
Impressario™ Programming Guide

Document Number 007-1633-070

Impressario™ Programming Guide
Document Number 007-1633-070

CONTRIBUTORS

Written by David Graves
Updated by Don Moccia, Martha Levine, and Steven Levine
Edited by Christina Cary
Production by Heather Hermstad
Engineering contributions by Roger Chickering, Ken Kershner, Victor Riley,

Baron Roberts, David Story, and Craig Upson
Engineering update by Ray Niblett

 1992–2004, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole or in
part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by the
Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in similar or
successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights
reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon
Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311.

Silicon Graphics, the Silicon Graphics logo, and IRIS are registered trademarks, and
Impressario, IRIX, Personal IRIS, Indigo Magic, and WorkSpace are trademarks, of Silicon
Graphics, Inc. Adobe Photoshop, PostScript, and TranScript are trademarks of Adobe
Systems, Inc., which may be registered in certain jurisdictions. TIFF is a trademark of Aldus
Corporation, a subsidiary of Adobe Systems, Inc. Apple, Macintosh, and LaserWriter are
registered trademarks of Apple Computer, Inc. AT&T System V is a registered trademark and
Documenter’s Workbench is a trademark of AT&T. BSD is a trademark of Berkeley Software
Distribution. ColorSynergy is a registered trademark of Candela. Canon is a trademark of
Canon U.S.A., Inc. Centronics is a registered trademark of Centronics Data Computer
Corporation. GIF and Graphics Interchange Format are trademarks of CompuServe
Incorporated. Color Stylus, Stylus, and Stylus Pro are trademarks of Epson America, Inc.
Primera is a registered trademark of Fargo Electronics, Inc. Genicom is a trademark of
Genicom Corporation. FLEXlm is a trademark of GLOBEtrotter Software, Inc. Hewlett
Packard, HP, LaserJet, DesignJet, HP-GL, DeskJet, ScanJet, and PaintJet are registered
trademarks, and CopyJet and JetDirect are trademarks of Hewlett-Packard Company.
PhotoCD is a trademark of Eastman Kodak Company. Lexmark and Optra are registered
trademarks of Lexmark International, Inc. Colortron is a trademark of Light Source Computer
Images. X Window System is a trademark of the Massachusetts Institute of Technology.
Motorola is a registered trademark of Motorola, Inc. OSF, Motif, Motif widget, and OSF/Motif
are trademarks of Open Software Foundation. ColorPoint and ColorPoint 2 are trademarks of
Seiko Epson Corporation. Tektronix and Phaser are registered trademarks of Tektronix, Inc.
UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd. Versatec is a registered trademark of Versatec Corporation.

iii

Contents

List of Figures xi

List of Tables xiii

About This Guide xv
Audience xvi
New Features xvii
How to Use This Guide xviii
Conventions Used in This Guide xviii
Document Overview xix
Related Publications xxi

Online Books xxi
Online Release Notes xxii
Online Reference Pages xxii

1. Impressario Architecture 1
Overview 2
Impressario Printing Architecture 3

Compliance for Printer-Driver Developers 4
Printing Application Programming Interfaces 6
Printing Application Development 10

Complying With the Impressario Scanning Architecture 11
Developing a Scanner Driver 12
Developing a Scanner Application 13

2. Printer Drivers 15
Overview 16
Printer Driver Processing 17

iv

Contents

Printer Driver Examples 18
Program Invocation 18
Program Processing 20

The Filter/Driver Specification and psrip 21
Required Options 22
Reserved Options 23
Unreserved Options 24

3. Printer Model Files 25
Overview 26
Command-Line Arguments 26
Template Model File Execution 27

Declaring Variables 28
Defining Convenience Functions 28
Processing Command-Line Arguments 29
Printing Banner Page 30
Using Filters to Process Files 30
Cleaning Up and Exiting 30

Printer-Specific Options 31
Developer-Supplied Model File Additions 33

Printer Name 33
Device Interface 34
Printer Type 34
GUI Class 34
Printer-Specific Filter/Driver 35
Debug Routine 35
Cleanup Routine 35
Printer-Specific Banner Page 35
Printer-Specific Filtering Options 36
Fast Path for Text 36

4. Printer Graphical Options Panel 37
Overview 38
Graphical Options Panel Layout 38

Contents

v

Options Handling 40
Graphical Options Panel Development 40
Graphical Options Panel Naming 41
Graphical Options Panel Installation 41
Invocation by the PrintBox Widget 42
Standalone Invocation for Testing 42
Termination by the PrintBox Widget 43
Additional Information 43

5. Printing Libraries 45
The libspool Library 46

Compiling Programs With libspool 46
libspool Library Functions 47

The libprintui Library 48
Example Widget Configurations 49
Compiling Programs With libprintui 51
Library Functions Listed by Purpose 52
Example Program 52

The libpod Library 54
POD Files 54
Standard and Local libpod Functions 55
Compiling Programs With libpod 56
Debugging With libpod 56
Network Communications 56
Library Functions Listed by Purpose 57

6. Scanner Drivers 59
Driver Template 60
Header Files 60
Data Structures 61

SCANINFO Data Structure 61
SCANPARAMS Data Structure 63

Functions You Must Write 66
Events 76

vi

Contents

Installation 78
Testing 79

7. Scanner-Specific Options 81
Overview 82
Options Program and the Scanner Driver Interface 82
Scanner Driver’s Perspective 84
Options Program’s Perspective 86
Installation and Testing 88

8. Generic Scanner Interface 89
Overview 90
Coordinate System for Scanning 90
Data Structures 91

SCANNER Data Structure 91
SCDATATYPE Data Structure 91

Data Type Conventions 92
Functions 94

Diagnostic Functions 94
Application/Driver Rendezvous Functions 95
Scanning Resolution Functions 98
Scanning Area Functions 99
Scanning Functions 99
Document Feeder Functions 103

Events 105

9. Testing for Impressario Compatibility 107
Testing Impressario Printing Compatibility 108

Testing an Impressario Printer 108
Testing an Impressario Printer Software Installation 110

10. Packaging Your Impressario Product 111
Overview 112
Making a tar Archive for Software Distribution 112
Packaging Impressario Printing Software 113
Packaging Impressario Scanning Software 117

Contents

vii

11. Enhancing Impressario With Plug-Ins 121
How the Impressario File Conversion Pipeline Works 121

File Type Rules 122
Runtime File Type Recognition Utility 122
File Conversion Utility 122

Adding a New File Type to Impressario 123
Writing a New Filter 124
Writing an FTR 124
Adding a CONVERT Rule 124
Installation and Testing 125

Using an Alternate PostScript RIP 127
Making the Command Line Compatible With psrip 128
Writing a Dummy TYPE 128
Testing the Alternate RIP 129
Packaging the Files 129

A. Stream TIFF Data Format 131
Library Description 132
Library Access 132
Library Functions 133

Example Usage 134
Printing-Specific STIFF 135
Generic STIFF File Structure 136

B. Silicon Graphics Image File Format API 141
Library Description 141
Library Access 141
Library Functions 142
IMPImage Structure 145

viii

Contents

Image Access Functions 147
Data Packing Functions 150
Error Handling Functions 151
Image I/O Functions 152
Color Space Conversion Functions 154
Math Operation Functions 161
Zooming Functions 163

C. Printer Object Database (POD) File Formats 169
Overview 170

Printer Configuration File 170
Printer Status File 171
Printer Log File 171

General Syntax 171
Character Set 171
Field Format 172

Input Parsing Rules for libpod Files 172
Printer Configuration File Format 174

General Format 174
Config File Options 174

Printer Status File Format 184
General Format 184
Printer Status File Entries 185

Printer Log File Format 188

D. Transition Notes 189
Notes for Application Developers 190
Notes for Printer Driver Developers 190

Changes Affecting Model Files 190
Changes Affecting POD Data Files 192
Changes Affecting Printer Drivers 192
Changes to the Graphical Options Panel 193

General Changes in IRIX 6.2 194

Contents

ix

E. Scanner Driver Architecture 195
Overview 196
Driver Structure 196
Scanner Functions 198

Required Scanner Functions 198
Type Conversion Macros 204
Zooming and Type Conversion Functions 205

Queues and Multi-Threaded Scanner Drivers 207
Queue Manipulating Functions 210

F. Reference Pages 213

G. Color Management in Impressario 215
An Overview 216
ICC Color Profiles 217
Color Rendering Dictionaries 218
Generating CRDs and ICC Profiles 219

H. Impressario PPD Driver Implementation 223
About PPD Files 224
Adding a PPD File to the System 224
Customizing a PPD File 225
PPD Driver Files 227

LP Model Files 228
X Resource Files 229
GUI Driver 229
PPD Printer Filter 230
Created File 230
Other Utility Files 231

What Happens When a PPD Driver Is Installed 231
Where to Find PPD Files for a Specific Printer 233
Applicable Reference Pages 234

x

Contents

I. PostScript Interpreter (psrip) Command Line Options 235

Glossary 245

Index 251

xi

List of Figures

Figure 1-1 Impressario Printing Architecture 3
Figure 1-2 Printer Driver Development Flowchart 4
Figure 1-3 General Filter/Driver Architecture 7
Figure 1-4 System V Spooling System Interface 9
Figure 1-5 BSD Spooling System Interface 9
Figure 1-6 Scanner Run-Time Components 11
Figure 1-7 Interprocess Scanner Communication 12
Figure 2-1 Printer Driver Processing Overview 17
Figure 4-1 Graphical Printer Options Panel 39
Figure 5-1 PrintBox Widget: Default Configuration 49
Figure 5-2 PrintBox Widget: No Filename Entry Box 50
Figure 5-3 PrintBox Widget: No Options Box 50
Figure 5-4 PrintBox Widget: With a Child Process 51
Figure 6-1 Scanner Install Tool 78
Figure 6-2 gscan Panel 79
Figure A-1 Generic STIFF File Structure 137
Figure B-1 W Conversions 154
Figure B-2 K Conversions 155
Figure B-3 CMY Conversions 156
Figure B-4 YIQ Conversions 156
Figure B-5 YUV Conversions 157
Figure B-6 YCbCr Conversions 158
Figure B-7 CMYK Conversions 159
Figure E-1 Scanner Driver Architecture 209

xiii

List of Tables

Table 1-1 Printing Application Programming Interfaces 8
Table 3-1 Convenience Functions 28
Table 3-2 Reserved Option Names 31
Table 3-3 Printer Type Specifications 34
Table 4-1 Command-Line Arguments 42
Table 5-1 Summary of libspool Functions 47
Table 5-2 Summary of libprintui Functions 52
Table 5-3 Summary of libpod Functions 57
Table 6-1 Functions To Be Written by the Driver Developer 66
Table 8-1 Diagnostic Functions 94
Table 8-2 Application/Driver Rendezvous Functions 95
Table 8-3 Scanning Functions 100
Table 8-4 Document Feeder Functions 103
Table 8-5 Event Functions 105
Table 10-1 Typical Printing Product Files 115
Table 10-2 Typical Scanning Product Files 118
Table 11-1 New File Type Pathnames 127
Table 11-2 Alternative RIP Pathnames 129
Table A-1 STIFF Generic Functions 133
Table A-2 STIFF Printing-Specific Functions 133
Table A-3 CMYK Data Format 138
Table A-4 CMY Data Format 138
Table A-5 YMC Data Format 139
Table A-6 YMCK Data Format 139
Table A-7 KCMY Data Format 140
Table B-1 Silicon Graphics Image Format File Functions 142
Table B-2 Format-Independent File Functions 143

xiv

List of Tables

Table B-3 Filter Functions 166
Table C-1 Config File Options 174
Table C-2 Printer Status File Entries 185
Table E-1 Scanner Driver Functions 198
Table E-2 Type Conversion Macros 204
Table E-3 Zooming and Type Conversion Functions 205
Table E-4 Queue Manipulating Functions 210
Table F-1 General Interest Reference Pages 213
Table F-2 Printing Developers Reference Pages 214
Table F-3 Scanning Developers Reference Pages 214
Table H-1 Applicable Reference Pages 234

xv

About This Guide

Impressario™ is a printing and scanning environment for Silicon Graphics® IRIS®

workstations. The Developer’s Kit, included with Impressario, provides solutions for a
wide range of UNIX® audiences: printer driver and scanner driver developers,
application program developers, and end users.

The goal of Impressario is to provide an intuitive, friendly, and reliable interface for end
users, while increasing system capability and performance for driver and application
developers. Users can simply drag and drop a file onto a printer icon to print the file.
Other graphical tools in the end user’s environment provide information on the
capabilities and status of any accessible printer or scanner.

The Impressario printing environment provides two main end-user enhancements:

• support for a wide range of printers, from high-quality color printers to high-speed
black-and-white printers

• graphical printing tools that allow a user to submit a print job and monitor the
status of the job and the printer

Impressario enables developers of printer drivers and scanner drivers to showcase each
product’s special features and capabilities and present them to the user via a graphical
dialog box. Application programmers can greatly reduce the development time required
to support printing and scanning functions.

The manual applies to all releases of Impressario 2. Please review the release notes for all
releases of Impressario.

Tip: The Impressario release notes contain the most recent information about the
product. They are provided online and can be read using relnotes or grelnotes. In addition,
the directory /usr/impressario contains information of interest to both application
developers and end users.

xvi

About This Guide

The Impressario printing environment is built on top of the AT&T System V®, Release 3
(SVR3) printer spooling interface. Model files, filters, and printer drivers are provided to
convert a wide variety of file types (ISO text files, Silicon Graphics image files,
PostScript™ files, and so forth) to formats for both raster printers and PostScript printers.
Using the Impressario host-based PostScript interpreter, it is possible to print PostScript
documents to raster printers with performance that greatly surpasses printer-based
PostScript interpreters. Impressario also includes the PrintBox Motif widget™, a
graphical user interface (GUI) for printing.

Impressario server software contains filters and drivers for sending jobs from a host
workstation to a printer. In addition, all Impressario printer drivers maintain status
information in a globally available printer object database (POD).

The Impressario scanning environment provides generic scanner support. Impressario
scanner application programs and Impressario scanner drivers run as separate
executables, enabling any scanning application to interact with all scanner drivers.

Impressario gives application developers a number of valuable resources, including

• libspool, a printer spooling system abstraction library that enables complex printing
functions to be defined with only a few lines of code

• application programming interfaces for easy access to the end user’s scanning
environment

• a network-transparent version of the printer object database library routines to
inquire directly about printer configuration and status

Audience

The Impressario Programming Guide is written for the following users:

• printer driver developers

• scanner driver developers

• application program developers who need to print or scan from their applications

About This Guide

xvii

New Features

The 2.n release of Impressario contains these new features:

An Adobe Level II Configurable PostScript Interpreter (CPSI)
The CPSI supports banded devices, such as inkjet plotters and inkjet
printers, reducing the amount of host memory needed to use them.

A Generic Color PostScript driver
This driver converts files to be printed into PostScript, which it sends to
printers with PostScript interpreters, including selected color printers.

A new filter, text2ps, that converts ASCII text to PostScript
All Impressario drivers now use text2ps to convert ASCII text files.

The Developer’s Kit
It is bundled with Impressario and is no longer a separate option.

Impressario 2.0 also adds support for the following:

• Hewlett-Packard DesignJet® 750C plotters

• Hewlett-Packard DeskJet® 660C, 850C, 855C, and 1600C color inkjet printers

• Hewlett-Packard LaserJet® 4V, 4 Plus, 4Si, 5L, 5P, and 5Si printers

• Hewlett-Packard JetDirect™ network adaptors for various printers

• Lexmark Optra® R, Rx, L, Lx, and Lxi monochrome laser printers

• Epson Color Stylus™, Stylus Pro™, and Stylus Pro XL printers

• International Color Consortium (ICC) color profiles for the color management of
image files, such as GIF™ and TIFF™

Note: The release notes list all supported printers and scanners, and have details about
the JetDirect network adaptors. Additional drivers will be added for releases following
Impressario 2.0 (i.e. 2.1, 2.2, and so on).

xviii

About This Guide

How to Use This Guide

Since this guide has four separate audiences, the list provided below gives the areas of
most interest to each user:

• Printer driver developers should read chapters 1–6, 10, 11, and 12.

• Printer application program developers should read chapters 1, 6, and 12.

• Scanner driver developers should read chapters 1, 2, 7–9, 11, and 12.

• Scanner application program developers should read chapters 1, 2, 9, and 12.

Conventions Used in This Guide

The followings conventions are intended to help make information easy to access and
understand:

italic Used for arguments in a command line that you replace with a valid
value. In text it indicates an argument, button, command, document
title, file name, glossary item, new term, or variable. For example:

Use the phandler command to....

The NAME variable identifies the printer name.

ALL CAPS Used for defined constants in text. For example:

The SC_PROGFEED bit should be set.

bold Denotes command-line options, keywords, and functions. For example:

The -o option directs output.

SCErrorString() returns a text string.

Courier Used for code examples and screen displays. For instance, the following
is a code example:

int
AdvanceFeeder(SCANINFO *scan)
{
 drverr = SCENOFEEDER;
 return -1;
}

About This Guide

xix

Courier bold Used for user input. For example:

vstiff /usr/tmp/sample.blastfile<Enter>

< > Used to enclose arguments, parameters, and nonprinting keys (see
above).

[] Enclose optional command arguments. Do not enter the brackets.
Example:

[optional_entry]

Document Overview

Chapter 1, “Impressario Architecture,” discusses the Impressario printing and scanning
architectures and defines Impressario compliance for printer driver and scanner driver
developers.

Chapter 2, “Printer Drivers,” provides an overview of printer driver processing, plus a
detailed analysis and discussion of an example printer driver. The required printer
filter/driver options are also covered.

Chapter 3, “Printer Model Files,” discusses the printer model files and describes the
modifications to be made by printer driver developers to the printer model file template.

Chapter 4, “Printer Graphical Options Panel,” discusses the graphical options panel that
visually showcases a printer’s features. The major topics discussed are options handling,
panel layout, development, naming, installation, invocation, and termination.

Chapter 5, “Printing Libraries,” describes the libraries used by printer drivers, filters,
and applications. The libraries described are the libspool library, the libprintui library, and
the libpod library.

Chapter 6, “Scanner Drivers,” explains how to write a scanner driver. It provides a
detailed analysis of the template scanner driver. The major topics are the driver template,
header files, data structures, functions, installation, and testing.

Chapter 7, “Scanner-Specific Options,” discusses how to implement scanner-specific
options for a scanner driver. The major topics are the options program, perspectives, and
installation and testing.

xx

About This Guide

Chapter 8, “Generic Scanner Interface,” describes a generic interface between a scanner
driver and an application program. The major topics are the coordinate system for
scanning, data structures, and data type conventions.

Chapter 9, “Testing for Impressario Compatibility,” explains how to use the programs
that test printing compatibility with the Impressario environment. It explains how to test
Impressario printing compatibility, an Impressario printer, and an Impressario printer
software installation.

Chapter 10, “Packaging Your Impressario Product,” explains how to package the
Impressario software product that you have created.

Chapter 11, “Enhancing Impressario With Plug-Ins,” explains how to add new features
to the Impressario open architecture. The major topics are how the Impressario file
conversion pipeline works, how to add a new file type to Impressario, and how to use an
alternate PostScript RIP.

Appendix A, “Stream TIFF Data Format,” describes the Stream TIFF file format, the
primary interchange file format between printer filters and drivers; and libstiff, a C
application program interface (API) used to read and write Stream TIFF files. Stream
TIFF is also used by gscan to store images in TIFF files and to scan to the screen (in
conjunction with vstiff).

Appendix B, “Silicon Graphics Image File Format API,” describes libimp, the C-language
API for reading and writing Silicon Graphics Image format files. The image processing
features of libimp are also described.

Appendix C, “Printer Object Database (POD) File Formats,” defines the file formats for
printer configuration, status, and log files in the POD. The major topics are general
syntax, input parsing rules for libpod files, printer configuration file format, and printer
status file format.

Appendix D, “Transition Notes,” explains how to migrate from Impressario 1.2 software
to Impressario 2.n. It also explains how Impressario application developers and
filter/driver developers can take advantage of the new features in Impressario 2.n.

Appendix E, “Scanner Driver Architecture,” describes the architecture of a scanner
driver and discusses the template scanner driver, required and optional functions, and
queues and multi-threaded scanner drivers.

About This Guide

xxi

Appendix F, “Reference Pages,” lists all Impressario online reference pages: general
interest, printer developers, and scanner developers.

Appendix G, “Color Management in Impressario,” discusses using ICC color profiles
and PostScript Color Rendering Dictionaries to promote color consistency among
devices such as monitors, scanners, and printers.

Appendix H, “Impressario PPD Driver Implementation,” documents the Impressario
PPD driver available with Impressario 2.2 (and higher).

Appendix I, “PostScript Interpreter (psrip) Command Line Options,”provides a listing
of the psrip command line options. This information may be needed when you add an
alternate PostScript Raster Image Processor (RIP) to your system, as described in
Chapter 11, “Enhancing Impressario With Plug-Ins.”

Related Publications

Online Books

The following books, available online through Silicon Graphics, contain information
related to Impressario:

• Programming on Silicon Graphics Systems: An Overview, Silicon Graphics, Inc.

• Indigo Magic Desktop Integration Guide, Silicon Graphics, Inc.

• IRIX Device Driver Programming Guide, Silicon Graphics, Inc.

• IRIX Device Driver Reference Pages, Silicon Graphics, Inc.

• IRIX Admin: Peripheral Devices, Silicon Graphics, Inc.

• Volume One: Xlib Programming Manual, O’Reilly & Associates

• Volume Four: X Toolkit Intrinsics Programming Manual, O’Reilly & Associates

• OSF/Motif Programmer’s Guide, Prentice-Hall, Inc.

• OSF/Motif Programmer’s Reference, Prentice-Hall, Inc.

• OSF/Motif Style Guide, Prentice-Hall, Inc.

• Impressario User’s Guide, Silicon Graphics, Inc.

xxii

About This Guide

Online Release Notes

After installing online documentation, you can view the Impressario release notes. If you
have a graphics system, select “Release Notes” from the Help Toolchest to display the
grelnotes graphical browser. Refer to the grelnotes(1) reference page for information on
options to this command. If you do not have a graphics system, you can use the relnotes
command. Refer to the relnotes(1) reference page for accessing the online release notes.

Adding the product name to the relnotes command displays the table of contents for that
product’s release notes. For example:

% relnotes Impressario
 The chapters for the “Impressario” product’s release notes are:

 chap title
 1 Introduction
 2 Installation Information
 3 Changes and Additions
 4 Bug Fixes
 5 Known Problems and Workarounds
 6 Documentation Errors

 Use “/usr/sbin/relnotes productname chapter” to view a chapter

Online Reference Pages

Appendix F lists the reference pages provided online with Impressario. To access them,
enter:

man page-nam

1

Chapter 1

1. Impressario Architecture

This chapter discusses the Impressario printing and scanning architectures and defines
Impressario compliance for printer driver and scanner driver developers. By complying
with Impressario guidelines, you make your job easier, you ensure a consistent end-user
experience, and you greatly improve the chances of effortless transitions to future
releases of Impressario.

The following topics are discussed in this chapter:

• “Impressario Printing Architecture” on page 3

• “Compliance for Printer-Driver Developers” on page 4

• “Printing Application Programming Interfaces” on page 6

• “Printing Application Development” on page 10

• “Complying With the Impressario Scanning Architecture” on page 11

• “Developing a Scanner Driver” on page 12

• “Developing a Scanner Application” on page 13

2

Chapter 1: Impressario Architecture

Overview

Impressario allows files of different types to be printed on any installed printer and
images to be scanned from a scanner, a workstation monitor, or a Silicon Graphics Image
file. A visual end-user environment makes it easy for users to add new devices and for
applications to take advantage of those devices by providing graphical interfaces for
these purposes:

• installing printers (see the printers(1M) reference page)

• modifying printer settings (see PrintPanel [glp(1)] or printers)

• checking printer status (see PrintStatus(1))

• submitting print jobs from applications (see the PrintBox widget)

• installing scanners (see scanners(1M))

• using scanners (see gscan(1))

To maintain a consistent, reliable, and easy-to-use environment, Impressario provides
the following libraries for application developers:

libspool a C application program interface (API) to the UNIX printer spooling
system

libprintui a C graphical user interface (GUI) library for printing that is compatible
with Motif

libpod a C-language API to the Printer Object Database (POD)

libscan a C-language API to the Impressario scanning system

libstiff a C-language API for reading and writing Stream TIFF (STIFF) files

libimp a C-language API for reading and writing Silicon Graphics Image files

The following final, crucial elements must be provided by driver developers:

• For printers: a compliant printer driver that reports printer status through libpod
and, optionally, a graphical options panel

• For scanners: a scanner driver for the driver side of the generic scanner interface
and, optionally, a scanner-specific options panel

Impressario Printing Architecture

3

Impressario Printing Architecture

This section describes the steps that developers of printer drivers and printing
applications must take to comply with Impressario specifications.

Figure 1-1 is an overview of Impressario printing components. A more detailed version
of this diagram is available online in /usr/impressario/doc.

Figure 1-1 Impressario Printing Architecture

The following sections detail the steps that should be followed to achieve Impressario
compliance for printer drivers and printing applications.

printer-specific
communication
protocol

Device Configu-
ration Database
(libpod)

job
status

device characteristics

End-User
Printing Host (Server)

Spooler Interface FileEnd-User Printing

Printer Installer

Printer Status

Print Request

(printers)

Panel

(PrintPanel)

Physical

Spooling

(SVR3)

Application

device
config

print

ASCII

Bitmap
Images

Printer Filter/Driver

System

device query

device status events

job
status

job
print

(libpod)
job

Printing Device

Environment

Workstation (Client)

(PrintStatus)

Panel Text

PostScript

Device and Job
Status Database

Line Printer

Display

Image File

PostScript

Emulator

Interpreter

(libpod)
job
status

job
print

Printing API

Printing GUI

(libspool)

(libprintui)

4

Chapter 1: Impressario Architecture

Compliance for Printer-Driver Developers

The steps shown in Figure 1-2 (discussed below) show how to develop and integrate a
printer driver for Impressario.

Figure 1-2 Printer Driver Development Flowchart

See Chapter 2, “Printer Drivers,”
for detailed instructions.

See Appendix C, “Printer Object Database
(POD) File Formats,” for detailed information.

See Chapter 3, “Printer Model Files,” for detailed
information and instructions.

See “The Filter/Driver Specification and psrip” in Chapter 2
for more information.

See Chapter 4, “Printer Graphical Options Panel,”
for detailed information.

Package software
for distribution

Create
model file

Provide data
filters

(as needed)

Create graphical
options panel

(recommended)

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

(required)

(required)

Develop
printer driver
(required)

Provide
POD files
(required)

Verify product
on server
(required)

Step 7

See Chapter 10, “Packaging Your Impressario Product,”
for detailed information.

See Chapter 9, “Testing for Impressario Compatibility,”
for detailed information.

Impressario Printing Architecture

5

Step 1: Develop Printer Driver (Required)

Your printer driver must comply with the Impressario Filter/Driver Specification (see
“The Filter/Driver Specification and psrip” in Chapter 2) so that a model file that is
Impressario-compliant can execute the driver correctly. This specification describes
standard driver behavior and the command-line arguments that must be processed. See
/usr/impressario/src/drivers and Chapter 2 for the source code and an example driver. The
driver must update the POD files through calls to “local” functions of the library libpod.
(See Chapter 5, “Printing Libraries.”) The formats of the POD files are described in
Appendix C, “Printer Object Database (POD) File Formats.”

Step 2: Provide POD Files (Required)

A set of POD files consists of a configuration file, a printer log file, and a printer status
file. Each POD file has the same base name as the printer model file. The extensions on
these files are: .config, .log, and .status, respectively. To create these files, start with the
example set of POD files in the directory /usr/impressario/src/data. The POD files you
create must be installed in the directory /usr/lib/print/data when you install your software.
See Chapter 10, “Packaging Your Impressario Product,” for more information.

Step 3: Create Model File (Required)

Your model file must conform to the Impressario model file specification. This is done by
starting with the template model file provided with Impressario and adding your
developer-specific processing. Model files must be installed in /var/spool/lp/model. Follow
the Impressario model file template to create a model file that properly updates the
desktop printer status icon and interacts properly with Impressario subsystems. (See
Chapter 3, “Printer Model Files,” for more information on model files.)

Step 4: Provide Data Filters (As Needed)

Filters must conform to the filter/driver specification. (See “The Filter/Driver
Specification and psrip” in Chapter 2 for more information.) Filter programs must be
installed in /usr/lib/print. It is recommended that any data filtering be performed directly
by the driver. (Filters are programs that change the format of a data file; drivers
communicate bidirectionally with the printer.) See Chapter 11 for step-by-step
instructions on adding new file conversion filters.

6

Chapter 1: Impressario Architecture

Step 5: Create Graphical Options Panel (Recommended)

This step is optional, but it is strongly recommended that you showcase the features of
your printer by providing a graphical options panel program. (See Chapter 4, “Printer
Graphical Options Panel,” for details.)

Step 6: Package Software for Distribution (Required)

Package your Impressario software product for distribution. See Chapter 10 for detailed
information.

Step 7: Verify Product on Server (Required)

Check that your product media will install the printer support files you have developed
on an Impressario server. Run the Impressario test programs testipr and testiconfig to
assist in verifying the installation. (See Chapter 9 for detailed information.)

Printing Application Programming Interfaces

To print a document on UNIX systems, you must submit a print job to one of the available
spooling systems: the BSD spooling system (lpr command) or the System V spooling
system (lp command). The System V spooling system is the default spooling system on
all Silicon Graphics workstations. Figure 1-3 shows the general Impressario spooling
architecture for the lp spooler. Note that only one of the two paths shown below
(PostScript printer or raster printer) would apply. That is, the output is either to a
PostScript printer or a raster printer, not both.

Impressario Printing Architecture

7

Figure 1-3 General Filter/Driver Architecture

Before Impressario, a true application program interface to the BSD™ and System V
spooling systems was not available. Programmers had to create their own application
programming interface or execute the lp or lpr command from their application.

lp

PostScript
printer

printer-
specific
options

handle printer-

POD
status

database
PostScript

driver
Raster
driver

STIFFPostScript

stiff2ps, sgi2ps, stiff2ps, sgi2ps, text2ps,

specific options

Raster
printer

command

and psrip filtersand text2ps filters

data data

PostScript, Silicon Graphics Image,
GIF, TIFF, ISO text, PBM, PGM,
PPM, RGB, FIT, PhotoCD, JPEG

8

Chapter 1: Impressario Architecture

Impressario provides the application program interfaces listed in Table 1-1 below.

libspool API

In its simplest form, libspool allows you to submit a file or buffer to a printer. It also gives
you control of spooling system options and printer-specific options.

libprintui API

The API libprintui is built on top of libspool. The libprintui library contains a widget,
compatible with Motif, that you can incorporate directly into your application. If your
Motif application needs printing capabilities, libprintui will provide you with all of the
basic functionality for submitting a print job as well as access to setting and saving
printer-specific options. As mentioned earlier, libprintui interfaces only with the System
V spooling system.

libpod API

The libpod library is built on top of libspool and an ancillary system daemon, podd. The
libpod library allows you to obtain detailed information about the capabilities of the
printers currently available on the system. You can also get detailed status information
about the printers. Most applications do not need to use libpod; however, for those that
do, libpod provides a very powerful, network-transparent interface.

Table 1-1 Printing Application Programming Interfaces

API Interfaces to Function

libspool System V, BSD Allows submission of a file or buffer to a printer

libprintui System V only Provides Motif PrintBox widget for printing from application

libpod System V, BSD Gets status information on the printers currently available

Impressario Printing Architecture

9

Figure 1-4 shows the relationship between an application program, the Impressario
APIs, and the System V spooling system.

Figure 1-4 System V Spooling System Interface

Figure 1-5 shows the relationship between an application program, the Impressario
libspool API, and the BSD spooling system.

Figure 1-5 BSD Spooling System Interface

System V (lp command)

libspool

libprintuilibpod

glp

Application

libspool

Application

BSD (lpr command)

10

Chapter 1: Impressario Architecture

glp (PrintPanel)

The “print” subsystem available with the IRIX operating system contains the program
glp, a graphical standalone print job submittal tool. While not a true API, glp can be used
by your application to submit print jobs. It is a standalone wrapper around the PrintBox
Motif widget in libprintui.

Printing Application Development

The following Impressario application printing solutions are available:

• Perform non-graphical print functions via libspool.

Use libspool, the spooling system abstraction library, for all non-graphical interaction
with the BSD or System V spooling system. The libspool library functions perform a
large amount of work to ensure successful spooling system interaction, work that a
developer may not wish to reproduce.

• Perform graphical print functions via libprintui.

Use the PrintBox Motif widget provided by the libprintui library for graphical print
job submittal. The widget provides a consistent job submission dialog across all
applications and greatly reduces the amount of development effort required. If you
use this library, you don’t need to use libspool directly. libprintui encapsulates those
calls.

• Obtain printer status via libpod (optional).

Use libpod library calls to get printer status, configuration, and log information.
Status queries must be made through libpod calls; attempts to obtain this
information through other means have unpredictable results. In most cases,
application developers should use the “standard” forms of the libpod functions (the
“local” forms of the functions are for use by printer driver developers and are not
network-transparent).

• Submit graphical print jobs via glp.

If you are not using Motif, you may use glp to submit graphical print jobs from your
application. If you use this method, you should have the print software package
(shipped with IRIX 5.2 and later) as a prerequisite. While this method works, it is
not recommended, as it is likely to be less efficient than using libprintui.

Complying With the Impressario Scanning Architecture

11

Complying With the Impressario Scanning Architecture

This section describes how to comply with the Impressario specifications for scanner
driver developers and scanner application developers.

Figure 1-6 illustrates the run-time components of the Impressario scanner architecture.
Note that scanner applications, scanner-specific options programs, and scanner drivers
all link with libscan.a, which has separate modules for scanner applications and for
scanner drivers.

Figure 1-6 Scanner Run-Time Components

The main and scanner-specific modules of a scanner driver both register callback
functions with libscan.

Scanner-
specific
module

Scanner
application

Generic
scanner

API
libscan

Scanner
application
modules

Scanner
IPC
calls

Scanner-
specific
options

Interprocess
communication

libscan
Scanner

driver
modules

Scanner
driver API

Main (IPC)
module

Callback
functions

12

Chapter 1: Impressario Architecture

Figure 1-7 shows the interprocess communication of the Impressario scanner
architecture.

Figure 1-7 Interprocess Scanner Communication

The following sections describe how to achieve Impressario compliance for scanner
drivers and applications.

Developing a Scanner Driver

Follow these steps to develop and integrate a scanner driver that complies with
Impressario:

1. Develop the scanner driver. See Chapter 6, “Scanner Drivers,” and Chapter 7,
“Scanner-Specific Options,” for detailed instructions.

2. Create a graphical options panel. This step is optional, but it is recommended that
you showcase the features of your scanner through this mechanism. See Chapter 7,
“Scanner-Specific Options,” for detailed instructions.

3. Create distribution media that will install the driver on an Impressario server. Be
sure to check that the media will install the scanner support files you have
developed on an Impressario server. See Chapter 10 for detailed information.

Scanner
Driver

Shared Memory Area

• Access control semaphores
• Scanning status area
• Status change notification

Scan data is written by the scanner
driver to the file descriptor passed
to it by the application

Scanner
Application

Scan commands and results

Pass file descriptors
UNIX domain socketpair

UNIX domain socketpair

Complying With the Impressario Scanning Architecture

13

Developing a Scanner Application

There are two ways for an application to interact with the scanning system:

1. Through libscan. This scanning system abstraction library provides a C-language
API for scanners. Application programs can use libscan to retrieve data from any
scanning device for which a driver exists. See the libscan(3) reference page for a
detailed list of the libscan library functions.

2. As a plug-in module using gscan, which provides a complete graphical scanning
interface. When passed the -p option, gscan writes scanned data to its standard
output as a Stream TIFF file. After launching gscan with the -p option, applications
can use the STIFF routines in libstiff to acquire the scanned data from the standard
output of gscan.

15

Chapter 2

2. Printer Drivers

This chapter provides an overview of printer driver processing, followed by a detailed
analysis of an example printer driver. The required printer filter/driver options and the
reserved and unreserved printer filter/driver options are also covered.

The following topics are discussed in this chapter:

• “Printer Driver Processing” on page 17

• “Printer Driver Examples” on page 18

• “The Filter/Driver Specification and psrip” on page 21

Tip: Printer application developers can skip to Chapter 5.

16

Chapter 2: Printer Drivers

Overview

A printer driver must perform the following tasks:

1. Receive and process an input file.

2. Send formatted data to the printer or to standard out. (The driver can use standard
out when sending data to the generic drivers phandler and nethandler.)

3. Query the printer and receive status information. (This step is optional if phandler or
nethandler is used.)

4. Read and write the printer object database (POD) files.

All printer drivers must read the POD files to determine printer-specific defaults and to
maintain the active status file of the POD so that other clients can determine the printer’s
status. Chapter 5, “Printing Libraries,” describes libpod, the library that provides an API
to the POD. Appendix C, “Printer Object Database (POD) File Formats,” defines the file
formats for the printer configuration file, the printer status file, and the printer log file in
the POD.

Printer Driver Processing

17

Printer Driver Processing

Figure 2-1 provides an overview of printer driver processing. Note that this is a
simplified overview; the actual steps might be more complex.

Figure 2-1 Printer Driver Processing Overview

Read and parse

Verify input file

Report empty

Connect to

Convert data to

command-line

or input stream

Input

no

yes

printer, check

Update status

Read

printer-specific

Start sending
 data to printer

no

yes Printing
done?

Printer

input data error

Report printer
fault

Do necessary

Update printer
status to Idle

yes

cleanup tasks

options to Busy

file/stream
empty? format

Exit

no

Exit

Start

fault?

printer status

input data

18

Chapter 2: Printer Drivers

Printer Driver Examples

Two example printer drivers are provided: laserjetPJL for HP LaserJet printers and
phandler for generic parallel printers. The source code files for laserjetPJL are in the
directory /usr/impressario/src/drivers/laserjetPJL and the source code files for phandler are
in the directory /usr/impressario/src/drivers/phandler. Both drivers follow the steps shown
in Figure 2-1, but the laserjetPJL driver is more complex because it also performs data
compression. Because this added complexity is not necessary for the example, the focus
is on the phandler driver in this chapter.

The example printer driver phandler checks the status of the parallel port while passing
data through to the printer. It treats the input as a byte stream and updates the printer
status file at various stages of processing.

Among the include files in this program is pod.h, which contains printer status error
codes and other defined constants related to printing. The include file plp.h contains
information related to the parallel port.

Program Invocation

The command-line interface for phandler is

phandler -P printer_name [options] [filename]

Arguments:

-P printer_name The name of the installed printer (required).

filename The name of the file to send to the printer. Data is read from standard
input if no filename is given.

options can be one or more of the following:

-e Exit immediately on error. (The default is not to exit on error.)

-w Suppress warning messages.

-D Enable debugging. -D is the lowest level of detail, -D -D is the second
level, and -D -D -D is the highest level of detail. The debugging
information is appended to the log file.

Printer Driver Examples

19

-L filename Use filename as the log file for debugging information and errors. The
default is to use standard error, which the System V, Release 3 lp spooler
redirects to the spooler log file.

-R Reset the parallel port before sending data.

-K Ignore interrupts.

-I Enable sensing of the EOI pin. The default is to ignore the EOI pin.

-B int Set the size of the internal transfer buffer to int bytes. The default is 1024.
Larger buffers enable more page buffering, which may free upstream
filters to do more processing while data is being sent to the printer.

-s Invoke phandler to update the printer’s status. Check the parallel port’s
status unless -u is specified. Update the paper size if -S is specified.

-u Used only with -s. Don’t check the parallel port’s status. This allows the
driver to ignore the parallel port while it is updating the POD status file.

-S string Set the paper size (for example, A, A4, Legal) to string and update the
POD status file for the printer.

-d Send an ASCII Control-D (hexadecimal 0x4) at the end of the job.

To invoke phandler to update the POD data base, enter this command:

/usr/lib/print/phandler -P printername -s -u -K -S A

This use of phandler only updates the POD data base with the paper size. It ignores the
parallel port status, and no information is sent to the parallel port. You normally use this
command before invoking any filter that accesses the POD data base to insure that the
filter gets the correct paper size.

After updating the POD data base with the paper size, you could send a file to the
parallel port with phandler like this:

/usr/lib/print/text2ps -J printername textfile | \
/usr/lib/print/phandler -P printername -K -S A -d

Here, text2ps is used to convert an ASCII text file to a PostScript file. text2ps uses
printername to access the POD and get printer-specific information, such as paper size.
Other filters operate similarly to text2ps by accessing the POD for printer-specific
information. This is why you run phandler to update the POD status before using a filter.

20

Chapter 2: Printer Drivers

The output of text2ps is piped to phandler, which sends it to the parallel port while
monitoring the printer’s status and updating the POD.

Program Processing

This section contains a detailed discussion of the phandler driver. A more detailed
example driver is supplied in the /usr/impressario/src/drivers/laserjetPJL directory.

Note: The Impressario guidelines strictly require drivers to retry errors. Error exits are
to be avoided whenever possible so that print jobs do not disappear before the user has
a chance to fix the error condition.

Do the Initial Processing

1. Parse the command-line arguments with getopts.

2. Read the printer status file. If phandler cannot open the status file, it exits with an
error message.

Open the Printer Port

1. Open the port. If there is an error and you requested exit on error when invoking
phandler, then the program writes an error message and exits. Otherwise, when an
error occurs, the program continues trying to open the port. It checks every n
seconds (where n is the value of error_retry_wait) and writes an error message to the
log file after each failed attempt to open the port.

2. If phandler successfully opens the port, it updates the current printer status to
“Busy” in the printer active status file. If the command line contained the -s option
(status only), then phandler exits after updating the status. (The kernel closes the
port when it exits the program.)

Allocate and Set Up the Buffer

Allocate and set up the buffer. If phandler cannot allocate the buffer, the program exits
with an error message. (It exits only because memory allocation errors are very rarely
recoverable.)

Update libpod Status

Use the fork system call to create a child that updates the printer status.

The Filter/Driver Specification and psrip

21

Read, Process, and Send Data to the Printer

Begin reading from the input and begin sending data to the parallel port.

