
MIPSproTM C++ Programmer’s Guide

007–0704–140

CONTRIBUTORS
Rewritten in 2002 by Jean Wilson with engineering support from John Wilkinson and editing support from Susan Wilkening.

COPYRIGHT
Copyright © 1995, 1999, 2002 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as
indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, IRIX, O2, Octane, and Origin are registered trademarks and OpenMP and ProDev are trademarks
of Silicon Graphics, Inc. MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, R2000, R3000, R4000, R4400, R4600, R5000, and R8000 are registered
or unregistered trademarks and MIPSpro, R10000, R12000, R1400 are trademarks of MIPS Technologies, Inc., used under license by
Silicon Graphics, Inc. Portions of this publication may have been derived from the OpenMP Language Application Program Interface
Specification.

Portions of this documentation are derived from the C++ FRONT END INTERNAL DOCUMENTATION ©1992–2000 Edison Design
Group, Inc., Upper Montclair, NJ.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

New Features in this Guide

This guide has been rewritten to include information about the C++ command line,
and to add further information about C++ pragmas.

007–0704–140 iii

Record of Revision

Version Description

7.3 April 1999
This revision supports the MIPSpro 7.3 release.

140 September 2002
This revision supports the MIPSpro 7.4 release which runs on the
IRIX operating system, version 6.5 and later.

007–0704–140 v

Contents

About This Guide . xv

Related Publications . xv

Obtaining Publications . xvi

Conventions . xvi

Reader Comments . xvii

1. Overview of the SGI C++ Environment 1

The Compiler Programming Environment 1

The SGI C++ Compilers . 2

Understanding ABIs and ISAs 3

N32 and 64 Compilation . 5

OpenMP API Multiprocessing Directives 6

C++ Libraries . 7

Debugging . 8

2. Compiling, Linking, and Running Programs 9

The C++ Command Line . 9

Command Line Options . 11

Compiling and Linking . 21

Sample Command Lines . 24

Multilanguage Programs . 24

Object File Tools . 25

3. MIPSpro C++ and the C++ Standard 27

Unimplemented C++ Standard Language Features 27

007–0704–140 vii

Contents

Feature Control . 28

Extensions Accepted . 29

4. Using Templates . 31

Template Instantiation . 31

Automatic Instantiation . 32

Meeting Instantiation Requirements 32

Automatic Instantiation Method 33

Instantiation Modes . 35

Command Line Instantiation Examples 37

#pragma Directives for Template Instantiation 39

#pragma instantiate . 40

#pragma can_instantiate 41

#pragma do_not_instantiate 42

Implicit Inclusion . 43

5. The Auto-Parallelizing Option (APO) 45

C/C++ Command Line Options That Affect APO 45

-apo . 46

-apokeep and -apolist . 46

-CLIST:... 47

-IPA:... 47

-LNO:... 47

-O3 . 48

-OPT:... 48

-pca, -pcakeep, -pcalist 49

file . 49

Files . 50

The file.list File . 50

viii 007–0704–140

MIPSproTM C++ Programmer’s Guide

The file.w2f.c File . 51

About the .m and .anl Files 53

Running Your Program . 53

Compiler Directives . 54

#pragma concurrent call 55

#pragma concurrent . 57

#pragma serial . 58

#pragma prefer concurrent 58

#pragma permutation . 59

#pragma no concurrentize, #pragma concurrentize 60

Troubleshooting Incomplete Optimizations 61

Constructs That Inhibit Parallelization 61

Loops Containing Data Dependencies 62

Loops Containing Function Calls 62

Loops Containing goto Statements 62

Loops Containing Problematic Array Constructs 62

Loops Containing Local Variables 64

Constructs That Reduce Performance of Parallelized Code 65

Parallelizing Nested Loops 65

Parallelizing Loops with Small or Indeterminate Trip Counts 66

Parallelizing Loops with Poor Data Locality 67

Appendix A. Language Features Not in the ARM 69

Appendix B. Cfront Compatability 73

Extensions Accepted in Cfront-Compatibility Mode 73

Cfront Compatibility Restrictions 78

007–0704–140 ix

Contents

Appendix C. Anachronisms Accepted 79

Index . 81

x 007–0704–140

Figures

Figure 1-1 SGI C++ Environment 3

Figure 2-1 The N32, 64, and O32 C++ Compilation Processes 23

007–0704–140 xi

Tables

Table 1-1 Features of the Application Binary Interfaces 4

Table 1-2 ISAs and Targeted MIPS Processors 5

Table 1-3 ISAs, ABIs, and their Host CPUs 6

007–0704–140 xiii

About This Guide

This publication documents the 7.4 release of the MIPSpro C++ compiler, which is
invoked by the CC(1) command. This document describes the C++ compiling
environment and the libraries used with C++.

The 7.4 version of the MIPSpro C++ compiler runs on IRIX 6.5 and later versions of
the operating system.

Related Publications
The following documents contain information that may be helpful in porting code to
the newer SGI compilers:

• MIPS O32 Compiling and Performance Tuning Guide

• MIPSpro N32/64 Compiling and Performance and Tuning Guide

• MIPSpro N32 ABI Handbook

• MIPSpro 64-Bit Porting and Transition Guide

The following documents contain information about SGI’s implementation of C and
C++:

• C Language Reference Manual

• MIPSpro C and C++ Pragmas

Several performance evaluation and debugging tools are available to help you
optimize and evaluate your code. See the ProDev WorkShop: Overview for a
description of the different tools that are available.

See the Guide to SGI Compilers and Compiling Tools for an overview of all SGI compilers,
compiler documentation, optimization tools, porting tools, and performance tools.

In addition to the above SGI documentation, several third party documents contain
additional information which may be helpful. These books can be ordered from any
book vendor:

• Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Publishing
Company, special edition, 2000. ISBN 0201700735.

007–0704–140 xv

About This Guide

• Josuttis, Nicolai. The C++ Standard Library: A Tutorial and Reference.
Addison-Wesley Publishing Company, 1999. ISBN 0201379260.

The C++ Standard, ISO/IEC 14882, Information Technology — Programming Languages
— C++ is available from the American National Standards Institute at
http://www.ansi.org.

Obtaining Publications
You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at: http://docs.sgi.com. Various
formats are available. This library contains the most recent and most
comprehensive set of online books, release notes, man pages, and other
information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With
an IRIX system, select Help from the Toolchest, and then select InfoSearch. Or
you can type infosearch on a command line.

• You can also view release notes by typing either grelnotes or relnotes on a
command line.

• You can also view man pages by typing man title on a command line.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

xvi 007–0704–140

MIPSproTM C++ Programmer’s Guide

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Parkway, M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.

007–0704–140 xvii

Chapter 1

Overview of the SGI C++ Environment

This chapter describes the SGI C++ compiler environment and contains the following
major sections:

• "The Compiler Programming Environment", discusses the different elements
included in the compiler environment.

• "The SGI C++ Compilers", page 2, discusses the compilers that SGI provides for
IRIX 6.x systems.

• "OpenMP API Multiprocessing Directives", page 6, discusses the OpenMP features
available with the MIPSpro C++ compilers.

• "C++ Libraries", page 7, discusses the C++ libraries in the SGI C++ environment.

• "Debugging", page 8, discusses the SGI C++ debugging environment.

The Compiler Programming Environment

Note: The MIPSpro C++ compiler is based on the Edison Design Group (EDG) C++
Front End, Version 2.45.

The compiling environment allows you to develop, debug, and run C++ codes on
your computer system. It includes the following products:

• A compiler, including the C++ front end, the language-independent optimizing
back end, the linker, and other compiling elements.

• The libraries. SGI supports the C++ Standard Library as well as the C library,
including the interface for C++ embedded in such header files as cstdlib.
Information on the individual C library functions can be found in the online man
pages for each function.

• The performance tools contained in SpeedShop and in the ProDev WorkShop
suite. For more information on these products, see the SpeedShop User’s Guide or
the ProDev WorkShop: Overview.

• An archiving tool. An archive library is a file that contains one or more routines in
object file format (file.o). When a program calls an object file that is not explicitly

007–0704–140 1

1: Overview of the SGI C++ Environment

included in the program, the linker, ld(1), looks for that object file in an archive
library. The scheduler then loads only that object file, not the whole library, and
loads it with the calling program.

The archiver creates and maintains archive libraries. It allows you to copy new
objects into the library, replace existing objects in the library, move objects within
the library, and copy individual objects from the library into individual object files.
For more information on the archive library, see the ar(1) man page.

• Object file tools, which allow you to disassemble object files into machine
instructions, print information about archive files, and perform other tasks. For
more information on these tools, see the following man pages: dis(1),
elfdump(1), file(1), nm(1), size(1), and strip(1).

• Online documentation utilities. The man(1) command allows you to retrieve online
man pages. Prose reference text, such as this manual, can be retrieved through the
Web browser supported at your site. See http://www.techpubs.sgi.com for
all online documentation.

• Modules. The compiler can be installed with the modules utility. This utility
allows you to access different versions of the compiler and runtime environment.
For more information on using the modules utility, see the modules(1) man page
or enter the following command:

% relnotes modules

• The message system. This system lets you obtain more comprehensive
explanations of messages generated by the compiler and tools in the compiling
environment. When a message condition occurs, both a message number and a
verbal summary of the problem is generated. If you need more information on the
error condition described in the summary, you can enter the explain(1)
command to retrieve a more detailed description.

• Environment variables. For more information, see the pe_environ(5) man page,
which describes many environment variables that can be used when compiling
C++ programs.

The SGI C++ Compilers
The SGI C++ environment provides three C++ compilers for IRIX 6.x systems. As
shown in Figure 1-1, page 3, there are two MIPSpro C++ compilers, a 32-bit version
and a 64-bit version. They are known as the N32 and 64 compilers because of the

2 007–0704–140

MIPSproTM C++ Programmer’s Guide

application binary interfaces (ABIs) they generate. These compilers implement the C++
dialect as documented in the the ANSI/ISO C++ standard (hereafter referred to as
“The Standard”).

The 32-bit ucode C++ compiler (O32 ABI) is also available. The O32 compiler is an
older compiler that is no longer being enhanced. It is included to support legacy code.
The C++ compiler based on Cfront is now unavailable and is no longer supported. See
the C++ release notes for the latest information about the status of these compilers.

MIPSpro 7.4

Recommended

MIPSpro 32-bit version (CC -n32)

MIPSpro 64-bit version (CC -64)

ucode 32-bit (CC-o32)

a12053

Figure 1-1 SGI C++ Environment

The following commands invoke the three compilers:

CC -n32 32-bit native MIPSpro compiler. Generates N32 ABI
objects.

CC -64 64-bit native MIPSpro compiler. Generates 64 ABI
objects.

CC -o32 or CC -32 32-bit native ucode compiler. Generates O32 ABI
objects.

For more information about the compilers and ABIs, see the CC(1) and ABI(5) man
pages, or the MIPSpro N32/64 Compiling and Performance and Tuning Guide.

The focus of discussion in this document centers on the 32–bit and the 64–bit native
MIPSpro compilers. For details about the 32–bit ucode compiler, see the MIPS O32
Compiling and Performance Tuning Guide.

Understanding ABIs and ISAs

An ABI defines a system interface for executing compiled programs. Among the
important features that the ABI specifies are the following:

007–0704–140 3

1: Overview of the SGI C++ Environment

• Supported instruction set architectures (ISAs)

• Size of the address space

• Object file formats

• Calling conventions

• Register size

• Number of registers

The three ABIs that are relevant to MIPSpro C++ are N32, 64, and O32. This
document discuss the N32 and 64 ABIs. See Table 1-1, page 4, for a summary of these
ABIs, their features, and their relationships to the MIPS ISAs. The O32 ABI is not
discussed in detail in this document.

Table 1-1 Features of the Application Binary Interfaces

N32 (-n32) 64 (-64)

Default ISA MIPS III MIPS IV

Alternate ISA (Option) MIPS IV (-mips4) MIPS III (-mips3)

Floating Point Registers 32 32

Register Size 64 bits 64 bits

int 32 bits 32 bits

long int 32 bits 64 bits

char* 32 bits 64 bits

The instruction set architecture (ISA) is the set of instructions recognized by a
processor. It is the interface between the lowest level software and the processor. Table
1-2 shows the MIPS ISAs and the MIPS processors for which they were designed.

4 007–0704–140

MIPSproTM C++ Programmer’s Guide

Table 1-2 ISAs and Targeted MIPS Processors

ISA Target Processor

MIPS IV R5000, R8000, R10000, R12000, R14000

MIPS III R4000 (Rev 2.2 and later), R4400, R46000

MIPS II R4000 (Rev. 2.1 and earlier)

MIPS I R2000, R3000

Table 1-1 and Table 1-2 are intended to give an overview of ABIs and MIPS ISAs.
They do not show details (such as an R10000-based, IRIX 6.3 Silicon Graphics O2
system does not support 64 MIPS IV, but an R10000-based, IRIX 6.4 Silicon Graphics
Octane system does support it).

For more information about ABIs and ISAs, see the release notes for your system, the
MIPSpro N32/64 Compiling and Performance and Tuning Guide, the MIPSpro N32 ABI
Handbook and the cc(1) and ABI(5) man pages.

N32 and 64 Compilation

The following are the default compilation modes for the different supported ABIs:

• CC -64 is -mips4

• CC -n32 is -mips3

SGI recommends that most of your development be for the N32 ABI: -n32 -mips3
for R4x00 systems and -n32 -mips4 for R5000, R8000, R10000, and R12000 systems.
This gives your program access to the full MIPS III instruction set for R4x00 systems.
On systems that use the R5000 or above, it allows your program to use the MIPS IV
instruction set with the lower overhead of a 32-bit address space. You can reserve the
higher overhead -64 -mips4 option for those applications that need the 64-bit
address space on R8000, R10000, and R12000 systems.

The general relationship between the N32 and 64 ABIs, ISAs, and the CPUs that can
run them is shown in Table 1-3, page 6. Again, because of system variations, there are
some exceptions to the combinations shown. Consult your system’s man pages and
release notes for more information.

007–0704–140 5

1: Overview of the SGI C++ Environment

Table 1-3 ISAs, ABIs, and their Host CPUs

-n32 -64

-mips4 R14000, R12000, R10000, R8000, R5000 R12000, R10000, R8000

-mips3 R10000, R8000, R5000, R4600, R4400, R4000 (>=Rev.
2.2)

Note: The objects of one ABI are incompatible with those of another; they cannot be
linked together.

See the following sources for additional information about O32, N32, and 64
compiling:

• See the MIPSpro N32 ABI Handbook for a primer on N32.

• See the MIPS O32 Compiling and Performance Tuning Guide for a more complete
discussion on how to set up the IRIX environment for the MIPSpro compilers or
O32.

• See the MIPSpro 64-Bit Porting and Transition Guide for more information on N32
and 64 compilers.

