2 bytes
stereo 8 bit = 2 bytes
stereo 16 bit = 4 bytes

1 video frame: width ∗ height ∗ components ∗ bitsPerComponent/8 = n bytes

Compression Library Parameter Definitions

Parameters provide state information about frame characteristics, data
formats, and algorithms for each compressor/decompressor.

These parameters provide information about image frame dimensions:

CL_IMAGE_WIDTH
The spatial width of a sample (not relevant for audio); the
video default is 320, and the audio default is 1.

CL_IMAGE_HEIGHT
The spatial height of a sample (not relevant for audio); the
video default is 240, and the audio default is 1.

These parameters describe data formats:

CL_ORIGINAL_FORMAT
On compression, this is the format of the original audio or
video. On decompression, this is the format that you want
after decompression. The value is a symbolic constant from
one of the following lists, depending on its data type:

Video values are: CL_RGB, CL_RGBX (default), CL_RGBA,
CL_RGB332, CL_GRAYSCALE, CL_YUV, CL_YUV422, or
CL_YUV422DC.

Audio values are: CL_MONO or
CL_STEREO_INTERLEAVED (default).

Using the Compression Library Parameters

545

CL_INTERNAL_FORMAT
Some video algorithms have several “natural” formats that
can be compressed without color space conversion. This
parameter allows the selection of one of these formats. The
video default is algorithm-specific. Not relevant for audio.

CL_COMPONENTS
A read-only value, as determined by
CL_ORIGINAL_FORMAT, that indicates the number of
components in the data. For example, audio is 1 for mono,
and 2 for stereo, video is generally 1 for grayscale, and 3 or
4 for color. The audio default is 2; video default is 4.

CL_BITS_PER_COMPONENT
The number of bits per component. For example, audio data
is either 8-bit or 16-bit, video is generally 8-bit. The audio
default is 16; video default is 8.

CL_ORIENTATION
Specifies the orientation of compressed data, which can be
either:

The orientation of compressed data is always top down.
When specifying compression or decompression, the
original format (or final format) of the data may be bottom
up. Specify this inversion by setting the
CL_ORIENTATION parameter to CL_BOTTOM_UP
instead of the default.

These parameters describe buffer sizes and characteristics:

CL_FRAME_BUFFER_SIZE
The maximum size, in bytes, of the frame buffer. If
clDecompress() is called with numberOfFrames larger than
1, this value should be the frame size × numberOfFrames.
Because this is almost always true for audio,
CL_FRAME_BUFFER_SIZE should be set when doing
audio decompression.

CL_TOP_DOWN for pixels arranged top-to-bottom
(default).

CL_BOTTOM_UP for pixels arranged bottom-to-top.

546

Chapter 25: Using Compression Library Algorithms and Parameters

CL_COMPRESSED_BUFFER_SIZE
The maximum size of the compressed data buffer. The
default is calculated as the maximum possible size, taking
into account all the factors such as algorithm, encoding
method, data type, and so on. If you want to try to use a
smaller buffer, you can set this value explicitly. If
clCompress() is called with numberOfFrames larger than 1,
this value should be the maximum compressed size of one
frame × numberOfFrames. Because this is almost always true
for audio, CL_COMPRESSED_BUFFER_SIZE should be set
when doing audio compression.

CL_NUMBER_OF_FRAMES
The number of frames in the sequence.

CL_BLOCK_SIZE
The natural block size of the algorithm in samples. It is most
efficient to specify numberOfFrames to be a multiple of the
block size when calling clCompress() or clDecompress().

CL_PREROLL
The number of blocks of frames that must be supplied to
clDecompress() before decompressed frames will be
returned.

CL_FRAME_RATE
The requested number of frames per second.

CL_FRAME_TYPE
The decompressor fills in the frame type when it
decompresses a frame. Frame type is one of:

CL_ACTUAL_FRAME_INDEX
The frame number of the frame most recently
decompressed by clDecompress().

CL_KEYFRAME frame is a keyframe

CL_INTRA equivalent to CL_KEYFRAME

CL_PREDICTED frame contains information about
its succeeding frames

CL_BIDIRECTIONAL frame contains information about
frames that precede and succeed
it

Using the Compression Library Parameters

547

These parameters control the compression ratio and/or quality:

CL_ALGORITHM_ID
A parameter that can be queried to find out the scheme
identifier of the algorithm of an open compressor or
decompressor.

CL_COMPRESSION_RATIO
The target compression ratio. Some algorithms (MVC1,
JPEG, and MPEG) are tunable, that is, they allow quality to
be traded for compression ratio.

CL_EXACT_COMPRESSION_RATIO
A flag determines whether the compression ratio is a target
or must be exact. Some algorithm implementations, such as
for JPEG, can be only approximated and can never be exact.
For algorithms that do support it, it is generally kept within
a small range that over time is guaranteed to average out to
the specified compression ratio.

CL_SPEED The relative speed of playback. A value of 1.0 for this single-
precision floating point value means no change. When this
value is greater than 1.0, the algorithm tries to use less CPU
time by dropping frames or by reducing the quality.

JPEG has the following additional parameters:

CL_JPEG_COMPONENT_TABLES
Specifies the IDs of the AC Huffman table, DC Huffman
table, and quantization table to be used for each component.
Currently, this parameter cannot be changed directly, rather,
it is set up automatically for processing the selected
CL_INTERNAL_FORMAT.

YUV formats use AC huffman table 0, DC huffman table 0,
and quantization table 0 for component 0; AC huffman
table 1, DC huffman table 1, and quantization table 1 for
components 1 and 2. RGB formats use tables AC table 0,
DC table 0, and quantization table 0 for all components.

CL_JPEG_QUANTIZATION_TABLES
Sets or gets the quantization tables to be used. For setting,
an unsigned short *qtables[4] argument is specified as the
argument to this parameter. For each j, qtables[j] must either

548

Chapter 25: Using Compression Library Algorithms and Parameters

be NULL or point to a unsigned short[64] area of memory
which represents a JPEG base-line quantization table in
natural scan order. The user-specified tables are stored as
reference tables, and scaled versions of them based on the
current CL_JPEG_QUALITY_FACTOR are downloaded
into the codec and become the table associated with the ID
j. For getting, the library allocates the memory as described
above, and the tables returned to the user are those which
are specified by CL_JPEG_COMPONENT_TABLES as
being in use and are scaled as indicated by
CL_JPEG_QUALITY_FACTOR. The user is responsible for
freeing the memory.

CL_JPEG_QUALITY_FACTOR
A JPEG quantization table scale factor that represents a
rough percentage of the image detail preservation. This is
one method to control the image loss and therefore the
compression ratio for the JPEG algorithm.

Each time the quality factor is set, the reference
quantization tables are scaled and downloaded into the
codec. The formula used to obtain the scale factor is:

scalefactor = 50/quality (quality < 50)
scalefactor = 2 - 2*quality/100; (otherwise)

Using a value of 1 results in coarse quantization, a high
compression ratio, and very poor image quality. Using a
value of 100 results in the finest possible quantization, a
low compression ratio (perhaps even image expansion),
and near-perfect image quality. The most useful quality
factor is typically in the range of 25–95. The default quality
is CL_JPEG_QUALITY_DEFAULT, which represents a
good-quality compressed image. Use the value
CL_JPEG_QUALITY_NO_SCALE to bypass scaling.

When CL_QUALITY_FACTOR is set, the approximate
value of CL_COMPRESSION_RATIO is calculated; when
CL_COMPRESSION_RATIO is set, the approximate value
of CL_QUALITY_FACTOR is calculated. When
decompressing JPEG, clDecompress() fills in this value.
The actual compression ratio is determined by the quality
factor and the image content and therefore may not be
exactly what you expect.

Using the Compression Library Parameters

549

MPEG_VIDEO has the following additional parameters:

CL_END_OF_SEQUENCE
An end of sequence flag. When the decompressor arrives at
the end of the sequence, it sets this flag. The default is
FALSE (0).

RTR has the following additional parameters:

CL_QUALITY_LEVEL
Selects a quantization table. 6 is the highest compression
ratio and therefore the worst quality; 0 (default) is the
lowest compression ratio and therefore the highest quality.

Table 25-2 lists the parameters and their types, ranges, and defaults.

Table 25-2 Compression Library Parameters

Parameter Range Default

CL_ALGORITHM_ID Current ID Current ID

CL_ALGORITHM_VERSION Current version Current version

CL_BITS_PER_COMPONENT 0–32 Audio: 16

Video: 8

CL_BLOCK_SIZE 0–2 Billion 1, depends on algorithm

CL_COMPONENTS (read only) 0–8 Depends on original format

CL_COMPRESSED_BUFFER_SIZE 0–2 Billion Maximum amount of
compressed data needed for
one frame

550

Chapter 25: Using Compression Library Algorithms and Parameters

CL_COMPRESSION_RATIO Depends on original
format and
algorithm

Uncompressed 1.0:1

µ-law 2.0:1

A-law 2.0:1

Aware MultiRate I 2–4:1

Aware MPEG 2–4:1

MVC1 5.3:1

JPEG 15.0:1

MPEG Video 48.0:1

RLE 1.0:1

RLE24 1.5:1

RTR 5.0:1

CL_ENABLE_IMAGEINFO
(Cosmo Compress JPEG only)

CL_END_OF_SEQUENCE
(MPEG_VIDEO only)

0 (FALSE)–1 (TRUE) 0 (FALSE)

CL_EXACT_COMPRESSION_RATIO 0 (FALSE)– 1 (TRUE) Audio: 0 (FALSE)

Video: 0 (FALSE)

CL_FRAME_BUFFER_SIZE 0–2 Billion Size of one frame

CL_FRAME_RATE 0–1 Million Audio: 44100.0

Video: 30.0

CL_FRAME_TYPE 0–2 Supplied by decompressor

CL_IMAGE_HEIGHT 0–1Million Audio: 1

Video: 320

CL_IMAGE_WIDTH 0–1Million Audio: 1

Video: 240

CL_INTERNAL_FORMAT 0–maxa Audio:
CL_STEREO_INTERLEAVED

Video: depends on algorithm

CL_INTERNAL_IMAGE_HEIGHT

Table 25-2 (continued) Compression Library Parameters

Parameter Range Default

Using the Compression Library Parameters

551

Setting and Querying Compression Library Parameters

After a compressor or decompressor is opened, thus specifying the
compression scheme to use, various parameters can be modified using
clSetParams(). All of these parameters have reasonable defaults that are
algorithm-dependent and need not be set. Some parameters, such as
CL_IMAGE_WIDTH and CL_IMAGE_HEIGHT for video compression,
should be set, but setting them is not required.

a. max = CL_MAX_NUMBER_OF_ORIGINAL_FORMATS.

b. max = Enumerated type value that depends on the format.

CL_INTERNAL_IMAGE_WIDTH

CL_JPEG NUM_PARAMS (JPEG only) 0–2 Billion 0 (unknown)

CL_JPEG_QUALITY_FACTOR
(JPEG only)

0–100 75

CL_JPEG_QUANTIZATION_TABLES
(JPEG only)

CL_LAST_FRAME_INDEX 0–2 Billion 0

CL_NUMBER_OF_FRAMES

CL_NUMBER_OF_PARAMS

CL_ORIENTATION CL_TOP_DOWN to
CL_BOTTOM_UP

CL_TOP_DOWN

CL_ORIGINAL_FORMAT 0–maxb Audio:
CL_STEREO_INTERLEAVED

Video: CL_RGBX

CL_PREROLL 0–2Billion 0, depends on algorithm

CL_RTR_QUALITY_LEVEL (RTR only) 1–6 1

CL_SPEED 0 (stopped) to 2
Billion, depends on
algorithm

1.0 (real-time playback)

Table 25-2 (continued) Compression Library Parameters

Parameter Range Default

552

Chapter 25: Using Compression Library Algorithms and Parameters

Getting a List of Parameters and Parameter Types

Use clQueryParams() to get a list of valid parameters and their types for a
specified a compressor or decompressor. The compressor being queried is
identified by its handle. Its function prototype is:

int clQueryParams(CLhandle handle,int *paramValuebuffer, int
maxLength)

where:

handle is the handle to a compressor or decompressor.

paramValuebuffer
is a pointer to an array of ints into which clQueryParams()
can write parameter identifier/parameter type pairs for
each parameter associated with the compressor or
decompressor. The even (0,2,4,...) entries receive a string
that is the parameter identifier. The odd entries (1,3,5,...)
receive the parameter type. Parameter type is one of four
values:

• CL_RANGE_VALUE, meaning that a parameter can
assume a range of values in which the relative
magnitude of the value is meaningful—that is,
increasing values indicate increasing quantities of
whatever this parameter controls, and vice-versa.

• CL_ENUM_VALUE, meaning that a parameter
assumes values from an enumerated type. They have a
limited range, but there is no inherent relationship
between the range values.

• CL_FLOATING_RANGE_VALUE, meaning that a
parameter can assume a range of floating point values,
in which the relative magnitude of the value is
meaningful—that is, increasing values indicate
increasing quantities of whatever this parameter
controls, and vice-versa.

• CL_FLOATING_ENUM_VALUE, meaning that a
parameter assumes values from an enumerated type.
They have a limited floating point range, but there is
no inherent relationship between the range values.

Using the Compression Library Parameters

553

maxLength is the length of the buffer, in ints, pointed to by
paramValuebuffer. If maxLength is zero, then paramValuebuffer
is ignored and only the return value is valid.

clQueryParams() returns the size of the buffer, in ints, needed to hold all the
parameter identifier/parameter type pairs for the compressor or
decompressor identified by handle. The parameters are returned in the even
locations of paramValuebuffer, and their types are returned in the odd
locations.

If the size of the paramValuebuffer is smaller than the returned value, a partial
list of the parameter identifier/parameter type pairs is returned, making it
necessary to enlarge the paramValuebuffer in order to receive a complete list.
To avoid this situation, you can obtain the correct size of the buffer by calling
clQueryParams() with a NULL buffer pointer and a maxLength of 0 to return
the actual buffer length without writing any data.

clQueryParams() also reports whether the parameter is one of a set of
enumerated types, any integer number within a specific range, or any
floating point number within a specific range. In each case, the values are
numbers within the range returned by clGetMinMax() and have the
defaults returned by clGetDefault().

Example 25-2 demonstrates how to get a list of parameters for a specified
compressor/decompressor.

Example 25-2 Getting a List of Parameters for a Compressor/Decompressor

#include <dmedia/cl.h>
#include <malloc.h>

/*
* Get a buffer containing all the parameters for a specified
* compressor or decompressor.
*/

int *buf, bufferLength;
bufferLength = clQueryParams(handle, 0, 0);
buf = (int *)malloc(bufferLength * sizeof(int));
clQueryParams(handle, buf, bufferLength);

554

Chapter 25: Using Compression Library Algorithms and Parameters

Getting the Parameter ID that Corresponds to a Parameter Name

If you know the name of a parameter, but not its identifier, you can use
clGetParamID() to get the identifier of a parameter from its name.

Its function prototype is:

int clGetParamID(CLhandle handle, char *name)

Getting and Setting Parameter Values

You can get or set parameter values as a group or individually.

Use clGetParams() to return the current values for the parameters
referenced in the paramValuebuffer array. The values are written into the odd
locations of paramValuebuffer immediately after the corresponding
parameters.

Use clSetParams() to set the current state of the parameters referenced in the
paramValuebuffer array.

To change a state parameter:

1. Call clQueryParams() to find out which parameters are available.

2. Call clGetParams() to find out the current state.

3. Fill in the even entries of the paramValuebuffer array corresponding to
the parameters to be changed and then call clSetParams().

The function prototypes are:

void clGetParams (CLhandle handle, int *paramValuebuffer,
 int bufferLength)

void clSetParams (CLhandle handle, int *paramValuebuffer,
 int bufferLength)

where:

handle is a handle that identifies a compressor or decompressor.

Using the Compression Library Parameters

555

paramValuebuffer
is a pointer to an array of pairs of ints. The even elements of
this array select the parameters to be read or changed. The
subsequent odd elements are the current or new values of
these parameters.

bufferLength is the number of ints in the buffer pointed to by
paramValuebuffer.

Alternatively, parameters can be changed individually with clSetParam()
and clGetParam(). clGetParam() returns the current value of the parameter.
clSetParam() returns the previous value of the parameter.

The function prototypes are:

int clGetParam(CLhandle handle, int paramID)

int clSetParam(CLhandle handle, int paramID, int value)

where:

handle is a handle that identifies a compressor or decompressor.

paramID is the identifier of the parameter to get or set.

value is the new value of the parameter.

Example 25-3 demonstrates how to extract the current value of specific
parameters from a list of parameters returned as a group. In this case, the
current block size and preroll values are obtained from the list of parameters
that are returned in paramValuebuffer from clGetParams().

Example 25-3 Getting the Current Values of Selected Parameters

#include <dmedia/cl.h>
...
/* Get the block size and preroll */
int paramValueBuffer[][2] = {
CL_BLOCK_SIZE, 0,
CL_PREROLL, 0
};
clGetParams(handle, (int *)paramValueBuffer,
sizeof(paramValueBuffer) / sizeof(int));
/* paramValueBuffer[0][1] is the block size */
/* paramValueBuffer[1][1] is the preroll */

556

Chapter 25: Using Compression Library Algorithms and Parameters

Getting or Setting the Value of a Floating Point Parameter

Some parameters, such as CL_COMPRESSION_RATIO and
CL_FRAME_RATE, are floating point values. You don’t have to cast
expressions involving floating point values, because macros are provided
within libcl that handle the conversions for you; even though a value is a float
you can cast to an int. To set a floating point value, use the macro
CL_TypeIsInt(); to retrieve a floating point value, use the macro
CL_TypeIsFloat().

The argument must be a variable, because the type definitions in /usr/include/
dmedia/cl.h are:

float *(float *) &value

int *(int *) &value

Example 25-4 demonstrates how to use the libcl macros to get/set a floating
point parameter value.

Example 25-4 Using Macros to Get or Set the Value of a Floating Point Parameter

float number;
number = 3.0;
...
clSetParam(handle, CL_COMPRESSION_RATIO,
CL_TypeIsInt(number));
number =
CL_TypeIsFloat(clGetParam(handle,CL_COMPRESSION_RATIO));

Getting or Setting Individual Parameter Attributes

You can query parameters individually to get the name, defaults, and range
of valid values, given the parameter identifier and a handle.

Use clGetName() to return a pointer to a null-terminated string that supplies
the English name of a parameter. Its function prototype is:

char* clGetName(CLhandle handle, int param)

where:

handle is a handle that identifies a compressor or decompressor.

param is a parameter identifier.

Using the Compression Library Parameters

557

Use clGetDefault() to return the default value of the parameter specified by
param. Use clSetDefault() to set the default value. Setting the default value
is particularly useful when an algorithm has been added and new defaults
need to be set.

The function prototypes are:

int clGetDefault(CLhandle handle, int param)

int clSetDefault(int scheme, int paramID, int value)

where:

handle is a handle that identifies a compressor or decompressor.

paramID is a parameter identifier.

scheme is the identifier of the scheme for which to set the defaults.

value is the new default value associated with param.

Example 25-5 demonstrates how to get and set defaults for a parameter. In
this case, the default for the CL_ORIGINAL_FORMAT parameter is set to
CL_RGBX for the specified decompressor.

Example 25-5 Getting and Setting Parameter Defaults

#include <dmedia/cl.h>
int default;
...
clOpenDecompressor(scheme, &handle);
...
default = clGetDefault(handle, CL_ORIGINAL_FORMAT);
clSetDefault(scheme, CL_ORIGINAL_FORMAT, CL_RGBX);
...

Use clGetMinMax() to get the maximum and minimum values for a
parameter. Use clSetMin() and clSetMax() to set new minimum and
maximum parameter values, or to establish the minimum and maximum
values when adding a new algorithm.

558

Chapter 25: Using Compression Library Algorithms and Parameters

The function prototypes are:

int clGetMinMax (CLhandle handle, int param, int *minParam,
 int *maxParam)

int clSetMin(int scheme, int paramID, int min)

int clSetMax(int scheme, int paramID, int max)

where:

handle is a handle that identifies a compressor or decompressor.

paramID is a parameter identifier.

minParam is a pointer to the parameter into which clGetMinMax() can
write the minimum value associated with paramID.

maxParam is a pointer to the parameter into which clGetMinMax() can
write the maximum value associated with paramID.

scheme is the identifier of the scheme that is to have its minimum or
maximum value changed.

min is the new minimum value associated with paramID.

max is the new maximum value associated with paramID.

Example 25-6 demonstrates how to get and set the minimum and maximum
values of a particular parameter for the specified compressor or
decompressor.

Example 25-6 Getting and Setting Minimum and Maximum Parameter Values

#include <dmedia/cl.h>
int oldMin, oldMax;
...
clOpenDecompressor(scheme, &handle);
6
...
clGetMinMax(handle, CL_ORIGINAL_FORMAT, &oldMin, &oldMax);
clSetMin(scheme, CL_ORIGINAL_FORMAT, CL_RGB);
clSetMax(scheme, CL_ORIGINAL_FORMAT, CL_RGB332);
...

Using the Compression Library Parameters

559

Using Frame Type Parameters

Some compression algorithms do not allow direct compression or
decompression of an arbitrary frame. These algorithms—MPEG, CCITT
H.261, and so on—have blocks of frames, where each frame can be
decompressed only if all previous frames in the block have been
decompressed. The frame at the beginning of the block is called a keyframe.

A frame can be queried for its status as a keyframe by using the
CL_FRAME_TYPE state parameter. Legal values are CL_KEYFRAME (or
CL_INTRA), CL_PREDICTED, and CL_BIDIRECTIONAL. Predicted
frames use information from a previous keyframe, bidirectional frames use
information from both previous and future reference frames, where a
reference frame is either of the other two types—CL_KEYFRAME or
CL_PREDICTED.The Compression Library interface allows keyframe
control from the application.

Some algorithms contain only keyframes, such as JPEG, MVC1, RTR, RLE,
G.711, and so on. MPEG Video is the only algorithm currently supported
that has all three types of frames.

560

Chapter 25: Using Compression Library Algorithms and Parameters

This chapter explains how to
customize the CL, by adding:

• algorithms to accommodate new
compression schemes.

• parameters to configure custom
algorithms

Customizing the Compression Library

Chapter 26

563

Chapter 26

26. Customizing the Compression Library

Audio and video compression technology is constantly evolving. The
Compression Library provides the flexibility to evolve with this changing
environment by letting you customize and expand libcl. This chapter
explains how to add your own algorithms to the library and how to add new
state parameters to these algorithms to provide capabilities that are not
addressed by the standard set of parameters. To ensure capability across
applications, you must use the existing interface paradigm for your custom
implementations; you cannot add to or change the API.

In this chapter:

• “Adding Custom Algorithms to the Compression Library” on page 563
explains how to add algorithms to the CL.

• “Adding Custom Parameters to the Compression Library” on page 572
explains how to add parameters to the CL.

Adding Custom Algorithms to the Compression Library

For compatibility, an algorithm that is to be added to the Compression
Library must meet these requirements:

• Provide support for all three types of interfaces (single-image,
sequential, and buffered) through the clCompress() and
clDecompress() entry points.

• Support interfaces for the query routines clGetParams() and
clSetParams().

• Provide the ability to specify the worst-case size of the compressed data
through the CL_COMPRESSED _BUFFER_SIZE parameter so that the
application can then allocate buffers of appropriate size.

• Report errors using clError().

564

Chapter 26: Customizing the Compression Library

Use clAddAlgorithm() to add your own compression algorithms to libcl.
clAddAlgorithm() adds compression algorithms to the library by passing
function pointers to routines that are unique for each algorithm. When you
call this added algorithm, some preprocessing is done, then the routines that
have been passed to clAddAlgorithm() are called.

The function prototype for clAddAlgorithm() is:

int clAddAlgorithm (char *name, int type,
 int maximumHeaderSize,
 FunctionPtr openCompressor,
 FunctionPtr compress,
 FunctionPtr closeCompressor,
 FunctionPtr openDecompressor,
 FunctionPtr decompress,
 FunctionPtr closeDecompressor,
 FunctionPtr readHeader,
 FunctionPtr queryScheme,
 FunctionPtr queryLicense,
 FunctionPtr getParams,
 FunctionPtr setParams,
 int *compressionScheme)

where:

maximumHeaderSize
is the maximum size of the stream header for the specified
algorithm.

name is a pointer to a string that contains the name of the
algorithm.

type is the type of the algorithm (CL_AUDIO or CL_VIDEO).

openCompressor is a pointer to the function that opens a compressor for the
new algorithm. The function must have the same
arguments as clOpenCompressor().

compress is a pointer to the function that compresses for the new
algorithm. The function must have the same arguments as
clCompress().

closeCompressor
is a pointer to the function that closes a compressor for the
new algorithm. The function must have the same
arguments as clCloseCompressor().

Adding Custom Algorithms to the Compression Library

565

openDecompressor
is a pointer to the function that opens a decompressor for
the new algorithm. The function must have the same
arguments as clOpenDecompressor().

decompress is a pointer to the function that decompresses for the new
algorithm. The function must have the same arguments as
clDecompress().

closeDecompressor
is a pointer to the function that closes a decompressor for
the new algorithm. The function must have the same
arguments as clCloseDecompressor().

readHeader is pointer to the function that reads the stream header for
the new algorithm. The function must have the same
arguments as clReadHeader().

queryScheme is a pointer to the function that identifies the scheme from
the stream header for the new algorithm. The function must
have the same arguments as clQueryScheme().

queryLicense is a pointer to the function that determines whether there is
a license for the new algorithm. The function must have the
same arguments as clQueryLicense().

getParams is a pointer to the function that gets compressor or
decompressor parameters for the new algorithm. The
function must have the same arguments as clGetParams().

setParams is a pointer to the function that sets compressor or
decompressor parameters for the new algorithm. The
function must have the same arguments as clSetParams().

compressionScheme
is a pointer to a value that is to receive the compression
scheme identifier.

Argument bounds checking is performed before these functions are called.
For example, if clCompress() is called, each argument is checked for validity
before passing control to the function passed to clAddAlgorithm().

Added algorithms must support interfaces to clGetParams() and
clSetParams(), which are supplied to clAddAlgorithm(). The algorithm
implementation is notified of changes to, or requests for, parameter values

566

Chapter 26: Customizing the Compression Library

through these routines. This allows complete control of parameters to
constrain or report errors upon setting or to calculate only when requested.

Algorithms and parameters, once added, will show up when queried with
clQueryAlgorithms() and clQueryParams() respectively.

The algorithm implementation is required to specify the worst-case size of
the compressed data for a frame through the
CL_COMPRESSED_BUFFER_SIZE parameter. This value must be
calculated every time it is requested, using the current value of other
parameters such as CL_IMAGE_WIDTH, CL_HEIGHT, and
CL_INTERNAL_FORMAT.

An algorithm can also specify a value for its most natural number of frames
to process at a time in the CL_BLOCK_SIZE parameter.

The number of blocks that need to be processed before decompressed data
begins to emerge is specified in the CL_PREROLL parameter. For algorithms
with a fixed compression ratio, this may allow the application to use the
sequential interface.

Use clSetUnique() and clGetUnique() to allow the algorithm
implementation to store and retrieve algorithm-specific information that is
associated with each instantiation of a compressor or decompressor.

When clOpenCompressor() or clOpenDecompressor() is called, the
implementation sets up the unique pointer that gets stored associated with
the compressor handle. Other functions that require the information get it
using that handle. clSetUnique() returns the previous unique pointer.
clGetUnique() returns the current unique pointer.

The function prototypes are:

void * clSetUnique(CLhandle handle, void *unique)

void * clGetUnique(CLhandle handle)

where:

handle is a handle to a compressor or decompressor.

unique is a pointer to unique data that is associated with handle.

Adding Custom Algorithms to the Compression Library

567

When adding an algorithm, use clSetMin() and clSetMax() to set its
minimum and maximum values, respectively. For example, you may need
to set the bounds that define the legal range of the compression ratio. These
settings take effect when either clOpenCompressor() or
clOpenDecompressor() is called.

When adding an algorithm, use clSetDefault() to set defaults. For example,
you may need to specify a default compression ratio. These defaults take
effect when either clOpenCompressor() or clOpenDecompressor() is called.

Example 26-1 demonstrates how to add algorithms to the Compression
Library.

Example 26-1 Adding Algorithms to the Compression Library

#include <cl.h>
 ...
int scheme;
 ...
/* Add the new algorithm */
clAddAlgorithm(“New Algorithm”, CL_VIDEO,
 NEW_ALGORITHM_MAX_HEADER_SIZE,
 OpenNewCompressor, CompressNew, CloseNewCompressor,
 OpenNewDecompressor, DecompressNew, CloseNewDecompressor,
 ReadNewHeader, QueryNewScheme, QueryLicense,
GetNewParams,
 SetNewParams, &newScheme);
/* Compress a series of frames (same as always) */
clOpenCompressor(newScheme, &handle);
for(i = 0; i < numberOfFrames; i++)
{
 /* Get a frame from somewhere */
 ...
 clCompress(handle, i, 1, frameBuffer,
&compressedDataSize,

compressedData);
 /* Write the compressed data to somewhere else. */
 ...
}
clCloseCompressor(handle);

568

Chapter 26: Customizing the Compression Library

Managing Buffers for Added Algorithms

When you add an algorithm, you must mirror the normal use of the buffer
management calls, that is, the calls for compression and decompression are
swapped and the calling order is reversed. Example 26-2 sets up
decompression buffering for added algorithms.

Example 26-2 Decompression Buffering

until numberOfFrames frames are decompressed:
 until space for a frame is available:
 actualNumberOfFrames = clQueryFree(frameHdl, 1, &frameBuffer, &wrap);
 until a frame is decompressed (and the compressed data is available):
 actualBufSize = clQueryValid(dataHdl, bufSize, &buf, &wrap);
 /* Decompress the data in “buf” and place the result in “frameBuffer” *
 actualSize = clUpdateTail(dataHdl, actualBufSize);
 actualNumberOfFrames = clUpdateHead(frameHdl, numberOfFrames);

Example 26-3 sets up decompression buffering for added algorithms.

Example 26-3 Compression Buffering

until numberOfFrames frames are compressed:
 until a frame is available:
 actualNumberOfFrames = clQueryValid(frameHdl, 1, &frameBuffer, &wrap);
 until a frame is compressed (and space for the compressed data is available):
 actualSize = clQueryFree(dataHdl, size, &buf, &wrap);
 /* Compress the frame in “frameBuffer” and place the result in “buf” */
 actualLen = clUpdateHead(dataHdl, len);
 actualNumberOfFrames = clUpdateTail(frameHdl, numberOfFrames);

Reading Data Across Buffer Discontinuities

When clDecompress() is called with non-NULL pointers for the
compressedData or frameBuffer arguments, the data is available through the
buffer management calls, so no special code is required for that case;
however, care must be taken not to wait for data that will never arrive. For
example, if insufficient data is passed into the compressedData or frameBuffer
parameters, you don’t want the application to block and wait forever for
data.

Adding Custom Algorithms to the Compression Library

569

To avoid this situation for compressedData, you can use clReadData(), which
provides an interface that removes the need for the application to know
about the discontinuity of the compressed data caused by using a ring buffer.
Its function prototype is:

int clReadData(CLbufferHdl bufferHdl, int requestedDataSize,
void **compressedData)

where:

Because it is often not known what the size of the compressed data is,
clReadData() allows the algorithm to request data of arbitrary size, such as
the next piece of data that it knows it needs. When the requested data crosses
a discontinuity, it is automatically pieced together in a temporary buffer. A
pointer to this temporary buffer is returned. If the size of the requested data
is larger than what is present in the buffer, the routine blocks until the data
arrives. Alternatively, if the compressed data were passed directly to
clDecompress(), no more data would arrive, no matter how long it waited
and whatever data was available would be returned.

clReadData() calls clQueryValidData() and clUpdateTail(dataHdl). It
blocks (unless the compressed data was passed directly to clDecompress())
until the requested amount of data has accumulated and, if necessary (at the
end of the ring buffer), copies the data into a temporary buffer, to guarantee
one contiguous buffer.

clReadData() returns the actual number of bytes read. clDone() returns the
actual number of bytes updated. The requested data size is always returned
unless there is an error. If the data requested crosses the discontinuity from
the end to the beginning of the ring buffer, a temporary buffer is
automatically created, the data from the ring buffer is copied to it, and its
address is returned in the compressedData argument.

An algorithm has two parts: the compressed data and the bitstream that
encapsulates it. For some algorithms, such as JPEG and MPEG, the bitstream
is fairly complex and must be parsed in very small segments. clReadData()

bufferHdl is a handle to a compressor/decompressor.

requestedDataSize is the size of the requested data.

compressedData is a pointer to the returned pointer to the compressed
data.

570

Chapter 26: Customizing the Compression Library

is designed to be very efficient and can be used to read many small segments
of a few bytes if so desired.

Use clDone() to update the consumed data read by clReadData(). Its
function prototype is:

int clDone(CLbufferHdl bufferHdl, int amountToUpdate)

where:

bufferHdl is a handle to a compressor or decompressor.

requestedDataSize
is the size of the requested data.

compressedData
is a pointer to the returned pointer to the compressed data.

amountToUpdate
is the amount that was consumed from the last read and
therefore needs to be updated with a call to clUpdateTail().
If -1 is passed, the amount returned by the last call to
clReadData() is used.

In each call to clReadData(), clUpdateTail() is called to release data from the
previous call to clReadData(), and clQueryValid() is called to get the new
data. clDone() is used at the end of the decompress routine (just before
returning) to call clUpdateTail() for data used from the last read.

New algorithms should report errors with clError(). Generally, the format
string starts with the routine name within which the error occurred,
followed by a description of the error.

The buffer architecture for adding algorithms is shown in Figure 26-1. The
routines called by the compressor and decompressor are shown.

Adding Custom Algorithms to the Compression Library

571

Figure 26-1 Buffer Architecture for Adding Algorithms

clQueryFree(dataHdl)

clUpdateHead(dataHdl)

clQueryValid(frameHdl)

clUpdateTail(frameHdl)

Size

Space

Size

Space
Head

Tail

Tail
Head

Playback

Play

clQueryValid(dataHdl)

clUpdateTail(dataHdl)

clQueryFree(frameHdl)

clUpdateHead(frameHdl)

Size

Space

Size

Space Head

Tail

Tail

Head

Record

Source

CompressorDecompressor
clQueryFree(dataHdl)

clUpdateHead(dataHdl)

clQueryValid(frameHdl)

clUpdateTail(frameHdl)

clQueryValid(dataHdl)

clUpdateTail(dataHdl)

clQueryFree(frameHdl)

clUpdateHead(frameHdl)

StorageStorage

572

Chapter 26: Customizing the Compression Library

Adding Custom Parameters to the Compression Library

You can add audio or video compression parameters to libcl. This is useful
when using clAddAlgorithm() to add a new algorithm that uses parameters
that don’t exist in the default set of compression parameters. The application
uses the new parameters as it would any of the other compression
parameters. The functions for the new compression algorithm access the
parameters in the same way as the application.

Use clAddParam() to add parameters to the library. Its function prototype is:

int clAddParam(int scheme, char *name, int type, int min,
int max, int initial, int *paramID)

where:

scheme is the compression scheme to add a parameter to.

name is a pointer to a string that contains the name of the
parameter.

type is the type of the parameter: CL_ENUM_VALUE,
CL_RANGE_VALUE, CL_POINTER,
CL_FLOATING_ENUM_VALUE, or
CL_FLOATING_RANGE_VALUE.

min is the minimum value of the parameter.

max is the maximum value of the parameter.

initial is the default value of the parameter.

paramID is a pointer to an int value to receive the compression
parameter identifier.

Adding Custom Parameters to the Compression Library

573

The code fragment in Example 26-4 adds a new video algorithm to the CL.

Example 26-4 Adding Parameters to the Compression Library

#include <cl.h>
int paramID;
 ...
/* Add a new algorithm */
clAddAlgorithm(“New Algorithm”, CL_VIDEO,
 NEW_ALGORITHM_MAX_HEADER_SIZE,
 OpenNewCompressor, CompressNew, CloseNewCompressor,
 OpenNewDecompressor, DecompressNew, CloseNewDecompressor,
 ReadNewHeader, QueryNewScheme, GetNewParams,
SetNewParams,
 &newScheme);
/* Add the new parameter */
clAddParam(newScheme, “New Parameter”, CL_RANGE_VALUE, 0,
100,

75, ¶mID);
/* Compress a series of frames (same as always) */
clOpenCompressor(newScheme, &handle);

clSetParam(handle, paramID, 55);

...

574

Chapter 26: Customizing the Compression Library

Chapter 1

PART SIX

Movie Programming VI

Chapter 27, “Introduction to the Movie Library,”
introduces the Movie Library and describes its applications and features.

Chapter 28, “Getting Started with the Movie Library,”
explains how to set up, compile, and debug Movie Library applications.

Chapter 29, “File I/O and Editing Movies with the Movie Library,”
explains how to perform movie file I/O and how to edit movies.

Chapter 30, “Playing Movies with the Movie Library,”
 describes the Movie Library playback and event-handling facilities.

Chapter 31, “Using the Movie Library with QuickTime Movies,”
 describes basic concepts for working with QuickTIme movies, and then it
explains how to add QuickTime capability to a Movie Library application. It also
describes the optional QuickTime compressor Library, which provides access to
QuickTime compressors for Movie Library applications.

Chapter 32, “Using the Movie Library Sample Programs,”
describes the Movie Library sample programs.

This chapter introduces the Movie
Library, which provides a
file-format-independent API for
reading, writing, editing, and
playing movies.

Introduction to the Movie Library

Chapter 27

579

Chapter 27

27. Introduction to the Movie Library

The Movie Library is a collection of routines within the IRIS Media
Libraries™ that provides a C language application programming interface
(API) for reading, writing, editing, and playing movies on Silicon Graphics
workstations. The API provides a uniform interface to movies of various
formats and lets you convert movies from one format to another. This
chapter describes the features and applications of the Movie Library.

Overview of Movie Library Features and Applications

This section provides a quick overview of the features and applications of
the Movie Library. You need not have specialized knowledge about digital
media or synchronization methods to use the Movie Library.

Movie Library Features

The main features of the Movie Library (libmovie) are:

• the ability to read, write, and play movie files

• a file-format-independent API

• file format conversion capabilities

• support for Silicon Graphics Movie format, versions 2.0 and 3.0

• support for Apple® Computer QuickTime™ movie format

• data compression and decompression

• asynchronous playback support

• flexible playback control

• support for movies embedded in applications software

580

Chapter 27: Introduction to the Movie Library

Movie Library Applications

You can easily integrate playback or creation of movies into your existing
application without making extensive changes to the application’s main
event loop, or you can incorporate movies into an application that doesn’t
already have an event loop, because the Movie Library uses its own event
queue.

Application categories include:

• 3D graphics animation

You can use the Movie Library to save 3D graphics images as a movie
that can be used to provide rapid playback of computationally
intensive graphics scenes.

