
ð ®

Macintosh® Macintosh Portable

ð ®

Developer Notes
Developer Technical Publications
© Apple Computer, Inc. 1989

ð APPLE COMPUTER, INC.
This manual is copyrighted
by Apple or by Apple’s
suppliers, with all rights
reserved. Under the
copyright laws, this manual
may not be copied, in whole
or in part, without the
written consent of Apple
Computer, Inc. This
exception does not allow
copies to be made for
others, whether or not sold,
but all of the material
purchased may be sold,
given, or lent to another
person. Under the law,
copying includes translating
into another language.
The Apple logo is a
registered trademark of
Apple Computer, Inc. Use
of the “keyboard” Apple
logo (Option-Shift-K) for
commercial purposes
without the prior written
consent of Apple may
constitute trademark
infringement and unfair
competition in violation of
federal and state laws.
© Apple Computer, Inc.,
1989
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010
Apple, the Apple logo, and
Macintosh, are registered
trademarks of Apple
Computer, Inc.
APDA and Apple Desktop
Bus are trademarks of
Apple Computer, Inc.
Motorola is a registered
trademark of Motorola
Corporation.
Microsoft is a registered
trademark of Microsoft
Corporation.

POSTSCRIPT is a registered
trademark, and illustrator is
a trademark, od Adobe
Systems Incorporated.
ITC Zapf Dingbats is a
registered trademark of
International Typeface
Corporation.

LIMITED WARRANTY ON
MEDIA AND
REPLACEMENT

If you discover physical defects in
the manual or in the media on
which a software product is
distributed, APDA will replace
the media or manual at no charge
to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES
ON THIS MANUAL,
INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF
THE ORIGINAL RETAIL
PURCHASE OF THIS
PRODUCT.

Even though Apple has reviewed
this manual, APPLE MAKES NO
WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE
PURCHASER, ARE
ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT,
INDIRECT, SPECIAL,
INCIDENTAL, OR
CONSEQUENTIAL
DAMAGES RESULTING
FROM ANY DEFECT OR
INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND
REMEDIES SET FORTH
ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any
modification, extension, or
addition to this warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for
incidental or consequential
damages, so the above limitation or
exclusion may not apply to you.
This warranty gives you specific
legal rights, and you may also have
other rights which vary from state
to state.

iii

Contents

Figures and tables viii

Preface About These Developer Notes xi
Supplemental reference documents xii
Terminology: Sleep State, Idling State, and the Operating State
xii

1 Introduction 1-1
1.1 Features 1-2
1.2 Optional additions 1-7
1.3 Internal expansion interfaces 1-7
1.4 Peripherals 1-8

iv Developer Notes

2 Software Developer Guidelines 2-1

3 Firmware 3-1
3.1 Overview 3-3

Terminology 3-3
3.2 Address map 3-3
3.3 Changes to ROM 3-6

Power manager processor 3-6
Apple Desktop Bus 3-6
Real-time clock (RTC) and Parameter RAM 3-7
Serial Driver 3-7
FDHD, the high-density floppy disk drive 3-7

Data storage 3-8
GCR format 3-9
MFM format 3-9
The disk media 3-10
The File System 3-11
High Density Floppy Disk Driver 3-12

Kill I/O (csCode=1) 3-12
Verify Disk (csCode=5) 3-12
Format Disk (csCode=6) 3-12
Eject Disk (csCode=7) 3-13
Set Tag Buffer (csCode=8) 3-13
Track Cache Control (csCode=9) 3-14
Return Physical Drive Icon (csCode=21) 3-15
Return Media Icon (csCode=22) 3-15
Return Drive Info (csCode=23) 3-16

Status calls 3-17
Return Format List (csCode=6) 3-17
Drive Status (csCode=8) 3-19
MFM Status (csCode=10) 3-20

A sample program 3-21
FDHD Driver Demo resources 3-33

Sound Manager 3-35
Modem 3-35
Sleep State and Operating State 3-35
RAM and ROM Expansion 3-35

Contents v

Diagnostics—The “sad Macintosh” icon 3-36
Major error codes 3-37

Minor error codes—Power manager processor failures
(Macintosh Portable only) 3-38

Diagnostic Code Summary 3-39
Test Codes 3-39
Power manager communication error codes 3-39
CPU exception codes (as used by the startup tests) 3-
40

Script Manager 3-40
Notification Manager 3-40

4 System Software 4-1
4.1 Overview 4-2

Terminology 4-2
System tools software conversion 4-2

4.2 The Macintosh Portable control panel cdev resource 4-3
4.3 The Macintosh Portable battery desk accessory 4-4
4.4 Macintosh Portable battery monitor 4-5

vi Developer Notes

5 Hardware 5-1
5.1 The Macintosh Portable Specifications 5-3
5.2 Comparison of the Macintosh Portable and the Macintosh

SE 5-6
Improvements 5-6
Variations 5-6

5.3 Block diagrams of the Macintosh Portable and Macintosh SE 5-8
5.3 The central processing unit (CPU) 5-11
5.4 Video display interface chip 5-11

Flat panel display description 5-13
Video signal timing 5-13
Contrast control 5-15

5.6 Permanent RAM array 5-17
5.7 Permanent ROM array 5-17
5.8 Memory Expansion 5-18

Internal RAM Expansion 5-19
Internal ROM Expansion 5-21

ROM expansion jumper on the main logic board 5-23
5.9 Coarse Address Decode and GLU 5-24
5.10 Fine Address Decode and GLU 5-24
5.11 VIA interface 5-24
5.12 SCSI Interface 5-25
5.13 SWIM floppy disk interface 5-28
5.14 SCC Interface 5-31
5.15 Apple Desktop Bus (ADB) 5-34

The keyboard processor 5-35
Low-Power keyboard 5-35

Low-power trackball 5-37
5.16 Sound interface 5-38
5.17 Macintosh Portable expansion bus interface 5-39
5.18 The Macintosh Portable I/O port connectors 5-43

Video connector 5-44
External disk drive connector 5-45
External SCSI connector 5-47
RJ-11 telephone receptacle 5-49
Apple Desktop Bus (ADB) connector 5-49
Serial ports (modem/printer) 5-51
Stereo phone jack 5-52

Contents vii

DC power input for the battery recharger 5-53
5.19 Battery recharger 5-53

viii Developer Notes

6 The Power Manager 6-1
6.1 Introduction 6-2
6.2 Power manager states—idling, sleeping, and waking 6-2

BatteryMonitor Code on the 68000 6-4
Idle/sleep code function 6-4

Criterion for idle 6-5
Criterion for sleep state 6-5

6.3 Power management hints (hardware) 6-6
Microprocessor 6-6
Permanent main memory 6-7
ROM memory 6-7
Floppy disk interface 6-8
SCC Interface 6-8
Video Display Panel Interface 6-9

6.4 Operating system interface (ROM calls) 6-10
Calling Sleep 6-10

Sleep request 6-10
Sleep demand 6-10

The Sleep Queue 6-11
Installing a record 6-12
Removing a record 6-12

Sleep Queue calls 6-13
Sleep Request 6-13
Sleep Demand 6-14
Sleep Wake Up 6-14
Network Services 6-14

7 Expansion Card Design Guides 7-1
7.1 Main logic board with expansion connectors 7-2
7.2 Expansion card design guides 7-3

8 Options 8-1
8.1 The modem card 8-2

Summary of modem card features 8-2
Hardware interface 8-3

Analog output 8-7
Power supply and dissipation 8-7

Contents ix

Power control interface 8-8
Ring detect signal 8-10

Telephone network interface (Data Access Arrangement) 8-10
Standards information for reference 8-11

Compatibility and modulation 8-11
Transmit carrier frequencies 8-11
Guard tone frequencies and transmit levels (CCITT
only) 8-11
Answer tone frequency 8-11
Received signal frequency tolerance 8-11

Command Definitions 8-12
8.2 Low-power mouse 8-22

Electrical requirements 8-22
Active mode 8-22
Idle mode 8-22

8.3 RAM expansion card 8-23
8.4 ROM expansion card 8-23
8.5 External video adapter (Macintosh II/NTSC/PAL-
European) 8-23
8.6 Low power hard drive 8-24

Power requirements 8-24
Drive interface signals 8-25

x Developer Notes

Figures and tables

1 Introduction 1-1
Figure 1-1 The Macintosh Portable Feature Summary 1-2
Figure 1-2 I/O Ports and Connectors on the Main Logic Board 1-

3
Figure 1-3 The Macintosh Portable Standard Configuration 1-6

Table 1-1 The Macintosh Portable Specifications 1-4

3 Firmware 3-1
Figure 3-1 The Macintosh Portable Address Map 3-4
Figure 3-2 The Macintosh SE Address Map 3-5
Figure 3-3 GCR data format 3-9
Figure 3-4 MFM data format 3-10
Figure 3-5 Disk media compatibility 3-11
Figure 3-6 GCR file tag format 3-13
Figure 3-7 MFM sector information block 3-14
Figure 3-8 Drive icons 3-15
Figure 3-9 Media icons 3-16
Figure 3-10 Return drive information format 3-16
Figure 3-11 Return format record 3-18

Table 3-1 Power Manager Processor 3-6
Table 3-2 Possible disk format 3-8
Table 3-3 Cache enable codes 3-14
Table 3-4 Cache control codes 3-15
Table 3-5 Drive types 3-17
Table 3-6 Combinations of drives and media 3-18
Table 3-7 Drive status return values 3-19
Table 3-8 MFM status return values 3-21

Contents xi

4 System Software 4-1
Figure 4-1 Control Panel 4-3
Figure 4-2 Battery desk accessory 4-4

5 Hardware 5-1
Figure 5-1 The Macintosh Portable Architecture 5-9
Figure 5-2 Macintosh SE Architecture 5-10
Figure 5-3 Display Pixel Map 5-12
Figure 5-4 Video Interface Timing Diagram 5-14
Figure 5-5 Internal RAM expansion connector 5-20
Figure 5-6 Internal ROM Expansion Connector 5-22
Figure 5-7 Internal ROM Expansion Jumper (see also

Figure 1-2) 5-23
Figure 5-8 SCC Mini-8 Connector 5-33
Figure 5-9 Trackball Direction Conventions 5-38
Figure 5-10 I/O port connectors 5-43
Figure 5-11 External video connector 5-44
Figure 5-12 External Disk Drive Connector 5-45
Figure 5-13 External SCSI connector 5-47
Figure 5-14 RJ-11 Telephone Receptacle 5-49
Figure 5-15 The Macintosh Portable ADB connector 5-50
Figure 5-16 Serial ports 5-51

Table 5-1 The Macintosh Portable Specifications 5-4
Table 5-2 Macintosh Portable vs. Macintosh SE Hardware

Comparison 5-7
Table 5-3 Internal RAM Expansion Connector Signals 5-21
Table 5-4 Internal ROM Expansion Connector Signals 5-23
Table 5-5 SCSI External Connector Pinout 5-26
Table 5-6 SCSI Internal Connector Pinout 5-27
Table 5-7 SWIM Connector Pinouts 5-30
Table 5-8 SCC Connector Pinout 5-32
Table 5-9 SCC Address Offsets 5-34
Table 5-10 Keyboard Connectors Pinout 5-36
Table 5-11 Trackball Connector Pinout 5-37
Table 5-12 PDS Expansion Connector Pinout 5-40
Table 5-13 PDS Expansion Connector Signal Descriptions 5-41
Table 5-14 Current Available To The Processor Direct Slot 5-42
Table 5-15 Video connector signal assignments 5-44
Table 5-16 External disk drive connector signal assignments 5-46
Table 5-17 External SCSI Connector Signal Assignments 5-48
Table 5-18 The Macintosh Portable ADB signal assignments 5-50

xii Developer Notes

Table 5-19 Serial Port Signal Assignments 5-52
Table 5-20 Stereo phone jack pinout 5-52
Table 5-21 Power Jack Pinout 5-53
Table 5-22 Electrical Requirements 5-53

7 Expansion Card Design Guides 7-1
Figure 7-1 Main logic board 7-2
Figure 7-2 RAM card design guide 7-4
Figure 7-3 Modem card design guide 7-5

8 Options 8-1
Figure 8-1 Macintosh Portable Serial Port Configuration and

Modem Interface 8-4
Figure 8-2 Power Up/Power Down Timing Diagram 8-9

Table 8-1 Modem Connector Pinout 8-5
Table 8-2 Modem Connector Signal Descriptions 8-6
Table 8-3 Result codes 8-16
Table 8-4 DC Current Requirements 8-24
Table 8-5 Internal SCSI connector pinout 8-26

Preface xi

Preface About These Developer Notes

These developer notes provide guidelines for developers of
hardware and software for the Macintosh Portable computer.
It is assumed that the hardware and/or software developer is
already familiar with both the functionality and the
programming requirements of Macintosh® computers. If you
are unfamiliar with the Macintosh, or would simply like more
technical information on the hardware, you may want to
obtain copies of related technical manuals. For information
on how to obtain these manuals, see the paragraph titled
“Supplemental reference documents.”