OpenMP API Multiprocessing Directives
MIPSpro C and C++ compilers support directives based on the OpenMP C/C++
Application Program Interface (API) standard. Programs that use these directives are
portable and can be compiled by other compilers that support the OpenMP standard.

To enable recognition of the OpenMP directives, specify -mp on the cc or CC
command line.

In addition to directives, the OpenMP C/C++ API describes several library functions
and environment variables. Information on the library functions can be found on the
omp_lock(3), omp_nested(3), and omp_threads(3) man pages. Information on the
environment variables can be found on the pe_environ(5) man page.

See the MIPSpro C and C++ Pragmas manual for definitions and details about how to
use the OpenMP #pragma directives.

6 007–0704–140

MIPSproTM C++ Programmer’s Guide

C++ Libraries
In addtion to the compiler itself, the MIPSpro C++ product includes the C++
Standard Library, as described in Clauses 17–27 of the Standard. It consists of the
following components:

• The runtime library, packaged as the dynamic shared object libC.so, provides
support for language features such as storage allocation and deallocation,
exception handling, and runtime type identification.

• The Standard Template Library (STL) comprises the headers that support the
standard containers, iterators, and algorithms described in Clauses 23–25 of the
Standard.

• The iostream, string, and locale libraries provide components for
manipulation of character and wide character strings and input/output, including
interationalization support. These components are made into templates and are
packaged primarily as standard headers, but there is a runtime component
packaged as the dynamic shared object libCio.so.

• The valarray and complex components provide support for potentially
parallelizable vector arithmetic and for complex numbers, respectively.

MIPSpro C++ also provides the standard C headers, which are the interface between
C++ and the C library. For backward compatibility, MIPSpro C++ continues to
provide the old iostream and complex libraries, but their use is deprecated and
only limited support is provided for them.

SGI also provides the C99 library of extended functions for version 7.4 (and later
versions) of the MIPSpro compilers. The C99 library includes the following features:

• _bool, _complex, and _imaginary data types

• support for the inline keyword

• variable declaration in for loops

• support for compound literals

• support for the _func_ predefined identifier

• use of designated initializers

• support for the restrict keyword

See the release notes provided with your compiler for a detailed list of C99 features.

007–0704–140 7

1: Overview of the SGI C++ Environment

For more information on the complex and iostream libraries, see the C++ standard.

For general information about the Standard Template Library (STL) (a library of
container classes, algorithms, and iterators for generic programming), see the HTML
document available at http://www.sgi.com/tech/stl/.

Debugging
You can debug your C++ programs by using dbx (a source-level debugger for C,
C++, Fortran, and assembly language) or the MIPSpro WorkShop Debugger (a
graphical, interactive, source-level debugging tool). For more information on the
different available debugging tools, see the ProDev WorkShop: Overview.

8 007–0704–140

Chapter 2

Compiling, Linking, and Running Programs

This chapter discusses C++ compiling and linking for the MIPSpro compilers. It
contains the following sections:

• "The C++ Command Line", page 9, discusses the syntax of the C++ command and
the options used with that command.

• "Compiling and Linking", page 21, describes the SGI C++ compilation process.

• "Object File Tools", page 25, briefly summarizes the capabilities of the tools that
provide symbol and other information on object files.

The C++ Command Line
This section provides an overview of the CC(1) command. For complete details about
each option, see the CC man page.

The CC command invokes the compiler. The following syntax box shows the
complete CC command syntax (note that cc command syntax is not indicated here).

007–0704–140 9

2: Compiling, Linking, and Running Programs

CC [-64|-n32] [-all] [-anach] [-ansiE] [-ansiW] [-apo] [-apokeep]
[-apolist] [-ar] [-auto_include] [-bigp_off] [-bigp_on]
[-brief_diagnostics] [-c] [-cfront] [-common] [-D name=def]
[-DEBUG] [-diag_error numberlist] [-diag_remark numberlist]
[-diag_suppress numberlist] [-diag_warning numberlist] [-dollar] [-E]
[-fb file] [-fb_create path] [-fb_opt path] [-fbgen] [-fbuse file]
[-FE:eliminate_duplicate_inline_copies]
[-FE:template_in_elf_section] [-float] [-float_const][-fullwarn]
[-G num] [-g[n]] [-gslim] [-help] [-I dir] [-ignore_suffix]
[-INLINE] [-IPA] [-J #] [-KPIC] [-L directory] [-l library] [-LANG]
[-LIST] [-LNO] [-M] [-MDupdate filename] [-mipsn] [-MP] [-mp]
[-mplist] [-no_auto_include] [-noinline] [-non_shared]
[-no_prelink] [-none] [-nostinc] [-o outfile] [-O[n]]
[-Ofast [= ipxx]] [-OPT:] [-P] [-pch] [-pedantic] [-prelink]
[-pta] [-ptall] [-ptnone] [-ptused] [-ptv] [-quiet_prelinker] [-r]
[-rprocessor] [-S] [-shared] [-show] [-signed] [-TARG] [-TENV]
[-trapuv] [-U name] [-use_command] [-use_readonly_const]
[-use_readwrite_const] [-use_suffix] [-v] [-version]
[-W c,arg1 [,arg2...]] [-w] [-w2] [-woff all] [-woff numberlist]
[-x lang] [-Xcpluscomm] [-Y c,path] files

In some cases, more than one option can have an effect on a single compiler feature.
The following list shows some of the compiler features and the options that affect
them:

• Source preprocessing: -Dvar[=def][,var[=def]]…, -E, -nocpp, -P, -Uname.

• Setting the compilation environment: -n32, -64, -mipsn, -rprocessor, -TARG:,
-TENV:.

• Optimization: -apo, -LNO:, -OPT:, -Olevel.

Note: In order to use the APO command line options, you must be licensed for the
MIPSpro Auto-Parallelizing Option.

Various environment variable settings can affect your compilation. For more
information on the environment variables, see the pe_environ(5) man page.

Some CC(1) command options, for example, -LNO:..., -LIST:..., -MP:... ,
-OPT:..., -TARG:..., and -TENV:... accept several suboptions and allow you to
specify a setting for each suboption. To specify multiple suboptions, either use colons

10 007–0704–140

MIPSproTM C++ Programmer’s Guide

to separate each suboption or specify multiple options on the command line. For
example, the following command lines are equivalent:

% CC -LIST:notes=ON:options=OFF b.c

% CC -LIST:notes=ON -LIST:options=OFF b.c

Some arguments to suboptions of this type are specified with a setting that either
enables or disables the feature. To enable a feature, specify the suboption either alone
or with =1, =ON, or =TRUE. To disable a feature, specify the suboption with either =0,
=OFF, or =FALSE. For example, the following command lines are equivalent:

% CC -LNO:auto_dist:blocking=OFF:oinvar=FALSE a.c

% CC -LNO:auto_dist=1:blocking=0:oinvar=OFF a.c

For brevity, this manual shows only the ON or OFF settings to suboptions, but the
compiler also accepts 0, 1, TRUE, and FALSE as settings.

Command Line Options

The following list summarizes the options to the CC command. For complete details,
see the CC(1) man page.

-n32, -64

Specifies the Application Binary Interface (ABI), either -n32 or -64.
Specifying -n32 generates 32-bit objects. Specifying -64 generates
64-bit objects.

-all

Specifies that the linker should pull in the entire archive into the
shared object, not just the object files needed for the link.

-anach

Specifies that anachronistic C++ constructs are allowed.

-ansiE

Issues an error message on all code that is not standard-conforming.

-ansiW

Issues a warning message on all code that is not standard-conforming.

007–0704–140 11

2: Compiling, Linking, and Running Programs

-apo, -apokeep, -apolist

Controls the Auto-Parallelizing Option (APO), which automatically
converts sequential code into parallel code by inserting parallel
directives where it is safe and beneficial to do so.

Note: These options are ignored unless you are licensed for the
Auto-Parallelizing Option. For more information on this product,
contact your sales representative.

-ar

Creates an archive instead of a shared object or executable.

-auto_include, -no_auto_include

Specifies that the compiler implicitly includes template definition files
if such definitions are needed.

-bigp_on

Instructs that the compiler to enable the use of large pages within
your program.

-bigp_off

Instructs that the compiler to disable the use of large pages within
your program. This is the default for all optimization levels except
-Ofast.

-brief_diagnostics

Issues one-line diagnostic messages.

-c

Disables the load step and writes the binary object file to file.o.

-cfront

Causes the compiler to accept constructs that were accepted by
previous Cfront-based compilers.

12 007–0704–140

MIPSproTM C++ Programmer’s Guide

-common

Relaxes the ANSI/ISO C Strict-Ref/Def-initialization model to the
traditional IRIX Relaxed Ref/Def model.

-Dname[=def][,name[=def]]...

Defines name to the macro preprocessor.

-DEBUG:...

Controls the compiler’s attempts to detect various errors (at compile
time or run time) and controls how the errors are reported. For more
information on the debugging options, see the debug_group(5) man
page.

-diag_error numberlist

Treats messages with the specified numbers as errors and does not
generate an object file.

-diag_remark numberlist

Treats messages with the specified numbers as remarks unless they
are nondiscretionary errors.

-diag_suppress numberlist

Equivalent to specifying -woff.

-diag_warning numberlist

Treats messages with the specified numbers as warnings unless they
are nondiscretionary errors.

-dollar

Allows the dollar sign as a character in C identifiers.

-E

Run only the source preprocessor files, without considering suffixes,
and writes the result to stdout.

-fbfile

Specifies the feedback file to be used.

007–0704–140 13

2: Compiling, Linking, and Running Programs

-fb_create path

Generates an instrumented executable program, which is suitable for
producing one or more .instr files for subsequent feedback
compilation.

-fb_opt path

Specifies the directory that contains the instrumentation output
generated by compiling with -fb_create and then running your
program with a training input set.

-fbgen

Generates an instrumented executable program.

-fbuse file

Specifies a .Counts file that is used to guide feedback compilation.

-FE:eliminate_duplicate_inline_copies

Eliminates duplicate copies of functions that are declared inline but
for which an out-of-line copy must be generated.

-FE:template_in_elf_section

Eliminates duplicate template instantiation from an executable or
DSO.

-float

Causes the compiler to use single-precision floating-point wherever
float is specified, except in function arguments.

-float_const

Interprets floating point constants without precision suffixes as
single-precision whenever doing so will not lose precision and the
context is otherwise single-precision.

-fullwarn

Requests that the compiler generate comment-level messages. These
messages are suppressed by default. This option can be useful during
software development.

14 007–0704–140

MIPSproTM C++ Programmer’s Guide

-Gnum

Specifies the maximum size, in bytes, of a data item that is to be
accessed from the Global Pointer (GP). num must be a decimal
number.

-g[n]

Generates debugging information and establishes a debugging level.

-gslim

Limits the amount of debugging information generated by the
compiler for class definitions

-help

Lists all available options. The compiler is not invoked.

-Idir

Specifies a directory to be searched for #include files.

-ignore_suffix

Determines the language of the source file being compiled by the
command used to invoke the compiler.

-INLINE:…

Specifies actions for the standalone inliner. For more information on
the individual options in this group, see the ipa(5) man page.

-IPA[:…]

Controls the application of interprocedural analysis (IPA) and
optimization. This includes inlining, common block array padding,
constant propagation, dead function elimination, alias analysis, and
other features. Specify -IPA with no arguments to invoke the
interprocedural analysis phase with default options. For more
information on the individual options in this group, see the ipa(5)
man page.

-J[#]

Specifies the maximum number of concurrent compiles that the C++
prelinker is allowed to run at once.

007–0704–140 15

2: Compiling, Linking, and Running Programs

-KPIC

Generates position-independent code (PIC), which is necessary for
programs loaded with dynamic shared libraries. Enabled by default.

-llibrary

Searches the library named liblibrary.a or liblibrary.so. Libraries
are searched in the order given on the command line.

-Ldirectory

Changes the library search algorithm for the loader.

-LANG:...

Controls the language option group.

-LIST:...

Writes an assembler listing file to file.l.

-LNO:…

Specifies options and transformations performed on loop nests by the
Loop Nest Optimizer. For details about these options, see the lno(5)
man page.

-M[]

Runs only the preprocessor on the named files and writes make
dependencies to standard output.

-MDupdate[file]

Updates makefile dependencies in file.

-mipsn

Specifies the instruction set architecture (ISA).

-mp

Generates multiprocessing code for the files being compiled. This
option causes the compiler to recognize all multiprocessing directives
and enables all -MP:... options.

16 007–0704–140

MIPSproTM C++ Programmer’s Guide

-MP:…

Specifies individual multiprocessing options that provide fine control
over certain optimizations.

-mplist

Generates file.w2f.c.

-noinline

Suppresses expansion of inline functions.

-non_shared

Builds a nonshared object.

-none

Turns off the effects of -all for the remainder of the command line.

-nostdinc

Directs the system to skip the standard directory, /usr/include,
when searching for #include files.

-ooutfile

Writes the executable file to outfile rather than to a.out. By default,
the executable output file is written to a.out.

-On

Specifies the basic optimization level.

-Ofast[=ipxx]

Selects optimization that maximizes performance for a given SGI
platform.

-OPT:…

Controls miscellaneous optimizations. These options override
defaults based on the main optimization level. For details, see the
opt(5) man page.

007–0704–140 17

2: Compiling, Linking, and Running Programs

-pch

Uses the -LANG:pch option.

-pedantic

Warns that the #ident preprocessor directive is nonstandard.

-prelnk, no_prelink

Instructs the compiler to emit information in the object file and in an
associated .ii file to help the prelinker determine which files are
responsible for instantiating the various template entities referenced
in a set of object files.

-P

Runs only the source preprocessor and puts the results for each
source file in a corresponding file.i. The file.i that is generated does
not contain # lines.

-pta, ptall

Instantiates template entities declared or referenced in the current
compilation.

-ptnone,

No templates are instantiated.

-ptused,

Template entities used in this compilation will be instantiated.

-ptv,

Prints the name of the template entity and source file.

-quiet_prelinker,

Disables prelinker output in C++.

-r,

Creates Executable Linking Format (ELF) relocatable objects when
specified with -IPA during compilation.

18 007–0704–140

MIPSproTM C++ Programmer’s Guide

-rprocessor

Specifies the code scheduler.

-S

Generates an assembly file, file.s, rather than an object file (file.o).

-shared

Creates a shared library instead of an executable program.

-show

Print the passes as they execute with their arguments and their input
and output files.

-signed

Causes values of type char to be treated as if they had type signed
char.

-TARG:…

Cross compiling is compiling a program on one system and executing
it on another. To cross compile, you can either use the -TARG:
command line options to control the target architecture and machine
for which code is generated or you can set the
COMPILER_DEFAULTS_PATH environment variable to specify the file
that contains the default processor information needed to generate
executable code for the target system.

-TENV:…

Specifies the target environment option group. The target environment
is the system upon which the executable code will be run. These
options control the target environment assumed and/or produced by
the compiler.