• scientific visualization

You can use the Movie Library to assemble a series of images from an
IRIS Explorer™ application into a movie in order to look for patterns
that aren’t apparent when looking at the still images one by one.

• computer-based training (CBT)

You can use the Movie Library to play embedded movies to illustrate
complicated procedures in interactive tutorials.

• live video recording

You can use the Movie Library to convert video input from your video
option board (IndigoVideo, Sirius Video™, or Galileo Video™) or video
from Indy Video™ into a movie.

• digital video editing systems

You can build video editing applications on top of the low-level data
handling routines provided by the Movie Library.

Using the Movie Library with Other Silicon Graphics Libraries

581

Using the Movie Library with Other Silicon Graphics Libraries

Other libraries that your application can use in conjunction with the Movie
Library include:

• Video Library

• ImageVision Library

• IRIS GL or OpenGL

• Audio File Library

The Movie Library uses the capabilities of the following libraries to play
movies:

• Audio Library

• Compression Library

• Digital Media Library

• IRIS GL or OpenGL

Your application need not include the header file for the Digital Media
Library, because it is included in movie.h. Normally, your application need
not include the header files for the Audio Library, Compression Library,
OpenGL, or IRIS GL unless it uses those libraries directly.

582

Chapter 27: Introduction to the Movie Library

This chapter explains basic concepts
for programming with the Movie
Library, including movie file
formats,movie and track properties
and parameter getting and setting.

Getting Started with the Movie Library

Chapter 28

585

Chapter 28

28. Getting Started with the Movie Library

This chapter explains how to begin developing a Movie Library application.
It presents terminology and describes the steps involved in developing,
compiling, and debugging a Movie Library application. It also explains how
to work with movie and track properties.

Movie Library Basics

This section defines basic terms and explains fundamental concepts that you
need to know in order to use the Movie Library, including the Movie Library
programming model and movie file formats.

Definitions

The definitions in this section provide a foundation for working with the
Movie Library.

A digital movie is a file that contains tracks of image and audio (optional)
data.

A track represents a data stream. Each track can contain only one type of
medium, either an image sequence or an audio soundtrack. Currently, a
maximum of one image track and one audio track is allowed.

Just as motion picture film is actually a sequence of individual photographs,
the image track of a movie file is actually a sequence of still images, such as
illustrations, camera images, or computer graphics, contained within
individual image frames of uniform height and width. Some movies have
special image frames called keyframes that contain information for a block of
frames that is treated as a single unit.

586

Chapter 28: Getting Started with the Movie Library

The audio track contains digitized audio (samples) of narration, music,
sound effects, and so on, that are synchronized to the frames of the image
track.

An image frame contains a single image, composed of individual pixels. An
audio frame is composed of one audio sample for each audio channel.

The frame count of a movie is the total number of image frames in that movie.
Image frames are numbered from zero to one less than the frame
count.

Figure 28-1 is a conceptual illustration of somersault.mv, a movie with one
image track, a stereo audio track, and 13 frames (only 10 are shown).

Figure 28-1 Typical Movie: somersault.mv

The frame rate of a movie refers to the number of image frames played per
unit length of time. A typical frame rate is 15 frames per second (FPS), which
means that each frame is displayed for 1/15 of a second.

Looping is the process of repeatedly playing a frame, a sequence of frames, or
an entire movie. A movie loop is a useful display method for graphical
sequences that cannot be rendered in real time or for any sequenced image
data. When playing a movie, the movie loop can include the entire movie or
a fragment of the movie, but you can only have one loop per movie. You
cannot have a track loop. The Movie Library has three loop modes:

• nonlooping (play once through)

• looping (continuous play)

• swinging (repeatedly playing forward then backward)

Image track

Audio track

Frame
number

Movie Library Basics

587

Movie Library Programming Model

The Movie Library programming model consists of:

• movie instances, which are handles to movie files

• tracks, which contain audio or images

• parameter-value lists, which contain movie and track properties

A movie instance is a handle that allows you to read, write, edit, and play a
movie file. It contains information about the different tracks (audio and
image) in a movie and is identified by a movie ID similar in nature to a file
descriptor. An application can create several movie instances at once.

Movie File Formats

The Movie Library provides a file-format-independent API and lets you
convert movies from one format to another. Currently supported formats are
the Silicon Graphics movie format and the Apple Computer QuickTime
movie format.

Silicon Graphics Movie Formats

Silicon Graphics uses a proprietary movie file format that has evolved over
time to the current 3.0 version. You can read movies that use previous
versions (1.0 and 2.0) of the file format—for example, movies that were
created using the prerelease alphas of the Movie Library or previous releases
of Movie Maker—but the Movie Library writes only Silicon Graphics
version 3.0 movie files.

The Silicon Graphics version 3. 0 movie format is a parameterized file format
with data that is normally interleaved. It currently consists of a single image
track and an optional audio track.

Apple Computer QuickTime File Format

See Chapter 31, “Using the Movie Library with QuickTime Movies,” for
information on working with QuickTime movies and on using the optional
Silicon Graphics QuickTime Compressor Library, which provides Movie
Library support for both Apple Animation and Apple Video compression.

588

Chapter 28: Getting Started with the Movie Library

See Inside Macintosh: QuickTime for information about developing
QuickTime applications, and see the QuickTime Starter Kit User’s Guide for
information on how to use the Apple QuickTime utilities on the Macintosh.

Deciding Which Format to Use

The destination system determines which movie format to choose when
writing the final version of a movie file. Use the QuickTime format only if
you require cross-platform compatibility between Silicon Graphics and
Apple Macintosh computers.

Developing a Movie Library Application

This section provides a nutshell description of how to develop a Movie
Library application, including compiling and debugging instructions.

A good way to get started with the Movie Library is to look at the sample
programs in the /usr/people/4Dgifts/examples/dmedia/movie directory. They
demonstrate creating, editing, playing, and getting information about
movies. See Chapter 32, “Using the Movie Library Sample Programs,” for
complete descriptions of the sample programs.

Outline for Developing a Movie Library Application

Follow these steps to develop a Movie Library application:

1. Open an existing movie file by calling either mvOpenFile(),
mvOpenMem(), or mvOpenFD() or create a new movie instance by
calling mvCreateFile(), as described in Chapter 29, “File I/O and
Editing Movies with the Movie Library.”

2. Once you have a movie instance, you can find existing tracks, add
tracks to the movie, and delete tracks from the movie. If, in step 1, you
created a new movie rather than open an existing movie, you must add
an image track to it if one does not already exist.

3. Read and write images and audio from and to the movie tracks using
the Movie Library file I/O functions, such as mvReadFrames() and
mvInsertFrames() that are described in Chapter 29.

Developing a Movie Library Application

589

4. Use the Movie Library editing functions to efficiently implement
editing tasks such as deleting part of a movie by calling
mvDeleteFrames(), and copying data from one movie to another by
calling mvPasteFrames(). Editing is described in Chapter 29.

5. To play a movie, configure a playback window and use
mvBindWindow() to associate a movie with the playback window. You
can play more than one movie simultaneously, in separate windows or
in the same window. Playback is described in Chapter 30, “Playing
Movies with the Movie Library.” You can’t edit a movie that you have
opened for playback, so write the file before attempting to play it.

6. When you have finished with a movie, call mvClose() to destroy the
movie instance.

Compiling and Linking a Movie Library Application

Movie Library applications must include the movie.h header file to obtain
definitions for the library. When compiling your Movie Library application,
follow these linking requirements in the order specified:

-lmovie -ldmedia -lcl -lawareaudio

where:

-lmovie links with the Movie Library (libmovie)

-ldmedia links with the DM Library (libdmedia), which provides
parameter setting and ring buffering capabilities

-lcl links with the Compression Library, which provides
compression capability

-lawareaudio links with the part of the Compression Library that
provides Aware audio compression-decompression (codec)
support. The part of the CL that provides Aware software
codecs requires separate linking to accommodate end-user
licensing. Currently, applications are required to link with
this library even if it is not used, but licensing is optional for
the end user.

590

Chapter 28: Getting Started with the Movie Library

If your application uses the Movie Library to play movies, you must add the
following to the end of the link line:

-lgl -laudio -lX11

where:

-lgl links with the IRIS GL

-laudio links with the Audio Library

-lX11 links with the X11 library

Debugging a Movie Library Application

The Movie Library has two facilities designed to assist you in debugging
your application:

• a debugging version of the Movie Library, libmovie_d.a, which checks
for improper usage of the Movie Library, such as out-of-bounds values
and invalid parameters

• environment variables that allow you to emulate certain types of
failures such as I/O errors, without actually causing failures

Using the Debugging Version of the Movie Library

The debugging version of the Movie Library checks for violations by setting
assertions that rigidly state the requirements for a parameter or value. One
typical assertion, worded in standard English, is: “Check that the current
frame number is within the bounds of the number of frames in the movie,”
which is more precisely stated in the following assertion:

ASSERT(0 <= frame < trackLength, "Frame number out of range")

To use the debugging version of the library, link with libmovie_d.a as follows:

-lmovie_d

and then run your program.

Your application will abort with an error message if it fails an assertion. The
message explains the situation that caused the error, and by implication or
by explicit description, suggests a corrective action.

Setting and Getting Movie Properties

591

When you have finished debugging your application, you should relink
with the nondebugging library, libmovie.a, because the runtime checks
imposed by the debugging library cause an undesirable performance and
size overhead for a packaged application.

Emulating I/O Failures

When attempting to read data from a device such as a CD-ROM drive or
over the network, two types of problems can occur:

• lost connections—either the CD (or other storage medium) is missing
or defective or, when reading data over the network, the remote host is
unreachable

• delays—either the seek time is too long or network delays are
occurring

You can test how your application handles these types of I/O failures by
setting the following environment variables to emulate failures without
causing actual failures:

Setting and Getting Movie Properties

Movies have certain inherent properties that provide information about
their contents. Global movie properties apply to a movie as a whole; track
properties apply only to tracks. Tracks have general properties that apply to
all types of tracks, and specific properties that depend on the track medium.

Movie and track properties are stored in parameters, some of which you can
set, others of which are read-only, because they are computed by the Movie
Library from available information. You can also define your own
parameters to represent properties not provided by the Movie Library.

MVPLAYDBG_VIDREAD simulates I/O errors when reading video

MVPLAYDBG_AUDREAD simulates I/O errors when reading audio

MVPLAYDBG_VIDNFS simulates delays when reading video

MVPLAYDBG_AUDNFS simulates delays when reading audio

592

Chapter 28: Getting Started with the Movie Library

This section explains how to set and get movie and track parameters using
the universal mvSetParams() and mvGetParams() routines; then it explains
how to use the Movie Library convenience routines for setting and getting
individual movie and track parameters and for setting up defaults.

Setting and Getting Movie and Track Parameters

The type MVid is used for both movies and for tracks so that universal set
and get functions can work on both movies and tracks. The Movie Library
also provides convenience routines for setting and getting movie
parameters, described in “Setting and Getting Global Movie Properties” on
page 593, and setting and getting track parameters, described in “Setting
and Getting Track Properties” on page 601.

To set or change a group of parameters for a movie or track, make a
parameter-value list containing the names of the parameters you want to set
and the values you want them to have, then pass this list to mvSetParams().
Its function prototype is:

DMstatus mvSetParams (MVid movieOrTrack, DMparams* params,
 DMparams* returnParamsSetOrNull)

where:

movieOrTrack is the movie or the track whose parameters you want to set

params is a pointer to a parameter-value list that contains the
parameters and settings you want

returnParamsSetOrNull
is a pointer to a parameter-value list into which the Movie
Library loads those parameters and values that it
recognized and was able to set; if returnParamsSetOrNull is
NULL, the Movie Library will not return such a list

Note: Some parameters cannot be changed and some are not recognized by
the Movie Library; verify the results by checking the list returned in
returnParamsSetOrNull.

To retrieve a list of the current parameters for a given movie or track, call
mvGetParams(). Its function prototype is:

DMparams* mvGetParams (MVid movieOrTrack)

Setting and Getting Movie Properties

593

mvGetParams() returns the parameter list associated with the given movie
or track. For movies, the parameter list contains the movie property settings:
file format, looping mode, and so on. For tracks, the parameter list contains
information about the format of the data in the track.

Note: The application should not call dmParamsDestroy() on the returned
parameter-value list. The Movie Library reuses the same structure for each
call to mvGetParams().

See “Displaying Movie Parameters” in Chapter 32 for an example program
called mvinfo that uses mvGetParams() to extract and print a list of movie
and track parameters.

Setting and Getting Global Movie Properties

Global movie properties apply to the movie as a whole.

You can set these global movie properties:

• comment

• loop limit

• loop mode

• title

The read-only (computed by the Movie Library) global movie properties are:

• file format, which is established when the movie is created

• optimization

You can set and get global movie properties individually, using the Movie
Library mvSetParams() and mvGetParams() routines or the DM Library
dmSetParams() and dmGetParams() routines.

You can make a default parameter-value list to use when creating a movie by
calling mvSetMovieDefaults(), as described in “Creating a Default Movie
Configuration” on page 596. If you set the default movie parameters by
calling mvSetMovieDefaults(), then other parameters, such as the title,
require setting only if they differ from the defaults.

594

Chapter 28: Getting Started with the Movie Library

This section explains how to set and get the global movie properties
individually using Movie Library convenience routines that are built on top
of the mvSetParams() and mvGetParams() calls.

Setting and Getting the Movie Comment

To store a comment string in a movie file, call mvSetComment(). Its function
prototype is:

DMstatus mvSetComment(MVid movie, const char* comment)

To retrieve the comment string that is stored in a movie file, call
mvGetComment(). Its function prototype is:

const char* mvGetComment(MVid movie)

Setting and Getting the Default Movie Loop Mode

The Silicon Graphics movie file format lets you store a default loop mode
setting within a movie file. When opening a movie file, the Movie Library
obtains the default loop mode from the movie if it is set; otherwise, it
assumes MV_LOOP_NONE is the default loop mode.

To store a default loop mode setting in a movie file, call mvSetLoopMode().
Its function prototype is:

DMstatus mvSetLoopMode(MVid movie, MVloopmode mode)

where:

mode determines the default loop mode:

MV_LOOP_NONE sets the default mode to
play the movie once

MV_LOOP_CONTINUOUSLY sets the default mode to
play the movie
repeatedly

MV_LOOP_SWINGING sets the default mode to
play the movie forward,
then backward
repeatedly

Setting and Getting Movie Properties

595

You can set the playback loop mode independently of the default loop mode
by using mvSetPlayLoopMode(), as described in “Looping” in Chapter 30.

To retrieve the loop mode setting that is stored in a movie file, call
mvGetLoopMode(). Its function prototype is:

MVloopmode mvGetLoopMode(MVid movie)

Setting and Getting the Default Movie Loop Limit

You can store a default loop limit setting in the movie file that defines the
default for the number of movie loops a movie will play if its loop mode is
set to MV_LOOP_CONTINUOUSLY or MV_LOOP_SWINGING. To store a
default loop limit in a movie file, call mvSetLoopLimit(). Its function
prototype is:

DMstatus mvSetLoopLimit(MVid movie, int limit)

where:

limit is the number of movie loops allowed; a value of 0 means
that the movie will loop indefinitely

To retrieve the default loop limit setting that is stored in a movie file, call
mvGetLoopLimit(). Its function prototype is:

int mvGetLoopLimit(MVid movie)

Setting and Getting the Movie Title

To store a title string in a movie file, call mvSetTitle(). Its function prototype
is:

DMstatus mvSetTitle(MVid movie, const char* title)

To retrieve the title string that is stored in a movie file, call mvGetTitle(). Its
function prototype is:

const char* mvGetTitle(MVid movie)

596

Chapter 28: Getting Started with the Movie Library

Getting the Movie File Format

To retrieve the file format of a movie file, call mvGetFileFormat(). Its
function prototype is:

MVfileformat mvGetFileFormat(MVid movie)

mvGetFileFormat() returns the file format of the movie:

Getting the Movie Optimization Setting

To determine whether a movie is optimized for playback, call
mvGetOptimized(). Its function prototype is:

DMboolean mvGetOptimized(MVid movie)

mvGetOptimized() returns DM_TRUE if the movie is optimized for
playback performance and DM_FALSE if it is not. Performing any editing
operations on the movie that read, write, insert, or delete frames will disrupt
the optimization and clear this flag. See “Optimizing a Movie File” in
Chapter 29 for more information about movie optimization.

Creating a Default Movie Configuration

To make a default parameter-value list that can be used to create a movie,
call mvSetMovieDefaults(), which takes the desired format for the new
movie file and sets the rest of the movie parameters (such as loop mode) to
their default values. Its function prototype is:

DMstatus mvSetMovieDefaults (DMparams* params,
 MVfileformat format)

format sets the file format of the movie:

MV_FORMAT_SGI_1 Silicon Graphics version 1 format

MV_FORMAT_SGI_2 Silicon Graphics version 2 format

MV_FORMAT_SGI_3 Silicon Graphics version 3 format

MV_FORMAT_QT Apple QuickTime format

MV_FORMAT_SGI_3 Silicon Graphics version 3 format

MV_FORMAT_QT Apple QuickTime format

Setting and Getting Movie Properties

597

Table 28-1 lists the parameters and values set by mvSetMovieDefaults().

Example 28-1 is a code fragment that creates a parameter-value list called
params, then initializes params to the movie defaults by calling
mvSetMovieDefaults(), and then passes params to mvCreateFile() to
configure a new movie file. After the movie has been created, the parameter-
value list is destroyed by calling dmParamsDestroy().

Example 28-1 Creating and Initializing a Default Movie Parameter-value List

MVid movie;
DMparams* params;

if (dmParamsCreate(¶ms) != DM_SUCCESS) {
 printf("Out of memory.\n");
 exit(1);
 }
if (mvSetMovieDefaults(params, MV_FORMAT_SGI_3) !=
DM_SUCCESS) {
 printf("Out of memory.\n");
 exit(1);
 }
if (mvCreateFile("temp.mv", params, NULL, &movie) !=
DM_SUCCESS) {
 printf("Could not create movie.\n");
 exit(1);

 }
dmParamsDestroy(params);

Table 28-1 Movie Defaults

Parameter Value Type Default

MV_COMMENT String Empty

MV_FILE_FORMAT MVfileformat format

MV_LOOP_LIMIT Integer 0

MV_LOOP_MODE MVloopmode MV_LOOP_NONE

MV_OPTIMIZED DMboolean DM_FALSE

598

Chapter 28: Getting Started with the Movie Library

Adding Your Own Parameters to the Movie Library

You can add your own movie parameters to the Movie Library to represent
movie and track properties that do not exist in the parameters provided by
the Movie Library. These parameters are global, meaning that any movie
opened from within your application will recognize and have access to the
parameters defined by the application. User-defined parameters exist as
long as the application is running.

To add your own parameters to the Movie Library, call mvAddUserParam().
Its function prototype is:

DMstatus mvAddUserParam (const char* paramName)

where:

paramName is a string containing 15 or fewer characters that uniquely
describes the parameter; for example, use a company
abbreviation as a prefix for the parameter name

Note: Only null-terminated strings of less than 32 K bytes can be used for
user-defined parameter-value pairs.

Once the parameters have been added, you can set and get them just like the
regular Movie Library parameters. To set the values for the parameters, pass
a list of the parameters and values to
mvSetParams().

You must add the parameters before calling any of the routines for setting
and getting their values. If you call mvSetParams() before calling
mvAddUserParam(), the Movie Library will not recognize the parameters
and they will be ignored.

If you open a movie that contains user-defined parameters, you can read
those parameters because the Movie Library automatically calls
mvAddUserParam() when loading a movie with user-defined parameters.

Setting and Getting Movie Properties

599

Example 28-2 is a code fragment that adds a user-defined global movie
parameter named Newparam to a Movie Library application, then creates a
movie that has access to the user-defined parameter.

Example 28-2 Adding a User-Defined Global Movie Parameter

/*
 * Adding a global (movie) user param named Newparam with a value of
 * "Movie type code 1113afq1" to a new movie file.
 */

 DMparams* movieParams;

 if (dmParamsCreate(&movieParams) != DM_SUCCESS) {
 fprintf(stderr, "Unable to create default params.\n");
 exit(EXIT_FAILURE);
 }
 if (mvSetMovieDefaults(movieParams, MV_FORMAT_SGI_3)
 != DM_SUCCESS) {
 fprintf(stderr, "Unable to set default params.\n");
 dmParamsDestroy(movieParams);
 exit(EXIT_FAILURE);
 }
 if (mvAddUserParam("Newparam") != DM_SUCCESS) {
 fprintf(stderr, "Unable to add user param.\n");
 dmParamsDestroy(movieParams);
 exit(EXIT_FAILURE);
 }
 if (dmParamsSetString(movieParams, "Newparam",
 "Movie type code 1113afq1")
 != DM_SUCCESS) {
 fprintf(stderr, "Unable to set user param.\n");
 dmParamsDestroy(movieParams);
 exit(EXIT_FAILURE);
 }
 if (mvCreateFile("mymovie", movieParams,
 NULL, theMovie) == DM_FAILURE) {
 fprintf(stderr,
 "Unable to create movie file %s: error = %s.\n",
 getOutMovieName(),mvGetErrorStr(mvGetErrno()));
 dmParamsDestroy(movieParams);
 exit(EXIT_FAILURE);
 }

600

Chapter 28: Getting Started with the Movie Library

Example 28-3 is a code fragment that adds a user-defined image track
parameter named NewImageParam to a Movie Library application, and then
adds an image track that has access to the user-defined parameter.

Example 28-3 Adding a User-Defined Image Track Parameter for a New Track

/*
 * Adding a usr param named NewImageParam with a value of
 * "Source code a32bg" to an image track.
 */
 DMparams *imageTrackParams;

 if (dmParamsCreate(&imageTrackParams) != DM_SUCCESS) {
 fprintf(stderr, "Unable to create image track params.\n");
 exit(EXIT_FAILURE);
 }
 if (dmSetImageDefaults(imageTrackParams, imgWidth, imgHeight,
 DM_PACKING_RGBX) != DM_SUCCESS) {
 fprintf(stderr, "Unable to set image defaults.\n");
 dmParamsDestroy(imageTrackParams);
 exit(EXIT_FAILURE);
 }
 if (mvAddUserParam("NewImageParam") != DM_SUCCESS) {
 fprintf(stderr, "Unable to add user param.\n");
 dmParamsDestroy(imageTrackParams);
 exit(EXIT_FAILURE);
 }
 if (dmParamsSetString(imageTrackParams, "NewImageParam",
 "Source code a32bg") != DM_SUCCESS) {
 fprintf(stderr, "Unable to set user param.\n");
 dmParamsDestroy(imageTrackParams);
 exit(EXIT_FAILURE);
 }

 /*
 * Add the image track to the movie.
 */
 MVid imageTrack;
 if (mvAddTrack(movie, DM_IMAGE, imageTrackParams,
 NULL, &imageTrack) == DM_FAILURE) {
 fprintf(stderr, "Unable to add image track to movie.\n");
 dmParamsDestroy(imageTrackParams);
 exit(EXIT_FAILURE);
 }
 dmParamsDestroy(imageTrackParams);

Setting and Getting Track Properties

601

Setting and Getting Track Properties

The Movie Library lets you work with the individual image and audio tracks
inside movies. A track is an evenly spaced (in time) sequence of frames,
where each of the frames is the same size (although the amount of data per
frame may vary after compression).

This section explains how to use the Movie Library routines for setting and
getting both general track properties, which apply to all tracks, and specific
track properties, which depend upon the track medium.

You can set this general track property for all types of tracks:

• SMPTE time code string

The read-only general track properties are:

• track length (number of frames)

• track medium (image or audio)

Setting and Getting General Track Properties

This section explains how to set and get the general track properties using
the Movie Library convenience routines, which are built on top of the
universal set and get routines mvSetParams() and mvGetParams(). You can
also set and get general track properties by calling mvSetParams() and
mvGetParams(), respectively.

Setting and Getting SMPTE Time Code Strings Stored in Tracks

You can store SMPTE time codes as strings in a track parameter. The time
code string does not have any relationship to a timer inside the Movie
Library, so you have to obtain the time code from an external source before
storing it as a parameter. See “Using the SMPTE Time Code Sample
Application” in Chapter 32 for sample programs that implement time code
capability.

602

Chapter 28: Getting Started with the Movie Library

To store a SMPTE time code string in a movie track, call
mvSetSMPTEStart(). Its function prototype is:

DMstatus mvSetSMPTEStart(MVid movie, const char* start_time)

where:

start_time is a string representing a SMPTE time code, with two digits
each for hour, minute, second, and frame, as in "00:59:30:00"

mvSetSMPTEStart() returns either DM_SUCCESS or DM_FAILURE.

To retrieve a SMPTE time code string that is stored in a movie track, call
mvGetSMPTEStart(), which returns the starting time code as set by
mvSetSMPTEStart(). Its function prototype is:

const char* mvGetSMPTEStart(MVid track)

where:

track is the track for which you want to obtain the SMPTE time
code parameter

Getting the Track Length

To retrieve the number of frames stored in a track, call mvGetTrackLength().
Its function prototype is:

MVframe mvGetTrackLength (MVid track)

Getting the Track Medium

To determine the track medium, call mvGetTrackMedium(). Its function
prototype is:

DMmedium mvGetTrackMedium(MVid track)

mvGetTrackMedium() returns either DM_IMAGE or DM_AUDIO.

Setting and Getting Track Properties

603

Setting and Getting Audio Track Properties

The audio track of a movie contains digitized audio samples.

When creating an audio track, you can set and get audio properties
individually, using the Movie Library mvSetParams() and mvGetParams()
routines or the DM Library dmSetParams() and dmGetParams() routines.

You can also create default audio parameters for an audio track using the
DM Library dmSetAudioDefaults() routine. If you set the audio defaults by
calling dmSetAudioDefaults(), then other properties, such as number of
channels, require setting only if they differ from the defaults.

You can set these properties when creating an audio track:

• audio sample format

• audio sample rate

• audio sample width (bytes per sample)

• number of audio channels

The only parameter that you can change for an existing audio track is the
default volume (this is not functional in the current version of the Movie
Library). The other parameters cannot be changed after a track has been
created because they would invalidate the data stored in the track.

Table 28-2 lists the audio defaults as set by dmSetAudioDefaults().

Table 28-2 Audio Defaults

Parameter Value Type Default

DM_MEDIUM DMmedium DM_AUDIO

DM_AUDIO_WIDTH Integer width

DM_AUDIO_FORMAT DMaudioformat DM_AUDIO_TWOS_COMPLEMENT

DM_AUDIO_RATE Double rate

DM_AUDIO_CHANNELS Integer channels

DM_AUDIO_COMPRESSION String DM_AUDIO_UNCOMPRESSED

604

Chapter 28: Getting Started with the Movie Library

Note: Currently, only DM_AUDIO_UNCOMPRESSED is supported for
audio compression.

Since the Movie Library guarantees that all audio tracks have all of these
parameters defined, the “get” routines in this section do not return errors.

Setting and Getting the Default Volume of an Audio Track

mvSetDefaultVol() stores a new value, ranging from 0.0 to 1.0, for the
default volume parameter. It returns DM_SUCCESS or DM_FAILURE. Its
function prototype is:

int mvSetDefaultVol(MVid audioTrack double volume)

mvGetDefaultVol() returns the default volume setting to use when playing
this movie. Its function prototype is:

DMstatus mvGetDefaultVol(MVid audioTrack)

where:

audioTrack is the audio track whose volume you want to set or get

Note: The Movie Library currently ignores the default volume setting.

Getting the Audio Sample Width of an Audio Track

The Movie Library supports 8-bit and 16-bit audio samples.

To determine the number of bits used to store each audio sample in an audio
track, call mvGetAudioWidth(). Its function prototype is:

int mvGetAudioWidth(MVid audioTrack)

where:

audioTrack is the audio track whose sample width you want to know

Getting the Audio Sample Rate of an Audio Track

To determine the audio sample rate (in samples per second) for an audio
track, call mvGetAudioRate(). Its function prototype is:

double mvGetAudioRate(MVid audioTrack)

Setting and Getting Track Properties

605

where:

audioTrack is the audio track whose sample rate you want to know

Getting the Number of Audio Channels in an Audio Track

To determine the number of audio channels in an audio track, call
mvGetAudioChannels(). Its function prototype is:

int mvGetAudioChannels(MVid audioTrack)

mvGetAudioChannels() returns the number of audio channels: 1 for mono;
2 for stereo (the Movie Library does not currently support 4-channel audio
tracks).

where:

audioTrack is the audio track for which you want to know the number
of channels

Getting the Audio Format of an Audio Track

The Movie Library supports both unsigned and twos complement audio
formats that are directly understood by the Audio Library (AL), in particular
the ALwritesamps() call, for Silicon Graphics native movie
formats.

Audio for QuickTime movies is stored using sampling rates and formats
understood by QuickTime on the Apple Macintosh computer. Some of these
formats are not directly supported by the AL. See Chapter 31, “Using the
Movie Library with QuickTime Movies,” for more information on
QuickTime audio.

To determine the format used to store the audio samples in an audio track,
call mvGetAudioFormat(). Its function prototype is:

DMaudioformat mvGetAudioFormat(MVid audioTrack)

where:

audioTrack is the audio track whose format you want to know

606

Chapter 28: Getting Started with the Movie Library

mvGetAudioFormat() returns either DM_AUDIO_TWOS_COMPLEMENT
or DM_AUDIO_UNSIGNED.

Getting the Audio Compression Scheme of an Audio Track

To determine the audio compression scheme for an audio track, call
mvGetAudioCompression(). Its function prototype is:

const char* mvGetAudioCompression(MVid audioTrack)

where:

audioTrack is the audio track whose compression you want to know

Since movies do not currently support audio compression, the only valid
value is DM_AUDIO_UNCOMPRESSED.

Setting and Getting Image Track Properties

The image track of a movie contains a sequence of image frames. All the
images in an image track must have the same frame size (width and
height).

When creating an image track, you can set and get image properties
individually, using the Movie Library mvSetParams() and mvGetParams()
routines or the DM Library dmSetParams() and dmGetParams() routines.

You can also create default image parameters for an image track using the
DM Library dmSetImageDefaults() routine. If you set the image defaults by
calling dmSetImageDefaults(), then other properties, such as compression,
require setting only if they differ from the defaults.

Setting and Getting Track Properties

607

Table 28-3 lists the image defaults as set by dmSetImageDefaults().

The only parameter that you can change for an existing image track is the
image frame rate. The other parameters cannot be changed after a track has
been created because they would invalidate the data stored in the track.

Since the Movie Library guarantees that all image tracks have all image
parameters defined, the “get” routines in this section do not return errors.

Setting and Getting the Image Frame Rate

To change a movie’s frame rate by storing a new value for the image rate
parameter, call mvSetImageRate(). Its function prototype is:

DMstatus mvSetImageRate(MVid imageTrack,
 double framesPerSecond)

where:

mvSetImageRate() returns DM_SUCCESS if the image rate was successfully
changed; otherwise, it returns DM_FAILURE.

Table 28-3 Image Defaults

Parameter Value Type Value

DM_MEDIUM DMmedium DM_IMAGE

DM_IMAGE_WIDTH Integer width

DM_IMAGE_HEIGHT Integer height

DM_IMAGE_RATE Double 15.0

DM_IMAGE_COMPRESSION String DM_IMAGE_UNCOMPRESSED

DM_IMAGE_INTERLACING DMinterlacing DM_IMAGE_NONINTERLACED

DM_IMAGE_PACKING DMpacking packing

DM_IMAGE_ORIENTATION DMorientation DM_BOTTOM_TO_TOP

imageTrack is the image track for which you want to set the rate

framesPerSecond is the image rate in frames per second

608

Chapter 28: Getting Started with the Movie Library

To determine the image rate in frames per second for a movie, call
mvGetImageRate(). Its function prototype is:

double mvGetImageRate(MVid imageTrack)

where:

imageTrack is the image track whose rate you want to know

Getting the Image Frame Size

To get the width (x dimension) in pixels of the images stored in an image
track, call mvGetImageWidth(). Its function prototype is:

int mvGetImageWidth(MVid imageTrack)

where:

imageTrack is the image track whose dimensions you want to know

To get the height (y dimension) in pixels of the images stored in an image
track, call mvGetImageHeight(). Its function prototype is:

int mvGetImageHeight(MVid imageTrack)

where:

imageTrack is the image track whose dimensions you want to know

Getting the Image Orientation

The ordering of scan lines within an image frame depends upon the source
of the data. Bottom-to-top is the default data orientation for Movie Library
routines. To find out how pixels are ordered, call mvGetImageOrientation().
Its function prototype is:

DMorientation mvGetImageOrientation (MVid imageTrack)

where:

imageTrack is the image track whose format you want to know

mvGetImageOrientation() returns the order in which scan lines are stored
in the image: DM_BOTTOM_TO_TOP or DM_TOP_TO_BOTTOM.

Setting and Getting Track Properties

609

Getting the Image Format

The Movie Library can read images from and write images to a buffer. You
can use the IRIS ImageVision Library to read any of these image formats into
a buffer:

FIT Silicon Graphics ImageVision Library tiled image format

GIF Compuserve™ Graphics Image File, a popular 8-bit format

PCD Kodak Photo CD™ file format for digital images

SGI Silicon Graphics image data formats: .bw, .rgb, .rgba, .sgi, and
.screen

TIFF extended version of Tag Image File Format, Revision 6.0

Getting the Image Packing Format

The image packing format describes how pixels are packed within images; for
example, the word length used to represent the pixel, and the bit
order.

Images in a movie file can be stored on disk in any of the image packing
formats listed in Table 28-4. When you play a movie whose image track is in
a nondefault format, the Movie Library converts the image data to
DM_PACKING_RGBX on the fly as it plays the movie.

To get the image packing format for a particular image track, call
mvGetImagePacking(). Its function prototype is:

DMpacking mvGetImagePacking(MVid imageTrack)

where:

imageTrack is the ID of the image track whose format you want to know

610

Chapter 28: Getting Started with the Movie Library

Table 28-4 lists the image packing formats supported by the Movie Library.

Getting the Image Compression Scheme

Compression settings can result in significant differences in image quality
and in playback performance. The most commonly used compression
schemes for movies to be played on Silicon Graphics computers are MVC1
and MVC2; QT_VIDEO is frequently used for QuickTime movies to be
played on a Macintosh computer.

The Movie Library supports image compression through the Compression
Library. The compression methods that have been thoroughly tested with
the Movie Library are UNCOMPRESSED, MVC1, MVC2, RLE24, and JPEG.
You can also use the QuickTime compression schemes, QT_VIDEO and
QT_ANIM, in QuickTime and Silicon Graphics movies if you have
purchased and installed the Silicon Graphics QuickTime Compressor
Library.

Table 28-4 Image Packing Formats

Packing Format Description

DM_PACKING_RGBX R, G, B, and X (don’t care) data are packed into a 32-
bit word as 0xXXBBGGRR. This is the default
format for the Movie Library.

DM_PACKING_GRAYSCALE Each pixel is an 8-bit luminance value.

DM_PACKING_APPLE_16 16-bit images are stored with 5 bits each of red,
green, and blue. The bit layout is:

XRRRRRGGGGGBBBBB

Apple stores images from top to bottom, while SGI
goes from bottom to top.

DM_PACKING_APPLE_32 32-bit images are stored with 8 bits each of red,
green, and blue. The bit layout is:

XXXXXXXXRRRRRRRRGGGGGGGGBBBBBBBB

Setting and Getting Track Properties

611

To get the image compression scheme, call mvGetImageCompression(). Its
function prototype is:

const char* mvGetImageCompression(MVid imageTrack)

where:

imageTrack is the ID of the image track whose format you want to know

mvGetImageCompression() returns the name of the compression scheme
that is used to compress the images.

The most commonly used schemes and the reasons for choosing them are:

UNCOMPRESSED For the best quality in a final movie, all image manipulation and storage should be with
uncompressed images until the final movie is produced, at which time the images can be
compressed. Repeatedly compressing, decompressing, and then recompressing images
reduces the image quality.

MVC1 This is a good general-purpose compression scheme. It is a color-cell compression
technique that works well for video, but can cause fuzzy edges in high-contrast animation.

MVC2 Provides results similar to MVC1 in terms of image quality. MVC2 compresses the data
more than MVC1, but takes longer to perform the compression. Playback is faster for
MVC2, because there is less data to read in, and decompression is faster than for MVC1.

RLE24 This is a lossless compression method that uses run-length encoding (RLE). Run-length
encoding compresses images by storing a color and its run-length (the number of pixels of
that color) every time the color changes. It is a good technique for animations where there
are large areas that have identical colors.

JPEG JPEG is designed for still images and is usable, but slow, for video. JPEG is typically used
to compress each still frame during the writing or editing process, with the intention being
to apply another type of compression to the final version of the movie or to leave it
uncompressed. JPEG works better on high-resolution, continuous-tone images such as
photographs, than on crisp-edged, high-contrast images like line drawings.

QT_VIDEO This is the compression used for QuickTime movies that contain video. Like MVC1,
QT_VIDEO is a color-cell compression technique. It includes temporal compression and is
good for video and reasonable for animation.

QT_ANIM This is a lossy run-length encoding scheme used for QuickTime movies. It also includes
temporal compression. It has excellent compression ratios for animation that has large
areas of similar colors.

612

Chapter 28: Getting Started with the Movie Library

This chapter explains how to perform
file I/O and editing with the Movie
Library, including adding and
deleteing audio and images, and
copying and pasting movie frames.

File I/O and Editing Movies
with the Movie Library

Chapter 29

615

Chapter 29

29. File I/O and Editing Movies with the Movie
Library

This chapter describes how to set up a Movie Library application and how
to use the Movie Library routines for handling file input/output (I/O),
editing, compression, and other basic tasks. Playback is discussed in the next
chapter.

The Movie Library provides these basic file I/O capabilities:

• creating new movie files

• opening an existing movie from a file descriptor, filename, or memory

• reading data from and writing data to selected tracks and frames

Initializing a Movie Library Application

This section explains the basic program setup you will use. To set up a Movie
Library application, you need to:

• open a file descriptor for the movie (if you are using a file descriptor)

• create a new movie or open an existing movie

• test a file to determine whether it is a movie file

• set and get movie properties

• add, remove, and find tracks

• allocate buffers for data passed to and from the Movie Library

Each of these tasks is described in detail in the subsections that follow. It’s a
good idea to familiarize yourself with the setup procedures described in this
section because you’ll be performing most of these tasks in every application
that works with movies.

616

Chapter 29: File I/O and Editing Movies with the Movie Library

Basic routines for creating, verifying, and opening movies are available for
each type of interface: filename, file descriptor, and memory-mapped files.
Each of these routines features a similar API but has the appropriate
arguments for the specified method.

Figure 29-1 shows a diagram of the file I/O routines in the Movie Library.