These developer notes do not constitute a manual and are not
complete in their present form. While every attempt has been
made to verify the accuracy of the information presented, it is
subject to change without notice. The primary reason for
releasing product information is to provide the development
community with essential product specifications, theory, and
application information for the purpose of stimulating work
on compatible third-party products. •

xii Developer Notes

Supplemental reference documents

To supplement the information in this document, hardware/software
developers might wish to obtain related documentation, such as the Guide
to Macintosh Family Hardware, Designing Cards and Drivers for the
Macintosh Family, and Inside Macintosh, Volumes I through V. Copies of
these technical manuals are available through the Apple Programmers and
Developers Association (APDA™). APDA is an excellent source of
technical information for anyone interested in developing Apple-
compatible products. For information about APDA, please contact

APDA
Apple Computer, Inc.
20525 Mariani Avenue, Mailstop 33-G
Cupertino, CA 95014
800-282-APDA (800-282-2732)
AppleLink: APDA
Fax: 408-562-3971
Telex: 171-576

Terminology: Sleep State, Idling State, and the Operating State

The Macintosh Portable ROM software supports the ability to put the
computer into the sleep state (clock to DC, all RAM and registers retained)
and to bring it back to the operating state. These functions are
implemented in the power manager firmware and the power manager
processor. The OS requests the sleep state through a time-out scheme or
direct user action. Return to the operating state (waking) is due to an event
such as a keystroke or wake-up timer going off.

The criterion for the idle state is 15 seconds without user activity of any
kind (including communication through the serial port; for example,
modem use). In idle, the 68000 processor inserts 64 wait states into RAM
and other accesses to lower the processor effective frequency to near 1 MHz,
even though its clocking continues at 16 MHz. Interrupts still get processed
at 16 MHz, full speed, in the interrupt handler.

For a detailed discussion of these states, see Chapter 6, “The Power
Manager.”

CHAPTER 1 Introduction 1-1

Chapter 1 Introduction

The introduction contains a brief description of the
Macintosh Portable, including performance features,
appearance, peripherals, and add-ins. •

1-2 Developer Notes

1.1 Features

The Macintosh Portable is a full-featured, portable computer
designed to meet a wide range of business and personal needs; it is a
portable evolution of the Macintosh SE. The Macintosh Portable
retains all of the Macintosh SE characteristics and adds several new
characteristics for both portability and performance.

Figures 1-1 and 1-2 and Table 1-1 provide a brief summary of some
key features of this new machine. Subsequent chapters provide
further detail.

CHAPTER 1 Introduction 1-3

• Figure 1-1 The Macintosh Portable Feature Summary

Built-In Pointing Device
 * Miniature Trackball
 * Numeric Keypad, or
 * Any other ADB device
 that will fit

Internal, Sealed
Lead-Acid
Battery

Full-size Keyboard
 * Interchangeable with
 Pointing Device
 * US & ISO Versions

 LCD Display
 * 640 x 400 pixels
 * Active matrix
 * Reflective

Dual Function Handle
	 * Press to open
 * Extend to carry

Mass Storage
 * Permanent
 1.4 MB Floppy
 * Optional
 1.4 MB Floppy
 or
 40 MB Hard Disk

Full complement
of Macintosh SE
I/O ports plus
video output

Internal Expansion Slots
 * ROM
 * RAM
 * Modem (for Optional 2400 bps Internal Modem)
 * Processor Direct

CPU
 * 16 MHz 68HC000
 * 1 MB RAM (up to 9MB)
 * 256 KB ROM
 (like Macintosh SE)
 * Apple Sound Chip
 (like Macintosh II)

1-4 Developer Notes

• Figure 1-2 I/O Ports and Connectors on the Main Logic
Board

Reset Switch

Rear of the Main Logic Board

Bat te ry
Recharger S e r i a l

ADB

Video

External
Floppy

External
SCSI

I n t e r n a l
Modem

ROM Expansion
 Card

RAM Expansion

96-Pin MPU
Bus Expansion,

Processor Direct Slot

Front of the Main Logic Board

D i s k 1

D i s k 2

Internal SCSI
Display

Keyboard/
Trackbal l

(L e f t)

Keyboard/
Trackbal l

(R i g h t)

Stereo
Sound

NMI Switch

Expansion ROM
Jumpers

Bat te ry
1 4..

CHAPTER 1 Introduction 1-5

• Table 1-1 The Macintosh Portable Specifications

Characteristic Specification

CENTRAL PROCESSING UNIT (CPU):
16-bit, CMOS 68HC000, 16 MHz (twice Macintosh SE speed
and without video contention), 1 wait state

OPERATING SYSTEM (OS):
Enhanced Macintosh SE ROM

STANDARD MAIN MEMORY:
1MB RAM, 256 KB ROM

MEMORY EXPANSION:
Main memory (RAM) is expandable to 2 or 5 MB by using
internal expansion cards (1 or 4 MB). ROM expansion space
for Apple use in ROM revision and for international
character sets is 1 MB, and for developer use is 4 MB (see
Chapter 3, Figure 3-1.)

MASS STORAGE:
Built-in 1.4 MB floppy disk drive
External floppy disk drive port
Removable/optional second internal 1.4 MB floppy disk
drive
Optional internal low power SCSI hard disk, also external
SCSI port

RAM DISK:
Ability to install system and application software in battery-
backed-up RAM so that the machine is capable of
functioning without resorting to the optional disk drive.
This feature will provide a more rugged, lighter weight
solution to portable applications, with longer battery
operation and much faster access.

DISPLAY:
Flat-panel, 9.8" diagonal, active matrix reflective LCD, 640 x
400 pixels,
0.33 mm dot pitch, variable tilt

SOUND:
Apple stereo sound chip (same as Macintosh II)

1-6 Developer Notes

• Table 1-1 The Macintosh Portable Specifications (Continued)

Characteristic Specification

I/O PORTS:
DB-19 external floppy disk
DB-25 SCSI
Mini DIN-4 Apple Desktop Bus port
Two Mini DIN-8 serial ports
DB-15 for external video
96-pin Euro-DIN expansion interface (not compatible with
Macintosh SE)
Stereo audio phone jack
Battery recharger

INPUT DEVICES:
Built-in keyboard. Built-in trackball replaceable by optional
keypad. (The keypad or trackball may be positioned on
either side of the keyboard—right side is standard.) Low-
power Apple Desktop Bus mouse (optional) plugs into ADB
port at the rear of the machine.

OPTIONAL INTERNAL MODEM:
300/1200/2400 bps (AT command set compatible)

WEIGHT:
14 lbs. (minimum configuration) up to 17 lbs. (hard disk
option, 5 MB RAM, internal modem option)

SIZE:
15.2" wide x 13.75" deep x 2" to 4" thick (wedge shaped)

SHOCK:
The unit can withstand a 50 G, 12 millisecond shock pulse in
any axis while
non-operating. This is true of all configurations, for
example, with or without a hard disk.

BATTERY USE:
Internal, sealed lead-acid battery provides 8 hours normal
use (single floppy configuration), varies dependent on drive
usage.
Rechargeable overnight (8 hours) using AC power adapter
Battery function is required during operation from AC
power
RAM contents are retained during main battery replacement

CHAPTER 1 Introduction 1-7

Fundamentally, the Macintosh Portable is designed to be rugged and
portable, not merely transportable. The Macintosh Portable customer
is expected to be anyone who wishes to use a Macintosh away from
its usual environment (classroom, office, laboratories), or to move
the Macintosh more often than is practical in typical desktop
configurations (plugged into an AC wall outlet). Examples of the
Macintosh Portable customer are mobile business professionals (for
example, auditors, field sales, and field service people) and students.

• Figure 1-3 The Macintosh Portable Standard Configuration

Basic machine—1 MB RAM, one 1.4 MB floppy disk drive

Mass Storage
 * Permanent
 1.4MB Floppy

Built-In Pointing Device
 * Miniature Trackball

CPU
 * 1MB RAM

Basic Configuration

1-8 Developer Notes

1.2 Optional additions

The following are optional items:

• 2400 bps domestic modem kit (internal, user installed) *

• 1 MB RAM card (to make a total of 2 MB) *

• second internal 1.4 MB floppy disk drive

• 40 MB internal, one-half height, low-power hard disk drive

• Low-power ADB mouse

• Numeric keypad

• International modem

• External video adapter (see “Peripherals” later in this chapter)
* Cards for internal connectors

1.3 Internal expansion interfaces

The main logic board has mounted on it five internal connectors for
add-in capabilities (see Figure 1-2). These connectors may be listed by
function as

• ROM upgrade (4 MB of address space available to you)

• RAM expansion (up to 8 MB of address space available)

• Modem

• Processor direct expansion slot

• Internal SCSI (34-pin)

CHAPTER 1 Introduction 1-9

One connector is for ROM upgrade (see the memory address map in
Chapter 3, Figure 3-1) and a second is for RAM expansion. A third
connector allows the insertion of an optional 300/1200/2400 bps
modem card. The fourth connector is the same 96-pin Euro-DIN
type connector used in the Macintosh SE but with a different pinout;
this connector provides direct access to the signal lines of the
Motorola 68HC000 microprocessor. A fifth connector is used with an
internal cable to connect to the optional internal SCSI hard disk
drive. These connectors are shown in Figure 1-2. See Chapter 5,
“Hardware”, for details.

1-10 Developer Notes

1.4 Peripherals

The Macintosh Portable can accommodate the full range of
peripherals available to other members of the Macintosh family
(ADB devices should be low-power versions, preferably). In
addition, an external video adapter is available for driving larger,
CRT displays. This unit is described in Chapter 8; it has three video
modes:

• Macintosh II (640 x 400 pixels, with 40 lines blacked at top and bottom
of active area)

• NTSC (512 x 400 pixels, with 64 lines blacked at left and right of
active area)

• PAL (640 x 400 pixels, with 40 lines blacked at top and bottom of
active area)

CHAPTER 2 Software Developer Guidelines 2-1

Chapter 2 Software Developer Guidelines

This chapter provides guidelines that will assist you in
making sure that the applications you are developing
will run on the Macintosh Portable computer when it is
introduced. Included is a list of things you should and
shouldn't do when writing your application programs.
You are encouraged to pay close attention to these
guidelines. If you have any questions about the list of
Do's and Don'ts, immediately contact Apple Developer
Technical Support (AppleLink address MACDTS) and
mention the Macintosh Portable product name. •

2-2 Developer Notes

These guidelines will help to ensure that the software you are
developing is compatible with the Macintosh Portable computer.
The following chapters describe the hardware and software of the
Macintosh Portable and will make clearer some of the terms used in
this chapter which may be unfamiliar. The following list stresses
things you should be extremely careful about. The Macintosh
Portable has some significant differences from the Macintosh SE, and
even though the software you are developing may work on the
Macintosh SE, it may not work properly on the Macintosh Portable
unless you follow these rules.

1. • Don't go directly to the Power Manager trap if
your software needs to put the
Macintosh Portable in the sleep state.

• Do use the new Sleep trap.

A new trap has been added to the Macintosh Portable Operating
System. If you are developing a new application and it includes
software that can put the Macintosh Portable in the sleep state,
such as a smart alarm, you must use the Sleep trap rather than
directly accessing the Power Manager trap (see Chapter 6, “The
Power Manager”.)

2. • Don't go directly to the Power Manager trap to
set and get time.

• Do use the SetDateTime and GetDateTime
traps.

The clock in the Macintosh Portable differs slightly from the clock
in the Macintosh SE. Use the traps to set the clock and read the
time. If you try to access the Power Manager trap directly for these
functions, your program will not work correctly.

3. • Do use the PmgrOp trap to access the wake-
up timer commands. This is a new
feature.

CHAPTER 2 Software Developer Guidelines 2-3

The Power Manager Op trap is currently the only way to enable the
wake-up feature. If you want the Macintosh Portable to return to
the operating state from the sleep state at a predetermined time,
you can use this trap to access the wake-up timer command. This
command enables the wake-up feature (implemented as a timer),
and when the real-time clock reaches the preset value, the
Macintosh Portable returns to the operating state. If you need to
use the auto-wake-up feature, contact Apple Developer Technical
Support.