-trapuv

This option has been replaced by the
-DEBUG:trap_uninitialized option.

-Uname

Undefines a variable for the source preprocessor.

007–0704–140 19

2: Compiling, Linking, and Running Programs

-use_command

Uses the command name to determine which compiler to invoke for
recognized source files.

-use_readonly_const

Puts string literals and file-level const qualified initialized variables
into a .rodata section.

-use_readwrite_const

Puts string literals and file-level const qualified initialized variables
into a readable and writable data section.

-use_suffix

Use the file suffix to determine which compiler to invoke.

-v

This option has the same functionality as -show.

-version

Writes compiler release version information to stdout. No input file
needs to be specified when this option is used.

-w[]

Suppresses messages.

-w2[]

Counts warnings as errors.

-Wl,opt[,arg][,opt[,arg]]...

Specifies options to be passed directly to the linker.

-woffnumberlist

Specifies message numbers to suppress.

-woff all

Suppresses warning messages.

20 007–0704–140

MIPSproTM C++ Programmer’s Guide

-x lang

Specifies that the following files are of the specified language,
regardless of suffix. Valid values for lang are c, c++, f, f90,
assembler, object, or none.

-Xcpluscommnumberlist

Applies C++ style comment rules.

filename

Name of the file that contains the C++ source statements. The file
name must end with one of the following suffixes: .C, .c++, .c,
.cc, .cpp, .CPP, .cxx, or .CXX.

Compiling and Linking
The two compilation processes in Figure 2-1, page 23, show what transformations a
C++ source file, foo.C, undergoes with the N32, 64, and O32 compilers. The
MIPSpro compilation process is on the left, invoked by specifying either -n32 or -64
mode, as shown in the following examples:

CC -n32 -o foo foo.C

CC -64 -o foo foo.C

On the right is the O32 compilation process, invoked by using -o32, as shown in the
following example:

CC -o32 -o foo foo.C

The following steps further describe the compilation stages in Figure 2-1, page 23:

1. You invoke CC on the source file, which has the suffix .C. The other acceptable
suffixes are .c++, .c, .cc, .cpp, .CPP, .cxx, or .CXX.

2. The source file passes through the C++ preprocessor, which is built into the C++
compiler.

007–0704–140 21

2: Compiling, Linking, and Running Programs

3. The complete source is processed using a syntactic and semantic analysis of the
source to produce an intermediate representation.

This stage may also produce a prelink (.ii) file, which contains information
about template instantiations.

4. Optimized object code (foo.o) is then generated.

Note: To stop the compilation at this stage, use the following command line:

CC mode -c foo.C

This command produces object code, foo.o, that is suitable for later linking.

5. The compiler processes the .ii files associated with the objects that will be
linked together. Then sources are recompiled to force template instantiation.

6. The object files are sent to the linker, ld (see the ld(1) man page), which links the
standard C++ library libC.so and the standard C library libc.so to the object
file foo.o and to any other object files that are needed to produce the executable.

7. In -o32 mode, the executable object is sent to c++patch, which links it with
global constructors and destructors. If global objects with constructors or
destructors are present, the constructors need to be called at run time before
function main(), and the destructors need to be called when the program exits.
c++patch modifies the executable, a.out, to ensure that these constructors and
destructors get called.

22 007–0704–140

MIPSproTM C++ Programmer’s Guide

-n32 and -64 Mode -o32 Mode

foo.C

MIPSpro back end, including
optimizer and code generator

be

C++ preprocessor
and front end

fecc

Inliner

foo.o

Prelinker for template
instantiations

edg_prelink

foo.olibC.so libc.so

Linker
ld

foo

foo.C

ucode back end phases

ugen, uopt, as1

C++ preprocessor
and front end

edgcpfe

foo.o

Prelinker for template
instantiations

edg_prelink

foo.olibC.so libc.so

foo

Link global constructors
and destructors

c++ patch

foo

Linker
ld

a12054

Figure 2-1 The N32, 64, and O32 C++ Compilation Processes007–0704–140 23

2: Compiling, Linking, and Running Programs

Sample Command Lines

The following are some typical C++ compiler command lines:

• To compile one program and suppress the loading phase of your compilation, use
the following command line:

CC -c program

• To compile with full warnings about questionable constructs, use the following
command line:

CC -fullwarn program1 program2 ...

• To compile with warning messages off, use the following command line:

CC -w program1 program2 ...

Multilanguage Programs

C++ programs can be compiled and linked with programs written in other languages,
such as C, Fortran, and Pascal. When your application has two or more source
programs written in different languages, you should do the following:

1. Compile each program module separately with the appropriate compiler.

2. Link them together in a separate step.

You can create objects suitable for linking by specifying the -c option. For example:

CC -c main.c++
f77 -c module1.f
cc -c module2.c

The three compilers produce three object files: main.o, module1.o, and
module2.o. Since the main module is written in C++, you should use the CC
command to link. In fact, if any object file is generated by C++, it is best to use CC to
link. Except for C, you must explicitly specify the link libraries for the other
languages with the -l option. For example, to link the C++ main module with the
Fortran submodule, use the following command line:

CC -o almostall main.o module1.o -lftn -lm

24 007–0704–140

MIPSproTM C++ Programmer’s Guide

For more information on C++ libraries, see "C++ Libraries", page 7.

Object File Tools
The following object file tools are of special interest to the C++ programmer:

• nm: this tool can print symbol table information for object and archive files.

• c++filt: this tool, specifically for C++, translates the internally coded (mangled)
names generated by the C++ translator into names more easily recognized by the
programmer. You can pipe the output of stdump or nm into c++filt, which is
installed in the /usr/lib/c++ directory. For example:

nm a.out | /usr/lib/c++/c++filt

• libmangle.a: the /usr/lib/c++/libmangle.a library provides a
demangle(char *) function that you can invoke from your program to output a
readable form of a mangled name. This is useful for writing your own tool for
processing the output of nm, for example. You must declare the following in your
program, and link with the library using the -lmangle option:

char * demangle(char *);

• size: the size tool prints information about the text, rdata, data, sdata, bss, and
sbss sections of the specific object or archive file.

• elfdump: the elfdump tool lists the contents of an ELF (Executable and Linking
Format) object file, including the symbol table and header information. See the
elfdump(1) man page for more information.

• stdump: the stdump tool outputs a file of intermediate-code symbolic information
to standard output for O32 executables only. See the stdump(1) man page for
more information.

• dwarfdump: the dwarfdump tool outputs a file of intermediate-code symbolic
information to standard output for -n32 and -64 compilations. See the
dwarfdump(1) man page for more information.

For more complete information on the object file tools, see the MIPSpro N32/64
Compiling and Performance and Tuning Guide.

007–0704–140 25

Chapter 3

MIPSpro C++ and the C++ Standard

The MIPSpro C++ compiler implements the C++ language as defined in the C++
International Standard with the exception of the features listed in "Unimplemented
C++ Standard Language Features", page 27.

This chapter discusses the following topics:

• "Unimplemented C++ Standard Language Features", page 27, contains a list of
standard features not yet supported by the MIPSpro C++ compilers.

• "Feature Control", page 28, contains a list of options that controls the features
which are supported.

• "Extensions Accepted", page 29, contains a list of the extensions that are accepted
by the MIPSpro compilers, either by default or under command line control.

The compiler provides special compatability modes for compiling older, outmoded
programs. See Appendix B, "Cfront Compatability", page 73, and Appendix C,
"Anachronisms Accepted", page 79, for information.

Unimplemented C++ Standard Language Features
The MIPSpro C++ compiler implements the full C++ language as described in the
ISO/IEC 14882: Programming Language — C++ document (referred to as “The
Standard” in this text) with the following exceptions:

• extern inline functions are not supported. Inline functions always have internal
linkage. See section 3.5 of the Standard.

• The export keyword is not supported. See section 2.11 of the Standard.

• By default, the new template name resolution rules are not supported. See section
14.6 of the Standard. To use the new rules, you can use the
-LANG:do-dependent-name-processing option.

Standard header files, like iostream, have not been corrected to conform with
these rules and will not compile with this option.

• The stack is not unwound on a violated exception specification. See section 15.5.2
of the Standard.

007–0704–140 27

3: MIPSpro C++ and the C++ Standard

• Placement delete is not implemented (Section 5.3.4).

Feature Control
A number of options in the LANG group can be used to control the set of C++ features
that are supported. These options can be used, for example, to compile code that does
not conform with the Standard in one way or another. It may not always be possible,
however, to link together object files, some of which have been compiled with a
feature enabled and others with it disabled.

• -LANG:bool=off: removes the bool keyword. Use this, for example, to compile
code in which bool is a typedef for some integral type.

• -LANG:exceptions=off: disables exception handling. try, throw, catch, for
example, will not be recognized as keywords. You may want to use this option to
save space; some code may run slightly faster with exceptions disabled.

• -LANG:wchar_t=off: removes the wchar_t keyword. Use this, for example, to
compile code in which wchar_t is a typedef for some integral type.

• -LANG:namespaces=off: removes the namespace keyword.

• -LANG:ansi-for-init-scope=off: affects the scope of the loop variable in
the construct:

for (int i = 0;...)

The Standard specifies that the scope of the loop variable extends only to the end
of the for statement. The old behavior made the scope extend to the end of the
enclosing block. Use this option to revert to that behavior. It is safe to mix object
files compiled with and without this option.

• -LANG:std=off: disables a number of requirements of the Standard, mostly
rather minor and technical. The most important of these are the following:

– the typename keyword is not always required.

– the template<> syntax is not required for template specializations.

– the scope of for loop variables extends to the enclosing block, just as if
-LANG:ansi-for-init-scope=off had been specified.

28 007–0704–140

MIPSproTM C++ Programmer’s Guide

– there are slight differences in overload resolution, with the effect that some
function calls that would be ambiguous under the Standard are resolved by
"late tiebreaker" rules.

– string literals have type char[] instead of const char[].

• -LANG:libc_in_namespace_std=off: This disables the predefined macro
_LIBC_IN_NAMESPACE_STD, used for header-file functionality that puts C library
functions like printf into namespace std as required by the C++ Standard. Use
this option if you use C header files such as stdio.h instead of the C++ versions
such as cstdio, for example.

Extensions Accepted
• The long long and unsigned long long types provide a 64-bit integral type.

This is accepted in default mode. The use of long long is flagged with a
warning if the -ansiW or -ansiE option is specified.

• C99-style variable length arrays are supported with the -LANG:vla=on command
line option. Not accepted in default mode.

• The restrict keyword is supported with the -LANG:restrict=on command
line option. Not accepted in default mode.

Note that long long is accepted by default; restrict and variable length arrays
are accepted only with special command line options. When you use the special
options for restrict and variable length arrays, there are no diagnostics for their
use even if you specify the -ansiE or -ansiW options. long long is accepted by
default and there is a warning if you specify -ansiE or -ansiW, but never an error.

007–0704–140 29

Chapter 4

Using Templates

The information in this chapter is derived from the C++ Front End Internal
Documentation, Version 2.45, copyright 1992–2000, by the Edison Design Group. Used
by the permission of the authors.

Template Instantiation
The C++ programming language includes the concept of templates. A template is a
description of a class or function that is a model for a family of related classes or
functions. Because templates are descriptions of entities (typically, classes) that are
parameterizable according to the types they operate upon, they are sometimes called
parameterized types. For example, you can write a template for a Stack class and then
use a stack of integers, a stack of floats, and a stack of a user-defined type. In the
source code, these might be written as follows:

Stack<int>

Stack<float>

Stack<X>

From a single source description of the template for a stack, the compiler can create
an instantiation of the template for each of the types that is required.

The instantiation of a class template is done as soon as it is needed in a compilation.
However, the instantiations of template functions, member functions of template
classes, and static data members of template classes (hereafter referred to as template
entities) are not necessarily done immediately for the following reasons:

• You should have only one copy of each instantiated entity across all the object files
that make up a program. (This applies to entities with an external linkage.)

• You can write a specialization of a template entity. (For example, you can write a
version either of Stack<int>, or of just Stack<int>::push, that replaces the
template-generated version. Often, this kind of specialization provides a more
efficient representation for a particular data type.) When compiling a reference to
a template entity, the compiler does not know if a specialization for that entity will
be provided in another compilation. Therefore, the compiler cannot do the
instantiation automatically in any source file that references it.

007–0704–140 31

4: Using Templates

• You cannot compile template functions that are not referenced. Such functions
might contain semantic errors that would prevent them from being compiled. A
reference to a template class should not automatically instantiate all the member
functions of that class.

Note: Certain template entities are always instantiated when used (for example, inline
functions).

If the compiler is responsible for doing all the instantiations automatically, it can do
so only on a program-wide basis. The compiler cannot make decisions about
instantiation of template entities until it has seen all the source files that make up a
complete program.

By default, CC performs automatic instantiation at link time. If more explicit control is
needed, instantiation modes and instantiation pragmas are also provided and can be
used to provide fine-grained control over the instantiation process.

The following subsections discuss methods of instantiation and other associated
topics.

Automatic Instantiation
Automatic instantiation enables you to compile source files to object code, link them,
run the resulting program, and never worry about how the necessary instantiations
are done.

The CC(1) command requires that for each instantiation you have a normal, top-level,
explicitly compiled source file that contains the definition of the template entity, a
reference that causes the instantiation, and declarations of any types required for the
particular instantiation.

Meeting Instantiation Requirements

You can meet the instantiation requirements in several ways:

• You can have each header file that declares a template entity contain either the
definition of the entity or another file that contains the definition.

• When the compiler encounters a template declaration in a header file and
discovers a need to instantiate that entity, you can give it permission to search for

32 007–0704–140

MIPSproTM C++ Programmer’s Guide

an associated definition file having the same base name and a different suffix. The
compiler implicitly includes that file at the end of the compilation. See "Implicit
Inclusion", page 43 for more information.

• You can make sure that the files that define template entities also have the
definitions of all the available types, and add code or #pragma directives in those
files to request instantiation of the entities they contain.

Automatic Instantiation Method

The following steps outline the general process for using automatic instantiation.

1. The first time the source files of a program are compiled, no template entities are
instantiated. However, template information files (with a default .ti suffix) are
generated and contain information about things that could have been instantiated
in each compilation.

2. When the object files are linked together, a program called the prelinker is run. It
examines the object files, looking for references and definitions of template
entities, and for the added information about entities that could be instantiated.

3. If the prelinker finds a reference to a template entity for which there is no
definition anywhere in the set of object files, it looks for a file that indicates that it
could instantiate that template entity. When it finds such a file, it assigns the
instantiation to it. The set of instantiations assigned to a given file (for example,
abc.C) is recorded in an associated .ii file (for example, abc.ii). All .ii files
are stored in a directory named ii_files created within your object file
directory.

4. The prelinker then executes the compiler again to recompile each file for which
the .ii file was changed. The original compilation command-line options (saved
in the information file) are used for the recompilation.