Figure 29-1 Movie Library File I/O Routines

mvCreateFile(), mvCreateFD(), and mvCreateMem() create a new empty
movie, initialized with the given parameters, as set by
mvSetMovieDefaults() or by the DM Library routines, and return an
identifier for the new movie. Any movie that was already present in the file
or memory location will be destroyed.

mvIsMovieFile(), mvIsMovieFD(), and mvIsMovieMem() test whether a
movie is present in a file or in memory. Only movies in supported formats
(Silicon Graphics and QuickTime) are recognized.

mvOpenFile(), mvOpenFD(), and mvOpenMem() read an existing movie,
create a movie instance in memory that holds information about it, and then
return an identifier for the new movie.

The following two calls are used when the file I/O or editing is completed:

mvWrite() flushes all changes that have been made to a movie and
makes sure that they are written to the file, but does not
close the file

mvClose() flushes all changes that have been made to the movie and
makes sure that they are written to the file, and then
destroys the movie instance

Each of these calls is described in detail in the sections that follow.

Create

IsMovie

Open

File

FD

Mem

mv

Initializing a Movie Library Application

617

Using File Descriptors with Movies

File descriptors can be used to work with movie files on disk, CD-ROM, or
DAT, or with embedded or previously opened movie files.

Note: The Movie Library does not support embedded QuickTime files.

Use the IRIX open() system call (see the open(2) man page) to open a file
descriptor.

The movie instance inherits one of three file access modes, which are
associated with the file descriptor:

O_RDONLY opens a read-only movie file

O_WRONLY opens a write-only movie file

O_RDWR opens a read-write movie file

The file access mode determines which operations are possible for a
particular movie. You can’t write data to a movie opened as a read-only file.
Similarly, you can’t play a movie that has been opened for writing.

Before opening the movie, the file pointer associated with the file descriptor
should be positioned at the beginning of the movie file. If the movie data is
embedded within a file, such as an application-specific file format
containing a movie as a data chunk, use the IRIX lseek() system call (see the
lseek(2) man page) to seek the file descriptor to the beginning of the movie
data. For example, a movie file might be embedded in the file of a word-
processing program. When the word processing program is ready to access
the movie, it seeks to the position of the movie within its file and passes the
file descriptor (fd) to the Movie Library.

Creating a New Movie

You can create a new movie and associate it with a file descriptor, file name,
or memory location. There is a function call corresponding to each type.

mvCreateFD() creates a movie using a file descriptor returned by open()

mvCreateFile() creates a movie using a file name

mvCreateMem() creates a memory-mapped movie

618

Chapter 29: File I/O and Editing Movies with the Movie Library

The function prototypes are:

DMstatus mvCreateFD (int fd,
 DMparams* params,
 DMparams* returnParamsSetOrNull,
 MVid* returnMovie)

DMstatus mvCreateFile (const char* filename,
 DMparams* params,
 DMparams* returnParamsSetOrNull,
 MVid* returnMovie)

DMstatus mvCreateMem (void* pointer,
 size_t size,
 DMparams* params,
 DMparams* returnParamsSetOrNull,
 MVid* returnMovie)

where:

fd is a file descriptor returned by the open(2) system call that is
assigned to the new movie

filename is a filename assigned to the new movie

pointer is a pointer to a memory location that is assigned to the new
movie

size is the size of the block of memory to use—the Movie Library
will not read or write beyond this block size

params is a pointer to parameters that describe the movie attributes

returnParamsSetOrNull
is a pointer to a parameter-value list into which the Movie
Library loads those parameters and values that it
recognized and was able to set; if returnParamsSetOrNull is
NULL, the Movie Library will not return such a list

returnMovie is a pointer into which the movie identifier is returned

Initializing a Movie Library Application

619

Example 29-1 is a code fragment that shows how to create a movie.

Example 29-1 Creating a Movie

#include <movie.h>

void CreateMovie()
{
 DMparams* params;
 MVid movie;

 if (dmParamsCreate(¶ms) != DM_SUCCESS) {
 /* handle error */
 }

 if (mvSetMovieDefaults(params, MV_FORMAT_SGI_3)
 != DM_SUCCESS) {
 /* handle error */
 }

 if (mvCreateFile("new-movie", params, NULL, &movie)
 != DM_SUCCESS) {
 /* handle error */
 }

 /* Add tracks, insert frames, etc. */
}

Checking for the Presence of a Movie

Before attempting to open an existing movie file from a file descriptor, file
name, or memory, your application should check to see whether a movie is
present. There is a separate function call to verify the existence of a movie for
each source type.

mvIsMovieFD() checks for a movie identified by the given file
descriptor

mvIsMovieFile() checks for a movie identified by the given file name

mvIsMovieMem() checks for a movie stored in the given memory
location

620

Chapter 29: File I/O and Editing Movies with the Movie Library

Their function prototypes are:

DMboolean mvIsMovieFD (int fd)

DMboolean mvIsMovieFile (const char* filename)

DMboolean mvIsMovieMem (void* pointer, size_t size)

where:

fd is the file descriptor of the movie file you are checking

filename is the name of the movie file you are checking

pointer is a pointer to a memory location where the movie file you
are checking is stored

size is the size of the block of memory to use—the Movie Library
will not read or write beyond this block size

DM_TRUE is returned if the given file is a movie file; otherwise, DM_FALSE
is returned.

The following code fragment determines whether a given file is a movie file
and prints an error message if it is not:

if (!mvIsMovieFile(filename)) {
 PrintError ("Not a movie file.");
}

Opening an Existing Movie

Movies can be opened from file descriptors, filenames, or memory. There is
a function call corresponding to each source type:

mvOpenFD() opens a movie using a file descriptor that has already
been obtained from another source, such as open(2)

mvOpenFile() opens a movie from a file name

mvOpenMem() opens a memory-mapped movie

Initializing a Movie Library Application

621

Opening a Movie from a File Descriptor

To open a movie file from a file descriptor, call mvOpenFD(). Its function
prototype is:

DMstatus mvOpenFD (int fd, MVid* returnMovie)

where:

fd is a file descriptor that references the movie file you want to
open

returnMovie is a pointer into which the movie identifier is returned

Opening a Movie from a Filename

To open a movie from a filename, call mvOpenFile(). Its function prototype
is:

DMstatus mvOpenFile (const char* filename, int oflag,
 MVid* returnMovie)

where:

filename is the filename of the movie file you want to open

oflag is the file access mode, either O_RDONLY or O_RDWR

returnMovie is a pointer into which the movie identifier is returned

Opening Memory-mapped Movies

To open a movie that resides entirely in memory, beginning at the location
pointed to by pointer, call mvOpenMem(). Its function prototype is:

DMstatus mvOpenMem (void* pointer, size_t size, MVid*
 returnMovie)

where:

pointer is a pointer to the starting memory location of a movie

size is the size of the memory buffer—the Movie Library will not
read or write beyond this block size

returnMovie is a pointer into which the movie identifier is returned

622

Chapter 29: File I/O and Editing Movies with the Movie Library

Your application must allocate and free the memory buffer used by
mvOpenMem().

Adding, Locating, and Deleting Audio and Image Tracks

The operations that can be performed on a track include:

• adding a new track

• removing an existing track

• finding a track

• mapping frames between tracks in the same movie or another movie

• reading and writing data in a track

• editing operations (copying from one movie to another)

Adding an Audio or Image Track to a Movie

To add a track to a movie, call mvAddTrack(). Its function prototype is:

DMstatus mvAddTrack (MVid movie, DMmedium medium, DMparams*
params,

DMparams* returnParamsSetOrNull, MVid* returnTrack)

where:

medium is the type of track, either DM_AUDIO or DM_IMAGE

params is a pointer to a parameter-value list for configuring the new
track, which should be filled in using either
dmSetImageDefaults() or dmSetAudioDefaults(),
depending on the medium type

returnParamsSetOrNull
is a pointer to a parameter-value list into which the Movie
Library loads those parameters and values that it
recognized and was able to set—if returnParamsSetOrNull is
NULL, the Movie Library will not return such a list

Adding, Locating, and Deleting Audio and Image Tracks

623

returnTrack is a pointer into which the ID of the newly added track is
returned

DM_SUCCESS is returned if the new track was created successfully;
otherwise DM_FAILURE is returned.

The DM_IMAGE_COMPRESSION parameter that is given when creating an
image track is important to get right, because different settings can result in
large differences in image quality and in playback performance. See
“Getting the Image Compression Scheme” in Chapter 28 for information on
choosing a compression setting when configuring an image track.

Example 29-2 shows how to add an audio track to a movie.

Example 29-2 Adding an Audio Track to a Movie

#include <movie.h>

void AddAudioTrack(MVid movie)
{
 DMparams* audioParams;
 MVid audioTrack;

 if (dmParamsCreate(&audioParams) != DM_SUCCESS) {
 /* handle error */
 }
 if (dmSetAudioDefaults(audioParams,
 8, /* bits per sample */
 22050, /* sample rate */
 1, /* number of channels */
) != DM_SUCCESS) {
 /* handle error */
 }
 if (mvAddTrack(movie,
 DM_AUDIO,
 audioParams,
 NULL,
 &audioTrack) != DM_SUCCESS) {
 /* handle error */
 }
 /* Write audio data to track */
 /* with mvInsertFrames(3mv) */
}

624

Chapter 29: File I/O and Editing Movies with the Movie Library

Removing an Audio or Image Track from a Movie

To remove a track from a movie, which deletes all the data from the track,
call mvRemoveTrack(). Its function prototype is:

DMstatus mvRemoveTrack(MVid movie, MVid track)

where:

track is the track you want to remove

DM_SUCCESS is returned if the track was removed successfully; otherwise,
DM_FAILURE is returned.

Locating an Existing Track

To get a handle for a track that already exists, call
mvFindTrackByMedium(). Its function prototype is:

DMstatus mvFindTrackByMedium (MVid movie, DMmedium medium,
 MVid* returnTrack)

where:

medium is the medium, either DM_AUDIO or DM_IMAGE

returnTrack is a pointer into which the track identifier is returned

mvFindTrackByMedium() returns DM_SUCCESS if a track of the given
medium exists in the movie instance identified by movie; otherwise, it returns
DM_FAILURE.

Mapping Frames from One Track to Another Track

Because the image and audio tracks are separate, your application must
manage the synchronization between tracks when editing movies; for
example, when deleting a portion of the image track, the corresponding
portion of the audio track must be located and also deleted.

Adding, Locating, and Deleting Audio and Image Tracks

625

Figure 29-2 shows an image track and a corresponding audio track. (The
audio track would actually have many more samples per frame, but for
clarity, only a few samples are shown.)

Figure 29-2 Mapping Frames from One Track to Another

As shown in Figure 29-2, the frame numbers in one track do not have a one-
to-one time correspondence with the frame numbers in another track. When
mapping frame numbers from one track to another, the Movie Library
chooses the frame that matches the starting time of the given frame. The
frame boundaries are not necessarily aligned, so the mapping can differ by
one frame, depending on which track you are mapping from. For example,
in Figure 29-2, frame 3 in the image track maps to frame 9 of the audio track,
but frame 9 of the audio track maps to frame 2 of the image track.

Before performing any operation on a frame in one track that affects its
corresponding frame in the second track, you must locate the frame number
in the second track that corresponds to the frame number in the first track.

To locate the frames in one track that correspond (in time) to frames from
another track, call mvMapBetweenTracks(). mvMapBetweenTracks()
determines which frame number in toTrack corresponds to the frame
numbered fromFrameIndex in fromTrack and writes the result into the location
pointed to by toFrameIndex. Its function prototype is:

DMstatus mvMapBetweenTracks (MVid fromTrack, MVid toTrack,
 MVframe fromFrameIndex,
 MVframe* toFrameIndex)

where:

fromTrack is the track for which you want to locate a corresponding
frame in toTrack

Image track

Audio track

Frame boundaries not aligned

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Time
0 Seconds 0.1 Seconds 0.2 Seconds

626

Chapter 29: File I/O and Editing Movies with the Movie Library

toTrack is the track in which to locate the frame number
corresponding to the frame numbered fromFrameIndex in
fromTrack

fromFrameIndex
is the frame number in fromTrack for which you want to
locate the corresponding frame number in toTrack

toFrameIndex is a pointer into which the frame number in toTrack that
corresponds to the frame numbered fromFrameIndex in
fromTrack is written

DM_SUCCESS is returned if a corresponding frame was located; otherwise,
DM_FAILURE is returned.

Tip: You can also use mvMapBetweenTracks() to find corresponding frame
numbers in tracks from two different movies.

Editing Movies

The Movie Library provides these editing operations:

• optimizing a movie

• inserting raw image or audio frames from a buffer into a track

• reading frames from a track into a buffer

• deleting frames from a track

• reading and inserting compressed images directly

• copying frames from one movie to another

Note: Movies should not be edited during playback.

When you edit a movie, the Movie Library changes pointers to frames rather
than operating on the actual frames themselves. After a series of editing
calls, the movie frames might not be arranged in the order in which they
play, and there are probably empty spaces in the movie. Such a movie does
not provide optimum playback, but you can optimize the movie as
described in “Optimizing a Movie File” on page 627 before closing it.

Editing Movies

627

Optimizing a Movie File

To get the best playback performance from an edited movie, you should
optimize the movie file after an editing session. Optimization streamlines
the movie file by coalescing the empty space and by flattening the data
structure into the most linear structure possible. This is especially helpful for
minimizing the excessive seeks that occur during playback that are caused
by editing a movie file repeatedly. Optimization does not occur in place;
instead, the Movie Library makes a copy of the movie to optimize.

To optimize a movie, call mvOptimize(). Its function prototype is:

DMstatus mvOptimize (MVid fromMovie, MVid toMovie)

where:

fromMovie is the movie you want to optimize

toMovie is a name for the optimized movie

Using a Buffer for Editing

This section explains how to use a buffer for editing. The routines described
in this section work on uncompressed data; there is a similar group of
routines described in “Reading and Inserting Compressed Images” on
page 631 for working with compressed data.

Allocating Buffers

Memory must be allocated to hold audio or image data that is passed to or
obtained from the Movie Library. The buffer that is passed to these routines
points to a block of memory that holds an array of frames. Your application
is responsible for allocating a buffer large enough to hold the desired
number of frames.

Note: A playback-only application that does not perform any file I/O
operations need not allocate separate memory.

Use dmImageFrameSize() to determine the number of bytes needed to hold
one frame of raw image data; similarly, use dmAudioFrameSize() to
determine the number of bytes needed to hold one frame of raw audio data.

628

Chapter 29: File I/O and Editing Movies with the Movie Library

Before allocating memory, determine the required buffer size as
demonstrated in Example 29-3. Allocate the appropriate amount of memory
by using one of the IRIX system calls for memory allocation, such as
malloc(), and then check the malloc() return to make sure there was enough
memory. See the malloc(3X, 3C) man page for information about memory
allocation. See the IRIX Programming Guide for information about using
shared memory.

To determine the buffer size needed to store the uncompressed frames,
multiply the number of frames by the frame size, as shown in Example 29-3.

Example 29-3 Determining What Size Buffer to Allocate

static void insertFrames(MVid theEditMovie,
 MVid theEditTrack,
 MVid theSourceMovie,
 MVid theSourceTrack)
{
 MVframe editStartFrame;
 MVframe sourceStartFrame;
 MVframe numFrames = getNumEditFrames();
 size_t insBuffSize;
 void *insBuff;

 if (getEditTrackType() == DM_IMAGE) {
 insBuffSize = numFrames *
 dmImageFrameSize(mvGetParams(theSourceTrack));
 }

 else if (getEditTrackType() == DM_AUDIO) {
 insBuffSize = numFrames *

dmAudioFrameSize(mvGetParams(theSourceTrack));
 }

 insBuff = malloc((int) insBuffSize);
 if (insBuff == NULL) {
 fprintf(stderr, "%s: Unable to allocate insert buffer.\n",
 getProgramName());
 exit(EXIT_FAILURE);
 /* insert frames using mvInsertFrames(3mv) */
 }

Editing Movies

629

Inserting Raw Images and Audio from a Buffer into an Existing Track

You can insert raw image or audio data into an existing movie track—the
Movie Library compresses the data as it is inserted into the track. To insert
frames from a buffer into a track, call mvInsertFrames(). Its function
prototype is:

DMstatus mvInsertFrames (MVid track, MVframe frameIndex,
 MVframe frameCount, size_t
bufferSize,
 void* buffer)

where:

track is the track into which you want to insert data

frameIndex is the frame in front of which you want to insert data

frameCount is the number of frames to insert

bufferSize is the size of the buffer

buffer is a pointer to a buffer that contains the data you want to
insert into the track

When you insert frames into an existing track, the new frames are inserted
in front of frameIndex. The existing frames immediately following the
insertion point, including frame frameIndex, are shifted to the right to make
room for the new frames.

Figure 29-3 shows two frames (N1 and N2) inserted at frameIndex 5 into a
movie with 7 frames. Frames 5 and 6 move to make room for the new frames.

Figure 29-3 Inserting Frames into a Track

To achieve an effect similar to overwriting the existing data, you must first
delete the unwanted frames by calling mvDeleteFrames() before inserting
the new frames.

0 1 2 3 4 5 6

frameIndex = 5

0 1 2 3 4 5 6

Insertion point

N1 N2

frameCount = 2

630

Chapter 29: File I/O and Editing Movies with the Movie Library

Reading Frames from a Movie into a Buffer for Uncompressed Data

To read a specified number of frames from an existing movie into a buffer
that you have allocated for storing movie data, call mvReadFrames(). Its
function prototype is:

DMstatus mvReadFrames (MVid track, MVframe frameIndex,
 MVframe frameCount,
 size_t bufferSize, void* buffer)

where:

track is the track from which you want to read data

frameIndex is the first frame in the sequence that is to be read

frameCount is the number of frames of data to read

bufferSize is the size of the buffer, obtained by multiplying the number
of frames by the value returned from dmAudioFrameSize()
for the audio track or by the value returned from
dmImageFrameSize() for the image track

buffer is a pointer to a buffer that you have allocated for storing the
data

Note: The data is decompressed as it is read into the buffer. Use
mvReadCompressedImage(), as described in “Reading and Inserting
Compressed Images” on page 631 to read compressed image frames directly
into a buffer.

Deleting Frames from a Movie Track

To delete frames from a movie track, call mvDeleteFrames():

DMstatus mvDeleteFrames (MVid track, MVframe frameIndex,
 MVframe frameCount)

where:

track is the track from which you want to delete frames

frameIndex is the first frame in the sequence that is to be deleted

frameCount is the number of frames of data to delete

Editing Movies

631

Reading and Inserting Compressed Images

The Movie Library has a special group of routines for working with
compressed images. Performing editing operations on compressed images
takes less disk space and less time than editing full resolution images. These
routines operate on one frame of compressed data at a time because the size
of compressed data can vary from frame to frame. Use these routines if you
want to read or write compressed image data frame-by-frame, such as
reading a frame at a time from a Cosmo Compress™ board into a movie.

Reading a Compressed Image from a Movie into a Buffer

To read a compressed image from an existing movie into a buffer that you
have allocated for storing compressed data, call
mvReadCompressedImage(). Its function prototype is:

DMstatus mvReadCompressedImage (MVid track,
 MVframe frameIndex,
 size_t bufferSize,
 void* buffer)

where:

track is the movie track from which you want to read a
compressed image frame

frameIndex is the frame number of the image you want to read

bufferSize is the size of the buffer

buffer is a pointer to a buffer that you have allocated for storing a
compressed image frame

To determine the buffer size (in bytes) needed to hold a compressed image
frame, call mvGetCompressedImageSize(). Its function prototype is:

size_t mvGetCompressedImageSize(MVid track,
 MVframe frameIndex)

where:

track is the movie track from which you want to read a
compressed image frame

frameIndex is the frame whose image size you want to know

632

Chapter 29: File I/O and Editing Movies with the Movie Library

mvGetCompressedImageSize() returns the number of bytes that image
number frameIndex requires.

Example 29-4 reads a compressed image from track into buffer.

Example 29-4 Reading a Compressed Image from a Movie into a Buffer

void* ReadFirstImage(MVid track)
{
 size_t size = mvGetCompressedImageSize(track, 0);
 void* buffer = malloc(size);
 if (buffer = NULL) { /* handle error */}

 if (mvReadCompressedImage(track,
 0,
 size,
 buffer) != DM_SUCCESS) {
 /* handle error */
 }

 return buffer;
}

Inserting a Compressed Image from a Buffer into an Existing Track

To insert a compressed image from a buffer into an existing image track, call
mvInsertCompressedImage(). Its function prototype is:

DMstatus mvInsertCompressedImage (MVid track,
 MVframe frameIndex,
 size_t bufferSize,
 void* buffer)

where:

track is the track into which you want to insert a compressed
image

frameIndex is the frame number in front of which the compressed frame
is to be inserted

bufferSize is the size of the buffer

buffer is a pointer to buffer that contains the compressed image
you want to write to the track

Editing Movies

633

When you insert a compressed frame into an existing track, the new frame
is inserted in front of frame frameIndex. The existing frames immediately
following the insertion point, including frame frameIndex, are shifted to the
right to make room for the new frame (see Figure 29-3 on page 629). To
achieve an effect similar to overwriting the existing data, you must first
delete the unwanted frames by calling mvDeleteFrames() before inserting
the new frame.

Copying and Pasting Frames from One Movie into Another

The Movie Library has routines that let you copy frames from one movie
track to another movie track without using a buffer. The two movies must
have the same image frame rate and frame size—if they do not, an error is
generated.

These routines also let you work directly with compressed data, without
decompressing and recompressing the data. You can copy compressed
frames from one movie into another, even if the two movies use different
compression schemes.

634

Chapter 29: File I/O and Editing Movies with the Movie Library

Figure 29-4 shows image frames being pasted from one movie into another.

Figure 29-4 Pasting Image Frames from One Movie into Another Movie

Note: Because a movie’s audio and image tracks are independent, the audio
samples associated with the original images do not shift with the image
frames (see Figure 29-4). Call mvMapBetweenTracks() to locate the audio
associated with the displaced frames, then paste the audio frames in the
proper location.

Paste frames

Resulting movie

Original movie

Editing Movies

635

To copy a range of frames from one movie and paste them into another
movie without overwriting existing data, call mvPasteFrames(). Its function
prototype is:

DMstatus mvPasteFrames(MVid fromTrack,
 MVframe fromFrameIndex,
 MVframe frameCount,
 MVid toTrack,
 MVframe toFrameIndex)

where:

fromTrack is the source movie track from which frames are copied

fromFrameIndex
is the first frame in the sequence of frames to be copied from
the source movie

frameCount is the number of frames to copy and paste

toTrack is the destination movie track into which the copied frames
are inserted

toFrameIndex is the frame in the destination movie in front of which the
new frames will be pasted

When frames are pasted into a non-empty movie, the new frames are
inserted in front of frame frameIndex. The existing frames immediately
following the insertion point, including frame frameIndex, are shifted to the
right to make room for the new frames.

To overwrite the existing data, first call mvDeleteFrames() to delete the
unwanted frames before calling mvPasteFrames().

636

Chapter 29: File I/O and Editing Movies with the Movie Library

Finalizing Changes and Closing Movies

During an editing session, you can flush the changes to the file and make
sure they are written into the file by calling mvWrite(). Data in tracks is
always written immediately; mvWrite() flushes the header information. Its
function prototype is:

DMstatus mvWrite(MVid movie)

mvWrite() returns DM_SUCCESS if it was able to write the file; otherwise,
DM_FAILURE is returned.

When you have finished editing a movie, you write and close the file. You
may choose to optimize the movie by calling mvOptimize() before closing it.

To close a movie file, call mvClose(), which flushes all changes that have
been made to the movie and makes sure that they are written to the file, and
then destroys the movie instance. Its function prototype is:

DMstatus mvClose(MVid movie)

mvClose() returns DM_SUCCESS if it was able to write and close the file;
otherwise, DM_FAILURE is returned.

This chapter explains the Movie
Library, playback facility, including:

• handling movie events

• combining movies and graphics

Playing Movies with the Movie Library

Chapter 30

639

Chapter 30

30. Playing Movies with the Movie Library

This chapter describes the Movie Library playback facility. It explains how
to create and configure a window for playing movies and how to control and
synchronize movie playback. The Movie Library can use either OpenGL or
IRIS GL rendering to show movies, and you can combine the display of
graphics and movies using the techniques described in this chapter.

This chapter also explains how to handle movie events in order to respond
to user input or to monitor movie playback for system or I/O errors.

You can play one or more movies at a time, all in one window or in separate
windows. Follow these steps to play movies:

1. If playing more than one movie at a time, set a hint for multiple movie
playback by calling mvSetNumMoviesHint().

2. Open the movie(s) that you want to play, using mvOpenFile(),
mvOpenFD(), or mvOpenMem().

3. Prepare a window for displaying the movie, as described in “Creating
and Configuring a Playback Window” on page 641.

4. Set up event handling, as described in “Handling Events” on page 668.

5. Bind the window to the movie, as described in “Binding a Movie to a
Window for Playback” on page 648. This step tells the Movie Library to
display your movie inside the window you have prepared.

6. Show the window.

7. Set the movie into motion by calling mvPlay(), as described in
“Controlling Movie Playback” on page 651.

8. Process movie and window events as needed, as described in
“Handling Events” on page 668.

9. When finished, call mvClose() to destroy the movie instance. You must
complete this step before destroying the window in which the movie is
playing.

640

Chapter 30: Playing Movies with the Movie Library

Opening a Movie for Playback

If the application opens more than one movie at a time, set a hint for the
Movie Library before opening any movies.

The Movie Library uses certain IRIX system facilities such as multiple
processes and shared arenas whose size must be configured in advance. The
Movie Library chooses defaults for these resources that are suitable for most
applications; however, to play several movies at the same time, you must set
a hint at initialization time to indicate how many movies are likely to be
played so that the proper system resource allocations can be made.

To set a hint for the number of movies an application will play, call
mvSetNumMoviesHint(). Its function prototype is:

DMstatus mvSetNumMoviesHint (int numMovies)

where:

numMovies is the number of movies likely to be played

To retrieve the number of movies at which the hint is currently set, call
mvGetNumMoviesHint(). Its function prototype is:

int mvGetNumMoviesHint (void)

To open a movie for playback, call mvOpenFile(), mvOpenMem(), or
mvOpenFD(), as described in Chapter 29, “File I/O and Editing Movies
with the Movie Library.”These calls return an identifier, movieid, for a movie
instance that is used to reference the movie in subsequent Movie Library
calls.

Creating and Configuring a Playback Window

641

Creating and Configuring a Playback Window

The Movie Library requires a mixed-model GL/X window (an X window
configured for either OpenGL or IRIS GL rendering) in single-buffered RGB
mode.

Creating a Window for OpenGL Playback

See the OpenGL Programming Guide for information on using the OpenGL
window configuration routines, including: glXgetconfig(3g),
glXCreateContext(3g), and glXChooseVisual(3g).

Creating a Window for IRIS GL Playback

There are two methods for creating a GL/X window:

1. Create a mixed-model window using Xlib calls. You can paste the
sample code from glxhelper.c in /usr/people/4Dgifts/examples/dmedia/
movie/common/ into your application to create an appropriate window.
See Graphics Library Programming Tools and Techniques for details about
the calls used in glxhelper.c.

2. If you are using IRIS IM, create a GLXMDraw widget. See the IRIS IM
Programming Notes for details.

642

Chapter 30: Playing Movies with the Movie Library

Example 30-1 is a code fragment that shows how to create an IRIS GL
playback window. (KeyReleaseMask is needed only if the application needs
to listen to keystrokes when the mouse pointer is inside the movie window.)

Example 30-1 Creating an IRIS GL Playback Window

/*********
*
* Open a connection to the X server, and create an X window
* suitable for GL rendering here.
*
*********/

static DMstatus createXWindow(Display **dpy, Window *win,int width, int height)
{
 XSetWindowAttributes childWinAttribs;

 /*
 *Open a connection to the X server.
 */

 *dpy = XOpenDisplay(0);
 if (*dpy == NULL) {
 fprintf(stderr, "%s: Cannot open display.\n", programName);
 return DM_FAILURE;
 }
 childWinAttribs.colormap = DefaultColormap(*dpy, DefaultScreen(*dpy));

 /*
 * Even if we don’t use it, childWinAttribs.border_pixel must be something.
 */

 childWinAttribs.border_pixel = 0;

 /*
 * Create an X window configured for GL rendering, using
 * the helper functions defined in glxhelper.c
 */

 *win = GLXCreateWindow(*dpy, RootWindow(*dpy, DefaultScreen(*dpy)),
 100, 100, width, height, 0, CWColormap|CWBorderPixel,
 &childWinAttribs, GLXrgbSingleBuffer);
 XSelectInput(*dpy, *win, ExposureMask | StructureNotifyMask | KeyReleaseMask);
 return DM_SUCCESS;
}

Creating and Configuring a Playback Window

643

Configuring the Playback Display

You can control these settings for the playback display:

Background what color fills the space between the movie and the
window perimeter

View size how big the movie frame is

View offset where the movie frame is relative to the window origin

You can call the routines that configure the size, offset, and background color
of the playback window whether or not a movie is currently playing within
that window. Figure 30-1 diagrams the view settings.

Figure 30-1 Playback View Settings

Width from mvQueryViewSize()

Width passed to mvSetViewSIze()

Height passed to mvSetViewSIze()

Height from mvQueryViewSize()

Origin from mvQueryViewOffset()

Origin passed to
mvSetViewOffset()

644

Chapter 30: Playing Movies with the Movie Library

Setting and Getting the Background Color

The Movie Library automatically centers the movie in the view you specify
and fills the areas within the view that are not part of the movie frame with
a background color. The default background color is “SGI light gray,” which
has the components (170, 170, 170).

To set the background color, call mvSetViewBackground(). Its function
prototype is:

void mvSetViewBackground (MVid movieid, unsigned short red,
 unsigned short green, unsigned
short blue)

where:

red, green, blue are color components in the range 0-255

To get the background color, call mvGetViewBackground(). Its function
prototype is:

void mvGetViewBackground (MVid movieid,
 unsigned short* redreturn,
 unsigned short* greenreturn,
 unsigned short* bluereturn)

where:

redreturn, greenreturn, bluereturn
are pointers into which the values of the color components
are returned

Setting and Getting the Viewing Area Size

This section explains how to specify the size of the viewing area used for
rendering a movie within a window. The default view size is the width and
height of the movie frame, as it is specified in the movie file.

The Movie Library zooms the movie frame to fill the specified area as closely
as possible, while adhering to the pixel zooming restraints imposed by the
IRIS GL or Open GL renderer. Any remaining area between the window and
the movie viewing area is filled with the background color that you
specified.

Creating and Configuring a Playback Window

645

Note: Currently, only integer zooming (2×, 3×, and so on) is supported,
regardless of the graphics hardware platform.

To specify the size of the movie viewing area, call mvSetViewSize(). Its
function prototype is:

void mvSetViewSize (MVid movieid, int newwidth,
 int newheight,
 DMboolean keepaspect)

where:

newwidth is the requested width, in pixels, of the viewing area

newheight is the requested height, in pixels, of the viewing area

keepaspect controls whether the aspect ratio is preserved when
zooming the movie:
DM_TRUE preserves the aspect ratio
DM_FALSE does not preserve the aspect ratio

To determine the viewing area size that the Movie Library will actually
create for a desired width and height, call mvQueryViewSize(). Its function
prototype is:

void mvQueryViewSize (MVid movieid, int width, int height,
 DMboolean keepaspect,int* widthreturn,
 int* heightreturn)

where:

width is the requested width, in pixels, of the viewing area

height is the requested height, in pixels, of the viewing area

keepaspect controls whether the aspect ratio is preserved when
zooming the movie:
DM_TRUE preserves the aspect ratio
DM_FALSE does not preserve the aspect ratio

widthreturn is a pointer into which the actual width, in pixels, of the
viewing area is returned

heightreturn is a pointer into which the actual height, in pixels, of the
viewing area is returned

646

Chapter 30: Playing Movies with the Movie Library

If a movie appears by itself with no other graphics in a GL/X window, you
might want to ensure that your code chooses the proper window size by
calling mvQueryViewSize() in advance, and using the results to resize the
GL/X window to be the same size as the movie—or you can simply choose
a background color for the unused portions of the display by calling
mvSetViewBackground().

If the movie appears in a GL/X window along with other graphic elements,
such as a movie that is embedded in a larger display, you might be more
concerned about setting an exact view size, so you should set the view size
carefully by first calling mvQueryViewSize() and then using the results as
inputs to mvSetViewSize(). This makes sure that the Movie Library draws
on the display only over regions that the movie frame actually occupies.

To get the requested view size, call mvGetViewSize(). Its function prototype
is:

void mvGetViewSize (MVid movieid, int *widthreturn,
 int *heightreturn)

where:

widthreturn is a pointer into which the width is returned

heightreturn is a pointer into which the height is returned

mvGetViewSize() always returns the last requested size of the movie view,
regardless of the movie’s actual view size. Thus, you can inspect both the
requested size by calling mvGetViewSize(), and the actual frame size by
calling mvQueryViewSize().

Setting and Getting the Viewing Location Offset

This section explains how to set and get the movie viewing location offset,
as measured from the window origin.

IRIS GL and the X Window System differ in where they assign the
coordinates of the origin (0,0). IRIS GL defines (0,0) as the lower left corner
of the screen; the X coordinate system defines (0,0) as the upper left corner
of the screen. The default offset is (0, 0) in the IRIS GL coordinate system.

Creating and Configuring a Playback Window

647

To set the viewing location offset, call mvSetViewOffset(). Its function
prototype is:

void mvSetViewOffset (MVid movieid, int offsetx,
 int offsety, DMboolean glcoordsystem)

where:

offsetx is the offset from the origin in the x (horizontal) dimension

offsety is the offset from the origin in the y (vertical) dimension

glcoordsystem is a boolean that you use to specify the screen coordinate
system for the y offset

 If glcoordsystem is DM_TRUE, the Movie Library assumes
that you are using the IRIS GL screen coordinate system; if
glcoordsystem is DM_FALSE, the Movie Library assumes
that you are using the X coordinate system.

To determine the offset that the Movie Library will actually produce for a
given offset, call mvQueryViewOffset(). Its function prototype is:

void mvQueryViewOffset (MVid movieid,
 int offsetx,
 int offsety,
 int* offsetxreturn,
 int* offsetyreturn,
 DMboolean glcoordsystem)

 where:

offsetx is the requested offset from the origin in the x (horizontal)
dimension

offsety is the requested offset from the origin in the y (vertical)
dimension

offsetxreturn is a pointer into which the actual offset from the origin in the
x (horizontal) dimension is returned

offsetyreturn is a pointer into which the actual offset from the origin in the
y (vertical) dimension is returned

glcoordsystem specifies the screen coordinate system for the y offset:
DM_TRUE for the IRIS GL screen coordinate system;
DM_FALSE for the X coordinate system.

648

Chapter 30: Playing Movies with the Movie Library

To get the requested offset value, call mvGetViewOffset(). Its function
prototype is:

void mvGetViewOffset (MVid movieid, int* offsetxreturn,
 int* offsetyreturn,
 DMboolean glcoordsystem)

where:

offsetxreturn is a pointer into which the requested offset from the origin
in the x (horizontal) dimension is returned

offsetyreturn is a pointer into which the requested offset from the origin
in the y (vertical) dimension is returned

glcoordsystem specifies the screen coordinate system for the y offset:
DM_TRUE for the IRIS GL screen coordinate system;
DM_FALSE for the X coordinate system.

mvGetViewOffset() always returns the last requested origin of the movie
frame, regardless of the movie’s actual origin. Thus, you can inspect both the
requested origin by calling mvGetViewOffset(), and the actual origin by
calling mvQueryViewOffset().

Binding a Movie to a Window for Playback

In order to play a movie, you need to bind it to a window. Binding a movie
to a window performs internal initialization that prepares the movie for
playback in that window; therefore, you must bind the movie to the window
before calling any playback routines on that movie.

To bind a movie to an IRIS GL window, call mvBindWindow(). To bind a
movie to an OpenGL window, call mvBindOpenGLWindow().

The function prototypes for mvBindWindow() and
mvBindOpenGLWindow() are:

DMstatus mvBindWindow(MVid movieid, Display* dpy, Window win)

DMstatus mvBindOpenGLWindow(MVid movieid, Display* dpy,
 Window win, GLXContext ctxt)

Binding a Movie to a Window for Playback

649

where:

dpy is the display on which the movie plays

win is the window in which the movie plays

ctxt is the OpenGL graphics context for the movie

For example, to bind the movie named theMovie to the GL/X window
identified by win on the display dpy, using IRIS GL:

if (mvBindWindow(theMovie, *dpy, win) != DM_SUCCESS) {
 fprintf(stderr, “%s: Could not bind movie to window.\n”,

programName);
}

You can bind a movie to only one window at a time. The movie remains
bound to that window until you call mvClose() to close the movie. You can
call mvBindWindow() or mvBindOpenGLWindow() only once per movie.

Binding a Window to a Movie with an Audio Track

If the specified movie has an audio track, mvBindWindow() or
mvBindOpenGLWindow() attempts to open an audio port by calling
ALopenport() from the Audio Library. If the attempt is successful, an audio
port with the name movipid:movieid is created:

where:

pid is the system process ID that is using the audio port

movieid is the movie ID containing the soundtrack that is being
played on the port

See the ALopenport(3A) man page for more information.

If it is not possible to open an audio port, either because there are no free
audio ports or because your system does not have audio capability, the
Movie Library plays the image track without playing the accompanying
audio track.

Note: Audio is not part of the X protocol, so the audio track will not follow
the DISPLAY variable if the movie is played remotely.

650

Chapter 30: Playing Movies with the Movie Library

Playing Multiple Movies in the Same Window

To play more than one movie in the same window, bind the different movies
to the same window by calling mvBindWindow() or
mvBindOpenGLWindow() with the same dpy and win values for each
movieid.

Example 30-2 is a code fragment that binds several movies to a window, and
then shifts the position of each movie so they do not overlap.

Example 30-2 Binding a Window for Playing Multiple Movies

static DMstatus bindWinToMovies(MVid* movieList, int numMovies,Display* dpy, Window win)
{
 int i;
 MVid currentMovie;

 for (i = 0; i < numMovies; i++) {
 currentMovie = movieList[i];

 /*
 * Bind the GL window to the movie. This will cause several
 * movies to play in the same window.
 */
 if (mvBindWindow(currentMovie, dpy, win) != DM_SUCCESS) {
 fprintf(stderr, "%s: Could not bind movie to window.\n",
 getProgramName());
 return DM_FAILURE;
 }
 }

 /*
 * Initially, all the movies appear at the same display location.
 * We call a helper function to move them so they do not overlap.
 * The helper function calls mvSetViewOffset(3mv) to accomplish
 * this task.
 */
 if (setMovieViewOffsets() != DM_SUCCESS) {
 return DM_FAILURE;
 }

 return DM_SUCCESS;
}

Controlling Movie Playback

651

Controlling Movie Playback

The Movie Library provides calls for controlling movie playback that let you
start and stop playback, control audio playback, control the loop mode and
loop limit, and scrub to a random frame.