4. • Don't access the ADB (Apple Desktop Bus)
hardware directly.

• Do use the ADB traps.

Access to the ADB hardware is completely different on the
Macintosh Portable than the other Macintosh computers.

5. • Don't talk directly to the SCC (Serial
Communication Controller) chip.

• Do make normal communications calls to the
Serial Driver.

You will be taking a large risk if your program attempts to talk
directly to the SCC hardware. The serial chip in the Macintosh
Portable is turned off whenever it's not in use. The serial driver
knows how to turn the serial chip back on if your program makes
normal serial communications calls. However, software that
attempts to go directly to the serial chip will wind up talking to the
chip when it is turned off, resulting in a loss of communications.
If you need to directly access the SCC, you should contact Apple
Developer Technical Support.

6. • Don't access any hardware directly (by
hardware address).

2-4 Developer Notes

• Do use the appropriate trap to invoke a
manager.

CHAPTER 2 Software Developer Guidelines 2-5

7. • Don't ignore error checking in your program.

• Do continue to check for errors throughout
your code.

Always check for errors. You might be in the middle of a
transaction and get errors that you have not previously
experienced on the Macintosh SE. For example, if the Macintosh
Portable goes into the sleep state in the middle of an AppleTalk®
transaction, the session may have timed out when the execution of
your code continues. This example should only be taken as a
general warning. In the future, decisions could be made that
would prevent the Macintosh Portable from going into the sleep
state while programs are running.

Remember! The user can put the machine into the sleep state at
any time. The sleep feature is going to cause some errors that you
may not expect, and they can occur any time in the middle of any
code.

8. • Don't assume any screen size.

• Do make sure your program checks for
screen size.

As an example, lots of older code, like AppleLink®, assumed that
if it wasn't running on a Macintosh Plus it must be running on a
Lisa® (Macintosh XL) and you ended up with a window that filled
the Lisa screen. If you later ran this code on a Macintosh SE, you
ended up with a window that was off the screen.

Do not assume that if the screen size is 640 pixels wide, it's going to
be 480 pixels high like the Macintosh II. In fact, don't assume its
going to be any particular size; have your code read the size from
the appropriate data structure. The Macintosh Portable screen size
is actually 640 pixels wide by 400 pixels high.

9. • Don't assume only one size disk.

2-6 Developer Notes

• Do be prepared to handle unusual disk sizes.

In addition to the 1.4 MB floppy disk drive, the Macintosh Portable
has E-disks (electronic disks, also known as RAM disks) in a user-
settable range of sizes to 2 MB. Make sure that your program is
prepared to operate with unusual disk sizes.

10. • Don't attempt to talk to the IWM chip.

Remember! The Macintosh Portable doesn't have an IWM chip
but instead uses a SWIM chip to control the functions of the 1.4
MB floppy disk drive. This is of particular importance to people
doing copy protection schemes, and it will completely change the
way in which copy protection works.

11. • Don't confuse "time" and "ticks"

On the current Macintosh computers, one "tick" is equal to 1/60 of
a second in time; therefore, you can assume that if 60 ticks go by,
one second in "time" will pass by. However, because of its sleep
feature, this does not hold true for the Macintosh Portable. Two
different timers run in the Macintosh Portable. If the Macintosh
Portable is in the sleep state, "time" keeps running because of the
real-time clock, but "ticks" stop until the Macintosh Portable
returns to the operating state. If you attempt to use these two
constants interchangeably, and the Macintosh Portable goes into
the sleep state, your program may become completely confused.

12. • Do understand how SysEnvirons handles
machine type.

Beginning with System 6.0.2, all versions of SysEnvirons may
return values larger than those currently defined for machine type.
Your program should treat machine types of Zero (= machine
unknown), and all values larger than the current largest value, as
an unknown machine. Do Not check just a specific set of values.
For more information, see the October '88 revision of Tech Note
129.

CHAPTER 2 Software Developer Guidelines 2-7

CHAPTER 3 Firmware 3-1

Chapter 3 Firmware

This chapter describes the firmware portion of the total
software environment for the Macintosh Portable
computer. Software will include both ROM-stored code
(firmware) and disk-stored code (system software). The
Macintosh Portable firmware is an outgrowth of that for
the Macintosh SE. This chapter describes the changes
from the Macintosh SE firmware (the ROM image).
The ROM to which we refer is that on the 68HC000 I/O
bus. Chapter 4 describes the changes in the contents of
the system tools disk. Also, see “Software Developer
Guidelines,” Chapter 2. •

3-2 Developer Notes

This page is a blank

CHAPTER 3 Firmware 3-3

3.1 Overview

The Macintosh SE software is extensively documented in Inside
Macintosh, Volume V. The contents of Volume V that apply to the
Macintosh SE describe its software in terms of changes from the
Macintosh Plus, documented in Inside Macintosh, Volume IV.
Volume IV, in turn, describes changes from the classic Macintosh as
documented in Inside Macintosh, Volumes I, II, and III.

Terminology

The Macintosh Portable software comes in two components:

• Firmware—contents of the three ROMs, one for each of the three
processors (68000 CPU, power manager processor, and the
keyboard processor).

• System software—contents of an 800 KB, 3.5" disk, Version 6.0.3.
System software includes the system file, ROM patches, cdevs
(control devices), and more.

Reference to Macintosh Portable ROM will mean the 68000 processor
ROM; discussion of ROM firmware for either of the peripheral
processors will be explicitly labeled as such.

The Macintosh Portable ROM is fundamentally the same ROM as for
the Macintosh SE; however, there are some important changes and
additions. See section 3.3, “Changes to ROM,” for more detail.

See Chapter 4, “Software,” for information on updates to the system
tools disk.

3.2 Address map

Figure 3-1 shows the address map of the Macintosh Portable. For
comparison, Figure 3-2 shows the address map of the Macintosh SE.

3-4 Developer Notes

• Figure 3-1 The Macintosh Portable Address Map

$10 0000

$90 0000

$20 0000

$30 0000

$40 0000

$50 0000

$00 0000

$80 0000

$70 0000

$60 0000

$C0 0000

$D0 0000

$E0 0000

$F0 0000

$100 0000

$A0 0000

$B0 0000

High
Memory

256 KB ROM
Aliased x4

RAM
Expansion

ROM (overlay=1)
RAM (overlay=0)

$F1 0000

$F9 0000

$F2 0000

$F3 0000

$F4 0000

$F5 0000

$F0 0000

$F8 0000

$F7 0000

$F6 0000

$FC 0000

$FD 0000

$FE 0000

$FF 0000

$100 0000

$FA 0000

$FB 0000

Auto-Vector Read:
VIA/68000 VPA

Normal/Idle Mode;
T e s t

SCC

Sound

Video

SCSI

ROM
Diagnostics

V I A

SWIM

Reserved

ROM
Expansio

PDS ROM

Slot
Configure

CHAPTER 3 Firmware 3-5

• Figure 3-2 The Macintosh SE Address Map

$100 0000

0000

V I A
0000

0000

IWM
$ D0 0000

C0 0000

SCC Write
$ B0 0000

Exp.EN/ 0000

SCC Read
$ 90 0000

0000

$ 60 0000

$ 58 0000
SCSI

$ 50 0000

ROM
$ 40 0000

$ 00 0000

RAM

$

$

$

$

$

$

A0

AA

E0

E8

F0

3-6 Developer Notes

3.3 Changes to ROM

The Macintosh Portable ROM software is based on the 256 KB
Macintosh SE ROM; all patches to the Macintosh SE ROM that are
contained in disk-stored system software have been incorporated in
the ROM image of the Macintosh Portable and no longer need reside
in RAM. The Macintosh Portable ROM image is 256 KB in size. It is
stored in either masked ROM on the main logic board or (during
development) in two 1 megabit ROMs on the ROM expansion board.

Power manager processor

The hardware interface to the power manager processor is through a
port on the VIA (see Chapter 6, “The Power Manager,” for details);
the software interface is through the A trap mechanism (see Inside
Macintosh Volume I, page I-88). Drivers have been modified to call
the power manager to turn on and off their respective peripheral
chips.

• Table 3-1 Power Manager Processor

Replaces Provides

• Real time clock -
• Apple Desktop Bus transceiver -
- • Power and clock control for peripheral

subsystems
- • A computer wake-up timer facility
- • LCD screen contrast control
- • Control of internal modem connection

to serial ports
- • Parameter RAM
- • Monitoring and control of the battery

and charger
system

CHAPTER 3 Firmware 3-7

Apple Desktop Bus

Some changes have been made to the code for the ADB state
machine to use the power manager as a smart transceiver.
Externally, there is no visible change, the same functionality has
been provided.

3-8 Developer Notes

Real-time clock (RTC) and Parameter RAM

As the RTC and parameter RAM functions have been taken over by
the power manager, a new interface to the clock is provided. A one-
second timer, based on the 60 Hz oscillator used by the power
manager processor, is used to generate the real-time clock.

There are two real-time clock functions: one to set and one to read
the clock. The clock data is stored as a count of the number of
seconds since midnight, 1 January 1904.

Parameter RAM is the storage location for various settings (such as
those specified by the user on the Control Panel desk accessory) that
need to be preserved during sleep or power off. Only 128 bytes of
extended parameter RAM are supported by the power manager. See
Chapter 6, “The Power Manager,” for further details.

Applications should not use parameter RAM assuming it to be the
same as earlier Macintosh models, because it is not. The Macintosh
Plus, Macintosh SE, and Macintosh II have 256 bytes as compared to
128 bytes for the Macintosh Portable.

Serial Driver

This driver software is modified for switching power to the SCC chip
and the serial driver chips before accessing them.

FDHD, the high-density floppy disk drive

The FDHD™ disk drive is a new 3.5-inch floppy disk drive for the
Macintosh II,
Macintosh IIx, Macintosh SE/30, and Macintosh Portable computers.
FDHD provides the ability to read and write data in both group code
recording (GCR) and modified frequency modulation (MFM)
formats. This new MFM capability allows Macintosh users to read
and write MS-DOS files and, potentially, other files that use the MFM
disk formats.

CHAPTER 3 Firmware 3-9

FDHD provides 1400 KB (1.4 MB) of MFM storage. It also continues
to support the standard storage capacities in GCR mode: single-sided
400 KB storage capacity, and double-sided 800 KB storage capacity
disks.

The FDHD disk drive provides the high-density read/write hardware
and read/write circuitry. The new ROM set incorporates the new
disk driver. The SWIM chip provides Macintosh Portable with MFM
disk read/write capability while maintaining HFS compatibility. The
following information is needed to develop application programs
that use the new FDHD 1.4 MB floppy disk drive. Also described are
the data encoding techniques used in the drive, the disk driver
firmware, and how to use both.

Data storage

The theory behind disk drive technology is relatively easy to
understand. By making calls to the disk driver, you are causing the
disk controller chip (the SWIM chip) to send control signals and data
to the disk drive.

Data is recorded on a disk very much as a voice or music is recorded
on magnetic tape: Current flow is varied through a read/write head
that is placed close to the medium (the disk or tape). Changing the
current flow in the read/write head results in a magnetic transition
on the disk. It is these magnetic transitions that interest us.

Several techniques are used by computer designers to write data to
disk media. All of these techniques share a common technology:
encoding data as magnetic transitions on a disk. To represent
individual bits, a pattern of ones and zeros is expressed as a series of
magnetic transitions. The data format is the combination of
magnetic transitions that represents a particular series of bits. FDHD
uses two data formats: group code recording (GCR) and modified
frequency modulation (MFM). Table 3-2 shows the four possible
combinations of file systems and disk formats.

3-10 Developer Notes

• Table 3-2 Possible disk format

Disk formats File systems

400 KB GCR † MFS
800 KB GCR † HFS
720 KB MFM† MS-DOS
1440 KB MFM * HFS or MS-DOS

† requires a standard 3.5-inch disk
* requires a high density 3.5-inch disk

CHAPTER 3 Firmware 3-11

GCR format

The GCR data format has been used in all Apple floppy disk drives to
date, including the Macintosh single-sided and double-sided disk
drives.

Data bits are represented by magnetic transitions in the following
manner:

• A transition always occurs when a 1 is encountered.

• No transitions occur when a 0 is encountered.