Your driver will probably need to process the input data into an appropriate printable
format before sending the data to the printer.

1. If an unrecoverable error occurs while writing to the parallel port, write an error
message to the log file, write the faulted state to the printer status configuration file,
and exit.

2. If the input file is empty or unreadable, write an error message to the log file, update
the status file, and exit.

The driver uses signal handling to ensure that it is not interrupted in “critical regions,”
during which an interrupt could destroy vital files or the printer state.

Cleaning Up and Exiting

When printing is complete, update the printer status configuration file to “Idle,”
terminate the child status process, and exit.

The Filter/Driver Specification and psrip

The command-line options listed in this section must be implemented as specified for
any printing filter or driver to be compatible with Impressario. Switch letters have been
chosen to maximize the intuitive correlation with function. Additional functionality
beyond that listed here must use unreserved switch settings. Please note the following
points:

• All switches are case sensitive. That is, -P does not have the same meaning as -p.

• Printer drivers must accept and ignore all reserved options that are not supported.

• Printer drivers must conform to getopts conventions. (See getopts(2) for more
information.)

22

Chapter 2: Printer Drivers

• Multiple options on a single line have right-to-left precedence. For example:

-n 1 -n 2

has the same effect as

-n 2

• The STIFF file passed to a printer driver may have command-line options
embedded in it by psrip, a program that converts PostScript files to STIFF files.
Drivers that accept input from psrip must accept and parse these command-line
options. A good example is a PostScript file that contains a PostScript command to
print 5 copies. psrip parses that PostScript command and embeds -n5 in the STIFF
file header. This header file information tells the printer driver to print 5 copies. The
laserjetPJL example driver demonstrates how to parse command-line options
embedded in a STIFF file. Appendix A, “Stream TIFF Data Format,” details the
STIFF header format.

Required Options

These switches must be supported by all drivers:

-e Exit immediately on fault without waiting for faults to clear. The default
behavior is to wait indefinitely for faults to clear, polling the device at
the error-retry intervals specified in the POD configuration file. This
option is used when only a quick query should be done.

-s Update the status file. Exit only after successfully doing so. This switch
has the highest precedence. If the -e switch is given, exit after one try at
reading status.

-w Do not report warnings in the status file. Report errors only.

-D Enable debugging information. Optionally, more -D switches increase
the level of debugging detail. For example, entering

-D -D

enables a second level of debugging detail. At least one level of
debugging must be supported.

-P string The value of string defines the printer name. The printer name is used to
find the POD. The printer name is the name given to the printer at
installation time. See the libpod(3) reference page for more information.
This option is also a required option whenever the driver is invoked.

The Filter/Driver Specification and psrip

23

Impressario printer drivers must read the libpod printer object database to

• determine defaults

• maintain the active status portion of the POD database

• enable other clients to determine printer status

Reserved Options

The following options are reserved and are to be implemented by drivers whose
hardware supports them, or by inline filters that process the options before the driver is
invoked. You need not implement all options, but every driver must accept or ignore any
unimplemented options on this list.

Raster-specific options include the following:

-f Flip the image, as if in a mirror. The image is rotated horizontally about
the y-axis. Useful for transparencies or decals.

-p int Scale the image as if it were being printed on a device with the
designated resolution specified in int pixels per inch. This is a
convenience switch, since the same effect can be obtained by computing
the appropriate scale factor for the image size and destination
resolution.

-r int Rotate the image counter-clockwise by an angle specified in int degrees.
Values outside the range 0-359 should be accepted and modulo
converted to a value between 0-359.

-z float Zoom the image using proportional scaling, where the floating-point
argument is nonnegative. Some values are given below:

Note: The image aspect ratio must be preserved. Future
implementations may extend this to multiple pages. For example, 2.0
would mean fill a 2-by-2 page array.

0.0 Do not zoom the image.

0.5 Fill one-half of one page.

1.0 Fill one page.

24

Chapter 2: Printer Drivers

Engine-specific options include the following:

-q int Quality mode. Set the engine-specific quality mode. This should be a
nonnegative integer, with greater values indicating higher quality.

-n int The number of copies to be printed, a positive integer.

-t Generate a test print. The test print should confirm that all marking
media are present and functional.

-m int Manual feed request. Wait MediaWaitTimeout seconds for manual feed.
Give up after MediaWaitTimeout seconds and print anyway on the
available media. See the POD for these values. Giving up is important
for shared printers.

-o int Request a specific output medium:

Other media types may be supported; see the libpod(4) reference pages.

Output-specific options include the following:

-L filename Log errors to filename instead of standard error. The file specified should
be opened in append mode. If the file cannot be opened, errors should
be reported to standard error instead.

-O filename Output data to filename instead of the device port or standard output.
The file specified should be opened. If the file cannot be opened, data
should instead be written to the device or standard output, as
appropriate. If this option is used, all status reporting is disabled,
because the printer driver is not communicating with the actual device.

Unreserved Options

The switches listed below are not reserved and can be used for device-specific options:

• Lowercase: a, b, c, d, g, h, i, j, k, l, u, v, x, y

• Uppercase: A, B, C, E, F, G, H, I, J, K, M, N, Q, R, S, T, U, V, W, X, Y, Z

0 paper or a reflective medium

1 transparencies

25

Chapter 3

3. Printer Model Files

This chapter discusses the printer model files and describes the modifications to be made
by printer-driver developers to the printer model file template.

The following major topics are discussed in this chapter:

• “Overview” on page 26

• “Command-Line Arguments” on page 26

• “Template Model File Execution” on page 27

• “Printer-Specific Options” on page 31

• “Developer-Supplied Model File Additions” on page 33

26

Chapter 3: Printer Model Files

Overview

Model files are Bourne shell scripts that form an interface between the System V,
Release 3 spooling system and the printer. Each printer has its own model file, which is
customized by the printer installation tools when the printer is installed. The customized
copy of the printer model file is the interface file. The interface file is invoked by the
spooling scheduler lpsched when the printer is ready to accept a new print job. The
interface file sets up printer-specific options, calls filters, and invokes the printer driver.

System V model files differ greatly from BSD /etc/printcap entries. The reader unfamiliar
with System V spooling should refer to the IRIX Admin: Peripheral Devices manual for
more information.

Command-Line Arguments

The model file expects these command-line arguments from lpsched in the order listed:

1 job sequence ID number

2 user login name

3 job title

4 number of copies to be printed

5 -o printer options

6-n name(s) of the file(s) to be printed

The end user does not invoke the model file manually; it is invoked only through lpsched.
If you want to check for gross syntax errors, you can do this quickly by running the
model file with dummy arguments such as:

laserjetPJL_model a b c d e

Not all errors can be found this way, since the model file does not run to completion, but
this does provide a quick test for gross syntax errors. If errors are found, putting the -x
flag at the end of the first line in the model file may help debug the error. See the sh(1)
reference pages for more details on debugging Bourne shell scripts.

Template Model File Execution

27

Template Model File Execution

This section explains how the Impressario model files work.

The source code for the template laserjetPJL_model file is located in the directory
/usr/impressario/src/models. The main steps in the template model file are shown below
and described in more detail in the following sections:

1. Declare global and external variables and define convenience functions.

2. Interpret and store the command-line options.

3. Verify that the prerequisites are in place.

4. Set the output device driver, which can be either a driver for the parallel port or a
driver for a network card that is installed in a printer.

5. Invoke the driver to update the POD status file with the current printer state and the
current job setting.

Note: This is an important step. All filters use the status file to determine what
parameters to use. The driver must ensure that the POD status file is absolutely up
to date before the first filter is run, or a change in printer status between jobs could
compromise the next job.

6. Start the active icon tagging subprocess.

7. If pages stack face down, print a banner page if requested.

8. Use filters to convert the submitted file to the data type required by the printer
driver.

9. Invoke the printer driver with the converted data.

10. Repeat steps 8 and 9 for each file to be printed and report any errors encountered to
standard error.

11. If pages stack face up, print a banner page if requested.

12. Clean up after the job and exit with an appropriate exit code.

28

Chapter 3: Printer Model Files

Declaring Variables

The steps given below tell you what variables to declare. Note that variable names are in
all uppercase letters. Those variables are exported for use by the filters invoked when
converting input files into printable data. See the fileconvert(1) reference page for more
information.

1. Define NAME and TYPE. If the type is not defined, then the model file writes an
error message and exits.

2. Append the standard error output from the filters and driver to the spooler log file.

3. Define the file paths, directory paths, and Boolean flags used in the model file.

4. Define the locations and options for all filters. (The model file checks to make sure
that the printer-specific driver exists and that the spooler log file is writable. If these
conditions are not met, the model file writes an error message and exits.)

Defining Convenience Functions

The next portion of the model file contains various convenience functions used within
the model file. The convenience functions listed in Table 3-1 are routines contained
within the model file. These routines are used for parsing the -o options and for various
utility functions.

Table 3-1 Convenience Functions

Function Name Description

BeginTagging() Sets up the tagging job that monitors the printer’s status.

CleanUpAfterJob() Does any cleanup needed at the end of the job.

EndTagging() Ends the tagging of the printer.

ParseOptions() Parses the -o command-line options and sets appropriate
variables. Expects the command-line options string as the first
argument.

PrintBannerPage() Prints a banner page.

PrintMessage() Prints its arguments as text on the printer. Used to report errors
to the user. Accepts any number of arguments.

Template Model File Execution

29

Processing Command-Line Arguments

The template model file follows these steps to process command-line arguments:

1. Retrieve the command-line arguments.

2. Set up the cancellation signal handler for SIGHUP, SIGINT, and SIGTERM. This
allows the user to cater the job cancellation signal sent by the spooler and clean up.

3. Parse the options passed with the -o switch.

4. Set the device driver.

5. If the verbose switch is set, send a message to the spooler log that the job has begun
filtering.

6. Call the printer status and communications driver to update the status database
before job filtering begins.

7. Start the tagging subprocess to tag the printer’s workspace icon with the
appropriate print-engine type and status.

ReportBadFile() Reports unknown file type to the printer and to the spooler log.
Expects the filename as the first argument and the file type as the
second argument.

ReportUnknownOption() Reports an error when an unknown option is parsed. Expects the
unknown option as the first argument.

SetCancelTrap() Sets up the trap command for the signals SIGHUP, SIGINT, and
SIGTERM.

SetDebug() Turns on debugging mode for all filters and drivers.

SetDeviceDriver() Sets the output device driver to a parallel port driver or to a
driver for a network card installed in a printer.

TestExitStatus() Interprets exit status from the last command and sends error
message to both the spooler log and the printer if needed. Expects
the exit code of the last command as the first argument, a string
describing the last command as the second argument, and the file
in question as the third.

Table 3-1 Convenience Functions (continued)

Function Name Description

30

Chapter 3: Printer Model Files

Printing Banner Page

The model file prints a banner page is printed if the banner switch is set. (The banner page
may be printed last for face-up stacking printers.)

Using Filters to Process Files

1. The fileconvert command automatically determines the file type of each file using
the Indigo Magic file typing rule database. (See the reference pages for ftr(1) and
fileconvert.) If a fast text path exists, and the user has not requested options that
require the slower path, then the file is converted using the fast text path.
Otherwise, the normal fileconvert path is used. See the template model file for
specifics.

2. fileconvert produces a shell command string that, when executed, produces the
requested data type on standard output.

3. If the file could not be converted, ReportBadFile() is called; otherwise the fileconvert
shell program is executed and the output piped to the printer driver.

4. TestExitStatus() is called to test whether the driver reported an error.

Cleaning Up and Exiting

1. After the printing is complete, perform any needed cleanup.

2. End the tagging subprocess.

3. Append an ending message to the log file if the debug switch is set.

4. If there were unsupported file types in the list of files to be processed, exit the model
file with an easily understood error code.

Printer-Specific Options

31

Printer-Specific Options

The -o option to the spooler allows model files to accept a variety of non-spooler options.
These are the options specified with -o on the lp command line. It is these options that are
produced by the graphical printer options panel.

Impressario defines a number of general file filtering options for the convenience of the
end user, and reserves those option names.

The reserved options are listed in Table 3-2 in alphabetical order. Their meanings should
not be changed by printer driver developers. Developers should choose short,
understandable option names for any additional options. These options may be seen by
end users, so they should not be verbose.

Table 3-2 Reserved Option Names

Option Name Description

banner Prints a banner page.

bestfit Uses the best fit orientation for image files (default is on).

bottommargin Sets the bottom margin size for text.

columns Sets the number of columns on the page for text.

debug Causes filters to report debugging information (default is off).

duplex Turns duplex on or off.

flip Flips the image, producing a mirror image.

fontname Uses a specified font name for text.

fontsize Uses a specified font size for text.

gamma Uses a specified value for image gamma correction.

gaudy Uses a fancy page header for formatted text.

halftone Sets the halftone or dithering option to be used.

intray Specifies the input media source (same as the tray option).

landscape Uses landscape page orientation for text.

leftmargin Sets the left margin size for text.

32

Chapter 3: Printer Model Files

manpage Indicates the preformatted reference (manual) page to be printed.

manual Sets manual feed.

nobanner Sets the “do not print a banner page” option.

nogaudy Sets the “do not use fancy page header for formatted text” option.

noverbose Sets the “do not print verbose messages in the spooler log file” option
(same as the -h option).

numberpages Sets the number of text pages.

outtray Specifies the output media source.

papersize Selects the paper size.

portrait Uses portrait page orientation for text.

ppi Scales the final image size to match the specified original image resolution,
in pixels per inch.

psevenpage Prints even pages only (PostScript).

psoddpage Prints odd pages only (PostScript).

pspagerange Prints the specified page range (PostScript).

psreversepage Reverses the page order (PostScript).

resolution Sets x and y resolutions (for resolution-switchable printers).

reversepages Reverses text document page order (prints the last page first).

rightmargin Sets the right margin size for text.

rotate Rotates the image clockwise in 90 degree increments.

topmargin Sets the top margin size for text.

tray Specifies the input media source.

verbose Records debugging messages in the spooler log file.

zoom Scales the image to fit the page (default is a scale of 1.0).

Table 3-2 Reserved Option Names (continued)

Option Name Description

Developer-Supplied Model File Additions

33

Developer-Supplied Model File Additions

Printer-driver developers must customize the model file template supplied by Silicon
Graphics to the specifications of their printers. The template model is located in the file
/usr/impressario/src/models/template_model. This code is the same as the code in the
laserjetPJL_model file so that developers can have a working, debugged example from
which to begin.

The following ten items must be specified by you. They are listed and explained in the
order in which they appear in the model file template.

1. Printer name.

2. Device interface.

3. Printer type.

4. GUI class.

5. Printer-specific filter/driver.

6. Debug routine.

7. Cleanup routine.

8. Printer-specific banner page.

9. Printer-specific filtering options.

10. Fast path for text.

Note: All items that must be modified by the developer have been marked with “#XXX”
in the model file. Search for and remove these markers as you progress to be sure all
necessary modifications have been made.

Printer Name

The NAME variable identifies the real printer name, such as “HP DeskJet 500C.” NAME
contains the string that is presented to the end user in the Printer Manager’s graphical
printer install tool. Multiple NAME variables are allowed on separate lines if the model
file can support more than one printer.

34

Chapter 3: Printer Model Files

Device Interface

The DEVICE variable identifies the hardware interface where the printer is attached. The
value is used by the printer install tool to present models by connection type. Multiple
connections are supported. (Use multiple lines for multiple devices; that is, simply repeat
the line for each different device.) The values currently allowed are SERIAL, SCSI,
CENTRONICS, NETPRINTER, and REMOTE. Obsolete types that should not be used
are VERSATEC and TEK.

Printer Type

The TYPE variable identifies the printer type. This information is used by the Print
Manager, routeprint, libspool functions, and other system software, including the active
icons subsystem. Table 3-3 shows the values allowed for the TYPE variable. Obsolete
types are Dumb, Color, and PostScript.

GUI Class

The value of this variable is the name of the resource file for the graphical options panel.
This value must match the #define GUI_CLASS in the options panel gui_class.h. If an
options panel is not provided, do not specify a value for this variable.

Table 3-3 Printer Type Specifications

TYPE Value Data Types Accepted Printer Examples

Raster At least text, .SGI image, PostScript HP LaserJet

ColorRaster At least text, .SGI image, PostScript Tektronix Phaser II SX

Plotter HP-GL only HP 7550A

ColorPostScript At least text, .SGI image, PostScript Tektronix Phaser II PXi

MonoPostScript At least text, .SGI image, PostScript LaserWriter II NTX

Developer-Supplied Model File Additions

35

Printer-Specific Filter/Driver

The file laserjetPJL.c contains an example of a complete printer driver. This driver is used
in the /usr/impressario/src/models/laserjetPJL_model file. For comments about the model file,
see the /usr/impressario/src/models/template_model.README file.

Debug Routine

To turn on debugging for developer-supplied filters, modify SetDebug() to set the debug
switch (-D) for each filter.

Cleanup Routine

Some developers may need to perform some cleanup at the end of each job. If so, add this
cleanup to the routine CleanUpAfterJob() in the model file. To make this step easier, the
use of temporary or intermediate files is strongly discouraged.

Printer-Specific Banner Page

It is recommended that you do not modify this routine. However, to create a customized
banner page that uses printer features such as page counts or graphics, modify
PrintBannerPage() as required. The banner page should not unduly slow down the
printing process, and customized banner pages should include at least as much
job-specific information as the default banner page: job ID, user name, job title, date and
time, and the filename(s).

If your printer is unlikely to be shared, or has high per-page costs, you may want to turn
off banner pages by default. In this case, set the variable banner to zero (0). However,
users can still choose to print a banner page.

Printers that stack pages face down should print the banner page before any files, while
those that stack pages face up should print the banner page last. This is handled
automatically if the faceup variable is set appropriately.

36

Chapter 3: Printer Model Files

Printer-Specific Filtering Options

The ParseOptions() routine parses the -o command-line options and sets appropriate
global variables. This routine contains many general options, and developer-specific
options can be added if required. However, developer-supplied options must not
duplicate Silicon Graphics reserved words. See “Printer-Specific Options” on page 31 for
a complete, alphabetized list of existing options.

It is recommended that any developer-specific options be full-word names to improve
the readability of the stored settings files and to reduce name-space conflicts. This also
aids users who use command-line interfaces to printing. However, option names should
be kept brief.

Fast Path for Text

You should modify the path in the file filtering section of the model file to use native text
support if your printer supports native text printing that is faster than PostScript
printing. Users, however, must still have access to all PostScript formatting options. Do
not disable the slower PostScript path.

37

Chapter 4

4. Printer Graphical Options Panel

This chapter discusses the graphical options panel, which visually showcases a printer’s
features.

The following major topics are discussed in this chapter:

• “Graphical Options Panel Layout” on page 38

• “Options Handling” on page 40

• “Graphical Options Panel Development” on page 40

• “Graphical Options Panel Naming” on page 41

• “Graphical Options Panel Installation” on page 41

• “Invocation by the PrintBox Widget” on page 42

• “Standalone Invocation for Testing” on page 42

• “Termination by the PrintBox Widget” on page 43

38

Chapter 4: Printer Graphical Options Panel

Overview

Impressario provides the PrintBox widget for submitting print jobs from Motif
applications. This widget is contained in the library libprintui(3X). The PrintBox widget
is used by the glp or PrintPanel command and a number of other applications to provide
their printing capability. In addition to providing graphical selection of System V print
job submission options, the widget provides the graphical options panel for graphical
selection of printer-specific options.

A graphical options panel allows the printer-driver developer to showcase the unique
features of a printer in an intuitive graphical panel. The graphical options panel program
is invoked by the PrintBox widget in applications, by the end user via glp, or by the
Printer Manager in the System Toolchest. The Graphical Options Panel Specification located
in the /usr/impressario/doc directory provides the information necessary to create and
integrate a graphical options panel. Graphical options panels are standalone executable
programs that are stored in a standard directory known to the Impressario printing tools.
Therefore, the graphical options panels are automatically available to users of
Impressario printing tools. The rules for developing a graphical options panel are
straightforward and do not require any interprocess communication or similar complex
procedures. In fact, we strongly discourage any network dependencies because not every
Impressario printer is on a network.

Graphical Options Panel Layout

A graphical options panel most often consists of a single window. This window usually
contains two sections, an options section and an action area. We strongly recommend
that you keep options panels simple to avoid both complex code and complicated
documentation.

The options section contains all printer-specific option controls. This area is often divided
into groups of option controls, where each group represents a specific input file type.
Most options sections contain controls for text files, bitmap image files, and PostScript
files. The options section also contains a general options section. Because there are often
a large number of controls in the options section, you should use a scrolled window to
limit the graphical options panel window to a reasonable size. Figure 4-1 shows an
example of a graphical printer options panel.

Graphical Options Panel Layout

39

Figure 4-1 Graphical Printer Options Panel

The action area is located at the bottom of the graphical options panel window and
consists of a number of push buttons. The first three are required:

OK Output the option string to standard out and terminate the program.

Apply Output the option string to standard out; do not terminate the program.

Cancel Terminate the program without any option string output.

Help Provide printer-specific options help.

Group buttons together on the right side of the action area. The width of all buttons
should be equal. The leftmost button should be OK followed by Apply, Cancel, and Help.
Place any additional buttons between the Apply and Cancel buttons. Note that the
supplied template makes this happen automatically.

40

Chapter 4: Printer Graphical Options Panel

Options Handling

If printer-specific options have been passed to the graphical options panel on the
command line, the program must interpret these options and initialize its options-section
controls to reflect the command-line options. Options not recognized by the graphical
options panel must be preserved and prepended to the output option string.

When the OK or Apply button is activated, the graphical options panel program must
form a valid System V printer option string based on its GUI settings, and print this
string to its standard output.

Graphical Options Panel Development

The directory /usr/impressario/src/gui_models contains example source code for a graphical
options panel. Begin with this code and add your printer-specific options. Do not start
from scratch! You will waste valuable development time and may create inconsistencies.
Benefit from others’ experience and begin with the template.

Create the graphical options panel with the OSF/Motif UI™ toolkit. Starting with
Impressario 1.2, your graphical model file can have its own application resource file.
While the resource file can be given any name, Silicon Graphics recommends that the
name represent the printer model name and have its first letter capitalized. For example,
the application resource file for the HP LaserJet graphical model file is called LaserJetPJL.
The name chosen for the resource file must be specified in the gui_class.h header file and
must also be specified in the printer model file as the value of the GUI_CLASS variable.
Your installation media must place the resource file in the directory
/usr/lib/X11/app-defaults.

To match the look and feel of the PrintPanel program (glp) and other graphical options
panels, the application resource file should include the following resources:

*useSchemes: all

*schemeFileList: SgiSpec

*sgiMode: True

Graphical Options Panel Naming

41

To facilitate localization of the options panel for international customers, all label strings
and messages should be placed in the application resource file rather than being
hard-coded into the program.

The graphical model files must consist of a single executable program and its application
resource file. The model files are restricted to these because the printer installation tools
install only an executable and its resource file during network printer installation.

Graphical Options Panel Naming

The graphical options panel must be given the exact same name as its printer’s model
file, followed by the suffix .gui. For example, if the printer model file for an HP DeskJet
500C printer is called deskjet_model, then the graphical options panel must be given the
name deskjet_model.gui. If the graphical options panel is given a name that differs from
the model filename, it will not be installed by the printer install tools when a new printer
is installed on a system.

Graphical Options Panel Installation

All graphical options panel programs must be installed by your installation media in the
directory /var/spool/lp/gui_model or /var/spool/lp/gui_model/ELF1. These directories are
where the printer installation software searches for the programs. COFF executables
must be installed in the directory /var/spool/lp/gui_model. The executable should be owned
by lp and should be a member of the group lp. The file permissions of the executable
should be set to 0755.

Note: You must always supply an ELF executable. COFF executables are not supported
in IRIX 6.2, and are necessary only if you wish to support IRIX 4.0.5 systems.

1 All programs compiled on systems running IRIX 5.0 or later are ELF executables.

42

Chapter 4: Printer Graphical Options Panel

Invocation by the PrintBox Widget

The graphical options panel is invoked by the PrintBox widget or the Printer Manager.
The graphical options panel is always invoked with the command-line arguments listed
in Table 4-1. Note that the options are almost identical to those passed to your spooler
model file.

Any Xt options may be specified as argv[4] or greater. If there are no printer-specific
options for argv[3], the empty string ("") is passed as argv[3]. If no filenames are specified,
the empty string is also passed as argv[2].

Standalone Invocation for Testing

To test a graphical options panel during development, it may be run as a standalone
executable from the UNIX command line. Invoke the graphical options panel by entering

[executable name] [any valid user name] ""

For example, if the executable program is called laserjetPJL_model.gui, and “joe” is a valid
user name on the system, then the program can be executed from the command line by
entering:

laserjetPJL_model.gui joe ""

Table 4-1 Command-Line Arguments

Argument Description

argv[0] Printer name

argv[1] User name

argv[2] Filename(s) string

argv[3] Printer-specific option string (optional)

argv[4-n] Xt options (optional)

Termination by the PrintBox Widget

43

When debugging, it often helps to invoke the graphical options panel from the shell and
repeatedly test the options string that is generated when the Apply button is pushed.
Once the options string is properly generated, test for proper parsing of the input options
by invoking the graphical options panel with various options strings, especially those
output by your panel. Be especially careful that all widgets are set properly when, upon
startup, the panel is passed a string that sets options to non-default values.

Termination by the PrintBox Widget

Applications terminate the graphical options panel using a SIGHUP signal. The
graphical options panel should exit promptly upon receipt of this signal.

Additional Information

For additional information, please read the online specification found in
/usr/impressario/doc/gui_model.spec.

The template was intended to make the creation of these panels easier. If you find the
process difficult, please check the template documentation and the convenience routines
in the support files. There may be a solution already provided.

45

Chapter 5

5. Printing Libraries

This chapter describes the printing libraries used by Impressario printer drivers, filters,
and applications.

Three printing libraries are described in this chapter:

• “The libspool Library” on page 46 is a C application program interface (API) to the
UNIX printer spooling systems.

• “The libprintui Library” on page 48 is a C-language API to the PrintBox, a widget
compatible with Motif.

• “The libpod Library” on page 54 is a C-language API to the printer object database
(POD).

In addition to the above libraries, there are two libraries described in the appendices that
are also used by printer drivers and filters:

• Appendix A, “Stream TIFF Data Format,” describes libstiff, a C-language API for
reading and writing the STIFF (Stream TIFF) data file format.

• Appendix B, “Silicon Graphics Image File Format API,” describes libimp, a
C-language API for reading and writing Silicon Graphics Image format files.

46

Chapter 5: Printing Libraries

The libspool Library

The libspool library is a C application program interface to the UNIX printer spooling
systems. There are two common UNIX printer spooling systems, System V and Berkeley
Software Distribution (BSD). While these spooling systems provide essentially the same
capabilities, each has its own command set and neither provides a C-language API. The
libspool library provides a single, common API to both spooling systems. The functions
provided by libspool include submission and cancellation of print jobs, and control and
reading of print queues.

Compiling Programs With libspool

Programs that call libspool functions must include spool.h, the header file in the
/usr/include directory. Use the following #include directive:

#include <spool.h>

The programs must also link with the libspool.a library located in /usr/lib. Here is an
example of the complete cc compiler command line:

cc -o myprog myprog.c -lspool

The libspool Library

47

libspool Library Functions

Table 5-1 lists the libspool functions by purpose.

Table 5-1 Summary of libspool Functions

Task Function Name Purpose

Spooling System Selection SLSetSpooler()

SLGetSpooler()

Set the default spooling system.

Get the default spooling system and
available systems.

Printer Information SLGetPrinterList()

SLGetPrinterInfo()

SLGetDefPrinterName()

SLGetPrinterSettings()

Get the list of registered printers

Return information about a printer.

Get the name of the default printer.

Get spooler and printer settings.

Option Management SLSysVGetSpoolerOptions()

SLSysVGetPrinterOptions()

SLSysVSaveSpoolerOptions()

SLSysVSavePrinterOptions()

Get System V spooler options.

Get System V printer options.

Save System V spooler options.

Save System V printer options.

Print Job Submission SLSubmitJob()

SLSubmitJobFd()

SLSubmitJobBuf()

SLSubmitJobSimple()

Submit a job for printing.

Submit the contents of the file
specified by a file descriptor.

Submit contents of specified buffer.

Submit a print job using default
values for all printing options.

Print Job Cancellation SLCancelJob() Cancel a queued printer job.

Printer Queue Information SLGetQueue() Report the printer queue contents.

Printer Queue Control SLSetSpoolerState()

SLGetSpoolerState()

Set the spooling system printing
and queueing state.

Get the spooling system printing
and queueing state.

Execution Error Handling SLPerror()

SLErrorString()

SLGetSpoolerError()

Print a libspool execution error
message to standard error.

Get a libspool execution error msg.

Get spooling system error info.

48

Chapter 5: Printing Libraries

The libprintui Library

The libprintui library implements a graphical user interface (GUI) for printing. The
library provides PrintBox, a complete solution for print-job submission, to application
developers. A widget that is compatible with Motif, PrintBox eliminates the need to
create custom printing solutions for each application. This widget saves application
developers time and effort, and makes it easier for them to provide a robust, complete
printing interface.

Using the PrintBox widget in an application benefits the end user in several ways. First,
PrintBox provides a consistent interface to the printer spooling system across the varied
applications on Silicon Graphics systems. Second, users can set print job options, such as
number of copies, through a graphical interface, rather than through obscure
command-line option flags. Finally, PrintBox uses the printer graphical options panel to
provide a mechanism for the setting and saving of printer-specific options.

The PrintBox widget can be used in a number of different configurations and can accept
a child manager widget to allow the display of application-specific options. The widget
provides built-in System V print job submission via the libspool library. (See “The libspool
Library” on page 46 for more information.) The developer can also perform
application-specific processing before a job is submitted to the printing system. A variety
of callback lists provide user and spooling system feedback. A print job can be submitted
as a filename, as a file descriptor, or as a pointer to the buffer. The default form of
PrintBox includes the following items:

• A print file entry text field (for file-based jobs)

• A scrolling list of available printers

• Print option controls

• The following action-area push buttons:

Print Submits the specified file or buffer for printing by the spooling
system.

More Options … Accesses the graphical options panel for the currently selected
printer.

Save Options … Saves printer and spooling system options.

Cancel Normally used to pop down the PrintBox widget when the widget
is used as a pop-up dialog.

Help Calls the functions on the helpCallback list.

The libprintui Library

49

There are also four unmanaged buttons, User1 through User4, positioned between the
Print and More Options… buttons These buttons, invisible by default, become visible
when explicitly managed by your application. The PrintBox widget also accepts one
child process as a work area. This area can be used for application-specific printing
controls such as page range.

Example Widget Configurations

Figure 5-1 through Figure 5-4 illustrate four widget configurations:

• the default configuration

• without a filename entry box

• without an options box

• with a child process

Figure 5-1 PrintBox Widget: Default Configuration

50

Chapter 5: Printing Libraries

Figure 5-2 PrintBox Widget: No Filename Entry Box

Figure 5-3 PrintBox Widget: No Options Box

The libprintui Library

51

Figure 5-4 PrintBox Widget: With a Child Process

Compiling Programs With libprintui

Programs that call the libprintui functions must include the header file
/usr/include/Sgm/PrintBox.h and must link with the following libraries in the order shown:

... -lprintui -lspool -lXm -lXt -lXll -lgen ...

The link order is important for proper link-time name resolution.

Note: Programs that subclass from the PrintBox widget must also include
/usr/include/Sgm/PrintBoxP.h.

52

Chapter 5: Printing Libraries

Library Functions Listed by Purpose

The libprintui functions are listed in Table 5-2. The PuiPrintBox(3X) reference pages
provide detailed information on the PrintBox widget.

Example Program

The example program, printbox, instantiates a simple PrintBox widget. The directory
/usr/impressario/src/examples/libprintui contains the source code for this program, while
the directory /usr/impressario/bin/examples/libprintui contains the executable version.

To invoke the example program, enter:

printbox

Initial Program Processing

The printbox program begins by setting the program instance name and initializing an X
Window System™ connection. Next, the program creates the PrintBox widget with a call
to the libprintui library function PuiCreatePrintBox() and adds the widget to the parent’s
managed set.

Table 5-2 Summary of libprintui Functions

Task Function Purpose

Widget Instantiation PuiCreatePrintBox()

PuiCreatePrintDialog()

Create a PrintBox widget.

Create a PrintBox dialog.

Widget Component Access PuiPrintBoxGetChild() Access a PrintBox widget component.

Widget Action Functions PuiPrintBoxDoPrint() Invoke PrintBox printing.

The libprintui Library

53

Add Callbacks

The program now adds the following callbacks:

• the Cancel button exit routine

• a help dialog display

• a routine to print job information and the job ID to standard output and terminate
the program

• a display of error messages from the PrintBox widget (this uses the function
SLGetSpoolerError() from the libspool library)

Realize All Widgets

A call to XtRealizeWidget() now realizes (creates a window for) the parent widget,
created by the earlier call to PuiCreatePrintBox(), and all child widgets.

Process Events

The program now begins an event loop. It obtains the next event from the X event queue
and dispatches the event. If an early error has occurred, the error is handled and the loop
continues until the application exits.

Additional Examples

Refer to the directory /usr/impressario/src/examples/libprintui for additional sample
program source code.

54

Chapter 5: Printing Libraries

The libpod Library

The libpod library provides printer driver developers with an API to create and maintain
a printer object database (POD) and provides application developers with the means to
acquire detailed information about a printer, even across the network. A POD contains
information on the current printer configuration, status, and job history of a single
printer. Each printer driver installed on a system maintains its own POD on that system.
All interaction with a printer’s POD must be done through the libpod API. Do not modify
the POD files directly. To create an initial set of POD files, refer to Appendix C, “Printer
Object Database (POD) File Formats,” and the examples provided in
/usr/impressario/src/data.

POD Files

A POD consists of three separate ASCII text files. The name of each POD file is formed
from the printer name, followed by one of these suffixes: .config, .status, or .log. The name
and contents of each file are as follows:

[printer_name].config The configuration file contains detailed information
on the printer’s capabilities. Examples include the
supported paper sizes and available fonts. The
initial version of this file is manually created by the
printer driver developer, and a copy is installed
when the printer is added to the system. The
contents of this file are maintained by the system
administrator using the printer administration
tools. Normally this file is never changed.

[printer_name].status The status file contains information about the
current operational status of the printer. The
information in this file indicates whether the printer
is busy, the type of printing media installed, detailed
error codes (if errors have occurred), and so on. The
contents of this file change during the course of
every print job.

[printer_name].log The log file contains the print job history for the
printer. Information for old jobs as well as the
current print job is maintained. Typically, printer
filters and drivers append information to the log file
while general applications treat the file as read-only.

The libpod Library

55

The global variable PDpod_path indicates the location of the POD files. The default
location for the POD files is /var/spool/lp/pod. If the POD files are to be located in a
directory other than the default, set PDpod_path to the path name of the new location.
PDpod_path is declared in the header file pod.h.1

See Appendix C, “Printer Object Database (POD) File Formats,” for detailed information
on libpod file formats.

Standard and Local libpod Functions

The print server is the system that controls the printer. The POD files reside on the print
server. To provide POD information to a system other than the print server, that is, to a
print client, libpod must be able to communicate across the network. For any specified
printer, the “standard” libpod functions automatically determine whether the user’s
system is the print server or a print client. After determining which system is the print
server, the standard libpod functions are able to access the POD files on that system.
Because they typically run on print clients, user application programs such as printer
status tools use the standard form of the libpod functions.

To avoid the overhead that network communication entails, libpod also provides “local”
functions. These functions, such as PDLocalReadInfo() and PDLocalWriteStatus(),
contain the word “Local” in their names and use the POD files on the system on which
they are running, that is, the local system. Because they have no networking overhead,
their use reduces the size and overhead of the resulting executable files. They are
intended for programs, such as printer drivers, that are used only on print servers.

Functions that write to POD files are available only in the local form. Only printer drivers
write to POD files and these drivers always run locally on print servers, never remotely
on print clients. Thus, there is no need to provide standard libpod functions that write to
POD files.

1 The maximum string length for PDpod_path is PD_STR_MAX. This length includes the terminating
NULL character.

56

Chapter 5: Printing Libraries

Compiling Programs With libpod

Programs that call libpod functions must include the header file pod.h, which is located in
the directory /usr/include. The programs must also link with the library libpod.a located in
/usr/lib. In addition, programs that use the standard libpod functions must link with
libspool.a. Programs that use only the local libpod functions need not link with this
additional library.

The compile line for using the standard functions is

cc -o myprog myprog.c -lpod -lspool

The compile line for using the local functions is

cc -o myprog myprog.c -lpod

Debugging With libpod

If the global variable PDdebug is set to a nonzero value, libpod functions will print
debugging information to standard error during execution. The global variable PDdebug
is declared in the header file pod.h.

Network Communications

To provide remote printer POD information, libpod communicates over the network with
the podd daemon on the remote machine. Since the network or remote machine may be
unreachable when a libpod function is executed, a time-out may occur with the function
returning an appropriate error code. The time-out period can be specified by setting the
global variable PDnet_timeout to a value in seconds. The default time-out period is
contained in the header file pod.h. The time-out period for reading printer status is
usually much larger than that for browsing printer configurations. For more specific
information on the daemon, refer to the podd(1M) reference page.

The libpod Library

57

Library Functions Listed by Purpose

The libpod functions are listed in Table 5-3. Note that a number of libpod functions have
only a single version, which is used for both standard and local cases.

Table 5-3 Summary of libpod Functions

Task Standard Function Local Function

Detailed Information Retrieval PDReadInfo() PDLocalReadInfo()
PDLocalWriteInfo()

Status File Manipulation PDReadStatus()

PDReadOpStatus()

PDLocalReadStatus()
PDLocalWriteStatus()
PDLocalReadOpStatus()

Log File Manipulation PDReadLog() PDLocalReadLog()
PDLocalWriteLog()

Convenience Functions PDMakeMessage()

PDFindPageSize()

PDGetSizeCodeByName()

PDGetNameBySizeCode()

PDGetCurrentResolution()

n/a
n/a
n/a
n/a
n/a

n/a

Execution Error Handling PDError()

PDErrorString()

n/a

n/a

59

Chapter 6

6. Scanner Drivers

This chapter discusses scanner driver development. It provides a detailed analysis of the
template scanner driver.

The following major topics are discussed in this chapter:

• “Driver Template” on page 60

• “Header Files” on page 60

• “Data Structures” on page 61

• “Functions You Must Write” on page 66

• “Events” on page 76

• “Installation” on page 78

• “Testing” on page 79

The information presented in this chapter should be enough to write a scanner driver.
However, if you wish to know more, Appendix E, “Scanner Driver Architecture,” is an
in-depth discussion of the architecture of a scanner driver.

60

Chapter 6: Scanner Drivers

Driver Template

The source code files for the template scanner driver are in the directory
/usr/impressario/src/scan/template_driver. This template has code to handle all the
interprocess communication necessary for well-behaved scanner drivers (see Chapter 8,
“Generic Scanner Interface”).

To develop a new scanner driver, start by copying the template files to the directory
where you will be developing the driver. The only files that you need to modify are scan.c
and Makefile; Do not modify any of the other files unless you are familiar with the
information in Appendix E.

This document refers to the main.c module, which implements the interprocess
communication part of a scanner driver and should not be modified; and scan.c, which
you should modify to support the scanner for which you are writing a driver.

Header Files

There are four header files in /usr/include that are useful to scanner driver developers:

scanner.h Defines the interface used by application programmers to communicate
with scanner drivers. Contains typedef and #define definitions needed
to communicate with the application.

scandrv.h Contains the dispatch loop interface, some error messages, and the
queue utility routines.

scanipc.h Contains #define definitions for command numbers and the types of
arguments and results.

scanconv.h Contains prototypes for functions that convert between data types and
functions that do replicative zooming on rows of image data.

Data Structures

61

Data Structures

The following data structures are used to communicate between scanner driver template
modules. Understanding each field is key to understanding what your part of the driver
(the code in scan.c) must do. These data structures are defined in
/usr/impressario/src/scan/template_driver/scan.h.

SCANINFO Data Structure

The SCANINFO data structure is used to store static information about a scanner. The
scan.c module uses SCANINFO to communicate with the main.c module. The
SCANINFO data structure is defined as follows:

typedef struct tag_scaninfo {
 int metric; /* metric for res, page size*/
 float pagex, pagey, pagewidth, pageheight; /* page size */
 float minxres, maxxres, minyres, maxyres; /* resolution bounds */
 float *xres, *yres; /* resolution arrays */
 int nres; /* size of arrays */
 int canZoom; /* 1 if scanner can zoom */
 SCDATATYPE *types; /* supported types */
 int ntypes; /* number of types */
 SCANFUNC *options; /* scanner-specific options */
 int noptions; /* number of options */
 void *priv; /* private member */
 SCFEEDERFLAGS feederFlags; /* feeder flags */
} SCANINFO;

Field definitions:

metric Set metric to SC_INCHES or SC_CENTIM, depending on whether it is
more convenient to have measurements and resolutions expressed in
terms of inches or centimeters.

pagex, pagey, pagewidth, pageheight
pagex and pagey are the coordinates of the upper left corner of the
scannable area (almost always 0 and 0). pagewidth and pageheight are the
width and height of the scannable area, respectively. All four fields are
expressed in the units defined by the metric field.

62

Chapter 6: Scanner Drivers

minxres, maxxres, minyres, maxyres
minxres is the smallest supported horizontal resolution, maxxres is the
largest supported horizontal resolution, minyres is the smallest
supported vertical resolution, and maxyres is the largest supported
vertical resolution. These are all expressed in pixels per the unit
expressed by the metric field.

xres, yres, nres For scanners that support discrete resolutions (as opposed to scanners
that support all resolutions with equal quality, within the bounds given
above), xres and yres are arrays of the supported resolutions in the
horizontal and vertical directions. nres is the number of elements in each
of these arrays.

For scanners that support arbitrary resolutions (that is, scanners that do
their own scaling), nres is 0. The main.c module takes nres equal to 0 to
signify that it doesn’t need to do any scaling of scan data to satisfy
preview requests from the scanning application.

canZoom This parameter specifies whether or not the scanner can support
resolutions other than those specified in the xres and yres arrays when
nres is nonzero. In this case, the resolutions in the xres and yres arrays
represent preferred resolutions that results in superior image quality.