5. When a file is compiled, the compiler reads the .ii file for that file and obeys the
instantiation requests therein. It produces a new object file containing the
requested template entities (and all the other things that were already in the
object file). The compiler also receives a definition list file, which lists all the
instantiations for which definitions already exist in the set of object files. If during
compilation the compiler has the opportunity to instantiate a reference entity that
is not on that list, it goes ahead and does the instantiation. It passes back to the
prelinker (in the definition list file) a list of the instantiations that it has ’adopted’
in this way, so the prelinker can assign them to the file. This ’adoption’ process

007–0704–140 33

4: Using Templates

allows rapid instantiation and assignment of instantiations referenced from new
instantiations, and reduces the need to recompile a given file more than once
during the prelinking process.

6. The prelinker repeats steps 3–5 until there are no more instantiations to be
adjusted.

7. The object files are linked.

After the program has been linked correctly, the .ii files contain a complete set of
instantiation assignments. From then on, whenever source files are recompiled, the
compiler will consult the .ii files and do the indicated instantiations as it does the
normal compilations. Except in cases where the set of required instantiations changes,
the prelink step will find that all the necessary instantiations are present in the object
files and that no instantiation assignment adjustments need be done. This is true even
if the entire program is recompiled.

If you provide a specialization of a template entity somewhere in the program, the
specialization will be seen as a definition by the prelinker. Becasue that definition
satisfies whatever references there might be to that entity, the prelinker sees no need
to request an instantiation of the entity. If you add a specialization to a program that
has previously been compiled, the prelinker notices that, too, and removes the
assignment of the instantiation from the proper .ii file.

The .ii files should not, in general, require any manual intervention. The only
exception is if the following conditions are met:

• A definition is changed in such a way that some instantiation no longer compiles.
(It generates errors.)

• A specialization is simultaneously added in another file.

• The first file is recompiled before the specialization file and is generating errors.

The .ii file for the file generating the errors must be deleted manually to allow the
prelinker to regenerate it.

If the prelinker changes an instantiation assignment, it will issue a message, such as
the following:

C++ prelinker: A<int>::f() assigned to file test.o

C++ prelinker: executing: usr/lib/edg-prelink -c test.c

The automatic instantiation scheme can coexist with partial explicit control of
instantiation by the programmer, through the use of #pragma directives or

34 007–0704–140

MIPSproTM C++ Programmer’s Guide

command-line specification of the instantiation mode as described in the following
subsections.

Instantiations are normally generated as part of the object file of the translation unit
in which the instantiations are performed. But when ’one instantiation per object’
mode is specified, each instantiation is placed in its own object file.
One-instantiation-per-object mode is useful when generating libraries that need to
include copies of the instances referenced from the library. If each instance is not
placed in its own object file, it may be impossible to link the library with another
library containing some of the same instances. Without this feature it is necessary to
create each individual instantiation object file using the manual instantiation
mechanism.

The automatic instantiation mode can be disabled by using the -no_prelink option.

If automatic instantiation is turned off, the following conditions are true:

• The extra information about template entities that could be instantiated in a file is
not put into the object file.

• The .ii file is not updated with the command line.

• The prelinker is not invoked.

Instantiation Modes
Normally, when a file is compiled, no template entities are instantiated (except those
assigned to the file by automatic instantiation). The overall instantiation mode can,
however, be changed by a command line option.

You can use command-line options to control the instantiation behavior of the
compiler. These options are divided into four sets of related options, as shown in the
following list. You use one option from each category: options from the same
category are not used together. For example, you cannot specify -ptnone in
conjunction with -ptused.

• -ptnone (the default), -ptused, or -ptall. (Automatic template instantiation
should make the use of -ptused or -ptall unnecessary in most cases.)

• -prelink (the default) or -no_prelink

• -auto_include or -no_auto_include

007–0704–140 35

4: Using Templates

• -ptv

The following command line options control instantiation behavior of the compiler:

-ptnone

None of the template entities are instantiated. If automatic
instantiation is turned on (in other words, -prelink), any template
entities that the prelinker instructs the compiler to instantiate are
instantiated.

-ptused

Any template entities used in this compilation unit are instantiated.
This includes all static members that have template definitions. If you
specify -ptused, automatic instantiation is turned off by default. If
you enable automatic instantiation explicitly (with -prelink), any
additional template entities that the prelinker instructs the compiler
to instantiate are also instantiated.

-ptall

Any template entities declared or referenced in the current
compilation unit are instantiated. For each fully instantiated template
class, all its member functions and static data members are
instantiated whether or not they are used.

Note: The use of the -ptall option is being deprecated in the
MIPSpro compilers.

Nonmember template functions are instantiated even if the only
reference was a declaration. If you specify -ptall, automatic
instantiation is turned off by default. If you enable automatic
instantiation explicitly (with -prelink), any additional template
entities that the prelinker instructs the compiler to instantiate are also
instantiated.

-prelink

Instructs the compiler to output information from the object file and
an associated .ii file to help the prelinker determine which files
should be responsible for instantiating the various template entities
referenced in a set of object files.

36 007–0704–140

MIPSproTM C++ Programmer’s Guide

When -prelink is on, the compiler reads an associated .ii file to
determine if any template entities should be instantiated. When
-prelink is on and a link is being performed, the compiler calls a
template prelinker. If the prelinker detects missing template entities,
they are assigned to files (by updating the associated .ii file), and
the prelinker recompiles the necessary source files.

-no_prelink

Disables automatic instantiation. Instructs the compiler to not read a
.ii file to determine which template entities should be instantiated.
The compiler will not store any information in the object file about
which template entities could be instantiated. This option also directs
the compiler to not invoke the template prelinker at link time.

This is the default mode if -ptused or -ptall is specified.

-auto_include

Instructs the compiler to implicitly include template definition files if
such definitions are needed. (See "Implicit Inclusion", page 43.)

-no_auto_include

Disables implicit inclusion of template implementation files.

-ptv

Puts the template prelinker in verbose mode; when a template entity
is assigned to a particular source file, the name of the template entity
and source file is printed.

Note: In the case where a single file is compiled and linked, the compiler uses the
-ptused option to suppress automatic instantiation.

Command Line Instantiation Examples

This section provides you with typical combinations of command line instantiation
options, along with an explanation of what these combinations do and how they may
be used.

Although there are many possible combinations of options, the following are the most
common combinations:

007–0704–140 37

4: Using Templates

-ptnone, -prelink, -auto_include

This is the default mode, which is suitable for most applications. On
the first build of an application, the prelinker determines which source
files should instantiate the necessary template entities. On subsequent
rebuilds, the compiler automatically instantiates the template entities.

-ptused

This mode is suitable for small- and medium-sized applications. No
prelinker pass is necessary. All referenced template entities are
instantiated at compile time. Dynamically initialized static data
members are also handled correctly (by using a run-time guard to
prevent duplicate initialization of such members).

-ptused, -prelink

Use this combination when you have an archive or dynamic shared
object (DSO) that has not been prelinked.

When a DSO is built, it is automatically prelinked. When an archive
is built, it is recommended that you run the prelinker on the object
files before archiving them. However, there are cases where you may
choose not to do so.

For example, if an application is linked using multiple internal DSOs
or archives, then you may choose not to prelink each DSO or archive,
since that may create multiple instances of some template entities.
When building an application using such archives or DSOs, you
should use -prelink at compile time, even if the application is
being built using -ptused. This is because the object files must
contain not only instances of template entities referenced in the
compilation units, but also instances of template entities referenced in
archives and DSOs.

-ptall, -no_prelink

Use this combination when you are building a library of instantiated
templates.

For example, consider if you implement a stack template class
containing various member functions. You may choose to provide
instantiated versions of these functions for various common types

38 007–0704–140

MIPSproTM C++ Programmer’s Guide

(such as, int and float) and the easiest way of instantiating all
member functions of a template is to specify -ptall.

-ptnone, -no_prelink

Use this combination if you are using template entities that are
pre-instantiated.

For example, suppose you are using templates and know that all of
your referenced template entities have already been pre-instantiated
in a library such as one described in the previous example. In this
case, you do not need any templates instantiated at compile time, and
you should turn off automatic instantiation.

-auto_include

Use this option if you are using template implementation files that
are not explicitly included.

-no_auto_include

Use this option if you are using only template implementation files
that are explicitly included.

Source code written for compilers such as Borland C++ includes all
necessary template implementation files. Such source code should be
compiled with the -no_auto_include option.

#pragma Directives for Template Instantiation
You can use #pragma directives to control the instantiation of individual or sets of
template entities. There are three instantiation #pragma directives:

• #pragma instantiate. See "#pragma instantiate".

• #pragma do_not_instantiate. See "#pragma can_instantiate", page 41.

• #pragma can_instantiate. See "#pragma can_instantiate", page 41.

007–0704–140 39

4: Using Templates

#pragma instantiate

The #pragma instantiate directive causes a specific instance of a template
declaration to be immediately instantiated.

The syntax of the #pragma instantiate directive is as follows:

#pragma instantiate entity

The entity argument can be any of the following:

A template class name

A<int>

A member function name

A<int>::foo

A member function declaration

void A<int>::foo(int, char)

A static data member name

A<int>::name

A template function declaration

char* foo(int, float)

The template definition of entity must be present in the compilation for an
instantiation to occur. If you use #pragma instantiate to explicitly request the
instantiation of a class or function for which no template definition is available, the
compiler issues a warning.

The declaration needs to be a complete declaration of a function or a static data
member, exactly as if you had specified it for a specialization of the template.

The argument to an instantiation #pragma directive cannot be a compiler-generated
function, an inline function, or a pure virtual function.

A member function name (for example, A<int>::foo) can be used as an argument
for a #pragma instantiate directive only if it refers to a single, user-defined
member function that is not an overloaded function. Compiler-generated functions
are not considered, so a name can refer to a user-defined constructor even if a

40 007–0704–140

MIPSproTM C++ Programmer’s Guide

compiler-generated copy constructor of the same name exists. Overloaded member
functions can be instantiated by providing the complete member function declaration,
as the following example shows:

char * A<int>::foo(int))

Note: Using the #pragma instantiate directive to instantiate a template class is
equivalent to repeating the directive for each member function and static data
member declared in the class. When instantiating an entire class, you can exclude a
given member function or static data member by using the
#pragma do_not_instantiate directive.

#pragma can_instantiate

The #pragma can_instantiate directive indicates that the specified entity can be
instantiated in the current compilation, but need not be. It is used in conjunction with
automatic instantiation to indicate potential sites for instantiation if the template
entity is deemed to be required by the compiler.

The syntax of the #pragma can_instantiate directive is as follows:

#pragma can_instantiate entity

The argument, entity, can be any of the following:

A template class name

A<int>

A member function name

A<int>::foo

A member function declaration

void A<int>::foo(int, char)

A static data member name

A<int>::name

007–0704–140 41

4: Using Templates

A template function declaration

char* foo(int, float)

The template definition of entity must be present in the compilation for an
instantiation to occur. If you use #pragma can_instantiate to explicitly request
the instantiation of a class or function for which no template definition is available,
the compiler issues a warning.

The argument to a #pragma can_instantiate directive cannot be a
compiler-generated function, an inline function, or a pure virtual function.

A member function name (for example, A<int>::foo) can be used as an argument
for a #pragma can_instantiate directive only if it refers to a single, user-defined
member function that is not an overloaded function. Compiler-generated functions
are not considered, so a name can refer to a user-defined constructor even if a
compiler-generated copy constructor of the same name exists. Overloaded member
functions can be instantiated by providing the complete member function declaration,
as shown in the following example:

char * A<int>::foo(int)

#pragma do_not_instantiate

The #pragma do_not_instantiate directive suppresses the instantiation of a
specified entity. It is typically used to suppress the instantiation of an entity for which
a specific definition is supplied.

The syntax of the #pragma do_not_instantiate directive is as follows:

#pragma do_not_instantiate entity

The argument, entity, can be any of the following:

A template class name

A<int>

A member function name

A<int>::foo

42 007–0704–140

MIPSproTM C++ Programmer’s Guide

A member function declaration

void A<int>::foo(int, char)

A static data member name

A<int>::name

A template function declaration

char* foo(int, float)

The argument to a #pragma do_not_instantiate directive cannot be a
compiler-generated function, an inline function, or a pure virtual function.

A member function name (for example, A<int>::foo) can be used as an argument
for the #pragma do_not_instantiate directive only if it refers to a single,
user-defined member function that is not overloaded. Compiler-generated functions
are not considered, so a name can refer to a user-defined constructor even if a
compiler-generated copy constructor of the same name exists. Overloaded member
functions can be specified by providing the complete member function declaration, as
the following example shows:

char * A<int>::foo(int)

Implicit Inclusion
When implicit inclusion is enabled, the compiler assumes that if it needs a definition
to instatiate a template entity declared in a .h file, it can implicitly include the
corresponding .C file to get the source code for the definition. For example, if a
template entity ABC::f is declared in file xyz.h, and an instantiation of ABC::f is
required in a compilation but no definition of ABC::f appears in the source code
processed by the compilation, the compiler looks to see if a file xyz.C exists, and if
so it will process it as if it were included at the end of the main source file.

To find the template definition file for a given template entity the compiler needs to
know the full path name of the file in which the template was declared and whether
the file was included using the system include syntax (that is, #include <file.h>).
This information is not available for preprocessed source containing #line directives.
Therefore, the compiler does not attempt implicit inclusion for source code containing
#line directives.

007–0704–140 43

4: Using Templates

The definition-file suffixes that are tried are the following:

.c

.C

.cpp

.CPP

.cxx

.CXX

.cc

.CC

.c++

.C++

Implicit inclusion works well with automatic instantiation but the two are
independent. They can be enabled or disabled independently, and implicit inclusion
is still useful when automatic instantiation is not done.

Implicit inclusions are only performed during the normal compilation of a file (that is,
not when doing only preprocessing). A common means of investigating certain kinds
of problems is to produce a preprocessed source file that can be inspected. When
using implicit inclusion it is sometimes desirable for the preprocessed source file to
include any implicitly included files. This may be done using the
-FE:generate_preprocessed_output command line option. This causes the
preprocessed output to be generated as part of a normal compilation. When implicit
inclusion is being used, the implicitly included files will appear as part of the
preprocessed output in the precise location at which they were included in the
compilation.

44 007–0704–140

Chapter 5

The Auto-Parallelizing Option (APO)

Note: APO is licensed and sold separately from the MIPSpro C/C++ compilers. APO
features in your code are ignored unless you are licensed for this product. For sales
and licensing information, contact your sales representative.

The Auto-Parallelizing Option (APO) enables the MIPSpro C/C++ compilers to
optimize parallel codes and enhances performance on multiprocessor systems. APO is
controlled with command line options and source directives.

APO is integrated into the compiler; it is not a source-to-source preprocessor.
Although run-time performance suffers slightly on single-processor systems,
parallelized programs can be created and debugged with APO enabled.