Figure 3-3 shows the relationship between the data bits and the
magnetic transitions written to the disk when using the GCR data
format.

• Figure 3-3 GCR data format

1 11 0 0 1 0 1 0 0 1 1 10 0 0 0 1 0 0 1Data bits

Magnetic
transitions
wr i t ten
to disk

MFM format

Another standard data format is the MFM format, which is used by
MS-DOS computers to store data. Data bits are represented by
magnetic transitions in the following manner:

• A transition always occurs when a 1 is encountered.

• A transition always occurs when two adjacent 0’s are encountered.

Figure 3-4 shows the relationship of data bits and magnetic
transitions when using the MFM data format.

3-12 Developer Notes

• Figure 3-4 MFM data format

1 11 0 0 1 0 1 0 0 1 1 10 0 0 0 1 0 0 1Data bits

Magnetic
transitions
wr i t ten
to disk

The disk media

The FDHD disk drive uses a special 3.5-inch 1440 KB disk. The disk
has a hole cut in the upper-left corner that identifies it as high-
density media. Do not format this disk as a 400 KB or 800 KB GCR
disk in any Macintosh disk drive. Doing so will place your data at
risk. Use only standard Macintosh single-sided and double-sided
disks in single-sided (400 KB) and double-sided (800 KB) drives.
When a GCR formatted 400K or 800K HD disk is inserted in a FDHD
drive, an eject or initialize dialog box will be displayed.

Figure 3–5 shows media compatibility for different disk drives.

CHAPTER 3 Firmware 3-13

• Figure 3-5 Disk media compatibility

Media

Disk drive
FDHD

Single-
sided

Double-
sided

High-
density
1.44MB

Disk is recognized as a
standard 3.5-inch disk.
Only single-sided (400K)
format is possible.

Disk is recognized as a
standard 3.5-inch disk.
Either single- or double-
sided format is possible.

Disk is recognized
as a standard 3.5-
inch disk.

Incompatible.

Do not use high-density media in single-sided
or double-sided disk drives. Use high-density
disks only in the FDHD disk drive.

Data written to a high-density disk in 400K or
800K disk drives places that data at risk.

Disk is recognized as a
high-density 3.5-inch
disk.

Use high-density disks
only in the FDHD disk
drive.

Single-
sided
400K

Double-
sided
800K

Disk is recognized as a
standard 3.5-inch disk.
Only single-sided (400K)
format is possible.

Disk is recognized as a
standard 3.5-inch disk.
Format this disk only as
a single-sided disk.
Formatting this disk as
a double-sided disk and
saving data on it places
that data at risk.

Disk is recognized
as a standard 3.5-
inch disk.

Use only double-
sided disks when
formatting in 800K
mode.

The File System

Apple is working on full support in the file system for the FDHD
disk drive in both MFM and GCR modes. Today, support for the
FDHD is provided in the current version of the Apple File Exchange
(version 1.1). Apple File Exchange is a Macintosh application
program that allows users to transfer files from MS-DOS disks to the
Macintosh, with the option of translating proprietary file formats.
For more information on Apple File Exchange, refer to Chapter 7,
“Using Apple File Exchange,” in the Macintosh Utilities User’s
Guide.

3-14 Developer Notes

High Density Floppy Disk Driver

The Macintosh Portable ROM includes a new disk driver. This
driver supports the MFM data format and several other new
features. This is a new driver to interface with the SWIM chip and
support MFM, as well as GCR, data encoding; the driver also
provides power control. The calls to this driver are described in the
following several pages.

Control calls perform all of the disk operations except reading data
and writing data. The control opcode is passed to the driver in the
csCode field (byte 26) of the I/O parameter block. Refer to the Device
Manager chapter in Inside Macintosh, Volume II. Control calls that
return information pass it back in the I/O parameter block, beginning
with the csParam field (byte 28).

Kill I/O (csCode=1)

Kill I/O is called to abort any current I/O request in progress. The
driver does not support this control call and always returns a result
code of –1.

Verify Disk (csCode=5)

This control call reads every sector from the selected disk to verify
that all sectors have been written correctly. If any sector is found to
be bad, the call aborts immediately and returns an error code.

Format Disk (csCode=6)

If the selected disk is a floppy disk, the driver writes address headers
and data fields for every sector on the disk and (for GCR disks only)
does a limited verification of the format by checking that the address
field of the first sector on each track can be read. If the selected disk is
a Hard Disk 20, the driver doesn’t format the media, but instead
initializes the data of each sector to be all 0's. If any error occurs
(including write-protected media), the formatting is aborted and an
error code is returned.

The csParam field is used to specify the type of format to be done on
floppy disks only. In the SWIM and later versions of the driver, this
value is an index into a list of possible formats for the given
drive/media combination. (See the Return Format List status call
under “Status Calls,” later in this chapter, for values.)

CHAPTER 3 Firmware 3-15

♦ Note: In previous versions of the driver, setting csParam to $0001
creates a single-sided disk. Setting csParam to a value other than
$0001 creates a double-sided disk.

Eject Disk (csCode=7)

This call ejects the disk in the selected drive if that drive supports
removable media. Since hard disks are not removable, if a hard disk
is ejected, the driver posts a diskInserted event and remounts the
drive.

Set Tag Buffer (csCode=8)

If csParam is zero, no separate tag buffer is used. If csParam is
nonzero, it is assumed to contain a pointer to a buffer into which tag
bytes from each block are read or into which they are written on each
Prime call. Every time a block is read from the disk, the 12 tag bytes
are copied into the file tag buffer at TagData+2 ($2FC), and then are
copied into the user’s tag buffer. When a block is written, tag bytes
are copied into the file tag buffer from the user’s tag buffer, and then
written to the disk with the rest of the block. The position of a
particular block’s tag bytes in the user tag buffer is determined by that
block’s position relative to the first block read/written on the current
Prime call. The file tags for GCR disks include information that a
scavenging utility can use to rebuild a disk if the directory structure
gets trashed. Figure 3–6 shows the tag format.

• Figure 3-6 GCR file tag format

file number	

fork type (bit 1=1 if resource fork)
file attributes (bit 0=1 if locked)

relative file block number
disk block number

0

4
5

6
8

3-16 Developer Notes

MFM disks don’t support file tags, so instead of scrapping the whole
idea, information about the sector itself is returned. Most of it is read
from the disk, but the error register bytes show any error conditions
that exist after the address or data field is read. Figure 3–7 shows the
format of a sector information block.

CHAPTER 3 Firmware 3-17

• Figure 3-7 MFM sector information block

cylinder (track)

side
sector

format byte (should be $22)
CRC read from address field

SWIM error register after CRC read
SWIM handshake register

CRC read from data field
SWIM error register after CRC read

SWIM handshake register

0

1
2

3
4

6
7

8
10

11

Track Cache Control (csCode=9)

When the track cache is enabled, all of the sectors on the last track
accessed during a read request, and those requested by the user, are
read into a RAM buffer. On future read requests, if the track is the
same as the last track on the last read request, the sector data is read
from the cache rather than from disk. Write requests to the driver
are passed directly to the disk, and any of the sectors written that are
in the cache are marked invalid. To control the cache, 2 bytes are
passed at csParam to control the cache, located at csParam and
csParam+1. These codes are shown in Table 3–3 and Table 3–4.

• Table 3-3 Cache enable codes

csParam Result

 0 Disable the cache.

≠0 Enable the cache.

3-18 Developer Notes

• Table 3-4 Cache control codes

csParam+1 Result

<0 Remove the cache.

 0 Don’t remove or install the cache.

>0 Install the cache.

.Return Physical Drive Icon (csCode=21)

This call returns a pointer to an icon that shows the selected drive’s
physical location. The supported icons are shown in Figure 3–8.
Note that only the icons for a particular machine are included in that
machine’s disk driver.

• Figure 3-8 Drive icons

Macintosh
internal

Macintosh SE
upper internal

Macintosh SE
lower internal

Macintosh II
left

Macintosh II
right

Macintosh or SE
external

CHAPTER 3 Firmware 3-19

Return Media Icon (csCode=22)

This call returns a pointer to an icon that shows the selected drive’s
media type. The floppy disk icon is stored in the driver. The Hard
Disk 20 icon is stored in the disk drive’s ROM. Figure 3–9 shows the
icons.

3-20 Developer Notes

• Figure 3-9 Media icons

Internal RAM Disk Internal ROM DiskSony floppy disk Hard Disk 20

Return Drive Info (csCode=23)

This control call returns a 32-bit value in csParam that describes the
location and attributes of the selected drive. Figure 3-10 shows the
format of the Return Drive Information

• Figure 3-10 Return drive information format

0=internal
1=external

0=IWM
1=SCSI

0=removable media
1=fixed media

0=primary
1=secondary

0347811121516232431

type

= Reserved

The attributes field occupies bits 8 to 11 and describes the location
(internal/external, primary/secondary), drive interface (IWM/SCSI),
and media type (fixed/removable).

Most of the bits are currently not used and are reserved for future
expansion. The drive type field occupies bits 0 to 3 and describes the
kind of drive that is connected. Currently six different types are
supported; they are listed in Table 3–5.

CHAPTER 3 Firmware 3-21

• Table 3-5 Drive types

Type Description

0 no such drive

1 unspecified drive

2 400 KB

3 800 KB

4 FDHD (400 KB/800 KB GCR, 720 KB/1440 KB MFM)

5 reserved

6 reserved

7 Hard Disk 20

8-15 reserved

Status calls

The disk driver currently supports three status calls, which are
described below. As with the control calls, the status opcode is passed
to the driver in the csCode field of the I/O parameter block (byte 26).
The returned status information is passed back starting at the
csParam field of the I/O parameter block (byte 28).

Return Format List (csCode=6)

This call is supported in the SWIM-compatible disk driver and will
be supported in future versions of the disk driver, whether or not
MFM disks are supported. This call returns a list of all disk formats
possible with the current combination of disk controller, drive, and
media. Upon entry, csParam contains a value specifying the
maximum number of formats to return, and csParam+2 contains a
pointer to a table that will contain the list. On exit, csParam will
contain the number of formats returned (no more than specified),
and the table will contain the list of formats. If no disk is inserted in
the drive, the call will return a noDriveErr code. The format
information is given in an 8-byte record as shown in Figure 3-11.

3-22 Developer Notes

• Figure 3-11 Return format record

7 0 7 0 7 0 7 0

of sides # of sectors per track side # of tracks

0=single-density
reserved (0)

1=current disk has this format

1=number of tracks/sides/sectors is valid

disk capacity in blocks

0=fields can be user-defined

1=double-density

7 0 7 0 7 007 6 5 4 3

If a track, side, or sector field is zero when the valid bit is set to 1, the
field is considered to be a “don’t care” as far as describing the format
of the disk. The formats supported by the driver are listed in Table
3–6.

• Table 3-6 Combinations of drives and media

Format Capacity TSS valid1 SD/DD Sides Sectors2 Tracks

(in blocks)

400 KB GCR 800 yes SD 1 10 80

800 KB GCR 1600 yes SD 2 10 80
720 KB MFM3 1440 yes SD 2 9 80
1440 KB MFM3,4 2880 yes DD 2 18 80

Hard Disk 20 38965 no SD 0 0 0

Notes:
1 track, sector, and side information
2 average number of sectors
3 requires SWIM and FDHD

CHAPTER 3 Firmware 3-23

4 requires HD media

Drive Status (csCode=8)

Drive Status returns information about a particular drive, starting at
csParam; the values returned are listed in Table 3–7.

• Table 3-7 Drive status return values

Offset Description Parameters

0 current track value of current track
2 write protect bit 7 = 1, write-protected

bit 7 = 0, write-enabled
3 disk in place? <0 = disk is being ejected

0 = no disk is currently in the drive
1 = disk was just inserted but no
read/write requests have been made
for this disk
2 = OS has tried to mount the disk
(that is, read request to driver)
3 = same as “2” except that this is a
high-density disk formatted as 400KB
or 800KB GCR
8 = same as “2” except except that this
is a Hard Disk 20 (8 means disk is
nonejectable)

4 drive installed? –1 = no drive installed
0 = don’t know
1 = drive installed

5 number of sides 0 = single-sided
–1 = double-sided

3-24 Developer Notes

• Table 3-7 Drive status return values (Continued)

Offset Description Parameters

6 drive queue element 6 = qLink—pointer to next queue
element
10 = qType—type of queue (drvQType)
12 = dqDrive—drive number
14 = dqRefNum—disk driver’s
reference number
16 = dqFSID—file system ID

18 double-sided format? 0 = current disk has single-sided
format
–1 = current disk has double-sided
format

19 new interface 0 = old drive interface (400KB)
–1 = new interface (800KB and later)

20 soft error count (2 bytes) number of soft errors encountered

MFM Status (csCode=10)

This call is supported in the SWIM-compatible disk driver and will
be supported in future versions of the disk driver. By making this
call and then checking the returned error code, it is possible to
determine whether or not the version you are using can read and
write MFM disks. Also, the information returned is helpful in
determining the installed hardware configuration. The information
is returned starting at csParam. Table 3-8 lists the values returned.