If nres is 0, the main.c module assumes that the scanner itself can do
zooming, regardless of the canZoom flag.

types, ntypes types is an array of SCDATATYPE structures (see Chapter 8, “Generic
Scanner Interface”), and ntypes is the number of types supported by the
scanner.

options, noptions
This array of functions implements scanner-specific options for this
scanner (see Chapter 7, “Scanner-Specific Options”), and noptions is the
number of such options.

priv This parameter is used by the scan.c module (the one you write) to store
a pointer to whatever state information is necessary to identify a
particular scanner once it’s been opened. This is provided so that you
can avoid the use of global variables in the scan.c module.

Data Structures

63

feederFlags These flags indicate the presence of an automatic document feeder. The
SC_HASFEEDER bit (see /usr/include/scanner.h) of this flag should be set
if a feeder is attached to the scanner being supported. The
SC_AUTOFEED flag should be set if each call to DoScan() automatically
results in the next sheet of paper being fed. If the scanner can feed on
demand, the SC_PROGFEED bit should be set. It is not an error to have
the SC_AUTOFEED flag and the SC_PROGFEED flag both set.

If the scanner being supported does not have a document feeder, this
member can be safely ignored and the main.c module will not try to call
any of the document feeder functions (see below).

SCANPARAMS Data Structure

The SCANPARAMS data structure contains dynamic values used to specify the
parameters of a scanning operation, and also some administrative details. The
SCANPARAMS data structure is defined as follows:

typedef struct tag_scanparams {
 float xres, yres;
 float x, y, width, height;
 SCDATATYPE type;
 int preview;
 SCQUEUE *scanq, *sfreeq;
 int xpixels, ylines, xbytes;

 void (*convert)(void *from, int fromx, void *to, int tox, int *zmap);

 int maxmem; /* maximum amount of memory to allocate */
 int readlines;
 SCANINFO *s;
} SCANPARAMS;

64

Chapter 6: Scanner Drivers

The fields of the SCANPARAMS data structure are defined as follows:

xres, yres The scanning resolution to be used for a particular scan. The main.c
module always ensures that these resolutions are among those
advertised in the xres and yres fields of the SCANINFO struct, unless the
canZoom field of the SCANINFO struct is nonzero or the nres field is 0.
In any case, xres and yres are always within the resolution bounds
specified in the SCANINFO struct.

xres and yres are expressed in dots per the unit specified in the metric
field of the SCANINFO struct.

x, y, width, height
The horizontal (x) and vertical (y) coordinates of the upper left corner of
the window to be scanned and its width and height. The main.c module
ensures that this image falls within the bounds of the pagex, pagey,
pagewidth, and pageheight fields of the SCANINFO struct.

x, y, width, and height are expressed in the units specified in the metric
field of the SCANINFO struct.

type The type of scan data expected. The main.c module ensures that it is one
of the types specified in the types field of the SCANINFO struct.

preview This field is set to 1 if this is a preview scan, and 0 otherwise.

scanq, sfreeq sfreeq is a queue whose elements are free buffers to put scanned data
into, and scanq is a queue whose elements are buffers that have scanned
data in them. DoScan(), which you write (see below), removes buffers
from sfreeq, scans the data into them, then adds them to scanq. The main.c
module is responsible for taking buffers from scanq, disposing of the
data appropriately, and putting them back on sfreeq.

xpixels, ylines, xbytes
The number of pixels in a scan line, the number of scan lines in the scan,
and the number of bytes in a scan line. The scan.c module is responsible
for calculating these values in SetupScan(), which you write (see below).

Data Structures

65

void (*convert)(void *from, int fromx, void *to, int tox, int *zmap)
This function converts data from a type that the scanner supports to the
requested data type. If the scanner directly supports all the data types
that are being advertised to the scanning application (the types field of
the SCANINFO struct), the scan.c module can ignore this field.

For example, this function can be used for color scanners that return the
red, green, and blue components of each scan line separately; that is, a
line of five pixels would have the following layout:

RRRRRGGGGGBBBBB

This needs to be converted to chunky data format, as shown below:

RGBRGBRGBRGBRGB

To do this, simply set the convert field to SCBandRGB8ToPixelRGB8 in
SetupScan() (see below). The following functions are available in
libscan for converting:

• SCBandRGB8ToPixelRGB8()

• SCGrey8ToMono()

• SCBandRGB8ToMono()

maxmem The maximum amount of memory that should be allocated for storing
scan data. This field is to be taken into account in the calculation of
readlines in SetupScan() (see below).

readlines The number of lines to read at a time. readlines is the maxmem field
divided by the xbytes field if scanning is benefited by scanning in large
chunks. If there is no benefit, the number is 1.

The problem with maxmem/xbytes is that when maxmem is large,
interactive feedback to the user of the scanning application is limited.
Ideally, the scanner buffers data internally, so you can scan perhaps an
inch at a time without the scan head pausing. That way, the scanning
application can consume the scan data while the scan head gets the rest
of the data.

s A pointer to the SCANINFO struct that OpenScanner() returned (see
below).

66

Chapter 6: Scanner Drivers

Functions You Must Write

After copying the template to your build area, you must edit the file scan.c and
implement the functions listed in Table 6-1.

These functions are described in detail in the following sections.

Table 6-1 Functions To Be Written by the Driver Developer

Function Name Description

OpenScanner() Opens the scanner

SetupScan() Called before a scanning operation

DoScan() Gets data from the scanner

SetFeederFlags() Called when the scanner application calls SCFeederSetFlags

AdvanceFeeder() Advances feeder to next document

FeederReady() Tests whether the feeder is ready to feed another document

PrintID() Prints a string describing the type of scanning supported

FindScanners() Prints device for supported scanners

InstallScanner() Installs a new scanner

DeleteScanner() Deletes a scanner

Functions You Must Write

67

OpenScanner() Function

This function is called when the driver is first invoked.

For example:

SCANINFO *
OpenScanner(char *dev)
{
 static SCANINFO scan;

 /*
 Your code here!
 */

 if (something goes wrong) {
 drverr = appropriate error code;
 return NULL;
 }
 */

 return &scan;
}

dev is the name of the device (usually a device special file in /dev/scsi for SCSI devices) to
open in order to communicate with the scanner. The task of the OpenScanner() function
is to “open” dev, make sure that it corresponds to a device that scan.c knows how to talk
to, get it into some reasonable initial state, and fill in a SCANINFO structure for the
scanner. If all goes well, a pointer to the SCANINFO structure is returned.

If anything goes wrong, OpenScanner() should set the global variable drverr and return
NULL. The value for drverr should be chosen from those in /usr/include/sys/errno.h or
/usr/include/scanner.h; that value is communicated back to the scanning application,
which can use the SCPerror() or SCErrorString() functions in libscan.a to get a
human-readable error message that explains why OpenScanner() failed.

Caution: If you are writing a driver for a SCSI scanner, and you are using dslib(3X),
make sure that you pass the O_EXCL flag defined in /usr/include/fcntl.h to dsopen:

dsreq_t *dsp = dsopen(dev, O_RDONLY | O_EXCL);

If you pass the O_EXCL flag, the open will fail with errno set to EBUSY if dev is the
/dev/scsi device of a mounted disk; otherwise, the open can succeed and you could really
screw up the disk!

68

Chapter 6: Scanner Drivers

In addition, it is recommended that before issuing any other SCSI commands you
perform an inquiry command, and verify that the device is a scanner by examining the
Device Type code of the inquiry buffer. (This field should be set to 6. You can use the
INV_SCANNER #define from /usr/include/invent.h.) It is also recommended that you
examine the vendor and product identifiers to make sure the device is a scanner of the
type for which this driver is being written.

SetupScan() Function

This function is called with a pointer to a SCANPARAMS struct to prepare for a
scanning operation.

For example:

int
SetupScan(SCANPARAMS *params)
{
 /*
 Your code to tell the scanner the resolution, scanning window,
 and data type.
 */

 /*
 Your code to find out from the scanner how many pixels are in a scan
 line, how many scan lines are in the scan, and how many bytes are
 in a scan line.
 */

 /*
 Your code to figure out what readlines should be, taking into
 consideration maxmem and xbytes.
 */

 if (anything went wrong) {
 drverr = an appropriate error code;
 return -1; /* indicates failure */
 }

 return 0; /* indicates success */
}

Functions You Must Write

69

SetupScan() performs the following operations:

1. SetupScan() does whatever is necessary to anticipate the scan defined by the fields
xres, yres, x, y, width, height, and type.

2. If type is not supported directly by the scanning device, then the convert field should
be set to a function that converts data returned from the scanner to the appropriate
type.

3. SetupScan() queries the scanning device or does some calculations to determine the
number of pixels in a scan line, the number of scan lines in the scan, and the number
of bytes in a scan line. The xpixels, ylines, and xbytes fields of params are set
appropriately.

4. SetupScan() sets the readlines field of params to the number of lines that it expects to
scan at a time, taking maxmem and xbytes into account.

5. If at any point something goes wrong, set drverr to a value from
/usr/include/sys/errno.h or /usr/include/scanner.h and return -1 to indicate a failure. If
all goes well, return 0 to indicate success.

DoScan() Function

This function retrieves the data from the scanner.

For example:

void
DoScan(SCANPARAMS *params)
{
 SCANINFO *s = params->s;
 void *buf;
 int row, toread, curline;

 prctl(PR_TERMCHILD);

 for (curline = 0; curline < params->ylines;
 curline += params->readlines) {
 toread = MIN(params->readlines,
 params->ylines - curline);

 buf = SCDequeue(params->sfreeq);

70

Chapter 6: Scanner Drivers

 /*
 * Get the scan data here!
 */

 /*
 * Chop the buffer up into scan line sized chunks
 */
 while (toread--) {
 SCEnqueue(params->scanq, buf);
 buf = (char *)buf + params->xbytes;
 }
 }

 exit(0);
}

DoScan() executes as its own process, sharing its address space with its parent, which is
the process that communicates with the scanning application. (See the sproc(2) reference
page. DoScan() is the entry parameter to sproc.)

Before entering the while loop, do whatever else is necessary to initialize the scanner if
there’s unfinished business from SetupScan(). Note the use of params->readlines, which
you set in SetupScan(). In the body of the loop, the following things happen:

1. DoScan() computes how many scan lines to read this time through the loop. This is
either readlines, which was set in SetupScan(), or the number of lines remaining to
scan:

toread = MIN(params->readlines,
 params->ylines - curline);

2. DoScan() gets a buffer from the free queue into which the data is scanned:

buf = SCDequeue(params->sfreeq);

3. DoScan() transfers toread lines of data from the scanning device to buf. This is the
interesting part, that you have to write specifically for your scanner.

4. DoScan() puts the lines just scanned onto the scan queue. This involves chopping up
the buffer into chunks the size of a scan line. Don’t worry, main.c knows how to put
the buffers back together before putting them back on the free queue!

while (toread--) {
 SCEnqueue(params->scanq, buf);
 buf = (char *)buf + params->xbytes;
}

Functions You Must Write

71

Since DoScan() is its own process, it calls the exit function instead of returning when it
finishes scanning. If everything goes OK, DoScan() calls exit with a status of 0. If
anything goes wrong, DoScan() sets the global variable drverr to an appropriate value
from sys/errno.h or scanner.h and calls exit with a status of 1. (See the exit(2) reference
page.)

SetFeederFlags() Function

The SetFeederFlags() function is called when the scanner application calls
SCFeederSetFlags to specify whether automatic (SC_AUTOFEED) or programmatic
(SC_PROGFEED) feeding is desired. This only happens if the feederFlags member of the
SCANINFO struct returned by OpenScanner() has all three of the SC_HASFEEDER,
SC_AUTOFEED, and SC_PROGFEED bits set.

For example:

int
SetFeederFlags(SCANINFO *scan, SCFEEDERFLAGS flags)
{
 drverr = SCENOFEEDER;
 return -1;
}

The template version of this function sets drverr to indicate that no feeder is present; if a
feeder is present, SetFeederFlags() must set a flag so that it knows whether to
automatically feed the next document in the next call to DoScan().

AdvanceFeeder() Function

The AdvanceFeeder() function is called only if the SC_PROGFEED bit is set in the
feederFlags member of the SCANINFO struct returned by OpenScanner(). This function
should advance the feeder to the next document. If the feeder is empty or jammed, return
-1 and set drverr to an appropriate error code from /usr/include/scanner.h or
/usr/include/sys/errno.h.

For example:

int
AdvanceFeeder(SCANINFO *scan)
{
 drverr = SCENOFEEDER;
 return -1;
}

72

Chapter 6: Scanner Drivers

FeederReady() Function

This function is called only if the SC_HASFEEDER bit of the feederFlags field of the
SCANINFO struct returned by OpenScanner() is set.

For example:

int
FeederReady(SCANINFO *scan)
{
 drverr = SCENOFEEDER;
 return -1;
}

FeederReady() should return 0 if there is a document in the feeder; that is, if the next call
to AdvanceFeeder() should succeed. If the feeder is empty, FeederReady() should return
-1 and set drverr to SCFEEDEREMPTY.

PrintID() Function

The PrintID() function is used by the -query option that all scanner drivers support. It
should print a string that identifies the type of scanner supported by this scanner driver,
and one or more interface types supported. The scanner install tool, scanners, uses this
information to help the end user choose the driver that best suits a particular scanner.

For example:

void
PrintID(FILE *fp)
{
 fprintf(fp, "Your Scanner Name\n"); /* String describing scanner */
 fprintf(fp, "SCSI Serial Parallel\n"); /* Device type; can be list */
}

Functions You Must Write

73

FindScanners() Function

The FindScanners() function is also used to implement the -query option.

For example:

void
FindScanners(FILE *fp)
{
 inventory_t *inv;
 char device[100];
 dsreq_t *dsp;
 /* int because it must be word aligned. */
 int inqbuf[(sizeof(INQDATA) + 3)/sizeof(int)];
 INQDATA *inq = (INQDATA *)inqbuf;

 /*
 * This example looks for SCSI scanners; do whatever is necessary
 * to find other types of scanner here.
 */
 setinvent();
 while ((inv = getinvent()) != NULL) {
 if (inv->inv_class == INV_SCSI && inv->inv_type == INV_SCANNER) {
 sprintf(device, "/dev/scsi/sc%dd%dl0", inv->inv_controller,
 inv->inv_unit);
 if ((dsp = dsopen(device, O_RDONLY)) == NULL) {
 continue;
 }

 if (inquiry12(dsp, (char *)inq, sizeof *inq, 0) == 0
 && strncmp((char *)inq->vid, "Your vendor", 11) == 0 &&
 strncmp((char *)inq->pid, "Your product", 12) == 0) {
 fprintf(fp, "SCSI %s\n", device);
 }
 dsclose(dsp);
 }
 }

 endinvent();
}

74

Chapter 6: Scanner Drivers

FindScanners() should search the system for scanners that this driver is capable of
supporting, and for each such scanner it prints the type of device (SCSI, Serial, Parallel,
GPIB, EISA, or Other), a space, and the pathname that should be passed to
OpenScanner() in order to access that scanner.

This gives scanners more information that it can use to help the end user pick a driver for
a particular scanner. It is by no means required that FindScanners() find all scanners that
it is capable of supporting; it is OK to do nothing at all here, especially if there is no hope
of finding a scanner you support in a reasonable amount of time. This is important;
scanners invokes EVERY scanner driver installed with the -query option when the user
adds a scanner, so this function should be fast!

InstallScanner() Function

This function is called when the scanner driver is invoked with the -install option.
InstallScanner() is used by scanners when the user tries to install a new scanner.

For example:

int
InstallScanner(char *dev)
{
 printf("The template driver doesn't support %s\n", dev);
 return -1;
}

The purpose of this entry point is verify that dev corresponds to a scanning device that
this driver knows how to support, and to do any scanner-specific installation that is
necessary.

Functions You Must Write

75

The following example implementation calls OpenScanner() to verify that dev
corresponds to a valid scanning device, and then changes the permissions of dev so that
users other than root can access the scanner. This is important, because scanner drivers
should not normally be set to user ID root programs, and users other than root want to
use scanners. When InstallScanner() is called by scanners, the driver will have root
permissions, which enables it to call chmod(2) on dev or create any auxiliary files or other
resources that it needs:

int
InstallScanner(char *dev)
{
 SCANINFO *scan;

 scan = OpenScanner(dev);

 if (!scan) {
 printf("Can't access %s: %s\n", dev,
 SCErrorString(drverr));
 return -1;
 }

 chmod(dev, 0666);
 return 0;
}

If an error occurs, InstallScanner() should print an error message to standard out and
return -1. The main.c module exits with a nonzero exit status if InstallScanner() returns
-1, and scanners reads the driver’s standard output and displays it to the user if the
main.c exits with a nonzero status. That way, the exact cause of the error is propagated to
the user.

76

Chapter 6: Scanner Drivers

DeleteScanner() Function

The DeleteScanner() function is called when the driver is invoked with the -delete
option by scanners. This gives the driver the opportunity to do any scanner-specific
deletion required. This can be useful if auxiliary files specific to this scanner were created
in InstallScanner().

For example:

int
DeleteScanner(char *dev)
{
 return 0;
}

If an error occurs, DeleteScanner() prints an error message to standard out and returns
-1. In this case, scanners displays this error message to the user and refuses to delete the
scanner, so in most cases DeleteScanner() should return 0.

Events

Impressario scanner drivers can send events to scanner applications. Currently, the only
type of event supported is an event to notify the scanner application that the resolutions,
page size, data types, or feeder flags supported by the scanner driver have changed.

This typically happens when the user selects a new input media option from the scanner
specific options program (see Chapter 8). For example, some scanners have transparency
units, and when scanning transparencies the scanning page size is different than when
scanning normal paper. So when the user selects the option to scan a transparency, the
scanner driver needs to inform the scanning application that it must query to find out the
new page size.

Events

77

Events are sent to the scanner application by filling in an SCEVENT structure and calling
SCDriverSendEvent(). The SCEVENT structure is defined as follows:

typedef struct tag_infoChange {
 unsigned int pageSizeChanged : 1;
 unsigned int resolutionChanged : 1;
 unsigned int dataTypesChanged : 1;
 unsigned int feederFlagsChanged : 1;
} SCINFOCHANGE;

#define SCEVENT_INFOCHANGE 1

typedef struct tag_scevent {
 unsigned int eventType;
 union {
 SCINFOCHANGE infoChange;
 event;
} SCEVENT;

The SCDriverSendEvent() function has the following prototype:

int SCDriverSendEvent(SCEVENT *event)

To inform the scanner application that it needs to query the new page size, the driver
executes the following code:

SCEVENT event;

event.eventType = SCEVENT_INFOCHANGE;
event.event.infoChange.pageSizeChanged = 1;
event.event.infoChange.resolutionChanged = 0;
event.event.infoChange.dataTypesChanged = 0;
event.event.infoChange.feederFlagsChanged = 0;
if (SCDriverSendEvent(&event) == -1) {
 handle error;
}

78

Chapter 6: Scanner Drivers

Installation

After the driver is built, make sure that the -query option works, then copy it to
/usr/lib/scan/drv and run scanners, the scanner install tool. See Figure 6-1.

Figure 6-1 Scanner Install Tool

When the scanners panel comes up, use the “Install...” item on the Scanner menu to bring
up the “Install New Scanner” dialog box. If you implemented PrintID() correctly, you see
your scanner driver’s ID string in the list. If you implemented FindScanners(), clicking
on your scanner driver type should fill in the “Device” field. Otherwise, type in the
device that corresponds to your scanner.

Testing

79

Testing

Give the scanner a name and click OK, then run gscan. See Figure 6-2.

Figure 6-2 gscan Panel

You can either provide your scanner’s name on the command line or use the Setup menu
to choose your scanner as the scanning source.

Severe scanner driver malfunctions can cause gscan to hang. If this happens, open a shell
and enter:

/etc/killall gscan

81

Chapter 7

7. Scanner-Specific Options

This chapter describes the implementation of scanner-specific graphical options panels.

The following major topics are discussed in this chapter:

• “Options Program and the Scanner Driver Interface” on page 82

• “Scanner Driver’s Perspective” on page 84

• “Options Program’s Perspective” on page 86

• “Installation and Testing” on page 88

82

Chapter 7: Scanner-Specific Options

Overview

Most scanners have capabilities that would not be available to application programs
through the generic scanner API alone. A scanner-specific graphical options panel
program can be developed to provide access to these capabilities.

A scanner-specific options program is run by a scanner application and communicates
directly with a scanner driver, bypassing the generic scanner API. It should provide user
interface elements (using Motif or a similar toolkit) for the scanner features it supports
that are not supported by the generic scanner API. It should also communicate
appropriate settings to the scanner driver.

The scanner driver, in turn, must respond to commands from its corresponding
scanner-specific options program.

Options Program and the Scanner Driver Interface

The options program executes driver commands by writing a command number and the
arguments to that command onto a pipe. The scanner driver reads the command and
arguments from the pipe, then calls the options function for that command. After the
options function returns, the driver writes the results of the function back to the options
program.

Options Program and the Scanner Driver Interface

83

Developers of new scanner drivers and options programs need not worry about the
low-level communication between these programs; this is all taken care of in libscan.a.
They do need to ensure that the scanner drivers and options programs interpret
commands and arguments consistently. This is most easily accomplished by providing a
common header file that the driver and the scanner options program share. This header
file should contain #defines for the scanner-specific commands and typedefs for the
arguments, and return values of these commands. sclopt.h, for example, is included by
both the HP ScanJet scanner driver and the HP ScanJet options panel:

/*
 * sclopt.h
 * Stuff for scl scanner-specific options
 */

#define SCL_GETOPTS (SCN_SCANSPECIFIC + 0)
#define SCL_SETOPTS (SCN_SCANSPECIFIC + 1)

#define DITH_COURSE 0
#define DITH_FINE 1
#define DITH_BAYER 2
#define DITH_VERTICAL 3

typedef struct tag_sclopt {
 int intensity; /* Intensity of image */
 int minIntensity, maxIntensity; /* Intensity bounds; used */
 /* in GETOPTS only */
 int contrast; /* Image contrast */
 int minContrast, maxContrast; /* Contrast bounds; used */
 /* in GETOPTS only */
 int bwDither; /* if nonzero, dither */
 /* black and white data */
 int bwDitherPattern; /* specify black & white */
 /* dither pattern */
} SCLOPT;

sclopt.h defines two HP ScanJet-specific commands: SCL_GETOPTS and SCL_SETOPTS.
Scanner-specific commands must be numbered consecutively, starting with
SCN_SCANSPECIFIC and increasing monotonically from there. SCN_SCANSPECIFIC is
defined in /usr/include/scanipc.h.

84

Chapter 7: Scanner-Specific Options

The SCLOPT structure is used to pass information between the HP ScanJet scanner
driver and the HP ScanJet options panel. This structure is the return type of the
SCL_GETOPTS command and the argument type of the SCL_SETOPTS command.

“Scanner Driver’s Perspective” below describes how the scanner driver uses these
#defines and typedefs. “Options Program’s Perspective” on page 86 describes how the
scanner-specific options program uses them.

Scanner Driver’s Perspective

The scanner driver implements scanner-specific options by providing a table of functions
to the main.c module. In OpenScanner(), the scan.c module should set the options field of
the SCANINFO struct to an array of functions implementing the scanner-specific
options, and the noptions field to the number of such options. The order of the functions
in the options table must correspond to the numerical order of the commands
implemented (the cmd argument, below).

Each function in this array must have the following prototype:

void optionfunc(int cmd, SCARG *arg, SCRES *res);

cmd is the command number for this scanner-specific option. SCARG is defined in the file
/usr/include/scandrv.h as follows:

typedef struct tag_scarg {
 void *data;
 int len;
} SCARG;

arg->data points to the arguments passed in by the scanner-specific options program, and
arg->len is the number of bytes pointed to by arg->data.

Scanner Driver’s Perspective

85

SCRES is defined in the file /usr/include/scandrv.h as follows:

typedef struct tag_scres {
 void *data;
 int len;
 void *freeparam;
 void (*free)(void *param, void *data);
 int errno;
 char *errmsg;
} SCRES;

res->data should be set to point to the results of the scanner-specific option, and res->len
should be set to point to the number of bytes in res->data. If an error occurs, res->errno
should be set to one of the values from sys/errno.h or scanner.h. If res->free is nonzero, it is
called with res->freeparam as its first argument and res->data as its second argument, after
res->data has been transferred to the scanner-specific options program. This can be used
to free memory that was dynamically allocated to temporarily hold the results.

For example, here is the code from the ScanJet driver that implements the HP ScanJet
options:

static SCLOPT scanOptions;

static void
GetOptions(int cmd, SCARG *arg, SCRES *res)
{
 res->data = &scanOptions;
 res->len = sizeof scanOptions;
}

static void
SetOptions(int cmd, SCARG *arg, SCRES *res)
{
 scanOptions = *(SCLOPT *)arg->data;
}

SCANFUNC opttable[] = {
 GetOptions,
 SetOptions,
};

In OpenScanner(), the options member of the SCANINFO struct is set to opttable, and the
noptions member is set to 2. Note that the order of the functions in opttable corresponds to
the numerical order of the commands they implement.

86

Chapter 7: Scanner-Specific Options

SCANFUNC is a typedef from /usr/include/scandrv.h:

typedef void (*SCANFUNC)(int cmd, SCARG *arg, SCRES *res);

Note: The actual code in the ScanJet driver is slightly more complex; error checking has
been eliminated from this example code so as not to obscure the basic functionality.

The SetOptions() function should verify that the options passed to it are valid and set
res->errno to a value from the /usr/include/sys/errno.h directory or /usr/include/scanner.h if
they are not. Also, the ScanJet function SetOptions() will fail if the scanner is currently
scanning, because verifying that the options are valid would interrupt the scan. So, in this
case, SetOptions() should set res->errno to SCEBUSY and return.

Options Program’s Perspective

The scanner-specific options program is executed by libscan.a when the scanner
application calls the function SCOptions(). The program is executed with command-line
arguments that, when passed to the libscan.a function SCGetScanOpt(), enable a
connection to be established with the scanner driver.

One of the first things that a scanner-specific options program must do, then, is call
SCGetScanOpt(). This function has the following prototype (from /usr/include/scanipc.h):

SCANOPT * SCGetScanOpt(int *argc, char *argv[]);

The scanner-specific options program communicates with the scanner driver by making
calls to the function SCScanOpt(), which has the following prototype (from
/usr/include/scanipc.h):

int SCScanOpt(SCANOPT *s, int cmd, void *args, int arglen,
 void *res, int reslen);

The first argument to SCScanOpt() is the pointer returned by SCGetScanOpt(), above.
The cmd argument is one of the command #defines from the common header file shared
with the scanner driver. args is a pointer to the arguments to this command, and arglen is
the number of bytes pointed to by args. This corresponds to arg->data and arg->len in the
scanner driver option function for cmd.

res points to space for receiving the results of the command, and reslen is the maximum
number of bytes to copy into res. The data copied into res corresponds to res->data in the
scanner driver option function for cmd.

Options Program’s Perspective

87

The following example code was distilled from the ScanJet options program. The ScanJet
options program is a Motif program; please refer to the X and Xt Motif documentation
set (see “Related Publications” in the “About This Guide” section of this manual for the
full names and order numbers) for information about the non-scanning portions of the
code below.

static Widget toplevel;
static SCANOPT *scan;
static SCLOPT scanOptions;
static XtAppContext appContext;

int
main(int argc, char *argv[])
{
 toplevel = XtAppInitialize(&appContext, "SJIIcOpt", NULL, 0,
 (unsigned int *)&argc, argv, fallBackResources,
 NULL, 0);

 scan = SCGetScanOpt(&argc, argv);

 if (!scan) {
 InitError(toplevel, appContext,SCErrorString(SCerrno));
 }

 if (SCScanOpt(scan, SCL_GETOPTS, NULL, 0,
 &scanOptions, sizeof scanOptions) < 0) {
 InitError(toplevel, appContext, SCErrorString(SCerrno));
 }

 /* ... create widgets corresponding to options ... */

 XtRealizeWidget(toplevel);
 XtAppMainLoop(appContext);
 return 0;
}

main() calls XtAppInitialize(3Xt) to initialize the X toolkit, and then calls
SCGetScanOpt() to get the connection to the scanner driver. Then it calls SCScanOpt()
to get the current options settings from the scanner driver.

If anything goes wrong, main() calls a function (not shown here, but part of the ScanJet
options program) called InitError(), which transforms the application into a message
dialog containing the error message passed as the third argument.

88

Chapter 7: Scanner-Specific Options

The ScanJet options program has an OK button that the user presses after setting up the
options desired. Below is an excerpt from the callback function for that OK button.

static void
OKCallback(Widget w, XtPointer client,
 XmAnyCallbackStruct *cb)
{
 /* ... get settings from widgets,
 put them into scanOptions
 ... */

 if (SCScanOpt(scan, SCL_SETOPTS, &scanOptions,
 sizeof scanOptions, NULL, 0) < 0) {
 PostError(toplevel, SCErrorString(SCerrno), 0);
 return;
 }
 exit(0);
}

Again note the error check; PostError() is another function from the ScanJet options
program, which displays a message dialog containing an error message.

Also note that we call exit() if the call to SCScanOpt() succeeds. This is because the
scanner options program appears to the user to be a dialog box associated with the
scanning application that executed it. The ScanJet options program also provides an
Apply button for changing scanner-specific settings without dismissing the
scanner-specific options program.

Installation and Testing

After you have written your scanner driver and scanner options program, copy your
scanner driver to the directory /usr/lib/scan/drv, and the options program to the directory
/usr/lib/scan/opt. The driver and options program must have the same base name in order
for scanners, the scanner installation tool, to recognize that they go together.

Next, run scanners to install your scanner. If it was already installed before you copied
your options program to /usr/lib/scan/opt, you must delete the scanner first (using the
“Delete...” command on the Scanner menu).

Now you can run gscan to test your driver and options program. The “Scanner Specific
Options...” command on the Parameters menu should bring up your options program.

89

Chapter 8

8. Generic Scanner Interface

This chapter describes the interface between a scanner driver and an application
program.

The following major topics are discussed in this chapter:

• “Coordinate System for Scanning” on page 90

• “Data Structures” on page 91

• “Data Type Conventions” on page 92

• “Functions” on page 94

90

Chapter 8: Generic Scanner Interface

Overview

The generic interface between a scanner driver and an application program is flexible
enough to accommodate a wide range of scanners and application programs.
Application programs that use this interface can use any scanner that has a driver that
supports this interface. Providing a driver for a particular scanner allows it to be accessed
by any program written to use this interface.

The interface is implemented by a run-time library and a driver program. All drivers
must provide the entry points necessary for the run-time library to provide the interface
described in this document. In order to provide access to scanner-specific capabilities,
scanner drivers are free to expand the interface, which is then accessed by
scanner-specific programs that have standard ways of being invoked by application
programs. (See Chapter 7, “Scanner-Specific Options.”)

For more details on the functions described in this chapter, see the online reference pages.

Coordinate System for Scanning

When describing an area to be scanned, a coordinate system with the origin (0,0) in the
upper left corner of the scannable area is used. The x-coordinate increases from left to
right, and the y-coordinate increases from top to bottom.

Note that this is the upper left corner of the document being scanned; in the case of a
flatbed scanner where the document is placed face down in the bed, this is the upper
right corner or lower left corner of the bed.

When functions in the interface specify measurements along the horizontal and vertical
axes of the scan area, the following units can be used to specify distance:

SC_INCHES Specify measurements in inches.

SC_CENTIM Specify measurements in centimeters.

SC_PIXELS Specify measurements in pixels.

Data Structures

91

Data Structures

This section describes the generic scanner interface data structures.

SCANNER Data Structure
typedef struct tag_scanner {
 ...
} SCANNER;

The application maintains a pointer to a SCANNER data structure (obtained from
SCOpen()) to specify the scanner to which operations should be applied.

SCDATATYPE Data Structure

Scanners support a variety of output data types. The SCDATATYPE structure
encapsulates the common output data types produced by scanners.

typedef struct tag_scdatatype {
 unsigned int packing : 4;
 unsigned int channels : 4;
 unsigned int type : 8;
 unsigned int bpp : 8;
} SCDATATYPE;

The structure has these four fields:

packing The packing field can take on the following values:

SC_PACKPIX All the data for each pixel is stored
together; for example, a line of 24-bit
color is stored as RGBRGBRGB.

SC_PACKBAND Each line of data is decomposed into
its channels; for example, a line of
24-bit color is stored as RRRGGGBBB.

SC_PACKPLANE All the data for a channel is stored
separately from other channels. A
page of color data is split into three
pages of data; one for red, one for blue,
and one for green.

92

Chapter 8: Generic Scanner Interface

channel Number of components per pixel. Legal values are 1, 3, and 4. See type
below.

type Type of data. This parameter indicates how the data in the various
channels is to be interpreted:

bpp Bits Per Pixel (per channel). The number of bits per pixel in each channel.
For monochrome data, there is 1 bit per pixel. For 24-bit RGB color, there
are 8 bits per pixel (x 3 channels = 24 bits).

Data Type Conventions

Generic scanner applications need not be written to support any particular data type.
There are four basic data types that are typically used:

• Monochrome. All scanner drivers must support this monochrome format:

– packing = SC_PACKPIX

– channels = 1

– type = SC_MONO

– bpp = 1

• Eight-bit gray-scale. All scanner drivers that support any type of gray-scale or color
output must support the following 8-bit gray-scale format:

– packing = SC_PACKPIX

– channels=1

– type = SC_GREY

– bpp = 8

SC_MONO Monochrome: 1 channel and 1 bit per pixel.

SC_GREY Gray-scale: 1 channel.

SC_RGB Red, green, and blue: 3 channels.

SC_CMY Cyan, magenta, and yellow: 3 channels.

SC_CMYK Cyan, magenta, yellow, and black: 4 channels.

Data Type Conventions

93

• Planar 24-bit RGB color. The red, green, and blue channels are scanned in three
separate passes; in this case, the data type format is

– packing = SC_PACKPLANE

– channels = 3

– type = SC_RGB

– bpp = 8

• Packed 24-bit RGB color. This applies to a one-pass color scanner that gets all of the
data in one pass. The data type for color data from this kind of scanner is

– packing = SC_PACKPIX

– channels = 3

– type = SC_RGB

– bpp = 8

A scanning application that is prepared to deal with these four data types should be able
to interact well with any well-behaved scanner driver.

94

Chapter 8: Generic Scanner Interface

Functions

Diagnostic Functions

Many of the functions specified here return 0 upon success and -1 in the event of a failure.
If a function’s return value indicates failure, the reason for the failure can be determined
by examining the value of the global variable SCerrno. SCerrno will be between 0 and
LASTERRNO (defined in /usr/include/sys/errno.h) if the failure was due to a failed system
call, and between SCEBASE and SCELAST (defined in scanner.h) if the failure was for
some other reason. #define entries for the values between SCEBASE and SCELAST can
be found in /usr/include/scanner.h.

Table 8-1 lists the diagnostic functions.

SCPerror() Function

void SCPerror(char *ident)

This function prints the value of ident, a colon, and a string of text corresponding to the
current value of SCerrno.

SCErrorString() Function

char *SCErrorString(int err)

This function returns a character string containing a useful message describing the error
condition represented by err. If err is not in the range 0 to LASTERRNO or SCEBASE to
SCELAST, SCErrorString() returns a text string containing the words “Error code err,”
where err is the value passed to SCErrorString().

Table 8-1 Diagnostic Functions

Function Description

SCPerror() Prints an error string.

SCErrorString() Returns a character string containing an error message.

Functions

95

Application/Driver Rendezvous Functions

Users refer to scanners by names given to them at install time. The installer uses
scanners(1M), which adds entries to a mapping from scanner names to (driver, device,
options) tuples. The mapping is contained in the file /var/scan/scanners. The driver and
device components are used to start the right driver on the device to access the scanner
given by name, and options is the scanner-specific options program. scanners allows the
specification of a default scanner.

The application/driver Rendezvous functions are listed in Table 8-2 and described
below.

Table 8-2 Application/Driver Rendezvous Functions

Function Description

SCOpen() Prepares to perform operations on the scanner named by name.

SCOpenScreen() Calls the screen scanner driver to scan from the specified screen.

SCOpenFile() Calls the file scanner driver to scan from the specified file.

SCClose() Breaks the connection between the application and the driver.

SCSetScanEnt() Opens the scanner configuration file and returns a pointer.

SCGetScanEnt() Gets a SCANENT structure for each installed scanner.

SCEndScanEnt() Frees the resources used to enumerate scanners.

SCScannerName() Returns the name associated with the scanner at installation.

SCScannerEnt() Returns the SCANENT structure of an open scanner.

SCDefaultScannerName() Gets the default scanner name, if any.

96

Chapter 8: Generic Scanner Interface

SCOpen() Function

SCANNER *SCOpen(char *name)

The SCOpen() function prepares to perform operations on the scanner named by name
by starting the appropriate driver on the appropriate device. SCOpen() performs the
lookup in the name -> (driver, device, options) mapping. If name is NULL, the default
scanner is used.

SCOpen() returns a pointer to a SCANNER struct if successful, or NULL if there is an
error. If name is NULL and no default scanner has been set, SCOpen() opens the first
scanner found in /usr/lib/scan/scanners.

SCOpenScreen() Function

SCANNER *SCOpenScreen(char *screen)

This function invokes the screen scanner driver to scan from the specified screen. It
returns a pointer to a SCANNER struct if successful, NULL if there is an error.

SCOpenFile() Function

SCANNER *SCOpenFile(char *file)

This function invokes the file scanner driver to scan from the specified file. It returns a
pointer to a SCANNER struct if successful, NULL if there is an error.

SCClose() Function

int SCClose(SCANNER *s)

This function breaks the connection between the application and the driver program. It
returns 0 on success, -1 if there is an error.

SCSetScanEnt() Function

FILE *SCSetScanEnt(void)

This function opens the scanner configuration file. It returns a pointer to the open FILE
structure on success, NULL if there is an error.

Functions

97

SCGetScanEnt() Function

typedef struct tag_scanent {
 char *name;
 char *driver;
 char *device;
 char *options;
} SCANENT;

SCANENT *SCGetScanEnt(FILE *fp)

To get a SCANENT structure for each scanner installed on the system, this function
should be called repeatedly until it returns NULL. The contents of the memory pointed
to by the return value of SCGetScanEnt() are undefined after any subsequent calls to this
function, so copy the return value if you need to preserve it across calls to
SCGetScanEnt().

SCEndScanEnt() Function

int SCEndScanEnt(FILE *fp)

This function frees the resources used to enumerate scanners. It returns 0 on success, -1
if there is an error.

SCScannerName() Function

char *SCScannerName(SCANNER *s)

This function returns the name associated with the scanner at installation. Applications
can use this to get at the name of the default scanner being used if SCOpen() was called
with NULL. It returns a pointer to a character string on success, NULL if there is an error.
The memory pointed to by the return value of SCScannerName() belongs to libscan and
should not be modified or freed.

SCScannerEnt() Function

SCANENT *SCScannerEnt(SCANNER *s)

This function returns a SCANENT structure describing an open scanner. The memory
pointed to by the returned value of SCScannerEnt() belongs to libscan and should not be
modified or freed.

98

Chapter 8: Generic Scanner Interface

SCDefaultScannerName() Function

char *SCDefaultScannerName(void)

This function gets the default scanner name, if any. It returns the name of the default
scanner, or NULL if no default scanner has been set. The memory pointed to by the
returned value of SCDefaultScannerName() belongs to libscan and should not be
modified or freed.

Scanning Resolution Functions

Scanners typically support a range of resolutions (pixels per inch). Scanner drivers
should support any resolution between the minimum and maximum resolutions
supported by the scanner, decimating or replicating pixels as necessary to support the
requested resolution. This gives the application the opportunity to preview the scanning
area in an arbitrarily sized window.

It is not the scanner driver’s responsibility to perform higher-quality scaling of the image
data. SCGetScannerRes() can be used by the scanner application to determine which
resolutions are supported directly by the scanner without decimation or replication by
the driver.

SCGetScannerRes() Function

int SCGetScannerRes(SCANNER *s, int metric,
 float **xres, float **yres, int *nres)

This function returns arrays of hardware-supported resolutions. The xres and yres arrays
specify supported horizontal and vertical resolutions. metric should be one of
SC_INCHES or SC_CENTIM. nres sets the number of resolution pairs in the xres and yres
arrays. SCGetScannerRes() returns 0 if successful, -1 if there is an error.

SCGetMinMaxRes() Function

int SCGetMinMaxRes(SCANNER *s, int metric,
 float *minx, float *miny, float *maxx, float *maxy);

This function determines the resolution bounds; that is, the minimum and maximum
horizontal and vertical resolutions that the scanner supports. It is an error to call
SCGetMinMaxRes() with metric equal to SC_PIXELS. SCGetMinMaxRes() returns 0 if
successful, -1 if there is an error.

Functions

99

Scanning Area Functions

A scan may be limited by the application to a subset of the scannable area supported by
the scanner. SCGetPageSize() is provided so that applications can determine the size of
the scannable area supported by the scanner.

SCGetPageSize() Function

int SCGetPageSize(SCANNER *s, int metric, float *x, float *y,
 float *width, float *height)

This function gets the entire scannable area. It is an error to call it with metric equal to
SC_PIXELS. SCGetPageSize() returns 0 if successful, -1 if there is an error.

SCGetDataTypes() Function

int SCGetDataTypes(SCANNER *s, SCDATATYPE **dt, int *ntypes)

This function sets *dt to point to an array of the data types supported by the scanner
driver. ntypes gets the number of data types supported. The memory pointed to by *dt
belongs to libscan and should not be modified or freed. It should also not be expected to
retain its values after subsequent calls to SCGetDataTypes().

Scanning Functions

After SCOpen() has been called, the scanner is idle. In order to initiate a scan, the
functions SCSetup() and SCScan() are called. Characteristics of the data to be scanned
can be determined with SCGetScanSize(). A scan in progress can be aborted at any time
with the function SCAbort(). The scanner status can be determined by calling the
function SCGetStatus().

100

Chapter 8: Generic Scanner Interface

Table 8-3 lists the available scanning functions.