Parallelization is the process of analyzing sequential programs for parallelism and
restructuring them to run efficiently on multiprocessor systems. The goal is to
minimize the overall computation time by distributing the computational workload
among the available processors. Parallelization can be automatic or manual.

During automatic parallelization, the compiler analyzes and restructures the program
with little or no intervention by you. With APO, the compiler automatically generates
code that splits the processing of loops among multiple processors. An alternative is
manual parallelization, in which you perform the parallelization using compiler
directives and other programming techniques.

APO integrates automatic parallelization with other compiler optimizations, such as
interprocedural analysis (IPA), optimizations for single processors, and loop nest
optimization (LNO). In addition, run-time and compile-time performance is improved.

C/C++ Command Line Options That Affect APO
Several cc(1) and CC(1) command line options control APO’s effect on your program.
For example, the following command line invokes APO and requests aggressive
optimization:

CC -apo -O3 zebra.c

007–0704–140 45

5: The Auto-Parallelizing Option (APO)

The following subsections describe the effects that various C/C++ command line
options have on APO.

Note: If you invoke the loader separately, you must specify the -apo option on the
ld(1) command line.

-apo

The -apo option invokes APO. When this option is enabled, the compiler
automatically converts sequential code into parallel code by inserting parallel
directives where it is safe and beneficial to do so. Specifying -apo also enables the
-mp option, which enables recognition of the parallel directives inserted into your
code.

-apokeep and -apolist

The -apokeep and -apolist options control output files. Both options generate
file.list, which is a listing file that contains information on the loops that were
parallelized and explains why others were not parallelized.

When -apokeep is specified, the compiler writes file.list, and in addition, it retains
file.anl and file.m. The ProMP tools use file.anl. For more information on ProMP,
see the ProDev ProMP User’s Guide. file.m is an annotated version of your source code
that shows the insertion of multiprocessing directives.

When -IPA is specified with the -apokeep option, the default settings for IPA
suboptions are used, with the exception of -IPA:inline, which is set to OFF.

For more information on the content of file.list, file.anl, and file.m, see "Files",
page 50.

Note: Because of data conflicts, do not specify the -mplist or -CLIST options when
-apokeep is specified.

46 007–0704–140

MIPSproTM C++ Programmer’s Guide

-CLIST:...

This option generates a C/C++ listing and directs the compiler to write an equivalent
parallelized program in file.w2c.c. For more information on the content of
file.w2c.c, see "Files", page 50.

-IPA:...

Interprocedural analysis (IPA) is invoked by the -ipa or -IPA command line option.
It performs program optimizations that can only be done by examining the whole
program, not parts of a program.

When APO is invoked with IPA, only those loops whose function calls were
determined to be safe by the APO are optimized.

If IPA expands functions inline in a calling routine, the functions are compiled with
the options of the calling routine. If the calling routine is not compiled with -apo,
none of its inlined functions are parallelized. This is true even if the functions are
compiled separately with -apo because with IPA, automatic parallelization is
deferred until link time.

When -apokeep or -pcakeep are specified in conjunction with -ipa or -IPA, the
default settings for IPA suboptions are used with the exception of the inline=setting
suboption, which is set to OFF.

For more information on the effect of IPA, see "Loops Containing Function Calls",
page 62. For more information on IPA itself, see the ipa(5) man page.

-LNO:...

The -LNO options control the Loop Nest Optimizer (LNO). LNO performs loop
optimizations that better exploit caches and instruction-level parallelism. The
following LNO options are of particular interest to APO users:

• -LNO:auto_dist=on. This option requests that APO insert data distribution
directives to provide the best memory utilization on Origin 2000 systems.

• -LNO:ignore_pragmas=setting. This option directs APO to ignore all of the
directives and assertions described in "Compiler Directives", page 54.

• -LNO:parallel_overhead=num_cycles. This option allows you to override
certain compiler assumptions regarding the efficiency to be gained by executing

007–0704–140 47

5: The Auto-Parallelizing Option (APO)

certain loops in parallel rather than serially. Specifically, changing this setting
changes the default estimate of the cost to invoke a parallel loop in your run-time
environment. This estimate varies depending on your particular run-time
environment, but it is typically several thousand machine cycles.

You can view the transformed code in the original source language after LNO
performs its transformations. Two translators, integrated into the compiler, convert
the compiler’s internal representation into the original source language. You can
invoke the desired translator by using the CC -CLIST:=on option. For example, the
following command creates an a.out object file and the C/C++ file test.w2c.c:

CC -O3 -CLIST:=on test.c

Because it is generated at a later stage of the compilation, this .w2c.c file differs
somewhat from the .w2c.c file generated by the -apokeep option (see "-apokeep
and -apolist", page 46). You can read the .w2c.c file, which is a compilable
C/C++ representation of the original program after the LNO phase. Because the LNO
is not a preprocessor, recompiling the file.w2c.c can result in an executable that
differs from the original compilation of the .c file.

-O3

To obtain maximum performance, specify -O3 when compiling with APO enabled.
The optimization at this level maximizes code quality even if it requires extensive
compile time or relaxes the language rules. The -O3 option uses transformations that
are usually beneficial but can sometimes hurt performance. This optimization may
cause noticeable changes in floating-point results due to the relaxation of
operation-ordering rules. Floating-point optimization is discussed further in
"-OPT:...", page 48.

-OPT:...

The -OPT command line option controls general optimizations that are not associated
with a distinct compiler phase.

The -OPT:roundoff=n option controls floating-point accuracy and the behavior of
overflow and underflow exceptions relative to the source language rules.

When -O3 is in effect, the default rounding setting is -OPT:roundoff=2. This
setting allows transformations with extensive effects on floating-point results. It
allows associative rearrangement across loop iterations and the distribution of

48 007–0704–140

MIPSproTM C++ Programmer’s Guide

multiplication over addition and subtraction. It disallows only transformations
known to cause overflow, underflow, or cumulative round-off errors for a wide range
of floating-point operands.

At -OPT:roundoff=2 or 3, APO can change the sequence of a loop’s floating-point
operations in order to parallelize it. Because floating-point operations have finite
precision, this change can cause slightly different results. If you want to avoid these
differences by not having such loops parallelized, you must compile with
-OPT:roundoff=0 or -OPT:roundoff=1.

Example. APO parallelizes the following loop when compiled with the default
settings of -OPT:roundoff=2 and -O3:

float a, b[100];

for(i=0; i<100; i++)

a = a + b[i];

At the start of the loop, each processor gets a private copy of a in which to hold a
partial sum. At the end of the loop, the partial sum in each processor’s copy is added
to the total in the original, global copy. This value of a can be different from the value
generated by a version of the loop that is not parallelized.

-pca, -pcakeep, -pcalist

The -pca option invokes APO. For the O32 ABI, the -pca option invokes Power C.
The -pcakeep and -pcalist options control output files.

When -IPA is specified with the -pcakeep option, the default settings for IPA
suboptions are used, with the exception of -IPA:inline, which is set to OFF.

Note: These options are outmoded. The preferred way of invoking APO is through
the -apo option, and the preferred way to obtain a listing is through the -apolist
option. For more information on these options, see "-apo", page 46, and "-apokeep
and -apolist", page 46.

file

Your input file.

For information on files used and generated when APO is enabled, see "Files".

007–0704–140 49

5: The Auto-Parallelizing Option (APO)

Files
APO provides a number of options to generate listings that describe where
parallelization failed and where it succeeded. You can use these listings to identify
constructs that inhibit parallelization. When you remove these constructs, you can
often improve program performance dramatically.

When looking for loops to run in parallel, focus on the areas of the code that use
most of the execution time. To determine where the program spends its execution
time, you can use tools such as SpeedShop and the WorkShop ProMP Parallel
Analyzer View described in ProDev WorkShop: ProMP User’s Guide.

The following sections describe the content of the files generated by APO.

The file.list File

The -apolist and -apokeep options generate files that list the original loops in the
program along with messages indicating if the loops were parallelized. For loops that
were not parallelized, an explanation is provided.

Example. The following function resides in file testl.c:

void sub(double arr[], int n)

{
extern void foo(double);

int i;

for(i=1; i<n; i++)

{

arr[i] += arr[i-1];
}

for(i=0; i<n; i++)

{

arr[i] += 7.0;

foo(arr[i]);
}

for(i=0; i<n; i++)

{

arr[i] += 7.0;

}

}

File testl.c is compiled with the following command:

50 007–0704–140

MIPSproTM C++ Programmer’s Guide

cc -O3 -n32 -mips4 -apolist -c testl.c

APO produces file testl.list:

Parallelization Log for Subprogram sub
5: Not Parallel

Array dependence from arr on line 6 to arr on line 6.

8: Not Parallel

Call foo on line 10.

12: PARALLEL (Auto) __mpdo_sub1

Note the message for line 12. Whenever a loop is run in parallel, the parallel version
of the loop is put in its own function. The MIPSpro profiling tools attribute all the
time spent in the loop to this function. The last line indicates that the name of the
function is __mpdo_sub1.

The file.w2f.c File

File file.w2c.c contains code that mimics the behavior of programs after they
undergo automatic parallelization. The representation is designed to be readable so
that you can see what portions of the original code were not parallelized. You can use
this information to change the original program.

The compiler creates file.w2c.c by invoking the appropriate translator to turn the
compiler’s internal representations into C/C++. In most cases, the files contain valid
code that can be recompiled, although compiling file.w2c.c without APO enabled
does not produce object code that is exactly the same as that generated when APO is
enabled on the original source.

The -apolist option generates file.w2c.c. Because it is generated at an earlier stage
of the compilation, file.w2c.c from -apolist is more easily understood than
file.w2c.c generated from -CLIST:=on option. On the other hand, the -CLIST
option shows more of the optimizations that were performed. The parallelized
program in file.w2c.c uses OpenMP directives.

Example. File testw2.c is compiled with the following command:

cc -O3 -n32 -mips4 -c -apo -apolist -c testw2.c

007–0704–140 51

5: The Auto-Parallelizing Option (APO)

void trivial(float a[])
{

int i;

for(i=0; i<10000; i++) {

a[i] = 0.0;

}
}

Compiling testw2.c generates an object file, testw2.o, and listing file
testw2.w2c.c, which contains the following code:

/***

* C file translated from WHIRL Wed Oct 28 14:03:23 1998

***/

/* Include file-level type and variable decls */

#include "testw2.w2c.h"

void trivial(

_IEEE32(*a0)[])

{
register _INT32 i0;

/* PARALLEL DO will be converted to SUBROUTINE __mpdo_trivial1 */;

#pragma parallel

{

#pragma pfor
#pragma local(i0)

#pragma shared(a0)

for(i0 = 0; i0 <= 9999; i0 = i0 + 1)

{

(*a0)[i0] = 0.0F;
}

}

return;

} /* trivial */

Note: WHIRL is the name for the compiler’s intermediate representation.

52 007–0704–140

MIPSproTM C++ Programmer’s Guide

As explained in "The file.list File", page 50, parallel versions of loops are put in
their own functions. In this example, that function is __mpdo_trivial_1.
#pragma omp parallel is an OpenMP directive that specifies a parallel region
containing a single DO directive.

About the .m and .anl Files

The -apokeep option generates file.list. It also generates file.m and file.anl,
which are used by Workshop ProMP.

file.m is similar to the file.w2c.c file but is more like original source code; it is based
on OpenMP and mimics the behavior of the program after automatic parallelization.

WorkShop ProMP is a Silicon Graphics product that provides a graphical interface to
aid in both automatic and manual parallelization for C/C++. The WorkShop ProMP
Parallel Analyzer View helps you understand the structure and parallelization of
multiprocessing applications by providing an interactive, visual comparison of their
original source with transformed, parallelized code. For more information, see the
ProDev WorkShop: ProMP User’s Guide and the ProDev WorkShop: Performance Analyzer
User’s Guide.

SpeedShop, another Silicon Graphics product, allows you to run experiments and
generate reports to track down the sources of performance problems. SpeedShop
includes a set of commands and a number of libraries to support the commands. For
more information, see the SpeedShop User’s Guide.

Running Your Program
Running a parallelized version of your program is no different from running a
sequential one. The same binary output file can be executed on various numbers of
processors. The default is to have the run-time environment select the number of
processors to use based on how many are available.

You can change the default behavior by setting the OMP_NUM_THREADS environment
variable, which tells the system to use an explicit number of processors. The
following statement causes the program to create two threads regardless of the
number of processors available:

setenv OMP_NUM_THREADS 2

007–0704–140 53

5: The Auto-Parallelizing Option (APO)

The OMP_DYNAMIC environment variable allows you to control whether the run-time
environment should dynamically adjust the number of threads available for executing
parallel regions to optimize system resources. The default value is ON. If
OMP_DYNAMIC is set to OFF, dynamic adjustment is disabled.

For more information on these and other environment variables, see the
pe_environ(5) man page.

Compiler Directives
APO works in conjunction with the OpenMP C/C++ API directives and with the
Origin series directives. You can use these directives to manually parallelize some
loop nests, while leaving others to APO. This approach has the following positive and
negative aspects:

• As a positive aspect, the OpenMP and Origin series directives are well defined
and deterministic. If you use a directive, the specified loop is run in parallel. This
assumes that the trip count is greater than one and that the specified loop is not
nested in another parallel loop.

• The negative side to this is that you must carefully analyze the code to determine
that parallelism is safe. In particular, you may need to specify special attributes
for some variables, such as private or reduction, or specify explicit
synchronizations, such as a barrier or a critical section.

In addition to the OpenMP and Origin series directives, you can also use the
APO-specific directives described in this section. These directives give APO more
information about your code.

Note: APO also recognizes the Silicon Graphics multiprocessing directives. These
directives are outmoded, and you must include the -mp option on the CC(1)
command line in order for the compiler to recognize them. The OpenMP directive set
is the preferred directive set for multiprocessing.

The APO directives can affect certain optimizations, such as loop interchange, during
the compiling process. To direct the compiler to disregard any of the preceding
directives, specify the -xdirlist option.

The APO directives are as follows:

54 007–0704–140

MIPSproTM C++ Programmer’s Guide

• #pragma concurrent call. This directive directs APO to ignore dependencies
in function calls that would inhibit parallelization. For more information on this
directive, see "#pragma concurrent call", page 55.

• #pragma concurrent. This directive asserts that APO should not let perceived
dependencies between two references to the same array inhibit parallelizing. For
more information on this directive, see "#pragma concurrent", page 57.

• #pragma serial. This directive requests that the following loop be executed in
serial mode. For more information on this directive, see "#pragma serial", page
58.

• #pragma prefer concurrent. This directive parallelizes the following loop if
it is safe. For more information on this directive, see "#pragma prefer
concurrent", page 58.

• #pragma permutation (array_name). Asserts that array array_name is a
permutation array. For more information on this directive, see "#pragma
permutation", page 59.

• #pragma no concurrentize and #pragma concurrentize. The
#pragma no concurrentize directive inhibits either parallelization of all loops
in a function or parallelization of all loops in a file. The
#pragma concurrentize directive overrides the
#pragma no concurrentize directive, and its effect varies with its placement.
For more information on these directives, see "#pragma no concurrentize,
#pragma concurrentize", page 60.