CHAPTER 3 Firmware 3-25

• Table 3-8 MFM status return values

Offset Description Parameters

0 drive type –1 = FDHD (MFM/GCR)
0 = 400KB or 800KB GCR

1 disk format –1 = MFM
0 = GCR (valid only when installed)

2 MFM format –1 = 1440KB disk
0 = 720KB disk

3 disk controller –1 = SWIM
0 = IWM

A sample program

As an example of how to use the new disk driver, a sample
application program is included here.
{

FDHD™ Driver Demo Application

Copyright © 1988 by Apple Computer, Inc.

This is a short application to show off both the old and new control and status calls
for the FDHD disk driver. The application does this by presenting a list of
information about each 3.5-inch floppy or original Hard Disk 20 drive connected to
the Macintosh, and the format of any disks that are in those drives.
__

}

PROGRAM HDFDDriverDemo;

 USES MemTypes,QuickDraw,OsIntf,ToolIntf,PackIntf,PasLibIntf;

 CONST DemoMenu = 256; {menu's resource ID and item numbers}

 AboutItem = 1;

 QuitItem = 3;

3-26 Developer Notes

 DemoDLOG = 256; {"demo" dialog's resource ID and item

numbers we use:}

Eject1Btn = 1; {disk eject buttons}

Eject2Btn = 2;

Eject3Btn = 3;

ChipTypTxt= 11; {disk controller type}

BaseDrvLoc= 12; {base drive location}

BaseDrvIcn= 15; {base drive icon item}

BaseDskIcn= 18; {base disk icon item}

BaseDrvNum= 21; {base drive number}

BaseDrvTyp= 24; {base drive type}

BaseDskFmt= 27; {base disk format}

 StrRsrcID = 256; {descriptive string list resource ID and

string numbers:}

 IWMStr = 1; {chip types}

 SWIMStr = 2;

 Int1DrvStr = 3; {primary internal drive}

 Int2DrvStr = 4; {secondary internal drive}

 Ext1DrvStr = 5; {primary external drive}

 Ext2DrvStr = 6; {secondary external drive}

 Drive400K = 7; {drive types}

 Drive800K = 8;

 FDHD = 9;

 Hard Disk 20 = 12;

 DefDiskIcon = 256; {default drive/disk icon in case we have

errors}

HDFDRefNum = -5; {FDHD driver's reference number}

FmtListCode = 6; {csCode for "format list" status call}

DrvStsCode = 8; {csCode for "drive status" status call}

MFMStsCode = 10; {csCode for "MFM status" status call}

DrvIconCode = 21; {csCode for "drive icon" control call}

DskIconCode = 22; {csCode for "disk icon" control call}

DrvInfoCode = 23; {csCode for "drive info" control call}

CHAPTER 3 Firmware 3-27

TYPE DrvFmtRec = PACKED RECORD {disk format description:}

capacity: LONGINT; { number of blocks on the disk}

flagsNHeads: SignedByte; { [flags][number of heads]}

sectors: SignedByte; { number of sectors per track side}

cylinders: INTEGER; { number of tracks [cylinders]}

END;

FmtInfoRec = RECORD {format list:}

numFormats : INTEGER; { number of formats we want/are returned}

fmtBlock : Ptr; { where to put them}

END;

FmtInfoPtr = ^FmtInfoRec;

MFMSts = PACKED RECORD {info about chips, drives, disks:}

isHDFD: SignedByte; {-1=HDFD, 0=400K/800K drive}

diskFormat : SignedByte; { -1=MFM, 0=GCR}

twoMegFmt : SignedByte; {-1=1440K, 0=720K (if diskFormat=-1)}

isSWIM : SignedByte; {-1=SWIM, 0=IWM}

END;

MFMStsPtr = ^MFMSts;

DrvStsPtr = ^DrvSts;

VAR theEvent : EventRecord;

demoDialog : DialogPtr; {"the" window}

whichWindow : WindowPtr; {the window FindWindow is talking

about}

pb: ParamBlockRec; {parameter block for control/status

calls}

itemHit : INTEGER; {item number returned by DialogSelect}

driveIcon, {drive icon for each column}

diskIcon : ARRAY[0..2,0..31] OF LONGINT; {disk icon for each column}

driveNum : ARRAY[0..2] OF INTEGER; {drive number for each column}

3-28 Developer Notes

{

__

D I A L O G R O U T I N E S

__

}

 { hides the specified dialog control }

PROCEDURE HideDControl(theItem:INTEGER);

VAR theType : INTEGER;

theControl : ControlHandle;

theRect : Rect;

BEGIN

 GetDItem(demoDialog,theItem,theType,Handle(theControl),theRect);

 HideControl(theControl);

END;

 { sets the highlighting of the specified dialog control }

 PROCEDURE HiliteDControl(theItem,theHilite:INTEGER);

VAR theType : INTEGER;

theControl : ControlHandle;

theRect : Rect;

BEGIN

GetDItem(demoDialog,theItem,theType,Handle(theControl),theRect);

HiliteControl(theControl,theHilite);

END;

 { changes the text of a staticText item to theText }

PROCEDURE SetDText(theItem:INTEGER; theText:Str255);

VAR theType : INTEGER;

theHandle : Handle;

theRect : Rect;

BEGIN

GetDItem(demoDialog,theItem,theType,theHandle,theRect);

SetIText(theHandle,theText);

END;

CHAPTER 3 Firmware 3-29

 { draws a drive icon for the given drive }

PROCEDURE DrawDriveIcon(theDialog:DialogPtr; theItem:INTEGER);

VAR theBits : BitMap;

theType : INTEGER;

theHandle : Handle;

BEGIN

IF driveNum[theItem-BaseDrvIcn]<>0 THEN BEGIN

theBits.baseAddr:=@driveIcon[theItem-BaseDrvIcn];

theBits.rowBytes:=4;

GetDItem(theDialog,theItem,theType,theHandle,theBits.bounds);

CopyBits(theBits, theDialog^.portBits, theBits.bounds, theBits.bounds,srcCopy,NIL);

END;

END;

 { draws a disk icon for the given drive }

PROCEDURE DrawDiskIcon(theDialog:DialogPtr; theItem:INTEGER);

VAR theBits : BitMap;

theType : INTEGER;

theHandle : Handle;

BEGIN

IF driveNum[theItem-BaseDskIcn]<>0 THEN BEGIN

theBits.baseAddr:=@diskIcon[theItem-BaseDskIcn];

theBits.rowBytes:=4;

GetDItem(theDialog,theItem,theType,theHandle,theBits.bounds);

CopyBits(theBits,theDialog^.portBits,theBits.bounds, theBits.bounds,srcCopy,NIL);

END;

END;

3-30 Developer Notes

{

__

M I S C E L L A N E O U S D I S K S T U F F

__

}

 { Pascal doesn't support a SWAP operation, and since the Hard Disk 20's }

 { drive size fields are in the opposite order from what we need, we'll }

 { have to swap them ourselves. The hex code following the function }

 { translates to: }

 { $205F MOVEA.L (SP)+,A0; Get the pointer to "driveSize" }

 { $2010 MOVE.L (A0),D0; D0.L=[driveSize][driveS1] (backwards)

}

 { $4840 SWAP D0; D0.L=[driveS1][driveSize] (how we

want it) }

 { $2E80 MOVE.L D0,(SP); Put the result on the stack }

FUNCTION GetHD20Size(rawSize:Ptr):LONGINT; INLINE $205F, $2010, $4840, $2E80;

 { check what format this disk has and enable the Eject button }

PROCEDURE NewDisk(theDrive:INTEGER);

VAR theFormat : LONGINT;

I : INTEGER;

formatList : FmtInfoPtr;

formatInfo : ARRAY[0..3] OF DrvFmtRec;

driveStatus : DrvStsPtr;

theString : Str255;

CHAPTER 3 Firmware 3-31

BEGIN

IF theDrive IN [1..3] THEN {it might be one of ours}

IF driveNum[theDrive-1]<>0 THEN BEGIN {it is, so continue}

theFormat:=0; {no format yet}

{ First, assume we're working with a recent enough }

{ version of the driver to support the Format List call. If }

{ so, we can determine how big this disk is… }

formatList:=FmtInfoPtr(@pb.csParam); {type coercion (hazard of

Pascal)…}

formatList^.numFormats:=4; {we want up to 4 entries}

formatList^.fmtBlock:=@formatInfo; {and here's where to put

them}

pb.ioCompletion:=NIL; {no completion routine}

pb.ioRefNum:=HDFDRefNum; {FDHD driver's reference

number}

pb.ioVRefNum:=theDrive; {drive number}

pb.csCode:=FmtListCode; {go get the list}

IF PBStatus(@pb,FALSE)=NoErr THEN BEGIN {got something back}

I:=formatList^.numFormats;

WHILE (I>0) AND (theFormat=0) DO BEGIN {scan the list for this disk's

format}

I:=I-1;

IF BTST(formatInfo[I].flagsNHeads,6) THEN {bit 6=1 means this is the

current format}

theFormat:=formatInfo[I].capacity DIV 2; { save the disk's size in K-

bytes}

END;

END;

3-32 Developer Notes

{ If theFormat=0 then the Format List call }

{ isn't supported (because it's an old driver version)… }

IF theFormat=0 THEN BEGIN {haven't figured it out yet}

pb.csCode:=DrvStsCode; {get drive status}

IF PBStatus(@pb,FALSE)=NoErr THEN BEGIN

driveStatus:=DrvStsPtr(@pb.csParam); {type coercion…}

IF driveStatus^.diskInPlace=8 THEN {Hard Disk 20}

theFormat:=GetHD20Size(@driveStatus^.driveSize) DIV 2 {blocks-

> K-bytes}

ELSE

IF driveStatus^.twoSideFmt=0 THEN

theFormat:=400 { 400K}

ELSE theFormat:=800; { 800K}

END;

END;

NumToString(theFormat,theString); {convert the disk size to a

string,}

theString:=CONCAT(theString,'K'); {append a special K to the

size,}

SetDText((BaseDskFmt-1)+theDrive,theString); { and display it}

HiliteDControl((Eject1Btn-1)+theDrive,0); {enable the Eject button}

END;

END;

{

__

I N I T I A L I Z A T I O N

__

}

PROCEDURE Initialize;

CONST ControlErr = -17;

VAR column,I,driveType : INTEGER;

theHandle,defIcon : Handle;

theString : Str255;

mfmStatus : MFMStsPtr;

driveStatus : DrvStsPtr;

{ sets a dialog userItem's draw procedure to theProc }

PROCEDURE SetUserProc(theItem:INTEGER; theProc:ProcPtr);

CHAPTER 3 Firmware 3-33

VAR theType : INTEGER;

theHandle : Handle;

theRect : Rect;

BEGIN

GetDItem(demoDialog,theItem,theType,theHandle,theRect);

SetDItem(demoDialog,theItem,theType,Handle(theProc),theRect);

END;

BEGIN

InitGraf(@thePort); {initialize the managers}

InitFonts;

FlushEvents(everyEvent,0);

InitWindows;

InitMenus;

TEInit;

InitDialogs(NIL);

InitCursor;

demoDialog:=GetNewDialog(DemoDLOG,NIL,WindowPtr(-1)); {load in the demo

dialog window}

{ find out what kind of disk controller chip we're using }

pb.ioCompletion:=NIL; {no completion routine}

pb.ioRefNum:=HDFDRefNum; {FDHD driver's reference

number}

pb.ioVRefNum:=1; {any drive number will do}

I:=IWMStr; {assume we're working

with an IWM}

pb.csCode:=MFMStsCode; {get MFM status}

IF PBStatus(@pb,FALSE)=NoErr THEN BEGIN

mfmStatus:=MFMStsPtr(@pb.csParam); {type coercion…}

IF mfmStatus^.isSWIM<0 THEN I:=SWIMStr; {we've got a SWIM chip}

END;