Starting and Stopping Playback

To set a movie into motion, call mvPlay(). Its function prototype is:

void mvPlay (MVid movieid)

To halt playback, call mvStop(). Its function prototype is:

void mvStop (MVid movieid)

Playing or stopping a movie does not affect any of the other settings such as
playback speed or direction; for example, if you stop a movie that is playing
backward, then start it again, the movie will continue to play backward.

Controlling Audio Playback

If a movie has an audio track, the Movie Library plays the audio for you
automatically if it is able to allocate an audio port.

Enabling and Muting Audio

You can control audio muting during playback. Muting controls only
whether audio is played; it does not alter the audio volume. To control audio
muting, call mvSetEnableAudio(). Its function prototype is:

void mvSetEnableAudio (MVid movieid, DMboolean onoff)

where:

onoff controls audio muting: DM_TRUE enables audio,
DM_FALSE mutes audio

652

Chapter 30: Playing Movies with the Movie Library

To retrieve the current mute setting, call mvGetEnableAudio(). Its function
prototype is:

DMboolean mvGetEnableAudio (MVid movieid)

Example 30-3 is an excerpt from manymovieEvents.c, in /usr/people/4Dgifts/
examples/dmedia/movie/manymovie, that shows how to use audio muting. See
“Playing Multiple Movies” in Chapter 32 for a complete description of
manymovie.

Example 30-3 Enabling and Muting Audio Playback

static void toggleAudioMuting(MVid *theMovies , int
numMoviesInWin)
{
 int i;

 for(i = 0;i < numMoviesInWin; i++) {

 printf("%s: %d, toggle mute to ", getProgramName(),
theMovies[i]);

 if (mvGetEnableAudio(theMovies[i])) {
 printf("OFF\n");
 mvSetEnableAudio(theMovies[i], DM_FALSE);
 } else {
 printf("ON\n");
 mvSetEnableAudio(theMovies[i], DM_TRUE);
 }
 }
}

Guaranteeing the Audio Sample Rate When Playing Multiple Movies

If you play several movies at the same time, it is possible that not all of them
will have the same audio sample rate. The audio hardware uses the same
sample rate for all concurrent audio processes; therefore, if you play two (or
more) movies that have different audio sample rates at the same time, audio
plays at the wrong speed for movies whose sample rate is different than the
current audio hardware rate setting. This happens only when playing more
than one movie at a time; the audio sample rate is set to the proper value
when playing a movie by itself.

Controlling Movie Playback

653

To guarantee the proper playback rate for a certain movie when it is played
in conjunction with other movies, call mvSetPrimaryAudio(). Its function
prototype is:

void mvSetPrimaryAudio (MVid movieid)

To determine which movie has the primary audio rate control, call
mvGetPrimaryAudio(). Its function prototype is:

MVid mvGetPrimaryAudio (void)

If you are writing an application that allows users to select and play one
movie at a time from among several movies, you want the audio playback to
be correct for each movie, even though not all of the movies have the same
sample rate. In that case, call mvSetPrimaryAudio() on the selected movie
before calling mvPlay().

Example 30-4 is an excerpt from manymovieEvents.c, in /usr/people/4Dgifts/
examples/dmedia/movie/manymovie, which guarantees the proper audio rate
for the first movie that the user enters on the command line. See “Playing
Multiple Movies” in Chapter 32 for a complete description of manymovie.

Example 30-4 Designating a Movie as the Primary Audio Rate Controller

static void playTheMovies(MVid *theMovies, int numMoviesInWin)
{
 int i;

 mvSetPrimaryAudio(theMovies[0]);

 for(i = 0;i < numMoviesInWin; i++) {
 printf("%s: %d, play\n", getProgramName(), theMovies[i]);
 mvPlay(theMovies[i]);
 }
}

Looping

Looping is the process of repeatedly playing movie frames. You can define
the starting and ending frame for movie playback, thereby allowing looping
on an entire movie or only a fragment of the movie. You can define only one
such loop per movie.

654

Chapter 30: Playing Movies with the Movie Library

The playback loop mode, which is independent of the default loop mode
that is stored in the movie, controls the playback behavior:

None The movie (or fragment) plays once through and then stops.

Continuous The movie (or fragment) plays repeatedly.

Swinging The movie (or fragment) plays repeatedly back and forth
from start to end in a forward direction, then from end to
start in a backward direction.

If the movie was playing backward when looping began, the movie will
continue to loop backward.

Setting and Getting the Playback Loop Mode

To set the playback loop mode, call mvSetPlayLoopMode(). Its function
prototype is:

void mvSetPlayLoopMode (MVid movieid, MVloopmode
newloopmode)

where:

newloopmode is the loop mode:

MV_LOOP_NONE to play once through (default)
MV_LOOP_CONTINUOUSLY to play continuously
MV_LOOP_SWINGING to swing back and forth

You can change the loop mode whether or not the movie is playing. If you
change the loop mode from swinging to continuous while the movie is on a
backward swing, the movie will play backward continuously.

The Silicon Graphics movie file format lets you store a default loop mode
setting within the movie file, which is independent of the playback loop
mode setting. When opening a movie file, the Movie Library obtains the
default loop mode from the movie if it is set; otherwise, it assumes
MV_LOOP_NONE is the default loop mode. So, when you first play the
movie, it uses the default loop mode until you change the playback loop
mode.

Controlling Movie Playback

655

To change the default loop mode stored in a movie, call mvSetLoopMode(),
as described in “Setting and Getting the Default Movie Loop Mode” on
page 594.

To retrieve the current loop mode setting for a specified movie, call
mvGetPlayLoopMode(). Its function prototype is:

MVloopmode mvGetPlayLoopMode (MVid movieid)

Example 30-5 is an excerpt from manymovieEvents.c, in /usr/people/4Dgifts/
examples/dmedia/movie/manymovie, which is described in “Playing Multiple
Movies” in Chapter 32, that toggles the loop mode for a movie that is
playing.

Example 30-5 Setting and Getting the Loop Mode

static void stepToNextLoopState (MVid *theMovies,
 int numMoviesInWin)
{
 int i;
 MVloopmode loopMode;

 for(i = 0;i < numMoviesInWin; i++) {

 printf("%s: %d, change loop state to ",
 getProgramName(), theMovies[i]);

 switch (mvGetPlayLoopMode(theMovies[i])) {
 case MV_LOOP_NONE:
 loopMode = MV_LOOP_CONTINUOUSLY;
 printf("CONTINUOUS\n");
 break;
 case MV_LOOP_CONTINUOUSLY:
 loopMode = MV_LOOP_SWINGING;
 printf("SWINGING\n");
 break;
 case MV_LOOP_SWINGING:
 loopMode = MV_LOOP_NONE;
 printf("NONE\n");
 break;
 }
 mvSetPlayLoopMode(theMovies[i], loopMode);
 }
}

656

Chapter 30: Playing Movies with the Movie Library

Counting and Limiting the Number of Loop Plays

The Movie Library provides a facility for counting the number of times a
movie has played. You can use this facility to query how many times the
movie has played and to limit the number of times playback can loop.

Initialize the counter by calling mvSetPlayLoopCount(), and provide an
upper bound for the number of loops by calling mvSetPlayLoopLimit() if
you want to limit the number of times the movie is played.

You can query for the current loop count and reset it if desired. For example,
if your application lets the user stop and restart playback, you can either
reset the loop count when playback resumes or continue counting from the
number of loops that were already completed when the movie was stopped.
In swinging mode, each play of the movie forward or backward counts as
one loop.

To set the loop count, call mvSetPlayLoopCount(). Its function prototype is:

void mvSetPlayLoopCount(MVid movieid, MVframe newloopcount)

where:

newloopcount is the value to which you want to set the loop count

To retrieve the current loop count for a movie, call mvGetPlayLoopCount().
Its function prototype is:

MVframe mvGetPlayLoopCount (MVid movieid)

To limit the number of times a movie can play in continuous or swinging
mode, call mvSetPlayLoopLimit(). Its function prototype is:

void mvSetPlayLoopLimit (MVid movieid, MVframe newlooplimit)

where:

newlooplimit is the number of times to loop or swing. This value must be
either an integer or MV_LIMIT_FOREVER to keep playing
a movie forever.

To retrieve the current loop limit value, call mvGetPlayLoopLimit(). Its
function prototype is:

MVframe mvGetPlayLoopLimit (MVid movieid)

Controlling Movie Playback

657

Playing or Looping a Movie Fragment

You can play or loop-play a movie fragment by selecting a start frame and
an end frame within the movie. You can define only one such fragment per
movie and the fragment must contain at least one frame.

The start frame number must be less than or equal to the end frame number;
frame 0 (the first frame of the movie) is the default start frame. If the current
frame is outside the range specified, the Movie Library treats the movie as
having reached end-of-media.

To define the start frame for a movie (or fragment), call mvSetStartFrame().
Its function prototype is:

void mvSetStartFrame (MVid movieid, MVframe startframe)

where:

startframe is the frame number where playback begins

To define the end frame of a movie (or fragment), call mvSetEndFrame(). Its
function prototype is:

void mvSetEndFrame (MVid movieid, MVframe endframe)

where:

endframe is the frame number where playback ends

To get the frame number where playback begins, call mvGetStartFrame(). Its
function prototype is:

MVframe mvGetStartFrame (MVid movieid)

To get the frame number where playback ends, call mvGetEndFrame(). Its
function prototype is:

MVframe mvGetEndFrame (MVid movieid)

658

Chapter 30: Playing Movies with the Movie Library

Scrubbing to a Random Frame During Playback

This section explains how to use the Movie Library to respond to an interface
such as a scroll bar that lets the user jump to a random location in a movie
while it is playing.

The Movie Library has two routines for jumping to a particular frame in a
movie: mvSetCurrentFrame() and mvScrubCurrentFrame(). Each routine is
designed with a specific use in mind. mvScrubCurrentFrame() provides the
quickest response by rapidly locating the nearest frame (keyframe for
keyframed formats) to the selected frame; mvSetCurrentFrame() provides
the most accurate response, by precisely locating and then showing the
frame exactly as selected.

Their function prototypes are:

void mvScrubCurrentFrame(MVid movieid, MVframe newframe)

void mvSetCurrentFrame(MVid movieid, MVframe newframe)

where:

newframe is the frame to which you want to jump

One way to use these routines is to call mvScrubCurrentFrame() to make
coarse jumps while the user is dragging the scroll bar, then call
mvSetCurrentFrame() to go to and display the exact frame when the user
releases the mouse button. The triangular pointer in the Movie Player uses
this technique.

To retrieve the location of the current frame, call mvGetCurrentFrame(). Its
function prototype is:

MVframe mvGetCurrentFrame (MVid movieid)

Synchronizing Movie Playback

659

Synchronizing Movie Playback

Movies play in real time, slaved to a time base that is expressed in frames per
second (FPS). The time base is either synchronized to the audio track or to a
software-based timer that you set with mvSetImageRate().

Getting and Setting the Playback Speed

You can specify a multiplier for modifying a movie’s natural frame rate. The
natural frame rate is stored in the movie file and can be retrieved with
mvGetImageRate(). The default playback speed is 1.0 times the natural
frame rate.

To alter the normal playing speed, call mvSetPlaySpeed(), which expresses
the new playback speed as a multiple of the movie’s natural image frame
rate. Its function prototype is:

void mvSetPlaySpeed (MVid movieid, double newplayspeed)

where:

newplayspeed is an integer (for speeding up playback) or the reciprocal of
an integer (for slowing down playback)

For example, if you specify a newplayspeed of 2.0, the movie plays twice as
fast as it normally would. If you specify a negative value for newplayspeed,
the movie plays in reverse.

You can measure the resulting frame rate by calling
mvGetActualFrameRate(), as described in “Measuring the Current Frame
Rate” on page 660.

For movies with audio, the Movie Library attempts to resample the audio to
match the requested playback speed. This changes the pitch of the audio.
The current implementation uses software techniques to perform audio
resampling, so you should be aware that changing the speed of playback for
a movie with an audio soundtrack consumes more processor time.

mvSetPlaySpeed() has no effect if the movie has been set to play every
frame with mvSetPlayEveryFrame().

660

Chapter 30: Playing Movies with the Movie Library

To determine the current setting for playback speed, call
mvGetPlaySpeed(). Its function prototype is:

double mvGetPlaySpeed (MVid movieid)

Measuring the Current Frame Rate

You can obtain the actual playback frame rate for a movie as it is playing; the
Movie Library computes the frame rate over the last second of playback. The
current frame rate is the movie’s natural frame rate, in frames per second
(FPS) modified by the speed factor set by mvSetPlaySpeed().

To determine the current frame rate, call mvGetActualFrameRate(). Its
function prototype is:

DMstatus mvGetActualFrameRate (MVid movieid,
 double* ratereturn)

where:

ratereturn is a pointer into which the actual frame rate is returned

If your application needs more detailed information about the rate of movie
playback, you should check the timestamp information associated with
movie frame events as described in “Handling Events” on page 668.

Setting and Getting a Minimum Playback Speed Threshold

If the playback rate lags behind the time base, the Movie Library will drop
(not display) image frames to stay in sync.

You can set a threshold value for the slowest acceptable playback speed and
have the Movie Library notify you through the movie event queue if the
playback speed falls below this minimum accepted speed by requesting
MV_SLOW_PLAY events using mvSetSelectEvents().

The threshold value must be a number between 0 and 1, which is a fraction
of the movie’s current speed. The current speed of a movie is its natural
frame rate, as specified in the movie file, multiplied by the speed factor set
by mvSetPlaySpeed(). The threshold setting is global—it applies to all

Synchronizing Movie Playback

661

movies in your application. The default threshold is .5, meaning 50% of the
current speed.

To set a minimum playback rate threshold, call mvSetSlowThreshold(). Its
function prototype is:

void mvSetSlowThreshold (double slowthresh)

where:

slowthresh is the threshold value for minimum playback speed

To retrieve the current minimum playback rate threshold, call
mvGetSlowThreshold(). Its function prototype is:

double mvGetSlowThreshold (void)

See “Checking and Correcting for Slow Playback” on page 678 for an
explanation of how to check for slow playback events and correct for them.

Forcing Playback of Every Frame

Some applications need to display every frame in a movie; for example,
visualization applications where the user is looking for data patterns or
trends must show every frame to ensure accuracy. The audio track is ignored
(the movie plays silently) when you play every frame. In addition, the slow
playback threshold is ignored when you play every frame, and you won’t
receive MV_SLOW_PLAYBACK events either.

To force the Movie Library to show every frame in sequence as fast as it can,
call mvSetPlayEveryFrame(), passing in a value of DM_TRUE. Its function
prototype is:

void mvSetPlayEveryFrame(MVid movieid, DMboolean sync)

where:

sync determines whether the Movie Library should play every
frame or drop frames to stay in pace with the movie’s time
base: DM_TRUE plays every frame; DM_FALSE (default)
drops frames when it becomes necessary in order to
maintain a desired frame rate

662

Chapter 30: Playing Movies with the Movie Library

To find out if playback is set to play every frame, call
mvGetPlayEveryFrame(). Its function prototype is:

DMboolean mvGetPlayEveryFrame(MVid movieid)

Integrating Movies with IRIS GL Graphics

You can use the Movie Library with the IRIS Graphics Library to combine
the display of movies and graphics. You can draw IRIS GL graphics in the
same window where a movie is playing, or you can have a movie playing in
one window while drawing graphics in another window on the same screen.

The Movie Library has two different methods for combining movies and
graphics—which method you use depends on whether the graphics overlap
any portion of the movie frame. In one method, the display of movie frames
is automatically controlled for you, in the other method, you control the
display of movie frames manually from within your application. Frame
display is a global setting that applies to all currently open movies.

Controlling the Frame Display Automatically

If the graphics you want to draw using the IRIS GL do not overlap any
portion of the movie display, for example, if your application displays
movies and graphics side-by-side in one window or in separate windows,
you can use the mvGrabIrisGL() and mvReleaseIrisGL() routines. These
routines essentially put movie rendering on hold while the application
performs IRIS GL rendering. Their function prototypes are:

void mvGrabIrisGL (void)

void mvReleaseIrisGL (void)

Use mvGrabIrisGL() and mvReleaseIrisGL() to surround the block of code
that performs the IRIS GL drawing. Call mvGrabIrisGL() at the beginning
of a block of IRIS GL calls, then call mvReleaseIrisGL() when the IRIS GL
drawing is completed.

Example 30-6 is an excerpt from moviescreenGl.c, in /usr/people/4Dgifts/
examples/dmedia/movie/moviescreen, that shows how to use mvGrabIrisGL()
and mvReleaseIrisGL(). It uses the IRIS GL bgnpolygon() and

Integrating Movies with IRIS GL Graphics

663

endpolygon() routines to draw a box that covers up the distracting visual
effects caused by moving the movie around the screen. See “Creating a
Movie Screensaver Application” in Chapter 32 for more details about the
moviescreen program.

Example 30-6 Using mvGrabIrisGL() and mvReleaseIrisGL()

void undrawSaverPicture()
{
 int width;
 int height;
 MVid imageTrack;
 MVid theMovie = getMovieID();

 if (isFullScreen())
 return;

 /*
 * Determine current size of movie on display
 */

 mvFindTrackByMedium(theMovie, DM_IMAGE, &imageTrack);
 width = mvGetImageWidth(imageTrack);
 height = mvGetImageHeight(imageTrack);
 width *= getZoom();
 height *= getZoom();
 /*
 * Draw two black boxes to erase trailing garbage as
 * movie dances around the display.
 */

 mvGrabIrisGL();
 bgnpolygon();
 {
 short vctr[2];
 if (dx > 0) {

 vctr[0] = offsetx - 1;
 vctr[1] = offsety - 1;
 v2s(vctr);

 vctr[0] = offsetx +dx;
 vctr[1] = offsety - 1;
 v2s(vctr);

664

Chapter 30: Playing Movies with the Movie Library

 vctr[0] = offsetx + dx;
 vctr[1] = offsety + height + 1;
 v2s(vctr);

 vctr[0] = offsetx - 1;
 vctr[1] = offsety + height + 1;
 v2s(vctr);

 } else {

 vctr[0] = offsetx + width;
 vctr[1] = offsety - 1;
 v2s(vctr);

 vctr[0] = offsetx + width + dx + 1;
 vctr[1] = offsety - 1;
 v2s(vctr);

 vctr[0] = offsetx + width + dx + 1;
 vctr[1] = offsety + height + 1;
 v2s(vctr);

 vctr[0] = offsetx + width;
 vctr[1] = offsety + height + 1;
 v2s(vctr);
 }
 if (dy > 0) {

 vctr[0] = offsetx - 1;
 vctr[1] = offsety - 1;
 v2s(vctr);

 vctr[0] = offsetx + width + 1;
 vctr[1] = offsety - 1;
 v2s(vctr);

 vctr[0] = offsetx + width + 1;
 vctr[1] = offsety + dy;
 v2s(vctr);

 vctr[0] = offsetx - 1;
 vctr[1] = offsety + dy;
 v2s(vctr);

Integrating Movies with IRIS GL Graphics

665

 } else {

 vctr[0] = offsetx - 1;
 vctr[1] = offsety + height;
 v2s(vctr);

 vctr[0] = offsetx + width + 1;
 vctr[1] = offsety + height;
 v2s(vctr);

 vctr[0] = offsetx + width + 1;
 vctr[1] = offsety + height + dy + 1;
 v2s(vctr);

 vctr[0] = offsetx - 1;
 vctr[1] = offsety + height + dy + 1;
 v2s(vctr);
 }
 }
 endpolygon();

 mvReleaseIrisGL();
}

Controlling the Frame Display Manually

The disadvantage of the automatic mvGrabIrisGL() – mvReleaseIrisGL()
method is that you can’t really synchronize the graphics and movie displays,
so some things might not display exactly when you want them to.

This section describes a method that lets you disable the Movie Library’s
automatic display so that your application can control the display of movie
frames. When you have explicit control over the display of movie frames,
you can tell the Movie Library exactly when to show a frame. This technique
lets you draw IRIS GL graphics on top of the movie frame.

To have your application (rather than the Movie Library) control the display
of movie frames, call mvSetFrameDisplay(DM_FALSE). Its function
prototype is:

void mvSetFrameDisplay (DMboolean showframes)

666

Chapter 30: Playing Movies with the Movie Library

where:

showframes is either DM_TRUE, to allow automatic frame display, or
DM_FALSE, to disable automatic frame display for all open
movies

To retrieve the current frame display setting, call mvGetFrameDisplay(). Its
function prototype is:

DMboolean mvGetFrameDisplay (void)

When you disable the frame display, you have to tell the Movie Library
when to display a frame by calling mvShowCurrentFrame() for every frame
that you want to display. Its function prototype is:

void mvShowCurrentFrame (MVid movieid)

To play a movie with manual frame display, you should include
MV_EVENT_FRAME events in your event mask and call
mvShowCurrentFrame() in response to those events.

Another way to use mvShowCurrentFrame() is to repaint a movie frame in
response to an expose event from the window manager. See “Handling X
Window Events” on page 676 for more details.

You must use one of the two methods described in this section if you want
to draw with the IRIS GL while using the Movie Library. The IRIS GL and
the Movie Library use separate threads of execution, and the routines
discussed in this section supply internal synchronization between the
processes. The results of any other method of combining graphics and
movies are unpredictable. See Appendix E, “Using Graphics and Share
Groups,” in the Graphics Library Programming Guide for more information.

Hint: Advanced programmers might want to turn off the frame display in
order to use a double-buffered RGB window. In this case, you have to create
a window with the graphics configuration that you want, and you must call
swapbuffers() from the GL and mvShowCurrentFrame() from the Movie
Library yourself for every frame. This method is only for special cases; it is
not the recommended way to combine graphics and movies.

Integrating Movies with IRIS GL Graphics

667

Example 30-7 is an excerpt from moviescreenEvents.c, in /usr/people/4Dgifts/
examples/dmedia/movie/moviescreen, that uses mvSetFrameDisplay() to
temporarily disable movie display while initialization routines are carried
out.

Example 30-7 Initializing Movie Playback

static void initSaverMovie()
{
 MVid newMovie;
 char *movieName;

 movieName = pickMovieAtRandom();

 if (mvOpenFile(movieName, O_RDONLY, &newMovie) ==
 DM_FAILURE) {
 printf("%s: Could not open movie %s\n",
 getProgramName(),movieName);
 exit(EXIT_FAILURE);
 }
 setMovieID(newMovie);

 /*
 * Disable movie display temporarily,
 * to avoid visual glitches.
 */

 mvSetFrameDisplay(DM_FALSE);

 setupMovieWindow(newMovie);
 setPlaybackLoopmode(newMovie);
 setVolumeLevel(newMovie);

 /*
 * play the movie
 */

 mvSetCurrentFrame(newMovie, 0);
 mvSetFrameDisplay(DM_TRUE);
 mvPlay(newMovie);
}

668

Chapter 30: Playing Movies with the Movie Library

Handling Events

If you’ve used the select() or poll() system calls, or X event handling, the
Movie Library event handling routines will be familiar to you. Even if your
application has no user interface, it is recommended that you implement
movie event handling because it is the best way to find out about system or
I/O errors that occur while a movie is playing.

The Movie Library has an event queue, similar to the X event queue, that
stores movie events such as playing a frame, stopping playback, and errors.
One queue stores movie events for all currently open movies by storing the
identifier of the movie instance responsible for an event as part of the event.

The Movie Library event queue is separate from the X event queue; so if your
application handles X events as well as movie events, you’ll probably want
to create two separate functions, one for handling X events and one for
handling movie events, and call them both from main().

To add movie event handling to your application, follow these basic steps:

1. Choose which movie events you want to process by creating an event
mask, as described in “Preparing an Event Mask” on page 669.

2. Get the file descriptor associated with the movie event queue, as
described in “Getting a File Descriptor for the Movie Event Queue” on
page 670.

3. Use one of the following methods to listen for movie and X11 events.

■ If you are using Xlib, prepare a file descriptor set that contains both
the Movie Library and X11 file descriptors using the FD_SET
macro, and then code a select() loop that listens for movie events
and X events, as described in “Preparing a File Descriptor Set” on
page 672.

■ If you are using Xt or IRIS IM, pass the Movie Library file
descriptor to the X toolkit using XtAppAddInput(3Xt). This call
associates an Xt callback function that you have written for your
application with the Movie Library file descriptor. You can then
process movie events inside this Xt callback, which gets called
whenever one or more events appear on the Movie Library event
queue.

4. As long as there are events on the queue, keep processing them.

Handling Events

669

These steps are described in detail in the sections that follow.

Preparing an Event Mask

An event mask specifies which events the application is interested in
processing. The event mask is a bitwise or of the events.

Table 30-1 lists and describes the Movie Library events.

To set an event mask, call mvSetSelectEvents(). Its function prototype is:

void mvSetSelectEvents (MVeventmask eventmask)

where:

eventmask is a bitwise OR of one or more of the events in Table 30-1

For example, to receive all events, use the following:

mvSetSelectEvents(MV_EVENT_MASK_FRAME | MV_EVENT_MASK_STOP |
 MV_EVENT_MASK_ERROR | MV_EVENT_MASK_SLOW_PLAY)

To retrieve the current setting of the event mask, call mvGetSelectEvents().
Its function prototype is:

MVeventmask mvGetSelectEvents (void)

Movie events are contained in an MVevent structure, which is a union of all
of the Movie Library event structures. Each event structure contains fields

Table 30-1 Movie Library Events

Event Description

MV_EVENT_FRAME A frame has been played.

MV_EVENT_STOP The movie has stopped playing.

MV_EVENT_ERROR An error has occurred during playback.

MV_EVENT_SLOW_PLAY The last second of playback measured by the Movie
Library was slower than the threshold set in
mvSetSlowThreshold().

670

Chapter 30: Playing Movies with the Movie Library

that store information about the event. Some events have additional fields
containing event-specific information.

Table 30-2 lists and describes the fields in the movie events.

See “Handling Movie Events” on page 672 for an explanation of how to
handle movie events, and see Example 30-9 on page 675 for a code fragment
that branches depending on the event type and then extracts information
from the event fields.

Getting a File Descriptor for the Movie Event Queue

The Movie Library provides a file descriptor that becomes active when you
can read events from the movie event queue. To get a file descriptor for the
movie event queue, call mvGetEventFD(). Its function prototype is:

DMstatus mvGetEventFD (int *fdreturn)

where:

fdreturn is a pointer into which the Movie Library event file
descriptor is returned

Table 30-2 Event Structure Fields

Type Field Description

MVeventtype type Type of event.

MVtime time X11-style millisecond timestamp indicating when the event
happened.

MVid id Movie instance that produced the event.

MVframe frame Current frame number, ranging from zero to one less frame
than the length of the movie’s image track.

int errcode Integer value that represents a Movie Library error code
that can be retrieved by calling mvGetErrno(). Applies to
MV_EVENT_ERROR events only.

int reason Integer value that indicates what caused the slow play
event. Applies to MV_SLOW_PLAYBACK events only and
is currently unused.

Handling Events

671

Creating the Event Loop

After you have set up the event mask and obtained a file descriptor for the
movie event queue, you can create the event loop. You’ll probably want to
define separate window and movie event handling functions and call them
from main().

Use one of the following methods to listen for movie and X11 events.

• If you are using Xlib, prepare a file descriptor set that contains both the
Movie Library and X11 file descriptors using the FD_SET macro, and
then code a select() loop that listens for movie events and X events, as
described in “Preparing a File Descriptor Set” on page 672.

• If you are using Xt or IRIS IM, pass the Movie Library file descriptor to
the X toolkit using XtAppAddInput(3Xt). This call associates an Xt
callback function that you have written for your application with the
Movie Library file descriptor. You can then process movie events inside
this Xt callback, which gets called whenever one or more events appear
on the Movie Library event queue.

672

Chapter 30: Playing Movies with the Movie Library

Handling Movie Events

If you are using Xt or IRIS IM, you’ll use the Movie Library routines for
handling movie events that are described in this section, but you’ll get the
events from the X11 queue, as described in “Handling X Window Events” on
page 676, so skip ahead to “Waiting for Movie Events” on page 673 in this
section to learn how to handle movie events.

If you are using Xlib, you need to create a loop that uses select() or poll() to
wait for Movie Library events using a file descriptor set (fd_set). The basic
structure of this loop is:

/* wait for libmovie events */
select(...);

/* process all libmovie events on queue before waiting again
*/
while (mvPendingEvents() != 0) {
 mvNextEvent(&event);
 switch(event) {
 /* ... */
 }
}

Preparing a File Descriptor Set

File descriptor sets provide a way for an application to wait for available
input from several files at once. The Movie Library event queue is separate
from the X11 event queue, so you must obtain the file descriptor for each
queue and put them both into a file descriptor set.

To get the file descriptor corresponding to the X11 event queue for a specified
display, use the Xlib ConnectionNumber(3X) macro.

After you have obtained file descriptors for the movie event queue and the
X11 event queue, put them into a file descriptor set using the FD_SET macro.

Handling Events

673

Example 30-8 shows how to prepare a file descriptor set.

Example 30-8 Preparing a File Descriptor Set

static DMstatus setupFDSet(Display *dpy, int *movieFD,
 int *xFD, fd_set *theFDSet)
{

 if (mvGetEventFD(movieFD) != DM_SUCCESS) {
 fprintf(stderr, "%s: Could not get movie event
FD.\n",
 programName);
 return DM_FAILURE;
 }

 *xFD = ConnectionNumber(dpy);

 FD_ZERO(theFDSet);
 FD_SET(*movieFD, theFDSet);
 FD_SET(*xFD, theFDSet);

 return DM_SUCCESS;
}

The structure of this code outline and the reasoning behind it are explained
in the sections that follow.

Waiting for Movie Events

When creating a movie event loop, it is important that you process all the
events on the queue to prevent it from stalling.

The Movie Library provides the mvPendingEvents() call to check the queue
for events, with which you can create a while loop. Its function prototype is:

int mvPendingEvents (void)

You must use the while statement to set up the loop properly; don’t use an
if statement.

When your application wakes up to handle movie events, there may be more
than one event in the queue. It is critical that you process all the events in the
queue before waiting for more events. As long as events are pending, your
application should keep getting events from the queue until it is empty.

674

Chapter 30: Playing Movies with the Movie Library

Getting Movie Events from the Queue

To extract the next event from the queue, call mvNextEvent(). Its function
prototype is:

void mvNextEvent (MVevent* eventreturn)

where:

eventreturn is a pointer into which the next event is returned

You can determine which event is waiting next in the queue, without
popping it off the queue, by “peeking” at the next event. To peek at the next
event, call mvPeekEvent(). Its function prototype is:

void mvPeekEvent (MVevent* eventreturn)

where:

eventreturn is a pointer into which the next event is returned without
being removed from the queue

Examining Movie Events

You can query the fields in the event structure to get specific information
about an event, such as the event type. After you know what type of event it
is, you can use the structure definitions for the specific event types to extract
further information, such as when or why the event occurred.

The first field of every event is a type field, which lets you query for the event
type without knowing it in advance. After determining the event type, you
can examine the fields for each type of event to extract specific information
about the event. The typical way to code this is with a switch statement.

Example 30-9 is an excerpt from manymovieEvents.c, in /usr/people/4Dgifts/
examples/dmedia/movie/manymovie, that uses a movie event loop in which a
switch statement is used to examine the event type, then extracts event-
specific information such as the frame number that caused the event
(event.mvframe.id), from the fields in the event structure. (The print statement
under MV_EVENT_FRAME is commented out in the sample program.)

Handling Events

675

Example 30-9 Handling Movie Frame, Stop, and Error Events

static DMboolean handleMovieEvents()
{
 MVevent event;

 while (mvPendingEvents() != 0) {
 mvNextEvent(&event);
 switch (event.type) {
 case MV_EVENT_FRAME: /* a frame played */

 /* Uncomment and recompile to see which frames are played.
 *
 *
 * printf("%s: Played frame %d of movie %d.\n",
 * getProgramName(), event.mvframe.frame,
 * event.mvframe.id);
 */

 break;

 case MV_EVENT_STOP: /* end of movie */
 printf("%s: Playback of movie %d stopped.\n",
 getProgramName(), event.mvstop.id);
 break;

 case MV_EVENT_ERROR: /* error */
 fprintf(stderr, "%s: Error during playback: %s.\n",
 getProgramName(), mvGetErrorStr(mvGetErrno()));
 return DM_FALSE;
 break;
 }
 }
 return DM_TRUE;
}

676

Chapter 30: Playing Movies with the Movie Library

Handling X Window Events

The method for handling the X events depends on whether you use Xlib or
an X toolkit:

• If you are using Xt or IRIS IM, you need to write Xt callback functions
for the GLXMDraw widget that get called when it is resized and when
it needs repainting. The X toolkit invokes the Xt callback procedures in
your application whenever one or more events appear on the X11 event
queue. Call XtAppAddInput(3Xt) to add the Movie Library file
descriptor to the X11 file descriptors that invoke your Xt callback
function.

• If you are using Xlib, you need to get the file descriptor corresponding
to the X11 event queue for a specified display, by calling the Xlib
ConnectionNumber(3X) macro. Put this file descriptor into a file
descriptor set along with the Movie Library file descriptor and wait on
both of them using select(), as described in “Handling Movie Events”
on page 672.

The two window events of greatest concern to Movie Library programmers
are expose and resize events.

If a window containing a movie gets exposed, you must repaint the window;
if it gets resized, you must resize and repaint the window.

To resize the window identified by win on the display dpy, call
mvResizeWindow(). Its function prototype is:

void mvResizeWindow (Display* dpy, Window win)

To repaint a window, call mvShowCurrentFrame(). Its function prototype is:

void mvShowCurrentFrame (MVid movieid)

Handling Events

677

Example 30-10 is an excerpt from simplemovie.c, in /usr/people/4Dgifts/
examples/dmedia/movie/misc, that shows how to handle window events from
the X11 queue, in particular, expose and resize events. See “Creating a
Simple Keyboard Interface for Playing Movies” in Chapter 32 for more
information about simplemovie.c.

Example 30-10 Handling X11 Expose and Resize Window Events

static DMboolean handleXEvents(MVid theMovie, Display *dpy, Window win)
{
 XEvent event;

 while (XPending(dpy) != 0) {

 XNextEvent(dpy, &event);

 switch (event.type) {
 case Expose: /* repaint display */
 mvShowCurrentFrame(theMovie);
 break;

 case ConfigureNotify: /* window was resized */
 {
 XWindowAttributes winAttrs;
 int actual_width, actual_height;

 mvResizeWindow(dpy, win);

 XGetWindowAttributes(dpy, win, &winAttrs);

 mvQueryViewSize(theMovie, winAttrs.width,
 winAttrs.height, DM_TRUE,
 &actual_width, &actual_height);
 printf("%s: actual width = %d, height = %d\n",
 programName, actual_width, actual_height);

 mvSetViewSize(theMovie, winAttrs.width,
 winAttrs.height, DM_TRUE);
 }
 break;
…
 }
 }
 return DM_TRUE;
}

678

Chapter 30: Playing Movies with the Movie Library

Checking and Correcting for Slow Playback

The Movie Library checks the playback speed once per second and sends a
slow play event to the movie event queue if it finds that the last second of
playback was too slow.

To check for slow playback, you must:

• set a minimum playback speed threshold

• set an event mask to request MV_SLOW_PLAYBACK events

To check playback speed more frequently, you can choose to receive frame
events and compute the difference between the two timestamps, which is the
real time in milliseconds that has elapsed between the two events.

Playback may be slow because:

• the I/O bandwidth from a hardware device is not high enough

• the filesystem is fragmented

• the system CPU cannot decompress data fast enough

• the movie is unoptimized (see mvOptimize(3mv))

This chapter explains how to use the
Movie Library to create, edit, and
play QuickTime movies. It also
describes the QuickTime Compressor
LIbrary, which gives Movie Library
applications access to QuickTime
compression schemes.

Using the Movie Library with
QuickTime Movies

Chapter 31

681

Chapter 31

31. Using the Movie Library with QuickTime
Movies

This chapter describes how to create, edit, and play uncompressed
QuickTime movies on a Silicon Graphics computer using the Movie Library.
Silicon Graphics also provides a separate option, the QuickTime
Compressor Library, under license from Apple Computer, Inc. for use with
the Movie Library, that supports Apple Animation and Apple Video
compression for QuickTime movies.

Note: To use the Apple Animation and Apple Video compression discussed
in this chapter, you must purchase and install the Silicon Graphics
QuickTime Compressor Library.

Note: Apple QuickTime software for the Macintosh that is mentioned in this
chapter is available from Apple Computer, Inc. in the Apple QuickTime
Starter Kit.

QuickTime Basics

This section presents basic concepts for using QuickTime movies with the
Movie Library.

QuickTime is an Apple Macintosh system software extension that can be
installed in the Macintosh to extend its capabilities so as to allow time-based
(audio, video, and animation) data for multimedia applications.

QuickTime movies store and play picture tracks and soundtracks
independently of each other, analogous to the way the Movie Library stores
separate image and audio tracks. You can’t work with pictures and sound as
separate entities using the QuickTime Starter Kit utilities on the Macintosh,
but you can use the Silicon Graphics Movie Library to work with the
individual image and audio tracks in a QuickTime movie.

682

Chapter 31: Using the Movie Library with QuickTime Movies

QuickTime Sound

QuickTime movie soundtracks are playable on both Macintosh and Silicon
Graphics computers, but each has its own unique audio data format, so
audio playback is most efficient when using the native data format and rate
for the computer on which the movie is playing.

When playing a QuickTime movie soundtrack on a Silicon Graphics
computer, the Movie Library chooses the nearest appropriate audio sample
rate during playback and file format conversion of nonnative movies, so no
performance penalty is incurred for rate conversion. This may change the
pitch of some sounds slightly, but usually not enough to cause an audible
difference. The Movie Library supports 8-bit and 16-bit uncompressed audio
in either two’s complement or unsigned format. The native rates for Silicon
Graphics audio hardware are 8000, 11025, 16000, 22050, 32000, 44100, and
48000 Hz.

When playing a QuickTime movie soundtrack on a Macintosh, the
Macintosh QuickTime software converts nonnative audio to the native
Macintosh 8-bit format and performs the necessary rate conversions for
playing the nonnative soundtrack; but if you use the Movie Library to write
audio data to a QuickTime movie that is intended for playback only on the
Macintosh, use a format and sampling rate suitable for the Macintosh.
QuickTime supports the AIFF sound file format and both signed and
unsigned audio, at any rate up to 65 KHz. The native format for Macintosh
audio hardware is 8-bit, unsigned audio at either 11127 Hz or 22254 Hz.

QuickTime Compression

The Macintosh QuickTime system software extension includes five
compressors, two of which are compatible with the Movie Library:

• Apple None (uncompressed)

• Apple Photo (JPEG standard)

and two of which are compatible with the Movie Library only when you
purchase and install the Silicon Graphics QuickTime Compressor Library:

• Apple Animation

• Apple Video

QuickTime Basics

683

You can use a QuickTime movie saved with either Apple Animation or
Apple Video compression with the Movie Library if you have purchased
and installed the Silicon Graphics QuickTime Compressor Library;
otherwise, you must save the movie without compression or use JPEG.