Note: The compiler honors the following APO directives even if the -apo option is
not included on your command line:
• #pragma concurrent call

• #pragma prefer concurrent

• #pragma permutation (array_name)

#pragma concurrent call

The #pragma concurrent call directive instructs APO to ignore the
dependencies of function and function calls contained in the loop that follows the

007–0704–140 55

5: The Auto-Parallelizing Option (APO)

assertion. The directive applies to the loop that immediately follows it and to all
loops nested inside that loop. Other points to be aware of are the following:

Note: The directive affects the compilation even when -apo is not specified.

APO ignores potential dependencies in function fred() when it analyzes the
following loop:

#pragma concurrent call

for(i=0; i<n; i++) {

fred();

...

}

To prevent incorrect parallelization, make sure the following conditions are met when
using #pragma concurrent call:

• A function inside the loop cannot read from a location that is written to during
another iteration. This rule does not apply to a location that is a local variable
declared inside the function.

• A function inside the loop cannot write to a location that is read from or written
to during another iteration. This rule does not apply to a location that is a local
variable declared inside the function.

Example. The following code shows an illegal use of the directive. Function fred()
writes to variable x, which is also read from by wilma() during other iterations, and
the directive instructs APO to ignore this dependence.

void fred(float *b, int i, float *t)

{

*t = b[i];

}

void wilma(float *a, int i, float *t)

{
a[i] = *t;

}

#pragma concurrent call

for(i=0; i<m; i++)
{

fred(b, i, &x);

56 007–0704–140

MIPSproTM C++ Programmer’s Guide

wilma(a, i, &x);
}

The following example shows how you can manually parallelize the preceding
example safely by ‘localizing’ variable x with a declaration float x; at the top of
the loop body.

#pragma concurrent call

for (i=0, i<m, i++) {

float x;

fred(b, i, &x);
wilma(a,i, &x);

}

#pragma concurrent

The #pragma concurrent directive instructs APO, when analyzing the loop
immediately following this directive, to ignore all dependencies between two
references to the same array. If there are real dependencies between array references,
the #pragma concurrent directive can cause APO to generate incorrect code.

Note: This directive affects the compilation even when -apo is not specified.

The following example shows correct use of this directive when m > n:

#pragma concurrent

for(i=0; i<n; i++)

a[i] = a[i+m];

Be aware of the following points when using this directive:

• If multiple loops in a nest can be parallelized, #pragma concurrent causes
APO to parallelize the loop immediately following the assertion.

• Applying this directive to an inner loop can cause the loop to be made outermost
by APO’s loop interchange operations.

• This directive does not affect how APO analyzes function calls. For more
information on APO’s interaction with function calls, see "#pragma concurrent
call", page 55.

007–0704–140 57

5: The Auto-Parallelizing Option (APO)

• This directive does not affect how APO analyzes dependencies between two
potentially aliased pointers.

• The compiler may find some obvious real dependencies. If it does so, it ignores
this directive.

#pragma serial

The #pragma serial instructs APO not to parallelize the loop following the
assertion; the loop is executed in serial mode. APO can, however, parallelize another
loop in the same nest. The parallelized loop can be either inside or outside the
designated sequential loop.

Example. The following code fragment contains a directive that requests that loop j
be run serially:

for(i=0; i<m; i++) {

#pragma serial

for(j=0; j<n; j++)

a[i][j] = b[i][j];
...

}

The directive applies only to the loop that immediately follows it. For example, APO
still tries to parallelize loop i. This directive is useful in cases like this when the
value of n is known to be very small.

#pragma prefer concurrent

The #pragma prefer concurrent directive instructs APO to parallelize the loop
immediately following the directive if it is safe to do so.

Example. The following code fragment encourages APO to run loop i in parallel:

#pragma prefer concurrent

for(i=0; i<m; i++) {

for(j=0; j<n; j++)

a[i][j] = b[i][j];

...

}

58 007–0704–140

MIPSproTM C++ Programmer’s Guide

When dealing with nested loops, APO follows these guidelines:

• If the loop specified by the #pragma prefer concurrent directive is safe to
parallelize, APO parallelizes the specified loop even if other loops in the nest are
safe.

• If the specified loop is not safe to parallelize, APO parallelizes a different loop that
is safe.

• If this directive is applied to an inner loop, APO can interchange the loop and
make the specified loop the outermost loop.

• If this directive is applied to more than one loop in a nest, APO parallelizes one of
the specified loops.

#pragma permutation

When placed inside a function, the #pragma permutation (array_name) directive
informs APO that array_name is a permutation array. A permutation array is one in
which every element of the array has a distinct value.

The directive does not require the permutation array to be dense. That is, within the
array, every b[i] must have a distinct value, but there can be gaps between the
values, such as b[1] = 1, b[2] = 4, b[3] = 9, and so on.

Note: This directive affects compilation even when -apo is not specified.

Example. In the following code fragment, array b is declared to be a permutation
array for both loops in sub1():

void sub1(int n)

{

int i;

extern int a[], b[];

for(i=0; i<n; i++)
{

a[b[i]] = i;

}

#pragma permutation (b)

for(i=0; i<n; i++)

007–0704–140 59

5: The Auto-Parallelizing Option (APO)

{
a[b[i]] = i;

}

}

Note the following points about this directive:

• As shown in the example, you can use this directive to parallelize loops that use
arrays for indirect addressing. Without this directive, APO cannot determine that
the array elements used as indexes are distinct.

• #pragma permutation (array_name) affects every loop in a function, even
those that appear before it.

#pragma no concurrentize, #pragma concurrentize

The #pragma no concurrentize directive inhibits parallelization. Its effect
depends on its placement.

• When placed inside functions, this directive inhibits parallelization. In the
following example, no loops inside sub1() are parallelized:

void sub1() {

#pragma no concurrentize

...
}

• When placed outside of a function, #pragma no concurrentize prevents the
parallelization of all functions in the file, even those that appear ahead of it in the
file. Loops inside functions sub2() and sub3() are not parallelized in the
following example:

void sub2()

{
...

}

#pragma no concurrentize

void sub3()

{

...
}

60 007–0704–140

MIPSproTM C++ Programmer’s Guide

The #pragma concurrentize directive, when placed inside a function, overrides a
#pragma no concurrentize directive that is placed outside of it. Thus, this
directive allows you to selectively parallelize functions in a file that has been made
sequential with a #pragma no concurrentize directive.

Troubleshooting Incomplete Optimizations
Some loops cannot be safely parallelized and others are written in ways that inhibit
APO’s efficiency. The following subsections describe the steps you can take to make
APO more effective. The sections that follow, and the topics they discuss, are as
follows:

• "Constructs That Inhibit Parallelization", page 61, describes constructs that inhibit
parallelization.

• "Constructs That Reduce Performance of Parallelized Code", page 65, describes
constructs that reduce performance of parallelized code.

Constructs That Inhibit Parallelization

A program’s performance can be severely constrained if APO cannot recognize that a
loop is safe to parallelize. APO analyzes every loop in a program. If a loop does not
appear safe, it does not parallelize that loop. The following sections describe
constructs that can inhibit parallelization:

• "Loops Containing Data Dependencies", page 62, describes basic data
dependencies.

• "Loops Containing Function Calls", page 62, describes function calls.

• "Loops Containing goto Statements", page 62, describes goto statements.

• "Loops Containing Problematic Array Constructs", page 62, describes problematic
array subscripts.

• "Loops Containing Local Variables", page 64, describes conditionally assigned local
variables.

In many instances, loops containing the previous constructs can be parallelized after
minor changes. Reviewing the information generated in program file.list, described
in "The file.list File", page 50, can show you if any of these constructs are in your
code.

007–0704–140 61

5: The Auto-Parallelizing Option (APO)

Loops Containing Data Dependencies

Generally, a loop is safe if there are no data dependencies, such as a variable being
assigned in one iteration of a loop and used in another. APO does not parallelize
loops for which it detects data dependencies.

Loops Containing Function Calls

By default, APO does not parallelize a loop that contains a function call because the
function in one iteration of the loop can modify or depend on data in other iterations.

You can, however, use interprocedural analysis (IPA) to provide the MIPSpro APO
with enough information to parallelize some loops containing function calls. IPA is
specified by the -ipa command line option. For more information on IPA, see ipa(5)
and the MIPSpro N32/64 Compiling and Performance and Tuning Guide.

You can also direct APO to ignore function call dependencies when analyzing the
specified loops by using the #pragma concurrent call directive described in
"#pragma concurrent call", page 55.

Loops Containing goto Statements

A goto statement is an unstructured control flow. APO converts most unstructured
control flows in loops into structured flows that can be parallelized. However, goto
statements in loops can still cause the following problems:

• Unstructured control flows. APO is unable to restructure all types of flow control
in loops. You must either restructure these control flows or manually parallelize
the loops containing them.

• Early exits from loops. Loops with early exits cannot be parallelized, either
automatically or manually.

For improved performance, remove goto statements from loops to be considered
candidates for parallelization.

Loops Containing Problematic Array Constructs

The following array constructs inhibit parallelization and should be removed
whenever APO is used:

62 007–0704–140

MIPSproTM C++ Programmer’s Guide

• Arrays with subscripts that are indirect array references. APO cannot analyze
indirect array references. The following loop cannot be run safely in parallel if the
indirect reference b[i] is equal to the same value for different iterations of i:

for(i=0; i<n; i++)

a[b[i]] = ...

If every element of array b is unique, the loop can safely be made parallel. To
achieve automatic parallelism in such cases, use the #pragma permutation(b)
directive, as discussed in "#pragma permutation", page 59.

• Arrays with unanalyzable subscripts. APO cannot parallelize loops containing
arrays with unanalyzable subscripts. Allowable subscripts can contain the
following elements:

– Literal constants (1, 2, 3, …)

– Variables (i, j, k, …)

– The product of a literal constant and a variable, such as n*5 or k*32

– A sum or difference of any combination of the first three items, such as
n*21+k-251

In the following example, APO cannot analyze the division operator (/) in the
array subscript and cannot reorder the loop:

for(i=0; i<n; i+=2)

a[i/2] = ...;

• Unknown information. In the following example there may be hidden knowledge
about the relationship between variables m and n:

for(i=0; i<n; i++)
a[i] = a[i+m];

The loop can be run in parallel if m > n because the array reference does not
overlap. However, APO does not know the value of the variables and therefore
cannot make the loop parallel. You can use the #pragma concurrent directive
to have APO automatically parallelize this loop. For more information on this
directive, see "#pragma concurrent", page 57.

007–0704–140 63

5: The Auto-Parallelizing Option (APO)

Loops Containing Local Variables

When parallelizing a loop, APO often localizes (privatizes) temporary scalar and
array variables by giving each processor its own non-shared copy of them. In the
following example, array tmp is used for local scratch space:

for(i=0; i<n; i++) {

for(j=0; j<n; j++)

tmp[j] = i+j;

for(j=0; j<n; j++)

a[i][j] = a[i][j] + tmp[j];
}

To successfully parallelize the outer loop (i), APO must give each processor a
distinct, private copy of array tmp. In this example, it is able to localize tmp and,
thereby, to parallelize the loop.

APO cannot parallelize a loop when a conditionally assigned temporary variable
might be used outside of the loop, as in the following example:

extern int t;

for(i=0; i<n; i++) {
if(b[i]) {

t = ...;

a[i] += t;

}

}

s2();

If the loop were to be run in parallel, a problem would arise if the value of t were
used inside function s2() because it is not known which processor’s private copy of
t should be used by s2(). If t were not conditionally assigned, the processor that
executed iteration i == n-1 would be used. Because t is conditionally assigned,
APO cannot determine which copy to use.

The solution comes with the realization that the loop is inherently parallel if the
conditionally assigned variable t is localized. If the value of t is not used outside the
loop, replace t with a local variable. Unless t is a local variable, APO assumes that
s2() might use it.

64 007–0704–140

MIPSproTM C++ Programmer’s Guide

Constructs That Reduce Performance of Parallelized Code

APO parallelizes a loop by distributing its iterations among the available processors.
Loop nesting, loops with low trip counts, and other program characteristics can affect
the efficiency of APO. The following subsections describe the effect that these and
other programming constructs can have on APO’s ability to parallelize:

• "Parallelizing Nested Loops", page 65, describes parallelizing nested loops.

• "Parallelizing Loops with Small or Indeterminate Trip Counts", page 66, describes
parallelizing loops with small or indeterminate trip counts.

• "Parallelizing Loops with Poor Data Locality", page 67, describes parallelizing
loops that exhibit poor data locality.

Parallelizing Nested Loops

APO can parallelize only one loop in a loop nest. In these cases, the most effective
optimization usually occurs when the outermost loop is parallelized. The
effectiveness derives from that fact that more processors end up processing larger
sections of the program. This saves synchronization and other overhead costs.

Example 1. Consider the following simple loop nest:

for(i=0; i<n; i++)

for(j=0; j<m; j++)

for(k=0; k<l; k++)

...

When parallelizing nested loops i, j, and k, APO parallelizes only one of the loops.
Effective loop nest parallelization depends on the loop that APO chooses, but it is
possible for APO to choose an inferior loop to be parallelized. APO may attempt to
interchange loops to make a more promising one the outermost. If the outermost loop
attempt fails, APO attempts to parallelize an inner loop.

"The file.list File", page 50, describes file.list. This output file contains
information that tells you which loop in a nest was parallelized. Because of the
potential for improved performance, it is useful for you to modify your code so that
the outermost loop is the one parallelized.

For every loop that is parallelized, APO generates a test to determine whether the
loop is being called from within either another parallel loop or from within a parallel
region. In some cases, you can minimize the extra testing that APO must perform by

007–0704–140 65

5: The Auto-Parallelizing Option (APO)

inserting directives into your code to inhibit parallelization testing. The following
example demonstrates this:

Example 2:

void sub(int i, int n) {

int j;

#pragma serial

for(j=0; j<n; j++) {

...

}
}

void caller(int n) {

int i;

#pragma concurrent call

for(i=0; i<n; i++) {
sub(i, n);

}

}

Assume that sub() is called only from within caller(). The loop in caller() is
parallelized, so the loop in sub() can never be run in parallel. In this case, the test is
avoided by using the #pragma serial directive, as shown, to force the sequential
execution of the loop.

For more information on this compiler directive, see "#pragma serial", page 58.

Parallelizing Loops with Small or Indeterminate Trip Counts

The trip count is the number of times a loop is executed. Loops with large trip counts
are the best candidates for parallelization. The following paragraphs show how to
modify your program if your program contains loops with small trip counts or loops
with indeterminate trip counts:

• Loops with small trip counts generally run faster when they are not parallelized.
Consider the following loop nest:

#pragma prefer serial

for(i=0; i<m; i++) {

for(j=0; j<n; j++) {
...