GetIndString(theString,StrRsrcID,I); {get the chip type string}

SetDText(ChipTypTxt,theString); { and display it}

 { set the icon draw procedures and fill in all drive information }

defIcon:=GetResource('ICON',DefDiskIcon); {get the default disk icon}

{ in case we get errors}

3-34 Developer Notes

theHandle:=Handle(@pb.csParam); {a little type coercion…}

driveStatus:=DrvStsPtr(@pb.csParam); {here too…}

FOR column:=0 TO 2 DO BEGIN

SetUserProc(BaseDrvIcn+column,@DrawDriveIcon); {set the drive icon's draw

proc}

SetUserProc(BaseDskIcn+column,@DrawDiskIcon); {set the disk icon's

draw proc}

{ find out if the drive is installed or not, and if it belongs to the FDHDdriver }

driveStatus^.installed:=-1; {make sure this one is

inited}

pb.ioVRefNum:=column+1; {drive number}

pb.csCode:=DrvStsCode; {find out about this drive}

IF (PBStatus(@pb,FALSE)=NoErr) AND(driveStatus^.installed>=0)

THEN BEGIN {if the drive is installed then:}

driveNum[column]:=pb.ioVRefNum; { save its number,}

NumToString(pb.ioVRefNum,theString); { convert it to a string,}

SetDText(BaseDrvNum+column,theString); { and display it}

IF driveStatus^.diskInPlace<2 THEN {the disk isn't quite

mounted,}

HiliteDControl(Eject1Btn+column,255) { so disable its Eject

button}

ELSE

NewDisk(column+1); { otherwise find out about

it}

{ Check the drive type here in case the "get drive info" }

{ call isn't supported on this particular machine… }

IF driveStatus^.diskInPlace=8 THEN BEGIN {only Hard Disk 20 is not

ejectable}

driveType:=HD20; {save its drive type}

HideDControl(Eject1Btn+column); { and get rid of its Eject

button--}

END { it's not ejectable,

remember?}

ELSE

IF driveStatus^.sides=0 THEN {otherwise go by number of

sides}

driveType:=Drive400K

CHAPTER 3 Firmware 3-35

ELSE driveType:=Drive800K;

{ Get the drive's icon or use our generic one if we can't get it }

pb.csCode:=DrvIconCode;

IF PBControl(@pb,FALSE)=NoErr THEN

BlockMove(theHandle^,@driveIcon[column],128)

ELSE BlockMove(defIcon^,@driveIcon[column],128);

{ Get the disk's icon or use our generic one if we can't get it }

pb.csCode:=DskIconCode;

IF PBControl(@pb,FALSE)=NoErr THEN

BlockMove(theHandle^,@diskIcon[column],128)

ELSE

BlockMove(defIcon^,@diskIcon[column],128);

{ Find out the drive's type and location }

pb.csCode:=DrvInfoCode;

IF PBControl(@pb,FALSE)=NoErr THEN BEGIN

 driveType:=LOWRD(BAND(LONGINT(theHandle^),$0000000F))+

(Drive400K-2);

IF BTST(LONGINT(theHandle^),8) THEN {internal or external drive}

I:=Ext1DrvStr

ELSE

I:=Int1DrvStr;

IF BTST(LONGINT(theHandle^),11) THEN

I:=I+1;{secondary drive}

END

ELSE

IF column=0 THEN

I:=Int1DrvStr {older drivers may not

support this}

ELSE

I:=(Ext1DrvStr-1)+column; { call, so just go by drive

number}

GetIndString(theString,StrRsrcID,driveType); { get the type's name}

SetDText(BaseDrvTyp+column,theString); { and display it}

GetIndString(theString,StrRsrcID,I); { get the drive location

string}

SetDText(BaseDrvLoc+column,theString); { and display it}

3-36 Developer Notes

END

ELSE BEGIN {if no drive is installed}

driveNum[column]:=0; { then set the drive# to

zero}

HideDControl(Eject1Btn+column); {and make the control

invisible}

END;

END;

ShowWindow(demoDialog); {let 'em see the window

now}

END;

{

__

M A I N

__

}

BEGIN

Initialize; { initialize everything }

REPEAT

IF GetNextEvent(everyEvent,theEvent) THEN BEGIN { handle an event}

IF theEvent.what=diskEvt THEN

{ a disk was just inserted, so…}

NewDisk(LOWRD(theEvent.message));

{ find out about it}

IF theEvent.what=mouseDown THEN

{ mouse click in the goAway box?}

IF FindWindow(theEvent.where,whichWindow)=inGoAway THEN

IF TrackGoAway(demoDialog,theEvent.where) THEN BEGIN

DisposDialog(demoDialog); { get rid of our window}

EXIT(HDFDDriverDemo); { and return to the

Finder}

END;

IF IsDialogEvent(theEvent) THEN

{it's in our dialog window}

IF DialogSelect(theEvent,whichWindow,itemHit) THEN

CHAPTER 3 Firmware 3-37

IF itemHit IN [Eject1Btn..Eject3Btn] THEN BEGIN {it's an Eject button, so…}

IF Eject(NIL,itemHit-(Eject1Btn-1))=0 THEN ; { eject the disk,}

SetDText((BaseDskFmt-Eject1Btn)+itemHit,''); { erase the disk format

entry,}

HiliteDControl(itemHit,255); { and disable the eject

button}

END;

END;

UNTIL FALSE;

END.

3-38 Developer Notes

FDHD Driver Demo resources

Here are the resources required by the sample application program
FDHD Driver Demo.
/*

Driver Demo Resource Source File

25-Apr-88

Copyright © 1988 by Apple Computer, Inc.

*/

#include "Types.r";

/* "demo" dialog window containing drive and disk info */

resource 'DLOG' (256, preload) {
{ 40, 30,295,475}, documentProc, invisible, goAway, 0, 256, "Driver Demo"

};

/* "demo" dialog's item list */

resource 'DITL' (256, preload) {
{

{180,120,210,205}, button {enabled, "Eject"}; /* drive 1's eject button */
{180,230,210,315}, button {enabled, "Eject"}; /* drive 2's eject button */
{180,340,210,425}, button {enabled, "Eject"}; /* drive 3's eject button */
{ 10, 10, 26,110}, staticText {disabled, "Drive Location"};
{ 38, 10, 54,100}, staticText {disabled, "Drive Icon"};
{ 78, 10, 94,100}, staticText {disabled, "Disk Icon"};
{110, 10,126,100}, staticText {disabled, "Drive #"};
{130, 10,146,100}, staticText {disabled, "Drive Type"};
{150, 10,166,100}, staticText {disabled, "Disk Format"};
{230, 10,246,145}, staticText {disabled, "Disk Controller Chip:"};
{230,150,246,190}, staticText {disabled, ""}; /* disk controller type */
{ 10,125, 26,200}, staticText {disabled, ""}; /* drive locations */
{ 10,235, 26,310}, staticText {disabled, ""};
{ 10,345, 26,420}, staticText {disabled, ""};
{ 30,145, 62,177}, userItem {disabled}; /* drive icons */
{ 30,255, 62,287}, userItem {disabled};
{ 30,365, 62,397}, userItem {disabled};
{ 70,145,102,177}, userItem {disabled}; /* disk icons */
{ 70,255,102,287}, userItem {disabled};
{ 70,365,102,397}, userItem {disabled};
{110,155,126,167}, staticText {disabled, ""}; /* drive numbers */
{110,265,126,277}, staticText {disabled, ""};
{110,375,126,387}, staticText {disabled, ""};
{130,120,146,210}, staticText {disabled, ""}; /* drive types */
{130,230,146,320}, staticText {disabled, ""};
{130,340,146,430}, staticText {disabled, ""};
{150,135,166,190}, staticText {disabled, ""}; /* disk formats */
{150,245,166,300}, staticText {disabled, ""};
{150,355,166,410}, staticText {disabled, ""}

}

CHAPTER 3 Firmware 3-39

};
/* descriptive strings */

resource 'STR#' (256, preload) {
{

"IWM"; /* disk controller types */
"SWIM";
"Internal 1"; /* primary internal drive */
"Internal 2"; /* secondary internal drive */
"External 1"; /* primary external drive */
"External 2"; /* secondary external drive */
"Single-Sided"; /* drive types */
"Double-Sided";
"SuperDrive";
""; /* (fillers) */
"";
"Hard Disk 20"

}
};

/* default drive and/or disk icon to use if we get an error trying to get an */
/* icon from the driver (probably because it's a REALLY old driver version) */

resource 'ICON' (256, preload) {
$"7FFFFF78" /* xxxxxxxxxxxxxxxxxxxxxxx xxxx */
$"98FFFF84" /* x xx xxxxxxxxxxxxxxxxx x */
$"80FFC702" /* x xxxxxxxxxx xxx x */
$"90FFC702" /* x x xxxxxxxxxx xxx x */
$"80FFC702" /* x xxxxxxxxxx xxx x */
$"90FFC702" /* x x xxxxxxxxxx xxx x */
$"80FFC702" /* x xxxxxxxxxx xxx x */
$"90FFC702" /* x x xxxxxxxxxx xxx x */
$"80FFC702" /* x xxxxxxxxxx xxx x */
$"90FFFF02" /* x x xxxxxxxxxxxxxxxx x */
$"8B7FFE02" /* x x xx xxxxxxxxxxxxxx x */
$"80000002" /* x x */
$"80000002" /* x x */
$"8AAAAAA2" /* x x x x x x x x x x x x x x */
$"90000012" /* x x x x */
$"80000002" /* x x */
$"90000012" /* x x x x */
$"80000002" /* x x */
$"90000012" /* x x x x */
$"80000002" /* x x */
$"90000012" /* x x x x */
$"80000002" /* x x */
$"90000012" /* x x x x */
$"80000002" /* x x */
$"90000012" /* x x x x */
$"80000002" /* x x */
$"90000012" /* x x x x */
$"E0000002" /* xxx x */
$"F0000012" /* xxxx x x */
$"80000002" /* x x */
$"90000012" /* x x x x */
$"7FFFFFFC" /* xxxxxxxxxxxxxxxxxxxxxxxxxxxxx */

};

3-40 Developer Notes

Sound Manager

The Sound Manager for Macintosh Portable is the same as that
documented for the Macintosh II in Inside Macintosh, Volume V,
and supplemented by any applicable Technical Notes. The Sound
Manager has incorporated the functions of the Sound Driver.

Modem

Support for an internal modem is provided. See Chapter 6, “The
Power Manager,” and Chapter 9, “Options.”

Sleep State and Operating State

The Macintosh Portable ROM software supports the ability to put the
computer into the sleep state (clock to DC, all RAM and registers
retained) and to bring it back to the operating state. These functions
are implemented in the power manager firmware and the power
manager processor. The OS requests the sleep state through a time-
out scheme or direct user action. Return to the operating state
(waking) is due to an event such as a keystroke or wake-up timer
going off. See Chapter 6, “The Power Manager.”

RAM and ROM Expansion

Memory expansion is done using internal RAM expansion cards in
the machine and is supported by the ROM. ROM
expansion/replacement is likewise available by using an internal
expansion connector (slot) to which are brought the necessary signals
(see Chapter 5, “Hardware”, for an explanation). The 4 MB of ROM
address space between $A0 0000 and $DF FFFF is available to you See
the address map, Figure 3-1. Refer to Macintosh Technical Note
#255, “Macintosh Portable ROM Expansion,” for additional
information.

CHAPTER 3 Firmware 3-41

Diagnostics—The “sad Macintosh” icon

The bootup code in the Macintosh contains a series of startup tests
that are run to insure that the fundamental operations of the
machine are working properly. If any of those tests fail, a “sad
Macintosh” icon appears on the screen with a code below that
describes what failure occurred. Here is a typical example of a “sad
Macintosh” display with an error code below it:

The two codes are actually the contents of the two CPU data registers
D6 and D7. The upper word (upper 4 hex digits, in this case 0546) of
D7 contains miscellaneous flags that are used by the start-up test
routines and are unimportant to just about everybody except a few
test engineers within Apple. The lower word of D7 is the major
error code. The major error code identifies the general area the test
routines were in when a failure occurred. D6 is the minor error and
usually contains additional information about the failure, something
like a failed bit mask.

3-42 Developer Notes

The major error is further broken into the upper byte that contains
the number of any 68000 exception that occurred ($00 meaning that
no exception occurred), and the lower byte that usually contains the
test that was being run at the time of failure. If an unexpected
exception occurred during a particular test, then the exception
number is logically ORed into the major error code. This way both
the exception that occurred as well as the test that was running can be
decoded from the major error code:

In this example, the code says that an address error exception ($0200)
occurred during the RAM test for Bank A ($03); $0200 ORed with $03
= $0203.