When creating QuickTime movies on a Macintosh for use with the Movie
Library, you can select the compression settings using one of the following
methods:

1. Use the Macintosh QuickTime Movie Recorder, which gives you two
options for compressing a movie:

■ accepting the default setting, “Use Simple Compression,” which
automatically applies Apple Video compression when you save the
movie

■ selecting an appropriate type of compression from the
Compression Settings dialog box and then choosing “Compress”
from the Movie menu before saving the movie

2. Use the Macintosh QuickTime Movie Converter to change compression
settings for existing movies

Compression settings and the applications for which each setting is best
suited are summarized in the sections that follow.

Apple None

Apple None creates an uncompressed movie and can be used to change the
number of colors in the images and/or the recording quality. Both the
number of colors and the recording quality can affect the size of the movie.

To create an uncompressed QuickTime movie on the Macintosh, click on the
“Apple None” choice in the QuickTime Compression Settings dialog box.

Note: Because the Macintosh compresses QuickTime movies by default, you
must set the compression to Apple None and save the movie again to create
an uncompressed movie.

684

Chapter 31: Using the Movie Library with QuickTime Movies

Apple Photo

Apple Photo uses the JPEG standard. The Movie Library supports the JPEG
standard through the Compression Library. JPEG is best suited for
compressing individual still frames, because decompressing a JPEG image
can be a time-consuming task, especially if the decompression is performed
in software. JPEG is typically used to compress each still frame during the
writing or editing process, with the intention to apply another type of
compression to the final version of the movie or to leave it uncompressed.
JPEG works better on high-resolution continuous-tone images, such as
photographs, than on crisp-edged, high-contrast images like line drawings.

Apple Animation

Apple Animation uses a lossy run-length encoding (RLE) method, which
compresses images by storing a color and its run-length (the number of
pixels of that color) every time the color changes. Apple Animation is not a
true lossless RLE method because it stores colors that are close to the same
value as one color. This method is most appropriate for compressing images
such as line drawings that have highly contrasting color transitions and few
color variations.

Apple Video

Apple Video uses a method developed by Apple Computer whose objective
is to decompress and display movie frames as fast as possible. It compresses
individual frames and works better on movies recorded from a video source
than on animations.

Note: The Apple Video compressor has a restriction that the image width
and height be a multiple of 4. Before transferring a movie from a Macintosh
to a Silicon Graphics computer, make sure that the image size is a multiple
of 4.

QuickTime Frame Differencing (Keyframes)

QuickTime provides a feature called frame differencing, which allows you to
save only the changes from one movie frame to the next, rather than store
each individual frame for the entire movie. When frame differencing is used,

Movie Library QuickTime Compatibility Requirements

685

the entire contents of every nth frame are compressed and stored in a
keyframe, while only the differences from frame to frame are stored for the
frames between keyframes. (On the Macintosh, you enable frame
differencing by clicking on the “Key frame every n frames” box in the
Motion area of the Compression Settings dialog box.)

Reducing the time between keyframes increases the performance when
scrubbing to a particular frame (because of the increased likelihood of
landing on a keyframe) but increases the size of the movie.

You can open and play keyframe movies with the Movie Library. You can’t
use the mvPasteFrames() editing function to paste frames into the middle of
a keyframe movie because the Movie Library does not support the
recomputing of frame differencing. For the same reason, you cannot delete
frames from a keyframe movie. To create a movie using Apple Animation or
Apple Video, you must use mvInsertFrames() to add the frames in order
from beginning to end.

Movie Library QuickTime Compatibility Requirements

QuickTime movies must be single-fork and self-contained in order to be
compatible between Apple Macintosh and Silicon Graphics computers. This
section describes how to make QuickTime movies that meet these
requirements.

Making a Single-fork Movie

Files on an Apple computer are double-fork, containing both a data fork and
a resource fork. Only Apple computers use the double-fork file system; the
file system on Silicon Graphics computers does not use double-fork files.

Macintosh computers convert a double-fork file into a single-fork file by
writing the resource fork into the data fork. You must perform this
conversion on the Macintosh for any movie files that you plan on using with
the Movie Library before transferring them to the Silicon Graphics
computer.

686

Chapter 31: Using the Movie Library with QuickTime Movies

To make a single-fork movie on the Macintosh:

1. Click on the “Playable on non-Apple computers” box in the QuickTime
Movie Converter Save dialog box (see the QuickTime Starter Kit User’s
Guide for details).

2. Equivalently, if you are writing an application on a Macintosh using the
Apple QuickTime developer kit, call the Movie Toolbox
PutMovieIntoDataFork function in that application to write the movie
into a single-fork file before using it in a Movie Library application (see
Inside Macintosh: QuickTime for details).

Making a Self-contained Movie

Apple QuickTime movie utilities offer two ways of saving a QuickTime
movie file on the Macintosh:

• Save normally

• Make movie self-contained

A QuickTime movie that has been saved on the Macintosh using the “Save
normally” feature contains movie synchronization information, such as the
location and sequence of frames in the movie, but does not itself contain the
actual movie data. The movie data could have been stored in one or more
separate files on the disk, on CD-ROM, or on a remote computer accessible
from the network. Such a movie is said to have dependencies, because it
depends on being able to locate and use other files that make up the movie.
You cannot use this type of movie with the Movie Library.

Only self-contained (also called “flattened”) QuickTime movie files are
compatible with the Movie Library. Self-contained QuickTime movies have
both the synchronization information and the movie data in one file.

You can use the Macintosh Movie Info window to determine whether an
existing movie is self-contained. If the movie is self-contained, nothing will
appear in the box under “Uses data from one other file.” If anything does
appear in this box, you need to convert the movie to a self-contained file.

Movie Library QuickTime Compatibility Requirements

687

You must convert any movie files that you plan on using with the Movie
Library to self-contained movies on the Macintosh before transferring them
to the Silicon Graphics computer, using one of the following methods:

1. Click on “Make movie self-contained” from the Save dialog box that
appears when you select “Save” or “Save as” from the Macintosh File
menu of the QuickTime Movie Player or Movie Recorder. Because the
Macintosh default is “Save normally,” you must specify “Make movie
self-contained” when saving any QuickTime movie that you plan on
using with the Movie Library.

2. To convert an existing QuickTime movie, use the Macintosh QuickTime
Movie Converter to open the movie, select “Make movie self-
contained,” and then save the movie.

3. Equivalently, if you are writing a Macintosh application using the
Apple QuickTime developer kit, call the Movie Toolbox
FlattenMovieData function in that application to make the movie file
self-contained before using it in a Movie Library application.

Transferring Files Between Macintosh and Silicon
Graphics Computers

You can transfer QuickTime movies between an Apple Macintosh computer
and a Silicon Graphics computer by using a floppy disk or by using a
network file transfer application.

Transferring Files from Floppy Disk

If you have an Indigo or an Indy with a floptical drive, you can read files
from a floppy disk that was formatted on a Macintosh computer.

Transferring Files Over a Network

To transfer QuickTime movies between an Apple Macintosh computer and
a Silicon Graphics computer over a network, use either ftp or the Apple
Computer AppleShare network software. When using ftp, specify “binary”
to ensure complete data transfer.

688

Chapter 31: Using the Movie Library with QuickTime Movies

Adding QuickTime Capability to Your Movie Library Application

Once you know how to program a Movie Library application, adding
QuickTime capability is as easy as adding two lines to your code. Only three
steps are needed to create an application that can use QuickTime movies (as
long as they meet the compatibility criteria):

1. including qt.h, the QuickTime header file

2. calling mvInitQuickTime() to initialize the Movie Library for
QuickTime movies

This step also installs the QuickTime codecs in the Movie Library if you
have purchased the QuickTime Compressor Library.

3. linking with the QuickTime Compressor Library by putting -lqt before -
lmovie on the link line

QuickTime versions of many of the Movie Library sample programs are
provided in the createmovieqt and miscqt directories under /usr/people/4Dgifts/
examples/dmedia/movie.

Using the QuickTime Compressor Library

If you have purchased and installed the Silicon Graphics QuickTime
Compressor Library, codecs for Apple Video and Apple Animation are
installed into the Movie Library and are available for your application to use
on either QuickTime or Silicon Graphics movies.

Creating a QuickTime Movie

You can use the Movie Library to create a QuickTime movie that is playable
on both Silicon Graphics and Apple computers. Use the same steps as
creating a Silicon Graphics movie, but specify QuickTime format, as in the
createmovieqt.c sample program.

Adding QuickTime Capability to Your Movie Library Application

689

Example 31-1 highlights the changes that were made to the createmovie
sample program to turn it into createmovieqt, which is an identical program
that offers QuickTime compatibility. These excerpts are from
createmovieqtArgs.c++ in the /usr/people/4Dgifts/examples/dmedia/movie/
createmovieqt directory.

Example 31-1 Creating QuickTime Movies with the Movie Library

#include "createmovieArgs.h"
#include <movie.h>
#include <qt.h>
#include <audiofile.h>
#include <getopt.h>
#include <string.h>
#include <assert.h>
#include <il/ilImage.h>
#include <il/ilGenericImgFile.h>

typedef enum _compScheme
{
 unknownComp,
 none,
 mvc1,
 mvc2,
 rle,
 jpeg,
 rgb8,
 qtvideo,
 qtanim
} compScheme;

…
static compScheme compressionScheme = qtvideo;
…
static MVfileformat movieFormat = MV_FORMAT_QT;
…
static void setMovieFormat(char *formatArg);
…

static DMboolean badCompressionScheme(void);

…

Include QuickTime header file

Add QuickTime compressors

Use QuickTime Video compressor

Use QuickTime movie format

Add function to set movie format

Add function to check
compression compatibility

690

Chapter 31: Using the Movie Library with QuickTime Movies

while((ch = getopt(argc, argv, "f:c:l:r:s:p:o:")) != -1)
{
 switch (ch) {
 case ’f’:
 setMovieFormat(optarg);
 break;
…

 if (badCompressionScheme()) {
 fprintf(stderr, "%s: Compression %s"
 "unavailable for QuickTime.\n",
 programName, getCompressionScheme());
 exit(EXIT_FAILURE);
 }
…

 mvInitQuickTime();

…

static void usage(void)
{

…
fprintf(stderr, "[-f format] [-s xsize,ysize]"

 "[-o outMovie] \n");
fprintf(stderr, "[-p paramType,userParam,userParamVal]"

 " file …\n");
fprintf(stderr, "\n");
fprintf(stderr, "\"compression\" = none, mvc1, mvc2,"

 " rle, jpeg, ");
fprintf(stderr, "8rgb, qtvideo, or qtanim.\n");
fprintf(stderr, "Default compression scheme qtvideo.\n");
fprintf(stderr, "\"format\" = sgi or qt,"

 " the format of the new movie.");
fprintf(stderr, "The default is qt.\n");
…

}

…

Add movie format to arguments

Check whether selected compression
scheme is compatible with file format

Initialize QuickTime Library

Add QuickTime info to usage

Adding QuickTime Capability to Your Movie Library Application

691

static void setMovieFormat(char *formatArg)
{
 if ((strcmp(formatArg, "sgi") == 0) ||
 (strcmp(formatArg, "SGI") == 0)) {
 movieFormat = MV_FORMAT_SGI_3;
 }
 else if ((strcmp(formatArg, "qt") == 0) ||
 (strcmp(formatArg, "QT") == 0)) {
 movieFormat = MV_FORMAT_QT;
 }
 else {
 fprintf(stderr, "%s: Unknown movie format %s.\n",
 programName, formatArg);
 usage();
 }
}
…

static DMboolean badCompressionScheme(void)
{
 if ((getMovieFormat() == MV_FORMAT_QT) &&
 ((compressionScheme != none) &&
 (compressionScheme != jpeg) &&
 (compressionScheme != qtanim) &&
 (compressionScheme != qtvideo))) {
 return(DM_TRUE);
 }
 return(DM_FALSE);
}
…

static void setCompressionScheme(char *compressArg)
{
 if (strcmp(compressArg, "none") == 0) {
 compressionScheme = none;
 }
 else if (strcmp(compressArg, "mvc1") == 0) {
 compressionScheme = mvc1;
 }
 else if (strcmp(compressArg, "mvc2") == 0) {
 compressionScheme = mvc2;
 }
 else if (strcmp(compressArg, "rle") == 0) {
 compressionScheme = rle;
 }

Add function to set movie format

Add function to check
compression compatibility

Add function to set compression

692

Chapter 31: Using the Movie Library with QuickTime Movies

 else if (strcmp(compressArg, "jpeg") == 0) {
 compressionScheme = jpeg;
 }
 else if (strcmp(compressArg, "8rgb") == 0) {
 compressionScheme = rgb8;
 }
 else if (strcmp(compressArg, "qtvideo") == 0) {
 compressionScheme = qtvideo;
 }
 else if (strcmp(compressArg, "qtanim") == 0) {
 compressionScheme = qtanim;
 }
 else {
 fprintf(stderr, "%s: Unknown compress scheme %s.\n",
 programName, compressArg);
 usage();
 }
}
…

schar *getCompressionScheme(void)
{
 switch(compressionScheme) {
 case none:
 return(DM_IMAGE_UNCOMPRESSED);
 case mvc1:
 return(DM_IMAGE_MVC1);
 case mvc2:
 return(DM_IMAGE_MVC2);
 case jpeg:
 return(DM_IMAGE_JPEG);
 case rle:
 return(DM_IMAGE_RLE);
 case rgb8:
 return(DM_IMAGE_UNCOMPRESSED);
 case qtvideo:
 return(DM_IMAGE_QT_VIDEO);
 case qtanim:
 return(DM_IMAGE_QT_ANIM);
 case unknownComp:
 assert(DM_FALSE);
 break;
 }
}

Add function to get compression

Adding QuickTime Capability to Your Movie Library Application

693

Reading Existing QuickTime Movies

The Movie Library can read uncompressed QuickTime movies in 16- and 32-
bit depths, which correspond to the “Thousands” and “Millions” of colors
choices in the QuickTime compression settings on the Macintosh.

To open an uncompressed QuickTime movie, call mvOpenFile().

To read the data, call mvReadFrames(), which puts the image data into your
buffer.

Converting QuickTime Image Data to Silicon Graphics Image Format

If you’re working with an uncompressed QuickTime movie, you need to
convert the QuickTime picture data to a Silicon Graphics image data format
such as RGBX.

You can then invert it and transform it into RGBX, as shown in Example 31-2.
Example 31-2 contains a listing of createmovieConvert.c, which is located in
the /usr/people/4Dgifts/examples/dmedia/movie/createmovieqt directory.

694

Chapter 31: Using the Movie Library with QuickTime Movies

Example 31-2 Converting QuickTime Picture Data to RGBX Format

/***
 *
 * File: createmovieConvert.c
 *
 * Description: Part of createmovie. Used only in conjunction with the
 * SGI QuickTime Library. Code for converting between
 * QuickTime and SGI rgb image data.
 *
 ***/

#include <sys/types.h>
#include "createmovieConvert.h"

/*
 * Forward declarations for functions local to this module.
 */

static void InvertImage32(void* buffer, int width, int height);
static void InvertImage16(void* buffer, int width, int height);

/********
 *
 * Apple16ToRGBX
 *
 * 16-bit images are stored with 5 bits each of red, green, and blue.
 * The bit layout is:
 *
 * XRRRRRGG GGGBBBBB
 *
 * The bit layout for SGI 32-bit RGBX images is:
 *
 * XXXXXXXX BBBBBBBB GGGGGGGG RRRRRRRR
 *
 * Apple stores images from top to bottom, while SGI goes from bottom to top.
 *
 ********/

Adding QuickTime Capability to Your Movie Library Application

695

void Apple16ToRGBX(int width, int height, void* from, void* to)
{
 static unsigned char Apple16Table[32];

 unsigned short* src = (unsigned short*) from;
 __uint32_t* dst = (__uint32_t*) to;
 size_t size = ((size_t) width) * ((size_t) height);
 size_t i;

 for (i = 0; i < 32; i++) {
 Apple16Table[i] = ((i << 3) | (i >> 2));
 }

 for (i = 0; i < size; i++) {
 unsigned short bits = src[i];
 unsigned char red = Apple16Table[((0x1F << 10) & bits) >> 10];
 unsigned char green = Apple16Table[((0x1F << 5) & bits) >> 5];
 unsigned char blue = Apple16Table[((0x1F << 0) & bits) >> 0];
 dst[i] = (blue << 16) | (green << 8) | (red << 0);
 }

 InvertImage32(to, width, height);
}

/********
 * RGBXToApple16
 ********/

void RGBXToApple16(int width, int height, void* from, void* to)
{
 __uint32_t* src = (__uint32_t*) from;
 unsigned short* dst = (unsigned short*) to;
 size_t size = ((size_t) width) * ((size_t) height);
 size_t i;

 for (i = 0; i < size; i++) {
 __uint32_t bits = src[i];
 unsigned char red = ((0x1F << 3) & bits) >> 3;
 unsigned char green = ((0x1F << 11) & bits) >> 11;
 unsigned char blue = ((0x1F << 19) & bits) >> 19;
 dst[i] = (blue << 0) | (green << 5) | (red << 10);
 }

 InvertImage16(to, width, height);
}

696

Chapter 31: Using the Movie Library with QuickTime Movies

/********
 *
 * Apple32ToRGBX
 *
 * 32-bit images are stored with 8 bits each of red, green, and blue.
 * The bit layout is:
 *
 * XXXXXXXX RRRRRRRR GGGGGGGG BBBBBBBB
 *
 * The bit layout for SGI 32-bit RGBX images is:
 *
 * XXXXXXXX BBBBBBBB GGGGGGGG RRRRRRRR
 *
 * Apple stores images from top to bottom, while SGI goes from bottom to top.
 *
 ********/

void Apple32ToRGBX(int width, int height, void* from, void* to)
{
 __uint32_t* src = (__uint32_t*) from;
 __uint32_t* dst = (__uint32_t*) to;
 size_t size = ((size_t) width) * ((size_t) height);
 size_t i;

 for (i = 0; i < size; i++) {
 __uint32_t bits = src[i];
 dst[i] = ((bits & (0xFF << 16)) >> 16) |
 ((bits & (0xFF << 8)) >> 0) |
 ((bits & (0xFF << 0)) << 16);
 }

 InvertImage32(to, width, height);
}

Adding QuickTime Capability to Your Movie Library Application

697

/********
 * RGBXToApple32
 * Apple packs the colors in a different order than SGI does:
 ********/

void RGBXToApple32(int width, int height, void* from, void* to)
{
 __uint32_t* src = (__uint32_t*) from;
 __uint32_t* dst = (__uint32_t*) to;
 size_t size = ((size_t) width) * ((size_t) height);
 size_t i;

 for (i = 0; i < size; i++) {
 __uint32_t bits = src[i];
 dst[i] = ((bits & (0xFF << 16)) >> 16) |
 ((bits & (0xFF << 8)) >> 0) |
 ((bits & (0xFF << 0)) << 16);
 }

 InvertImage32(to, width, height);
}

/********
 * InvertImage32
 * Inverts a 32-bit image.
 ********/

static void InvertImage32(void* buffer, int width, int height)
{
 __uint32_t* buff = (__uint32_t*) buffer;

 int x;
 int y1;
 for (x = 0; x < width; x++) {
 for (y1 = 0; y1 < height/2; y1++) {
 int y2 = height - y1 - 1;
 int index1 = x + y1 * width;
 int index2 = x + y2 * width;

 __uint32_t t = buff[index1];
 buff[index1] = buff[index2];
 buff[index2] = t;
 }
 }
}

698

Chapter 31: Using the Movie Library with QuickTime Movies

/********
 * InvertImage16
 * Inverts a 16-bit image.
 ********/

static void InvertImage16(void* buffer, int width, int height)
{
 unsigned short* buff = (unsigned short*) buffer;

 int x;
 int y1;
 for (x = 0; x < width; x++) {
 for (y1 = 0; y1 < height/2; y1++) {
 int y2 = height - y1 - 1;
 int index1 = x + y1 * width;
 int index2 = x + y2 * width;

 unsigned short t = buff[index1];
 buff[index1] = buff[index2];
 buff[index2] = t;
 }
 }
}

This chapter describes the Movie
Library sample programs.

Using the Movie Library
Sample Programs

Chapter 32

701

Chapter 32

32. Using the Movie Library Sample Programs

A comprehensive set of sample programs is provided with the Movie
Library. You can use sample programs to learn about the Movie Library or
as skeleton code for building your own application. This chapter describes
the Movie Library sample programs.

About the Sample Programs

Sample programs demonstrating how to use the Movie Library for creating,
editing, and playing movies and displaying their parameters are included in
the /usr/people/4Dgifts/examples/libmovie directory. Sample movies,
somersault.mv and sampleQT.mv are also provided.

The sample programs are organized into directories according to purpose;
most programs reside in a directory having the same name:

common contains source code to a helper function called glxhelper,
which creates an X window suitable for GL drawing—it
uses no libmovie functions but is used by the simplemovie,
manymovie, and moviescreen sample programs

createmovie is a movie-making application with a command-line
interface

createmovieqt is a movie-making application with a command-line
interface for making QuickTime movies

editmovie is a movie-editing application with a command-line
interface for editing QuickTime movies

manymovie is a movie-playing application that allows several movies to
play at the same time

702

Chapter 32: Using the Movie Library Sample Programs

misc contains four programs:

• aud-to-movie, which adds (or replaces) a movie audio
track

• img-to-movie, which converts a sequenced image file
into a movie

• mvinfo, which displays the parameters of a movie file

• simplemovie, which provides a keyboard interface for
playing a movie

miscqt contains two programs:

• mvinfoqt, which displays the parameters of a movie file

• simplemovieqt, which provides a keyboard interface for
playing a QuickTime movie

The Movie Library sample programs have been put through an extensive
code review and testing process by the engineers who created the Movie
Library. The sample programs demonstrate how to write solid code with the
Movie Library and provide many basic movie application features that you
may want to incorporate into your own code.

Some of the guidelines followed in creating these sample programs:

• global functions are put in header files to increase modularity

• forward declarations are provided for local functions

• variables are lowercase

• symbols are uppercase

• functions begin with lowercase and have uppercase letters at word
breaks

• extensive comments appear both at the beginning of each program or
module and in the body of the code

Figure 32-1 shows the format of the introductory comments that appear in
all the Movie Library sample programs. Introductory comments document
the name of the file, its usage, a brief description of what the program does,
and a complete listing of the functions used in the program.

About the Sample Programs

703

Figure 32-1 Comments in Movie Library Sample Programs: createmovie.c++

/***
 *
 * File: createmovie.c++
 *
 * Usage: createmovie [-c compression] [-l loopMode] [-r frameRate
 * [-s xsize,ysize] [-o outMovie] file . . .
 * file may include one or more image, audio, and movie file
 * Compression schemes: none mvc1 rle jpeg 8rgb (default is
 * Loop modes: once loop swing (default is
 *
 * Description: Command-line program to make a movie file from image, aud
 * and/or other movie files.
 *
 * Functions: The following SGI Movie Library functions are used:
 *
 * mvOpenFile()
 * mvSetMovieDefaults()
 * mvSetLoopMode()
 * mvCreateFile()
 * mvGetErrorStr()
 * mvGetErrno()
 * mvClose()
 * mvGetParams()
 * mvAddTrack()
 * mvFindTrackByMedium()
 * mvInsertFrames()
 * mvGetAudioRate()
 * mvGetImageRate()
 * mvGetAudioWidth()
 * mvGetTrackLength()
 *
 * The following SGI Digital Media Library functions are use
 *
 * dmParamsCreate()
 * dmParamsDestroy()
 * dmSetImageDefaults()
 * dmSetAudioDefaults()
 * dmParamsSetInt()
 * dmParamsSetFloat()
 * dmParamsSetEnum()
 * dmParamsSetString()
 * dmImageFrameSize()
*

Complete usage
description. A usage
message is displayed if
the user makes an error.

Complete listing of the
Movie Library functions
used in this program

Complete listing of the
Digital Media Library
functions used in this
program

Description of program

704

Chapter 32: Using the Movie Library Sample Programs

Figure 32-2 shows the body of createmovie.c++, showing the modularity of
this program—main() contains only 5 lines that call other modules.

Figure 32-2 Modularity of Movie Library Sample Programs: createmovie.c++

#include "createmovieArgs.h"
#include "createmovieInit.h"
#include "createmovieFiles.h"
#include <movie.h>

/*
 * Forward declarations of functions that appear below.
 */

static void makeMovie(MVid *theMovie);

/
**
* main
 ***/

main(int argc, char **argv)
{
 MVid theMovie;

 processCmdArgs(argc, argv);

 makeMovie(&theMovie);

 mvClose(theMovie);

 exit(EXIT_SUCCESS);
}

/*********
 * Make the new movie file.
 *********/

static void makeMovie(MVid *theMovie)
{

 initMovie(theMovie);

 putFilesInMovie(*theMovie);

Global functions or those
needed by other modules are
put in header files.

Local functions are defined
as static and have forward
declarations.

Modularization simplifies
the program.

Creating Movies

705

Creating Movies

This section describes two sample programs that demonstrate how to use
the Movie Library to create movies:

createmovie which creates a movie from any combination of image files,
audio files, or other movie files, letting you specify the
compression scheme, loop mode, frame rate and size, and
the output movie filename from the command line

img-to-movie which creates a movie file from an image file

createmovie [-c compression] [-l loopMode] [-r frameRate] [-s xsize,ysize]
 [-p paramtype, userParam, userParamVal] [-o outMovie] file[…]

where:

-c compression specifies the image compression scheme, where you enter
one of the following for compression:

-l loopMode specifies the loop mode, where you enter one of the
following for loopMode: once, loop, or swing

-r frameRate specifies the frame rate in frames per second

If one or more movie files are included in the file source
material, outmovie will have the same frame rate as the first
movie file on the command line; otherwise, if the frame
rate is not set explicitly, the default is 15.0 frames per
second.

-s xsize,ysize specifies the frame size, where:
xsize is the horizontal dimension
ysize is the vertical dimension

jpeg DM_IMAGE_JPEG

mvc1 (default) DM_IMAGE_MVC1

mvc2 DM_IMAGE_MVC2

none DM_IMAGE_UNCOMPRESSED

rle DM_IMAGE_RLE

8rgb DM_IMAGE_UNCOMPRESSED

706

Chapter 32: Using the Movie Library Sample Programs

The default frame size is that of the first file on the
command line containing frame size information, which
might be either an image or a movie file.

You can set the frame size explicitly, which enlarges or
reduces the images as required. Aspect ratios are preserved
when scaling images, so that the resulting images might be
letter-boxed if the aspect ratio of the source image is
different from the aspect ratio specified by the given xsize
and ysize.

-p paramtype, userParam, userParamVal
adds a user-defined parameter of type paramtype, named
userParam, whose value is userParamVal

-o outmovie specifies the name of the output movie

file includes one or more image, audio, or movie files

You can also use createmovie to convert a movie file from one compression
scheme to another, by creating a new movie in the specified compression
scheme from the old movie.

createmovie contains the following files:

createmovieArgs.c++ contains command line processing functions, access
to user preferences, and creation and access to the
filenames entered on the command line

createmovieArgs.h is the external interface to createmovieArgs.c

createmovieConvert.c is used only in conjunction with the Silicon Graphics
QuickTime Compressor Library to convert between
QuickTime and rgb image data

createmovieConvert.h is the external interface to createmovieqtConvert.c++

createmovieFiles.c++ puts files into a new movie

createmovieFiles.h has external declarations for createmovieFiles.c++

createmovieInit.c++ initializes a new movie file

createmovieInit.h has external declarations for createmovieInit.c++

createmovieResize.c++ performs filtering operations on image frames

createmovieResize.h has external declarations for createmovieResize.c++

Creating Movies

707

Figure 32-3 shows a call graph for createmovie. The call graph shows the
overall structure of the program, indicating which modules call which
functions. Some calls are omitted for the sake of clarity.

Figure 32-3 Call Graph for createmovie

708

Chapter 32: Using the Movie Library Sample Programs

Creating a Movie from a Sequence of Images

 The img-to-movie.c program in the /usr/people/4Dgifts/examples/libmovie/misc
directory creates a movie file from an image file. The image file can have a
single image, in which case the movie file has only a single frame, or a
sequence of images. The resulting movie file has a frame rate of 15.0 frames
per second and uses MVC1 compression.

To run the program, enter:

img-to-movie imagefile newmoviefile

where:

imagefile is the name of the image file you want to make into a movie

newmoviefile is the name of the new movie

Adding or Replacing a Movie Audio Track

The aud-to-movie.c program in the /usr/people/4Dgifts/examples/libmovie/misc
directory adds an audio track to a silent movie or replaces the movie’s
existing audio track. The audio track can be an AIFF file or any audio file that
is readable by libaudiofile.

To run the program, enter:

aud-to-movie audiofile moviefile

where:

audiofile is the name of the audio track you want to put in the movie

moviefile is the name of the movie

Editing Movies

709

Editing Movies

The /usr/people/4Dgifts/examples/libmovie/editmovie directory contains
editmovie.c, a simple command line program for editing movies, and its
associated files. The editing operations available are insert, delete, and paste.
Only one editing operation can be selected at a time.

To run the program, enter:

editmovie -e editMovie,trackType,firstEditFrame,numFrames
[-d] [-s sourceMovie,firstSrcFrame [-i] [-p] [-m] [-o outMovie]

where:

-e is followed by four arguments:

-d deletes frames from editMovie

-s specifies both the source movie and first frame to copy

-i inserts frames from sourceMovie into editMovie

-p pastes frames from sourceMovie into editMovie

-m performs editing on a memory-resident copy of the movie

-o optimizes the edited movie for playback and places it in
outMovie

editmovie has the following requirements:

• numFrames must be > 0

• firstSrcFrame must be ≥ 0

• when inserting (-i) or pasting (-p), the -s option must be supplied in
order to specify the movie to copy from and the first frame to copy

editMovie the name of the movie to be edited

trackType the type of track to edit, either image or
audio

firstEditFrame the first frame to be edited

numFrames the number of frames to be edited

710

Chapter 32: Using the Movie Library Sample Programs

• when inserting (-i) or pasting (-p), the sum of numFrames and
firstSrcFrame must not exceed the last frame number in sourceMovie.

• when deleting (-d), the sum of numFrames and firstEditFrame must not
exceed the last frame number in editMovie

editmovie contains the following files:

editmovie.c a simple command line movie editor

editmovieArgs.c a command-line-parsing module for editmovie

editmovieArgs.h declarations for external functions in editmovieArgs.c

editmovieEdit.c contains editTheMovie(), which is the only external
function, and its supporting functions

editmovieEdit.h external interface to editmovieEdit.c, which actually
performs the editing for editmovie

Editing Movies

711

Figure 32-4 shows the call graph for editmovie.c

Figure 32-4 Call Graph for editmovie.c

712

Chapter 32: Using the Movie Library Sample Programs

Displaying Movie Parameters

mvinfo displays information about a movie, including its image track and
audio track (if present) parameters. To run the program, enter:
mvinfo moviefile

Playing Movies

This section describes three sample programs that play movies:

simplemovie implements a keyboard interface for playing movies

manymovie plays up to four movies simultaneously

moviescreen implements a movie-based screen-saver application

Creating a Simple Keyboard Interface for Playing Movies

simplemovie has a keyboard interface for playing a movie. To run the
program, enter:
simplemovie moviefile

The keyboard commands are:

<3> loop 3 times

 or play backward

<e> or <E> play every frame

<f> or <F> play fast

<h> or <H> play slow

<l> or <L> toggle loop state

<m> or <M> toggle audio muting

<p> or <P> play the movie

<q> or <Q> quit simplemovie

<r> or <R> rewind the movie

<s> or <S> stop playback

Playing Movies

713

Playing Multiple Movies

manymovie is a command line program for playing up to 4 movies
simultaneously. The movies can have different frame sizes.

Note: The 4 movie limitation is not related to the Movie Library; rather, it is
the result of the very simple layout scheme used in manymovie for placing all
movies in one window.

To run the program, enter:

manymovie [-one] moviefile1 [moviefile2…]

By default, each of the movies appears in a separate window. When each
movie is played in a separate window, the keyboard commands apply only
to the current window, except for the quit command, which always exits
from manymovie.

To play all movies in a single window, use the -one command line option. If
the -one option is used, all keyboard commands apply simultaneously to all
movies.

manymovie uses the following keyboard interface:

<l> or <L> changes the looping state

<m> or <M> toggles audio muting

<p> or <P> plays the movie

<q> or <Q> quits manymovie

<r> or <R> rewinds to the beginning of the movie

<s> or <S> stops the movie

714

Chapter 32: Using the Movie Library Sample Programs

manymovie contains the following files:

Creating a Movie Screensaver Application

moviescreen is a screensaver application that plays movies. moviescreen does
not save screens by itself; rather, it is designed to run under haven(1), a
wrapper for IRIS GL-based screensavers, which is available on Silicon
Graphics computers. Normally, the screen turns black and the movie begins
playing silently, slowly drifting around the screen as it plays.

To run the program as a screensaver under haven(1), enter:

haven [-n |-o] [< moviescreen [-f] [-s] [-v volume] [-z zoom] [-l loopmode]
moviefile1 [moviefile2…]>|-k]

where:

-f enables fullscreen playback

-s turns on sound for the movie (by default, screensaver
movies play silently)

manymovie.c is the main program, which plays several movies at
once.

manymovieArgs.c contains the code for processing command-line
arguments, creating and accessing the movie list, and
recording the number of movie

manymovieArgs.h contains the external interface to the command-line
argument processing code

manymovieEvents.c contains X and Movie event handling code

manymovieEvents.h is the external interface to manymovieEvents.c and
handles X and Movie events for manymovie

manymovieWin.c contains code for creating X windows suitable for
playing movies

manymovieWin.h is the external interface to manymovieWin.c, creates
X windows suitable for GL rendering for all the
movies, opens the movies and the windows, provides
access to the X Display

Playing Movies

715

-v volume sets the playback volume if the -s option is used

Enter a value from 0 to 255 for volume.

-z zoom zooms the movie larger for playback

Enter an integer value for zoom. Zooming takes effect only
if the -f option, fullscreen playback, is not used.

-l loopmode sets the loop mode.

To loop continuously (default), set loopmode to 0. To swing,
set it to 1.

moviescreen contains the following files:

moviescreen.c is the main program, which uses a movie as a
screensaver

moviescreenArgs.c contains code for helper functions used by
moviescreen for accessing/manipulating data
entered by the user via command-line arguments;
maintains this information as static variables that
are restricted to this module

moviescreenArgs.h contains functions for processing the command-
line arguments and accessing variables set
therefrom, including movie names

moviescreenEvents.c contains code to start, perform, and end screen
saving, depending on reception of XEvents

moviescreenEvents.h contains code to wait for an XEvent and initiate or
terminate screen saving as appropriate

moviescreenGl.c contains code used by moviescreen for determining
the movie window position and erasing the movie
window as it moves via GL drawing

moviescreenGl.h contains functions for controlling positioning and
erasing (via GL drawing) of the movie window

moviescreenWin.c contains code for creating and accessing an X
window suitable for GL rendering that is used by
moviescreen

moviescreenWin.h contains functions to create and access a mixed-
model GL window

716

Chapter 32: Using the Movie Library Sample Programs

Figure 32-5 shows the call graph for moviescreen.c

Figure 32-5 Call Graph for moviescreen.c

Using the SMPTE Time Code Sample Application

717

Using the SMPTE Time Code Sample Application

Included with the Movie Library sample code is a group of utility routines
in a sample application for handling SMPTE time codes. These routines
work with the movie frame that is closest to the given time code rather than
providing exact time code precision. Time code type is indicated by the
timetype argument, which supports the four basic types of time codes listed
in Table 32-1.

Note: Currently, only MV_TIME_SMPTE_30 is supported.

Converting a SMPTE Time Code String to a Frame Number

To access the frame closest to a given SMPTE code, pass the SMPTE code as
a string to mvStringToFrame(), which converts the given string to a frame
number in the specified movie. Its function prototype is:

extern DMstatus mvStringToFrame (MVid movieid,
 char *timestring,
 MVtimetype timetype,
 MVframe *framereturn)

where:

timestring is the SMPTE time code string

timetype is the SMPTE code type

framereturn is a pointer to the frame number that is to be returned

Table 32-1 SMPTE Time Code Types

Time Code Type Meaning

MV_TIME_SMPTE_24 24 frames/second (motion pictures)

MV_TIME_SMPTE_25 25 frames/second (PAL video)

MV_TIME_SMPTE_30 30 frames/second (NTSC)

MV_TIME_SMPTE_D30 30 frame/second drop (NTSC 29.97)

718

Chapter 32: Using the Movie Library Sample Programs

Specify the time code string in the format "HH:MM:SS:FF" where HH
signifies two digits that represent hours, and similarly, MM minutes, SS
seconds, and FF the frame count for the current second. The converter
assumes that incomplete time strings are specified from the least-significant
unit up; that is, a value of "02" means SMPTE frame code 02 of the current
second. "03:02" means second 03, frame 02 of the current minute, and so on.
The frame number is between 0 and one less than the total number of frames
in the movie.

Converting a Frame Number to a SMPTE Time Code String

To obtain a SMTPE-style time code string for a given frame number, call
mvFrameToString() with the frame number for which you need the SMPTE
code. Its function prototype is:

extern DMstatus mvFrameToString (MVid movieid,
 MVframe frame,
 MVtimetype timetype,
 char *timereturn)

where:

frame is the frame number for which you want to get the time code

timetype is the SMPTE code type

timereturn is a pointer into which the time code string is returned

The SMPTE code is returned as a string that lists the hour, minute, second,
and frame count for the given frame number.

Using the SMPTE Time Code Sample Application

719

Converting a Time Specification to a Frame Number

To convert a fully formed time code to the nearest corresponding frame in
the specified movie, call mvTimeToFrame(). Its function prototype is:

extern DMstatus mvTimeToFrame (MVid movieid,
 int hour,
 int minute,
 int second,
 MVframe framecnt,
 MVtimetype timetype,
 MVframe *framereturn)

where:

hour is the hour field of the time code

minute is the minute field of the time code

second is the second field of the time code

framecnt is the frame field of the time code

timetype is a time type from Table 32-1

framereturn is a pointer into which the frame number is returned

720

Chapter 32: Using the Movie Library Sample Programs

Converting a Frame Number to a Time Code

To obtain a time code corresponding to a particular frame, call
mvFrameToTime() with the index of the frame for which you want the time
code. Its function prototype is:

DMstatus mvFrameToTime (MVid movieid,
 MVframe frame,
 MVtimetype timetype,
 int *hourreturn,
 int *minutereturn,
 int *secondreturn,
 MVframe *framecntreturn)

where:

frame is the frame number for which you want to get the time code

timetype is a time type from Table 32-1

hourreturn is a pointer into which the time code hour is returned

minutereturn is a pointer into which the time code minutes are returned

secondreturn is a pointer into which the time code seconds are returned

framecntreturn is a pointer into which the time code frame is returned

Appendices

Chapter 1

723

Appendix A

A. Audio Specifications

This appendix describes the audio hardware specifications for the Indigo
and Indigo2 workstations. It also contains some video specifications for
IndigoVideo.