}

}

66 007–0704–140

MIPSproTM C++ Programmer’s Guide

Without the directive, APO would attempt to parallelize loop i because it is
outermost. If m is very small, it would be better to interchange the loops and make
loop j outermost, so that it would be parallelized. If that is not possible, and if
APO cannot determine that m is small, you can use a #pragma prefer serial
directive, as shown, to indicate to APO that it is better to parallelize loop j.

• Loops with large trip counts run faster if they are unconditionally parallelized.
Consider the following loop:

#pragma prefer concurrent

for(j=0; j<n; j++)
...

Without the directive, if the trip count is not known (and sometimes even if it is),
APO parallelizes the loop conditionally. It generates code for both a parallel and a
sequential version of the loop, plus code to select the version to use, based on the
trip count, the code inside the loop’s body, the number of processors available,
and an estimate of the cost to invoke a parallel loop in that run-time environment.

You can avoid the overhead of conditional parallelization by using the
#pragma prefer concurrent directive, as shown, to indicate to APO that only
the parallel version of the loop should be generated.

Parallelizing Loops with Poor Data Locality

Computer memory has a hierarchical organization. Higher up the hierarchy, memory
becomes closer to the CPU, faster, more expensive, and more limited in size. Cache
memory is at the top of the hierarchy, and main memory is further down in the
hierarchy. In multiprocessor systems, each processor has its own cache memory.
Because it is time consuming for one processor to access another processor’s cache, a
program’s performance is best when each processor has the data it needs in its own
cache.

Programs, especially those that include extensive looping, often exhibit locality of
reference, which means that if a memory location is referenced, it is probable that it or
a nearby location will be referenced in the near future. Loops designed to take
advantage of locality do a better job of concentrating data in memory, increasing the
probability that a processor will find the data it needs in its own cache.

The following examples show the effect of locality on parallelization. Assume that the
loops are to be parallelized and that there are p processors.

007–0704–140 67

5: The Auto-Parallelizing Option (APO)

Example 1. Distribution of Iterations.

for(i=0; i<n; i++) {
...a[i]...

}

for(i=n-1; i>=0; i--) {

...a[i]...

}

In the first loop, the first processor accesses the first n/p elements of a; the second
processor accesses the next n/p elements; and so on. In the second loop, the
distribution of iterations is reversed. That is, the first processor accesses the last n/p
elements of a, and so on. Most elements are not in the cache of the processor needing
them during the second loop. This code fragment would run more efficiently, and be
a better candidate for parallelization, if you reverse the direction of one of the loops.

Example 2. Two Nests in Sequence.

for(i=0; i<n; i++)

for(j=0; j<n; j++)
a[i][j] = b[j][i] + ...;

for(i=0; i<n; i++)

for(j=0; j<n; j++)

b[i][j] = a[j][i] + ...;

In example 2, APO may parallelize the outer loop of each member of a sequence of
nests. If so, while processing the first nest, the first processor accesses the first n/p
rows of a and the first n/p columns of b. In the second nest, the first processor
accesses the first n/p columns of a and the first N/p rows of B. This example runs
much more efficiently if you parallelize the i loop in one nest and the j loop in the
other. You can instruct APO to do this by inserting a #pragma prefer serial
directive just prior to the i loop that contains the j loop that you want to be
parallelized.

68 007–0704–140

Appendix A

Language Features Not in the ARM

For a number of years, The Annotated C++ Reference Manual by Margaret Ellis and
Bjarne Stroustrup (the “ARM”) functioned as a de facto standard for C++ while the
official ANSI standard was under development. This appendix describes the most
important differences between standard C++ and C++ as described in the ARM.

The following features are not described in the Annotated C++ Reference Manual. They
are implemented in C++ as defined by the Standard and are implemented by the
MIPSpro C++ compilers:

• The dependent statement of an if, while, do-while, or for is considered to be
a scope, and the restriction on having such a dependent statement be a declaration
is removed.

• The expression tested in an if, while, do-while, or for, as the first operand of
a ? operator, or as an operand of the &&, ||, or ! operators may have a
pointer-to-member type or a class type that can be converted to a
pointer-to-member type in addition to the scalar cases permitted by the ARM.

• Qualified names are allowed in elaborated type specifiers.

• Use of a global-scope qualifier in member references of the form x.::A::B and
p->::A::B is allowed.

• The precedence of the third operand of the ? operator is changed.

• If control reaches the end of the main() routine, and main() has an integral
return type, it is treated as if a return 0; statement were executed.

• Pointers to arrays with unknown bounds as parameter types are diagnosed as
errors.

• A functional-notation cast of the form A() can be used even if A is a class without
a (nontrivial) constructor. The temporary created gets the same default
initialization to zero as a static object of the class type.

• A cast can be used to select one out of a set of overloaded functions when taking
the address of a function.

• Template friend declarations are permitted in class definitions and class template
definitions.

007–0704–140 69

A: Language Features Not in the ARM

• Type template parameters are permitted to have default arguments.

• Function templates may have non-type template parameters.

• A reference to const volatile cannot be bound to an rvalue.

• Qualification conversions, such as conversion from T** to T const * const *
are allowed.

• Static data member declarations can be used to declare member constants.

• wchar_t is recognized as a keyword and a distinct type.

• bool is recognized.

• Run-time type identification (RTTI), including dynamic_cast and the typeid
operator, is implemented.

• Declarations in tested conditions (in if, switch, for, and while statements) are
supported.

• Array new and delete are implemented.

• New-style casts (static_cast, reinterpret_cast, and const_cast) are
implemented.

• Definition of nested classes outside of the enclosing class is allowed.

• mutable is accepted on non-static data member declarations.

• Namespaces are implemented, including using declarations and directives. Access
declarations are broadened to match the corresponding using declarations.

• Explicit instantiation of templates is implemented.

• The typename keyword is recognized.

• explicit is accepted to declare non-converting constructors.

• The scope of a variable declared in the for-init-statement of a for loop is
the scope of the loop, not the surrounding scope.

• Member templates are implemented.

• The new specialization syntax (using template <>) is implemented.

• cv-qualifiers (cv stands for const volatile) are retained on rvalues (in
particular, on function return values).

70 007–0704–140

MIPSproTM C++ Programmer’s Guide

• The distinction between trivial and non-trivial constructors has been implemented,
as has the distinction between POD (point of definition) constructs, such as,
C-style structs, and non-PODs with trivial constructors.

• The linkage specification is treated as part of the function type (affecting function
overloading and implicit conversions).

• A typedef name may be used in an explicit destructor call.

• Placement delete is implemented.

• An array allocated via a placement new can be deallocated via delete.

• enum types are considered to be non-integral types.

• Partial specialization of class templates is implemented.

007–0704–140 71

Appendix B

Cfront Compatability

The SGI C++ compiler has a Cfront-compatibility mode (enabled by the -cfront
option), which duplicates a number of features and bugs of Cfront, an older C++
compiler that accepted output from a C preprocessor and gave input to a C compiler.
Complete compatibility is not guaranteed or intended; the mode is there to allow
programmers who have used Cfront features to continue to compile their existing
code. By default, the compiler does not support Cfront compatibility. See "Extensions
Accepted in Cfront-Compatibility Mode", page 73, and "Cfront Compatibility
Restrictions", page 78, for details.

Extensions Accepted in Cfront-Compatibility Mode
The information in this section is derived from the C++ Front End Internal
Documentation, Version 2.45, copyright 1992–2000, by the Edison Design Group. Used
by permission of the authors.

The following extensions are accepted in Cfront-compatibility mode (by using the
-cfront option):

• Type qualifiers on the this parameter may be dropped in contexts such as the
following example:

struct A {
void f() const;

};

void (A::*fp)() = &A::f;

This is actually a safe operation. A pointer to a const function may be put into a
pointer to non-const, because a call using the pointer is permitted to modify the
object and the function pointed to actually does not modify the object. The
opposite assignment would not be safe.

• Conversion operators specifying conversion to void are allowed.

• A nonstandard friend declaration may introduce a new type. A friend
declaration that omits the elaborated type specifier is allowed in default mode, but
in Cfront-compatibility mode, the declaration is also allowed to introduce a new
type name, as follows:

007–0704–140 73

B: Cfront Compatability

struct A {
friend B;

};

• A reference to a pointer type may be initialized from a pointer value without use
of a temporary even when the reference pointer type has additional type qualifiers
above those present in the pointer value. For example,

int *p;

const int *&r = p; // No temporary used

• A reference may be initialized with a null.

• Because Cfront does not check the accessibility of types, access errors for types are
issued as warnings instead of errors.

• When matching arguments of an overloaded function, a const variable with a
value of zero is not considered to be a null pointer constant.

• An alternate form of declaring pointer-to-member-function variables is supported.
Consider the following code sample:

struct A {

void f(int);

static void f(int);

typedef void A::T3(int); // Non-std typedef declaration

typedef void T2(int); // Std typedef declaration
};

typedef void A::T(int); // Non-std typedef declaration

T* pmf = &A::f; // Non-std ptr-to-member declaration

A::T2* pf = A::sf; // Std ptr to static mem declaration

A::T3* pmf2 = &A::f; // Non-std ptr-to-member declaration

In this example, T is construed to name a routine type for a nonstatic member
function of class A that takes an int argument and returns void; the use of such
types is restricted to nonstandard pointer-to-member declarations. The
declarations of T and pmf in combination are equivalent to a single standard
pointer-to-member declaration, such as in the following example:

void (A::* pmf)(int) = &A::f;

A nonstandard pointer-to-member declaration that appears outside a class
declaration, such as the declaration of T, is normally invalid and would cause an
error to be issued. However, for declarations that appear within a class

74 007–0704–140

MIPSproTM C++ Programmer’s Guide

declaration, such as A::T3, this feature changes the meaning of a valid
declaration. Version 2.1 of Cfront accepts declarations, such as T, even when A is
an incomplete type; so this case is also excepted.

• Protected member access checking is not done when the address of a protected
member is taken. For example:

class B { protected: int i; };

class D : public B { void mf(); };

void D::mf() {

int B::* pmi1 = &B::i; // Error;OK in cfront-compatibility mode
int D::* pmi2 = &D::i; // OK

}

Note: Protected member access checking for other operations (in other words,
everything except taking a pointer-to-member address) is done in the normal
manner.

• The destructor of a derived class may implicitly call the private destructor of a
base class. In default mode this is an error, but in Cfront-compatibility mode it is
reduced to a warning. For example:

class A {

~A();

};
class B : public A {

~B();

};

B::~B(){} // Error except in Cfront-compatibility mode

• When disambiguation requires deciding whether something is a parameter
declaration or an argument expression, the pattern type-name-or-keyword
(identifier...) is treated as an argument. For example:

class A { A(); };
double d;

A x(int(d));

A(x2);

By default int(d) is interpreted as a parameter declaration (with redundant
parentheses), and x is a function; but in Cfront-compatibility mode int(d) is an
argument and x is a variable.

007–0704–140 75

B: Cfront Compatability

The statement A(x2); is also misinterpreted by Cfront. It should be interpreted
as the declaration of an object named x2, but in Cfront-compatibility mode is
interpreted as a function style cast of x2 to the type A.

Similarly, the statement

int xyz(int());

declares a function named xyz, that takes a parameter of type “function taking no
arguments and returning an int.” In Cfront-compatibility mode, this is
interpreted as a declaration of an object that is initialized with the value int()
(which evaluates to zero).

• A named bit-field may have a size of zero. The declaration is treated as though no
name had been declared.

• Plain bit fields (in other words, bit fields declared with type int) are always
unsigned.

• The name given in an elaborated type specifier is permitted to be a typedef
name that is the synonym for a class name, for example:

typedef class A T;

class T *pa; // Not an error in cfront-compatibility mode

• No warning is issued on duplicate size and sign specifiers.

short short int i; // No warning given in cfront-compatibility mode

• Virtual function table pointer update code is not generated in destructors for base
classes of classes without virtual functions, even if the base class virtual functions
might be overridden in a further-derived class. For example:

struct A {

virtual void f() {}
A() {}

~A() {}

};

struct B : public A {

B() {}
~B() {f();} // Should call A::f according to ARM 12.7

};

struct C : public B {

void f() {}

} c;

76 007–0704–140

MIPSproTM C++ Programmer’s Guide

In Cfront-compatibility mode, B::~B calls C::f.

• An extra comma is allowed after the last argument in an argument list, as in the
following example:

f(1, 2,);

• A constant pointer-to-member function may be cast to a pointer to function. A
warning is issued.

struct A {int f();};

main () {

int (*p)();

p = (int (*)())A::f; // Okay, with warning

}

• Arguments of class types that allow bitwise copy construction but also have
destructors are passed by value (in other words, like C structures), and the
destructor is not called on the new copy. In normal mode, the class object is
copied into a temporary, the address of the temporary is passed as the argument,
and the destructor is called on the temporary after the call returns.

Note: Because the argument is passed differently (by value instead of by address),
code like this compiled in Cfront-compatibility mode is not calling-sequence
compatible with the same code compiled in normal mode. In practice, this is not
much of a problem, since classes that allow bitwise copying usually do not have
destructors.

• A union member may be declared to have the type of a class for which the user
has defined an assignment operator (as long as the class has no constructor or
destructor). A warning is issued.

• When an unnamed class appears in a typedef declaration, the typedef name
may appear as the class name in an elaborated type specifier. For example:

typedef struct { int i, j; } S;
struct S x; // No error in cfront-compatibility mode

007–0704–140 77

B: Cfront Compatability

Cfront Compatibility Restrictions
Even when you specify the -cfront option, the N32, 64, and O32 C++ compilers are
not completely backwards-compatible with Cfront. The N32, 64, and O32 compilers
reject the following source constructs that Cfront ignores:

• Assignment to this in constructors and destructors is not allowed (O32 generates
a warning).

• If a C++ comment line (//) is terminated with a backslash, the MIPSpro compilers
(correctly) continue the comment line into the next source line. Cfront uses the
standard UNIX cpp and terminates the comment at the end of the line.

• You must have an explicit declaration of a constructor or destructor in the class if
there is an explicit definition of it outside the class.

• You may not pass a pointer to volatile data to a function that is expecting a
pointer to non-volatile data.

• The MIPSpro compilers do not disambiguate between overloaded functions with a
char* and long parameter, respectively, when called with an expression that is a
zero cast to a char type.

• You may not use redundant type specifiers.

• When in a conditional expression, the MIPSpro compilers do not convert a pointer
to a class to an accessible base class of that class.

• You may not assign a comma-expression ending in a literal constant expression
“0” to a pointer; the “0” is treated as an int.

• The MIPSpro compilers mangle member functions declared as extern ‘‘C’’
differently from Cfront. The CC command does not strip the type signature when
you are building the mangled name. If you try to do so, the following warning is
issued:

Mangling of classes within an extern ‘‘C’’ block does not

match cfront name mangling.

You may not be able to link code containing a call to such a function with code
containing the definition of the function that was compiled with Cfront.