Major error codes

Below is a brief description of the various test codes that might
appear in the major error code:

♦ Warning Some of these codes may mean slightly different
things in Macintosh models other than the
Macintosh Portable. These descriptions describe
specifically how they are used in the Macintosh
Portable. ♦

$01 - ROM test failed. Minor error code is $FFFF, means
nothing.

$02 - RAM test failed. Minor error code indicates which
RAM bits failed.

$05 - RAM external addressing test failed. Minor error code
indicates a failed address line.

CHAPTER 3 Firmware 3-43

$06 - Unable to properly access the VIA 1 chip during VIA
initialization. Minor error code not applicable.

$08 - Data bus test at location 8 bytes off of top of memory
failed. Minor error code indicates the bad bits as a 16–bit mask for
bits 15–00. This may indicate either a bad RAM chip or data bus
failure.

$0B - Unable to properly access the SCSI chip. Minor error
code not applicable.

$0C - Unable to properly access the IWM (or SWIM) chip.
Minor error code not applicable.

$0D - Not applicable to Macintosh Portable. Unable to
properly access the SCC chip. Minor error code not applicable.

$0E - Data bus test at location $0 failed. Minor error code
indicates the bad bits as a 16–bit mask for bits 15–00. This may
indicate either a bad RAM chip or data bus failure.

$10 - Macintosh Portable only. Video RAM test failed.
Minor error code indicates which RAM bits failed.

$11 - Macintosh Portable only. Video RAM addressing test
failed. Minor error code contains the following:
upper word = failed address (16-bit)
msb of lower word = data written
lsb of lower word = data read

Data value written also indicates which address line is being
actively tested.

$12 - Macintosh Portable only. Deleted

$13 - Macintosh Portable only. Deleted

$14 - Macintosh Portable only. Power manager processor was
unable to turn on all the power to the board. This may have been
due to a communication problem with the power manager. If so, the
minor error code will contain a power manager error code, explained
in the next section.

3-44 Developer Notes

$15 - Macintosh Portable only. Power manager failed its self-
test. Minor error code contains the following:
msw = error status of transmission to power manager (see
“Power manager processor failures (Macintosh Portable only)”.
lsw = power manager self-test results (0 means it passed, non-
zero means it failed)

$16 - Macintosh Portable only. A failure occurred while
trying to size and configure the RAM. Minor error code not
applicable.

Minor error codes—Power manager processor failures (Macintosh
Portable only)

If a communication problem occurs during communication with the
power manager, the following error codes will appear somewhere in
the minor error code (usually in the lower half of the code, but not
always):

$CD38 Power manager was never ready to start handshake.
$CD37 Timed out waiting for reply to initial handshake.
$CD36 During a send, power manager did not start a
handshake.
$CD35 During a send, power manager did not finish a
handshake.
$CD34 During a receive, power manager did not start a
handshake.
$CD33 During a receive, power manager did not finish a
handshake.

CHAPTER 3 Firmware 3-45

Diagnostic Code Summary

Below is a summarized version of the sad Macintosh error codes:

Test Codes

$01 ROM checksum test.
$02 RAM test.
$05 RAM addressing test.
$06 VIA 1 chip access.
$08 Data bus test at top of memory.
$0B SCSI chip access.
$0C IWM (or SWIM) chip access.
$0D Not applicable to Macintosh Portable. SCC chip access.
$0E Data bus test at location $0.
$10 Macintosh Portable only. Video RAM test.
$11 Macintosh Portable only. Video RAM addressing test.
$14 Macintosh Portable only. Power manager board power
on.
$15 Macintosh Portable only. Power manager self-test.
$16 Macintosh Portable only. RAM sizing.

Power manager communication error codes

$CD38 Initial handshake.
$CD37 No reply to initial handshake.
$CD36 During send, no start of a handshake.
$CD35 During a send, no finish of a handshake.
$CD34 During a receive, no start of a handshake.
$CD33 During a receive, no finish of a handshake.

3-46 Developer Notes

CPU exception codes (as used by the startup tests)

$0100 Bus error exception code
$0200 Address error exception code
$0300 Illegal error exception code
$0400 Zero divide error exception code
$0500 Check inst error exception code
$0600 cpTrapcc,Trapcc,TrapV exception code
$0700 Privilege violation exception code
$0800 Trace exception code
$0900 Line A exception code
$0A00 Line F exception code
$0B00 Unassigned exception code
$0C00 CP protocol violation
$0D00 Format exception
$0E00 Spurious interrrupt exception code
$0F00 Trap inst exception code
$1000 Interrupt level 1
$1100 Interrupt level 2
$1200 Interrupt level 3
$1300 Interrupt level 4
$1400 Interrupt level 5
$1500 Interrupt level 6
$1600 Interrupt level 7

Script Manager

The Script Manager is part of the ROM image.

Notification Manager

The Notification Manager is part of the ROM image. See Macintosh
Technical Note #184, April 2, 1988.

CHAPTER 4 System Software 4-1

Chapter 4 System Software

This chapter describes the system software portion of
the total software environment for the Macintosh
Portable computer. The total software environment
includes both ROM-stored code (firmware) and disk-
stored code (system software). This chapter describes the
contents of the system tools disk. See also Chapter 2,
“Software Developer
Guidelines.” •

4-2 Developer Notes

4.1 Overview

These notes primarily describe the changes from the previous
version of the system tools disk.

The Macintosh SE software is extensively documented in Inside
Macintosh, Volume V and the Macintosh Technical Notes. The
contents of Volume V that apply to the Macintosh SE describe its
software in terms of changes from the Macintosh Plus, documented
in Inside Macintosh, Volume IV. Volume IV, in turn, describes
changes from the classic Macintosh as documented in Inside
Macintosh, Volumes I, II, and III.

Terminology

The Macintosh Portable software comes in two components:

• Firmware—contents of the three ROMs, one for each of the three
processors (68000 CPU, power manager processor, and the
keyboard processor). See Chapter 3, “Firmware”.

• System software—contents of an 800 KB, 3.5" disk, Version 6.0.3,
plus the Macintosh Portable-specific extensions. The disk
containing the system software is called the system tools disk (also
commonly referred to as the system disk).

System tools software conversion

The Macintosh system software first seeded will be Version 6.0.3 plus
Macintosh Portable-specific extensions, all contained on one system
tools disk. This chapter describes the Macintosh Portable-specific
elements. The description of Version 6.0 and the change history to
Version 6.0.3 are provided in other documents that are a part of this
seeding package.

The system tools disk to be provided with customer shipments will
be part of the standard Macintosh system software kit applicable to all
members of the Macintosh family of computers. The Macintosh
Portable installation script included will allow installation of the
appropriate software onto the users' floppy or hard disk.

CHAPTER 4 System Software 4-3

4.2 The Macintosh Portable control panel cdev resource

This cdev will generate the screen display elements shown in Figure
4-1. The display elements are

• a Macintosh Portable icon, the opening of which produces the
window shown

• a screen contrast control slide

• a pair of sliding controls for adjusting the time to automatic sleep
(one for the hard disk and the other for the remaining power
manager controlled subsystems)

• a checkbox for disabling the automatic sleep functions while the
battery recharger is connected

• a control to select RAM disk size

• a means of setting the time for automatic wakeup from the sleep
state

• a set of two buttons to control modem operation if a modem card
is present in the machine

4-4 Developer Notes

• Figure 4-1 Control Panel

CHAPTER 4 System Software 4-5

4.3 The Macintosh Portable battery desk accessory

This desk accessory will generate the screen display elements shown
in Figure 4-2. The display elements (accessible from the Apple
menu) are

• an indicator to show the battery charge level

• an icon to indicate whether battery recharging is in progress

• a button to toggle the sleep state on and off

• Figure 4-2 Battery desk accessory

4-6 Developer Notes

4.4 Macintosh Portable battery monitor

This resource is called by the one-second interrupt and has the
following functions:

• Monitors the state of battery charge and applies the criterion for
system shutdown to avoid battery damage.

• Defines and applies the criteria of inactivity to cause the CPU to
instruct the power manager to put the computer in the idle or
sleep states.

• Monitors the sound chip usage, looking for opportunities to turn
off the sound circuit. Any use of the ASC automatically enables all
the sound circuitry with its heavy current load. The monitoring
code looks for 10 seconds without any ASC accesses; when such an
interval is found the sound circuit is turned off.

Activities that prevent sleep (and also idle) are

• Any operating system Read or Write call

• A call to a post event trap

• A call to set a cursor trap that changes the cursor

• Executing an ADB completion routine

• Having a trackball or mouse button down (pressed)
See Chapter 6, “The Power Manager,” for a more detailed description

of the functions of the battery monitor resource.

CHAPTER 4 System Software 4-7

CHAPTER 5 Hardware 5-1

Chapter 5 Hardware

This chapter describes the architecture and functional
elements of the Macintosh Portable portable computer.
From the user's point of view the Macintosh Portable
operates much like a Macintosh SE. However, the
Macintosh Portable hardware is different in significant
ways from that of the Macintosh SE, reflecting the
differences in operating and transportation
environments and the power source.

These notes primarily describe the changes from the
Macintosh SE hardware. The Macintosh SE hardware is
extensively documented in the Guide to Macintosh
Family Hardware, Second Edition manual. •

5-2 Developer Notes

This page is a blank

CHAPTER 5 Hardware 5-3

5.1 The Macintosh Portable Specifications

The Macintosh Portable contains the Motorola MC68HC000
microprocessor (CPU) operating at nearly 16 megahertz in a
multiprocessing environment with two other processors:
1) a keyboard scanning and decoding microprocessor
2) a power management microprocessor

The Macintosh Portable is equipped with all the standard Macintosh
SE architectural features, namely the VIA, SCC, SWIM, and SCSI
chips. Sound is generated by the same sound circuitry as in the
Macintosh II (Apple Sound Chip and dual Sony Sound Chips).
Video is generated by a separate circuit and memory that drives the
input to a flat-panel display.

The Macintosh Portable is also a loosely coupled multiprocessor.
The power manager is implemented with an 8-bit CMOS
microprocessor that not only handles power management duties, but
is also responsible for the interface between the built-in trackball, a
low-power mouse or other input device, and the Apple Desktop Bus.
The interface between the power manager and the 68HC000 is
implemented using one of the 8-bit bi-directional ports of the VIA
and two asynchronous handshake lines.

Table 5-1 repeats the Macintosh Portable specifications given in
Chapter 1. Table 5-2, in the next section, compares the hardware
features of the Macintosh Portable with the Macintosh SE.

5-4 Developer Notes

• Table 5-1 The Macintosh Portable Specifications

Characteristic Specification

CENTRAL PROCESSING UNIT (CPU):
16-bit, CMOS 68HC000, 16 MHz (twice SE speed and without
video contention), 1 wait state

OPERATING SYSTEM (OS):
Enhanced Macintosh SE ROM

STANDARD MAIN MEMORY:
1MB RAM, 256 KB ROM

MEMORY EXPANSION:
Main memory (RAM) is expandable to 2 or 5 MB by using
internal expansion cards (1 or 4 MB). ROM expansion space
for Apple use in ROM revision and for international
character sets is 1 MB, and for developer use is 4 MB (see
Chapter 3, Figure 3-1.)

MASS STORAGE:
Built-in 1.4 MB floppy disk drive
External floppy disk drive port
Removable/optional second internal 1.4 MB floppy disk
drive
Optional internal low power SCSI hard disk, also external
SCSI port

RAM DISK:
Ability to install system and application software in battery-
backed-up RAM so that the machine is capable of
functioning without resorting to the optional disk drive.
This feature will provide a more rugged, lighter weight
solution to portable applications, with longer battery
operation and much faster access.

DISPLAY:
Flat-panel, 9.8" diagonal, active matrix reflective LCD, 640 x
400 pixels,
0.33 mm dot pitch, variable tilt

SOUND:
Apple stereo sound chip (same as Macintosh II)

CHAPTER 5 Hardware 5-5

• Table 5-1 The Macintosh Portable Specifications (Continued)

Characteristic Specification

I/O PORTS:
DB-19 external floppy disk
DB-25 SCSI
Mini DIN-4 Apple Desktop Bus port
Two Mini DIN-8 serial ports
DB-15 for external video
96-pin Euro-DIN expansion interface (not compatible with
Macintosh SE)
Stereo audio phone jack
Battery recharger

INPUT DEVICES:
Built-in keyboard. Built-in trackball replaceable by optional
keypad. (The keypad or trackball may be positioned on
either side of the keyboard—right side is standard.) Low-
power Apple Desktop Bus mouse (optional) plugs into ADB
port at the rear of the machine.