SCSetup() Function

SCSetup(SCANNER *s, int preview, SCDATATYPE *type,
 int rmetric, float xres, float yres,
 int wmetric, float x, float y, float width,
 float height)

This function is used to prepare the scanner for a scan. The type of data, the resolution,
and the scanning area are specified. preview is nonzero if this is a “preview” scan; that is,
when the driver is faced with a trade-off between speed and image quality, it should
choose speed, because this is not the “real” scan. After calling SCSetup(), SCScan() is
called to initiate scanning. SCSetup() returns 0 if successful, -1 if there is an error.

Table 8-3 Scanning Functions

Function Description

SCSetup() Prepares the scanner for a scan.

SCGetScanSize() Determines the width, height, and number of bytes per scan line.

SCScan() Starts scanning.

SCGetScanLine() Retrieves scan line data.

SCDataReady() Determines whether any data is available.

SCGetFD() Returns the file descriptor for scan data.

SCScanFD() Starts scanning (alternative call).

SCAbort() Aborts the current scan.

SCGetStatus() Gets the status of the scanner.

SCGetStatusFD() Returns a file descriptor for scan status.

Functions

101

SCGetScanSize() Function

int SCGetScanSize(SCANNER *s, int *width, int *height,
 int *bytesPerLine)

This function is called after SCSetup() to determine the width, height, and number of
bytes per scan line that will be returned by the driver. It returns 0 if successful, -1 if there
is an error.

SCScan() Function

int SCScan(SCANNER *s)

This function tells the driver to start scanning. The driver immediately starts to scan and
buffer the data. SCScan() does not fetch any scan data (see SCGetScanLine()). SCScan()
returns 0 if successful, -1 if there is an error.

SCGetScanLine() Function

int SCGetScanLine(SCANNER *s, void *buf, int bytes)

This function retrieves scan line data. bytes should be set to the number of bytes in a scan
line as determined by SCGetScanSize().

Note that for color planar data, SCGetScanLine() is called once for each line in each
plane of data. For 100 lines of 24-bit RGB planar data, SCGetScanLine() is called a total
of 300 times, with the first 100 calls retrieving the red plane, the second 100 calls
retrieving the green plane, and the third 100 calls retrieving the blue plane.

SCDataReady() Function

int SCDataReady(SCANNER *s)

This function is used to determine whether any data is available for calls to
SCGetScanLine(); that is, whether a call to SCGetScanLine() will block waiting for data
to become available.

SCDataReady() returns 1 if data is available (SCGetScanLine() will not block), 0 if no
data is available (SCGetScanLine() will block), or -1 if there is an error. It is an error to
call SCDataReady() if scanning was started by a call to SCScanFD().

102

Chapter 8: Generic Scanner Interface

SCGetFD() Function

int SCGetFD(SCANNER *s)

This function returns the file descriptor over which scan data from the scanner driver
comes. Checking the state of this descriptor with the select(2) system call is equivalent to
calling SCDataReady(). If SCScanFD() was called, SCGetFD() returns the file descriptor
that was passed to that function. SCGetFD() returns -1 if there is an error.

SCScanFD() Function

int SCScanFD(SCANNER *s, int fd)

This function is an alternative to calling SCScan() to start scanning and SCGetLine() to
fetch the data. After SCScanFD() is called, the driver writes the scanned data to fd; this
is useful if the output data format of the scanner interface matches the input data type of
another interface. SCScanFD() returns 0 if successful, -1 if there is an error.

SCAbort() Function

int SCAbort(SCANNER *s)

This function aborts the current scan. Data buffered by the driver is discarded. SCAbort()
returns 0 if successful, -1 if there is an error.

SCGetStatus() Function

enum scstate { SC_READY, SC_SCANNING, SC_ERROR };
typdef struct tag_scstatus {
 enum scstate state; /* ready, scanning, error */
 int errno; /* only valid if state == SC_ERROR */
 long curline; /* current line being scanned */
 int pass; /* current scanning pass */
} SCSTATUS;

int SCGetStatus(SCANNER *s, SCSTATUS *st)

This function gets the status of the scanner. It returns 0 if successful, -1 if there is an error.

SCGetStatusFD() Function

int SCGetStatusFD(SCANNER *s)

Functions

103

This function returns a file descriptor that can be passed to the select(2) system call.
When select indicates that the file descriptor is ready for reading, the scanner driver has
updated the scanning status. Retrieve the status by calling SCGetStatus(); do NOT pass
the file descriptor returned from SCGetStatusFD() to any other system call.

SCGetStatusFD() provides a mechanism whereby it is not necessary for an application
to periodically call SCGetStatus() in a timer loop to detect changes in scanner status.
SCGetStatusFD() returns -1 if there is an error.

Document Feeder Functions

The scanner interface has provisions for the support of scanners that have document
feeders attached. This facilitates the development of applications that can scan multiple
pages without user intervention. Table 8-4 lists the document feeder functions.

SCFeederGetFlags() Function

typedef unsigned int SCFEEDERFLAGS;

#define SC_HASFEEDER 1
#define SC_AUTOFEED 2
#define SC_PROGFEED 4

int SCFeederGetFlags(SCANNER *s, SCFEEDERFLAGS *flags);

Table 8-4 Document Feeder Functions

Function Description

SCFeederGetFlags() Gets the feeder flags.

SCFeederSetFlags() Sets feeder flags.

SCFeederAdvance() Advances the feeder to the next document.

SCFeederReady() Checks if the feeder is ready for feeding.

104

Chapter 8: Generic Scanner Interface

This function fills in the flags variable with flags appropriate for the scanner associated
with s. If SC_AUTOFEED and SC_PROGFEED are both set, SCFeederSetFlags() should
be called before any calls to SCScan() to establish how the application is to interact with
the feeder. The meanings of the flags are as follows:

SCFeederGetFlags() returns 0 if successful, -1 if there is an error.

SCFeederSetFlags() Function

int SCFeederSetFlags(SCANNER *s, SCFEEDERFLAGS flags);

This function should be called before calling SCScan() for scanners in which
SCFeederGetFlags() sets both SC_AUTOFEED and SC_PROGFEED. After calling
SCFeederSetFlags(s, SC_AUTOFEED), the feeder advances to the next document after
every call to SCScan(). After calling SCFeederSetFlags(s, SC_PROGFEED), a call to
SCFeederAdvance() is necessary to advance to the next document. SCFeederSetFlags()
returns 0 if successful, -1 if there is an error.

SCFeederAdvance() Function

int SCFeederAdvance(SCANNER *s)

This function advances the feeder to the next document. This call is valid only if the
scanner supports the SC_PROGFEED mode. For scanners that support both the
SC_AUTOFEED and SC_PROGFEED modes, SCFeederSetFlags(s, SC_PROGFEED)
must have been called previously.

SCFeederAdvance() returns 0 if successful, -1 if there is an error. When unloading the last
document, this function returns -1 with SCerrno set to SCFEEDEREMPTY.

SC_HASFEEDER Set if there is a document feeder attached to the scanner.

SC_AUTOFEED Set if the feeder can operate such that each call to
SCScan() causes the next document to be loaded.

SC_PROGFEED Set if the feeder can operate so that SCScan() can be
called multiple times per document. It is necessary to
call SCFeederAdvance() to load the next document.

Events

105

SCFeederReady() Function

int SCFeederReady(SCANNER *s)

This function checks if the feeder is ready for feeding. SCFeederReady() returns 0 if the
feeder is ready, -1 if not. If the feeder is empty, SCerrno is set to SCFEEDEREMPTY; if any
other error conditions exist, SCerrno is set appropriately.

Note that this function needs to be called before SCFeederAdvance() to determine
whether a document is ready to be scanned after the call to SCFeederAdvance().

Events

Scanner applications need to be aware that the configuration information about a
scanner obtained from SCGetMinMaxRes(), SCGetScannerRes(), SCGetPageSize(),
and SCGetDataTypes() can change. This typically happens when the user selects a new
input medium using the scanner specific options panel. For example, some scanners
support transparency options that have a different scanning page size than the normal
scanning bed. When the user decides to scan transparencies, the driver notifies the
application that it needs to call SCGetPageSize() by sending an event. See Table 8-5.

Table 8-5 Event Functions

Function Description

SCGetEvent() Receives an event from the scanner driver.

SCEventPending() Tests whether an event is currently pending.

SCGetEventFD() Obtains an event file descriptor for passing to select.

106

Chapter 8: Generic Scanner Interface

SCGetEvent() Function

typedef struct tag_infoChange {
 unsigned int pageSizeChanged : 1;
 unsigned int resolutionChanged : 1;
 unsigned int dataTypesChanged : 1;
 unsigned int feederFlagsChanged : 1;
} SCINFOCHANGE;

#define SCEVENT_INFOCHANGE 1

typedef struct tag_scevent {
 unsigned int eventType;
 union {
 SCINFOCHANGE infoChange;
 } event;
} SCEVENT;

int SCGetEvent(SCANNER *s, SCEVENT *event)

SCGetEvent() is called to receive an event from the scanner driver. The event structure
should be examined, and if the pageSizeChanged field is set, the application should call
SCGetPageSize() to query the new page size; if the resolutionChanged field is set, the
application should call SCGetMinMaxRes() and SCGetScannerRes() to query the new
resolutions; if the dataTypesChanged field is set, the application should call
SCGetDataTypes() to query the new data types, and if the feederFlagsChanged field is set,
the application should call SCGetFeederFlags() to query the new feeder flags.

SCEventPending() Function

int SCEventPending(SCANNER *s)

SCEventPending() is called to test whether or not an event is currently pending. If an
event is pending, the application should call SCGetEvent() to receive it.
SCEventPending() returns 1 if any events are pending, and 0 if no events are pending.

SCGetEventFD() Function

int SCGetEventFD(SCANNER *s)

SCGetEventFD() returns a file descriptor that can be passed to the select system call.
When select indicates that this file descriptor is ready for reading, then an event is
pending and the application should call SCGetEvent() to retrieve it.

107

Chapter 9

9. Testing for Impressario Compatibility

This chapter explains how to use the programs that test printing compatibility with the
Impressario environment.

The following topics are discussed in this chapter:

• “Testing Impressario Printing Compatibility” on page 108

• “Testing an Impressario Printer” on page 108

• “Testing an Impressario Printer Software Installation” on page 110

108

Chapter 9: Testing for Impressario Compatibility

Testing Impressario Printing Compatibility

The Impressario Developer’s Kit provides two programs for testing printing
compatibility with the Impressario environment. The testipr program tests the output
capabilities of an Impressario supported printer. The testiconfig program tests an
Impressario printer software installation. Both of these programs are located in the
directory /usr/impressario/tests/print.The use of these test harnesses is not sufficient testing
to ensure the quality of your product. They are only helpful tools, not a substitute for
additional testing.

Testing an Impressario Printer

A printer supported by Impressario can print a wide range of file formats with a large
selection of printing options for each file format. Testing each supported file format and
printing option can be a laborious task if done manually, one test case at a time. testipr
automates the testing process by printing a set of standard test files, according to a
standard test plan.

testipr is in the directory /usr/impressario/tests/print and typically is run from there. The
name of a printer installed on the system is the only required command-line parameter.
It is recommended that the printer be physically connected to the system on which testipr
is run. It is the responsibility of the user to ensure that the printer is not used by other
users during testing.

On startup, testipr looks in the /usr/impressario/tests/print directory for test configuration
files. These files are identified by a .ipr suffix and a basename corresponding to the test
class name. There are three standard configuration files: text.ipr, image.ipr, and
postscript.ipr. These files contain the text, image, and PostScript test classes, respectively.
Each configuration file describes a set of tests to be run by testipr. These files should not
be modified. If you wish to create your own test cases, copy the existing configuration
files to a new location, modify them to suit your needs, and use the -p command-line
option to tell testipr where to find the files.

Testing Impressario Printing Compatibility

109

The format of the configuration file follows that of a X Window System resource file. For
example:

! This is a comment in an example .ipr file

test.basePath: /usr/impressario/data

test.1.file: testfile.sgi
test.1.options: -rotate 90 -gamma 3.5
test.1.desc: “SGI Image File - rotated 90, gamma 3.5”

test.2.file: testfile.sgi
test.2.options: -rotate 90 -gamma 3.5
test.2.desc: “SGI Image File - rotated 90, gamma 3.5”

Each resource must start with the keyword test. basePath is an optional resource that
specifies a directory path. If it is specified, the path will be prepended to each file
resource. The file resource specifies a test file to print. Typically, these test files are from
/usr/impressario/test/data. The options resource specifies the actual -o model file options to
be used in the test. Note that the -o should not be specified. The testipr program
automatically prepends the nobanner option to all option strings. The option string is
passed as the argument to the lp command’s -o option. The desc resource provides a
description of the test. This string is written to the test log file. Each test case must be
numbered consecutively, starting with 1.

The file specified in each test is submitted for printing using the specified printing
options. A log file, called /var/tmp/testipr.<printerName>.log, is created. This log file
contains general information about the printer being tested and its host environment.
The log also contains a detailed list of all tests performed and their corresponding
spooling system print job IDs. A complete test record consists of the printer output, the
corresponding log file, and the /var/spool/lp/log file. See the testipr(1) reference page for
command-line options and the most up-to-date information on this test program.

Example 1:

Run all tests on the printer hp4.

testipr hp4

110

Chapter 9: Testing for Impressario Compatibility

Example 2:

Run only image tests on the printer hp4.

testipr -c image hp4

Example 3:

Run only image tests numbers 5 and 6 on the printer hp4.

testipr -c image -t 5,6 hp4

Testing an Impressario Printer Software Installation

An Impressario supported printer has greatly enhanced printing capabilities over other
types. To provide these enhanced capabilities, software complying with Impressario
specifications must be installed in standard locations. The testiconfig program checks that
the software support for a printer conforms to Impressario specifications. Typical users
of this program are third-party printer developers who wish to verify that their printer
support is compatible with the Impressario printing environment.

testiconfig performs a number of checks to ensure conformance to Impressario printer
support specifications. The program performs checks on the printer model file, POD
files, graphical options panel and printer driver. All output is sent to the standard output.
If the -v option is specified, additional information is displayed during the test. The
testiconfig program requires the name of the printer model file. The printer support
software must be installed on the system on which the testiconfig is run. Note that a
printer need not be physically installed on the system or installed by the spooling system
to run this test program.

For example:

Test the installation for an HP LaserJet 4:

testiconfig -v laserjetPJL_model

See the testiconfig(1) reference page for command-line options and the most up-to-date
information on this program.

111

Chapter 10

10. Packaging Your Impressario Product

This chapter explains how to package your Impressario Product.

The following topics are discussed in this chapter:

• “Making a tar Archive for Software Distribution” on page 112

• “Packaging Impressario Printing Software” on page 113

• “Packaging Impressario Scanning Software” on page 117

112

Chapter 10: Packaging Your Impressario Product

Overview

Impressario provides an open printing and scanning environment. Third-party support
for printers and scanners can be added to the Impressario environment by following the
procedures described in this chapter.

There are two methods of packaging Impressario software for distribution: the swmgr
software packaging and installation technology and tar archives. We recommend using
swmgr, which users access with the Software Manager option in the System Toolchest,
because of its flexibility and ease of use. Instructions for creating an image that can be
installed by swmgr are in the Software Packager User’s Guide. In the next section, Table 10-1
(for printers) and Table 10-2 (for scanners) define the locations, ownership, and
privileges of the files that are typically needed to create an Impressario product.

If you prefer to create a tar archive, the following section describes how to create one for
installing Impressario drivers.

Making a tar Archive for Software Distribution

To create a tar archive for your software distribution, use the following procedure:

1. Become superuser. The creation of all tape archives and the subsequent installation
of the product by the end user must be done as superuser. Becoming superuser is
typically accomplished by either logging in as root or executing the su command.
Typically, a password must be provided to gain superuser access to a system. Ask
your system administrator for assistance.

2. Copy the files that compose your product from your development area to the
directories into which they will be installed. See “Packaging Impressario Printing
Software” on page 113 and “Packaging Impressario Scanning Software” on page 117
for the files typically installed by printing and scanning products.

Packaging Impressario Printing Software

113

3. Change the permissions and ownership of each file according to the
recommendations in “Packaging Impressario Printing Software” and “Packaging
Impressario Scanning Software.” The chmod command is used to change file
permissions and the chown command is used to change file ownership. For example,
to give the file foo read–write permission for the owner and read-only permission
for all others, and to specify a root owner and sys group, enter the following
commands:

chmod 0644 foo
chown root.sys foo

4. Enter the tar command and specify the absolute pathname of each file that is part of
the distribution. For example, to create an archive consisting of two files and to
place that archive on the default tape device, enter the following command:

tar cvLf /dev/tape /usr/lib/print/mydriver /var/spool/lp/model/mymodel

For detailed information on the tar command, refer to the tar(1) reference page.

5. Optionally, you may include in your distribution a shell script that removes the files
that are installed by your product. This allows customers to reclaim the disk space
used by your product if your product is no longer being used.

Packaging Impressario Printing Software

To illustrate better the process of packaging Impressario printing support software, let us
create a fictitious product. The product provides Impressario support for the Blast family
of printers. The Blast product line consists of the Blast 1, Blast 2CVX, and the Blast P+.
Because each of the Blast printers provides similar functions, support for all of them is
provided by a single model file.

Impressario printing support products typically are named with the printer family, the
word Print, and the lowest version number of Impressario that supports the product. In
keeping with this convention, the product is named “BlastPrint for Impressario 2.0.”

114

Chapter 10: Packaging Your Impressario Product

A typical Impressario printer-support product consists of the following files:

Model file When the printer is registered with the spooling system, this file is
copied and becomes the printer interface file. The spooling system
executes this shell script for each print job.

Printer driver This executable program communicates with the printer. The interface
file invokes the driver to do the actual printing of a file. The driver sends
data to the printer and updates the POD status file.

POD files The POD consists of three files, all with the same base name as the model
file but with the suffixes .config, .status, and .log. These plain text files
contain static and dynamic printer information.

Graphical options panel program
This GUI program provides graphical access to printer-specific options
for users. The program is given the same base name as the model file
with the suffix .gui.

Graphical options panel resource file
This is an X Window system resource file for the graphical options panel
program. The file is named with the class name of the graphical options
panel program. This name must also match the GUI_CLASS variable in
the model file.

Reference page A reference page that describes the printing product should be included.
By convention, this reference page is named with the product name. The
reference page must be formatted using nroff and must be compressed
before installation. A product reference page template and a Makefile to
perform the required formatting, compression, and installation are
provided in the directory /usr/impressario/man.

Note: In order to create a reference page, you must have the
Documenter’s Workbench product installed on the development
system.

Packaging Impressario Printing Software

115

The files listed in Table 10-1 comprise the BlastPrint product. The files are listed with
their absolute pathnames, permissions, and ownership.

Before creating the actual software distribution, the above files must be copied to the
directories indicated and given the specified ownership and permissions. Once this is
done, the Impressario test program testiconfig(1) can be run to verify that the product
conforms to Impressario product installation specifications.

To run the testiconfig command on the BlastPrint product, execute the following:

cd /usr/impressario/tests/print
./testiconfig blast_model

Table 10-1 Typical Printing Product Files

Description Pathname Permissions Owner

Model file /var/spool/lp/model/blast_model 0755 lp.lp

Printer driver /usr/lib/print/blaster 0755 lp.lp

POD files /usr/lib/print/data/blast_model.config

/usr/lib/print/data/blast_model.status

/usr/lib/print/data/blast_model.log

0664

0664

0664

lp.lp

lp.lp

lp.lp

Graphical options
program

/var/spool/lp/gui_model/ELF/blast_model.gui 0755 lp.lp

Graphical options
resources

/usr/lib/X11/app-defaults/Blast 0644 root.sys

Reference page /usr/share/catman/u_man/cat1/blastprint.z 0444 root.sys

116

Chapter 10: Packaging Your Impressario Product

Once the product installation has been verified, a software distribution can be created.
This is done using the tar command. Assuming you are making a tape distribution, you
would issue the following command (note the use of the line continuation character “\”
to allow the command line to extend over multiple lines):

tar cvLf /dev/tape /var/spool/lp/model/blast_model \
 /usr/lib/print/blaster \
 /usr/lib/print/data/blast_model.config \
 /usr/lib/print/data/blast_model.status \
 /usr/lib/print/data/blast_model.log \
 /var/spool/lp/gui_model/ELF/blast_model.gui \
 /usr/lib/X11/app-defaults/Blast \
 /usr/share/catman/u_man/cat1/blastprint.z

The resulting tape archive represents the BlastPrint product.

It is recommended that copying the files to their installation directories, assigning
ownership and permissions to the files, and archiving the files be automated in a shell
script. This eliminates a lot of typing and provides a consistent distribution mechanism.

Once the distribution tape has been created, it should be installed on a new system, that
is, one that has never had BlastPrint. This is done as superuser using the command

tar xvf /dev/tape

Once BlastPrint has been installed, the testiconfig program should again be run to verify
that the installation is complete and correct. A printer should then be connected to the
system and registered with the spooling system using the Printer Manager (printers).
The Impressario test command testipr should be used with the newly installed printer to
verify that it is able to print all supported Impressario file formats and options.

If the printer was installed with the name myblaster, it can be tested by executing the
commands

cd /usr/impressario/tests/print
./testipr myblaster

This completes the creation of an Impressario printer-support product.

Packaging Impressario Scanning Software

117

Packaging Impressario Scanning Software

To illustrate the process of packaging Impressario scanning software, you will create a
fictitious product to provide Impressario support for the LowTech 100 scanner.

Impressario scanning products are typically named with the scanner family, the word
Scan, and the lowest version number of Impressario that supports this product. Name
your product “LowTechScan for Impressario 2.0.”

A typical Impressario scanner-support product consists of the following files:

Scanner driver The executable program that obtains the data from a scanner.

Graphical options program
This is the graphical scanner-specific options program launched from a
scanning application. The program showcases a scanner’s features. This
program must have the same base name as the scanner driver in order
to be recognized by scanners, the scanner installation tool.

Graphical options resource file
This is the X Window System resource file for the graphical options
program and is named with the class name of the graphical options
program. The class name must be the same as the graphical options
program name, with the first letter capitalized. If this resource file is not
named using these conventions, the options program will not have
access to its resources when invoked for a network scanner.

Reference page A reference page should be created that describes the scanning product.
By convention, this reference page is named with the product name. The
reference page must be formatted using nroff and must be compressed
before installation. A product reference page template and a Makefile to
perform the required formatting, compression, and installation are
provided in the directory /usr/impressario/man.

Note: In order to create a reference page, you must have the
Documenter’s Workbench product installed on the development
system.

118

Chapter 10: Packaging Your Impressario Product

The files listed in Table 10-2 compose the LowTechScan product. The files are listed with
their absolute pathnames, permissions, and ownership.

Before creating the actual software distribution, copy the above files to the directories
indicated and give them the specified ownership and permissions. Then run the scanners
tool to verify that the correct string for the LowTech 100 scanner appears in the “Install
New Scanner” dialog. Finally, install a LowTech 100 scanner using the scanners tool, and
make sure that gscan is able to run the graphical options program from the “Scanner
Specific Options” command in the Parameters menu.

Once the product installation has been verified, a software distribution can be created
with the tar command. Assuming you are making a tape distribution, you would issue
the following command (note the use of the line continuation character “\” to allow the
command line to extend over multiple lines):

tar cvLf /dev/tape /usr/lib/scan/drv/lowtech \
 /usr/lib/scan/opt/lowtech \
 /usr/lib/X11/app-defaults/Lowtech \
 /usr/share/catman/u_man/cat1/lowtech.z

The resulting tape archive represents the LowTechScan product.

It is recommended that copying the files to their installation directories, assigning
ownership and permissions to the files, and archiving the files be automated in a shell
script. This eliminates a lot of typing and provides a consistent distribution mechanism.

Table 10-2 Typical Scanning Product Files

Description Pathname Permissions Owner

Scanner driver /usr/lib/scan/drv/lowtech 0755 root.sys

Graphical options
program

/usr/lib/scan/opt/lowtech 0755 root.sys

Graphical options
resources

/usr/lib/X11/app-defaults/Lowtech 0644 root.sys

Reference page /usr/share/catman/u_man/cat1/lowtech.z 0444 root.sys

Packaging Impressario Scanning Software

119

Once the distribution tape has been created, it should be taken to a new system (in other
words, one that has never had LowTechScan installed) and installed. This is done using
the following command as superuser:

tar xvf /dev/tape

Once LowTechScan has been installed, the scanners and gscan programs should again be
run to verify that the installation is complete and correct.

This completes the creation of an Impressario scanner-support product.

121

Chapter 11

11. Enhancing Impressario With Plug-Ins

This chapter explains how you can add plug-ins to Impressario to satisfy needs that
haven’t been integrated into the base software. This allows you to dynamically update
the Impressario feature set.

The following topics are discussed in this chapter:

• Impressario automatic file type recognition and file conversion pipeline

• adding new file types to those that Impressario already recognizes and prints

• adding a new PostScript Raster Image Processor (RIP) to Impressario and switching
between the standard Impressario RIP and your new RIP

How the Impressario File Conversion Pipeline Works

The key components of the Impressario file conversion pipeline are

• a database of file type rules (FTRs)

• the wstype runtime file type recognition utility

• the fileconvert file conversion utility

122

Chapter 11: Enhancing Impressario With Plug-Ins

File Type Rules

The file type rules of the FTR database are documented in the Indigo Magic Desktop
Integration Guide, which is available as an online book and can be installed from your
IRIX CD.

The file type rules have two parts relevant to printing. The first is a TYPE rule for using
the first 512 bytes of a file to recognize that the file is a particular type. The second is a
CONVERT rule for converting that type to another type; the ultimate goal is to be able to
convert any file type to a set of printable file types. Each CONVERT rule contains a pair
of known types (a source and a destination), a Bourne shell command for converting
from the source to the destination, and the computational cost of the conversion.
Impressario builds on the standard IRIX database of file types by extending the FTR set
to handle additional input file types, and by adding new destination file types.

Runtime File Type Recognition Utility

The wstype utility is used to determine the file type of a file or set of files. It is similar to
file(1) in basic operation, but has no hardcoded special cases and no /etc/magic file, relying
on the compiled FTR database for typing information.

See the wstype(1) reference page for additional information.

File Conversion Utility

The fileconvert utility builds a directed acyclic graph out of all known file types,
determines the input file type, and attempts to find the lowest-cost path from source to
destination. The cost analysis is necessary because the file conversion is usually a
multiple-step process.

For example, suppose the goal is to print a GIF on a PostScript printer. There is no filter
to directly convert a GIF to PostScript data, so fileconvert might generate a couple of
alternate paths. One path is shown below:

Conversion Filter

GIF to TIFF /usr/lib/print/il2stiff

TIFF to PostScript /usr/lib/print/stiff2ps

Adding a New File Type to Impressario

123

A second path is shown below:

Each of the filters has an associated computational cost. fileconvert determines the total
cost of each path and chooses the lowest-cost route.

If a conversion path exists, fileconvert prints a Bourne shell command string which, when
executed, generates the destination file type on standard out. Most model files simply
execute this shell command string, piping the results to the printer driver. This flexible,
extensible mechanism enables Impressario to print virtually any recognizable file type on
any printer that is compliant with Impressario.

See the fileconvert(1) reference page for additional information.

Adding a New File Type to Impressario

To extend Impressario to make a new type of file printable, you need only perform the
following steps:

1. Write a filter to convert your new type.

2. Write an FTR rule that recognizes the new file type.

3. Add a CONVERT rule from that type to a known Impressario type.

4. Install and test your changes.

Conversion Filter

GIF to TIFF /usr/lib/print/il2stiff

TIFF to SGI /usr/lib/print/tiff2sgi

SGI to PostScript /usr/lib/print/sgi2ps

124

Chapter 11: Enhancing Impressario With Plug-Ins

Writing a New Filter

First, write a filter to convert your new type to either STIFF or PostScript, the two main
formats for input to Impressario. The fileconvert utility requires that your filter be able to
accept input either on standard in or from a specified filename. It should also be able to
write output to standard out without using intermediate files, so that the conversion can
succeed, even if the converting host has low disk space. See the Indigo Magic Desktop
Integration Guide, Chapter 5, for more details. See the gif2stiff(1) reference page for an
example.

Writing an FTR

Next, write an FTR that can recognize the new file type given only the first 512 bytes of
the file. See the Indigo Magic Desktop Integration Guide and the ftr(1) reference page for a
description of the available primitives for matching a file’s type and for a description of
the additional parts of a good FTR.

Adding a CONVERT Rule

As part of your FTR, add a CONVERT rule from that type to a known Impressario type.
We strongly recommend that you convert image types to the STIFF93aImage type and
convert other non-image file formats to the PostScriptFile type. Refer to Appendix A and
the libstiff(3) reference page for information on writing STIFF output. Note that once you
convert to either a PostScriptFile or a STIFF93aImage, Impressario knows how to convert
that file type to a printable format on any printer.

Model files that are compliant with Impressario also automatically set the proper
environment variables for the options the user selected on the spooler command line,
and the standard Impressario CONVERT rules automatically pick up the appropriate
environment variables when converting these file types to printable types. This is how
user-specified printing options are applied to the dynamically-constructed file
conversion pipeline.

Adding a New File Type to Impressario

125

Installation and Testing

The easiest way to show how to test a new file type is by example.

Setting Up an Example

The example makes the following assumptions:

• The new file type is called BlastFile.

• The new FTR is in the directory /usr/tmp/blastfile.ftr.

• A sample BlastFile is in the directory /usr/tmp/sample.blastfile.

• All BlastFiles start with the word blastfile.

A sample (although incomplete) TYPE rule for the example would look like this:

TYPE BlastFile
 MATCH string(0,9) == "blastfile";
 LEGEND Blast Image File

CONVERT BlastFile STIFF93aImage
 COST 50
 FILTER /usr/lib/print/blast2stiff $IMPR_IMG2STIFFOPTS

Testing the New File Type

1. To test the new file type, become root by entering:

su

Supplying a password, if necessary.

2. Copy your FTR into /usr/lib/filetype/install:

cp /usr/tmp/blastfiletype.ftr /usr/lib/filetype/install

3. Compile the FTR database:

cd /usr/lib/filetype ; make

See the ftr(1) reference page if any errors occur.

126

Chapter 11: Enhancing Impressario With Plug-Ins

4. Run wstype to verify that Impressario now recognizes your file type:

wstype /usr/tmp/sample.blastfile

You should see the following output:

/usr/tmp/sample.blastfile BlastFile

5. Try to convert that file type to a printable file type. The most printable file type in
the Impressario database is ImpressarioPostScriptFile, so try that:

fileconvert -d ImpressarioPostScriptFile \
/usr/tmp/sample.blastfile

You should get back something like:

PRINTFILES=”/usr/tmp/sample.blastfile” ; /usr/lib/print/blast2stiff
$IMPR_IMG2STIFFOPTS $PRINTFILES | /usr/lib/print/stiff2ps
$IMPR_SGI2PSOPTS

Note: The above output appears on one line.

If fileconvert does not return a valid shell command string, check the exit code of the
filter. If you are in the C shell, enter:

echo $status

If you are in the Bourne shell, enter:

echo $?

If the exit code is not zero, then fileconvert was unable to convert your file type.
Verify that your destination file type is convertible to a printable type by checking
the CONVERT rules in the FTR database and making sure there is a conversion path
from your destination type to the Impressario type, then try the above steps again.

6. Once steps 1-5 work, verify that your filter produces valid output by entering

vstiff /usr/tmp/sample.blastfile

This should bring up the vstiff previewer, which uses the FTR database of TYPE and
CONVERT rules to convert to a screen-viewable STIFF file. Use the “PostScript
Options...” menu choice on the File menu to choose different color spaces and
depths. See the vstiff(1) reference page for more help.

Note: If your filter converts directly to STIFF93aImage, the PostScript options in vstiff
are not applicable.

Using an Alternate PostScript RIP

127

7. Finally, try printing that file to an Impressario printer. Enter:

lp -dprintername /usr/tmp/sample.blastfile

Watch the spooler log file for errors and the printstatus panel for printer messages
until the file prints. If you were able to vstiff the file, then you should to be able to
print it.

When you have completed this process, you should have the files shown in Table 11-1.
These files should be installed with the permissions and the ownerships shown and at
the locations shown. The actual file basename may change but the pathname should not.
Conversion filters should be installed in /usr/lib/print.

Using an Alternate PostScript RIP

Using an alternate PostScript Raster Image Processor (RIP) is extremely easy in the
Impressario open architecture. You can even switch RIPs at the last possible moment
without losing any of the features of the Impressario file conversion pipeline.

The steps required to add an alternate RIP to your system are as follows:

1. Make the new RIP command line compatible with the Impressario RIP, psrip.

2. Write a dummy TYPE.

3. Test the alternative RIP.

4. Package the files.

You should be able to use this alternate RIP instead of the Impressario interpreter, which
is no longer shipped or supported.

Note: In the example below, the new RIP is called blastrip and is installed in the directory
/usr/lib/print.

Table 11-1 New File Type Pathnames

Mode Owner Group Full Pathname

-r--r--r-- root sys /usr/lib/filetype/install/blastfiletype.ftr

-rwxr-xr-x root sys /usr/lib/print/blast2stiff

128

Chapter 11: Enhancing Impressario With Plug-Ins

Making the Command Line Compatible With psrip

Your new RIP must be command-line compatible with psrip. For more information on
what this means, see Appendix I, “PostScript Interpreter (psrip) Command Line
Options.”psrip accepts ASCII and binary PostScript either on standard in or in a disk file,
and generates a variety of sizes, colorspaces, and depths of STIFF bitmaps on standard
out.

Being command-line compatible with psrip is probably the most tedious part of adding
a new interpreter, but is well worth the effort when you consider that you gain all the
advantages of Impressario:

• plug-and-play printer drivers

• automatic file type recognition

• automatic file type conversion

Writing a Dummy TYPE

The next step is to write a dummy TYPE and a simple CONVERT rule. First create a new,
empty TYPE definition for your output raster format. For example:

TYPE BlastRasterBitmap
dummy type for use in model file only
 MATCH false;

CONVERT ImpressarioPostScriptFile BlastRasterBitmap
convert from formatted, filtered ImpressarioPostScriptFile
to a RIPped bitmap
 COST 50
 FILTER /usr/lib/print/blastrip $IMPR_PSRIPOPTS

Install that file in /usr/lib/filetype/install/blastrip.ftr and compile your FTR database by
entering

su ; cd /usr/lib/filetype ; make

Now test the conversion and preview the bitmap by using vstiff:

fileconvert -d BlastRasterBitmap /etc/passwd | vstiff -stdin

Using an Alternate PostScript RIP

129

If you run into problems viewing it, then save it to disk and use other tools to verify that
you have a valid STIFF file. However, if vstiff cannot view it, then Impressario printer
drivers will probably not be able to print it.

Testing the Alternate RIP

To use the alternative RIP in your printer model files instead of the default psrip, change
all references to “ImpressarioRasterBitmap” to “BlastRasterBitmap.” The lines below
were taken from the laserjetPJL_model template model file and the word
ImpressarioRasterBitmap was changed to BlastRasterBitmap:

Use fileconvert to convert to the printer’s native format.
For raster printers, it is BlastRasterBitmap.
For PostScript printers, it is ImpressarioPostScriptFile.
#
CMD=‘$fileconvert $fileconvertopts -d BlastRasterBitmap $file 2> /dev/null‘

Packaging the Files

You are finished now, and need only package these optional RIP files for installation. The
files you should be installing may have different names, but should be installed in the
following directories, with the permissions and ownerships shown in Table 11-2.

You should modify your printer’s model file to use the new RIP whenever you want. You
can, of course, still ask for ImpressarioRasterBitmap.

Note: Test carefully to make sure that your new RIP is, in fact, compatible with the
existing psrip before shipping your product.

Table 11-2 Alternative RIP Pathnames

Mode Owner Group Full Pathname

-r--r--r-- root sys /usr/lib/filetype/install/blastrip.ftr

-rwxr-xr-x root sys /usr/lib/print/blastrip

131

Appendix A

A. Stream TIFF Data Format

This appendix describes the Stream TIFF data format (STIFF), the primary interchange
file format between printer filters and drivers, and libstiff;, a C application program
interface (API) used to read and write Stream TIFF files. Stream TIFF is also used by gscan
to store images in TIFF files and to scan to the screen (in conjunction with vstiff).

The following major topics are discussed:

• “Library Description” on page 132

• “Library Access” on page 132

• “Library Functions” on page 133

• “Printing-Specific STIFF” on page 135

• “Generic STIFF File Structure” on page 136

132

Appendix A: Stream TIFF Data Format

Library Description

libstiff provides a C application program interface (API) to the reading and writing of
Stream TIFF files. Stream TIFF (STIFF) is a subset of the Tag Image File Format (TIFF)
Revision 6.0 originally developed by Aldus Corporation. TIFF is an extremely flexible
format, well suited for monochrome and color bitmap images. The primary difference
between TIFF and STIFF is that while a TIFF file may require file seeking during reading
or writing, a STIFF file does not. This means that a STIFF file can be read and written to
both files and non-seekable streams such as pipes and sockets. STIFF can be used by
application developers to write TIFF 6.0-compliant files, and a STIFF file can be read by
any TIFF reader that conforms to the TIFF Revision 6.0 specifications. However, libstiff
cannot be used to read many standard TIFF files since STIFF is a subset of TIFF.

The functions provided by libstiff greatly simplify the reading and writing of
TIFF-compatible files. Using the STIFF API, TIFF 6.0-compatible STIFF files can be read
and written without the need to understand the structure of a TIFF file and without the
need to explicitly specify TIFF tags.

Library Access

There are two sets of libstiff functions. One set comprises the generic libstiff API. These
functions are designated by an ST prefix and may be used to read and write generic
STIFF files. To access these functions, an application must include the header file stiff.h
located in the /usr/include directory. The second set of libstiff functions is tailored to
reading and writing STIFF files that are to be passed between printing filters and drivers.
These printing-related functions are designated by the prefix PST and are accessed
through the header file printstiff.h, also located in /usr/include. If printstiff.h is used, the
header stiff.h need not be specified. The generic and printing-specific functions may be
freely intermixed within an application.

Programs that call libstiff functions must link with the libstiff.a library located in the
directory /usr/lib. An example command line is shown below:

cc -o myprog myprog.c -lstiff

Library Functions

133

Library Functions

libstiff provides the generic functions listed in Table A-1.

STIFF also provides the printing-specific functions listed in Table A-2.

Table A-1 STIFF Generic Functions

Task Function Name Description

Stream Handling STOpen()

STClose()

STSkipTo()

Opens a STIFF stream on the specified file
descriptor

Closes a STIFF stream opened by STOpen()

Skips forward on a specified stream

Reading and Writing STReadImageHeader()

STWriteImageHeader()

STRead()

STWrite()

Reads the STIFF image header from the
specified stream

Writes the image header to the specified stream

Reads the specified amount of image data from
the stream

Writes the specified amount of image data to the
stream

TIFF Tag Support STAddTag()

STRemoveTag()

STGetTag()

STPrintTags()

Adds the specified tag to the TIFF tag list

Removes the specified tag from the output TIFF
tag list

Searches the tag list for the specified TIFF tag

Prints the current TIFF tag list

Execution Error
Handling

STPerror()

STErrorString()

Prints error messages to standard error

Gets the error string for the specified error code

Table A-2 STIFF Printing-Specific Functions

Function Name Description

PSTReadImageHeader() Reads the printing-specific STIFF image header from the stream

PSTWriteImageHeader() Writes the printing-specific STIFF image header to the stream

134

Appendix A: Stream TIFF Data Format

Example Usage

The sequence of operations for writing a STIFF stream is as follows:

1. Obtain a writable file descriptor. Note that this descriptor can be associated with a
non-seekable stream.

2. Call STOpen() with the writable file descriptor and the flag ST_WRITE.

3. Fill in the STIFF image header (STImageHeader() or PSTImageHeader()).

4. Optionally, add any application-specific TIFF tags to the file using STAddTag().

5. Call the image header write function STWriteImageHeader() or
PSTWriteImageHeader().

6. Write the image data using STWrite().

7. Repeat steps 3 through 6 for each page of image data.

8. Close the STIFF file using STClose().

9. Close the file descriptor.

The sequence of operations for reading a STIFF stream is as follows:

1. Obtain a readable file descriptor. Note that this descriptor can be associated with a
non-seekable stream.

2. Call STOpen() with the readable file descriptor and the flag ST_READ.

3. Call the image header read function STReadImageHeader() or
PSTReadImageHeader().

4. Access the fields of the image header structure to determine the amount of image
data to be read for this page.

5. Optionally, retrieve any application-specific TIFF tags from the file using
STGetTag().

6. Read the image data using STRead().

7. Repeat steps 3 through 6 for each page of image data. The last page of image data is
an empty page (that is, the amount of data equals zero). An STEEOF error occurs if
an attempt is made to read past the end of the STIFF.

8. Close the STIFF stream using STClose().

9. Close the file descriptor.

Printing-Specific STIFF

135

If an error condition is returned by a libstiff function, STPerror() can be used to print a
diagnostic error message to the standard error, and STErrorString() can be used to obtain
an appropriate error message for display to the user by other means.

Printing-Specific STIFF

The printing-specific functions (PST) provided by libstiff read and write STIFF files as
described above. The printing-specific aspect of these functions is found in the image
header structure. PSTImageHeader(), the printing-specific image header, contains all
fields of the STImageHeader() plus printing-specific information fields such as image
resolution and halftoning method.

If a STIFF file is written using the generic functions and is read using the printing-specific
functions, default values are used for the PSTImageHeader() fields not found in the
STIFF. Similarly, a STIFF file written using the printing-specific functions can be read by
the generic functions. In this case, the additional information in the stream can be ignored
or obtained using the STGetTag() function.

Refer to the header file /usr/include/printstiff.h for additional information regarding
printing-specific STIFF.

Printer driver developers should pay special attention to the command-line options
string that is part of a PST image header. See the LaserJet example driver for an example
of how to combine parsing the command-line and image-header driver options.

136

Appendix A: Stream TIFF Data Format

Generic STIFF File Structure

While it is not necessary to understand the STIFF file structure to use libstiff, this
explanation is provided for those who need to know. A Stream TIFF file is first and
foremost a valid TIFF file. STIFF is derived from the TIFF 6.0 specifications available from
Aldus Corporation (see below). The terms used below to describe a STIFF file (for
example, IFD) are explained in the TIFF specifications and are not described here.