78 007–0704–140

Appendix C

Anachronisms Accepted

Warning: Although the following anachronisms are accepted, it is not recommended
that they be used. Unpredictable results can occur.

The following anachronisms to the Standard are accepted when anachronisms are
enabled (via the -anach option):

• overload is allowed in function declarations. It is accepted and ignored.

• Definitions are not required for static data members that can be initialized using
default initialization. The anachronism does not apply to static data members of
template classes; they must always be defined.

• The number of elements in an array may be specified in an array delete operation.
The value is ignored.

• A single operator++() and operator--() function can be used to overload
both prefix and postfix operations.

• The base class name may be omitted in a base class initializer if there is only one
immediate base class.

• A reference to a non-const type may be initialized from a value of a different
type. A temporary is created, it is initialized from the (converted) initial value,
and the reference is set to the temporary.

• A reference to a non-const class type may be initialized from an rvalue of the
class type or a derived class thereof. No additional temporary is used.

• A function with old-style parameter declarations is allowed and may participate in
function overloading as though it were prototyped. Default argument promotion
is not applied to parameter types of such functions when the check for
compatibility is performed, so that the following declares the overloading of two
functions named f():

int f(int);

int f(x) char x; { return x; }

007–0704–140 79

C: Anachronisms Accepted

Note: In C, this code is legal but has a different meaning: a tentative declaration
of f() is followed by its definition.

• A reference to a non-const class can be bound to a class rvalue of the same
type or a derived type thereof. Example:

struct A {

A(int);

A operator=(A&);

A operator+(const A&);

};
main () {

A b(1);

b = A(1) + A(2); // Allowed as anachronism

}

80 007–0704–140

Index

32–bit ABI (ucode), 3
-64 option, 11

A

ABI, 11
64, 3
additional information, 6
Cfront compatibility, 78
commands, 3
compilation process, 21
definition, 4
N32, 3
N32 APO, 45
N64 APO, 45
O32, 3, 49

-all option, 11
-anach option, 11
Anachronisms

accepted, 79
-ansiE, 31
-ansiE option, 11
-ansiW, 31
-ansiW option, 12
APO, 45, 65

array constructs, 62
command line options, 45
data dependence, 62
data locality problems, 67
function calls in loops, 62
goto statements, 62
invoking loader, 46
licensing, 45
local variables, 64
optimization, 48
output files, 50, 53

parallelizing nested loops, 65
trip count, 66
troubleshooting, 61

-apo option, 12
Application binary interface

See "ABI", 3
Application Binary Interface (ABI)

See "ABI", 11
Application Program Interface, 6
ar, 2
-ar option, 12
Archive library

definition, 2
Auto-Parallelizing Option

See "APO", 45
-auto_include option, 12
Automatic instantiation, 32

suppressing, 37
Automatic parallelization

definition, 45

B

-bigp_off option, 12
-bigp_on option, 12
bool, 70
-brief_diagnostics option, 12

C

C
compile/link with C++, 24

C++
command lines, 24
environment, 3

007–0704–140 81

Index

IRIX 6.x systems, 3
c++filt, 25
c++patch, 22
-c option, 12
can_instantiate, 41
CC command

options
-32, 11
-64, 11
-all, 11
-anach, 11
-ansiE, 11
-ansiW, 12
-apo, 12
-ar, 12
-auto_include, 12
-bigp_off option, 12
-bigp_on option, 12
-brief_diagnostics, 12
-c, 12
-cfront, 13
-common, 13
-D, 13
-DEBUG, 13
-diag_error, 13
-diag_remark, 13
-diag_suppress, 13
-diag_warning, 13
-dollar, 13
-E, 13
-fb, 14
-fb_create, 14
-fb_opt, 14
-fbgen, 14
-FE:eliminate_duplicate_inline_copies, 14
-FE:template_in_elf_section, 14
-float, 14
-float_const, 14
-fullwarn, 15
-G, 15
-gdebug_lvl, 15
-gslim, 15

-help, 15
-Idir, 15
-ignore_suffix, 15
-INLINE:…, 15
-IPA:…, 15
-J, 16
-KPIC, 16
-LANG, 16
-Ldirectory, 16
-LIST:..., 16
-llibrary, 16
-LNO:…, 16
-M, 16
-MDupdate, 16
-mipsn, 16
-mp, 17
-MP:, 17
-noinline, 17
-non_shared, 17
-none, 17
-nostdinc, 17
-o, 17
-Ofast, 17
-Olevel, 17
-OPT:…, 18
-P, 18
-pedantic, 18
-prelink, 18
-pta, 18
-ptaall, 18
-ptnone, 18
-ptused, 18
-quiet_prelinker, 18
-r, 19
-rprocessor, 19
-S, 19
-shared, 19
-show, 19
-signed, 19
-TARG:..., 19
-TENV:..., 19

82 007–0704–140

MIPSproTM C++ Programmer’s Guide

-trapuv, 19
-use_command, 20
-use_readonly_const, 20
-use_readwrite_const, 20
-use_suffix, 20
-Uvar, 20
-v, 20
-version, 20
-w, 20
-w2, 20
-Wl, 20
-woff all, 21
-woffnum, 20
-x, 21
-Xcpluscomm, 21

using multiple options, 10
Cfront

compatibility mode, 73
compatibility restrictions, 78

Cfront compiler, 3
-cfront, 73
-cfront option, 13
Code scheduler

specifying, 19
Command lines

examples, 24
Commands

template instantiation, 35
-common option, 13
Compatibility restrictions, Cfront, 78
Compilation, 21

process (figure), 24
to stop, 22

Compiler
Cfront, 3
ucode, 3

Compiler programming environment
archiving, 2
libraries, 1
object file tools, 2
performance tools, 1

COMPILER_DEFAULTS_PATH, 19

Complex arithmetic library, 8
complex libraries, 8
Constructors, 23
CPU targeting

See also "Cross compiling", 19
Cross compiling

definition, 19

D

-D option, 13
-DEBUG option, 13
Debugger

dbx, 9
WorkShop, 9

Debugging
generating information, 15

#define, 13
delete, 70, 71
Demangling, 25
Destructors, 23

derived class, 75
-diag_error option, 13
-diag_remark option, 13
-diag_suppress option, 13
-diag_warning option, 13
Directives

#define, 13
DSM, 17
multiprocessing, 46
OpenMP, 6
#pragma, 39
#pragma concurrent, 55
#pragma concurrent call, 55
#pragma concurrentize, 55
#pragma no concurrentize, 55
#pragma permutation, 55
#pragma prefer concurrent, 55
#pragma serial, 55

do_not_instantiate, 42

007–0704–140 83

Index

-dollar option, 13
dwarfdump, 25
Dynamic shared libraries, 16
Dynamic shared object (DSO), 38

E

-E option, 13
elfdump, 25
Environment variables, 2

affecting compilation, 10
COMPILER_DEFAULTS_PATH, 19

Examples
anachronism, 80
APO, 45, 49

inhibiting parallelization testing, 66
nested loops, 65

c++ filt, 25
demangling, 25
linking with Fortran, 24
locality, 68
#pragma concurrent, 57
#pragma concurrent call, 56
#pragma no concurrentize, 60
#pragma permutation, 59
#pragma prefer concurrent, 58
#pragma serial, 58
typical command lines, 24

Extensions
Cfront mode, 73
default mode, 31

F

-fb option, 14
-fb_create option, 14
-fb_opt option, 14
-fbgen option, 14
-FE:eliminate_duplicate_inline_copies option, 14
-FE:template_in_elf_section option, 14

Features
anachronisms, 79
Cfront-compatibility extensions, 73
extensions, 31
new, 69

-float option, 14
-float_const option, 14
Floating-point optimization, 48
Fortran

compile/link with C++, 24
-fullwarn option, 15
Functions

non-implemented, 27

G

-G option, 15
-gdebug_lvl option, 15
Global constructors, 23
Global destructors, 23
Graphical interface, 53
-gslim option, 15

H

-help option, 15

I

-ignore_suffix option, 15
-INLINE:… option, 15
Inlining

intrafile subprogram inlining, 15
standalone inliner, 15

instantiate, 40
Instantiation, 31

automatic method of, 33
automatic, details of, 34

84 007–0704–140

MIPSproTM C++ Programmer’s Guide

command-line options, 35
requirements, 32
suppressing, 37

Instruction Set Architecture
See "ISA", 4

Instruction sets, 5
Interprocedural analyzer (IPA)

See "IPA", 15
IPA, 15, 47

automatic parallelization, 45
-IPA:… option, 15
IRIX environment, 6
ISA

definition, 5
specifying, 16

J

-J option, 16

K

-KPIC option, 16

L

-LANG option, 16
Languages

linking with other, 24
ld, 22, 46
-Ldirectory option, 16
libc.so, 22
libmangle.a, 25
Libraries, 25

changing search algorithm, 16
complex, 8
libc.so, 22
searching lib.library.a, 16

libraries, 1

Link editor, 22
link libraries, 25
Linker, 22
Linking

Cfront differences, 79
with other languages, 24

-LIST:... option
arguments, 16

Listing file
writing to, 16
writing to assembly listing file, 16

-llibrary option, 16
LNO, 47

automatic parallelization, 45
-LNO option, 16

Loader, 22
ld, 2

Locality of reference, 67
Loop nest optimizer (LNO)

See "LNO", 16

M

-M option, 16
man, 2
Manual parallelization, 45
-MDupdate option, 16
Memory

data locality problems, 67
Message system, 2
Messages

specifying, 20, 21
-mipsn option, 16
MIPSpro Automatic Parallelization Option, 10
Modules utility, 2
-mp option, 17
-MP: option

arguments, 17
Multilanguage programs, 24
Multiprocessing, 46

007–0704–140 85

Index

specifying options, 17

N

Name mangling
differences, 78

new, 70
nm, 25
-noinline option, 17
-non_shared option, 17
-none option, 17
-nostdinc option, 17

O

-o option, 17
O32

See "ABI", 3
Object file tools

definition, 2
Object files

linking, 24
tools, 25

additional information, 27
c++filt, 25
dwarfdump, 25
elfdump, 25
nm, 25
size, 25
stdump, 25

-Ofast option, 17
-Olevel option, 17
OMP_DYNAMIC, 54
omp_lock, 6
omp_nested, 6
OMP_NUM_THREADS, 53
omp_threads, 6
Online documentation utilities, 2
OpenMP

multiprocessing directives, 6

OpenMP directives, 54
-OPT:… option, 18
Optimization

APO, 45
controlling, 18
floating-point, 48
specifying level, 17
troubleshooting, 61

Options
help, 15

Origin series
directives, 54

overload, 79

P

-P option, 18
Parallel processing

analyzing source code, 12
Parallelization, 50

automatic, 45
definition, 45
manual, 45
troubleshooting, 61

Pascal
compile/link with C++, 24

pe_environ, 6, 10, 54
-pedantic option, 18
performance tools, 1
Position-independent code (PIC)

See "PIC", 16
Power C, 49
#pragma

can_instantiate, 41
do_not_instantiate, 42
instantiate, 40

#pragma concurrent, 57
#pragma concurrent call, 55
#pragma concurrentize, 60
#pragma no concurrentize, 60

86 007–0704–140

MIPSproTM C++ Programmer’s Guide

#pragma permutation, 59
#pragma prefer concurrent, 67
#pragma prefer serial, 68
#pragma serial, 58
Prelink file, 22
-prelink option, 18
Prelinker, 33
Preprocessor, 22
Processors

MIPS, 5
ProMP, 46
-pta option, 18
-ptall option, 18
-ptnone option, 18
-ptused option, 18
-ptv option, 18

Q

-quiet_prelnker option, 18

R

-r option, 19
-rprocessor option, 19

S

-S option, 19
-shared option, 19
-show option, 19
-signed option, 19
size, 25
Source file, suffix, 21
Source preprocessing, 18
Source preprocessor, 13–15
SpeedShop, 53
Standard Template Library, 8
Standards, 27

stdump, 25
suffixes, file, 21

T

-TARG:... option
arguments, 19

Target environment
specifying, 19

Templates
automatic instantiation, 32
automatic instantiation method, 33
command-line instantiation, 35
instantiation, 31

building library, 38
instantiation examples, 37
instantiation requirements, 32
#pragma directives, 39
pre-instantiated, 39
specialization, 32

-TENV:... option, 19
this parameter, 73
Translator, 48
-trapuv option, 19
Trip count

definition, 66
Troubleshooting

APO, 61
typedef, 77

U

ucode compiler, 3
-use_command option, 20
-use_readonly_const option, 20
-use_readwrite_const option, 20
-use_suffix option, 20
-Uvar option, 20

007–0704–140 87

Index

V

-v option, 20
-version option, 20

W

-w option, 20
-w2 option, 20
WHIRL, 52

-Wl option, 20
-woff all option, 21
-woffnum option, 20
WorkShop ProMP, 53

X

-x option, 21
-Xcpluscomm option, 21

88 007–0704–140

	New Features in this Guide
	Table of Contents
	List of Figures
	List of Tables

	About This Guide
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. Overview of the SGI C++ Environment
	The Compiler Programming Environment
	The SGI C++ Compilers
	Understanding ABIs and ISAs
	N32 and 64 Compilation

	OpenMP API Multiprocessing Directives
	C++ Libraries
	Debugging

	2. Compiling, Linking, and Running Programs
	The C++ Command Line
	Command Line Options

	Compiling and Linking
	Sample Command Lines
	Multilanguage Programs

	Object File Tools

	3. MIPSpro C++ and the C++ Standard
	Unimplemented C++ Standard Language Features
	Feature Control
	Extensions Accepted

	4. Using Templates
	Template Instantiation
	Automatic Instantiation
	Meeting Instantiation Requirements
	Automatic Instantiation Method

	Instantiation Modes
	Command Line Instantiation Examples

	#pragma Directives for Template Instantiation
	#pragma instantiate
	#pragma can_instantiate
	#pragma do_not_instantiate

	Implicit Inclusion

	5. The Auto-Parallelizing Option (APO)
	C/C++ Command Line Options That Affect APO
	-apo
	-apokeep and -apolist
	-CLIST:...
	-IPA:...
	-LNO:...
	-O3
	-OPT:...
	-pca ,-pcakeep, -pcalist
	file

	Files
	The file .list File
	The file .w2f.c File
	About the .m and .anl Files

	Running Your Program
	Compiler Directives
	#pragma concurrent call
	#pragma concurrent
	#pragma serial
	#pragma prefer concurrent
	#pragma permutation
	#pragma no concurrentize ,#pragma concurrentize

	Troubleshooting Incomplete Optimizations
	Constructs That Inhibit Parallelization
	Constructs That Reduce Performance of Parallelized Code

	A. Language Features Not in the ARM
	B. Cfront Compatability
	Extensions Accepted in Cfront-Compatibility Mode
	Cfront Compatibility Restrictions

	C. Anachronisms Accepted
	Index