Indigo Workstation Audio Hardware Specifications

This section contains the specifications for the Indigo audio hardware.

Unless otherwise stated, all audio hardware parameters are measured under
the following conditions:

• analog input signal levels are +7 dB re: 1Vrms

• digital input signal levels are 100% of full scale

• 48 kHz sample rate

• input source impedances are 600 Ω

• output destination impedances are 5 kΩ

• measurement bandwidth is 10 to 30 kHz unweighted

All measurement results are typical. All connectors are single-ended 3.5-mm
stereo phono plugs.

724

Appendix A: Audio Specifications

Indigo Analog Audio I/O

The following specifications describe the analog audio I/O.

Analog Stereo Line-level Inputs

• Impedance: 5 kΩ nominal

• Amplitude at full scale: 1 Vpp to 10 Vpp

• Level control: two independent, digitally-controlled analog attenuators

• Frequency response: 20 Hz–20 kHz ±0.25 dB

• Total Harmonic Distortion + Noise (THD+N): < 0.003% @ 1 kHz,
< 0.005% 20 Hz–20 kHz

• Residual noise: −90 dB unweighted, −93 dB A-weighted (re: full scale)

• Interchannel isolation: −76 dB @ 1 kHz, −68 dB @ 10 kHz,
−77 dB @ 20 kHz

• Analog-to-Digital Converter resolution: 16-bit Delta-Sigma

Analog Mono Microphone Input

• Impedance: 2 kΩ

• Amplitude at full scale: 0.25 Vpp to 2.5 Vpp

• Power supply: +3 Vdc @ 1 mA

Microphone

• Type: omnidirectional electret condenser (powered by system)

• Output level: 65 dB 4 dB @ 1 kHz (+0 dB = 1 V/0.1 pa)

• Frequency response: 40 Hz–18 kHz 2 dB

Analog Stereo Line-level Outputs

• Impedance: 600 Ω nominal

• Amplitude at full scale: 6.0 Vpp

• Frequency response: 20 Hz–20 kHz +0 dB, −0.8 dB

Indigo Workstation Audio Hardware Specifications

725

• Total Harmonic Distortion + Noise (THD+N): <0.005% @ 1 kHz,
<0.02% 20 Hz–20 kHz

• Residual noise: −85 dB unweighted, −92 dB A-weighted (re: full scale)

• Interchannel isolation: −76 dB @ 1 kHz, −66 dB @ 10 kHz,
−61 dB @ 20 kHz

• Digital output filter data resolution: 16-bit input, 18-bit output,
8× oversampling

• Digital-to-Analog Converter resolution: 18 bits

• Digital-to-Analog Converter sample rate: 8× oversampling

Analog Stereo Headphone Outputs/Mono Internal Speaker

• Headphone output impedance: 16 Ω

• Headphone level: 200 mW into 32 Ω load

• Headphone and speaker level control: two independent,
digitally-controlled analog attenuators

• Speaker: 2.6" diameter dynamic

• Speaker sound pressure level: 88 dB/W

• Speaker output level: 3 Watts max, 1.5 Watts nominal

Indigo Digital Audio I/O

The following specifications describe the digital audio serial I/O.

Digital Coaxial Serial Input

• Impedance: 75 Ω, transformer-coupled

• Level: 1 Vpp

• Sample rates: 30 kHz to 50 kHz

• Resolution: supports up to 24 bits per sample

• Coding: AES-3, IEC-958

726

Appendix A: Audio Specifications

Digital Coaxial Serial Output

• Impedance: 75 Ω, transformer-coupled

• Level: 1 Vpp into 75 Ω load

• Sample rates: 32, 44.1, 48 kHz, and divisors

• Resolution: supports up to 24 bits per sample

• Coding: AES-3, IEC-958

Indigo Dedicated Real-time Processor

The dedicated real-time processor in the Indigo workstation has the
following characteristics:

• Processor: 20 MHz Motorola DSP56001

• Native word length: 24 bits, fixed point

• DSP RAM: 32K word SRAM

Indigo2 Workstation Audio Hardware Specifications

This section contains the specifications for the Indigo2 audio hardware.

Indigo2 Analog Stereo Line-level Inputs

• Impedance: 20 kΩ nominal

• Amplitude at full scale: 0.63Vpp to 8.4Vpp

• Level control: analog gain control internal to CODECs

• Frequency response: 20Hz–20 kHz 0.81 dB

• Total Harmonic Distortion + Noise (THD+N): < 0.006% @ 1 kHz,
< 0.007% 20 to 20 kHz

• Residual noise: −86 dB unweighted, −88 dB A-weighted (re: Full Scale)

• Interchannel isolation: −82 dB@1 kHz, −72 dB@10 kHz, −67 dB@20 kHz

• Analog-to-Digital Converter resolution: 16-bit

Indigo2 Workstation Audio Hardware Specifications

727

Indigo2 Stereo Microphone Input

• Impedance: 1.5 kΩ

• Amplitude at full scale: 0.063Vpp to 0.84Vpp

• Power supply: +3Vdc @ 1mA

• In 4-channel mode, the microphone input connector can be configured
as a line-level input. When configured this way, it has the characteristics
described in “Indigo2 Analog Stereo Line-level Inputs”

Indigo2 Analog Stereo Line-level Outputs

• Impedance: 600 Ω nominal

• Amplitude at full scale: 4.7 Vpp

• Frequency response: 20 Hz–20 kHz 1.2 dB

• Total Harmonic Distortion + Noise (THD+N): <0.02% 20 to 20 kHz

• Residual noise: −81 dB unweighted, −85 dB A-weighted (re: full scale)

• Interchannel isolation:−80 dB@1 kHz, −75 dB@10 kHz, −71 dB@20 kHz

• Digital-to-Analog converter resolution: 16-bit

Indigo2 Analog Stereo Headphone Output/Mono Internal
Speaker

• Headphone output impedance: 10 Ω

• Headphone level: 57mW into 32 Ω load

• Headphone and speaker level control: two independent,
digitally-controlled analog attenuators

• Speaker: 70mm by 40mm

• Speaker sound pressure level: 80 dB @1W, 1meter

• Speaker output level: 5W max, 2W nominal

• In 4-channel mode, the headphone output connector is configured as a
line-level output. When configured this way, it has the characteristics
described in the “Indigo2 Analog Stereo Line-level Outputs”

728

Appendix A: Audio Specifications

Indigo2 Digital Audio I/O

The following specifications describe the digital audio serial I/O.

Digital Coaxial Serial Input

• Impedance: 75 Ω, transformer-coupled

• Level: 1 Vpp

• Sample rates: 30 kHz to 50 kHz

• Resolution: supports up to 24 bits per sample

• Coding: AES-3, IEC-958

Digital Coaxial Serial Output

• Impedance: 75 Ω, transformer-coupled

• Level: 1 Vpp into 75 Ω load

• Sample rates: 32, 44.1, 48 kHz, and divisors

• Resolution: supports up to 24 bits per sample

• Coding: AES-3, IEC-958

729

Appendix B

B. Aware Scalable Audio Compression Software

This appendix describes built-in licensable compression software from
Aware, Inc. Developers are encouraged to integrate Aware’s audio
compression products to add value to their applications that incorporate
audio processing. Doing so requires that you add Network License System™

(NetLS™) licensing support to your application, which is described in
“Installing a NetLS Nodelocked License” on page 743.

Aware’s compression software can be accessed through the following Silicon
Graphics digital media development libraries:

• Audio File Library (AF)

• Compression Library (CL)

The AF and CL parameters to access Aware compression are provided in this
appendix.

Introduction to Aware Audio Compression Software

Aware offers audio compression software engines that enable users of
Silicon Graphics workstations to reduce the storage size and transmission
bandwidth required for audio data. These products are compatible with
third-party applications that incorporate audio in the Silicon Graphics
digital media computing environment. Scalable operation provides the
ability to control processor loading for audio playback concurrently with
other computational tasks.

730

Appendix B: Aware Scalable Audio Compression Software

Aware’s software compression engines include:

• Aware AudioPublisher™ MPEG and MultiRate audio codec

Provides advanced psychoacoustic processing for compression of
CD-quality sound in authoring, publishing, and large audio database
applications. Compatible with MPEG-audio standard.

• Aware AudioProducer™ MultiRate audio codec

Provides a compression solution for studio and audio production
applications requiring lossless and near-lossless coding and using low
processor loading. Includes AudioProducer and AudioPlayback
engines.

• Aware AudioPlayback™ audio decoder

Provides a decoding solution for applications requiring playback-only
of compressed audio in multi-tasking processing environments.

Aware markets its audio compression software to end users. Once an end
user licenses and activates Aware’s audio compression engines in his or her
workstation, the engines are available as a system resource and can work
with any application that calls Aware’s compression engines.

Portions of this software are

© Copyright 1993, Aware, Inc.—All Rights Reserved.

The Aware Software is proprietary and confidential. You may interface to the
Aware Software by using the Audio File (AF) Library and the Compression
Library (CL) supplied on this software release. You or any other user may
gain authorization to execute the functions of the Aware Software (which
includes a keylock mechanism) only by purchasing a usage license from
Aware, Inc. Unauthorized use of the Aware Software is expressly forbidden.
To obtain a usage license from Aware, contact:

Aware, Inc.
One Memorial Drive
Cambridge, MA 02142
phone: (617) 577-1700
fax: (617) 577-1710
email: sales@aware.com
Ask for audio products.

Aware Software Products Features and Applications

731

Aware Software Products Features and Applications

This section describes the applications and features of Silicon Graphics
digital media-compatible products from Aware.

Aware Products Available in IRIS Digital Media Libraries

The IRIS digital media libraries contain three software products that end
users can license by contacting Aware (see “Introduction to Aware Audio
Compression Software” on page 729) to obtain a license password:

• Aware AudioPublisher

The Aware AudioPublisher provides advanced psychoacoustic
processing for compression of high-quality audio (up to 48 kHz
sampling rate) in studio, authoring, and archiving applications.

AudioPublisher supports the MPEG (Moving Pictures Experts Group)
audio standard format. The encoding process invokes advanced
psychoacoustic modeling to achieve high compression ratios.

Encoding bit-rates range from 32 Kbits/second to 448 Kbits per second
(corresponding to compression ratios as high as 48:1). AudioPublisher
also includes Aware’s AudioProducer and AudioPlayback software.

• Aware AudioProducer

The Aware AudioProducer provides a compression solution for audio
production applications requiring lossless (perfectly invertible) and
near-lossless coding at low computational complexity.

Lossless mode reduces storage requirements by 2:1 to 3:1. Near-lossless
operation achieves even greater storage savings, while retaining a 90 dB
signal-to-noise ratio. Real-time encoding of audio at 8, 11.025, 16, 22.05,
and 44.1 kHz sampling rates is supported. Scalable encoding and
decoding operation provides control of processor loading during
playback. AudioProducer includes Aware’s AudioPlayback software.

• Aware AudioPlayback

The Aware AudioPlayback engine provides a decoding solution for
applications requiring decoding of compressed audio in multi-tasking
processing environments. The decoder runs in real time, at sampling
rates of up to 48 kHz. Installation of the decoder enables real-time

732

Appendix B: Aware Scalable Audio Compression Software

playback of compressed audio that was encoded with the Aware
AudioPublisher or with the Aware AudioProducer. Scalable decoding
operation provides the ability to control processor loading used for
playback, and it enables special functions such as fast playback to let
you speed-search through compressed audio libraries.

Other Digital Media Compatible Aware Audio Products

These audio productivity software products are compatible with Aware’s
audio compression engines in the Silicon Graphics digital media
environment. Contact Aware for more information on these products.

Aware AudioSuite Tools

The Aware AudioSuite™ provides these graphical user interface (GUI)
software applications for the end user that work with Aware’s licensable
software audio compression engines on Silicon Graphics platforms:

Aware Speed-of-Sound Library, Volume I, Sound Effects

The Aware Speed-of-Sound™ Library is a single CD-ROM that puts more
than 1,000 digitally recorded sound effects at your fingertips. Cars, trains,
planes, birds, bees, laughing, crying, water, and wind—all the effects you
need to make your creative vision come alive. Each sound on this disk was
professionally recorded at the 16-bit, 44.1 kHz CD-audio format. But unlike
standard CDs that contain a maximum of 72 minutes of sound, the Aware
Speed-of-Sound Library offers over seven hours of effects, along with the
interactive BrowsFX™ librarian tool that makes finding and auditioning any
sound a snap.

Aware AudioSuite Package

This comprehensive package includes the Speed-of-Sound Library,
Volume I: SFX, plus all audio compression engines and GUIs.

Audition™ provides compressed file playback and extraction

Archiver™ provides file-to-file compression batch processing

Psycoder™ provides optimal compression parameter selection

Accessing Aware Audio Compression from the Audio File Library

733

Accessing Aware Audio Compression from the Audio File Library

This section describes the data formats, defaults, and parameters for
accessing the Aware audio compression software engines from the Audio
File Library.

Valid Audio Input Data

Audio input data can be accepted in any of these formats:

• 16-bit two’s complement samples

• single or dual channel

• sampling rates for MPEG must be 32 kHz, 44.1 kHz, or 48 kHz.

• sampling rates for MultiRate must be 8 kHz, 11.025 kHz, 16 kHz, 22.05
kHz, 32 kHz, 44.1 kHz, or 48 kHz.

Compression Defaults

The simplest method of invoking Aware compression is to use this
command to pick from one of four default settings:

AFinitcompression (AFfilesetup setup, long track,
 long compression_scheme)

The defaults for the Aware compression parameters are:

AF_COMPRESSION_AWARE_DEFAULT_MPEG_I
MPEG layer 1, joint-stereo, fixed rate at 192 Kbps/channel

AF_COMPRESSION_AWARE_DEFAULT_MPEG_II
MPEG layer 2, joint-stereo, fixed rate at 128 Kbps/channel

AF_COMPRESSION_AWARE_DEFAULT_MULTIRATE
MultiRate, near-lossless

AF_COMPRESSION_AWARE_DEFAULT_LOSSLESS
MultiRate, lossless

734

Appendix B: Aware Scalable Audio Compression Software

Compression Custom Configuration

To access individual compression parameters, use the AF library call:

AFinitcompressionparams (AFfilesetup setup, long track,
 long scheme,AUpvlist pvbuffer, long buffersize)

The compression scheme should be passed as one of:

• AF_COMPRESSION_AWARE_MPEG

• AF_COMPRESSION_AWARE_MULTIRATE

• AF_COMPRESSION_AWARE_DEFAULT_MPEG_I

• AF_COMPRESSION_AWARE_DEFAULT_MPEG_II

• AF_COMPRESSION_AWARE_DEFAULT_MULTIRATE

• AF_COMPRESSION_AWARE_DEFAULT_LOSSLESS

The parameters and values passed in the AUpvlist structure include:

AF_AWARE_PARAM_LAYER
(valid only for algorithm AF_AWARE_MPEG) selects
which MPEG layer:

• AF_AWARE_LAYER_I

• AF_AWARE_LAYER_II (default)

Note: AF_AWARE_PARAM_CHANNEL_POLICY
chooses how multiple channels should be treated (these
settings are equivalent for single channel input).

• AF_AWARE_STEREO
indicates that the channels are part of a single
multichannel signal, such as quadraphonic, and so on.

• AF_AWARE_JOINT_STEREO (default for MPEG)
indicates that the algorithm may attempt to exploit
redundancy between channels for greater coding gain.
Not valid for AF_AWARE_MULTIRATE.

• AF_AWARE_INDEPENDENT (default for MultiRate)
indicates that the separate channels are unrelated and
should be processed separately, such as multilingual
sound tracks.

Accessing Aware Audio Compression from the Audio File Library

735

AF_AWARE_PARAM_BITRATE_TARGET
specifies the desired bitrate for all channels of compressed
data, in bits per second. Note that for some schemes such as
MPEG’s maxrate (not yet implemented) this is treated as an
upper limit, whereas for MPEG’s fixrate, this is strictly
achieved as a constant rate. This parameter is not used for
Aware’s MultiRate algorithm.

The following is a list of valid bitrates for MPEG:

Layer 1: 32000, 64000, 96000, 128000, 160000, 192000,
224000, 256000, 288000, 320000, 352000, 384000, 416000, and
448000.

Layer 2: 32000, 48000, 56000, 64000, 80000, 96000, 112000,
128000, 160000, 192000, 224000, 256000, 320000, and 384000.

Default value is 192 Kbps/channel for layer 1 and 128
Kbps/channel for layer 2.

AF_AWARE_PARAM_BITRATE_POLICY
selects variants for interpreting
AF_AWARE_PARAM_BITRATE_TARGET. The valid
values depend on the compression type:

• Aware MPEG (AF_COMPRESSION_AWARE_MPEG)
uses either:

AF_AWARE_FIXED_RATE (default)
fixed bitrate per second, where the compression ratio is
set by AF_AWARE_PARAM_BITRATE_TARGET or

AF_AWARE_CONST_QUAL
lets the bitrate be driven by the psychoacoustic model.
Enough bits are assigned so that a constant
noise-to-mask ratio is attained. See
AF_AWARE_CONST_QUAL_NMR.

• Aware MultiRate
(AF_COMPRESSION_AWARE_MULTIRATE) uses
either:

AF_AWARE_LOSSLESS
supplies enough bits to provide for perfect
reconstruction. Compression ratios are typically
between 2:1 and 3:1.

736

Appendix B: Aware Scalable Audio Compression Software

or

AF_AWARE_CONST_QUAL
enough bits are assigned so that the signal is 90+ dB
above the quantization noise. Compression ratios are
typically between 2.5:1 and 4:1.

AF_AWARE_CONST_QUAL_NMR
not used in the Aware MultiRate algorithm. For
AF_COMPRESSION_AWARE_MPEG with
AF_AWARE_CONST_QUAL, it sets the constant quality
mode noise-to-mask ratio in dB. Zero yields a theoretical
psychoacoustically imperceptible compression. Positive
values provide more compression and noise becomes
audible. Negative values cause less compression and less
perceptible noise. The type is AU_PVTYPE_DOUBLE.

Accessing Aware Audio Compression from the Compression Library

The Aware audio compression engines are already installed in the Silicon
Graphics Compression Library uniform interface to video and audio
compression routines. You can incorporate these routines into your
applications and set up license querying to enable end users who choose to
do so to license the routines. This section describes how to use the
Compression Library interface to the Aware engines.

Compression Schemes

Aware currently provides two distinct compression schemes under the CL:

CL_AWARE_MPEG_AUDIO
ISO/MPEG-audio standard algorithm with layers I and II.

CL_AWARE_MULTIRATE
Aware MultiRate I proprietary lossless or low-distortion
algorithm.

Both scheme identifiers are defined in cl.h, as are all the identifiers in this
section with the prefix CL_. Identifiers prefixed AWCMP_ are defined in
awareAudio.h.

Accessing Aware Audio Compression from the Compression Library

737

Using Compression Library Parameters

The CL is controlled by a wide range of parameters. Some parameters have
multiple uses—others are appropriate only in certain circumstances. This list
explains the use of all the parameters of relevance to the Aware schemes:

CL_ORIGINAL_FORMAT
indicates the format of the components of the original
uncompressed audio. Default is
CL_STEREO_INTERLEAVED, legal alternative is
CL_MONO.

CL_COMPONENTS
indicates the number of channels in the original
uncompressed audio. Only single and dual channel signals
are currently supported.

CL_BITS_PER_COMPONENT
informs the scheme of the format of the audio samples.
They are assumed to be two’s complement linear ints with
the specified number of bits. The default is 16, which is also
currently the only legal value.

CL_FRAME_RATE
tells the scheme the sampling rate of the uncompressed
audio. Default is 44100.0 Hz. Legal values for scheme
CL_AWARE_MPEG are 32000.0, 44100.0, and 48000.0. Legal
values for scheme CL_AWARE_MULTIRATE are 8000.0,
11025.0, 16000.0, 22050.0, 32000.0, 44100.0, and 48000.0 Hz.

CL_SPEED during decompression, this parameter controls the
computational complexity by controlling several factors:
sample rate decimation, combining of stereo channels, filter
shape (CL_AWARE_MPEG only), and lossy decode
(CL_AWARE_MULTIRATE only). Acceptable values range
from 1.0 to 100.0. CL_SPEED has no effect during
compression.

Note: Changing this parameter may change the sampling
rate, the total number of sample frames available, and the
sample frames per compressed block. After changing this
parameter, you must call clGetParams() to find out the new
CL_FRAME_RATE and CL_BLOCK_SIZE.

738

Appendix B: Aware Scalable Audio Compression Software

CL_CHANNEL_POLICY
selects the treatment of stereo signals:

• AWCMP_STEREO
stereo channels are coded separately.

• AWCMP_JOINT_STEREO
stereo redundancy is exploited by coding high
frequency sub-bands together.

• AWCMP_INDEPENDENT
channels are unrelated and are coded separately, such
as multilingual sound tracks.

Note: Scheme CL_AWARE_MPEG_AUDIO supports all
three modes; CL_AWARE_MULTIRATE supports only
AWCMP_STEREO and AWCMP_INDEPENDENT.

CL_BITRATE_POLICY
Provides for different modes of bit assignment:

• AWCMP_FIXED_RATE
fixed bitrate for CL_AWARE_MPEG_AUDIO only. See
CL_BITRATE_TARGET. This is the default for
CL_AWARE_MPEG_AUDIO.

• AWCMP_CONST_QUAL
bitrate is allowed to vary to satisfy MPEG
psychoacoustic model or MultiRate data requirements
(90+ dB). This is the default for
CL_AWARE_MULTIRATE. See CL_NOISE_MARGIN.

• AWCMP_LOSSLESS
valid for CL_AWARE_MULTIRATE only. Data is coded
losslessly.

CL_NOISE_MARGIN
used in conjunction with CL_BITRATE_POLICY’s
AWCMP_CONST_QUAL. Provides for specification of the
noise-to-mask ratio in MPEG psychoacoustics. Zero yields a
theoretical psychoacoustically imperceptible compression.
Positive values provide more compression and noise
becomes audible. Negative values cause less compression

Accessing Aware Audio Compression from the Compression Library

739

and less perceptible noise. For the MultiRate algorithm, this
parameter sets the noise-floor at −90 dB below the signal
level. This is the only valid MultiRate setting at this time.

CL_LAYER (MPEG only) selects the MPEG layer. Default is
AWCMP_MPEG_LAYER_II for layer II, other legal value is
AWCMP_MPEG_LAYER_I for layer I.

CL_BITRATE_MODE
provides for different modes of operation such as fixed rate
or constant quality; however, the only legal values at
present are AWCMP_FIXED_RATE for MPEG and
AWCMP_CONST_QUAL or AWCMP_LOSSLESS for
MultiRate.

CL_BITRATE_TARGET
used in conjunction with CL_BITRATE_POLICY’s
AWCMP_FIXED_RATE (MPEG). Determines the output
data rate in bits per second. The allowed values are:

• MPEG layer I: 32000, 64000, 96000, 128000, 160000,
192000, 224000256000, 288000, 320000, 352000, 384000,
416000, 448000.

• MPEG layer II: 32000, 48000, 56000, 64000, 80000,
96000, 112000,128000, 160000, 192000, 224000, 256000,
320000, 384000.

CL_COMPRESSED_BUFFER_SIZE
When a scheme is configured, this field can be queried to
find the maximum compressed size of a block of
CL_BLOCK_SIZE samples. This is useful for allocating
buffers to hold this compressed data. If the application sets
this parameter (to inform the CL of the size of an externally
allocated buffer), the compression code does not change
that value, even if its configuration is modified.

The following parameters are read-only:

CL_BLOCK_SIZE
The scheme writes the number of uncompressed sample
frames to compress at a time by the scheme. It is strongly
advised that data be passed to clCompress() in blocks that

740

Appendix B: Aware Scalable Audio Compression Software

are exact multiples of this size; otherwise, the algorithm will
defer to compression of partial frames, which may cause
unexpected problems.

CL_COMPRESSION_RATIO
The scheme writes a compression ratio into this parameter.
Parameter CL_EXACT_COMPRESSION_RATIO will be
true if this is an exact compression ratio and false if it is a
worst-case estimate.

CL_EXACT_COMPRESSION_RATIO
Indicates whether the compression ration in
CL_EXACT_COMPRESSION_RATIO is exact (TRUE), or a
worst-case estimate (FALSE). This parameter is always true
for pure MPEG, because it is a fixed-bitrate scheme, and
false otherwise; therefore, this parameter is currently of
interest only for the MPEG scheme.

CL_FRAME_TYPE
indicates the status of the next frame to be processed:

• CL_KEYFRAME, meaning that the frame is the first
frame in a compressed block, which is what it should be
if all calls are in BLOCK_SIZE blocks.

• CL_PREDICTED is the frame type for all other
alignments.

Usage Hints

You’ll get the best compression results if you keep these hints in mind:

• Always compress blocks of CL_BLOCKSIZE sample frames.

• The first block that comes out of an instance of a compression scheme
has extra configuration information attached in front of it. On
decompression, this should be fetched first (you will have to query its
maximum size), then fed to clReadHeader(). Thereafter, the
CL_COMPRESSED_BUFFER_SIZE can be read and used to allocate a
proper data buffer, if so desired.

• No provision has been made for alignment of delay as a result of filter
latency through the Compression Library (which can be a few hundred
samples depending on scheme), or for zero-padding the final frame to

Aware Audio Compression Software Specifications

741

ensure that the filter is flushed. These must be handled by the
application, if required.

Aware Audio Compression Software Specifications

This section lists the specifications for the Aware audio compression
software.

• Compression Algorithms

– ISO/MPEG Layer I and II low bitrate psychoacoustic compression

– Aware MultiRate I high resolution audio compression

• Library Support

– Silicon Graphics Audio File Library (AF)

– Silicon Graphics Compression Library (CL)

• Encoder Input

Format: 16-bit linear audio samples, mono or stereo

Sample Rates:

• Decoder Output

Format: 16 bit linear audio samples, mono or stereo

Sample Rates: 48, 44.1, 32, 24, 22.05, 16, 11.025 (MPEG, MultiRate
Decoders)

Compression Ratios:

2:1 to 3:1 typical MultiRate lossless (perfectly invertible) mode

2.5:1 to 4:1 typical MultiRate near-lossless (90+ dB signal to noise)
mode

2.2:1 to 48:1 selectable, MPEG Layer I and II

MPEG Encoder 48, 44.1, 32 kHz

MultiRate Encoder 48, 44.1, 32, 22.05, 16, 11.025 kHz

742

Appendix B: Aware Scalable Audio Compression Software

Bitrates (Kbits/sec):

MPEG Layer I 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416,
448

MPEG Layer II 32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384

• Channel Processing

• Scalable Processing

Controlled reduction of CPU usage by parametric control of frequency
response, signal to noise ratio, and mono decoding of stereo.

Table B-1 lists the compression algorithms that are built in to each Aware
software compression engine product.

MPEG Layer I and II mono, stereo, joint stereo, dual channel

MultiRate mono, stereo

Table B-1 Built-in Algorithms for Aware Audio Software Compression Engines

Product Compression Algorithms Installed

AudioPublisher ISO/MPEG Layer I and II Encoder

Aware MultiRate I Encoder

ISO/MPEG Layer I and II Decoder

Aware MultiRate Decoder

AudioProducer Aware MultiRate I Encoder

ISO/MPEG Layer I and II Decoder

Aware MultiRate Decoder

AudioPlayback ISO/MPEG Layer I and II Decoder

Aware MultiRate Decoder

Installing a NetLS Nodelocked License

743

Installing a NetLS Nodelocked License

A product that is licensed with NetLS can use either a nodelocked license or
a concurrent access license. On the Silicon Graphics Vendor and License
Information sheet, in the licensetype field, it lists either “Concurrent Access”
or “NodeLocked” specifying the type of license you have been issued.

This section documents nodelocked licenses. With a nodelocked license, the
product can be run only on the machine that has the nodelocked license
installed. To enable a nodelocked license, the “vendor ID” and “product
password” from the Silicon Graphics Vendor and License Information sheet are
entered into the file /usr/netls/nodelock. After that, a product should have
permission to run on the machine with the nodelock file.

To install a nodelocked license:

1. Verify that the product you want to license is already installed, by
entering:

% /usr/sbin/versions

2. For IRIX release 5.0 or earlier, netls_eoe and nck subsystems do not need
to be installed. For IRIX release 5.0.1 or later, it is recommended that
netls_eoe be installed, in order to create the link from /usr/netls/nodelock
to /var/netls/nodelock. This link is needed by some NetLS licensed
products that are not Silicon Graphics products.

3. The llb, glb, and netls flags, which you can set with the /etc/chkconfig
command, do not affect whether a nodelocked license will work, but it
is a good idea to set these flags correctly anyway. If this machine is not
being used as a NetLS or glb database server, chkconfig these flags off.
To change the flags, enter this sequence of commands:

su

/etc/chkconfig glb off
/etc/chkconfig llb off
/etc/chkconfig netls off

4. Edit the nodelock file. For IRIX release 5.0 or earlier, the nodelock file is
/usr/netls/nodelock. For IRIX release 5.0.1 or later, the nodelock file is
/var/netls/nodelock. A license in the nodelock file takes up one line and
looks something like this:

549db468491e.02.c0.1a.3d.52.00.00.00 4cb3cwxxy29awcv9998xa

744

Appendix B: Aware Scalable Audio Compression Software

where the first string is a vendor ID and the second string is the product
password. Comment lines are ignored. A comment line is a line whose
first character is a “#”.

If a temporary nodelocked license is already installed for the product
for which you are adding a longer term license, comment out that
temporary license line by putting a “#” in front of the line. If no other
products are nodelocked and other licenses exist in this file, comment
all of the licenses out by putting a “#”character in front of them.

5. Continue editing the nodelock file to add the vendor ID and the product
password for the product. Put them on the same line in the nodelock file
with the vendor ID first, followed by a space, then the product
password.

It is strongly recommended to add a comment line before the license
that describes what product the license is for and when it expires.

See the online NetLS Administration Guide for more information and
troubleshooting guidelines.

745

Glossary

active video

The portion of the video signal containing the chrominance or luminance
information; all video lines not occurring in the vertical blanking signal
containing the chrominance or luminance information. See also chrominance,
composite video, horizontal blanking, luminance, and video waveform.

aliasing

One of several types of digital video artifact appearing as jagged edges.
Aliasing results when an image is sampled that contains frequency
components above the Nyquist limit for the sampling rate. See also Nyquist
limit.

alpha

See alpha value.

alpha blending

Overlaying one image on another so that some of the underlying image may
or may not be visible. See also key.

alpha plane

A bank of memory that stores alpha values; the values are 8 bits per pixel.

alpha register

Registers that stores an alpha value.

alpha value

The component of a pixel that specifies the pixel's opacity, translucency, or
transparency. The alpha component is typically output as a separate
component signal.

746

Glossary

antialiasing

Filtering or blending lines of video to smooth the appearance of jagged
edges in order to reduce the visibility of aliasing.

APL

Average Picture Level, with respect to blanking, during active picture time,
expressed as a percentage of the difference between the blanking and
reference white levels. See also blanking level.

artifact

In video systems, an unnatural or artificial effect that occurs when the
system reproduces an image; examples are aliasing, pixellation, and
contouring.

aspect ratio

The ratio of the width to the height of an electronic image. For example, the
standard aspect ratio for television is 4:3.

back porch

The portion of the horizontal pedestal that follows the horizontal
synchronizing pulse. In a composite signal, the color burst is located on the
back porch, but is absent on a YUV or GBR signal. See also blanking level,
video waveform.

Betacam

A component videotape format developed by Sony® that uses a Y/R-Y/B-Y
video signal and 1/2-inch tape.

Betacam format

Advanced form (Superior Performance) of Betacam using special metal tape
and offering longer recording time (90 minutes instead of 30 minutes) and
superior performance.

bit map

A region of memory that contains the pixels representing an image. The
pixels are arranged in the sequence in which they are normally scanned to
display the image.

747

Glossary

bitplane

One of a group of memory arrays for storing an image in bitmap format on
a workstation. The workstation reads the bitplanes in parallel to re-create the
image in real time.

black burst

Active video signal that has only black in it. The black portion of the video
signal, containing color burst. See also color burst.

black level

In the active video portion of the video waveform, the voltage level that
defines black. See also horizontal blanking and video waveform.

blanking level

The signal level at the beginning and end of the horizontal and vertical
blanking intervals, typically representing zero output (0 IRE). See also video
waveform and IRE units.

blend

To combine proportional amounts of a 3D graphic over a clip frame by
frame, pixel by pixel, with the alpha determining how they are combined.
See also key, frame, and alpha.

breezeway

In the horizontal blanking part of the video signal, the portion between the
end of the horizontal sync pulse and the beginning of the color burst. See
also horizontal blanking and video waveform.

broad pulses

Vertical synchronizing pulses in the center of the vertical interval. These
pulses are long enough to be distinguished from other pulses in the signal;
they are the part of the signal actually detected by vertical sync separators.

Bruch blanking

In PAL signals, a four-field burst blanking sequence used to ensure that burst
phase is the same at the end of each vertical interval.

burst, burst flag

See color burst.

748

Glossary

burst lock

The ability of the output subcarrier to be locked to input subcarrier, or of
output to be genlocked to an input burst.

burst phase

In the RS-170A standard, burst phase is at field 1, line 10; in the European
PAL standards, it is at field 1, line 1. Both define a continuous burst
waveform to be in phase with the leading edge of sync at these points in the
video timing. See also vertical blanking interval and video waveform.

B-Y (B minus Y) signal

One of the color difference signals used on the NTSC and PAL systems,
obtained by subtracting luminance (Y) from the blue camera signal (B). This
signal drives the horizontal axis of a vectorscope. Color mixture is close to
blue; phase is 180 degrees opposite of color sync burst; bandwidth is 0.0 to
0.5MHz. See also luminance, R-Y signal, Y signal, and Y/R-Y/B-Y.

C signal

Chrominance; the color portion of the signal. For example, the Y/C video
format used for S-VHS has separate Y (luminance) and C (chrominance)
signals. See also chrominance.

CAV

Component Analog Video; a generic term for all analog component video
formats, which keep luminance and chrominance information separate. D1
is a digital version of this signal. See also component video.

C format

Type C, or one-inch reel-to-reel videotape machine; an analog composite
recording format still used in some broadcast and postproduction
applications.

CCIR 601

The digital interface standard developed by the CCIR (Comite’ Consultatif
International de Radiodiffusion, International Radio Consultative
Committee) based on component color encoding, in which the luminance
and chrominance (color difference) sampling frequencies are related in the
ratio 4:2:2: four samples of luminance (spread across four pixels), two
samples of CR color difference, and two samples of CB color difference. The

749

Glossary

standard, which is also referred to as 4:2:2, sets parameters for both 525-line
and 625-line systems.

chroma

See chrominance.

chroma keying

Overlaying one video source on another by choosing a key color. For
example, if chroma keying is on blue, video source A might show through
video source B everywhere the color blue appears in video source B. A
common example is the TV weather reporter standing in front of the satellite
weather map. The weather reporter, wearing any color but blue, stands in
front of a blue background; keying on blue shows the satellite picture
everywhere blue appears. Because there is no blue on the weatherperson, he
or she appears to be standing in front of the weather map.

chroma signal

A 3.58MHz (NTSC) or 4.43MHz (PAL) subcarrier signal for color in
television. SECAM uses two frequency-modulated color subcarriers
transmitted on alternate horizontal lines; SCR is 4.406MHz and SCB is
4.250MHz.

chrominance

In an image reproduction system, a separate signal that contains the color
information. Black, white, and all shades of gray have no chrominance and
contain only the luminance (brightness) portion of the signal. However, all
colors have both chrominance and luminance.
Chrominance is derived from the I and Q signals in the NTSC television
system and the U and V signals in the PAL television system. See also
luminance.

chrominance signal

Also called the chroma, or C, signal. The high-frequency portion of the video
signal (3.58MHz for NTSC, 4.43MHz for PAL) color subcarrier with
quadrature modulation by I (R-Y) and Q (B-Y) color video signals. The
amplitude of the C signal is saturation; the phase angle is hue. See also color
subcarrier, hue, and saturation.

750

Glossary

client

In the context of the Video Library, an application that has connected to the
video daemon to perform video requests.

clip

Segment of video, audio, or both. An image is a clip that is one frame long.

color bars

A test pattern used by video engineers to determine the quality of a video
signal, developed by the Society of Television and Motion Picture Engineers
(SMPTE). The test pattern consists of equal-width bars representing black,
white, red, green, blue, and combinations of two of the three RGB values:
yellow, cyan, and magenta. These colors are usually shown at 75% of their
pure values. Figure Gl-1 diagrams the color bars.

Figure Gl-1 SMPTE Color Bars (75%)

color burst

Also called burst and burst flag. The segment of the horizontal blanking
portion of the video signal that is used as a reference for decoding color
information in the active video part of the signal. The color burst is required
for synchronizing the phase of 3.58MHz oscillator in the television receiver
for correct hues in the chrominance signal.
In composite video, the image color is determined by the phase relationship
of the color subcarrier to the color burst. The color burst sync is 8 to 11 cycles
of 3.58MHz color subcarrier transmitted on the back porch of every
horizontal pulse; The hue of the color sync phase is yellow-green.

Blue Black100%
WhiteBlue

75
%

 w
hi

te

Ye
llo

w

C
ya

n

G
re

en

M
ag

en
ta

R
ed

B
lu

e

(lo
ok

s
gr

ay
)

751

Glossary

Figure Gl-2 diagrams the relationship of the color burst and the chrominance
signal. See also color subcarrier and video waveform.