The primary restriction STIFF places on the TIFF structure is that all data must be read
from or written to the file without the need to seek within the file. Specifically, within a
STIFF file, these things must be true:

1. The bitmap image data must be in page-number order.

2. Data that does not fit in the value section of a tag must be located immediately after
the IFD and must occur in the same order in which the tags are encountered. The
exception to this is the image data itself, which must come last for each page.

3. Image data must immediately follow the IFD and any associated offset values.

4. A terminating, empty IFD is always added to the end of the STIFF file. This IFD
guarantees that an IFD with 0000 in its “next IFD” field appears in the IFD chain.
Note that this empty IFD is not encountered when following IFD pointers if the last
“real” IFD is written with the last parameter set to 1. While the TIFF specification
states that IFDs should not be empty, relaxing this restriction appears to have no
impact on TIFF compatibility.

Generic STIFF File Structure

137

A generic STIFF file can be represented as shown in Figure A-1.

Figure A-1 Generic STIFF File Structure

The libstiff functions support only the Motorola® (MM) byte ordering. In addition to
supporting TIFF class RGB data, libstiff supports the CMYK color image data type
(PhotoMetricInterpretation = 5 and InkSet = 1) and four additional color image separation
types: CMY, YMC, YMCK, and KCMY.

For these additional types, PhotoMetricInterpretation = 5, InkSet = 2, NumberOfInks = 3 or
4, and the InkNames tag is used to indicate the inks contained in each channel.

Image data for page 1

Optional intervening space

IFD for page 1

Data for long values in IFD 1

Optional intervening space

IFD for page 2

Data for long values in IFD 2

Image data for page 2

• • •

Terminating empty IFD

TIFF header (8 bytes)

138

Appendix A: Stream TIFF Data Format

When reading an image header, libstiff parses the ink names for these additional types
and sets the type field of the STImageHeader structure to the appropriate value defined
in stiff.h. When writing an image header, libstiff writes the appropriate
PhotoMetricInterpretation, InkSet, NumberOfInks, and InkNames tags based on the value of
the type field of the STImageHeader structure.

The CMYK data format is a TIFF data format extension, as shown in Table A-3.

The CMY data class is a subset of the CMYK class and differs from the CMYK class in a
TIFF-compliant manner, as shown in Table A-4.

Table A-3 CMYK Data Format

Tag Possible Values

BitsPerSample (1,1,1,1) (4,4,4,4) (8,8,8,8)

PhotoMetricInterpretation 5

SamplesPerPixel 4

PlanarConfiguration 1, 2

NumberOfInks 4

Table A-4 CMY Data Format

Tag Possible Values

BitsPerSample (1,1,1,1) (1,1,1) (4,4,4) (8,8,8)

PhotoMetricInterpretation 5

SamplesPerPixel 3 (4 or 8 bits, 1-bit planar) or 4 (1-bit chunky)

PlanarConfiguration 1, 2

NumberOfInks 3

Generic STIFF File Structure

139

The YMC data class is similar to the CMY class except that data is organized as YMC
instead of CMY (see Table A-5). When using libstiff, YMC data corresponds to the data
type ST_TYPE_YMC.

The YMCK class is similar to the CMYK class except that data is organized as YMCK
instead of CMYK (see Table A-6). When using libstiff, YMCK data corresponds to the data
type ST_TYPE_YMCK.

Table A-5 YMC Data Format

Tag Possible Values

BitsPerSample (1,1,1,1) (1,1,1) (4,4,4) (8,8,8)

PhotoMetricInterpretation 5

SamplesPerPixel 3 (4 or 8 bits, 1-bit planar) or 4 (1-bit chunky)

PlanarConfiguration 1, 2

NumberOfInks 3

InkSet 2

InkNames yellow, magenta, cyan

Table A-6 YMCK Data Format

Tag Possible Values

BitsPerSample (1,1,1,1) (4,4,4,4) (8,8,8,8)

PhotoMetricInterpretation 5

SamplesPerPixel 4

PlanarConfiguration 1, 2

NumberOfInks 4

InkSet 2

InkNames yellow, magenta, cyan, black

140

Appendix A: Stream TIFF Data Format

The KCMY class is similar to the CMYK class except that the data is organized as KCMY
instead of CMYK (see Table A-7). When using libstiff, KCMY data corresponds to the data
type ST_TYPE_KCMY.

Note that for the RGB, CMY, and YMC classes with BitsPerSample values of (1,1,1) and a
PlanarConfiguration value of 1, pixels are stored two to a byte, with the bits ordered from
most-significant to least-significant.

For example, CMY data is stored as

CMY0CMY0

Rows are padded to contain an integral number of bytes.

Refer to the header file stiff.h for additional information regarding the STIFF file
structure.

Table A-7 KCMY Data Format

Tag Possible Values

BitsPerSample (1,1,1,1) (4,4,4,4) (8,8,8,8)

PhotoMetricInterpretation 5

SamplesPerPixel 4

PlanarConfiguration 1, 2

NumberOfInks 4

InkSet 2

InkNames black, cyan, magenta, yellow

141

Appendix B

B. Silicon Graphics Image File Format API

This appendix describes libimp, the C application program interface (API) for reading
and writing Silicon Graphics image format files.

The following major topics are discussed:

• “Library Description” on page 141

• “Library Access” on page 141

• “Library Functions” on page 142

• “IMPImage Structure” on page 145

Library Description

libimp provides a C application program interface (API) for reading and writing Silicon
Graphics image format files and for performing a number of format-independent image
processing operations. These operations include color space conversion and filtered
image zooming.

libimp provides all functionality of the libimage library. (See the rgb(4) reference page for
a description of libimage.) In addition, libimp provides function prototypes, a documented
interface, reliable error reporting, and a number of other enhancements.

Library Access

A program that calls libimp functions must include the header file imp.h located in the
directory /usr/include. In addition, the program must link with the libimp.a library located
in /usr/lib. The link line would look like this:

... -limp ...

142

Appendix B: Silicon Graphics Image File Format API

Library Functions

The libimp library, which is based heavily on the libimage and libgutil libraries, consists of
two main sets of functions. The functions shown in Table B-1 perform operations on
Silicon Graphics image format files.

Table B-1 Silicon Graphics Image Format File Functions

Task Function Description

Image Access impOpen() Opens a Silicon Graphics image format file for reading
or
writing

impOpenFd() Opens a Silicon Graphics image format file for reading
or writing

impClose() Closes a Silicon Graphics image format file

impCloseFd() Closes a Silicon Graphics image format file

Image I/O impReadRow() Reads image row

impReadRowB() Reads byte image row

impWriteRow() Writes image row

impWriteRowB() Writes byte image row

Library Functions

143

The functions shown in Table B-2 perform operations on image data in a
format-independent manner.

Table B-2 Format-Independent File Functions

Task Function Description

Zooming impCreateZoom() Creates zoom operator

impDestroyZoom() Destroys zoom operator

impResetZoom() Resets zoom row cache

impZoomRow() Zooms an image row

Data Packing impPackRow() Packs two-byte data into one byte

impUnpackRow() Unpacks one-byte data into two bytes

Math Operations impZeroRow() Sets row to zero

impInitRow() Initializes a row to a value

impCopyRow() Copies a row

impSAddRow() Adds a value to a row

impVAddRow() Adds two rows

impSSubRow() Subtracts a value from a row

impVSubRow() Subtracts two rows

impSMulRow() Multiplies a row by a value

impSDivRow() Divides a row by a value

impClampRow() Clamps row values

Color Space Conversion impRGBtoW() Converts an array from RGB to W format

impWtoRGB() Converts an array from W to RGB format

impRGBtoK() Converts an array from RGB to K format

impKtoRGB() Converts an array from K to RGB format

impRGBtoCMY() Converts an array from RGB to CMY format

impCMYtoRGB() Converts an array from CMY to RGB format

144

Appendix B: Silicon Graphics Image File Format API

impRGBtoYIQ() Converts an array from RGB to YIQ format

impYIQtoRGB() Converts an array fromYIQ to RGB format

impRGBtoYUV() Converts an array from RGB to YUV format

impYUVtoRGB() Converts an array from YUV to RGB format

impRGBtoYCbCr() Converts array from RGB to YCbCr format

impYCbCrtoRGB() Converts array from YCbCr to RGB format

impRGBtoCMYK() Converts array from RGB to CMYK format

impCMYKtoRGB() Converts array from CMYK to RGB format

impRGBtoDevCMYK() Converts array from RGB to device CMYK
format

impRGBtoHSV() Converts an array from RGB to HSV format

impHSVtoRGB() Converts an array from HSV to RGB format

impRGBtoHLS() Converts an array from RGB to HLS format

impHLStoRGB() Converts an array from HLS to RGB format

Error Handling impPerror() Prints libimp execution error messages to
standard error

impErrorString() Obtains libimp execution error messages

Table B-2 Format-Independent File Functions (continued)

Task Function Description

IMPImage Structure

145

IMPImage Structure

The IMPImage structure contains public and private information about a Silicon
Graphics image file. This structure is identical both in size and field naming to the
IMAGE structure defined in the header file image.h, included by applications that use the
libimage library. While it has been common practice to directly modify the public fields of
the image structure, this is not recommended. Macros are defined in imp.h for
manipulating the structure fields. It is strongly recommended that these macros be used
to set and get values from the image structure. The IMPImage structure is defined as
follows:

typedef struct _impImage {
 /******* Public image header information (archived) */
 ushort_t imagic; /* Silicon Graphics image file magic number */
 ushort_t type; /* Raster type (e.g. verbatim, rle) */
 ushort_t dim; /* Image dimension */
 ushort_t xsize; /* X size (pixels) */
 ushort_t ysize; /* Y size (pixels) */
 ushort_t zsize; /* Number of channels (e.g. rgb = 3) */
 long min; /* Minimum intensity in image */
 long max; /* Maximum intensity in image */
 ulong_t wastebytes; /* Padding */
 char name[IMP_NAME_MAX+1]; /* Image name */
 ulong_t colormap; /* Image type (e.g. colormap, normal) */

 /******* Private image header information (core use only) */
 long file;
 ushort_t flags;
 short dorev;
 short x;
 short y;
 short z;
 short cnt;
 short *ptr;
 short *base;
 short *tmpbuf;
 ulong_t offset;
 ulong_t rleend;
 ulong_t *rowstart;
 long *rowsize;
} IMPImage;

Note: ushort_t and ulong_t are unsigned short and unsigned long, respectively.

146

Appendix B: Silicon Graphics Image File Format API

Fields:

magic Magic number identifying file as a Silicon Graphics image format file.

type Bitwise-OR combined code indicating the raster encoding method and
the number of bytes per pixel per channel. Currently, Silicon Graphics
image files support either a verbatim, uncompressed raster encoding or
a run-length, compressed encoding. Both of these encodings are
available at one or two bytes per pixel per channel. The header file imp.h
defines codes for all supported combinations of encoding methods and
pixel widths.

dim Number of dimensions to the image. A colormap file has dimension one
(length), a black and white image has dimension two (height and
width), and an RGB image has dimension three (height, width, and
depth).

xsize, ysize Image size in pixels.

zsize Number of color channels or depth. A black and white image has one
channel and an RGB image has three channels.

min, max The minimum and maximum intensity values in the image. These
values are the minimum and maximum for all channels combined.

name A descriptive name string for the image.

colormap The image type. Refer to imp.h for the supported image type codes. The
field is named colormap for compatibility with the IMAGE structure
used by the libimage library.

Image Access Functions

147

Image Access Functions

impOpen() Function

This function opens the image file specified by fname. If mode is r, the file is opened for
reading. If mode is w, the file is opened for writing and created if it does not exist, or
truncated to zero length if it does exist.

impOpenFd() opens the image file pointed to by the file descriptor fd. The descriptor’s
permissions must permit the operations specified by mode. That is, if mode is w, the
descriptor must have write permission. In addition, it must be possible to seek on the
specified descriptor. At this time, read/write mode is not supported for Silicon Graphics
image files. Upon successful execution, both functions return a pointer to a Silicon
Graphics image file structure.

Synopsis:

#include <imp.h>

IMPImage* impOpen(const char *fname, const char *mode, ...);
IMPImage* impOpenFd(int fd, const char *mode, ...);

In write mode, impOpen() and impOpenFd() require that these additional parameters
be specified:

uint_t rasterType,dimension, xSize, ySize, numChannels, imageType;
char *name;

Note: uint_t stands for unsigned int.

Arguments:

rasterType Specifies the raster encoding method and the number of bytes per pixel
per channel. Silicon Graphics image format files can be written either
uncompressed or with run-length encoding compression, and with one
or two bytes per pixel per channel. Refer to imp.h for the supported
raster types.

dimension Specifies the number of dimensions in the image. A colormap file has
dimension one, a black and white image has dimension two, and an
RGB image has dimension three.

xSize, ySize Specifies the image size in pixels.

148

Appendix B: Silicon Graphics Image File Format API

numChannels Specifies the number of image color channels. A black and white image
has one channel and an RGB image has three channels.

imageType Specifies how the image data is to be interpreted. Image data is either
actual color values (normal), screen colormap indices (screen), or a
colormap (colormap). Refer to imp.h for the supported image types.

name Specifies a descriptive string for the image. Strings longer than
IMP_NAME_MAX characters are truncated. Refer to imp.h for the value
of IMP_NAME_MAX. If this parameter is specified as NULL, the string
“no name” is written into the file. Use the empty string "" to write an
empty name string into the image.

impOpen(), impOpenFd(), impClose(), and impCloseFd() Functions

impClose() closes a Silicon Graphics image format file previously opened by impOpen()
or impOpenFd(). Among other tasks, impClose() closes the file descriptor associated
with an image file. If the image was opened using impOpenFd(), the file descriptor
specified in that function call is closed by impClose().

impCloseFd() performs the same function as impClose(), but it leaves open the file
descriptor associated with the image and returns it in the parameter fdp. It then becomes
the responsibility of the caller to close the file descriptor when it is no longer needed. It
is essential that either impClose() or impCloseFd() be called at the completion of writing
a Silicon Graphics image file so that all buffered data can be written and the image header
can be updated.

Synopsis:

#include <imp.h>

int impClose(IMPImage *image);
int impCloseFd(IMPImage *image, int *fdp);

Return Value:

impOpen() and impOpenFd() return a pointer to an image structure if execution was
successful. NULL is returned and IMPerrno is set if an execution error has occurred.

impClose() and impCloseFd() return 0 if execution was successful; a -1 is returned and
IMPerrno is set if an execution error has occurred.

Image Access Functions

149

Execution Error Codes:

impOpen() and impOpenFd() fail with the following errors:

• IMP_ERR_READWRITE

• IMP_ERR_MEMALLOC

• IMP_ERR_BADMAGIC

• IMP_ERR_BADRASTER

• IMP_ERR_BADIMAGE

In addition, impOpenFd() fails with the following errors:

• IMP_ERR_BADFD

• IMP_ERR_SEEK

impClose() and impCloseFd() fail with the following errors:

• IMP_ERR_WRITEFLAG

• IMP_ERR_BADBPP

• IMP_ERR_BADIMAGE

Note: The storage for the IMPImage structure is allocated by the image open function.
This storage is deallocated by the impClose() and impCloseFd() functions. The caller
should not explicitly reallocate or deallocate any storage related to the image structure.

See also:

libimp(3), impReadRow(3), impReadRowB(3)

150

Appendix B: Silicon Graphics Image File Format API

Data Packing Functions

impPackRow() and impUnpackRow() Functions

Synopsis:

#include <imp.h>

void impPackRow(uchar_t *dptr, short *sptr, int n);
void impUnpackRow(short *dptr, uchar_t *sptr, int n);

impPackRow() converts the array of short integers pointed to by sptr into the array of
unsigned char values pointed to by dptr. Source data that is too large to fit in a character
is truncated. For example, the source value 0x0B56 is converted into 0x56 in the
destination array. impUnpackRow() converts the array of unsigned char values pointed
to by sptr into the array of short integers pointed to by dptr. For example, the source value
0x56 is converted into 0x0056 in the destination array. The parameter n specifies the
number of elements in the source and destination arrays.

Note: The allocation of storage for the source and destination arrays is the responsibility
of the caller.

See also:

libimp(3)

Image Access Functions

151

Error Handling Functions

impPerror() and impErrorString() Functions

Synopsis:

#include <imp.h>

void impPerror(const char *str);
char* impErrorString(int errCode);
extern int IMPerrno;

impPerror() prints error messages to standard error in a format similar to the standard C
library function perror(3C). If an error occurs during a libimp function call, the global
error variable IMPerrno is set with an error code. The error code is either a system error
code (errno) or a libimp-specific code. The symbolic names for the libimp error codes are
defined in imp.h. The value of IMPerrno is used by impPerror() as an index to a table of
error messages.

impPerror() prints user-supplied string str followed by a colon (:), a space, and the error
message corresponding to the current value of IMPerrno.

If the string str is the NULL string (""), no colon or space is printed, only the error
message. The error message is either a system error message or a libimp-specific message.
To be of most use, a call to impPerror should be made immediately following the libimp
function call where an error has been detected. impErrorString() is similar to the
strerror(3C) function and returns the error message corresponding to the error code
specified by errCode.

If errCode is less than IMP_ERR_BASE, the message returned is a system error message
generated by strerror. If errCode is one of the error codes specified in imp.h, the returned
string is a libimp-specific error message.

See also:

libimp(3), perror(3C), strerror(3C)

152

Appendix B: Silicon Graphics Image File Format API

Image I/O Functions

impReadRow(), impReadRowB(), impWriteRow(), and impWriteRowB() Functions

Synopsis:

#include <imp.h>

int impReadRow(IMPImage *image, short *buffer,
 ushort_t row, ushort_t channel);
int impReadRowB(IMPImage *image, uchar_t *buffer,
 ushort_t row, ushort_t channel);

int impWriteRow(IMPImage *image, short *buffer,
 ushort_t row, ushort_t channel);
int impWriteRowB(IMPImage *image, uchar_t *buffer,
 ushort_t row, ushort_t channel);

impReadRow() and impReadRowB() each read a row of image data from the specified
channel of a Silicon Graphics image format file.

impReadRow() stores the row data in an array of short integers and can read image data
that is one or two bytes per pixel per channel in width. impReadRowB() stores the data
in a character array and can handle only image data that is one byte per pixel per channel
wide.

If impReadRowB() is called to read image data that is two bytes per pixel per channel,
an error condition is reported. impWriteRow() and impWriteRowB() each write a row of
image data to the specified channel of a Silicon Graphics image file. impWriteRow()
writes one or two bytes per pixel per channel image row data. impWriteRowB() writes
only one byte per pixel data. It is an error to use impWriteRowB() to write to images that
expect two bytes per pixel per channel data.

Note: The functions make use of the following macros:

impXSize Returns the number of pixels in an image file in the X direction.

impYSize Returns the number of pixels in an image file in the Y direction.

impNumChannels
Returns the number of color channels in an image. It returns 3 if the
image is RGB, 4 if it is CMYK, and 1 if it is monochrome

Image Access Functions

153

The functions take the following parameters:

image Pointer to an IMPImage structure returned by a call to impOpen() or
impOpenFd().

buffer Caller-allocated buffer containing the data to write to or to be filled with
the data read from the image. The amount of storage allocated for the
buffer should be impXSize(image) x sizeof(short) if impReadRow() or
impWriteRow() is used, and impXSize(image) if impReadRowB() or
impWriteRowB() is used.

row The image row to read. Rows are numbered from 0 through
impYSize(image) minus 1.

channel The image channel to read. Channels are numbered from 0 through
impNumChannels(image) minus 1.

Return Value:

If execution was successful, all functions return the number of pixels (not bytes) read or
written. If an execution error occurred, -1 is returned and IMPerrno is set.

Execution Error Codes:

impWriteRow() and impWriteRowB() fail with the following errors:

• IMP_ERR_WRITEFLAG

• IMP_ERR_BADBPP

• IMP_ERR_BADIMAGE

• IMP_ERR_SHORTWRITE

154

Appendix B: Silicon Graphics Image File Format API

impReadRow() and impReadRowB() fail with the following errors:

• IMP_ERR_READFLAG

• IMP_ERR_BADBPP

• IMP_ERR_BADIMAGE

• IMP_ERR_SHORTREAD

Note: It is the caller’s responsibility to allocate enough buffer storage for image row data.

See also:

libimp(3), impOpen(3)

Color Space Conversion Functions

These functions perform color space conversion between a given color space and RGB.
The actual transformations performed are described below. Certain functions specify the
parameter unity. unity should be set to the value of maximum possible intensity for the
arrays specified. For example, if 8-bit data is being converted, unity would be specified
as 255. If the data makes use of the full 16 bits available in each array element, unity
would be specified as 65535. Note that the parameter n specifies the number of elements
in the arrays and not the number of bytes.

impRGBtoW(), impWtoRGB() Functions

Figure B-1 shows the equation for W conversions.

Figure B-1 W Conversions

R
W = 0.299 0.587 0.114

B

R

G

B

G

=

W

W

W

*

Image Access Functions

155

Synopsis:

#include <imp.h>

void impRGBtoW(short *rbuf, short *gbuf, short *bbuf,
 short *wbuf, int n);

void impWtoRGB(short *wbuf, short *rbuf, short *gbuf,
 short *bbuf, int n);

impRGBtoK(), impKtoRGB() Functions

Figure B-2 shows the equation for K conversions.

Figure B-2 K Conversions

Synopsis:

#include <imp.h>

void impRGBtoK(short *rbuf, short *gbuf, short *bbuf,
 short *kbuf, short unity, int n);

void impKtoRGB(short *kbuf, short *rbuf, short *gbuf,
 short *bbuf, short unity, int n);

K = 0.299 0.587 0.114

1.0 - R

1.0 - G

1.0 - B
*

=

R

G

B

unity - K

unity - K

unity - K

156

Appendix B: Silicon Graphics Image File Format API

impRGBtoCMY(), impCMYtoRGB() Functions

Figure B-3 shows the equation for CMY conversions.

Figure B-3 CMY Conversions

Synopsis:

#include <imp.h>

void impRGBtoCMY(short *rbuf, short *gbuf, short *bbuf,
 short *cbuf, short *mbuf, short *ybuf,
 short unity, int n);

void impCMYtoRGB(short *cbuf, short *mbuf, short *ybuf,
 short *rbuf, short *gbuf, short *bbuf,
 short unity, int n);

impRGBtoYIQ(), impYIQtoRGB() Functions

Figure B-4 shows the equation for YIQ conversions.

Figure B-4 YIQ Conversions

=

C

M

Y

1.0 - R

1.0 - G

1.0 - B

=

R

G

B

1.0 - C

1.0 - M

1.0 - Y

Y

I

Q

0.299 0.587 0.114

= 0.596 -0.274 -0.322

0.212 -0.523 0.311

R

G

B

R

G

B

1.000 0.955 0.622

= 1.000 -0.271 -0.648

1.000 -1.107 1.702

Y

I

Q
*

*

Image Access Functions

157

Synopsis:

#include <imp.h>

void impRGBtoYIQ(short *rbuf, short *gbuf, short *bbuf,
 short *ybuf, short *ibuf, short *qbuf,
 int n);

void impYIQtoRGB(short *ybuf, short *ibuf, short *qbuf,
 short *rbuf, short *gbuf, short *bbuf,
 int n);

impRGBtoYUV(), impYUVtoRGB() Functions

Figure B-5 shows the equation for YUV conversions.

Figure B-5 YUV Conversions

Synopsis:

#include <imp.h>

void impRGBtoYUV(short *rbuf, short *gbuf, short *bbuf,
 short *ybuf, short *ubuf, short *vbuf,
 int n);

void impYUVtoRGB(short *ybuf, short *ubuf, short *vbuf,
 short *rbuf, short *gbuf, short *bbuf,
 int n);

Y

U

V

0.299 0.587 0.114

= -0.147 -0.289 0.436

0.615 -0.515 -0.100

R

G

B

R

G

B

1.000 0.000 1.140

= 1.000 -0.395 -0.581

1.000 2.032 0.000

Y

U

V

*

*

158

Appendix B: Silicon Graphics Image File Format API

impRGBtoYCbCr(), impYCbCrtoRGB() Functions

Figure B-6 shows the equation for YCbCr conversions.

Figure B-6 YCbCr Conversions

Synopsis:

#include <imp.h>

void impRGBtoYCbCr(short *rbuf, short *gbuf, short *bbuf,
 short *ybuf, short *cbbuf, short *crbuf, int n);

void impYCbCrtoRGB(short *ybuf, short *cbbuf, short *crbuf,
 short *rbuf, short *gbuf, short *bbuf, int n);

Y

Cb

Cr

0.299

-0.169

0.500

0.587

-0.331

-0.419

0.114

0.500

-0.081

R

G

B
=

R

G

B

1.000

1.000

1.000

-0.001

-0.344

1.772

1.402

-0.714

0.001

Y

Cb

Cr

= *

*

Image Access Functions

159

impRGBtoCMYK(), impRGBtoDevCMYK(), impCMYKtoRGB() Functions

Figure B-7 shows the equation for CMYK conversions.

Figure B-7 CMYK Conversions

Synopsis:

#include <imp.h>

void impRGBtoCMYK(short *rbuf, short *gbuf, short *bbuf,
 short *cbuf, short *mbuf, short *ybug,
 short *kbuf, short unity, int n);

void impRGBtoDevCMYK(short *rbuf, short *gbuf, short *bbuf,
 short *cbuf, short *mbuf, short *ybug,
 short *kbuf, IMPUCRFunc ucr, IMPBGFunc bg,
 short unity, int n);

short (*IMPBGFunc)(short k);
short (*IMPUCRFunc)(short k);

void impCMYKtoRGB(short *cbuf, short *mbuf, short *ybuf,
 short *kbuf, short *rbuf, short *gbug,
 short *bbuf, short unity, int n);

Ci
Mi
Yi
K
C
M
Y

Ci
Mi
Yi
Ki
Kucr

Device C
Device M

Device Y
Device K

Ci
Mi
Yi
R
G
B

=
=
=
=
=
=
=

1.0 - R
1.0 - G
1.0 - B
Min(Ci, Mi, Yi)
Ci - K

1.0 - Min(1.0, Yi)Mi - K
Yi - K

1.0 - R
1.0 - G
1.0 - B
Min(Ci, Mi, Yi)
UCR(Ki)
Min(1.0, Max(0.0, Ci - Kucr))
Min(1.0, Max(0.0, Mi - Kucr))
Min(1.0, Max(0.0, Yi - Kucr))
BG(Ki)

=

=
=

=
=
=
=
=
=

=

C + K

=
=
=

M + K
Y + K
1.0 - Min(1.0, Ci)=
1.0 - Min(1.0, Mi)=

160

Appendix B: Silicon Graphics Image File Format API

impRGBtoHSV(), impHSVtoRGB() Functions

Synopsis:

#include <imp.h>

void impRGBtoHSV(short *rbuf, short *gbuf, short *bbuf,
 float *hbuf, float *sbuf, float *vbuf, int n);

void impHSVtoRGB(float *hbuf, float *sbuf, float *vbuf,
 short *rbuf, short *gbuf, short *bbuf, int n);

impRGBtoHLS(), impHLStoRGB() Functions

For HSV conversions, refer to Computer Graphics, Principals and Practice, Foley and Van
Dam, 2nd Edition, pages 590-592. For HLS conversions, refer to pages 592-595.

Synopsis:

#include <imp.h>

void impRGBtoHLS(short *rbuf, short *gbuf, short *bbuf,
 float *hbuf, float *lbuf, float *sbuf,
 short unity, int n);

void impHLStoRGB(float *hbuf, float *lbuf, float *sbuf,
 short *rbuf, short *gbuf, short *bbuf,
 short unity, int n);

Note: It is the caller’s responsibility to allocate all buffer storage.

See also:

libimp(3)

Image Access Functions

161

Math Operation Functions

impZeroRow(), impInitRow(), impCopyRow(), impSAddRow(), impVAddRow(),
impSSubRow(), impVSubRow(), impSMulRow(), impSDivRow(), impClampRow()
Functions

Synopsis:

#include <imp.h>

void impZeroRow(short *dptr, int n);

void impInitRow(short *dptr, int val, int n);

void impCopyRow(short *dptr, short *sptr, int n);

void impSAddRow(short *dptr, short *sptr, int val, int n);

void impVAddRow(short *dptr, short *sptr1, short *sptr2, int n);

void impSSubRow(short *dptr, short *sptr, int val, int n);

void impVSubRow(short *dptr, short *sptr1, short *sptr2, int n);

void impSMulRow(short *dptr, short *sptr, int val, int n);

void impSDivRow(short *dptr, short *sptr, int val, int n);

void impClampRow(short *dptr, short *sptr, int lov, int hiv, int n);

162

Appendix B: Silicon Graphics Image File Format API

In the following descriptions, the parameter n specifies the number of elements in an
array and not the number of bytes in the array. In addition, functions that take a source
array pointer and a destination array pointer can specify the same array as both a source
and destination.

impZeroRow Initializes to zero the array pointed to by dptr.

impInitRow Initializes the array dptr to the value val.

impCopyRow Copies the array sptr to the array dptr.

impSAddRow Adds the value val to each element of the array sptr and stores the result
in the array dptr.

impVAddRow Adds the corresponding elements of sptr1 and sptr2 and stores the result
in the array dptr.

impSSubRow Subtracts the value val from each element of the array sptr and stores the
result in the array dptr.

impVSubRow Subtracts the corresponding elements of sptr2 from those of sptr1 and
stores the result in the array dptr.

impSMulRow Multiplies each element of the array sptr by val and stores the result in
dptr.

impSDivRow Divides each element of the array sptr by val and stores the result in dptr.

impClampRow Clamps the values of the array sptr between the values lov and hiv
inclusive. The result is stored in the array dptr.

Note: It is the caller’s responsibility to allocate all buffer storage. Also, because the arrays
referenced by these functions are short integer arrays, the caller should be aware of
overflow/wraparound conditions.

See also:

libimp(3)

Image Access Functions

163

Zooming Functions

impCreateZoom(), impDestroyZoom(), impResetZoom(), impZoomRow() Functions

Synopsis:

#include <imp.h>

IMPZoom* impCreateZoom(ushort_t srcXSize, ushort_t srcYSize,
 ushort_t dstXSize, ushort_t dstYSize,
 IMPReadRowFunc readRowFunc,
 int numChannels,
 IMPFilterType filterType,
 float blurFactor);

void impDestroyZoom(IMPZoom *zoom);

void impResetZoom(IMPZoom *zoom);

int impZoomRow(IMPZoom *zoom, short *buffer,
 ushort_t row, void *clientData);

The libimp library provides an API for performing image resizing or zooming. Images can
be zoomed up or down using any of a number of resampling methods. The resampling
methods divide into two categories. The first resampling category is non-filtered
zooming (also known as replicative zoom, decimation). The second resampling category
is filtered zooming where a filter of a given shape is applied to the data. The image
zooming is performed on a row-by-row basis using a one-pass, two-dimensional
convolution.

To zoom one or more rows of an image, first create a zoom operator by calling
impCreateZoom(). One of the parameters to impCreateZoom() is a pointer to a function
that is called during the zoom to read rows of the source image. To obtain zoomed rows,
call impZoomRow(). When all desired zoomed rows have been obtained, call
impDestroyZoom() to deallocate storage held by the zoom operator. When filtered
zooming is performed, a number of contiguous rows of image data are cached. Often all
rows of a given image channel are zoomed, followed by all rows of the next channel.
Since rows are cached, the cache should be flushed when switching between image
channels. The impResetZoom() function performs this row cache flushing operation.

164

Appendix B: Silicon Graphics Image File Format API

The impCreateZoom() function has the following parameters:

srcXSize, srcYSize
Width and height of the source image in pixels.

dstXSize, dstYSize
Width and height of the destination (that is, zoomed) image in pixels.

readRowFunc Pointer to a function that is called to read a row from the source image.
The prototype for this function is

int (*IMPReadRowFunc)(short *buffer,
 ushort_t row,
 void *clientData);

The function should read the image row indicated by row and place the data in buffer. The
storage for buffer is allocated and deallocated by the zoom operator and should not be
manipulated by the read row function. clientData is a pointer to caller-specific
information. The caller may specify a pointer to client data when calling the
impZoomRow() function. That pointer is passed to the read row function.

At the caller’s discretion, this pointer may be set to NULL. A common use of the client
data is to pass a pointer to a structure containing the image structure pointer and the
channel number. The read row function must return -1 if it encounters an error while
obtaining the row data and must return a value of 0 or greater if the function succeeds.

numChannels Specifies the number of channels of image data that are packed on a
single row. For example, if each row contains data for only a single
channel, then numChannels should be specified as one. However, if each
row contains RGB data packed together as RGBRGBRGB...,
numChannels should be specified as three.

Image Access Functions

165

filterType Specifies the type of filter to be used for resampling the image during
zooming.

The filter types available are

Refer to “Filter Functions” on page 166 for detailed information on the
available filters.

blurFactor Specifies a multiplier for the width of the filter. The default blur factor is
1.0. Higher factors increase the amount of blur present in the image.

The impZoomRow() function has the following parameters:

zoom Pointer to a zoom operator structure obtained from a call to
impCreateZoom().

buffer Caller-allocated buffer that is filled with the zoomed image row data.
The buffer should be allocated to accommodated dstXSize * numChannels
* sizeof(short) bytes.

row The desired zoomed row. Rows are numbered from 0 through dstYSize
minus 1. clientData is a pointer to client data. This pointer is passed to the
readRowFunc. A typical use of this is for passing a pointer to a structure
containing the IMPImage pointer and the channel number.

Filter Type Category

IMPImpulse Replicative

IMPBox Filtered

IMPTriangle Filtered

IMPQuadratic Filtered

IMPMitchell Filtered

IMPGaussian Filtered

166

Appendix B: Silicon Graphics Image File Format API

Filter Functions

The resampling filters available for zooming are summarized below. Note that the span
of the filter (x range) is expressed in terms of the original image, not the zoomed image.
Table B-3 lists the available filter functions.

Table B-3 Filter Functions

Filter Type Function Span

IMPImpulse Not Applicable

IMPBox f(x) = 0.0 x < -0.5

f(x) = 1.0 -0.5 <= x < 0.5

f(x) = 0.0 x >= 0.5

IMPTriangle f(x) = 0.0 x < -1.0

f(x) = 1.0+x -1.0 <= x < 0.0

f(x) = 1.0-x 0.0 <= x < 1.0

f(x) = 0.0 x >= 1.0

IMPQuadratic f(x) = 0.0 x < -1.5

f(x) = 0.5*(x+1.5)^2 -1.5 <= x < -0.5

f(x) = 0.75-x^2 -0.5 <= x < 0.5

f(x) = 0.5*(x-1.5)^2 0.5 <= x < 1.5

f(x) = 0.0 x >= 1.5

IMPMitchell b = 1.0/3.0

c = 1.0/3.0

p0 = (6.0-2.0*b)/6.0

p2 = (-18.0+12.0*b+6.0*c)/6.0

p3 = (12.0-9.0*b-6.0*c)/6.0

q0 = (8.0*b+24.0*c)/6.0

q1 = (-12.0*b-48.0*c)/6.0

Image Access Functions

167

Return Value:

The impCreateZoom() function returns a pointer to a zoom operator structure if
execution was successful. NULL is returned and IMPerrno is set if an execution error has
occurred.

The impZoomRow() function returns 0 if execution was successful. -1 is returned and
IMPerrno is set if an execution error occurred.

q2 = (6.0*b+30.0*c)/6.0

q3 = (-b-6.0*c)/6.0

f(x) = 0.0 x < -2.0

f(x) = q0-x*(q1-x*(q2-x*q3)) -2.0 <= x < -1.0

f(x) = p0+x*x*(p2-x*p3) -1.0 <= x < 0.0

f(x) = p0+x*x*(p2+x*p3) 0.0 <= x < 1.0

f(x) = q0+x*(q1+x*(q2+x*q3)) 1.0 <= x < 2.0

f(x) = 0.0 x >= 2.0

IMPGaussian a(x) = 1.0/exp((1.5*x)^2)

b(x) = 1.0/exp(1.5^4)

f(x) = a(x)-b(x)

Table B-3 Filter Functions (continued)

Filter Type Function Span

168

Appendix B: Silicon Graphics Image File Format API

Execution Error Codes:

The impCreateZoom() function fails with the following error:

• IMP_ERR_MEMALLOC

The impZoomRow() function fails with the following error:

• IMP_ERR_READROW

Note: The storage for the IMPZoom structure is allocated by the zoom operator creation
function. This storage is deallocated by the impDestroyZoom() function. The caller
should not explicitly reallocate or deallocate any storage related to the image structure.
Furthermore, the fields of the IMPZoom structure are private and should not be
modified by the caller.

See also:

libimp(3)

169

Appendix C

C. Printer Object Database (POD) File Formats

This appendix describes the file formats of the ASCII text files that compose the printer
object database (POD).

The following major topics are discussed:

• “General Syntax” on page 171

• “Input Parsing Rules for libpod Files” on page 172

• “Printer Configuration File Format” on page 174

• “Printer Status File Format” on page 184

• “Printer Log File Format” on page 188

170

Appendix C: Printer Object Database (POD) File Formats

Overview

The printer object database (POD) contains information on the current configuration,
status, and job history of a single printer. Each printer that is physically installed on a
system must maintain its own POD. To maintain network-transparent, mediated access
to the POD files, all interaction between the printer driver and POD files must be through
the libpod API. For additional information, see “The libpod Library” in Chapter 5 and the
libpod(3) reference page.

The initial set of POD files created by the printer driver developer and installed on the
host server system must include the following:

• <printer name>.config: a configuration file representing the printer’s capabilities

• <printer name>.stats: a status file indicating a typical printing state

• <printer name>.log: an empty log file

The name of each POD file is formed from the printer name and the suffix .config, .status,
or .log, respectively. Note that the printer name must be the same as the name of the
printer model file. All POD files are copied from the template POD files and installed in
the appropriate directory.

The information contained in each POD file is summarized below and explained in detail
in subsequent sections.

Printer Configuration File

The printer configuration file (<printer name>.config) contains detailed information on
the printer’s capabilities. The file is created by the printer driver developer to
characterize the printer's capabilities. The possible paper sizes, printer location, and
available fonts are all specified in this file. Typically the information in the config file does
not change over time. Printer filters and drivers treat it as a read-only file. The printer
install tools may modify the file at printer installation time to enter site-specific data,
such as printer location, or note the presence of optional equipment, such as a duplex
option or an envelope feeder.

General Syntax

171

Printer Status File

The printer status file (<printer name>.status) contains information about the current
operational status of the printer. The information in the file indicates whether the printer
is busy, what type of printing media is installed, and so on. The contents of this file
change during every print job. The driver developer provides an initial copy of the status
file, but it is the job of the printer driver to update the file. Printer filter programs
normally treat this file as if it were a read-only file.

Printer Log File

The printer log file (<printer name>.log) contains the print job history for the printer.
Information for old jobs as well as the current print job is maintained. Typically, printer
filters and drivers append information to the log file, while general applications treat the
file as if it were a read-only file.

General Syntax

Character Set
<space>: 0x09, 0x20 (<sp>, <ht>)
<null>: 0x00-0x08, 0x0B, 0x0C, 0x0E-0x1F, 0x7F-0xFF
<endline>: 0x0A, 0x0D (<nl>, <cr>)
<separator>: 0x7C ('|')
<plainchar>: 0x21-0x7B, 0x7D, 0x7E
<ddigit>: 0x30-0x39 ('0'-'9')
<hdigit>: <ddigit>, 0x41-0x46, 0x61-0x66
 ('0'-'9', 'A'-'F', 'a'-'f')
<sign>: 0x2B, 0x2D ('+', '-')
<point>: 0x2E ('.')

172

Appendix C: Printer Object Database (POD) File Formats

Field Format
<white>: <space> [<space>...]
<word>: <plainchar> [<plainchar>...]
<keyword>: <word> with a specific sequence of <plainchar>
<keyfield>: [<white>] <keyword> [[<white> <keyword>]...]
 [<white>]
<string>: [<white>] <word> [[<white> <word>]...]
 [<white>]
<int>: <ddigit> [<ddigit>...]
<hbyte>: ["0x" | "0X"] [<hdigit>] <hdigit>
<float>: [<sign>] <int> [<point> [<int>]]
 or
 [<sign>] <point> <int>
<array>: <string> [[<separator> <string>]...]

Input Parsing Rules for libpod Files

The following rules apply when a POD file is parsed by the libpod API:

• All <null> characters are ignored. Their use is discouraged to avoid errors caused
by nonprinting characters appearing in the POD files.

• All input lines are truncated to PD_STR_MAX-1, not counting <null> characters
and <endline>, which are removed on input. The value of PD_STR_MAX is
defined in the header file /usr/include/pod.h.

• All occurrences of <white> sequences are reduced to a single <sp> character. Any
<white> at the beginning or end of a field is removed.

• There are no quoted strings. Quotation marks are treated like any other characters
and cannot be used to force additional <white> into a field.

• All fields are checked for correct syntax based on entry type. Failure to provide
information in the correct format results in improper parsing.

Input Parsing Rules for libpod Files

173

• When scanning for <int> or <float> numbers within a field, all characters that are
not valid within an <int> or <float> are treated as <white> (in the case of an
<int>, <sign> and <point> are treated as <white>). This allows characters to be
inserted to improve readability. For example, the following are equivalent if two
<int> items are expected:

– 300 300

– 300 x 300

– 300 by 300

– 300,300

• Entries containing no characters other than <white> before the first <separator> or
<endline> are treated as null entries and discarded without error. These lines may
be used as comments by placing a <separator> before any other information.

• Blank lines are ignored and may be inserted to improve readability.

• <keyfield> matching is done in a case-independent manner.

• Fields designed to be human-readable are not modified, except to remove <null>
and excess <white>. Case and all <plainchar> sequences are preserved.

• A <keyfield> may require a long list of items (for example, Available Fonts). To
improve readability and avoid the risk of input line buffer overflow (see the second
bullet item above), a <keyfield> may be repeated.

For example, a list of fifty Available Fonts items may be broken into two
Available Fonts entries with 25 items each. The overall number of items that can be
specified in a list is limited only by available system memory resources.

• There is no required entry order. The <keyfield> entries may appear in any order
within a POD file.