Figure Gl-2 Color Burst and Chrominance Signal

color difference signals

Signals used by color television systems to convey color information so that
the signals go to zero when the picture contains no color; for example,
unmodulated R-Y and B-Y, I and Q, U, and V.

color-frame sequence

In NTSC and S-Video, a two-frame sequence that must elapse before the
same relationship between line pairs of video and frame sync repeats itself.
In PAL, the color-frame sequence consists of four frames.

color space

A space defined by three color components, such as R, G, and B.

color subcarrier

A portion of the active portion of a composite video signal that carries color
information, referenced to the color burst. The color subcarrier’s amplitude
determines saturation; its phase angle determines hue. Hue and saturation

t

t

Zero
phase

reference

Zero
phase

reference

Color burst

C signal

0
180°

90° 57° 147°

(R - Y) (B - Y)
I

Q

752

Glossary

are derived with respect to the color burst. Its frequency is defined as
3.58MHz in NTSC and 4.43MHz in PAL. See also color burst.

complementary color

Opposite hue and phase angle from a primary color. Cyan, magenta, and
yellow are complementary colors for red, green, and blue, respectively.

comb filtering

Process that improves the accuracy of extracting color and brightness
portions of the signal from a composite video source.

component video

A color encoding method for the three color signals—R, G, and B; Y, I, and
Q; or Y, U, and V—that make up a color image. See also RGB, YIQ, and YUV.

component video signals

A video signal in which luminance and chrominance are send as separate
components, for example:

• RGB (basic signals generated from a camera)

• YIQ (used by the NTSC broadcasting standard)

• Y/R-Y/B-Y (used by Betacam and M-II recording formats and SECAM
broadcasting standard)

• YUV (subset of Y/R-Y/B-Y used by the PAL broadcasting standard)
Separating these components yields a signal with a higher color bandwidth
than that of composite video.
Figure Gl-3 depicts video signals for one horizontal scan of a color-bar test
pattern. The RGB signals change in relation to the individual colors in the
test pattern. When a secondary color is generated, a combination of the RGB
signals occurs. Since only the primary and secondary colors are being
displayed at 100% saturation, the R, G, and B waveforms are simply on or
off. For more complex patterns of color, the individual R, G, and B signals
would be varying amplitudes in the percentages needed to express that
particular color.
See also composite video, RGB, YUV, Y/R-Y/B-Y, and YIQ.

753

Glossary

Figure Gl-3 Component Video Signals

W
hi

te

Y
el

lo
w

C
ya

n

G
re

en

M
ag

en
ta

R
ed

B
lu

e

One horizontal
scanning line

1.0

0

1.0

0

0.89 0.70 0.59 0.41 0.30 0.11

0
+

- 0.31 0.21
0.52

0.52
0.21 0.31

0
+

-

0.32

0.60
0.28

0.28
0.60

0.32

0
+

-

0.45 0.63 0.59 0.63 0.450.59
3.58MHz
subcarrier

H blanking
period begins

H sync pulse

1.0
1.34 1.33 1.18 1.00 0.93

0.56
0.44

0.07 0 -0.18
-0.34

3.58MHz
color burst

1.0

0

Time

754

Glossary

compositing

Combining graphics with another image.

composite video

A color encoding method or a video signal that contains all of the color,
brightness, and synchronizing information in one signal. The chief
composite television standard signals are NTSC, PAL, and SECAM. See also
NTSC, PAL, and SECAM.

cross-chrominance, cross-luminance

Also known as cross-color, hanging dots, dot crawl; moving colors on
stationary objects. This undesirable artifact is caused by high bandwidth
luminance information being misinterpreted as color information. Hanging
dots are a byproduct of the comb filters (used to help separate the color and
brightness information) found in most modern television receivers. This
artifact can be reduced or eliminated by using S-Video or a component video
format.

cross-fade

A type of transition in which one video clip is faded down while another is
faded up.

D1

Digital recording technique for component video; also known as CCIR 601,
4:2:2. D1 is the best choice for high-end production work where many
generations of video are needed. D1 can be an 8-bit or 10-bit signal. See also
CCIR 601.

D2

Digital recording technique for composite video. As with analog composite,
the luminance and chrominance information is sent as one signal. A D2 VTR
offers higher resolution and can make multiple generation copies without
noticeable quality loss, because it samples an analog composite video signal
at four times the subcarrier (using linear quantization), representing the
samples as 8-bit digital words. D2 is not compatible with D1.

D3, DX

Developed by Panasonic, a 1/2-inch tape version of D2. More often called
DX.

755

Glossary

decoder

Hardware or software that converts, or decodes, a composite video signal
into the various components of the signal. For example, to grab a frame of
composite video from a VHS tapedeck and store it as an RGB file, it would
have to be decoded first. Several Silicon Graphics video options have
on-board decoders.

dithering

Approximating a signal value on a chroma-limited display device by
producing a matrix of color values that fool human perception into believing
that the signal value is being reproduced accurately. For example, dithering
is used to display a true-color image on a display capable of rendering only
256 unique colors, such as IndigoVideo images on a Starter Graphics display.

drain

In the context of the Video Library, a target or consumer of video signals.

editing

The process in which data is examined, created, and modified. In video, the
part of the postproduction process in which the finished videotape is
derived from raw video footage. Animation is a subset of editing.

encoder

Device that combines the R, G, and B primary color video signals into hue
and saturation for the C portion of a composite signal. Several Silicon
Graphics video options have on-board encoders.

equalizing pulse

Pulse of one half the width of the horizontal sync pulse, transmitted at twice
the rate of the horizontal sync pulse, during the portions of the vertical
blanking interval immediately before and after the vertical sync pulse. The
equalizing pulse makes the vertical deflection start at the same time in each
interval, and also keeps the horizontal sweep circuits in step during the
portions of the vertical blanking interval immediately before and after the
vertical sync pulse.

756

Glossary

event

Exceptional or noteworthy condition produced during video processing,
such as loss of sync, dropping of frames or fields, and synchronization with
other applications.

exclusive use

A term applied to usage of the video data stream and controls on a pathway.
A pathway in exclusive-use mode is available for writing of controls only to
the client that requested the exclusive use, yet any application may read the
controls on that pathway.

fade

To modify the opacity and/or volume of a clip. A faded-up clip is
unaffected, a clip faded down to 50% has 50% less opacity or volume, and a
faded-down clip is completely transparent of turned off.

field

One of two (or more) equal parts of information in which a frame is divided
in interlace scanning. A vertical scan of a frame carrying only its
odd-numbered or its even-numbered lines. The odd field and even field
make up the complete frame. See also frame and interlace.

field averaging

A filter that corrects flicker by averaging pixel values across successive
fields. See also flicker.

field blanking

The blanking signals at the end of each field, used to make the vertical
retrace invisible. Also called vertical blanking; see vertical blanking and
vertical blanking interval.

filter

To process a clip with spatial or frequency domain methods. Each pixel is
modified by using information from neighboring (or all) pixels of the image.
Filter functions include blur (low-pass) and crisp (high-pass).

flicker

The effect caused by a one-pixel-deep line in a high-resolution graphics
frame that is output to a low-resolution monitor, because the line is in only

757

Glossary

one of the alternating fields that make up the frame. This effect can be
filtered out by field averaging. See also field and frame.

frame

The result of a complete scanning of one image. In television, the odd field
(all the odd lines of the frame) and the even field (all the even lines of the
frame) make up the frame. In motion video, the image is scanned repeatedly,
making a series of frames.

freeze, freeze-frame

A condition on the digitized video signal where the digitizing is stopped and
the contents of the signal appear frozen on the display or in the buffer.
Sometimes used to capture the video data for processing or storage.

frequency

Signal cycles per second.

frequency interlace

Placing of harmonic frequencies of C signal midway between harmonics of
horizontal scanning frequency Fh. Accomplished by making color
subcarrier frequency exactly 3.579545MHz. This frequency is an odd
multiple of H/2.

front porch

The portion of the video signal between the end of active video and the
falling edge of sync. See also back porch, horizontal blanking, and video
waveform.

G-Y signal

Color mixture close to green, with a bandwidth 0.0MHz to 0.5MHz. Usually
formed by combining B-Y and R-Y video signals.

758

Glossary

gamma correction

Correction of gray-scale inconsistency. The brightness characteristic of a CRT
is not linear with respect to voltage; the voltage-to-intensity characteristic is
usually close to a power of 2.2. If left uncorrected, the resulting display has
too much contrast and detail in black regions is not reproduced.
To correct this inconsistency, a correction factor using the 2.2 root of the input
signal is included, so that equal steps of brightness or intensity at the input
are reproduced with equal steps of intensity at the display.

genlocking

Synchronizing with another video signal serving as a master timing source.
The master timing source can be a composite video signal, a video signal
with no active video (only sync information), or, for video studio, a device
called house sync. When there is no master sync available, VideoFramer, for
example, can be set to “free run” (or “stand-alone”) mode, so that it becomes
the master timing device to which other devices sync. See also line lock.

gray-scale

Monochrome or black-and-white, as in a monitor that does not display color.

H rate

Number of complete horizontal lines, including trace and retrace, scanned
per second.

HDTV

High-definition television. Though there is more than one proposal for a
broadcast standard for HDTV, most currently available equipment is based
on the 1125/60 standard, that is, 1125 lines of video, with a refresh rate of
60Hz, 2:1 interlacing (same as NTSC and PAL), and aspect ratio of 16:9 (1920
x 1035 viewable resolution), trilevel sync, and 30MHz RGB and luminance
bandwidth.

Hi-8mm

An 8mm recording format developed by Sony; accepts composite and
S-Video signals.

759

Glossary

horizontal blanking

The period when the electron beam is turned off, beginning when each scan
line finishes its horizontal path (scan) across the screen (see Figure Gl-4).

Figure Gl-4 Horizontal Blanking

Visible
Video
Picture

Active Video Area

Front
Porch

Hor.
Sync
Pulse

Back
Porch Front

Porch
Hor.
Sync
Pulse

Back
Porch

(NOT DRAWN

Setup Level 7.5 IRESetup Level 7.5 IRE

Front porch = 1.5 sec.
Hor. sync = 4.7 sec
Back porch = 4.7 sec.

FCC NTSC standards:

Blanking period = 10.9 sec.

TO SCALE)

760

Glossary

horizontal blanking interval

Also known as the horizontal retrace interval, the period when a scanning
process is moving from the end of one horizontal line to the start of the next
line. This portion of the signal is used to carry information other than video
information. See also video waveform.

Figure Gl-5 Horizontal Blanking Interval

horizontal drive

The portion of the horizontal blanking part of the video signal composed of
the sync pulse together with the front porch and breezeway; that is,
horizontal blanking minus the color burst. See also video waveform.

horizontal sync

The lowest portion of the horizontal blanking part of the video signal, it
provides a pulse for synchronizing video input with output. Also known as
h sync. See also horizontal blanking and video waveform.

100

80

60

40

20

0

-20

-40

7.5

NTSC

Color burst signal

Horizontal
sync pulse

Start of horizontal
blanking period

Video black

Level 7.5 IRE

End of horizontal
blanking period

Breezeway
(period between the sync
pulse and color burst.)

Back porch

+

+

-

-
Line lock

0 phase point

Burst lock
0 phase point

Setup

761

Glossary

HSI

See hue-saturation-intensity.

HSV

Hue-saturation-value; see hue-saturation-intensity.

hue

The designation of a color in the spectrum, such as cyan, blue, magenta.
Sometimes called tint on NTSC television receivers. The varying phase
angles in the 3.58MHz (NTSC) or 4.43MHz (PAL) C signal indicate the
different hues in the picture information.

hue-saturation-intensity

A tri-stimulus color system based on the parameters of hue, saturation, and
intensity (luminance). Also referred to as HSI or HSV.

I signal

Color video signal transmitted as amplitude modulation of the 3.58MHz C
signal (NTSC). The hue axis is orange and cyan. This signal is the only color
video signal with a bandwidth of 0 to 1.3MHz.

image plane

See bitplane.

image processing

Manipulating an image by changing its color, brightness, shape, or size.

interlace

A technique that uses more than one vertical scan to reproduce a complete
image. In television, the 2:1 interlace used yields two vertical scans (fields)
per frame: the first field consists of the odd lines of the frame, the other of the
even lines. See also field and frame.

IRE units

A scale for measuring analog video signal levels, normally starting at the
bottom of the horizontal sync pulse and extending to the top of peak white.
Blanking level is 0 IRE units and peak white level is 100 IRE units (700mv).
An IRE unit equals 7.14mv (+100 IRE to -40 IRE = 1v). IRE stands for Institute
of Radio Engineers, a forerunner of the IEEE.

762

Glossary

keying

Combining proportional amounts of two frames, pixel by pixel, with
optional opacity. This process resembles taking two panes of glass with
images on them and placing one pane on top of the other. The opacity of the
top pane determines the parts of the bottom pane that show. Usually, keying
is a real-time continuous process, as in the “over the shoulder” graphics in
TV news programs. The alpha component of each pixel, which defines its
opacity, determines how the images are combined. Combining images based
on the alpha component is often called alpha keying or luma keying. See also
compositing and mixing.

leading edge of sync

The portion of the video waveform after active video, between the sync
threshold and the sync pulse. See also video waveform.

level

Signal amplitude.

line

The result of a single pass of the sensor from left to right across the image.

line blanking

The blanking signal at the end of each horizontal scanning line, used to make
the horizontal retrace invisible. Also called horizontal blanking.

line frequency

The number of horizontal scans per second, normally 15,734.26 times per
second for NTSC color systems. The line frequency for the PAL 625/50H.
system is 15,625 times per second.

line lock

Input timing that is derived from the horizontal sync signal, also implying
that the system clock (the clock being used to sample the incoming video) is
an integer multiple of the horizontal frequency and that it is locked in phase
to the horizontal sync signal. See also at video waveform.

linear matrix transformation

The process of combining a group of signals through addition or subtraction;
for example, RGB signals into luminance and chrominance signals.

763

Glossary

live video

Video being delivered at a nominal frame rate appropriate to the format.

luma

See luminance.

luminance

The video signal that describes the amount of light in each pixel. Luminance
is a weighted sum of the R, G, and B signals. See also chrominance and Y
signal.

map

Numerical lookup of pixel data that modifies each pixel without using
neighboring pixels. This large category of video editing functions includes
clip/gain, solarization, and histogram equalization.

MII (M2)

A second-generation recording format based on a version of the Y/R-Y/B-Y
video signal. Developed by Panasonic, MII is also marketed by other video
manufacturers. Though similar to Betacam, it is nonetheless incompatible.

matrix transformation

The process of converting analog color signals from one tristimulus format
to another, for example, RGB to YUV. See also tristimulus color system.

mixing

In video editing, combining two clips frame by frame, pixel by pixel.
Usually, a linear interpolation between the pixels in each clip is used, with
which one can, for example, perform a cross-fade. Other operations include
averaging, adding, differencing, maximum (non-additive mix), minimum,
and equivalence (white where equal, else black). See also compositing and
keying.

multiburst

A test pattern consisting of sets of vertical lines with closer and closer
spacing; used for testing horizontal resolution of a video system.

764

Glossary

NTSC

A color television standard or timing format encoding all of the color,
brightness, and synchronizing information in one signal. Used in North
America, most of South America, and most of the Far East, this standard is
named after the National Television Systems Committee, the standardizing
body that created this system in the U.S. in 1953. NTSC employs a total of 525
horizontal lines per frame, with two fields per frame of 262.5 lines each. Each
field refreshes at 60Hz (actually 59.94Hz).

Nyquist limit

The highest frequency of input signal that can be correctly sampled without
aliasing. The Nyquist limit is equal to half of the sampling frequency.

offset

In the context of a video signal, the relative coordinates from the upper left
corner of the video image where signal sampling begins.

overscan

To scan a little beyond the display raster area of the monitor so that the edges
of the raster are not visible. Television is overscanned; computer displays are
underscanned.

PAL

A color television standard or timing format developed in West Germany
and used by most other countries in Europe, including the United Kingdom
but excluding France, as well as Australia and parts of the Far East. PAL
employs a total of 625 horizontal lines per frame, with two fields per frame
of 312.5 lines per frame. Each field refreshes at 50Hz. PAL encodes color
differently from NTSC. PAL stands for Phase Alternation Line or Phase
Alternated by Line, by which this system attempts to correct some of the
color inaccuracies in NTSC. See also NTSC and SECAM.

pathway

In the Video Library, a connection of sources and drains that provide useful
processing of video signals. Pathways have controls and video streams.
Pathways can be locked for exclusive use, and are the target of events
generated during video processing. See also exclusive use and event.

765

Glossary

pedestal

See setup; see also video waveform.

pixel

Picture element; the smallest addressable spatial element of the computer
graphics screen. A digital image address, or the smallest reproducible
element in analog video. A pixel can be monochrome, gray-scale, or color,
and can have an alpha component to determine opacity or transparency.
Pixels are referred to as having a color component and an alpha component,
even if the color component is gray-scale or monochrome.

pixel map

A two-dimensional piece of memory, any number of bits deep. See also
bitmap.

postproduction

The processes that occur before release of the finished video product,
including editing, painting (2D graphics), production, and 3D graphics
production.

primary colors

Red, green, and blue. Opposite voltage polarities are the complementary
colors cyan, magenta, and yellow.

Q signal

The color video signal that modulates 3.58MHz C signal in quadrature with
the I signal. Hues are green and magenta. Bandwidth is 0.0MHz to 0.5MHz.
See also C signal, I signal, YC, and YIQ.

quantization error

The magnitude of the error introduced in a signal when the actual signal is
between levels, resulting from subdividing a video signal into distinct
increments, such as levels from 0 to 255.

raster

The scanning pattern for television display; a series of horizontal lines,
usually left to right, top to bottom. In NTSC and PAL systems, the first and
last lines are half lines.

766

Glossary

raster operation, raster op

A logical or arithmetic operation on a pixel value.

registration

The process of causing two frames to coincide exactly. In component video
cameras or displays, the process of causing the three color images to coincide
exactly, so that no color fringes are visible.

resolution

Number of horizontal lines in a television display standard; the higher the
number, the greater a system’s ability to reproduce fine detail.

RGB

Red, green, blue; the basic component set used by graphics systems and
some video cameras, in which a separate signal is used for each primary
color.

RGB format

The technical specification for NTSC color television. Often (incorrectly)
used to refer to an RGB signal that is being sent at NTSC composite timings,
for example, a Silicon Graphics computer set to output 640 x 480. The timing
would be correct to display on a television, but the signal would still be split
into red, green and blue components. This component signal would have to
go through an encoder to yield a composite signal (RS-170A format) suitable
for display on a television receiver.

R-Y (R minus Y) signal

A color difference signal obtained by subtracting the luminance signal from
the red camera signal. It is plotted on the 90 to 270 degree axis of a vector
diagram. The R-Y signal drives the vertical axis of a vectorscope. The color
mixture is close to red. Phase is in quadrature with B-Y; bandwidth is
0.0MHz to 0.5MHz. See also luminance, B-Y (B minus Y) signal, Y/R-Y/B-Y,
and vectorscope.

sample

To read the value of a signal at evenly spaced points in time; to convert
representational data to sampled data (that is, synthesizing and rendering).

767

Glossary

sampling rate, sample rate

Number of samples per second.

saturation

Color intensity; zero saturation is white (no color) and maximum saturation
is the deepest or most intense color possible for that hue. Different saturation
values are varying peak-to-peak amplitudes in the 3.58MHz modulated C
signal. In signal terms, saturation is determined by the ratio between
luminance level and chrominance amplitude. See also hue.

scaling

To change the size of an image.

scan

To convert an image to an electrical signal by moving a sensing point across
the image, usually left to right, top to bottom.

SECAM

Sequentiel Couleur avec Memoire, the color television system developed in
France and used there as well as in eastern Europe, the Near East and
Mideast, and parts of Africa and the Caribbean.

setup

The difference between the blackest level displayed on the receiver and the
blanking level (see Figure Gl-6). A black level that is elevated to 7.5 IRE
instead of being left at 0.0 IRE, the same as the lowest level for active video.
Because the video level is known, this part of the signal is used for
black-level clamping circuit operation. Setup is typically used in the NTSC
video format and is typically not used in the PAL video format; it was
originally introduced to simplify the design of early television receivers,
which had trouble distinguishing between video black levels and horizontal
blanking. Also called pedestal.

768

Glossary

Figure Gl-6 shows waveform displays of a signal with and without setup.
See also video waveform.

Figure Gl-6 Waveform Monitor Readings with and without Setup

smear

An artifact usually caused by mid-frequency distortions in an analog system
that results in the vertical edges of the picture spreading horizontally.

SMPTE time code

A signal specified by the Society of Motion Picture and Television Engineers
for facilitating videotape editing; this signal uniquely identifies each frame
of the video signal. Program originators use vertical blanking interval lines
12 through 14 to store a code identifying program material, time, frame
number, and other production information (see Figure Gl-7).

Figure Gl-7 SMPTE Time Code

100

80

60

40

20

0

-20

-40

7.5

NTSC

Without Setup level

100

80

60

40

20

0

-20

-40

7.5

NTSC

With Setup level

00:00:00.00

Hours

Minutes

Seconds

Frame

PAL = 25 frames/sec. (0-24)

NTSC = 30 frames/sec. (0-29)

769

Glossary

source

In the context of the Video Library, a provider of video input signals.

subcarrier

A portion of a video signal that carries a specific signal, such as color. See
color subcarrier.

subpixel

A unit derived from a pixel by using a filter for sizing and positioning.

S-VHS, S-Video

Video format in which the Y (luminance) and C (chrominance) portions of
the signal are kept separate. Also known as YC.

sync information

The part of the television video signal that ensures that the display scanning
is synchronized with the broadcast scanning. See also video waveform.

sync pulse

A vertical or horizontal pulse (or both) that determines the display timing of
a video signal. Composite sync has both horizontal and vertical sync pulses,
as well as equalization pulses. The equalization pulses are part of the
interlacing process.

sync tip

The lowest part of the horizontal blanking interval, used for
synchronization. See also video waveform.

synchronize

To perform time shifting so that things line up.

texturing

Applying images to three-dimensional objects to give additional realism to
displayed renderings.

770

Glossary

termination

To send a signal through a transmission line accurately, there must be an
impedance at the end which matches the impedance of the source and of the
line itself. Amplitude errors, frequency response, and pulse distortions and
reflections (ghosting) occur on a line without proper termination. Video is a
75Ohm system; therefore a 75Ohm terminator of .5% to .25% accuracy must
be installed at the end of the signal path.

threshold

In a digital circuit, the signal level that is specified as the division point
between levels used to represent different digital values; for example, the
sync threshold is the level at which the leading edge of sync begins. See also
video waveform.

time-base errors

Analog artifacts caused by nonuniform motion of videotape or of the tape
head drum. Time-base errors usually cause horizontal display problems,
such as horizontal jitter.

time code

See SMPTE time code.

time-delay equalization

Frame-by-frame alignment of all video inputs to one sync pulse, so that all
frames start at the same time. This alignment is necessary because cable
length differences cause unequal delays. See time-base errors.

transcoder

A device that converts a component video signal to a different component
video signal, for example, RGB to Y/R-Y/B-Y, or D1 to RGB.

transducer

A microphone, video camera, or other device that can convert sounds or
images to electrical signals.

transform

The geometric perspective transformation of 3-D graphics models and
planar images.

771

Glossary

tristimulus color system

A system of transmitting and reproducing images that uses three color
signals, for example, RGB, YIQ, and YUV.

U signal

One of the chrominance signals of the PAL color television system, along
with V. Sometimes referred to as B-Y, but U becomes B-Y only after a
weighting factor of 0.493 is applied. The weighting is required to reduce
peak modulation in the composite signal.

U-Matic

Sony trademark of its 3/4-inch composite videotape format. SP U-Matic is
an improved version using metal tape.

underscan

To scan a television screen so that the edges of the raster are visible. See also
overscan.

V signal

One of the chrominance signals of the PAL color television system, along
with U. Sometimes referred to as R-Y, but V becomes R-Y only after a
weighting factor of 0.877 is applied. The weighting is required to reduce
peak modulation in the composite signal.

vectorscope

A specialized oscilloscope that demodulates the video signal and presents a
display of R-Y versus B-Y for NTSC (V and U for PAL). Video engineers use
vectorscopes to measure the amplitude (gain) and phase angle (vector) of the
primary (red, green, and blue) and the secondary (yellow, cyan, and
magenta) color components of a television signal.

vertical blanking

The portion of the video signal that is blanked so that the vertical retrace of
the beam is not visible.

772

Glossary

vertical blanking interval

The blanking portion at the beginning of each field. It contains the
equalizing pulses, the vertical sync pulses, and vertical interval test signals
(VITS). Also the period when a scanning process is moving from the lowest
horizontal line back to the top horizontal line.

video level

Video signal amplitude.

video output

See drain.

video signal

The electrical signal produced by a scanning image sensor.

videotape formats

Table Gl-1 lists major videotape formats.

Table Gl-1 Videotape Formats

Electronics Consumer Professional Broadcast Postproduction

Analog VHS cassette U-Matic (SP) cassette, 3/4-inch Type C reel-to-reel, 1-inch composite

S-VHS Type B (Europe), composite

S-Video (YC-358) S-Video (YC-358)

Beta

8mm

Hi-8mm (YC) Hi-8mm (YC)

Betacam (component)

Type MII (component)

Digital D1 525/625 (YUV)

D2 525 (NTSC)

D2 625 (PAL)

773

Glossary

video waveform

The main components of the video waveform are the active video portion
and the horizontal blanking portion. Certain video waveforms carry
information during the horizontal blanking interval.
Figure Gl-8 and Figure Gl-9 diagram a typical red or blue signal, which
carries no information during the horizontal blanking interval, and a typical
Y or green-plus-sync signal, which carries a sync pulse.

Figure Gl-8 Red or Blue Signal

Figure Gl-9 Y or Green Plus Sync Signal

Horizontal Blanking

Active Video Active Video

Horizontal Blanking

Active Video Active Video

774

Glossary

Figure Gl-10 and Figure Gl-11 show the video waveform and its components
for composite video in more detail. The figures show the composite video
waveform with and without setup, respectively.
Figure Gl-10 shows a composite video signal with setup.

Figure Gl-10 Video Waveform: Composite Video Signal With Setup (Typical
NTSC)

Active Video Active Video

100% Sync

50% Sync

0% Sync

Line Lock
0 Phase Point

Burst Lock
0 Phase Point

Back Porch

+7.5 IRE

0 IRE
Black Level
Blanking Level

Setup or

Leading Edge
of Sync

Pedestal

775

Glossary

Figure Gl-11 shows a composite video signal without setup.

Figure Gl-11 Video Waveform: Composite Video Signal (Typical PAL)

white level

In the active video portion of the video waveform, the 1.0-volt (100 IRE)
level. See also video waveform.

Y signal

Luminance, corresponding to the brightness of an image. See also luminance
and Y/R-Y/B-Y.

Active Video Active Video

Back Porch

100 IRE
1.0 Volts

0 IRE

-40 IRE
0.0 Volts

Burst

Breezeway

Sync or
Front
Porch

H Sync

Horizontal
Blanking

White Level

Blanking

Sync Tip

and Black Level

776

Glossary

YC

A color space (color component encoding format) based on YIQ or YUV. Y is
luminance, but the two chroma signals (I and Q or U and V) are combined
into a composite chroma called C, resulting in a two-wire signal. C is derived
from I and Q as follows:
C - I cos(2 fsct) + Q sin(2 fsct)
where fsc is the subcarrier frequency. YC-358 is the NTSC version of this
luminance/chrominance format; YC-443 is the PAL version. Both are
referred to as S-Video formats.

YIQ

A color space (color component encoding format) used in decoding, in
which Y is the luminance signal and I and Q are the chrominance signals.
The two chrominance signals I and Q (in-phase and quadrature,
respectively) are two-phase amplitude-modulated; the I component
modulates the subcarrier at an angle of 0 degrees and the Q component
modulates it at 90 degrees. The color burst is at 33 degrees relative to the Q
signal.
The amplitude of the color subcarrier represents the saturation values of the
image; the phase of the color subcarrier represents the hue value of the
image.
Y = 0.299R + 0.587G + 0.114B
I = 0.596R - 0.275G - 0.321B
Q = 0.212R - 0.523G + 0.311B

Y/R-Y/B-Y

A name for the YUV color component encoding format that summarizes
how the chrominance components are derived. Y is the luminance signal
and R-Y and B-Y are the chrominance signals. R-Y (red minus Y) and B-Y
(blue minus Y) are the color differences or chrominance components. The
color difference signals R-Y and B-Y are derived as follows:
Y = 0.299R + 0.587 + 0.114B
Y/R-Y/B-Y has many variations, just as NTSC and PAL do. All component
and composite color encoding formats are derived from RGB without scan
standards being changed. The matrix (amount of red, green, and blue)
values and scale (amplitude) factors can differ from one component format
to another (YUV, Y/R-Y, B-Y, SMPTE Y/R-Y, B-Y).

777

Glossary

YUV

A color space (color component encoding format) used by the PAL video
standard, in which Y is the luminance signal and U and V are the
chrominance signals. The two chrominance signals U and V are two-phase
amplitude-modulated. The U component modulates the subcarrier at an
angle of 0 degree, but the V component modulates it at 90 degrees or 180
degrees on alternate lines. The color burst is also line-alternated at +135 and
-135 degrees relative to the U signal. The YUV matrix multiplier derives
colors from RGB via the following formula:
Y = .299R + .587 G + .114 B
CR = R - Y
CB = B - Y
In this formula, Y represents luminance; red and blue are derived from it: CR
denotes red and (V), CB denotes blue. V corresponds to CR; U corresponds
to CB c. The U and V signals are carried on the same bandwidth. This system
is sometimes referred to as Y/R-Y/B-Y.
The name for this color encoding method is YUV, despite the fact that the
order of the signals according to the formula is YVU.

778

Glossary

779

AES3-1985 (ANSI S4.40-1985), 136
AF_FILE_AIFF, 134
AF_FILE_AIFFC, 134
AFclosefile(), 149
AFfilehandle, 132
AFfilesetup, 132

creating, 132
defaults, 132
freeing, 133
parameters, 132
setting, 134

AFfreefilesetup(), 133
AFgetaeschanneldata(), 155
AFgetchannels(), 155
AFgetcompression, 156
AFgetcompressionname(), 158
AFgetcompressionparams(), 156
AFgetfd(), 148
AFgetfilefmt(), 150
AFgetframecnt(), 158
AFgetinstids(), 163
AFgetinstparamlong(), 164
AFgetloopend(), 167
AFgetloopmode(), 165
AFgetloopstart(), 166
AFgetmarkids(), 159
AFgetmarkname(), 159
AFgetmarkpos(), 160
AFgetmiscids(), 168

Numbers

4-channel audio
cabling, 49-50
configuring hardware, 101
frames

illustrated, 70
Indigo2, 46
Indy, 46
input, 94
output, 96
querying, 111

4Dgifts, 61
8mm video, 258

A

adding
movie

parameters, 598
example, 599, 600

tracks, 622-623
movie tracks

example, 623
adding algorithms to the Compression Library, 567
ADPCM, 138
AES

channel status bytes, 136
jacks, 136
resolutions, 71
standard, 136

Index

780

Index

AFgetmiscsize(), 169
AFgetmisctype(), 168
AFgetrate(), 152
AFgetsampfmt(), 152
AFidentifyfd(), 150
AFinitaeschanneldata(), 136
AFinitchannels(), 135
AFinitcompression(), 136
AFinitcompressionparams(), 136
AFinitfilefmt(), 134
AFinitinstids(), 140
AFinitloopids(), 140
AFinitmarkids(), 139
AFinitmarkname, 139
AFinitmiscids(), 141
AFinitmiscsize(), 142
AFinitmisctype(), 141
AFinitrate, 134
AFinitsampfmt(), 135
AF Library, 127-180

AFfilehandle, 132
chunks, 129, 131
compiling, 62
error handling, 128
example, 177, ??-180
file formats, 127, 134
tasks, 127

AFLibrary
AFfilesetup, 132

AFnewfilesetup(), 132
AFopenfd(), 148
AFopenfile(), 147
AFreadframes(), 161
AFreadmisc(), 170
AFseekframe(), 161
AFseekmisc(), 170

AFsetaeschanneldata(), 136
AFseterrorhandler(), 128
AFsetinstparamlong(), 165
AFsetloopend(), 167
AFsetloopmode(), 166
AFsetloopstart(), 167
AFsetmarkpos(), 160
AFsyncfile(), 149
AFwriteframes(), 162
AFwritemisc(), 170
AIFF, 131
AIFF-C, 129-??, 131, ??-131

chunks, 131
ALcloseport(), 88
ALconfigs, 74-87

cloning, 85
creating, 76
default, 74
defined, 69
freeing, 85

ALerrfunc, 73
ALfreeconfig(), 85
ALgetchannels(), 78
ALgetconfig(), 85
ALgetdefault(), 104
ALgetfd(), 120
ALgetfillable(), 92
ALgetfilled(), 92, 93
ALgetfillpoint(), 121
ALgetfloatmax, 84
ALgetminmax(), 104
ALgetname(), 105
ALgetparams(), 106
ALgetqueuesize(), 79
ALgetsampfmt(), 81
ALgetstatus(), 93, 97

781

Index

ALgetwidth(), 83
algorithm-independent compression, 478
algorithms

adding to the Compression Library, 563
Compression Library, 537

allocating, 142
buffers

audio, 21
image, 24

parameter-value lists, 17
ALnewconfig(), 76
ALopenport(), 88
ALports, 74-89

allocating and initializing, 88
closing and deallocating, 88
configuring, 74-87

example, 76
counting, 100
defined, 68
features, 74
opening and closing, 87-89

example, 89
static settings, 75

ALqueryparams(), 103
ALreadsamps(), 94

conversions, 95
fill points, 121

ALsetchannels(), 77
errors and returns, 77

ALseterrorhandler(), 73
ALsetfillpoint(), 120
ALsetparams(), 104, 106
ALsetqueuesize(), 79
ALsetsampfmt(), 80-81
ALsetwidth(), 82-83
ALwritesamps(), 96

fill points, 121
analog-to-digital (A/D) converters, 71

animation, 476
ANSI C, 63
apanel, 57, 58, 59, 60
API

Compression Library, 491
Apple Computer, Inc.

AIFF format, 131
applications

Movie Library, 580
arenas

shared, 123
example, 124-??

assertions
DM Library, 16
Movie Library, 590

attenuation
audio, 99, 101

audio
4-channel

cabling, 49-50
adding a movie soundtrack, 623
attenuation, 99, 101
breaks

cause, 78, 91
troubleshooting, 97

buffer size, 21
CD Audio Library
changing

global state, 107
channels for movies, 605
clipping, 57
compression

Aware, Inc., 61
compression for movies, 606
concurrent, 57, 59
confidence tests, 60
configurations, 74-87

cloning, 85
connections, 68, 74

782

Index

conversions, 72
core global parameters, 99
defaults, 20

floating point range, 84
I/O rate, 59
movie, 603
port, 74

devices, 68
digitizing, 69
discontinuities, 97
disk space, 50
distortion, 107
error handlers, 73
examples, 61
file descriptors, 119
fill points, 120

illustrated, 121
formats, 71
formats for movies, 605
frames, 70

illustrated, 70
getting file descriptors, 120
global state, 59, 98
hardware specifications, 723, 726
icons, 44
Indigo

features, 43-44
hardware, 43-45
jacks, 44

Indigo2

features, 46
hardware, 46-47
jacks, 46, 47

Indy
features, 46-50
hardware, 46-50
jacks, 48
volume buttons, 48

input, 94-95
4-channel, 94
conversions, 95

interleaving, 70
I/O

errors, 97-98
mutiplexing, 119

libraries, 6
limiting, 57
memory requirements, 50
monitoring, 100
movie

defaults
volume, 604

native formats, 605
properties, 603
track properties, 603

native formats, 71
nonblocking I/O, 92
Nyquist Theorem, 69
output, 95-96

conversions, 96
overflow, 93
overflow and underflow, 98

illustrated, 91
parameters, 19

current value, 106
getting and setting, 102-107
names, 105
setting, 104, 106
special features, 101

parameter-value buffer, 102
performancetuning, 97
ports, 74-89

allocating and initializing, 88
channels, 77
closing and deallocating, 88
configuring, 74-87
counting, 100
default, 74
defined, 68
example, 76
formats, 80
movies, 649

783

Index

names, 88
opening and closing, 87-89

example, 89
queue size, 79
static settings, 75

precision, 81
prioritizing, 122
priority, 57
process control, 122
programming

guidelines, 59
quality, 69
quantization steps, 84
querying

4-channel, 111
concurrent processes, 107-108
I/O rates, 108-110
supported features, 99

queues, 90-93
illustrated, 91
size, 78-80, 92
size limits, 79
status, 92
thresholds, 120

reading and writing data, 93-96
real-time programming, 119-??
references, 40
resolutions, 71, 82
sample rate for movies, 604
samplers, 130
sample width for movies, 604
sample widths

getting and setting, 81
sampling, 69
sampling from CD

example, 196
sampling rates, 44
scheduling control, 122
selecting inputs and outputs, 99
silence

cause, 91

troubleshooting, 97
system software, 55
third-party software, 61-62
threshold, 120
time required for output, 95
tools, 60
underflow, 93
writing samples, 95-96

Audio Engineering Society. See AES
Audio File (AF) Library. See AF Library
Audio File Library

purpose, 7
Audio File Library, libaudiofile

accessing Aware compression from, 733
audio files

AES, 155
AES channel status bytes, 136
AIFF-C, 129-131
channels, 135, 136
closing, 149
compression, 131, 136, 156

name, 158
configuring tracks, 134-135
creating and configuring, ??-133
defaults, 132
editing

soundeditor, 60
emphasis, 135
file descriptors, 148
file formats, 150
formats, 129, 135, 152
frame counts, 158
frames, 130, 161
initializing

format, 134
initializing tracks, 134
instrument configurations, 130, 140, 163-167

defined, 129
IDs, 163
parameters, 164

784

Index

writing, 165
loops, 130, 140

ending, 167
getting and setting, 165
mode, 166
start, 166

markers, 129, 159
IDs, 139
names, 159
position, 160
track, 130

miscellaneous chunks, 142, 168-171
IDs, 141
parameters, 168
reading, 170
seeking, 170
size, 169
types, 141, 142, 168
writing, 170

opening, 147
previewing, 60
reading and writing, 150-160
sampling rate, 152
seeking, 161
setup, 128
tracks, 130

defined, 129
updating, 149
writing, 149, 162

Audio Interchange File Format with Compression. See
AIFF-C

audio I/O, 93-96
Audio Library, 67-??

ALconfigs, 69
ALports, 68
compiling, 62
data types, 82
error handling, 72
examples, 107-111, 123-??
features, 68

initializing, 74-89
programming

model, 68
outline, 73

purpose, 7
Audio Utility Library

purpose, 7
Aware

audio compression
accessing from the AL, 733
accessing from the CL, 736
software engines, 729

audio compression for multimedia applications,
538

audio libraries, 51
AudioPlayback, 731
AudioProducer, 731
AudioPublisher, 731
AudioSuite, 732
compression software, 475
compression software specifications, 741
MPEG noise-to-mask ratio, 738
MultiRate, 733, 734, 735, 736, 737, 738
MultiRate specifications, 741
obtaining software licenses, 730
Speed-of-Sound library, 732

Aware, Inc.
audio compression software, 61
contacting, 61

B

Betacam, 255, 258
Betacam SP, 258
binding

movies to windows, 648-650
audio considerations, 649
multiple movies, 650

785

Index

blocking
audio

preventing, 92
blocks

CD, 189-190
seeking, 190

brightness. See luminance
broadcast video

formats, 258
standards, 253

buffered interface of the Compression Library, 492
buffering interface of the Compression LIbrary, 506
buffers

allocating for movies
example, 628

audio
size, 21

image
size, 25

internal versus external, 507
managing when adding algorithms, 568
movies

allocating, 627
non-blocking playback, 515
non-blocking recording application, 517
playback application, 514
record application, 516
ring, 506

.bw images in movies, 609
byte ordering

DATs, 204
B-Y video signal, 255

C

C++
references, 40

callbacks
CD, 191, 192-194

adding, 193
removing, 194

DAT parser, 215-216
capacity

CDs, 186
catalog numbers

DAT, 204
CCIR 601 video standard, 255
CCITT /TSB G.711 A-law, 482
CCITT/TSB G.711 mu-law, 482
–cckr, 63
CDallowremoval(), 187
CDatomsf(), 188, 189
CD Audio Library, 183-199

compiling, 63
example, 196
features, 184
purpose, 7

CDbestreadsize(), 191
CDclose(), 187
CDcreateparser(), 192
CDDA_DATASIZE, 185
CDdeleteparser(), 194
CDeject(), 187
CDFRAME, 184
CDframetomsf(), 189
CDgetstatus(), 189, 195
CDgettrackinfo(), 195
cdman, 60
CDmsftoframe(), 188
CDparseframe(), 194
CDplay(), 190
CDplayabs(), 191
CDplaytrack(), 190
CDplaytrackabs(), 191

786

Index

CDpreventremoval(), 187
CDreadda(), 191
CDremovecallback(), 194
CDresetparser(), 192
CD-ROM

movies, 617
testing movie I/O, 591

CD-ROM drives
confidence tests, 60
controlling, 187
playing audio CDs, 190-199
status, 194

CDs
audio libraries, 51
blocks, 189-190
byte ordering, 185
callbacks, 191, 192-194
capacity, 186
conversions

ISRC to ASCII, 195
locations, 188-190
time codes, 195

ejecting, 187
frame counts, 188
frames, 184
ISRC, 185
lead-in track, 185
locations, 187-190

conversions, 188-190
current, 189
formats, 188

navigating, 187-190
parser, 192-194

basics, 186
callbacks, 193
freeing, 194
initializing, 192
resetting, 192

parsing, 192-194
pausing, 190

playing
cdman, 60

preemphasis in AES bytes, 135
preventing ejection, 187
reading, 191
recording to DAT, 136
sample rate, 185
samples, 184

illustrated, 185
seeking, 187-190

blocks, 190
tracks, 189

status, 189
subcodes, 184

modes, 185
subcodeQ, 184, 185

table of contents, 185
time codes, 186
tracks, 186

playing, 191
cdsample.c, 196
CDsbtoa(), 195
CDseek(), 189
CDseekblock(), 189
CDseektrack, 189
CDstop(), 190
CDtctoframe(), 188, 189
CDtimetoa(), 195
CDtogglepause(), 190
CHALLENGE, 262
changing

audio
global state, 107

channels
audio

configuring, 77
defaults, 74

audio files, 135
DAT, 204

787

Index

checking
audio

parameter ranges, 104
parameters, 31

chunks
AF Library, 129, 131
AIFF-C, 131
miscellaneous, 142

CL_BEST_FIT, 484
CL_GRAYSCALE, 485
CL_MVC1

in an example, 499, 505
CL_ORIENTATION, 484
CL_RGB, 485
CL_RGB332, 485
CL_RGBA, 485
CL_RGBX, 485
CL_Y, 485
CL_YCbCr, 486
CL_YUV, 486
CL_YUV422, 486
CL_YUV422DC, 486
clAddAlgorithm(), 564
clAddParam(), 572
clCloseCompressor(), 499
clCloseDecompressor(), 505
clCompress(), 498, 499, 516, 518
clCompressImage(), 494
clCreateBuf(), 501, 507
clDecompress(), 503, 504, 514
clDecompressImage(), 496
clDestroyBuf, 507
clDone(, 570
clDoneUpdatingHead(), 509, 515
clGetAlgorithmName(), 542
clGetUnique(), 566

clicks
audio, 78

clients
Video Library (VL), 264

clipping
audio, 57

cloning
ALconfigs, 85

clOpenCompressor(), 497
clOpenDecompressor(), 503
close(), 206
closing

CD-ROM device, 187
movies, 636

clQuery(), 515, 517
clQueryAlgorithms(), 541
clQueryBufferHdl(), 508
clQueryFree(), 509, 511
clQueryHandle(), 508
clQueryLicense(), 543
clQueryMaxHeaderSize(), 501
clQueryScheme(), 501
clQuerySchemeFromHandle(), 542
clQuerySchemeFromName(), 542
clQueryValid(), 509, 511, 515, 517
clReadData(), 568
clReadHeader(), 501
clSetMax(), 567
clSetMin(), 567
clSetUnique(), 566
clUpdateHead(), 509, 514, 516
clUpdateTail(, 517
clUpdateTail(), 509, 515
codecs

Aware, Inc., 61

788

Index

codes
CD, 185

color
encoding

illustrated, 256
sync burst, 257

color encoding methods, ??-256
color space conversion, 484

formats not requiring, 487
combining

movies and graphics
view size, 646

comments
movie, 594

communicating
DAT status, 217

communications
interprocess, 123, 124-??

compensating
for CD preemphasis, 135

compiling
AF Library, 62
Audio Library, 62
CD Audio Library, 63
DAT Audio Library, 63
DM Library, 15
Movie Library, 589-590

composite
video

illustrated, 257
composite video, 256
COMPRESSED_BUFFER_SIZE, 499
compressed images

inserting into movies, 633
compression

audio files, 131, 136, 156
default, 132

Aware, 475
computer versus camera images, 479

definition, 475
getting

movie image setting, 611
hardware acceleration, 493
image, 492, 494
JPEG

movies, 611
movie images, 610-611
multiprocessing example, 519
multithreading, 506
MVC1, 481, 611
MVC2, 611
performance, 540
QT_ANIM, 611
QT_VIDEO, 611
RLE24

RLE24 compression, 611
server-client environment, 477

Compression Library, 475
accessing Aware audio compression, 736
adding algorithms, 563
adding parameters, 572
algorithm independence, 478, 540
algorithm performance statistics, 540
algorithms, 537
API, 491
applications, 476
buffered interface, 492, 506
data formats, 483
error handling, 493
example of adding algorithms, 567
features, 478
file I/O, 493
parameters, 543
purpose, 8
sequential interface, 492, 497
standards, 479
still-frame interface, 492, 494

compressor, 497
Compuserve GIF images in movies, 609

789

Index

computers
music

references, 40
concurrent

audio, 57, 59
concurrent audio processes

querying, 107-108
confidence tests, 60
configurations

audio
cloning, 85

audio default, 20
audio files

defaults, 132
default, 18
image default, 24
instrument, 130

configuring
ALports, 74-87

example, 76
audio

4-channel mode, 101
queue size, 79

audio files, ??-133
audio file tracks, 134-135
MIDI, 227
movie

audio tracks, 603
image tracks, 606
playback window, 643

parameter-value lists, 18-25
connections

audio, 68, 74
consumer

video formats, 258
consuming, 506, 511
contacting

Aware, inc., 61
Prosonus, 62

controllers
MIDI, 225

controlling
DAT drives, 206
headphone and speaker volume, 100
Indy audio volume, 47

conversions
audio, 72

input, 95
output, 96

CD
ISRC to ASCII, 195
locations, 188-190
time codes, 195

DATs, 207, 217
MIDI, 224

coordinate systems
movies, 646

copying
movie frames, 633-635
parameters, 30
parameter-value lists, 30

copyrights
audio libraries

audio
copyrights, 62

Cosmo Compress
capturing input formovies, 631

counting
ALports, 100
audio file frames, 158
parameter-value list entries, 30

CPU resources, 57
creating

ALconfigs, 76
memory-mapped movies, 618
movie playback window, 641-648

example, 642

790

Index

movies, 617-619
example, 619

parameter-value lists, 17
critical regions of memory, 123

D

D1, 255
D1 525 (YUV), 258
D1 625 (YUV), 258
D2 525 (digital NTSC), 254
D2 525 (NTSC), 258
D2 625 (digital PAL), 254
D2 625 (PAL), 258
daemon

video, 264-265
daemons

media library, 63
data

dependencies, 123
two’s complement, 80

sample widths, 81
data formats

Compression Library, 483
data structures

AF Library, 132
Audio Library, 68
CD Audio Library

CDFRAME, 184
cdtimecode, 186
subcodeQ, 185

DAT Audio Library
DTFRAME, 204

data types
Audio Library, 82

DAT Audio Library, 203-220
compiling, 63
purpose, 7

DAT drives
audio mode, 206
confidence tests, 60
controlling, 206
playing and recording DATs, 209-217
workaround, 213

datman, 60
DAT parser, 213-217

allocating and initializing, 214
basics, 205
freeing, 217

datplay.c, 217-220
DATs

byte ordering, 204
conversions, 217
device driver, 203, 206
example, 217-220
frame counts, 207
frames, 204
lead-in, 212
navigating, 206-209
nonaudio information, 204
parsing, 213-217

callbacks, 215-216
frames, 216

playing, 209-210
datman, 60

playing and recording, 209-217
reading, 211
recording, 210

examples, 213
recording from CD, 136
samples, 204
seeking, 208-209

end user locations, 207
statusing, 217
subcodes, 204
subdivisions, 205
time codes, 205, 207

checking and setting, 211

791

Index

timestamps, 211
writing, 211

debugging
DM Library, 16
Movie Library, 590-591
Movie Library I/O, 591

decompressor, 500
defaults

audio, 20
channels, 74
floating point range, 84
getting, 104
I/O rate, 59
ports, 74

audio files, 132
configuring, 18
images, 24
instruments, 133
movie

audio, 603
audio volume, 604
global, 597
images, 606
loop limit, 595
loop mode, 594

definitions
Movie Library, 585-586

delay
audio, 95

delays
Movie Library I/O, 591

deleting
movie frames, 630
movie tracks, 624
parameters, 31

dependencies
data, 123

detuning, 130

device drivers
DAT, 203, 206

devices
audio, 68

getting defaults, 104
CD-ROM

controlling, 187
MIDI, 225
SCSI, 55

library, 63
video

managing, 264
digital

audio
rates, 101

Digital Data Storage (DDS) tapes, 212
digital media

parameter types, 14
type definitions, 14

Digital Media (DM) Library. See DM Library
digital video

formats, 258
YUV (CCIR 601), 255

digital video formats, 254
digital video recording, 254
digitizing

audio, 69
discontinuities

audio, 97
cause, 91

disk space
audio, 50

distortion
audio, 107

dm_audio.h, 15
dm_image.h, 15
DM_MEDIUM, 15
dm_params.h, 14, 15

792

Index

dmAudioFrameSize()
for movie buffers, 628

dmedia.h, 14, 15
dmImageFrameSize()

for movie buffers, 628
DM Library, 13-32

assertions, 16
compiling and linking, 15
debugging, 16
features, 13
getting and setting parameters, 25-29

example, 28
header files, 15
include files, 15
initializing, 16-32
parameter-value lists, 16-32

defined, 15
example, 32

purpose, 6
supported libraries, 13
type definitions, 14

dmParamsCopyAllElems(), 30
dmParamsCopyElem(), 30
dmParamsCreate(), 17
dmParamsGetElem(), 31
dmParamsGetElemType(), 31
dmParamsGetEnum(), 27
dmParamsGetFloat(), 28
dmParamsGetFract(), 28
dmParamsGetInt(), 27
dmParamsGetNumElems(), 30
dmParamsGetParams(), 28
dmParamsGetString(), 27
dmParamsGetTocEntry(), 28
dmParamsIsPresent(), 31
dmParamsRemoveElem(), 31
dmParamsSetEnum(), 26
dmParamsSetFloat(), 26

dmParamsSetFract(), 26
dmParamsSetInt(), 26
dmParamsSetParams(), 26
dmParamsSetString(), 26
dmParamsSetTocEntry(), 27
dmSetAudioDefaults, 603
dmSetAudioDefaults(), 20
dmSetImageDefaults(), 24
drains

video, 267
DTaddcallback(), 215
DTatohmsf(), 207
DTcreateparser(), 214
DTdeleteparser(), 217
DTframetohmsf(), 207
DThmsftoframe(), 207
DTparseframe(), 216
DTpnotodec(), 217
DTremovecallback(), 216
DTresetparser(), 214
DTsbtoa(), 217
DTtctoframe(), 207
DTtimetoa(), 217
dynamically tuning audio applications, 97

E

EA IFF 85, 131
EA IFF 85 standard, 131
editing

movies, 626-635
ejecting CDs, 187
embedded movies, 617-621

opening, 617
seeking, 617

793

Index

emphasis
audio files, 135

emulating
Movie Library I/O errors, 591

encoding
video

illustrated, 256
end users

CD control, 188
environment variables

Movie Library, 591
equations

YIQ, 256
YUV, 255

error handlers
audio, 73

error handling
Audio Library, 72
Compression Library, 493

errors
AF Library, 128
allocating audio configurations, 77
audio

channels, 77
audio I/O, 97-98

types, 98
event handling

MIDI, ??-246
events

Video Library (VL), 261
events, handling

GL events, 462
examples

audio, 61
external buffer, 507

F

failures
movie

emulating, 591
features

ALports, 74
Audio Library, 68
CD Audio Library, 184
DM Library, 13
Indigo

audio, 43-44
Movie Library, 579
VL, 8

features of the Compression Library, 478
fields

video, 251
file descriptors

audio, 119
getting, 120

movies, 617-621
file formats

AF Library, 134
AIFF, 131
audio, 129
audio files

default, 132
initializing, 134

EA IFF 85, 131
movie, 587

getting, 596
SiliconGraphics, 587

file I/O
Movie Library, 615-626

illustrated, 616
overview, 616

file I/O in the Compression Library, 493
files

access mode for movies, 617
AIFF-C, 129-131

794

Index

formats
AF Library, 127

fillable, 92
filled, 92
fill points

audio, 120
illustrated, 121

finding
movie tracks, 624

FIT images in movies, 609
flags

AES channel status bytes, 136
POLLIN, 120
POLLOUT, 120

floating point
audio formats, 80

floating point range
getting and setting, 83-85

flushing
movie edits, 636

formats
audio, 71

default, 74
floating point, 80
getting and setting, 80
native, 71
two’s complement, 80

broadcast video, 258
CD

locations, 188
consumer video, 258
digital video, 258
movies, 587
parameter-value lists, 15
video, 253
videotape, 257-258

frame count
defined, 586

frame counts
audio files, 158
CD, 188
DATs, 207

frame rate
defined, 586
video, 251

frames
audio, 70

illustrated, 70
audio file, 130
audio files, 161
CD, 184
DAT, 204
deleting from movies, 630
illustrated, 586
numbering, 586
video, 251

freeing
AFfilesetup, 133
ALconfigs, 85
CD parser, 194
DAT parser, 217
parameter-value lists, 18

full-scale audio ranges, 81

G

gain, 130
Galileo Video, 7
getting

file descriptors
audio, 120

movie
audio track properties, 603-606

audio channels, 605
audio compression, 606
audio format, 605

795

Index

audio sample rate, 604
audio sample width, 604
default volume, 604

background color, 644
file format, 596
general track properties, 601-602

length, 602
medium, 602
SMPTE time code string, 601

global properties, 593-598
file format, 596
loop limit, 595
loop mode, 595
optimization, 596
title, 595

image track properties, 606-611
frame rate, 607
image format, 609
image height, 608
image orientation, 608
image packing format, 609
image width, 608

parameters, 591-598
view size, 646

parameters, 27
name, 31
total, 30
type, 31

GIF images in movies, 609
GL

events, handling, 462
global audio device state, 98
global audio parameters, 99
global audio state, 59

changing, 107
global movie properties, 593
Graphics Library, recommended reading, xl

grayscale, 538
guaranteeing movie view size, 645

H

handles
AFfilehandle, 132
ALconfigs, 76
CDFRAME, 184
DAT frame, 204
parameter-value lists, 18

hardware
Indigo

audio, 43-45
hardware acceleration

compression, 493
Head, 506
header

reading, 501
structure, 502

header files
dm_params.h, 14
dmedia.h, 14
DM Library, 15
Video Library (VL), 266

headphones
controlling volume, 100
muting, 100

hertz (Hz), 69
Hi-8mm, 258
hints

multiple movie playback, 640

I

icons
audio, 44

796

Index

IEEE
double-precision floating point data, 80

image
compression, 494

image compression, 492
images

buffer size, 25
compressed

editing in movies, 631-633
inserting into movies, 633

compression in movies, 610-611
defaults, 24
FIT in movies, 609
format for movies, 609
formats

SGI, 609
getting

compression for movies, 611
height for movies, 608
inserting into movies, 629
Kodak Photo CD in movies, 609
movie

defaults, 606
movie frame rate, 607
orientation for movies, 608
packing format for movies, 609-610
parameters, 22
properties in movies, 606
TIFF in movies, 609
width for movies, 608

ImageVision Library
reading and writing movie images, 609

include files
DM Library, 15

indexes
CD tracks, 186

Indigo
audio

features, 43-44
hardware, 43-45

jacks, 44
queue size limits, 79

MIDI ports, 227
Indigo2

audio
4-channel, 46
features, 46
hardware, 46-47
jacks, 47
queue size limits, 79

MIDI ports, 228
Indigo2 Video, 7
IndigoVideo Library

purpose, 8
Indy

audio
4-channel, 46
features, 46-50
hardware, 46-50
jacks, 48
queue size limits, 79
volume buttons, 48

MIDI ports, 228
muting, 47

Indy Video, 7
initializing

Audio Library, 74-89
CD parser, 192
DM Library, 16-32
MIDI, 229

input
audio, 94-95

4-channel, 94
conversions, 95
source, 99

inserting
movie data, 629

instances
movie, 587

797

Index

instrument configurations, 163-167
audio files, 130

default, 132
defined, 129
parameters, 133

instruments
samples, 62

interlacing
video, 251

interleaving
audio, 70

internal buffer, 507
internal format, 484
International Standard Recording Code (ISRC), 185

converting to ASCII, 195
interprocess communication, 123

example, 124-??
intializing

audio files, 128
I/O

audio, 93-96
error parameters, 98
errors, 97-98
measuring and matching sample rates, 99
multiplexing, 119
nonblocking, 92
querying rates, 108-110

MIDI, 232
Movie Library

testing, 591
ioctl(), 206, 208
IRIS Digital Media Development Environment, 5-9
IRIS GL

screen origin, 646
IRIS Media Libraries

digital audio libraries, 39
IRIX

file system, 55
real-time programming, 119

IRIX kernel, 57

J

jacks
AES
Indigo

audio, 44
Indigo2

audio, 46, 47
JPEG, 479, 496

movies, 611

K

keyframes, 484
defined, 585

key velocity, 130
Kodak Photo CD images in movies, 609

L

–laudio, 62
–laudiofile, 62
-laudioutil, 62
Launchword

/usr/sbin/jot
/usr/people/4Dgifts/examples/dmedia/aud
io/ratequery.c, 108

–lcdaudio, 63
–ldataudio, 63
-ldmedia, 15
-ldmedia_d, 16
lead-in

DATs, 212
libaudiofile.so. See AF Library

798

Index

libaudioutil.a, 63
libcdaudio. See CD Audio Library
libcl. See Compression Library
libdataudio. See DAT Audio Library
libdmedia.so. SeeDM Library
libds.a, 63
libm.a, 63
libmalloc.a, 63
-libmediad, 63
libmidi. See MIDI Library
libmovie_d.a, 590
libmovie. See Movie Library
libraries

Audio File Library, 7
Audio Library, 7, 67-??
Audio Utility Library, 7
CD audio, 51
CD Audio Library, 7
Compression Library, 8
DAT Audio Library, 7, 203-220
DM Library, 6, 13-32
IndigoVideo Library, 8
math, 63
MIDI, 6, 223-??
Movie Library, 9
Prosonus, 62
Video Library, 7
Video Library (VL), 261

license
installing, 743
nodelocked, 743
querying for, 543

licensing Aware compression software, 730
limiting

audio, 57
limits

audio
floating point range, 83-85

getting, 104
queue size, 79

CD tracks, 186
linear pulse code modulation (PCM), 71
linking

Movie Library, 589-590
debugging version, 590

non-ANSI-compliant code, 63
-lm, 62
locating

movie tracks, 624
locations

CD, 187-190
current, 189
formats, 188

locking
arenas, 123
CD-ROM eject, 187

looping
modes

defined, 586
movies, 586

loops
audio files, 130

default, 132
default

limit, 595
mode, 594

lossless
definition, 479

lossy
definition, 479

lseek(2), 617
luminance, 255

799

Index

M

M(agnetic) T(ape) I/O C(ontrol) T(ape) OP(eration).
See MTIOCTOP

malloc(), 542
malloc(), 63

for movie buffers, 628
managing

video devices, 264
mapping

movie tracks, 624-626
illustrated, 625

markers
audio files, 129, 159

default, 132
loops, 130
names, 159
position, 160

audio file tracks, 130
matching

audio I/O rates, 99
math library, 63
measuring

audio
digital I/O rates, 101
sample rates, 99

media
type definitions, 14
types, 15

media library daemon, 63
memory

audio requirements, 50
critical regions, 123

memory-mapped movies
creating, 618
opening, 622

memory requirements
digital audio, 50

memtovid, 265

microphones, 101
resolution, 71
stereo, 46, 101

MIDI, 227
C++ references, 40
configuring, 227
controllers, 225
conversions, 224
devices, 225
handling events, ??-246
I/O, 232
patchbays, 224
peripherals, 224
ports, 232
references, 40
serial ports

Indigo2, 228
Indy, 228

starting and stopping, 229
timestamping, 236
timestamps, 231

MIDI Library, 6, 223-??
event handling, ??-246

MII video, 258
miscellaneous chunks, 168-171
modes, 101

DAT drive, 206
microphone, 101

monitor
Silicon Graphics, 252

monitoring
audio, 100

Motif, recommended reading, xli
movie editing, 476
movie frames

deleting, 630
Movie Library

adding user parameters, 598
example, 599, 600

800

Index

applications, 580
assertions, 590
compiling and linking, 589-590

debugging version, 590
debugging, 590-591
definitions, 585-586
environment variables, 591
features, 579
file formats, 587
file I/O, 615-626

illustrated, 616
overview, 616

programming guidelines, 588-589
programming model, 587
purpose, 9

Movie Maker
file formats, 587

movies
adding

tracks, 622-623
adding tracks

example, 623
allocating buffers, 627

example, 628
audio

channels, 605
compression, 606
formats, 605
native formats, 605
ports, 649
sample rate, 604
sample width, 604

background color, 644
binding to windows, 648-650

multiple movies, 650
capturing input from Cosmo Compress, 631
closing, 636
comments, 594
copying and pasting, 633-635

illustrated, 633
creating, 617-619

example, 619
defaults, 597

audio, 603
audio volume, 604
image, 606
loop limit, 595
loop mode, 594

defined, 585
editing, 626-635

compressed images, 631-633
embedded, 617-621
file access mode, 617
finding tracks, 624
FIT images, 609
flushing edits, 636
formats, 587
frame rate, 607
getting

image compression, 611
global properties, 593
illustrated, 586
image compression, 610-611
image format, 609
image height, 608
image orientation, 608
image packing format, 609-610
image width, 608
inserting

compressed images, 633
track data, 629

instances, 587
JPEG, 611
keyframes, 585
looping

defined, 586
loop modes

defined, 586
mapping tracks, 624-626

illustrated, 625
multiple movie playback hint, 640

801

Index

opening, 620
from file descriptors, 617-621
from filenames

filenames
for opening movies, 621

from memory, 622
optimization

getting, 596
parameters

setting and getting, 591
PCD images, 609
playback

controlling, 651
playback window, 641-648

configuration, 643
example, 642

playing, 639-678
outlined, 639

properties, 591
QT_ANIM compression, 611
QT_VIDEO compression, 611
reading and writing from ImageVision Library,

609
reading compressed images, 632
reading frames

storing
movie frames in a buffer, 630

read-only, 617
read-write, 617
removing tracks, 624
seeking, 617
SGI image formats, 609
Silicon Graphics format defined, 587
SMPTE time codes, 601-602
TIFF images, 609
titles, 595
track operations, 622
uncompressed, 611
verifying, 619

view
offset, 646-648
size, 644-646

getting, 646
guaranteeing, 645

write-only, 617
zooming, 645

MPEG, 480, 538
Aware noise-to-mask ratio, 738

MTIOCTOP, 206
multimedia applications, choosing a compression

method, 538
multiplexing

synchronous audio I/O, 119
multiprocessing compression, 506

example, 519
MultiRate

Aware, Inc., 61
MultiRate Aware compression algorithm, 733, 734,

735, 736, 737, 738
specifications, 741

music, 62
references, 40

music-quality audio, 70
muting

headphones and speakers, 100
Indy, 47

mvAddTrack(), 622
mvAddUserParam(), 598
mvBindWindow(), 649
MVC1, 481, 538, 539
MVC1 compression, 481, 611
MVC2 compression, 611
mvClose(), 636
mvCreateFD(), 618
mvCreateFile(), 618
mvCreateMem(), 618

802

Index

mvDeleteFrames, 630
mvFindTrackByMedium(), 624
mvGetAudioChannels(), 605
mvGetAudioCompression(), 606
mvGetAudioFormat(), 605
mvGetAudioRate(), 604
mvGetAudioWidth(), 604
mvGetCompressedImageSize, 631
mvGetDefaultVol(), 604
mvGetFileFormat, 596
mvGetImageCompression(), 611
mvGetImageFormat(), 609
mvGetImageHeight(), 608
mvGetImageOrientation(), 608
mvGetImagePacking(), 609-610
mvGetImageRate, 608
mvGetImageWidth(), 608
mvGetLoopLimit(), 595
mvGetLoopMode(), 595
mvGetNumMoviesHint(), 640
mvGetOptimized(), 596
mvGetParams(), 592
mvGetSMPTEStart(), 602
mvGetTitle(), 595
mvGetTrackLength(), 602
mvGetTrackMedium(), 602
mvGetViewBackground(), 644-??
mvGetViewOffset(), 648
mvGetViewSize(), 646
mvInsertCompressedImage(), 632
mvInsertFrames, 629
mvIsMovieFD(), 619
mvIsMovieFile(), 619
mvIsMovieMem(), 619
mvMapBetweenTracks, 624-625, 634

when pasting movie frames, 635
mvOpenFD(), 620, 621
mvOpenFile(), 620, 621
mvOpenMem(), 620, 621
mvOptimize(), 627
mvPasteFrames, 635
mvPlay(), 651
mvQueryViewOffset, 647
mvQueryViewSize(), 645
mvReadCompressedImage, 631
mvReadFrames(), 630
mvRemoveTrack(), 624
mvSetDefaultVol(), 604
mvSetImageRate(), 607
mvSetLoopLimit(), 595
mvSetLoopMode(), 594
mvSetMovieDefaults(), 596
mvSetNumMoviesHint(), 640
mvSetParams(), 592

for setting user parameters, 598
mvSetSMPTEStart(), 602
mvSetTitle(), 595
mvSetViewBackground(), 644
mvSetViewOffset, 647
mvSetViewSize(), 645
mvStop(), 651
mvWrite, 636

N

names
audio ports, 88
parameters, 31

navigating
CDs, 187-190
DATs, 206-209

803

Index

NetLS, 743
nodelocked licenses, 743
nodelock file, 743
noise-to-mask ratio

Aware MPEG, 738
non-ANSI-compliant code, 63
nonblocking

audio I/O, 92
NTSC, 253-254, 256

digital recording, 254
illustrated, 252
resolution, 253
YIQ encoding, 255

Nyquist Theorem, 69

O

O_RDONLY, 617
O_RDWR, 617
O_WRONLY, 617
offsets

movie view, 646
open(), 206
open(2), 617
opening

memory-mapped movies, 622
movies, 620

optimization
movie

getting, 596
origin

screen
IRIS GL, 646
X Window System, 646

original format, 484
oserror(), 72

output
audio, 95-96

conversions, 96
overflow

audio, 93

P

PAL, 253-254, 256
digital recording, 254
illustrated, 252
resolution, 253
YUV, 255

parameters, 132
adding to the Compression Library, 572
audio, 19

current value, 106
getting and setting, 102-107
I/O errors, 98
names, 105
setting, 106
system-dependent, 101

audio core global, 99
audio tracks, 134
checking, 31
checking bounds, 104
Compression Library, 543
copying from parameter-value lists, 30
deleting, 31
getting

type, 31
getting and setting, 27
images, 22
instruments, 133
movie

adding, 598, 599, 600
setting and getting, 591-598

names, 31
removing, 31

804

Index

parameter-value buffer
audio, 102

parameter-value lists
configuring, 18-25

audio, 20
image, 24

copying, 30
creating and destroying, 17-18

example, 18
defined, 15
destroying, 18
DM, 16-32
example, 32
formats, 15
getting and setting values, 25-29
number of elements, 30
removing parameters, 31

parser
CD

basics, 186
callbacks, 193
frames, 194
freeing, 194
initializing, 192

DAT, 213-217
allocating and initializing, 214
basics, 205
freeing, 217

parsing
CDs, 192-194

callbacks, 193
frames, 194

DATs, 213-217
frames, 216

pasting
movie frames, 633-635

illustrated, 633
patchbays

MIDI, 224

paths
video

blending, 268
VL

defined, 267
illustrated, 267

pausing
CDs, 190

PCD images in movies, 609
performance tuning

audio, 119-??
peripherals

audio, 51
MIDI, 224

playback
movies

controlling, 651
non-blocking, 515

playing
CDs, 190-194

tracks, 191
DATs, 209-210

example, 217-220
movies, 639-678

outlined, 639
multiple movies in one window, 650

poll(), 119, 120
POLLIN, 120
polling

example, 124-??
POLLOUT, 120
pops

audio, 78
ports

audio, 74-89
allocating and initializing, 88
closing and deallocating, 88
configuring, 74-87
defaults, 74

805

Index

defined, 68
example, 76
formats, 80
names, 88
opening and closing, 87-89

example, 89
static settings, 75

MIDI, 232
postproduction

video formats, 258
prctl(), 122
precision

audio, 81
previewing

audio files, 60
prioritizing

audio, 122
priority

audio, 57
process controls

audio, 122
processes

audio
concurrent, 107-108

producing, 506, 511
professional

video formats, 258
programming

guidelines
audio, 59
Movie Library, 588-589

models
Audio Library, 68
Movie Library, 587

outlines
Audio Library, 73

video hardware, 7
properties

movie, 591

global, 593
Prosonus

audio libraries, 51
contacting, 62
sound libraries, 62

Q

qdevice(), 462
in sample program, 463

QT_ANIM compression, 611
QT_VIDEO compression, 611
quantization steps

audio, 84
querying

audio
4-channel, 111
concurrent processes, 107-108
I/O rates, 108-110
supported features, 99

querying algorithms, 540
querying for a license, 543
queues

audio, 90-93
defaults, 74
illustrated, 91
size, 78-80, 92
size limits, 79
status, 92
thresholds, 120

R

ranges
audio

floating point, 83-85
full-scale, 81

806

Index

read(), 211
reading

audio data, 94-95
audio from CDs, 191
compressed movie images, 632
DATs, 211

read-only movies, 617
read-write movies, 617
real-time programming

audio, 119-??
example, 124-??

recordexample.c, 177
recording

DATs, 210
examples, 213

digital video, 254
using buffers for non-blocking compression, 517
using buffers to compress for, 516

reel-to-reel (Type C) videotape, 258
references

audio, 40
MIDI, 40
MIDI C++, 40

release loops
audio files, 130

removing
CD callbacks, 194
movie frames, 630
movie tracks, 624
parameters, 31

resetting
CD parser, 192

resolution
video, 253

resolutions
AES, 71
audio, 71, 82

RGB, 254
32-bit, 387

8-bit, 387
.rgba images in movies, 609
.rgb images in movies, 609
ring buffer, 506
ring buffers, 506
RLE, 481
RTR1, 482, 538, 539
run-length encoding

movies, 611
R-Y video signal, 255

S

samplers
audio, 130

samples
CD, 184

illustrated, 185
DAT, 204
instruments, 62

sample widths
audio

default, 74
getting and setting, 81

sampling
audio, 69

sampling rates
audio, 44, 69

measuring, 99
audio files, 152
CD, 185
DAT, 204

scaling
audio floating point ranges, 83

schedctl(), 122
scheduling

audio, 122

807

Index

screen
origin

IRIS GL, 646
X Window System, 646

SCSI devices, 55
library, 63

SECAM, 253
seeking

audio files, 161
miscellaneous chunks, 170

CD, 187-190
blocks, 190
defined, 186
tracks, 189

DATs, 208-209
movies, 617

select(), 119
audio

illustrated, 121
for multiplexing audio I/O, 119

selecting
audio I/O sources, 99

semaphores, 123
example, 124-??

sequential interface of the Compression Library, 492
serial ports

Indigo, 227
server-client environment, CL, 477
setting

audio
parameters, 106

audio defaults, 20
example, 21

audio file format, 134
audio file parameters, 134
audio fill points, 120
image defaults, 24

example, 25

movie
audio track properties, 603-606

default volume, 604
audio track properties defaults, 603
general track properties, 601-602

SMPTE time code string, 601
global properties, 593-598

loop limit, 595
loop mode, 594
title, 595

image track properties, 606-611
defaults, 606
frame rate, 607

parameters, 591-??
view size, 645

multiple movie playback hint, 640
parameters, 27

by copying, 30
.sgi images in movies, 609
shared

arenas, 123
example, 124-??

audio resources, 57
illustrated, 57

GL, 63
process synchronization, 123

signal
composite video

illustrated, 257
signals

video, 255
Silicon Graphics

noninterlaced monitor, 252
Sirius Video, 7, 262
sizing

audio
buffers, 21
queues, 78-80

808

Index

images
buffers, 25

SMPTE time codes
movies, 601-602

soundeditor, 57, 58, 60
sound effects, 62
soundfiler, 57, 58, 60
soundtracks

finding, 624
removing, 624

sources
video, 267

speakers
controlling volume, 100
muting, 100

specifications
AES3-1985, 136
audio hardware, 723, 726
Aware audio compression software, 741
EA IFF 85, 131

spinlocks, 123
sproc(), 518, 519
sproc()

example, 124-??
standards

AES3-1985, 136
CCIR 601, 255
compression, 479
video broadcast, 253

state
audio, 59

status
CD-ROM drives, 194
CDs, 189

statusing
DATs, 217

stderr, 72

stereo
audio frames

illustrated, 70
microphone, 46
microphones, 101

stereo frames
CD, 184

storing
compressed movie frames, 632

structures
AF Library, 132
CDFRAME, 184

subcodeQ, 184
CD, 185

subcodes
CD, 184

modes, 185
DAT, 204

subdivisions
CD tracks, 186
DAT, 205

sustain loops
audio files, 130

SV_IN_REPLACE
in sample program, 463

SvActiveAttribute
in sample program, 463

svBindGLWindow()
in sample program, 463

S-VHS, 256, 258
S-Video, 256, 258
SvVideoPreempted

in sample program, 463
switching

4-channel audio, 46
sync burst, 257

809

Index

synchronizing
movie tracks, 624-626

illustrated, 625
system calls

IRIX, 119
systems

audio software, 55

T

table of contents
CD, 185
DAT, 204

Tail, 506
tape formats, ??-258
tapes

DDS, 212
tasks

AF Library, 127
telecommunications

choosing a compression method, 538
teleconferencing, 8, 476
testing

Movie Library I/O, 591
third-party audio software, 61-62
thresholds

audio
ports, 120

TIFF images in movies, 609
time

required for audio hardware to play samples, 95
time codes

CD, 186
conversions, 195

DATs, 205, 207
checking and setting, 211

timestamping
MIDI, 236

timestamps
DATs, 211
MIDI, 231

titles
movie, 595

tools
audio, 60
Video Library (VL), 265

tracks
adding, 622-623

example, 623
audio

properties, 603
audio file, 130

defined, 129
initializing, 134-135

audio files, 162
channels, 135
default, 132

CD, 186
playing, 191
seeking, 189
subdivisions, 186

CD lead-in, 185
defined, 585
finding, 624
general properties, 601
length

getting, 602
mapping, 624-626

illustrated, 625
medium

getting, 602
operations, 622
removing, 624
setting and getting

general properties, 601-602

810

Index

trapping
audio I/O errors, 98

troubleshooting
audio

configurations, 77
distortion, 107
I/O, 97-98
overflow and underflow, 93
pops and clicks, 78

Movie Library I/O, 591

tuning
audio applications dynamically, 97
audio performance, 119-??

two’s complement data, 80
sample widths, 81

Type B video format, 258
Type C (reel-to-reel) videotape, 258
types

digital media parameters, 14
media, 14, 15
parameters

getting, 31

U

U-Matic (SP), 258
uncompressed movies, 611
underflow

audio, 93, 98
user interface, xli
usinit(), 123
uspsema(), 123
usvsema(), 123
U-V signal. See chrominance

V

vcp, 265
verifying

movies, 619
VHS, 258
video

Betacam, 255
broadcast standards, 253
B-Y, 255
composite, 256

illustrated, 257
D1, 255
daemon, 264-265
device management, 264
digital recording, 254
drains, 267
encoding, 254-??

illustrated, 256
RGB, 254

fields, 251
formats, 253

illustrated, 256
frame rate, 251
frames, 251
hardware, 7
interlacing, 251
luminance, 255
NTSC

illustrated, 252
PAL

illustrated, 252
paths

blending, 268
resolution, 253
R-Y, 255
sources, 267
S-Video, 256
sync burst, 257
teleconferencing, 8

811

Index

YIQ, 255
YUV, 255

VIDEO, GL pseudo device
in sample program, 463

videod, 264-??
video data formats, 386
video formats

and color encoding methods, 256
and tape formats, 258

videoin, 265
Video Library

purpose, 7
Video Library (VL)

device management, 264
events, 261
features, 261
header files, 266
multiple clients, 264
paths

defined, 267
system software architecture, 263
tools, 265

videoout, 265
videopanel, 265
videotape

formats, 257-258
video/voice mail, 476
vidtomem, 265
viewing

size
movie, 644-??

views
movie

getting size, 646
guaranteeing, 645
offset, 646-648
size, ??-646

VL
features, 8

vlBeginTransfer(), 296
vlCreatePath(), 274
vlEndTransfer(), 302
vlinfo, 265
vlNextEvent(), 350
vlOpenVideo(), 271
vlSelectEvents(), 277
vlSetControl(), 285
vlSetupPaths(), 276
voice-quality audio, 69
volume

Indy, 47

W

windows
movie playback

configuring, 643
example, 642

workarounds
DAT drives, 213

wrap, 511
write-only movies, 617
writing

audio files, 162
audio samples, 95-96
DATs, 211
movie data. See inserting movie data

X

X11, recommended reading, xl
X Window System

coordinates, 646

812

Index

Y

YC, 256
YC-358, 256
YC-443, 256
YIQ, 255

equations, 256
Y signal. See luminance
YUV, 255, 388

digital, 255
equation, 255

Z

zooming
movies, 645