• Default values are assumed for certain fields if values are not specified. The values
of these defaults should not be relied upon and may change in future releases.

174

Appendix C: Printer Object Database (POD) File Formats

Printer Configuration File Format

This section describes the format of the printer configuration file. The configuration file
is installed by the printer install tools with the name <printer name>.config.

General Format

The format for an entry in the configuration file is

<keyfield> <separator> [<infofield>] <endline>

where

<keyfield> is one of the reserved fields described in the “Key Field” column of
Table C-1.

<separator> is the “separator” character defined in “Character Set” on page 171.

<infofield> is one or more of the options specified in the “Info Field Type” column
of Table C-1.

<endline> is one of the “endline” characters defined in “Character Set” on
page 171.

Config File Options

All entries in the config file are optional. Entries that are not provided or that have no
<infofield> specified are assigned default values. However, since printer capabilities
differ, it is strongly recommended that no entries be omitted. The defaults should not be
relied on, as they may change in future releases. Table C-1 lists the config file options in
alphabetical order. A detailed explanation of each option follows the table.

Table C-1 Config File Options

Key Field Info Field Type Default

Active Status Path <word> See “Active Status Path” on page 176.

Available Fonts <array> (0 elements)

Black Substitute <keyword> No

Color Adjustment <array> (0 elements)

Printer Configuration File Format

175

Cost per Page <float> 0.00

Default CA <int> 0

Default IS <int> [,gamma=<float>] 0, gamma=-1.0

Default MT <int> 0

Default QM <int> 0

Driver Path <word> See “Driver Path” on page 179.

Error Retry Wait <int> 10 seconds

Input Source <array> (0 elements)

Location Code <keyword> None

Manual Capable <keyword> No

Maximum Addr <Maximum Addrint> <int> See “Minimum Addr” on page 180.

Maximum Print Area <float> <float> See “Maximum Print Area” on
page 180.

Media Standard <keyword> American

Media Type <array> (0 elements)

Media Wait <int> 300 seconds

Minimum Addr <int> <int> See “Minimum Print Area” on
page 181.

Minimum Print Area <float> <float> See “Minimum Print Area” on
page 181.

Number of Colors <int> [<int>] 1 1

Physical Location <string> Unknown

Port Path <word> /dev/null

Printer Class <keyword> Dumb

Printer Model <string> Unknown

Table C-1 Config File Options (continued)

Key Field Info Field Type Default

176

Appendix C: Printer Object Database (POD) File Formats

Active Status Path

Active Status Path is the full pathname of the POD status file. The value of this entry is not
used by the libpod API. The value of this entry is always set by the API to
PDpod_path/<printer name>.status. Refer to the libpod(3) reference page for additional
information.

Available Fonts

The Available Fonts option contains a list of font names representing the fonts available
on the printer. For printers with built-in PostScript interpreters, this list should include
only those fonts built into the printer (typically a set of 35 standard fonts). The default
value is 0 elements.

For raster printers, the PostScript interpretation is performed on the printer host
machine. Thus, the fonts listed for these printers should correspond to the names of the
font outline files installed on the printer host. There are two methods for specifying the
font names: the names can be listed individually or a full path to the directory where the
outline fonts are stored can be specified. The two methods can be mixed. When a path is
specified, the names of the files in that directory are assumed to be the names of the fonts.
To exclude filenames from the directory, specify the names of the files to be excluded with
a leading “!”. The filenames to be excluded must appear on the same line as the directory
containing the filename to be excluded. The following is a valid Available Fonts list:

NewYearRoman | /usr/lib/DPS/outline/base | !fonts.dir

Printer Options <string> (empty string)

Quality Modes <array> (0 elements)

Resolution <int> <int> 300 dpi 300 dpi

Size Table Entry <sizeentry> See “Size Table Entry” on page 182.

Status Update Wait <int> 300 seconds

Technology <string> Unknown

Time per Page <int> [<int>] 0 0

Table C-1 Config File Options (continued)

Key Field Info Field Type Default

Printer Configuration File Format

177

This entry indicates that the only font available on the printer is NewYearRoman, and all
file names are in the directory /usr/lib/DPS/outline/base with the exception of fonts.dir.
Note that font names must not contain any white space.

Starting with Impressario 2.0, a new logical AND operator, &, is available for font lists.
It allows the list of fonts on the printer to be logically AND’ed with the list of fonts on the
print server, generating a list of fonts that are common to both. The common list is
needed for the text2ps(1) filter, which uses the font metric information from the print
server fonts to determine where line and page breaks should be made. The AND
operator is intended for use by printer drivers that send PostScript directly to the printer.

The entry below says that NewYearRoman is available on the printer, and if it is also
available in /usr/lib/DPS/outline/base, it should be on the list of available fonts when a
printer driver is installed:

| NewYearRoman | &/usr/lib/DPS/outline/base

For another example, see the file

/usr/lib/print/data/lexmarkoptra_model.config

Black Substitute

The Black Substitute option is either yes, indicating that the printer should by default
substitute true black for composite black, or no, indicating that it should not. The default
value is no.

Color Adjustment

The Color Adjustment option is a list of color adjustment methods available for the printer.
The color adjustment methods perform color correction between the current input source
and the printer. An example entry is

None | Fix Blue | Gamma Correct

The default value is 0 elements.

178

Appendix C: Printer Object Database (POD) File Formats

Starting with Impressario 2.0, International Color Consortium (ICC) color profiles and
various filters, such as cocostiff, are used to perform color management. Color correction
is applied as a filter before the driver is invoked (FTR rules have been added so fileconvert
will invoke the correct filters based on the file type). The Color Adjustment entry in the
POD file is currently not used. See Appendix G for more information on color
management in Impressario.

Cost per Page

The Cost per Page option is the cost per printed page in local currency. For example, 0.50
for 50 cents per page. The default value is 0.00.

Default CA

The Default CA option is the index to the Color Adjustment list indicating the default
adjustment method. This index is based at one rather than zero. Thus, the first method in
the list is at position 1, the second at 2, and so on. If there are no adjustment methods
specified, this entry should either be left empty or set to 0. The default value is 0.

Default IS

Default IS is the index to the Input Source list indicating the default input source. This
index is based at one rather than zero. Thus, the first source in the list is at position 1, the
second at 2, and so on. If there are no input sources specified, this entry should either be
left empty or set to 0.

When used for printer color correction, this entry can also be used to specify the default
device’s gamma correction value. The gamma value is specified after the default input
source index, as in the following example:

1, gamma = 1.0

Default MT

Default MT is the index to the Media Type list indicating the default media. This index is
based at one rather than zero. Thus, the first media in the list is at position 1, the second
at 2, and so on. If there are no media types listed, this entry should either be left empty
or set to 0. The default value is 0.

Printer Configuration File Format

179

Default QM

Default QM is the index to the Quality Modes list indicating the default quality mode. This
index is based at one rather than zero. Thus, the first quality mode in the list is at position
1, the second at 2, and so on. If there are no quality modes specified, this entry should
either be left empty or set to 0. The default value is 0.

Driver Path

Driver Path is the full pathname of the installed printer driver. The default is the full
pathname of the POD config file, with the suffix .config removed.

Error Retry Wait

Error Retry Wait refers to the number of seconds to wait after an error has occurred before
attempting to resume printing. The default is 10 seconds.

Input Source

Input Source is a list of printer input sources. The primary use of this entry is to list the
image source devices that have been characterized for printer color correction. A
common input device is the monitor. An example entry is Sony 16” Monitor.

Location Code

The Location Code option is used to supply a site-specific keyword that identifies the
printer’s physical location. For example, 3U-924. There is no default value. This code
should be machine-readable and -sortable for use by a location-querying browser.

Manual Capable

Manual Capable is either yes, indicating that the printer is capable of being manually fed,
or no, indicating that it is not. The default value is no. This value should be set to yes only
if the printer supports the -m option (see “The Filter/Driver Specification and psrip” in
Chapter 2).

180

Appendix C: Printer Object Database (POD) File Formats

Maximum Addr

Maximum Addr is the maximum printable area dimensions expressed in dots. The default
values for this entry assume an A-size page (8.5 by 11.0 inches) in portrait orientation
with 0.5-inch margins. At 300 dpi, this gives a printable area of 2250 by 3000 dots. The
minimum and maximum values are identical in the default case. If a Page Size Table has
been specified, the values for this entry are derived from it. Also see “Minimum Addr.”

Maximum Print Area

Maximum Print Area is the maximum printable area dimensions expressed in inches. The
default values for this entry assume an A-size page (8.5 by 11.0 inches) in portrait
orientation with 0.5-inch margins. This gives a printable area of 7.5 by 10.0 inches. The
minimum and maximum values are identical in the default case. If a Page Size Table has
been specified, the values for this entry are derived from it. Also see “Minimum Print
Area.”

Media Standard

Media Standard indicates the paper measurement standard. Keywords are American and
Metric. The default value is American.

Media Type

Media Type is an array that contains the output media types supported by the printer.
Typical items are Bond Paper and Transparency Film. The default array has 0 elements.

Media Wait

Media Wait is the number of seconds to wait for manual feed or print media changes
before the default media source is used. The default is 300 seconds.

Minimum Addr

Minimum Addr is the minimum printable area dimensions expressed in dots. The default
values for this entry assumes an A-size page (8.5 by 11.0 inches) in portrait orientation
with 0.5-inch margins. At 300 dpi, this gives a printable area of 2250 by 3000 dots. The
minimum and maximum values are identical in the default case. If a Page Size Table has
been specified, the values for this entry are derived from it. Also see “Maximum Addr.”

Printer Configuration File Format

181

Minimum Print Area

Minimum Print Area is the minimum printable area dimensions expressed in inches. The
default values for this entry assume an A-size page (8.5 by 11.0 inches) in portrait
orientation with 0.5-inch margins. This gives a printable area of 7.5 by 10.0 inches. The
minimum and maximum values are identical in the default case. If a Page Size Table has
been specified, the values for this entry are derived from it. Also see “Maximum Print
Area.”

Number of Colors

Number of Colors is the minimum or, optionally, maximum number of colors that are
available on the printer. If the maximum number of colors is not provided, it is assumed
to be the same as the minimum. A monochrome printer or printer ribbon provides one
color. A CMY printer or ribbon provides three colors.

Note that this field should contain only the number of colors available on the printer. The
colorspace, depth, and data format are provided in the Number of Colors entry in the status
file. The default value is 1.

Physical Location

Physical Location is the human-readable description of the printer’s physical location. For
example, Bldg. 3 Upper, Room 924. The default value is Unknown.

Port Path

Port Path is the full pathname of the I/O port to which the printer is physically connected.
For example, /dev/plp for a parallel printer, /dev/ttyd2 for a serial printer, and
/dev/scsi/sc0d6l0 for a SCSI printer. The default value is /dev/null.

Printer Class

The Printer Class entry is used to specify the class of printer being used. Available values
are Dumb, Raster, ColorRaster, MonoPostScript, ColorPostScript, and Plotter. The
following printer classes are obsolete and should not be used for new development:
DumbColor, PostScript, and Color. The default value is Dumb.

182

Appendix C: Printer Object Database (POD) File Formats

Printer Model

The Printer Model entry is a keyword that is the manufacturer’s description of the printer.
For example, Tektronix Phaser II SX or Apple LaserWriter II NTX. The default value is
Unknown.

Printer Options

Printer Options describe the standard installed printer optional equipment. For example,
8 megabytes RAM. The default is an empty string.

Quality Modes

Quality Modes is a list of output quality modes available on the printer. For example, draft
and letter. The default value is 0 elements.

Resolution

Resolution is the horizontal or vertical printer resolution in dots per inch (dpi). For
printers that allow multiple resolutions, the status file Printer Options entry should be
parsed for the CurrentRes keyword. This keyword indicates the current printer
resolution. If the keyword is not found, the config file Resolution entry should be used.
The default values are both 300 dots per inch.

Size Table Entry

The Size Table Entry <infofield> has the format <sizeentry> defined as

<sizeentry>: <keyword> <int> <int> <float> <float> <float>
 <float> [<hbyte> [<hbyte>]]

Size Table Entry describes a particular media size that is supported by the printer.
Typically, there is one Size Table Entry per supported media size (for example, an entry
each for A size and B size), although it is acceptable to have multiple entries for a paper
size if multiple resolutions or ribbons are supported. The media size entry has seven
required fields and two optional fields. All fields are separated by white space.

Printer Configuration File Format

183

The first required field contains the Media Size (for example, A). The list of possible media
sizes can be found in the file /usr/include/pod.h. The media size keyword is simply the
media size listed in pod.h with the PD_SIZE_ prefix removed. The size names listed in
pod.h with the suffix _LAND indicate landscape orientation and should not be used as
media size keywords. Media with landscape orientation is indicated by the width and
height fields of the size table entry.

The next two fields are the media-imageable width and height expressed in dots.
Typically, the imageable dimensions are derived by subtracting the margins from the
total media size and converting the result to dots.

The next two fields are the overall media width and height expressed in inches.

The last two required fields are the left and top margins expressed in inches.

The first optional field specifies the printing raster direction. Refer to pod.h for the values
that may be specified in this field.

The second optional field is the media validation mask. This mask can be used to
differentiate among media entries that have the same media name but differ in other
respects (for example, resolution). The field is a bit mask and so, to fully differentiate
among similar entries, the values must be powers of two. Refer to the PDReadInfo(3)
reference page for more information on the use of this field.

A default Size Table Entry is always added to the end of the table when it is read by libpod.
This default entry is

A 2250 3000 8.500 11.000 0.500 0.500 0x00 0xFF

Status Update Wait

Status Update Wait is the number of seconds to wait between updates of the POD status
file when no error has occurred. The default is 300 seconds.

184

Appendix C: Printer Object Database (POD) File Formats

Technology

The Technology option indicates the type of printing technology used in the printer. For
example, ink jet, wax transfer, dye sublimation, and color laser. The default value is
Unknown.

Time per Page

Time per Page is the average and, optionally, maximum time to print a page, in seconds.
If the maximum time is not provided, it is assumed to be the same as the average time.
The default values are both 0.

Printer Status File Format

This section describes the format of the printer status file. The status file is installed by
the printer install tools with the name <printer name>.status.

General Format

The format for an entry in the printer status file is

<keyfield> <separator> [<infofield>] <endline>

where

<infofield> is the parameter is specified by Table C-2.

<separator> is the separator defined in “Character Set” on page 171.

<endline> is one of the endline characters defined in “Character Set” on page 171.

Printer Status File Format

185

Printer Status File Entries

All entries in the status file are optional. Entries that are not provided or that have no
<infofield> are assigned default values. However, since the status file is the only means
to indicate printer status to the user, it is strongly suggested that a complete status file be
provided by the developer and that the printer driver update the status file to reflect the
printer’s current status.

Table C-2 lists the printer status file entries.

Operational Status

Operational Status is the keyword specifying the current operational status of the printer.
The possible values are Idle, Busy, Faulted, and Unavailable.

The status Faulted indicates that there is a problem with the printer but not with
communication to the printer. The Unavailable designation is similar to the Faulted state
but indicates that communication could not be established with the printer. The default
value is Idle.

Table C-2 Printer Status File Entries

Key Field Info Field Type Default

Operational Status <keyword> Idle

Media Size <keyword> [Land] A

Media Type <keyword> Paper

Number of Colors <dataentry> 1 k 1 chunky

Printer Options <string> (empty string)

Validation Mask <hbyte> 0

Error <msgentry> (no message)

Warning <msgentry> (no message)

Information <msgentry> (no message)

186

Appendix C: Printer Object Database (POD) File Formats

Media Size

Media Size is the keyword indicating the currently loaded media size. The media size
keywords are listed in the file pod.h. The keyword is the size name listed with the
PD_SIZE_ prefix removed. The size names listed in pod.h with the suffix _LAND indicate
landscape orientation and are specified in the entry by the keyword Land.

Media Type

Media Type is the keyword indicating the currently loaded media type. The value is Paper,
Transparency, Other, or Unknown. The default is Paper.

Number of Colors

This field specifies not only the number of output colors but the colorspace, depth, and
organization of the output data. There is one required field and three optional fields. For
proper operation of printing filters, it is strongly recommended that the optional fields
be specified.

The Number of Colors <infofield> has the format <dataentry> defined as

<int> [<keyword> <int> <keyword>]

Arguments:

<int> Required. Specifies the number of output colors the printer can currently
print. If only this field is present, the following defaults apply:

<keyword> Optional. This field specifies the output colorspace and is either k, rgb,
cmy, ymc, cmyk, ymck, w, or kcmy.

<int> Optional. This field specifies the number of bits per color component
and may be 1, 4, or 8.

<keyword> Optional. This field specifies the data organization of the output data
and is either chunky or planar.

of colors colorspace depth organization

1 k 1 chunky

3 cmy 1 chunky

4 cmyk 1 chunky

Printer Status File Format

187

An example output specification is

3 rgb 4 planar

This specifies a three-color RGB output with four bits per component (12 bits total) and
a planar data organization. Refer to the libstiff(3) reference page for additional
information on raster data output formats.

Printer Options

This field is used to describe the currently available optional equipment or
configurations. The field is also used to indicate the current printer resolution for printers
that allow multiple output resolutions. To indicate the current resolution, the string

CurrentRes = <int> x <int>

is specified. The first integer is the horizontal resolution in dots per inch, and the second
integer is the vertical resolution in the same units. The current resolution values are used
by printing filters such as the PostScript interpreter psrip to calculate margins for printers
whose resolutions can change, and it is very important that printer drivers update this
information field to ensure proper rendering.

Validation Mask

This field can be used to differentiate among media entries that have the same media
name but differ in other respects (for example, resolution). The field is a bit mask and so,
to fully differentiate among similar entries, the values must be powers of two. Refer to
the PDReadStatus(3) reference page for more information on the use of this field.

188

Appendix C: Printer Object Database (POD) File Formats

Error, Warning, and Information Options

Each Error, Warning, and Information message <infofield> has the format <msgentry>
defined as

<hbyte> [<hbyte> [<hbyte>]] <separator> <string>

These three entries indicate messages written by the printer driver to provide
information to the printer user regarding the state of the printer. The three hex bytes
provide a message code. The available message codes are listed in pod.h (see
PD_ERROR_*). The low-order three bytes of the codes listed in pod.h are the codes
specified in this field. The high-order byte of the code is implied by the first field (for
example., Information = 00, Warning = 01, Error = 02). The last field is a string providing
the text for the message. There can be up to PD_MESSAGE_MAX (see pod.h) message
entries in a status file. An example of a complete message entry is

Information | 01 00 00 | version: driver = 00.00

See the PDMakeMessage() routine for the best method of construction these messages.
For the sake of internationalization, it is strongly recommended that you do not
customize messages.

Printer Log File Format

The log file is not currently implemented. You should supply an empty file in
/usr/spool/lp/pod with the name <printer name>.log, and should not write to the log file.

189

Appendix D

D. Transition Notes

This appendix explains how application and printer driver developers can take
advantage of the new features in Impressario 2.n.

The following major topics are discussed:

• “Notes for Application Developers” on page 190

• “Notes for Printer Driver Developers” on page 190

• “General Changes in IRIX 6.2” on page 194

190

Appendix D: Transition Notes

Notes for Application Developers

Changes that application developers should be aware of are

• PrintPanel(1) only runs printer graphical options panels that are in
the/var/spool/lp/gui_interface/ELF directory. Because IRIX 6.2 does not run COFF
executables, graphical options panels in the COFF-related/var/spool/lp/gui_interface
directory are ignored. This change can be seen in PrintOptionPanel.c in
/usr/impressario/src/libprintui.

• libimp(3) now supports International Color Consortium (ICC) color profiles
embedded in SGI image files. It is available as a MIPS2 32-bit, a MIPS3 N32 (high
performance 32-bit), or a MIPS3 64-bit library.

• libprintui(3X) is available as a MIPS2 32-bit or MIPS3 N32 library.

See the c_dev release notes for information about 32-bit, n32 and 64-bit compilations.

Notes for Printer Driver Developers

Note: The Adobe Level II Configurable PostScript Interpreter (CPSI) is no longer
included with Impressario.

Changes Affecting Model Files

For Impressario 2.n, there is an updated sample model file for HP LaserJet printers,
/usr/impressario/src/models/laserjetPJL_model. The Impressario 1.2 version of the
laserjet_model lp model file is still available for comparison and is found in the directory
/usr/impressario/src/models. There are several major changes in the updated file:

• Many of the printer drivers now write to standard output instead of directly to the
parallel port. This allows the driver output to be piped to a device-specific driver
such as phandler, which drives printers from the parallel port, or nethandler, which
drives printers from network adapters such as the HP JetDirect network adapter.
See the file /usr/impressario/src/models/laserjetPJL_model for examples.

• Although lptops is still available, there is a new ASCII-text-to-PostScript filter,
text2ps.

Note: All Impressario model files now use text2ps to convert ASCII text files to
PostScript and your model files should also.

Notes for Printer Driver Developers

191

Tip: Unlike lptops, text2ps cannot print pages in reverse order. To reverse pages with
text2ps, use the psselect filter. (The file type rules used by fileconvert have been
updated to use psselect to do this.)

• Starting with IRIX 6.2, the man -t command now invokes /usr/lib/print/manprint
which calls lp with the -o“-manpage” option if Impressario is installed. Impressario
model files have been updated to support this. You should add similar support to
your reference pages.

• As mentioned in the previous section, psrip uses a FLEXlm license. Model files
should check for a valid license and disable the print spooler if one is not found. See
the /usr/impressario/src/models/laserjetPJL_model file for an example.

Other changes of interest in Impressario 2.n are as follows:

• text2pcl has been updated to support A3 and B paper sizes.

• A bug that prevented the OPTION string in the model files from being parsed has
been fixed. It is now possible for a string like

OPTIONS=numcolors=3 gamma=1.0 default_profile=hp500c06.pf

to set the numcolors, gamma, and default_profile variables when the Printer Manager
is used to install the model file into /var/spool/lp/interface.

• When using psrip, you can set the gamma value for each color channel. See the
/var/spool/lp/model/deskjetII_model model file for an example.

Finally, releases of IRIX after version 6.2 will not support CTR (Compiled Type Rule)
database files. Your model files may be checking for this file using code like this:

if [! -r /usr/lib/filetype/workspace.ctr]; then
 disable -r”WorkSpace filetype database not built. Type ‘su; cd
/usr/lib/filetype; make’” \
 $printer 1>>$logfile 2>&1
 exit 2
fi

You should remove or comment out the above block of code. Future versions of fileconvert
will map the old filename, workspace.ctr, to the new name, desktop.otr, to maintain
backward compatibility. Even so, the file /usr/lib/filetype/workspace.ctr may not exist, so
you should still remove the above code.

192

Appendix D: Transition Notes

Changes Affecting POD Data Files

Starting with Impressario 2.0, a new logical AND operator, &, is available for font lists.
Now the list of fonts on the printer can be logically AND’ed with the list of fonts on the
print server, generating a list of common fonts that the graphical options panel can
present to the user. The common list is important because the text2ps filter uses the font
metric information of the print server fonts to determine where line breaks and page
breaks should be made. The AND operator is intended for printer drivers that send
PostScript directly to the printer. See Appendix C, “Printer Object Database (POD) File
Formats,” for an example.

Changes Affecting Printer Drivers

Some changes that affect printer drivers are

• The laserjet driver has been updated and renamed laserjetPJL. The source code is
available in the /usr/impressario/src/drivers/laserjetPJL directory.

• Printer drivers that use the parallel port now check only the first eight characters of
the output device, instead of looking for it to be /dev/plp. This allows them to
support /dev/plp1, /dev/plp11, and so on. Developers should update their drivers to
behave in a similar manner.

• Most printer drivers that directly controlled the parallel port now send output to
standard output. The output is then piped to phandler or nethandler in the model file.

Note: A general purpose driver for the serial port does not exist.

• phandler has been updated. The source code is available in the directory
/usr/impressario/src/drivers/phandler.

Another change may be necessary for drivers using nethandler. To avoid network printer
timeouts, printer drivers that are meant to be used with nethandler should not send data
to standard output until they read something from standard input. By waiting, the
drivers can avoid initializing the printer prematurely because nethandler won’t open a
socket connection to the printer until it receives data from the driver via standard input.

Here is the underlying problem. When the printer driver is invoked from a model file,

image2ps image_file | psrip | printer_driver | nethandler

a delay is introduced as the programs upstream from the printer driver process the data.
If the image being processed is complex, the printer driver may not see data on standard

Notes for Printer Driver Developers

193

input for some time. If the printer driver sends initialization commands to the printer
immediately, nethandler will open a socket connection to the printer to deliver them. Most
network printers then start a timeout sequence and close the socket if they do not see any
more data before the timeout expires (typically 90 seconds to 2 minutes). If the processing
upstream from the printer driver takes longer than the timeout period, the socket
connection will be closed by the printer and nethandler will return an error. Recovery
from this is difficult because trying again will probably have the same result.

Current printer drivers probably perform this sequence of events (which risks a timeout):

parse command line
send commands to printer to initialize it
while (data to read from standard input) do

read data from input
process data and format for printer
output data to printer

done
cleanup

The timeout problem can be addressed by modifying the printer drivers so:

parse command line
while (data to read from standard input) do

read data from input
process data and format for printer
(if never initialized) send commands to printer to initialize it
output data to printer

done
cleanup

Changes to the Graphical Options Panel

Tip: When a print client is configured, it copies the Graphical Printer Options Panel
executable from the print server to /var/spool/lp/gui_interface/ELF. By default, IRIX 6.2
generates o32 MIPS2 ELF binaries. MIPS2 executables will not run on IRIX 5.3 systems
with a MIPS R3000 processor, the configuration of many Indigo workstations. (IRIX 6.2
is not supported on R3000 systems.) Compile the Graphical Printer Options Panel under
IRIX 5.3 if you wish to support IRIX 5.3 systems running on a R3000. The subsystem
impr_dev.sw5_3 contains all of the Impressario 2.0 libraries compiled under IRIX 5.3. The
libraries are installed in /usr/impressario/53libs and can be copied to your 5.3 development
system.

194

Appendix D: Transition Notes

All of the Graphical Printer Options Panel executables supplied in Impressario 2.0 were
compiled and linked under IRIX 5.3.

The Graphical Printer Options Panel now has a context-sensitive help panel at the top of
the window. This gives a short description of any option pointed to with the mouse. See
the sample source code in /usr/impressario/src/gui_models/laserjetPJL.

General Changes in IRIX 6.2

Because IRIX 6.2 does not support COFF executables (IRIX 6.2 compilers cannot even
generate COFF executables) developers need to ship ELF executables. They need to ship
COFF executables only if they wish to support IRIX 4.0.5 systems. IRIX 6.2 includes the
utility /usr/sbin/coffcheck, which warns users about the presence of COFF executables.
coffcheck ignores a COFF executable in the /var/spool/lp/gui_model or
/var/spool/lp/gui_interface directory if there is an ELF executable of the same name in
/var/spool/lp/gui_model/ELF or /var/spool/lp/gui_interface/ELF, respectively. This
arrangement allows a 6.2 print server to support a 4.0.5 print client, because a 4.0.5 client
will request the COFF version of the Graphical Printer Options file.

Other features that are new with IRIX 6.2 are listed below:

• The fonts found in the Impressario 1.2 subsystem impr_fonts.sw.adobe22 are bundled
with the base operating system. They have been removed from Impressario.

• The Printer Manager now lists SCSI devices that identify themselves as CPUs, such
as certain dye-sublimation printers.

• When a printer is being added, the Add Printers menu of the Printer Manager
displays a connection type, such as SCSI, only if there is a driver installed that
supports that connection type.

195

Appendix E

E. Scanner Driver Architecture

This appendix discusses scanner driver architecture. It provides a detailed analysis and
discussion of the template scanner driver.

The following major topics are discussed:

• “Overview” on page 196

• “Driver Structure” on page 196

• “Type Conversion Macros” on page 204

• “Scanner Functions” on page 198

• “Queues and Multi-Threaded Scanner Drivers” on page 207

196

Appendix E: Scanner Driver Architecture

Overview

Scanner drivers are programs that are executed by applications that link with libscan.a
and call SCOpen(3). They accept commands from the application via an input pipe and
return results via an output pipe.

All scanner drivers must implement the basic set of commands so that any application
using the libscan interface can have access to the functionality offered by the scanner.
Many library routines are provided for scanner driver developers to implement
functionality in software that may not be implemented in hardware for some scanners.
The support routines for writing scanner drivers can be found in libscan.a.

Driver Structure

A scanner driver consists of a number of functions that implement the set of commands
required to drive the scanner. In the main routine, a table of these functions, with the
position of each function in the table corresponding to its SCN #define in scanipc.h, is
passed to SCDriverSetCallbacks(), then SCDriverMainLoop() is called.

SCDriverMainLoop() waits for input from the application and calls the function in the
table corresponding to each command received. Each function has the following
prototype:

void scanfunc(int cmd, SCARG *arg, SCRES *res);

Arguments:

cmd Contains the SCN #define of the command to be executed.

arg Is the argument to this scanning function. SCARG is defined in scandrv.h
as follows:

typedef struct tag_scarg {
 void *data;
 int len;
} SCARG;

arg->data points to the arguments transferred from the application; the
meaning of arg->data depends upon the cmd (see below).

arg->len encodes the byte length of arg->data.

Driver Structure

197

res Is the result of this scanning function. SCRES is defined in scandrv.h as
follows:

typedef struct tag_scres {
 void *data;
 int len;
 void *freeparam;
 void (*free)(void *param, void *data);
 int errno;
 char *errmsg;
} SCRES;

res->data should be set to point to the data to be returned to the
application as a result of cmd.

res->len is the byte length of res->data.

res->free is a pointer to a function that is called if it is nonzero after
res->data has been transferred to the application. The function is called
with res->freeparam as its first argument and res->data as its second
argument.

res->errno should be set to one of the SCE #defines in
/usr/include/scanner.h or one of the errno values from
/usr/include/sys/errno.h if an error occurs during the execution of cmd. If
res->errno is nonzero, the libscan function being executed on the
application side returns an error status, and SCerrno is set to the value
of res->errno.

res->errmsg is the error message pointer. If res->errno is set to
SCEDRVMSG, then res->errmsg should point to a driver-specific error
message.

Before a scanning function is called, the entire res structure is zeroed. Scanning functions
are allowed to assume that any member of the res structure not explicitly set remains set
to 0.

198

Appendix E: Scanner Driver Architecture

Scanner Functions

Required Scanner Functions

All scanner drivers must implement the functions listed in Table E-1.

Table E-1 Scanner Driver Functions

Function Description

SCN_INITOK() Checks for successful scanner driver initialization

SCN_PAGESIZE() Returns the size of the scan area that is supported by the scanner

SCN_MINMAXRES() Returns the smallest and largest horizontal and vertical resolution

SCN_NRES() Returns the number of resolution pairs supported in hardware

SCN_RES() Returns floating-point numbers representing the supported
hardware resolutions

SCN_NTYPES() Returns the number of data types supported by the driver

SCN_TYPES() Returns an array of SCDATATYPE objects, one for each of the
types supported by the driver

SCN_FEEDERGETFLAGS() Gets the document feeder flags

SCN_FEEDERSETFLAGS() Sets the document feeder flags

SCN_FEEDERREADY() Determines if the feeder is ready to be advanced

SCN_FEEDERADVANCE() Advances the feeder to the next document

SCN_SETUP() Sets the scanning parameters

SCN_GETSIZE() Returns scan line width (in bytes and pixels) and the number of
scan lines

SCN_SCAN() Tells the scanner driver to start scanning

SCN_ABORT() Stops the scan and releases temporarily allocated resources

SCN_DIE() Cleans up and calls exit()

Scanner Functions

199

SCN_INITOK() Function

arg->data: NULL
res->data: NULL

This function exists as a mechanism for the application to determine whether the scanner
driver managed to initialize itself and the scanner properly. If any problem occurred
during initialization, res->errno should be set to one of the SCE #defines in scanner.h;
otherwise, no action is necessary.

SCN_PAGESIZE() Function

arg->data: int * (Metric)
res->data: SCWINDOW *

typedef struct tag_scwindow {
 float x, y, width, height;
} SCWINDOW;

This function returns the size of the scannable area supported by the scanner. Fill
res->data in with the x, y, width, and height of the scannable area in inches or centimeters,
depending on whether arg->data is SC_INCHES or SC_CENTIM.

SCN_MINMAXRES() Function

arg->data: NULL
res->data: SCMINMAXRES *

typedef struct tag_scminmaxres {
 float minx, miny, maxx, maxy;
} SCMINMAXRES;

This function sets the smallest and largest horizontal and vertical resolutions.
res->data->minx should be set to the smallest horizontal resolution supported in
hardware by the scanner, res->data->miny to the smallest vertical resolution,
res->data->maxx to the largest horizontal resolution, and res->data->maxy to the largest
vertical resolution.

200

Appendix E: Scanner Driver Architecture

SCN_NRES() Function

arg->data: NULL
res->data: int *

This function sets the number of resolution pairs supported in hardware. *res->data
should be set to the number of (xres, yres) resolution pairs supported in hardware by the
scanner.

SCN_RES() Function

arg->data: int *
res->data: float *

This function sets floating-point numbers representing supported hardware resolutions.
arg->data points to the metric of the resolution; either SC_INCHES for pixels/inch or
SC_CENTIM for pixels/centimeter. res->data should be set to point to a floating-point
array that represent supported hardware resolutions. There should be an even number
of resolutions, with all of the horizontal resolutions first, then all of the vertical
resolutions.

Note: All scanner drivers must support arbitrary resolutions; software routines are
provided to perform zoom operations. The above information is provided so that
scanner application developers can retrieve pure data from the scanner and perform
their own zooming (with filters; libscan zooming does no filtering) to achieve the desired
resolution.

SCN_NTYPES() Function

arg->data: NULL
res->data: int *

This function sets the number of data types supported by the driver. *res->data should be
set to the number of data types supported by this scanner driver.

Scanner Functions

201

SCN_TYPES() Function

arg->data: NULL
res->data: SCDATATYPE *

typedef struct tag_scdatatype {
 unsigned int packing : 4;
 unsigned int channels : 4;
 unsigned int type : 8;
 unsigned int bpp : 8;
} SCDATATYPE;

The res->data of the SCN_TYPES() function points to an array of SCDATATYPE objects,
one for each of the types supported by the scanner driver.

All scanner drivers must support monochrome data; that is, the type
{ SC_PACKPIX, 1, SC_MONO, 1 }. All scanner drivers that support any kind of greyscale
or color output must support the type { SC_PACKPIX, 1, SC_GREY, 8 }; that is, 8-bit
gray-scale. All scanner drivers that support any kind of color output must support either
{ SC_PACKPIX, 3, SC_RGB, 8 } (24-bit CHUNKY color data) or { SC_PACKPLANE, 3,
SC_RGB, 8 } (24-bit planar color data).

Library routines in libscan.a exist to facilitate compliance with these conventions.

SCN_FEEDERGETFLAGS() Function

arg->data: NULL
res->data: SCFEEDERFLAGS *

typedef unsigned int SCFEEDERFLAGS;

This function returns the feeder flags for this scanner to the application. See “Header
Files” in Chapter 6.

SCN_FEEDERSETFLAGS() Function

arg->data: SCFEEDERFLAGS *
res->data: NULL

This function sets the feeder flags.

202

Appendix E: Scanner Driver Architecture

SCN_FEEDERREADY() Function

arg->data: NULL
res->data: NULL

This function determines whether or not the feeder is ready for an advance command.

SCN_FEEDERADVANCE() Function

arg->data: NULL
res->data: NULL

This function causes the feeder to advance to the next document.

SCN_SETUP() Function

arg->data: SCSETUP *
res->data: NULL

typedef struct tag_scsetup {
 int preview;
 SCDATATYPE type;
 int rmetric;
 float xres, yres;
 int wmetric;
 float x, y, width, height;
} SCSETUP;

The SCN_SETUP() function sets the scanning parameters. The upper-left x and y
coordinates, the width, and the height are specified in either pixels, inches, or centimeters,
depending on whether arg->data->wmetric is SC_PIXELS, SC_INCHES, or SC_CENTIM.

Set the scanning horizontal and vertical resolutions, in pixels per inch or pixels per
centimeter, depending on the value of arg->data->rmetric. Set the data type for scanning.
If this is a preview, arg->data->preview will have a nonzero value.

Note: If a resolution or combination of resolutions not supported in hardware is
specified, the driver MUST zoom the image in order to supply the requested resolution.
Library routines to aid zooming are available in libscan.a.

Scanner Functions

203

SCN_GETSIZE() Function

arg->data: NULL
res->data: SCSIZE *

typedef struct tag_scsize {
 long xbytes, xpixels, ysize;
} SCSIZE;

This function returns, to the scanning application, the width of a scan line in bytes and
pixels, and the number of scan lines in the scan. This is called after SCN_SETUP() so the
application knows exactly how much data to expect.

SCN_SCAN() Function

arg->data: NULL
res->data: NULL

This function tells the scanner driver to initiate scanning.

SCN_ABORT() Function

arg->data: NULL
res->data: NULL

This function stops the scan and releases any resources temporarily allocated. The
application has decided to stop retrieving data before scanning has been completed. The
driver should physically stop the scan and release any resources that were temporarily
allocated for the scan.

SCN_DIE() Function

arg->data: NULL
res->data: NULL

This function cleans up and calls exit(2). The application has demanded that the driver
terminate. This function should not return; it should perform any necessary cleanup and
then call exit.

204

Appendix E: Scanner Driver Architecture

Type Conversion Macros

The macros listed in Table E-2 are provided to convert between data types.

GRIDTOFLOAT and FLOATTOGRID Macros

GRIDTOFLOAT(int pos, int n)
FLOATTOGRID(float pos, int n)

These macros determine which destination pixel or line the source pixel or line at pos
corresponds to. For example, if we are scanning at 120 dpi, but the application has
requested 100 dpi, and our scan height is 1 inch, we need to skip 20 scan lines to provide
the desired resolution. The following loop obtains scan lines from the scanner and passes
them on to the application:

float fy;
int imgy, scany;

while (imgy < 100) {
 fy = GRIDTOFLOAT(imgy, 100);
 scany = FLOATTOGRID(fy, 120);
 ...
 /* Get the scany'th scan line from the scanner */
 /* Do conversion and horizontal zooming */
 /* Call SCDriverPutRow */
 imgy++;
}

Table E-2 Type Conversion Macros

Macro Description

GRIDTOFLOAT Convert from grid format to floating-point format

FLOATTOGRID Convert from floating-point format to grid format

Scanner Functions

205

Zooming and Type Conversion Functions

The functions listed in Table E-3 are provided to support zooming and converting
between data types.

All conversion routines simultaneously zoom, so that only one conversion per line
should ever be necessary.

SCCreateZoomMap() Function

int *SCCreateZoomMap(int anx, int bnx);

This function creates a zoom map. When zooming in the horizontal direction, it is
wasteful to use GRIDTOFLOAT and FLOATTOGRID for every pixel of every line,
since the same calculations would be repeated many times. A zoom map is an array of
bnx integers, each of which is the pixel between 0 and anx - 1 that should be used when
zooming a row of anx pixels to a row of bnx pixels. The zooming and conversion
functions all take zoom maps for efficient zooming; for conversion functions where no
zooming is to occur, the zmap parameter can be NULL.

Table E-3 Zooming and Type Conversion Functions

Function Description

SCCreateZoomMap() Creates a zoom map

SCDestroyZoomMap() Frees memory allocated to store a zoom map

SCZoomRow1() Zooms a row of 1-bit pixels

SCZoomRow8() Zooms a row of 8-bit pixels

SCZoomRow24() Zooms a row of 24-bit pixels

SCZoomRow32() Zooms a row of 32-bit pixels

SCBandRGB8ToPixelRGB8() Converts a row of pixels, in three rows (R, G, and B) of 8-bit
components per pixel, to a row of 24-bit pixels

SCGrey8ToMono() Converts a row of pixels from 8-bit greyscale to monochrome

206

Appendix E: Scanner Driver Architecture

SCDestroyZoomMap() Function

void SCDestroyZoomMap(int *zmap);

This function frees memory allocated to store a zoom map.

SCZoomRow1() Function

void SCZoomRow1(char *abuf, int anx, char *bbuf, int bnx, int *zmap);

This function zooms a row of anx pixels to a row of bnx pixels, 1 bit per pixel.

SCZoomRow8() Function

void SCZoomRow8(char *abuf, int anx, char *bbuf, int bnx, int *zmap);

This function zooms a row of anx pixels to a row of bnx pixels, 8 bits per pixel.

SCZoomRow24() Function

void SCZoomRow24(void *abuf, int anx, void *bbuf, int bnx, int *zmap);

This function zooms a row of anx pixels to a row of bnx pixels, 24 bits per pixel.

SCZoomRow32() Function

void SCZoomRow32(void *abuf, int anx, void *bbuf, int bnx, int *zmap);

This function zooms a row of anx pixels to a row of bnx pixels, 32 bits per pixel.

SCBandRGB8ToPixelRGB8() Function

void SCBandRGB8ToPixelRGB8(void *frombuf, int fromx,
 void *tobuf, int tox, int *zmap);

This function converts a row of fromx pixels, laid out in three rows (R, G, and B) of 8-bit
components per pixel, to a row of tox pixels, 24 bits per pixel.

Queues and Multi-Threaded Scanner Drivers

207

SCGrey8ToMono() Function

void SCGrey8ToMono(unsigned char thresh, void *frombuf,
 int fromx, void *tobuf, int tox, int *zmap);

This function converts a row of pixels from 8-bit greyscale to monochrome, thresholding
each pixel with thresh.

Queues and Multi-Threaded Scanner Drivers

To achieve optimal performance in a scanner driver, it is helpful to parallelize the
operations being performed. A pipeline carries data from the scanner to the ultimate
destination, often a file. One can imagine that at the beginning of the pipeline, most of
the time is spent waiting for I/O to complete. An intermediate image processing stage is
CPU-bound as it zooms and converts rows of data. The final stage, writing to a file, is
again I/O-bound.

Rather than adding these times together, we notice that all three stages of the pipeline can
occur at the same time; that is, while the scanning stage is waiting for I/O, the file-writing
stage can also be waiting for I/O, and the image-processing stage can be using the CPU.
As you can imagine, performance gets even better on multiprocessor systems.

To support this, a multi-threaded queue interface is included in libscan.a. Each queue is
semaphored so that the read thread can be different from the write thread, and so that the
dequeue operation on an empty queue blocks until another thread has enqueued
something.

208

Appendix E: Scanner Driver Architecture

In the driver template, separate threads implement the scanning stage and the
image-processing stage. The main thread of the driver simply starts the two processes
and waits for more commands from the application.

The driver template uses two queues: one to hold free buffers and one to hold freshly
scanned lines. The amount of concurrency is metered by the initial size of the free queue;
the scanning thread blocks when there are no more free buffers if it gets too far ahead of
the image-processing thread.

The scanning thread dequeues a buffer from the scan free queue, gets data from the
scanner, and stores it in the buffer. Then it breaks the buffer up into scan lines,
enqueueing each line on the scan queue (it is typically faster to scan chunks of lines rather
than one line at a time).

The image-processing thread dequeues a buffer from the scan queue. It then zooms and
converts it, and writes the result to a stream that the application is reading to obtain the
data. It puts the original buffer back on the scan free queue (actually, since the scanning
thread breaks its buffer up into scan line-sized chunks, the image-processing thread has
to know how to put the chunks back together).

Queues and Multi-Threaded Scanner Drivers

209

Figure E-1 illustrates the scanning process.

Figure E-1 Scanner Driver Architecture

performs simple zooming

Convert Process converts
from the scanner-specific
data formats to standard
formats and, if necessary,

Scan

Convert

Scanner

raw data

Scan

Scanner

Scan Process issues
the device-specific
commands to get scan

Parent

Scan Process
gets the empty
buffers from the

Scan Process
adds the buffered

scanned data to the

Convert Process gets
raw data buffers
from the head of

Scan
Queue

Free

Convert Process adds
written buffers back
to the tail of

Convert Process
writes cooked data

to the file descriptor
passed by the

Process

Process

Process

Application

Queue

data from the scanner

commands
and results

application

Scan QueueFree Queue

tail of Scan Queuehead of Free Queue

210

Appendix E: Scanner Driver Architecture

Queue Manipulating Functions

The following functions are provided for manipulating queues:

typedef struct tag_scqueue SCQUEUE;

Table E-4 lists the queue manipulating functions.

SCCreateQueue() Function

SCQUEUE * SCCreateQueue(int nelems);

This function creates a queue that is multi-threaded safe and blocks on an empty
dequeue. nelems is the maximum number of elements that can be stored in the newly
created queue. Enqueue operations on full queues block until another thread has
completed a dequeue operation.

SCDestroyQueue() Function

int SCDestroyQueue(SCQUEUE *q);

This function frees the resources used by a queue.

SCEnqueue() Function

void SCEnqueue(SCQUEUE *q, void *data);

This function adds an element to the tail of the queue. It unblocks a thread waiting to
dequeue or blocks it if the queue is full.

Table E-4 Queue Manipulating Functions

Function Description

SCCreateQueue() Creates a queue that is multi-threaded safe and blocks on an empty
dequeue

SCDestroyQueue() Frees the resources used by a queue

SCEnqueue() Adds an element to the tail of the queue

SCDequeue() Removes an element from the head of a queue and returns it

SCQueueSetExit() Sets a flag associated with a queue that tells all queue users to exit

Queues and Multi-Threaded Scanner Drivers

211

SCDequeue() Function

void * SCDequeue(SCQUEUE *q);

This function removes an element from the head of a queue and returns it. SCDequeue()
unblocks a thread waiting to enqueue or blocks it if the queue is empty.

SCQueueSetExit() Function

void * SCQueueSetExit(SCQUEUE *q);

This function sets a flag associated with a queue that tells all users of the queue to exit.
Any thread blocking in SCEnqueue() or SCDequeue() is terminated. SCQueueSetExit()
is used by the main thread of a scanner driver to tell the child threads to exit when the
user aborts a scan.

213

Appendix F

F. Reference Pages

This appendix lists all reference pages associated with Impressario. Table F-1 lists the
general interest reference pages.

Table F-1 General Interest Reference Pages

Names Description

Impressario(1) Printing and scanning environment for Silicon Graphics
systems

glp(1), PrintPanel, printpanel Graphical lp printing command

PrintStatus(1), printstatus Graphical printer status tool

gscan(1) Graphical scanning tool

scanners(1M) Scanner installation and management tool

fileconvert(1) File to printer or file type converter

vstiff(1) Stream TIFF viewer

installfoliofonts(1) PostScript font installation program for Adobe Macintosh®

Font Folio™ CDROM

installpcfonts(1) PostScript font installation program for Adobe TypeSet™ PC
floppy disks

printers(1M) Printer installation and management program

print(1) Printing subsystem, built on System V Release 3 printer
spooling system, that uses Impressario

214

Appendix F: Reference Pages

Table F-2 lists the printing developers reference pages and Table F-3 lists the scanning
developers reference pages. The software these reference pages describe utilizes the C
application program interface (API).

Table F-2 Printing Developers Reference Pages

Name Description

libspool(3) An API to the UNIX printer spooling systems.

libpod(3) An API to the printer object database (POD).

libprintui(3X) An API to the PrintBox widget.

libstiff(3) An API for reading and writing the STIFF (Stream TIFF) data file format.
It is described in detail in Appendix A.

libimp(3) An API for reading and writing Silicon Graphics Image format files. It is
described in detail in Appendix B.

Table F-3 Scanning Developers Reference Pages

Name Description

libscan(3) An API for scanning.

libstiff(3) An API for reading and writing the STIFF (Stream TIFF) data file format.
It is described in detail in Appendix A.

libimp(3) An API for reading and writing Silicon Graphics image format files. It is
described in detail in Appendix B.

215

Appendix G

G. Color Management in Impressario

Impressario uses International Color Consortium (ICC) color profiles and PostScript
Color Rendering Dictionaries (CRDs) for color management.

This appendix discusses the following topics:

• “An Overview” on page 216

• “ICC Color Profiles” on page 217

• “Color Rendering Dictionaries” on page 218

• “Generating CRDs and ICC Profiles” on page 219

216

Appendix G: Color Management in Impressario

An Overview

Color management is the process of specifying the color characteristics of peripheral
devices and applying this information to allow color to be used more consistently
throughout the system. Different devices have different color characteristics. The
characteristics can be physical differences such as paper and ink for printers and
phosphors for monitors. They also can be color space differences. A color space is a
conceptual model for representing color.

Scanners and monitors usually use the RGB color space. Red, green, and blue are the
primary colors in this space; all colors are mixtures of these. RGB is an additive color
space. Red, green, and blue light are added to form a desired color. When full intensities
of red, green, and blue light are used, the result is white light.

Printers use the CMY or CMYK color space. Cyan, magenta, and yellow are the primary
colors. It is a subtractive color space: the color is that of the light that is reflected after
parts of the white-light spectrum are absorbed by the medium, such as ink on paper.
Theoretically, a mixture of cyan, magenta, and yellow subtractive colorings results in
black because all of the white light is absorbed. In reality, a black color, denoted by K, is
usually used because the CMY ink-on-paper mixture does not absorb light perfectly.

The technique of color management is to use color spaces to characterize input and
output devices, and to provide the conversions needed to maintain consistent color use
among them. Conversions may go directly from one color space to another, such as from
RGB for a scanner to CMYK for a printer. Alternatively, conversions may make use of
intermediary color spaces, such as CIE-based ones. (CIE stands for the Commission
Internationale d’Eclairage.) The CIE color spaces are intended as representations of color
as seen by the human eye. They are considered device-independent, in contrast to the
RGB and CMYK spaces, whose color representations vary with the physical
characteristics of the devices producing them. A common CIE-based space is CIELAB,
which is based on the three types of stimuli to which the eye’s retina responds. For a
further discussion of color conversion, consult a text such as Computer Graphics: Principles
and Practice, Second Edition, by Foley, van Dam, Feiner, and Hughes.

Impressario provides two tools for color management:

• ICC color profiles for SGI, TIFF, GIF, JPEG, PCD, and PPM raster image files

• PostScript CRDs for PostScript files that specify CIELAB-based color spaces

ICC Color Profiles

217

ICC Color Profiles

International Color Consortium(ICC) color profiles describe the color characteristics of
source devices, such as scanners, and destination devices, such as printers. (A monitor is
considered to be another type of device because it can be both a source and a destination.)
Profiles are available for various scanners, printers, and monitors. By using the
information from the source and destination profiles, a color correction can be
determined and applied to the image.

The scanning program gscan adds the ICC source profile to its output (a TIFF or Silicon
Graphics image raster file). Embedding the source profile in the output allows the file to
be moved to systems that don’t have that profile. With gscan, the user can choose from
several scanner profiles, or even turn off color management altogether. The Impressario
User’s Guide has further information on scanning and gscan.

During printing, color correction is applied to a raster image by the cocostiff or cocogif
utility before the image is processed by the PostScript interpreter. (cocostiff (Color Correct
Stream Tiff) and cocogif (Color Correct GIF) are part of the cms_eoe subsystem) The
Impressario file convert rules automatically invoke cocostiff or cocogif.

Use fileconvert to see how the file convert rules are applied:

/usr/sbin/fileconvert -d ImpressarioRasterBitmap
/usr/impressario/tests/data/testfile.sgi

returns

PRINTFILES=”/usr/impressario/tests/data/testfile.sgi” ;
/usr/lib/print/sgi2stiff $IMPR_IMG2STIFFOPTS $PRINTFILES |
/usr/sbin/cocostiff $IMPR_CMGTOPTS | /usr/lib/print/stiff2ps
$IMPR_SGI2PSOPTS | /usr/lib/print/psrip $IMPR_PSRIPOPTS

In this example, sgi2stiff converts the SGI format to the STIFF format, the output being
piped to cocostiff. The command-line options of cocostiff, -d hp650e06.pf for example, are
contained in the environment variable $IMPR_CMGTOPTS. This value, like those of the
other uppercase environment variables, is normally set in a printer model file. (See the
cocostiff(1) reference page for details about specific command-line options.) cocostiff
applies the color correction, and its output is piped to stiff2ps and then to psrip, the
PostScript interpreter.

It is important to note that an ICC profile describing the source device is needed to do
color correction. As mentioned above, gscan embeds a source profile in the files it creates.

218

Appendix G: Color Management in Impressario

Of course, not all files are created by gscan. If a source profile is not embedded in the
raster file, cocostiff and cocogif use the ICC color profile of a Sony monitor. The idea is for
the default printed output to look similar to what would be displayed on the screen.
Naturally, a source profile for a Sony monitor is needed to do this. cocostiff and cocogif also
accept, as a command-line argument, a source profile that overrides the default profile
and, if so specified, any embedded source profiles. See the cocostiff(1) and cocogif(1)
reference pages for details.

ICC color profiles are stored in the /var/cms/profiles directory. cocostiff and cocogif search
this directory for any profile specified as a command-line argument and whose profile
name does not include a full directory path.

For further information on ICC color profiles, see the web page at http://www.color.org.
Search the web using the search string “International Color Consortium” to find several
other technical references and applications.

Color Rendering Dictionaries

Color Rendering Dictionaries are used to manage the color of PostScript files, such as
ones produced by Adobe Photoshop™, that specify CIELAB-based color spaces.
PostScript files, such as those generated by ShowCase™, that do not specify a
CIELAB-based color space do not have color management.

CRDs are stored in /usr/lib/print/data/CRDs. A specific CRD is typically specified using
the -I option with psrip. CRDs can be modified for use with the -I option by adding text
at the end of the CRD to define it as a resource. An example of this is the last few lines
from the /usr/lib/print/data/CRDs/hp1600C.crd file:

/1600CCRD exch /ColorRendering defineresource pop
%%EndResource
{/1600CCRD /ColorRendering findresource } stopped
{ (%%[Warning: Color CRD not found]%%\r\n) print flush }
{dup /DefaultColorRendering exch /ColorRendering defineresource pop
setcolorrendering } ifelse

Tip: CRDs are usually binary files. If your editor can not edit the file, try using jot.

If a CRD is not specified with -I, a default is used. Default CRDs are in the directory
/usr/lib/print/data/psrip/Resource/ColorRendering. ColorCRD is the default color CRD and
MonoCRD is the default for monochrome images.

Generating CRDs and ICC Profiles

219

Generating CRDs and ICC Profiles

When creating CRDs and ICC profiles, remember that many variables affect the color
that is produced. These include the following:

• halftone screen or dithering (such as spot function or error diffusion)

• resolution (for example, 360 dpi or 720 dpi)

• paper type (plain, coated, transparencies, and so on)

• ink lot (changing inks can change output color)

• printer manufacturing variations

• age of the printers

• settings (draft, normal, presentation, microdot, and so on, depending on the printer)

Handling every case would require a separate CRD and ICC profile for each of the
various combinations. In practice, this is rarely done because it requires a large number
of CRDs and ICC profiles. A common approach, used by Impressario 2.0, is to generate
one or two CRDs and profiles using the highest resolution, best paper, and best settings
for the printer in question. The idea is to generate the CRDs and profiles for the printer
when it is set to print in its best presentation mode.

Generating an ICC profile or a CRD typically consists of these steps:

1. Generate a test pattern containing a large number of color samples (say, 300 to 500).

2. Measure the color samples using a Colorimeter.

3. Generate several profiles and CRDs (for shadows, for highlights, and so on.)

4. Print sample images using the various CRDs and profiles, and select a preferred set.

5. Update the model file to use the preferred set.

220

Appendix G: Color Management in Impressario

This process requires specific software tools (and a lot of time). Impressario 2.0 does not
include these tools, but third-party solutions are available. (If you use a third-party
service or software package to generate ICC profiles or CRDs you should verify that you
have the right to re-distribute them.)

Note: ColorSynergy® software by Candela generated all the CRDs and many of the ICC
profiles for Impressario 2.n. A ColorTron™ colorimeter from Light Source was the input
measuring device. For more information about these products contact:

As a final step, look at the way ICC profiles and CRDs are used in the model file
/var/spool/lp/model/deskjetII_model. At the beginning of this file, default ICC profiles and
CRDs are set for every printer. When the script is run, it calls the function
get_icc_crd_name() to determine names for the ICC profile and CRD based on the
printer model, paper type, and halftone being used. For example, if the printer is an HP
DeskJet 1600C, get_icc_crd_name() returns two of the following names (one for an ICC
profile, the other for a CRD):

It is the command returned by fileconvert, later in the model file, that determines whether
the ICC profile or CRD is used. If the file to be printed is a raster image, color correction
is performed using an ICC profile. If the HP 1600C is using glossy paper and error
diffusion, and if an ICC profile in the /var/cms/profiles directory has the name
HP_DeskJet_1600C_glossy_diffused.pf, the model file will find and use it. Otherwise it uses
a default. After color correction, the file to be printed is converted to a PostScript file that
is not CIELAB-based, and the PostScript file is sent to the PostScript interpreter.

Candela, Ltd. Light Source Computer Images, Inc.
1676 East Cliff Road 17 E. Sir Francis Drake Suite 100
Burnsville, MN 55337-1300 Larkspur, CA 94939
612 894-8890 415 925-4200
612 894-8840 (fax) 415 461-8011 (fax)

URL: http://www.ls.com

ICC Profile Name CRD Name

HP_DeskJet_1600C_special_spot.pf HP_DeskJet_1600C_special_spot.crd

HP_DeskJet_1600C_special_diffused.pf HP_DeskJet_1600C_special_diffused.crd

HP_DeskJet_1600C_glossy_spot.pf HP_DeskJet_1600C_glossy_spot.crd

HP_DeskJet_1600C_glossy_diffused.pf HP_DeskJet_1600C_glossy_diffused.crd

Generating CRDs and ICC Profiles

221

If the file to be printed is already PostScript, it is sent directly to the PostScript interpreter
where a CRD is then applied if the file is CIELAB-based. As before, a default CRD is used
if one with the proper name is not found. Notice that a CRD is never used on a PostScript
file that has undergone color correction with an ICC profile.

If you implement a function similar to get_icc_crd_name(), you should document the
ICC profiles and CRD names that the driver recognizes. This allows users who create
their own ICC profiles and CRDs to install them in the correct directories using the
correct names. The goal is to enable users to supply ICC profiles and CRDs specific to the
printers, inks, paper stocks, and so on in their environment.

223

Appendix H

H. Impressario PPD Driver Implementation

This appendix documents the Impressario PPD driver available with Impressario 2.2
(and higher).

These are the major topics discussed in this appendix:

• “About PPD Files” on page 224

• “Adding a PPD File to the System” on page 224

• “Customizing a PPD File” on page 225

• “PPD Driver Files” on page 227

• “What Happens When a PPD Driver Is Installed” on page 231

• “Where to Find PPD Files for a Specific Printer” on page 233

• “Applicable Reference Pages” on page 234

224

Appendix H: Impressario PPD Driver Implementation

About PPD Files

PostScript Printer Description (PPD) files are human-readable text files that describe the
features of a specific PostScript capable printer. A PPD file describes printer features in
such a way that a graphical user interface (GUI) can be built to present the user with a
list of printer features to choose from. Examples of printer features include paper size,
supported fonts, paper handling, and so on. A PPD file also contains PostScript and Job
Control Language (JCL) commands to be used to invoke the selected features.

The Impressario PPD software parses a PPD file and uses the PPD file information to

• build a list of supported printers (Printer Manager Add function)

• build a GUI for controlling the printer (glp Options panels)

• send the correct PostScript and JCL commands to the printer (the Impressario PPD
printer driver)

For more information on PPD files, see the document PostScript Printer Description File
Format Specification, available from Adobe Systems Incorporated. Version 4.2 of the
document was used as the basis of the Impressario PPD driver.

Adding a PPD File to the System

The simplest way to add a PPD file is to copy the PPD file to the /var/spool/lp/PPD_model
directory. A few rules should be followed:

• The PPD filename must end with .ppd.

• Many PPD files contain DOS file formats. The PPD file should be converted to a
UNIX file format. Use the following commands, substituting the name of the
specific PPD file for <ppd_filename>:

to_unix <ppd_filename> temp.ppd
mv temp.ppd <ppd_filename>

Customizing a PPD File

225

• The PPD file ownership and permissions should be set correctly. Use the following
commands, substituting the name of the specific PPD file for <ppd_filename>:

chown lp.lp <ppd_filename>
chmod 644 <ppd_filename>

• The PPD file should be human-readable (that is, the PPD file should not be
compressed or encrypted in any manner). Use the following command to verify that
the file is readable:

more <ppd_filename>

Once the file is in the /var/spool/lp/PPD_model directory, the Printer Manager will list the
printer that the PPD supports.

Note: If the Printer Manager is running and a new PPD file is added to
/var/spool/lp/PPD_model, then the Printer Manager should be restarted to ensure that the
new PPD file is seen.

Customizing a PPD File

This section contains a list of files that can be used to customize a PPD driver, along with
a description of their functions.

• /var/spool/lp/PPD_model/<ppd_filename>.ppd

This is the basic PPD file supplied by the printer vendor. As a minimum, this is the
only file that is actually needed to support a PPD driver.

226

Appendix H: Impressario PPD Driver Implementation

• /var/spool/lp/PPD_model/<ppd_filename>.extension.ppd

Additional PPD commands for the GUI are contained in this file. It allows the GUI
options to be extended beyond those found in a PPD file supplied by the printer
vendor. This file is optional. If it is not present, one of the following three files is
used (see “PPD Driver Files” on page 227 for a description of their functionality):

– /var/spool/lp/PPD_model/impressario_ppd_common.ppd

– /var/spool/lp/PPD_model/impressario_ppd_common_3color.ppd

– /var/spool/lp/PPD_model/impressario_ppd_common_4color.ppd

These files can be used as the basis of a custom interface. Rename the file you
wish to use as /var/spool/lp/PPD_model/<ppd_filename>.extension.ppd.

Using this naming scheme insures that the file is found by the PPD driver and
used in the GUI. (The customized file has to be created before the printer is
installed. It is really the printer installation process that “finds” and uses the
file.)

Note: This file is used only for extending GUI options panel. It cannot be used
to set up commands to be sent to the printer. If any new options are added to the
file, an updated /var/spool/lp/model/<ppd_name>_impressario_ppd_model file will
be needed to correctly parse the customized options (see the next item and the
impressario_ppd_model(1) reference page).

• /var/spool/lp/model/<ppd_filename>_impressario_ppd_model

By default, the PPD driver uses the file /var/spool/lp/model/impressario_ppd_model as
the lp model file for the PPD driver. A custom model file can also be supplied. It is
recommended that custom model files be based on the default model file
(/var/spool/lp/model/impressario_ppd_model).

/var/spool/lp/model/loptrac_impressario_ppd_model is an example of a modified model
file for the Lexmark Optra C color laser printer. It has been updated to set up color
management variables to apply color corrections specific to the Optra C. Use the
following command to study the difference between it and the default PPD model
file:

cd /var/spool/lp/model
gdiff impressario_ppd_model loptrac_impressario_ppd_model

The name of the model file must end with impressario_ppd_model.

PPD Driver Files

227

• /usr/lib/X11/$LANG/app-defaults/ppd/<ppd_filename>

This file is an X resource file for a PPD file and typically contains GUI prompts and
other information specific to the printer. This file is optional. The
/usr/lib/print/genppdtemplate utility can be used to generate this file based on the PPD
file contents. See the genppdtemplate(1) reference page.

If this X resource file is not found, then the GUI prompts are taken from the
/var/spool/lp/PPD_model/<ppd_filename>.ppd file. If the X resource file is found, then
the contents of the resource file override the contents of the
/var/spool/lp/PPD_model/<ppd_filename>.ppd file.

This file can be used to create a language-specific GUI application. This is typically
easier than modifying the /var/spool/lp/PPD_model/<ppd_filename> file with
translated prompts, since a PPD file can not be easily changed without a strong
knowledge of the PPD file format (trying to translate a PPD file will probably result
in creating an invalid PPD file).

This file is processed only when a printer is added. If an X resource file is created for
an existing printer, then the printer manager should be used to remove and reinstall
the printer to ensure that the new X resource file is used.

PPD Driver Files

PPD files used by the PPD driver are as follows:

• /var/spool/lp/PPD_model/<ppd_filename>

This is the basic PPD file. It contains the commands to prepend and postpend to the
data stream to the printer. This file is typically written by the printer manufacturer.

• /var/spool/lp/PPD_model/impressario_ppd_common.ppd

• /var/spool/lp/PPD_model/impressario_ppd_common_3color.ppd

228

Appendix H: Impressario PPD Driver Implementation

• /var/spool/lp/PPD_model/impressario_ppd_common_4color.ppd

These three files implement a common section of the GUI options menu (common
in that it is always seen on the PPD driver GUI). The PPD code for the “Basic
Options,” “Text File Options,” and “Image File Options” portions of the GUI are
found in these files. One of the above three files is automatically used based on the
color model of the printer (RGB printers use impressario_ppd_common_3color.ppd;
CMYK printers use impressario_ppd_common_4color.ppd, and monochrome printers
use impressario_ppd_common.ppd).

All of the above three files are ignored if a printer specific version is found using the
name /var/spool/lp/PPD_model/<ppd_filename>.extension.ppd. See “Customizing a
PPD File” on page 225 for details.

Note that these PPD files have six new extended PPD “*OpenUI” GUI types that are
not defined in the Adobe PPD specification. The types are as follows:

– IntegerField

– FloatField

– IntegerScale

– FloatScale

– IntegerInterval

– FloatInterval

The following are two other new statements that may appear in the
OpenUI...CloseUI construct:

– *Range <min1> <default1> <max1> [<min2> <default2> <max2>]

– *Tags <tag1> [<tag2>]

These are Silicon Graphics extensions to the PPD GUI interface.

LP Model Files

• /var/spool/lp/model/impressario_ppd_model

This is the default lp spooler model file used by the PPD driver. It is ignored if the
following file is available.

• /var/spool/lp/model/<ppd_name>_impressario_ppd_model

See “Customizing a PPD File” on page 225 for details.

PPD Driver Files

229

X Resource Files

All PPD X resources are found under either the /usr/lib/X11/$LANG/app-defaults/ppd or
/usr/lib/X11/app-defaults/ppd directory.

• /usr/lib/X11/$LANG/app-defaults/ppd/<ppd_filename>

This is a resource file for a PPD. It is generated from the PPD file using
genppdtemplate (see the genppdtemplate(1) reference page for more details). This file
is optional and is included with all Silicon Graphics supplied PPD files found in
/var/spool/lp/PPD_model.

• /usr/lib/X11/$LANG/app-defaults/ppd/SpecificPpdResources

This is an X resource file for the PPD GUI interface program (the program
/var/spool/lp/gui_model/ELF/impressario_ppd_model.gui that uses this).

• /usr/lib/X11/$LANG/app-defaults/ppd/GenericPpdResources

This is an X resource file for the following files:

– /var/spool/lp/PPD_model/impressario_ppd_common.ppd

– /var/spool/lp/PPD_model/impressario_ppd_common_3color.ppd

– /var/spool/lp/PPD_model/impressario_ppd_common_4color.ppd

GUI Driver

• /var/spool/lp/gui_model/ELF/impressario_ppd_model.gui

This is the GUI binary for the PPD driver. It presents the users with various printer
specific options. Normally a link is created from
/var/spool/lp/gui_interface/ELF/<printername> to this file, or the binary is copied from
a print server to a print client as /var/spool/lp/gui_interface/ELF/<printername>. The
binary is compiled under IRIX 5.3 to support copying it to older Silicon Graphics
systems when they are configured as a print client.

Note: The impressario_ppd_model.gui program unpacks the PPD and X resource files
to be used from the file /var/spool/lp/app-defaults/<printername>/PPD_PostScript
(which is created when the printer is installed). It does not look at any other
configuration files. If you are customizing PPD or X resource files, you will need to
remove and reinstall the printer (using the Printer Manager) to see the effects of any
changes you have made.

230

Appendix H: Impressario PPD Driver Implementation

PPD Printer Filter

• /usr/lib/print/ppd_driver

This file reads standard input (assumed to be a PostScript stream). It prepends and
postpends the required PostScript and JCL commands to enable the printer features.
The PostScript and JCL commands that do this are parsed from the printer’s PPD
file. See the ppd_driver(1) reference page for details.

The output is normally sent to /usr/lib/print/phandler (parallel port driver) or
/usr/lib/print/nethandler (network connected printer driver) for transmission to the
printer.

Created File

• /var/spool/lp/app-defaults/<printername>/PPD_PostScript

This file is created when a printer is configured with the Printer manager. The file
contains X resource files and PPD files. It is packed with PPD files and X resource
files using the /usr/lib/print/packppdfiles utility. See the section “What Happens When
a PPD Driver Is Installed” on page 231 for details. Also see the packppdfiles(1)
reference page.

Note: Once a printer is installed, all X resource files for the printer GUI options panel
are taken from this file. If any new or language-specific resource files are installed,
then the printer must be removed and reinstalled (using the printer manager) to
ensure that the new resource files are used (do this on the print server first and then
on the clients).

What Happens When a PPD Driver Is Installed

231

Other Utility Files

• /usr/lib/print/genppdtemplate

Used to generate an X resource file from a PPD file.

• /usr/lib/print/ppdtopod

Used to convert a PPD file to an Impressario POD format. Invoked with the
printer’s PPD file when the printer is installed.

• /usr/lib/print/packppdfiles

Used to pack several files into a single file
(/var/spool/lp/app-defaults/<printername>/<printername>). The GUI program unpacks
the file. See the section “What Happens When a PPD Driver Is Installed” on
page 231 and the packppdfiles(1) reference page for more details.

What Happens When a PPD Driver Is Installed

The first step involved when adding a printer is to invoke the Printer Manager followed
by the Add function (or run the equivalent shell scripts: mknetpr(1M), mkcentpr(1M),
mkscsipr(1M), and so on). One of the first events to occur is the modelinfo command is run
to update the /var/spool/lp/modelinfo.dat file. modelinfo.dat contains a list of supported
printers and is used to generate the list of printers displayed to a user (the printer
manager uses the modelinfo.dat file, as do the shell scripts). If either of the directories
/var/spool/lp/model or /var/spool/lp/PPD_model have been updated (files added, deleted or
modified) then modelinfo.dat will be updated (this may take a few seconds to run);
otherwise, modelinfo.dat is deemed to be up to date and is not changed.

Once the user has selected the printer to install, the Printer Manager runs the
/usr/lib/lputil utility script in this manner:

/usr/lib/lputil add <device> <model file name> <option string>

The arguments are as follows

• <device> is the output device, such as /dev/plp for a parallel port.

• <model file name> is the lp model name from /var/spool/lp/model.

• <option string> is the list of replaceable options parsed from the printer’s entry in
the /var/spool/lp/modelinfo.dat file.

232

Appendix H: Impressario PPD Driver Implementation

/usr/lib/lputil searches the <model file name> for the substring impressario_ppd_model. If
the substring is found in the name then /usr/lib/lputil will setup the PPD driver for this
printer. To do that, /usr/lib/lputil performs these steps:

1. Extracts the name of the PPD file (found in the /var/spool/lp/PPD_model directory)
from the <option string> argument (which will contain a string similar to
ppdname=loptrac.ppd for PPD-supported printers).

2. Creates a link from /var/spool/lp/gui_interface/ELF/<printername> to
/var/spool/lp/gui_model/ELF/impressario_ppd_model.gui.

3. Converts the /var/spool/lp/PPD_model/<ppd_filename> to an Impressario POD file
using ppdtopod (see the ppdtopod(1) reference page for more details). This results in
the creation of the following files:

• /usr/lib/print/data/impressario_ppd_model.config

• /usr/lib/print/data/impressario_ppd_model.log

• /usr/lib/print/data/impressario_ppd_model.status

These files remain on the system and will always contain information specific to
the last PPD printer installed.

4. Copies the above three files to /var/spool/lp/pod/<printername>.[config,log,status].

5. Determines if the output device is monochrome, RGB, or CMYK, based on the
<option string> argument for numcolors=.

6. Creates a link from /var/spool/lp/PPD_model/<ppd_filename>.extension.ppd to
/var/spool/lp/PPD_model/impressario_ppd_common*.ppd (based on the device being
monochrome, RGB, or CMYK).

7. Creates the /var/spool/lp/app-defaults/<printername>/PPD_PostScript file using the
packppdfiles utility. See the packppdfiles(1) reference page for details.

At this point, lputil completes the installation using lpadmin to add a printer.

Where to Find PPD Files for a Specific Printer

233

Where to Find PPD Files for a Specific Printer

PPD files can be found at printer vendor Web sites and FTP sites. Many vendors have a
large collection in a single directory that can be downloaded. One notable exception is
Hewlett Packard. Their PPDs are not available in a single location; they are incorporated
into Hewlett Packard supplied printer drivers. For this reason you may have to contact
Hewlett Packard directly to get a PPD file for a particular printer (or download a
Windows version of the driver, unzip it, and search the restored files for the PPD file).

A large collection of PPDs for multiple vendors is available from Adobe’s FTP site at
ftp.adobe.com. Most of these files are already available on the Silicon Graphics system
and can be found in the directory /var/spool/lp/PPD_untested.

Another collection of PPDs can also be found in /var/spool/lp/PPD_untested. These are
PPD files that Silicon Graphics has not yet tested. They may or may not work with the
Impressario PPD driver. These files are supplied in the impr_server.sw.ppd_unsupported
subsystem and are provided as a convenience for users who would otherwise have to get
them from an FTP site (see the README file in the /var/spool/lp/PPD_untested directory
for more information). To determine the list of printers supported by the PPD files in the
/var/spool/lp/PPD_untested directory, enter these commands:

cd /var/spool/lp/PPD_untested
grep “*ModelName” * | more

Printers supported by the PPD files in the /var/spool/lp/PPD_untested directory are not
listed by the Printer Manager. To make the PPD available to the Printer Manager, it has
to be copied to the /var/spool/lp/PPD_model directory (see the README file in the
/var/spool/lp/PPD_untested directory for more information).

Note: Always read the copyright statement in a PPD file before distributing it. Some
allow redistribution and others do not.

234

Appendix H: Impressario PPD Driver Implementation

Applicable Reference Pages

Table H-1 shows a list of applicable reference pages.

Table H-1 Applicable Reference Pages

Reference Page Description

ppdtopod(1) Converts a PPD file to an Impressario POD file

impressario_ppd_model(1) Printer configuration dialog

ppd(1) Printer driver overview

packppdfiles(1) Packs all files needed by the Impressario PPD driver into one file

genppdtemplate(1) Extracts PPD strings as X11 resources

235

Appendix I

I. PostScript Interpreter (psrip) Command Line Options

As documented in Chapter 11, “Enhancing Impressario With Plug-Ins,” when you use an
alternate PostScript Raster Image Processor (RIP) your new RIP must be command-line
compatible with psrip. This appendix provides a listing of the psrip command line
options.

The psrip command converts a PostScript file to raster data format By default, psrip
assumes that its input will be arriving on the standard input, its output should be written
to the standard output and error messages should be written to the standard error. If a
filename is specified after all option switches, data will be read from that file rather than
from the standard input.

The psrip command line options are as follows:

psrip [-O filename] [-L filename] [-P printer_name] [-F format] [-B bits] [-C colorspace] [-d
device_type[arg1,[arg2]]] [-W width] [-H height] [-R res] [-X hres] [-Y vres] [-U hoff] [-V voff]
[-I filename] [-G arg1,[arg2,[arg3,[arg4]]] [-T] [-j pixels] [-f] [-r angle] [-l] [-k] [-v] [-M] [-S] [-g
scratch_dir] [-y persistent_dir] [-a startup_path] [-b backend_path] [-c resource_path] [-o
backend_option] [-x] [-h] [-D[[D]D]] [PostScript input file]

-O filename Specifies the name of the file to which the rasterized output will be sent.
If the -O option is not specified, output will be sent to the standard
output.

-L filename Specifies the name of the file to which error, warning and informational
messages are to be written. If the file specified already exists, any
messages generated by psrip will be appended to the end of the file. If
the -L option is not specified, message output will be sent to standard
error.

-P printer_name
Specifies the name of the printer for which raster output is to be
generated. printer_name is the name of a printer that is physically
attached to the system running psrip. The printer name is used to locate
the Printer Object Database (POD) for the printer. If this option is
specified, the printer specific values for output width, length, and

236

Appendix I: PostScript Interpreter (psrip) Command Line Options

resolution are filled in from the POD and need not be specified using
command-line options. Use of the -P option is preferable to manually
setting the options because changes to the printer configuration file will
then be reflected in the program’s output. The values read from the POD
file can be selectively overridden using the command-line options. If
POD values must be overridden, specify the overriding options after (to
the right of) the -P option, since the rightmost option takes precedence.

For compatibility with previous releases of the Impressario product, the
-P option can take a full pathname to the POD files instead of a printer
name. psrip automatically detects that a complete pathname has been
specified and looks for the POD files in the directory specified by that
pathname. The use of full POD pathnames is discouraged.

-F format Specifies the output raster data format. format may be specified as
chunky, or the default, planar. The data format is normally derived from
the POD (see -P), which is kept up to date with the current printer
configuration.

Chunky data is organized such that the color values for each dot appear
together. For example, if a dot consists of three colors C, M and Y,
chunky output format for a 3 dot by 3 dot image would be organized
as:

CMYCMYCMY
CMYCMYCMY
CMYCMYCMY

Note that for the case of one bit per component, the chunky data above
would contain a trailing 0 to nibble align each pixel’s data (i.e.
CMY0CMY0CMY0). Depths greater than one bit per component pack
the data (i.e. CMYCMYCMY).

Planar data is organized such that all data for one color component is
output followed by all data for the next color component and so on. For
example, the CMY data in the above example organized for planar
output would appear as:

CCC
CCC
CCC
MMM
MMM
MMM

237

YYY
YYY
YYY

The selection of output data organization for single component
colorspaces is moot. Therefore, when the k or w colorspace is specified,
the -F switch is ignored and by convention the output is considered to
be in chunky format.

-B bits Specifies the number of bits per color component for the output data.
Currently, bits may be specified as 1, the default, 4, or 8. The bits per color
is normally derived from the POD (see -P), which is kept up to date with
the current printer configuration.

-C colorspace Specifies the output data colorspace. The standard values of colorspace
may be one of the following: k, the default, w (inverse k), cmy, cmyk,
ymc, ymck, kcmy, or rgb. These values will all produce TIFF compatible
output organized according to the -F option with a depth per color
component specified by the -B option.

-Z compression Specifies the compression scheme to be used on the output data.
Currently, compression is not supported.

-W width, -H height
The -W and -H options specify the output data area in dots, in the
horizontal (width) and vertical (height) directions, respectively. These
values are normally derived from the POD (see -P), which is kept up to
date with the currently loaded paper size. The default width and height
correspond to an 8.5 by 11 inch output area rendered at 100 dots per inch
(dpi). Therefore, the default output area is:

default width = 850 dots
default height = 1100 dots

-R res, -X hres, -Y vres
The -R option specifies the printer resolution in dots per inch in the
horizontal (width) and vertical (height) directions simultaneously.
These values may be set independently using the -X (for width) and -Y
(for height) options. These values are normally derived from the POD
(see -P), which is kept up to date with the current printer configuration.
The default horizontal and vertical resolutions are 100 dots per inch.
There is no maximum resolution limitation.

238

Appendix I: PostScript Interpreter (psrip) Command Line Options

-U hoff, -V voff These options specify the horizontal (x) and vertical (y) offsets of the
frame buffer origin in dots, respectively. These options may be used to
adjust the PostScript origin to compensate for image clipping and
should be used with care. The default horizontal and vertical offsets are
zero. Note that these offset are relative to the page and are not effected
by image rotation or flipping.

-I filename It is often necessary to prepend PostScript code onto a PostScript file
before it can be properly interpreted. Typically this prolog code consists
of PostScript functions and definitions that will be referenced by the
main PostScript file. Often the prolog is concatenated onto the beginning
of the main file and the result is interpreted as a single file. The psrip
program provides a more efficient means for prepending prolog files.
The -I flag allows a prolog file to be included for processing before the
main PostScript file. Multiple -I flags can be specified on the
command-line. The files will be processed from left to right in the order
specified.

-T At present this option performs no function in the level 2 rip. There is a
default screen installed with the rip which can only be overridden by
Postscript screen/halftone commands. It is not clear what purpose, if
any, this option may perform in the future.

Since halftoning is a device dependent operation the default halftone
may not produce adequate results on certain output devices. Under
these circumstances it may be necessary to define a new PostScript
halftone cell and prepend this definition to the input file as a PostScript
prolog. Please refer to the “PostScript Language Reference Manual” for
information on halftone cells. Refer to the -I switch for information on
prolog files.

-G red_gamma,[green_gamma,[blue_gamma,[gray_gamma]]]
Specifies gamma values that will be applied before the current job is
executed. This option is realized via the Postscript setcolortransfer
operator. The red_gamma is applied to the red/cyan color plane, the
green_gamma is applied to the green/magenta color plane, the
blue_gamma is applied to the blue/yellow color plane, and the
gray_gamma to any black or gray color plane. The default value, no
gamma correction (1.0), will be applied to any planes which are not
specified via the command line. Please note that one must specify all the
gamma values to specify a gray gamma value. Each gamma value is
interpreted as a floating point number.

239

-f Specifies that the output image should be flipped (mirrored) about the
vertical axis. This flag is useful when creating transparencies. Note that
flipping of the image is performed after any rotation. Therefore, the
image is always flipped about the vertical axis.

-r angle Specifies that the image is to be rotated by angle degrees. Positive
rotations are counter-clockwise measured from the horizontal axis. The
default rotation angle is 0. angle may be any positive or negative integer.
Only angles which are a multiple of 90 degrees are supported. Specified
angles that are not multiples of 90 degrees are snapped to the nearest
multiple of 90 degrees.

-l Specifies that the output should be in landscape orientation rather than
portrait. Note that specifying this option simply creates the raster
imaging framebuffer with the page width and height values swapped. It
is the responsibility of the PostScript input code to operate correctly in a
landscape orientation. It may be necessary to specify an image rotation
using the -r switch and a frame buffer offset using the -U and -V switches
in order to obtain the desired landscape results.

-M The psrip program has two methods for allocating raster buffer storage.
The back end DSO must define raster buffer allocation and deallocation
functions that are used as callbacks by CPSI for raster buffer memory
management. If the -M option is specified raster buffer allocation will be
made by memory mapping a temporary disk file. This tends to improve
performance when a large frame device is used (see the -d option). The
-M option only takes effect when the device type is a frame device. The
temporary file is created in the interpreter scratch file directory (see the
-g option). The size of the temporary file will be equal to the amount of
storage required for the raster buffer rounded up to the nearest memory
page. For a frame device this can lead to a very large file. The temporary
file is automatically removed by psrip.

-S A standard PostScript document will use a showpage operator between
each page. The showpage operator instructs the interpreter to output the
current raster image. Typically, Encapsulated PostScript files do not
contain a showpage operator. The -S switch forces the execution of a
showpage operator at the end of the PostScript file if a showpage has
never been issued by the file. If the file has issued a showpage this
switch has no effect. If a syntactically correct PostScript file does not
produce an output image, the -S flag may be specified to force a single
page output.

240

Appendix I: PostScript Interpreter (psrip) Command Line Options

-d deviceType[,arg1[,arg2]]
Specifies how raster image data should be fed from the interpreter
kernel to the back end DSO. The available values of deviceType are
described below. The default device type is auto. Note that certain
values of deviceType accept optional arguments (i.e. arg1 and arg2).

null

Specifies that no raster image is to be produced. No raster buffer
storage is allocated and the show, stroke, show page and copypage
operators do nothing. However, all other aspects of interpreting the
page description proceed normally. The best use of this option is to
check a PostScript page description for syntactical or resource
allocation errors, so called preflighting.

frame

Specifies that a frame device should be used for imaging. A frame
device allocates storage for a complete raster output page. The frame
device was the only device type available in the Level 1 psrip.

band[,numBuffers[,memLimit]]

Specifies that a band device be used. A band device renders the output
raster image as a series of sequential bands and thus can use
considerably less memory than a frame device. The back end is passed
bands as they are rendered. The RIP can do a certain amount of parallel
processing of bands and so the numBuffers option can specify the
number of band buffers to be used. The default number of buffers is 1.
The number of raster lines per band is determined by the memLimit
option. This option specifies the total amount of memory that may be
used for all band buffers. The default memory limit is 5 MBytes.
memLimit is specified in number of bytes. Since the number of scan line
in a band must be a power of two, the actual memory used for band
buffers may differ from the specified memory limit.

auto[,numBuffers[,memLimit]]

Specifies that psrip should decide whether to use a frame device or a
band device. This is the default device type. The decision is made based
on the number of buffers to be used, numBuffers, and the memory use
limit, memLimit. The RIP starts by assuming a frame device and
calculates the amount of memory required. If the total amount of
memory required exceeds memLimit, a band device is used. The band
device is created with numBuffers bands and a total memory limit of

241

memLimit. The default numBuffers is 1 and the default memLimit is 5
megabytes. The syntax for memLimit is the number of bytes. Since the
number of scan lines in a band must be a power of two, the actual
memory used for band buffers may differ from the specified memory
limit. The 5 megabyte default memory limit was chosen because it is
enough to render an 8.5 by 11 inch page with 1-bit per color CMYK at
300 dpi using a frame device.

-g scratchDir During execution the interpreter creates a scratch directory to place a
number of temporary files. The directory and its contents are removed
upon termination of psrip. The -g option specifies the directory in which
the scratch directory is to be created. The directory specified with the -g
option must exist and is not created (scratch directories within the
specified directory are created). For example, if scratchDir is /usr/foodir
then psrip will create the scratch directory /usr/foodir/uniqueDirName
and place all temporary files in the /usr/foodir/uniqueDirName
directory. The directory uniqueDirName and its contents will be removed
by psrip upon termination. If the -g option is not specified, the default
scratch file directory is created in one of two locations. If the
environment variable PSRIPTMPDIR specifies a directory, the scratch
directory will be created in that directory/uniqueDirName. If the variable
is not set, the directory will be created in the
/var/spool/lp/psparams/uniqueDirName directory. The
uniqueDirName is created in all cases. This is necessary as all instances of
the interpreter must have individual scratch areas.

-y persistentDir The interpreter kernel caches persistent configuration information in a
number of disk files. The -y option can be used to specify an alternate
persistent directory. The directory specified with the -y option must exist
(psrip will not create it). Persistent information is used by the interpreter
across invocations. For example, the total number of pages output by the
RIP (the PageCount parameter) is maintained in a persistent file. By
default persistent files are created by the interpreter in one of two
directories. If a printer name has been specified (see -P option) and psrip
is being run as the lp user (based on euid), the persistent files will be
created in the directory /var/spool/lp/psparams/printerName. If a
printer has not been specified or the user is not lp, the persistent files will
be created in the scratch file directory (see -g option) and will be
removed upon termination of the RIP. If the -y option is specified,
persistent files will be placed in the directory persistentDir regardless of
the user and regardless of whether a printer has been specified.

242

Appendix I: PostScript Interpreter (psrip) Command Line Options

-a startupPath Specifies a search path for the directory containing the startup.ps code
and the POSTSCRIPT.VM initial VM file. The search path is a colon
separated list of directories. The path is searched until each file is found.
The default search path is /usr/lib/print/data/psrip. If startupPath
contains a path consisting of the single character %, the default path will
be substituted. For example, if startupPath is specified as
%:/usr/people/foo the startup file search path will be
/usr/lib/print/data/psrip:/usr/people/foo.

-b backendPath Specifies a search path for back end DSOs. All directories long the path
are searched until the required DSO is found. A back end DSO is
identified by a file ending in .so. The search path is a colon separated list
of directories. The default search path is /usr/lib/print/psdevdso. If
backendPath contains a path consisting of the single character %, the
default path will be substituted. For example, if backendPath is specified
as %:/usr/people/foo the back end DSO search path will be
/usr/lib/print/ psdevdso:/usr/people/foo. If DSOs along the search
path have the same name, the first DSO encountered will be used.

-c resourcePath Specifies a search path for interpreter resource files. All directories along
the path are searched for files ending in .upr. The search path is a colon
separated list of directories. The default search path is
/usr/lib/print/data/psrip. If resourcePath contains a path consisting of
the single character %, the default path will be substituted. For example,
if resourcePath is specified as %:/usr/people/foo the resource file search
path will be /usr/lib/print/data/psrip:/usr/people/foo.
Printer-specific resource files can be read by adding their directory to
resourcePath.

-o backendOptions
This option is used to specify a string which will be passed to the
backend active during processing. The contents of the backend option
string is backend dependent. Basically, this establishes a method of
communication between the psrip user and the backend.

-k Normally, psrip outputs the raster image with the PostScript origin on
the trailing scan edge of the image. That is the origin is on the last raster
line of the image. The -k option place the origin along the leading raster
line. This option is equivalent to the option -r 180.

-v This option is used to color invert the output image. For example,
inverting an rgb image results in the red, green and blue components
replaced by cyan, magenta and yellow

243

-j pixels This option is used with xerographic engines. For a xerographic
marking engine, laser light illuminates spots on a photosensitive
medium that correspond to pixels of the raster image. Different
technologies illuminate either the spots that correspond to colored
pixels in the raster image - write-black engines - or else illuminate the
spots that correspond to uncolored (white or blank) pixels in the raster
image - write- white engines. This option is for use with write-white
engines. The shapes of pixel marks on the medium are sufficiently
different between write-black and write-white marking engines that
special compensation must be made for the thinner shapes produced by
write-white engines. The pixels argument specifies the number of pixels
by which to fatten zero-width (one pixel) lines so that they do not break
up on write- white marking engines. Specifying this option with a
non-zero value of pixels also disables both the ATM font rasterizer and
Type 1 hinting. Therefore, this option should only be used on
write-white marking engines for which the rendering artifacts are quite
pronounced and unsatisfactory.

-x Specifies that psrip should run in executive (i.e. interactive) mode. When
run in this mode, the interpreter processes all startup code but ignores
any input page description file. The interpreter accepts Post Script input
at the PS> prompt. To exit the interpreter type CTRL-D or quit. In order
to capture raster output the -O option must be specified. If -O is not
specified all raster output is sent to stdout.

-E The -E switch, which provided backwards compatibility with the
pschunky program, has been removed.

-h Prints a program usage message to the standard error. This usage
message also lists the currently supported output configurations.

-D[D[D]] Specifies verbose output for debugging purposes. There are three levels
of debugging information available.

245

Glossary

API

Application program interface; a set of function calls for achieving some purpose.

BSD

Berkeley Software Distribution.

chunky data format

The original Impressario 1.0 data format; it has been made obsolete in favor of the Stream
TIFF data format.

CMY STIFF data format

CMY data class is a subset of the CMYK class and differs from the CMYK class in a
TIFF-compliant manner. See “Generic STIFF File Structure” in Appendix A for detailed
information.

CMYK STIFF data format

CMYK is a TIFF data format extension. See “Generic STIFF File Structure” in Appendix A
for detailed information. CMYK stands for cyan, magenta, yellow, and black, the
subtractive color process primaries.

File Type Rules (FTR)

A database that is one of the three key components of the Impressario file conversion
pipeline. These rules are well-documented in the Indigo Magic Desktop Integration Guide,
available as an online book and installable from your IRIX CD.

filter/driver specification

See “The Filter/Driver Specification and psrip” in Chapter 2.

FTR

See File Type Rules.

246

Glossary

generic scanner interface

An interface between application programs and scanner drivers. See Chapter 8, “Generic
Scanner Interface,” for additional information.

GIF

Graphics Interchange Format. A format for storing multibit images and graphics.

glp

A graphical end-user interface for submitting print jobs from applications. See the glp(1)
reference page for additional information.

gscan

A graphical end-user interface for using scanners. See the gscan(1) reference page for
additional information.

GUI

Graphical user interface.

Impressario

A visual printing and scanning environment for IRIS workstations.

JPEG

Joint Photographic Experts Group. A file format that contains a JPEG data stream.

libimp

A C application program interface (API) for reading and writing Silicon Graphics Image
Format files.

libpod

A C application program interface to the printer object database (POD).

libprintui

A graphical user interface (GUI) printing library.

libscan

A C application program interface for scanning.

Glossary

247

libspool

A C application program interface to the UNIX printer spooling system.

libstiff

A C-language API for reading and writing Stream TIFF files.

lp command

The System V release 3 command to send a print job to the printer. See the lp(1) reference
page.

lpr command

The BSD command to send a print job to a printer. See the lpr(1) reference page.

lpsched command

The System VR3 spooler job scheduler. Not invoked by end users.

packed data format

Bitmapped data organized by pixel, with all color components for each pixel adjacent.
For example: RGBRGBRGB. . .

planar data format

Bitmapped data organized by color “plane,” with all pixels arranged in planes of
component colors, all components of one color, then another, and so on.

PCD

Kodak Photo CD. Files using Eastman Kodak’s proprietary format for storing digital
images.

plotter format

A raster-based page-description language, most commonly HPGL or some variant.

POD

See printer object database.

PostScript printer

A printer with a built-in PostScript interpreter. It prints only PostScript files.

248

Glossary

PPM

Portable Pixmap Utilities. A format used in color bitmap file conversion.

print client

Any system other than the print server that wishes to use a printer.

print server

The system that controls a printer.

PrintBox

A graphical end-user interface for submitting print jobs from applications. See the
libprintui(3) reference page for additional information.

Printer Manager

A graphical end-user interface for managing and installing printers. See the reference
page for additional information.

printer model file

A Bourne shell script that controls the filtering and printing of a set of files. Invoked by
the lpsched command. See Chapter 3, “Printer Model Files.”

<printer name>.config

A configuration file representing the capabilities of the printer. The .config file is part of
the printer object database (POD).

<printer name>.log

The printer log file for the specified printer. The .log file is part of the printer object
database (POD).

<printer name>.status

A status file indicating the current printing state. The .status file is part of the printer
object database (POD).

Glossary

249

printer object database (POD)

The POD contains information on the current configuration, status, and job history of a
single printer. It is the central database used by all printing filters and is maintained by
each driver. See Appendix C, “Printer Object Database (POD) File Formats,” for detailed
information.

printers

See Printer Manager.

PrintPanel

An alias for glp, a graphical end-user interface for modifying printer settings. See the
glp(1) reference page for additional information.

PrintStatus

A graphical end-user interface for checking printer status. See the PrintStatus(1)
reference page for additional information.

raster printer

A printer that accepts only bitmap image data.

scanner driver

A program that interfaces with a scanner. See Chapter 6, “Scanner Drivers,” for
additional information.

scanners

A graphical end-user interface for installing and managing scanners. See the scanners(1)
reference page for additional information.

SGI

Silicon Graphics, Inc. image file format. Format for storing black-and-write, color RGB,
and color RGB with alpha channel images.

spooling system API

See libspool and libprintui.

STIFF

Stream TIFF is a subset of the Tagged Image File Format (TIFF) originally developed by
Aldus Corporation. See Appendix A, “Stream TIFF Data Format,” for more information.

250

Glossary

System V spooler interface

See lp command and lpsched command.

Tagged Image File Format

The Tagged Image File Format (TIFF) originally developed by Aldus Corporation. See
Appendix A, “Stream TIFF Data Format,” for more information.

TIFF

See Tagged Image File Format.

YMC data format

A data class similar to the CMY class with the exception that data is organized as YMC
instead of CMY. YMC stands for yellow, magenta, and cyan.

YMCK data format

A class similar to CMYK except that data is organized as YMCK instead of CMYK.
YMCK stands for yellow, magenta, cyan, and black.

251

Index

A

active icons subsystem, 34
Active Status Path, 176
adding a PPD file to the system, 224
AdvanceFeeder function, 71
API, 245

libpod, 8
libprintui, 8
libspool, 8

APIs to spooling systems, 7, 46
application developers

programming interface, 6, 8
application/driver functions, 95
application programming interface, 245
application programming interfaces, 6, 8
AT&T System V printer spooling system, xvi
audience, xvi
Available Fonts option, 176

B

banner page, 30
banner pages, 35
Berkeley Software Distribution, 245
Black Substitute option, 177
bold syntax convention, xviii
brackets, xix

BSD, 245
BSD spooling system, 6

C

callbacks, 53
Centronics interfaces, 34
CHUNKY file format, 245
CMY data format, 138
CMYK data format, 138
CMYK STIFF data format, 245
CMY STIFF data format, 245
Color Adjustment option, 177
color management

Color Rendering Dictionaries (CRDs), 218
generating Color Rendering Dictionaries (CRDs),

219
generating ICC profiles, 219
International Color Consortium (ICC) color

profiles, 217
overview, 216

ColorPostScript, 34
ColorRaster, 34
Color Rendering Dictionaries, 218
color space conversion functions, 154
.config, 248
config file option

Active Status Path, 176
Available Fonts, 176

252

Index

Black Substitute, 177
Color Adjustment, 177
Cost per Page, 178
Default CA, 178
Default IS, 178
Default MT, 178
Default QM, 179
Driver Path, 179
Error Retry Wait, 179
Input Source, 179
Location Code, 179
Manual Capable, 179
Maximum Addr, 180
Maximum Print Area, 180
Media Standard, 180
Media Type, 180
Media Wait, 180
Minimum Addr, 180
Minimum Print Area, 181
Number of Colors, 181
Physical Location, 181
Port Path, 181
Printer Class, 181
Printer Model, 182
Printer Options, 182
Quality Modes, 182
Resolution, 182
Size Table Entry, 182
Status Update Wait, 183
Technology, 184
Time per Page, 184

configuration file, 5, 54
copies, number of, 26
Cost per Page option, 178
courier syntax convention, xviii, xix
CRDs, 218
creating a graphical options panel, 6
creating a model file, 5
customized banner pages, 35
customizing PPD files, 225

D

data format
STIFF, 131

data packing functions, 150
data structure

SCANINFO, 61
SCANPARAMS, 63

data structures
scanner, 60

debug switch, 35
Default CA option, 178
Default IS option, 178
Default MT option, 178
Default QM option, 179
DeleteScanner function, 76
deskjet_model.gui, 41
developing a printer driver, 5
device interface, 34
directory

example POD files, 5
model files, 5
printer filter programs, 5

document feeder functions, 103
DoScan function, 69
driver, 114
Driver Path, 179
driver. See printer drivers
driver template

scanner, 60

E

engine-specific options, 24
Error, 188
error handling functions, 151

253

Index

Error Retry Wait option, 179
events, 76

F

fast path for text, 36
FeederReady function, 72
fileconvert reference page, 213
file extensions

.config, 5

.log, 5

.status, 5
File Type Rules, 245
filter/driver

specification, 21
filter/driver specification, 245
filter functions, 166
filtering options, 36
FindScanners function, 73
FTR, 245
Function

SCBandRGB8ToPixelRGB8, 206
SCCreateQueue, 210
SCCreateZoomMap, 205
SCDequeue, 210, 211
SCDestroyQueue, 210
SCDestroyZoomMap, 206
SCEnqueue, 210
SCGrey8ToMono, 207
SCN_ABORT, 203
SCN_DIE, 203
SCN_FEEDERADVANCE, 202
SCN_FEEDERGETFLAGS, 201
SCN_FEEDERREADY, 202
SCN_FEEDERSETFLAGS, 201
SCN_GETSIZE, 203
SCN_INITOK, 199
SCN_MINMAXRES, 199

SCN_NRES, 200
SCN_NTYPES, 200
SCN_PAGESIZE, 199
SCN_RES, 200
SCN_SCAN, 203
SCN_SETUP, 202
SCN_TYPES, 201
SCQueueSetExit, 210, 211
SCZoomRow1, 206
SCZoomRow24, 206
SCZoomRow32, 206
SCZoomRow8, 206

function
AdvanceFeeder, 71
DeleteScanner, 76
DoScan, 69
FeederReady, 72
FindScanners, 73
impClampRow, 161
impClose, 148
impCloseFd, 148
impCMYKtoRGB, 159
impCMYtoRGB, 156
impCopyRow, 161
impCreateZoom, 163
impDestroyZoom, 163
impErrorString, 151
impHSVtoRGB function, 160
impInitRow, 161
impKtoRGB, 155
impOpen, 148
impOpenFd, 148
impPackRow, 150
impPerror, 151
impReadRow, 152
impReadRowB, 152
impResetZoom, 163
impRGBtoCMY, 156
impRGBtoCMYK, 159
impRGBtoDevCMYK, 159
impRGBtoHLS, 160

254

Index

impRGBtoHSV, 160
impRGBtoK, 155
impRGBtoW, 154
impRGBtoYCbCr, 158
impRGBtoYIQ, 156
impRGBtoYUV, 157
impSAddRow, 161
impSDivRow, 161
impSMulRow, 161
impSSubRow, 161
impUnpackRow, 150
impVAddRow, 161
impVSubRow, 161
impWriteRow, 152
impWriteRowB, 152
impWtoRGB, 154
impYCbCrtoRGB, 158
impYIQtoRGB, 156
impZeroRow, 161
impZoomRow, 163
InstallScanner, 74
OpenScanner, 67
PrintID, 72
SCAbort, 102
SCBandRGB8ToPixelRGB8, 206
SCClose, 96
SCCreateQueue, 210
SCCreateZoomMap, 205
SCDataReady, 101
SCDefaultScannerName, 98
SCDequeue, 211
SCDestroyQueue, 210
SCDestroyZoomMap, 206
SCEndScanEnt, 97
SCEnqueue, 210
SCErrorString, 94
SCFeederAdvance, 104
SCFeederGetFlags, 103
SCFeederReady, 105
SCFeederSetFlags, 104
SCGetDataTypes, 99

SCGetFD, 102
SCGetMinMaxRes, 98
SCGetPageSize, 99
SCGetScanEnt, 97
SCGetScanLine, 101
SCGetScannerRes, 98
SCGetScanSize, 101
SCGetStatus, 102
SCGetStatusFD, 102
SCGrey8ToMono, 207
SCN_ABORT, 203
SCN_DIE, 203
SCN_FEEDERGETFLAGS, 201
SCN_FEEDERREADY, 202
SCN_FEEDERSETFLAGS, 201
SCN_GETSIZE, 203
SCN_INITOK, 199
SCN_MINMAXRES, 199
SCN_NRES, 200
SCN_NTYPES, 200
SCN_PAGESIZE, 199
SCN_RES, 200
SCN_SCAN, 203
SCN_SETUP, 202
SCN_TYPES, 201
SCOpen, 96
SCOpenFile, 96
SCOpenScreen, 96
SCPerror, 94
SCQueueSetExit, 211
SCScan, 101
SCScanFD, 102
SCScannerName, 97
SCSetScanEnt, 96
SCSetup, 100
SCZoomRow1, 206
SCZoomRow24, 206
SCZoomRow32, 206
SCZoomRow8, 206
SetFeederFlags, 71
SetupScan, 68

255

Index

G

general filter/driver architecture, 7
general interest reference pages, 213
generating Color Rendering Dictionaries (CRDs),

219
generating ICC profiles, 219
generic scanner API, 82
generic scanner interface, 89, 246
generic STIFF file structure, 135
getopts, 20
GIF, 246
glossary, 245
glp, 10, 246

program, 42
glp reference page, 213
graphical interface

PrintBox, 2
printers, 2
PrintPanel, 2
PrintStatus, 2
scanners, 2

graphical options panel, 37
action area, 39
development, 40
installation, 41
invocation, 42
layout, 38
naming, 41
options handling, 40
termination, 43

graphical options panel program, 114
graphical options panel resource file, 114
graphical user interface, xvi
grelnotes reference page, xv
gscan, 246
gscan reference page, 131, 213
GUI, xvi, 246

H

hardware interfaces, 34
header files

scanner, 60
how to use this guide, xviii

I

ICC color profiles, 217
image access functions, 147
image I/O functions, 152
impClampRow function, 161
impCloseFd function, 148
impClose function, 148
impCMYKtoRGB function, 159
impCMYtoRGB function, 156
impCopyRow function, 161
impCreateZoom, 163
impCreateZoom function, 163
impDestroyZoom, 163
impDestroyZoom function, 163
impErrorString function, 151
impHLStoRGB function, 160
IMPImage structure, 145
impInitRow function, 161
impKtoRGB function, 155
impOpenFd function, 148
impOpen function, 147, 148
impPackRow function, 150
impPerror function, 151
impReadRowB function, 152
impReadRow function, 152
impResetZoom, 163
impResetZoom function, 163

256

Index

Impressario, 246
APIs to spooling system, 7
application programming interfaces, 6, 8
architecture, 1

printing, 3
compliance

print driver developers, 4
overview, 2
printing application development, 10
printing architecture, 3
subsystems, 108

Impressario 2.0, xvii
Impressario compliance

for scanners, 11
Impressario printing architecture, 3
Impressario reference page, 213
Impressario release notes, xv
Impressario subsystems, 108
impRGBtoCMY function, 156
impRGBtoCMYK function, 159
impRGBtoDevCMYK function, 159
impRGBtoHLS function, 160
impRGBtoHSV function, 160
impRGBtoK function, 155
impRGBtoW function, 154
impRGBtoYCbCr function, 158
impRGBtoYIQ function, 156
impRGBtoYUV function, 157
impSAddRow function, 161
impSDivRow function, 161
impSMulRow function, 161
impSSubRow function, 161
impUnpackRow function, 150
impVSubRow function, 161
impWriteRowB function, 152
impWriteRow function, 152
impWtoRGB function, 154

impYCbCrtoRGB function, 158
impYIQtoRGB function, 156
impYUVtoRGB, 157
impYUVtoRGB function, 157
impZeroRow function, 161
impZoomRow, 163
impZoomRow function, 163
Information, 188
Input Source option, 179
installfoliofonts reference page, 213
installpcfonts reference page, 213
InstallScanner function, 74
interfaces, 34
International Color Consortium color profiles, 217
ISO text files, xvi
italics syntax convention, xviii

J

job
sequence ID number, 26
title, 26

JPEG, 246

K

KCMY data format, 140

L

laserjet, 18
libimp, 2, 141, 246
libimp library, 163
libimp library functions, 142
libimp reference page, 214

257

Index

libpod, 2, 5, 8, 10, 246
libpod API, 8
libpod library, 54

compiling programs, 56
debugging, 56
file parsing rules, 172
functions, 57
local functions, 55
standard functions, 55

libpod reference page, 214
libprintui, 2, 10, 38, 246
libprintui API, 8
libprintui library, 8, 48

compiling, 51
example program, 52
functions, 52

libprintui reference page, 214
library

libimp, 2
libpod, 2
libprintui, 2, 8
libscan, 2
libspool, xvi, 2
libstiff, 2

libscan, 2, 11, 246
libscan.a, 11, 196
libscan reference page, 214
libspool, xvi, 2, 8, 9, 10, 247
libspool API, 8
libspool library, 46

compiling, 46
functions, 47

libspool reference page, 214
libstiff, 2, 131, 214, 247
libstiff reference page, 214
Location Code, 179
.log, 248
lp command, 6, 247

lpr command, 6, 247
lpsched

command-line arguments, 26
lpsched command, 247

M

making a software distribution, 112
Manual Capable option, 179
manual page. See reference page
Maximum Addr option, 180
Maximum Print Area option, 180
Media Size, 186
Media Standard option, 180
Media Type, 186
Media Type option, 180
Media Wait option, 180
MediaWaitTimeout, 24
Minimum Addr option, 180
Minimum Print Area option, 181
model file, 25, 114

banner pages, 35
command-line arguments, 26
debug routines, 35
device interface, 34
filtering options, 36
general options, 31
printer name, 33
template, 33

MonoPostScript, 34

N

Number of Colors, 186
Number of Colors option, 181

258

Index

O

online reference pages, xxii
OpenScanner function, 67, 84
Operational Status, 185
OSF/Motif, 40
output-specific options, 24
overview of chapters and appendices, xix

P

packaging Impressario printing software, 113
packaging Impressario scanning software, 117
packaging your Impressario product, 111
packed data format, 247
PCD, 247
PDpod_path global variable, 55
phandler, 18
Physical Location, 181
planar data format, 247
Plotter, 34
plotter

HP DesignJet 750C, xvii
plotter format, 247
plp.h, 18
POD, 247

general syntax, 171
podd, 8
POD files, 5, 114
POD general syntax, 171

character set, 171
field format, 172

pod.h, 18
Port Path, 181
PostScript

color and mono, 34

PostScript files, xvi
PostScript printer, 247
PostScript Printer Description files, 224
PPD driver files, 227
PPD files

”*OpenUI” GUI types, 228
adding to system, 224
applicable reference pages, 234
converting to UNIX file format, 224
created file, 230
customizing, 225
description, 224
driver files, 227
filenames, 224
GUI Driver, 229
LP Model Files, 228
ownership and permissions, 225
printer filter, 230
utility files, 231
where to find, 233
X resource files, 229

PPM, 248
PrintBox, 10, 38, 248

example configurations, 49
reference page, 52, 57

PrintBox graphical interface, 2
printbox program, 52
PrintBox widget, xvi
print client, 55, 248
printed books, xxi
printer

convenience functions, 28
HP DeskJet 1600C, xvii
HP DeskJet 660C, xvii
HP DeskJet 850C, xvii
HP DeskJet 855C, xvii
HP LaserJet 4 Plus, xvii
HP LaserJet 4Si, xvii
HP LaserJet 4V, xvii

259

Index

HP LaserJet 5L, xvii
HP LaserJet 5P, xvii
HP LaserJet 5Si, xvii
name, 33
process command-line arguments, 29
types, 34

Printer Class, 181
printer configuration file, 54, 170

format, 174
parsing, 172

printer drivers
development, 15
engine-specific options, 24
example, 18
include files, 18
invocation, 18
output-specific options, 24
raster-specific options, 23
required options, 22
required switches, 22
reserved options, 23
unreserved options, 24

printer log file, 5, 171
Printer Manager, 34, 248
Printer Model, 182
printer model file, 248
printer object database, 2, 249

files, 54
printer object database (POD) file formats, 169
Printer Options, 182, 187
printers, 249
printers graphical interface, 2
printer-specific filter/driver, 35
printers reference page, 213
printer status file, 5, 54, 171

entries, 185
format, 184, 188
general format, 184
parsing, 172

printer status file entry
Error, 188
Information Options, 188
Media Size, 186
Media Type, 186
Number of Colors, 186
Operational Status, 185
Printer Options, 187
Validation Mask, 187
Warning, 188

printer status file format, 184
PrintID function, 72
printing application development, 10
printing developers reference pages, 214
printing environment, xvi
printing libraries, 45
printing-specific STIFF, 135
PrintPanel, 10, 249
PrintPanel reference page, 213
printpanel reference page, 213
print server, 55, 248
PrintStatus, 249
PrintStatus reference page, 213
printstatus reference page, 213
providing data filters, 5
providing POD files, 5

Q

Quality Modes option, 182
queues and multi-threaded scanner drivers, 207
queues manipulating functions, 210

R

Raster, 34
raster printer, 249

260

Index

raster-specific options, 23
reference page, 114, 117

fileconvert, 213
glp, 213
grelnotes, xv
gscan, 213
Impressario, 213
installfoliofonts, 213
installpcfonts, 213
libimp, 214
libpod, 214
libprintui, 214
libscan, 214
libspool, 214
libstiff, 214
printers, 213
PrintPanel, 213
printpanel, 213
PrintStatus, 213
printstatus, 213
scanners, 213
vstiff, 213

related publications, xxi
online reference pages, xxii
printed books, xxi

remote interfaces, 34
required scanner functions, 198
Resolution option, 182
routeprint, 34

S

SCAbort function, 102
scanconv.h, 60
scandrv.h, 60
SCANINFO data structure, 61
scanipc.h, 60
Scanner

coordinate system, 90

scanner
data structures, 60
data type conventions, 92
drivers, 59
driver template, 60
header files, 60
installation and testing, 78

scanner data type
monochrome, 92
packed 24-bit RGB color, 93
planar 24-bit RGB color, 93

scanner diagnostic functions, 94
scanner driver architecture, 195, 209
scanner driver interface, 82
scanner driver interface options program, 82
scanner drivers, 249
scanner driver structure, 196
scanner functions, 198

required, 198
scanner.h, 60
scanners, 88, 249
scanner-specific options, 81
scanner-specific options program, 86
scanners reference page, 213
scanning area functions, 99
scanning developers reference pages, 214
scanning environment, xvi
scanning functions, 100
scanning resolution functions, 98
SCANPARAMS data structure, 63
SCBandRGB8ToPixelRGB8 function, 206
SCClose function, 96
SCCreateQueue Function, 210
SCCreateQueue function, 210
SCCreateZoomMap function, 205
SCDataReady function, 101
SCDATATYPE data structure, 91

261

Index

SCDefaultScannerName function, 98
SCDequeue Function, 210
SCDequeue function, 211
SCDestroyQueue Function, 210
SCDestroyQueue function, 210
SCDestroyZoomMap function, 206
SCEndScanEnt function, 97
SCEnqueue Function, 210
SCEnqueue function, 210
SCErrorString function, 94
SCFeederAdvance function, 104
SCFeederGetFlags function, 103
SCFeederReady function, 105
SCFeederSetFlags function, 104
SCGetDataTypes function, 99
SCGetFD function, 102
SCGetMinMaxRes function, 98
SCGetPageSize function, 99
SCGetScanEnt function, 97
SCGetScanLine function, 101
SCGetScannerRes function, 98
SCGetScanOpt, 86, 87
SCGetScanSize function, 101
SCGetStatusFD function, 102
SCGetStatus function, 102
SCGrey8ToMono function, 207
sclopt.h, 83
SCLOPT structure, 84
SCN_ABORT function, 203
SCN_DIE function, 203
SCN_FEEDERADVANCE, 202
SCN_FEEDERADVANCE function, 202
SCN_FEEDERGETFLAGS function, 201
SCN_FEEDERREADY function, 202
SCN_FEEDERSETFLAGS function, 201

SCN_GETSIZE function, 203
SCN_INITOK Function, 199
SCN_MINMAXRES function, 199
SCN_NRES function, 200
SCN_NTYPES function, 200
SCN_PAGESIZE function, 199
SCN_RES function, 200
SCN_SCAN function, 203
SCN_SETUP function, 202
SCN_TYPES function, 201
SCOpen, 196
SCOpenFile function, 96
SCOpen function, 96
SCOpenScreen function, 96
SCOptions, 86
SCPerror function, 94
SCQueueSetExit Function, 210
SCQueueSetExit function, 211
SCScanFD function, 102
SCScan function, 101
SCScannerName function, 97
SCScanOpt, 87
SCSetScanEnt function, 96
SCSetup function, 100
SCZoomRow1 function, 206
SCZoomRow24 function, 206
SCZoomRow32 function, 206
SCZoomRow8 function, 206
serial interfaces, 34
server software, xvi
SetFeederFlags function, 71
SetupScan function, 68
SGI, 249
Silicon Graphics filter/driver specification, 21
Silicon Graphics Image file format API, 141

262

Index

Silicon Graphics Image files, xvi
Size Table Entry option, 182
spooling system API, 46, 249
.status, 248
status file, 54
Status Update Wait, 183
STIFF, 249
STIFF data format, 131
STIFF generic functions, 133
STIFF library access, 132
STIFF library description, 132, 141
STIFF library functions, 133
STIFF printing-specific functions, 133
stream TIFF, 131
style conventions, xviii

notations, xviii
syntax, xviii

summary of libpod functions, 47, 52, 57
syntax convention

bold, xviii
courier, xviii, xix
italics, xviii

System V Spooler Interface, 250
System V spooler interface, 6

T

Tagged Image File Format, 250
Technology, 184
template model file execution, 27
testiconfig, 6, 110
testing an Impressario printer, 108
testing an Impressario printer software installation,

110
testipr, 6, 108
TIFF, 250
Time per Page option, 184

U

unreserved options, 24
user name, 26

V

Validation Mask, 187
Versatec interfaces, 34
vstiff reference page, 213

W

Warning, 188
widget

example configurations, 49

263

Index

X

X and Xt Motif documentation set, 87
X applications, 52
XtAppInitialize, 87
Xt options, 42

Y

YMC data format, 139, 250
YMCK data format, 139, 250

Z

zooming and type conversion functions, 205
zooming Functions, 163

	List of Figures
	List of Tables
	About This Guide
	Audience
	New Features
	How to Use This Guide
	Conventions Used in This Guide
	Document Overview
	Related Publications
	Online Books
	Online Release Notes
	Online Reference Pages

	Impressario Architecture
	Overview
	Impressario Printing Architecture
	Compliance for Printer-Driver Developers
	Step 1: Develop Printer Driver (Required)
	Step 2: Provide POD Files (Required)
	Step 3: Create Model File (Required)
	Step 4: Provide Data Filters (As Needed)
	Step 5: Create Graphical Options Panel (Recommended)
	Step 6: Package Software for Distribution (Required)
	Step 7: Verify Product on Server (Required)

	Printing Application Programming Interfaces
	libspool API
	libprintui API
	libpod API
	glp (PrintPanel)

	Printing Application Development

	Complying With the Impressario Scanning Architecture
	Developing a Scanner Driver
	Developing a Scanner Application

	Printer Drivers
	Overview
	Printer Driver Processing
	Printer Driver Examples
	Program Invocation
	Program Processing
	Do the Initial Processing
	Open the Printer Port
	Allocate and Set Up the Buffer
	Update libpod Status
	Read, Process, and Send Data to the Printer
	Cleaning Up and Exiting

	The Filter/Driver Specification and psrip
	Required Options
	Reserved Options
	Unreserved Options

	Printer Model Files
	Overview
	Command-Line Arguments
	Template Model File Execution
	Declaring Variables
	Defining Convenience Functions
	Processing Command-Line Arguments
	Printing Banner Page
	Using Filters to Process Files
	Cleaning Up and Exiting

	Printer-Specific Options
	Developer-Supplied Model File Additions
	Printer Name
	Device Interface
	Printer Type
	GUI Class
	Printer-Specific Filter/Driver
	Debug Routine
	Cleanup Routine
	Printer-Specific Banner Page
	Printer-Specific Filtering Options
	Fast Path for Text

	Printer Graphical Options Panel
	Overview
	Graphical Options Panel Layout
	Options Handling
	Graphical Options Panel Development
	Graphical Options Panel Naming
	Graphical Options Panel Installation
	Invocation by the PrintBox Widget
	Standalone Invocation for Testing
	Termination by the PrintBox Widget
	Additional Information

	Printing Libraries
	The libspool Library
	Compiling Programs With libspool
	libspool Library Functions

	The libprintui Library
	Example Widget Configurations
	Compiling Programs With libprintui
	Library Functions Listed by Purpose
	Example Program
	Initial Program Processing
	Add Callbacks
	Realize All Widgets
	Process Events
	Additional Examples

	The libpod Library
	POD Files
	Standard and Local libpod Functions
	Compiling Programs With libpod
	Debugging With libpod
	Network Communications
	Library Functions Listed by Purpose

	Scanner Drivers
	Driver Template
	Header Files
	Data Structures
	SCANINFO Data Structure
	SCANPARAMS Data Structure

	Functions You Must Write
	OpenScanner() Function
	SetupScan() Function
	DoScan() Function
	SetFeederFlags() Function
	AdvanceFeeder() Function
	FeederReady() Function
	PrintID() Function
	FindScanners() Function
	InstallScanner() Function
	DeleteScanner() Function

	Events
	Installation
	Testing

	Scanner-Specific Options
	Overview
	Options Program and the Scanner Driver Interface
	Scanner Driver’s Perspective
	Options Program’s Perspective
	Installation and Testing

	Generic Scanner Interface
	Overview
	Coordinate System for Scanning
	Data Structures
	SCANNER Data Structure
	SCDATATYPE Data Structure

	Data Type Conventions
	Functions
	Diagnostic Functions
	SCPerror() Function
	SCErrorString() Function

	Application/Driver Rendezvous Functions
	SCOpen() Function
	SCOpenScreen() Function
	SCOpenFile() Function
	SCClose() Function
	SCSetScanEnt() Function
	SCGetScanEnt() Function
	SCEndScanEnt() Function
	SCScannerName() Function
	SCScannerEnt() Function
	SCDefaultScannerName() Function

	Scanning Resolution Functions
	SCGetScannerRes() Function
	SCGetMinMaxRes() Function

	Scanning Area Functions
	SCGetPageSize() Function
	SCGetDataTypes() Function

	Scanning Functions
	SCSetup() Function
	SCGetScanSize() Function
	SCScan() Function
	SCGetScanLine() Function
	SCDataReady() Function
	SCGetFD() Function
	SCScanFD() Function
	SCAbort() Function
	SCGetStatus() Function
	SCGetStatusFD() Function

	Document Feeder Functions
	SCFeederGetFlags() Function
	SCFeederSetFlags() Function
	SCFeederAdvance() Function
	SCFeederReady() Function

	Events
	SCGetEvent() Function
	SCEventPending() Function
	SCGetEventFD() Function

	Testing for Impressario Compatibility
	Testing Impressario Printing Compatibility
	Testing an Impressario Printer
	Testing an Impressario Printer Software Installation

	Packaging Your Impressario Product
	Overview
	Making a tar Archive for Software Distribution
	Packaging Impressario Printing Software
	Packaging Impressario Scanning Software

	Enhancing Impressario With Plug-Ins
	How the Impressario File Conversion Pipeline Works
	File Type Rules
	Runtime File Type Recognition Utility
	File Conversion Utility

	Adding a New File Type to Impressario
	Writing a New Filter
	Writing an FTR
	Adding a CONVERT Rule
	Installation and Testing
	Setting Up an Example
	Testing the New File Type

	Using an Alternate PostScript RIP
	Making the Command Line Compatible With psrip
	Writing a Dummy TYPE
	Testing the Alternate RIP
	Packaging the Files

	Stream TIFF Data Format
	Library Description
	Library Access
	Library Functions
	Example Usage

	Printing-Specific STIFF
	Generic STIFF File Structure

	Silicon Graphics Image File Format API
	Library Description
	Library Access
	Library Functions
	IMPImage Structure
	Image Access Functions
	impOpen() Function
	impOpen(), impOpenFd(), impClose(), and impCloseFd() Functions
	Data Packing Functions
	impPackRow() and impUnpackRow() Functions

	Error Handling Functions
	impPerror() and impErrorString() Functions

	Image I/O Functions
	impReadRow(), impReadRowB(), impWriteRow(), and impWriteRowB() Functions

	Color Space Conversion Functions
	impRGBtoW(), impWtoRGB() Functions
	impRGBtoK(), impKtoRGB() Functions
	impRGBtoCMY(), impCMYtoRGB() Functions
	impRGBtoYIQ(), impYIQtoRGB() Functions
	impRGBtoYUV(), impYUVtoRGB() Functions
	impRGBtoYCbCr(), impYCbCrtoRGB() Functions
	impRGBtoCMYK(), impRGBtoDevCMYK(), impCMYKtoRGB() Functions
	impRGBtoHSV(), impHSVtoRGB() Functions
	impRGBtoHLS(), impHLStoRGB() Functions

	Math Operation Functions
	impZeroRow(), impInitRow(), impCopyRow(), impSAddRow(), impVAddRow(), impSSubRow(), impVSubRow(),...

	Zooming Functions
	impCreateZoom(), impDestroyZoom(), impResetZoom(), impZoomRow() Functions
	Filter Functions

	Printer Object Database (POD) File Formats
	Overview
	Printer Configuration File
	Printer Status File
	Printer Log File

	General Syntax
	Character Set
	Field Format

	Input Parsing Rules for libpod Files
	Printer Configuration File Format
	General Format
	Config File Options
	Active Status Path
	Available Fonts
	Black Substitute
	Color Adjustment
	Cost per Page
	Default CA
	Default IS
	Default MT
	Default QM
	Driver Path
	Error Retry Wait
	Input Source
	Location Code
	Manual Capable
	Maximum Addr
	Maximum Print Area
	Media Standard
	Media Type
	Media Wait
	Minimum Addr
	Minimum Print Area
	Number of Colors
	Physical Location
	Port Path
	Printer Class
	Printer Model
	Printer Options
	Quality Modes
	Resolution
	Size Table Entry
	Status Update Wait
	Technology
	Time per Page

	Printer Status File Format
	General Format
	Printer Status File Entries
	Operational Status
	Media Size
	Media Type
	Number of Colors
	Printer Options
	Validation Mask
	Error, Warning, and Information Options

	Printer Log File Format

	Transition Notes
	Notes for Application Developers
	Notes for Printer Driver Developers
	Changes Affecting Model Files
	Changes Affecting POD Data Files
	Changes Affecting Printer Drivers
	Changes to the Graphical Options Panel

	General Changes in IRIX 6.2

	Scanner Driver Architecture
	Overview
	Driver Structure
	Scanner Functions
	Required Scanner Functions
	SCN_INITOK() Function
	SCN_PAGESIZE() Function
	SCN_MINMAXRES() Function
	SCN_NRES() Function
	SCN_RES() Function
	SCN_NTYPES() Function
	SCN_TYPES() Function
	SCN_FEEDERGETFLAGS() Function
	SCN_FEEDERSETFLAGS() Function
	SCN_FEEDERREADY() Function
	SCN_FEEDERADVANCE() Function
	SCN_SETUP() Function
	SCN_GETSIZE() Function
	SCN_SCAN() Function
	SCN_ABORT() Function
	SCN_DIE() Function

	Type Conversion Macros
	GRIDTOFLOAT and FLOATTOGRID Macros

	Zooming and Type Conversion Functions
	SCCreateZoomMap() Function
	SCDestroyZoomMap() Function
	SCZoomRow1() Function
	SCZoomRow8() Function
	SCZoomRow24() Function
	SCZoomRow32() Function
	SCBandRGB8ToPixelRGB8() Function
	SCGrey8ToMono() Function

	Queues and Multi-Threaded Scanner Drivers
	Queue Manipulating Functions
	SCCreateQueue() Function
	SCDestroyQueue() Function
	SCEnqueue() Function
	SCDequeue() Function
	SCQueueSetExit() Function

	Reference Pages
	Color Management in Impressario
	An Overview
	ICC Color Profiles
	Color Rendering Dictionaries
	Generating CRDs and ICC Profiles

	Impressario PPD Driver Implementation
	About PPD Files
	Adding a PPD File to the System
	Customizing a PPD File
	PPD Driver Files
	LP Model Files
	X Resource Files
	GUI Driver
	PPD Printer Filter
	Created File
	Other Utility Files

	What Happens When a PPD Driver Is Installed
	Where to Find PPD Files for a Specific Printer
	Applicable Reference Pages

	PostScript Interpreter (psrip) Command Line Options
	Glossary

	Index