OPTIONAL INTERNAL MODEM:
300/1200/2400 bps (AT command set compatible)

WEIGHT:
14 lbs. (minimum configuration) up to 17 lbs. (hard disk option, 5
MB RAM, internal modem option)

SIZE:
15.2" wide x 13.75" deep x 2" to 4" thick (wedge shaped)

SHOCK:
The unit can withstand a 50 G, 12 millisecond shock pulse in any
axis while non-operating. This is true of all configurations, for
example, with or without a hard disk.

BATTERY USE:
Internal, sealed lead-acid battery provides 8 hours normal
use (single floppy configuration), varies dependent on drive
usage.
Rechargeable overnight using AC power adapter
RAM contents are retained during main battery
replacement

5-6 Developer Notes

5.2 Comparison of the Macintosh Portable and the

Macintosh SE

This section calls out the significant differences between the
Macintosh Portable and the Macintosh SE.

Improvements

1. Portable: smaller size, lighter weight, greater shock and
vibration resistance

2. Larger RAM expansion to allow larger application programs
3. Higher speed due to faster clock, removal of RAM contention

for video
4. Floppy and hard disk drives are low profile, one-third height

configuration
5. Low power hard disk with an internal connector to SCSI

interface

Variations

1. The 96-pin expansion connector does not have the same pinout as
in the Macintosh SE, but the same signals are accessable.

2. Macintosh SE expansion cards will not physically fit in the
Macintosh Portable.

3. A very limited amount of internal battery power is available to
supply any expansion card inserted into the 96-pin expansion
connector.

4. The Macintosh Portable does not provide an external device access
port for a custom connector.

5. The Macintosh Portable contains only one ADB port and it
supports low-power input devices (preferred) or normal
Macintosh input devices at some battery performance penalty.

6. A trackball replaces the numeric keypad in the basic configuration
of the Macintosh Portable; the keypad is a user installable option.

CHAPTER 5 Hardware 5-7

7. The Macintosh Portable does not provide the termination power
to the SCSI bus, and hence to any external SCSI devices.

Table 5-2 is a side-by-side comparison of the hardware features of the
Macintosh Portable and the Macintosh SE.

5-8 Developer Notes

• Table 5-2 Macintosh Portable vs. Macintosh SE Hardware
Comparison

Feature Riviera Macintosh SE

Processor: CMOS 68HC000 CPU 68000 CPU
Clock Frequency: 15.6672 MHz 7.8336 MHz
Auxiliary Processor: Power Manager Processor None
Floppy Disk Drive: 1.4 MB Internal Floppy 800 KB Internal Floppy

Drive, Optional Second Internal Drive, Optional
2nd

1.4 MB Floppy Drive, 800 KB Internal Drive,
Optional External 800 KB or 1.4 MB Optional

External 800 KB Floppy Drive Floppy Drive
Hi Speed Periph.: SCSI Port SCSI Port
Hard Disk: Optional low-power SCSI Optional SCSI HD20

HD40 Internal (Internal)
External SCSI connector. External SCSI

connector
Serial Ports: 2 Mini-8 Built-In 2 Mini-8 Built-In

Ports,with extended Ports, with extended
input handshake capability input handshake

capability
Hardware Expansion: Access to 68000 pins Access to 68000 pins,

No power available, Customizable I/O Port
i n

No removable door at rear removable door at rear
Sound: Macintosh II Sound, Stereo Macintosh Sound
RAM : 1MB, Expandable on 1 MB Expandable

Internal SRAM card- to 4 MB DRAM
1 MB, or 4 MB expansion (SIMMs)

ROM : 256 KB ROM 256 KB ROM
with Hierarchical with Hierarchical
File System, File System,
ROM supports ROM supports
SCSI, ADB, AppleTalk, SCSI, ADB, AppleTalk
Power Manager

Operator Input: Alphanumeric Keyboard, Alphanumeric
optional keypad or Keyboard via Apple
pointing device Desktop Bus, Allows

CHAPTER 5 Hardware 5-9

(left or right side) via additional input
devices,

ADB, Allows additional input e.g. graphics
tablet

devices, e.g. graphics tablet.

5-10 Developer Notes

• Table 5-2 Macintosh Portable vs. Macintosh SE Hardware
Comparison (Continued)

Feature Riviera Macintosh SE

Video Display Built-In LCD, Flat Panel Built-In Monitor, 9"
Display, 9.8", 640 x 400 B/W 512 x 342 B/W,
75 dots per inch 72 dots per inch

5.3 Block diagrams of the Macintosh Portable and

Macintosh SE

This section provides a functional overview of the Macintosh
Portable architecture. It gives block diagrams of both the Macintosh
Portable and the Macintosh SE, then goes on to briefly describe the
function of each block in the Macintosh Portable diagram.

Figure 5-1 is a block diagram of the Macintosh Portable. Figure 5-2 is
a block diagram of the Macintosh SE, for comparison. Most of the
unshaded elements in Figure 5-1 are located on the main logic board
of the Macintosh Portable. The 68000 central processor
communicates over the system bus (address and data), indicated by
the heavy black line. Also connected to the system bus are

• random access memory (RAM)

• read-only memory (ROM)

• an Apple custom VLSI chip that performs coarse address decoding
and generalized logic unit (GLU) functions

• six additional interface and controller chips.

Each of the devices connected to the system bus is accessed (written to
or read from) through a range of addresses in memory mapped
address space. The address space is diagrammed in Chapter 3,
“Firmware.”

The rest of the sections in this chapter describe the functions of the
blocks in the Macintosh Portable diagram.

CHAPTER 5 Hardware 5-11

• Figure 5-1 The Macintosh Portable Architecture

CPU
68HC000

ADR

DATA

Disk
DB-19

SCSI
Controller

SCSI
DB-25

= Optional

Built-in
ROM

Array

Expansion
ROM

Array

 ADB
Mini-DIN

Power Manager
Processor

Keyboard
Processor

VIA

Trackball
or

Other

Internal
Hard Drive
Low Power

SCC Serial
Communic.
Controller

A

RJ-11
Phone
Jack

Apple
Sound
Chip

Sony Sound Chip

Sony Sound Chip

Mono Spkr

Stereo
Phone
Jack

96-Pin Euro-DIN
Expansion
Connector

Built-in
RAM

Array

Expansion
RAM

Array

Flat
Panel

Display

Video
SRAM

External Video
Converter

Mac II
or

NTSC
sync

data

Flat
Panel

Interface

Battery

+5,-5,+12 V
Power Supply

Battery Recharger
Input B

••

•
•

•

RAM
Expansion
Buffer

Fine Address
Decode/GLU

Coarse Address
Decode/GLU

Swim Floppy
Disk Controller

 1.4 MB Floppy
 Drive

1.4 MB Floppy
 Drive

300/1200/2400 bps internal
Hayes compatible modem

Serial Ports
2 Mini-8

 Printer

Modem

5-12 Developer Notes

• Figure 5-2 Macintosh SE Architecture

ROM
Read-Only

Memory
256 KB

(D0-15)

(D8-15)

(A9-12)

I P L 2

CPU

Data
Bus

Interrupt
 Switch

Interrupts

Motorola
MC68000
(8MHz)

I P L 0

I P L 1

External
Floppy

Disk

IWM
(D0-7)

(A9-12)

(A1-17)

V IA IRQ

VIA
Custom

Versatile
Interface
Adapter

Custom
Floppy
Disk

Controller

(D0-15)

Lower
Internal

Floppy Disk

SCSI
(D8-15)

(A4-6)

External
SCSI

NCR 5380
Small

Computer
System

Interface

Internal
Hard Disk

Apple
DeskTop
Bus PortsADB

RTC
Custom

Real Time Clock

Custom
Apple DeskTop
Bus Tranceiver

 (A1-23)

RAM
Read/Write Memory

.5 or 1 MB (256 KB SIMMs);
2 or 4 MB (1 MB SIMMs);
2.5 MB (two each size)

Address
Bus

RAMRAM
Address
MUXs

(A1-8 ,
10 -16 ,18)

(RA 0-9)

(A1-23)

Video
Board

Built In
Monitor

RAM
Data
Bus

Buffers

RAM Data(D0-15)

(RDQ 0-15)

(A9 , 17 ,
19 -23)

40
50

00
30 RAM

ROM

F0
Address Map

E8

90
A0
B0
C0
D0
E0

S C C

S C C

IWM

VIA

60
58 SCSI

Addresses

BBU
Custom

Gate Array

(Device
Selects)

Sony
Sound

Internal
Speaker

External
Audio Port

(To external
 floppy disk port)

Video

Disk PWM

(D0-15)

96-Pin
Expansion

Board
Connector

(All the 68000
lines plus power

and clocks)

SCC
(D8-15)

(A1 ,2)

Serial
Ports

 Drivers
 and
Receivers

Channel A

Channel B

Port A (Modem)

Port B (Printer)

SCCIRQ

Zilog 8530
Serial

Communi-
cations

Controller

SCSI IRQSCSI Int.
Mask

Upper
Internal

Floppy Disk

CHAPTER 5 Hardware 5-13

5.3 The central processing unit (CPU)

The Macintosh Portable replaces the standard Macintosh 8 MHz
HMOS MC68000 with a CMOS MC68HC000 for reduced power
consumption and higher speed.

The 68HC000 has a 16-bit data bus and a 24-bit address bus.

The frequency at which the Macintosh Portable system performs
useful work is 15.667 MHz. However, to reduce power consumption
during idle periods the Macintosh Portable is designed with a two
state variable wait state system that effectively makes the clock
frequency either approximately 1 MHz or 15.667 MHz. (See Chapter
6, “The Power Manager.”)

5.4 Video Display Interface chip

The Video Display Interface chip is a custom IC designed to keep the
Macintosh Portable 68HC000 CPU from having to refresh the screen
(LCD display), thereby allowing the CPU to do more useful work. It
also generates all the signals necessary for the flat-panel display,
including the vertical and horizontal synchronization pulses. The
difference between the Macintosh Portable and the Macintosh SE
due to the function of this chip will have no effect on compatibility
of your software.

From the point of view of the 68HC000, the video interface is seen as
a continuous RAM array of 32,000 bytes (768 bytes reserved for later
use). The video controller interface is nominally 16 bits wide from
the 68HC000 to the Video Display Interface chip, but behaves like
main memory in that it is also byte addressable. The first pixel
displayed on the screen is the most significant bit of the first byte of
video RAM (at Screen_base), while the last pixel displayed on the
screen is the least significant bit of the last byte (at
Screen_base+32,000–1). Figure 5-3 shows the entry order of data in
terms of the pixels on the LCD. The pixels that are displayed between
the first and last are addressed in a similar fashion; the display can be
thought of as a linear array of bits.

5-14 Developer Notes

• Figure 5-3 Display Pixel Map

4.4002.4001.400 3.400

D7 D6 D5 D4

Data Input Map

Data is entered sequentially D7 to D0 beginning
left to right on an 8 bit basis beginning at 1.1

(as seen facing the active display)

...

... 640.1638.1 639.1 640.1

D0D1D2

3.11.1

D7

2.1 4.13.1

D6 D5 D4

8.17.16.15.1

D3 D2 D1 D0

...

638.400637.400 640.400639.400

D2D3 D1 D0

...

CHAPTER 5 Hardware 5-15

Flat panel display description

The display gives a high quality presentation of alphanumeric and
graphic information on a 211 mm x 132 mm (8.31 in x 5.20 in) active
display area. Display intensity, contrast ratio, and pixel turn on and
turn off time are similar to CRT parameters (P4 phosphor).
Display Capacity 640 x 400 dots
Display Mode Reflective
Driving Method 8-bit Parallel
Interface CMOS Logic

Video signal timing

The Video Display Interfacechip generates the synchronization
signals (FLM, CL1, CL2) and data signals as shown in Figure 5-4. The
signal M is generated by the chip and is derived by dividing the FLM
frequency by two. CL1 is the horizontal synchronization signal; it
marks the end of a 640 pixel line. FLM is the vertical
synchronization signal; it marks the beginning of a new frame of
video every 16.32 milliseconds. This means that the display is being
refreshed at a 61.8 Hz rate.

5-16 Developer Notes

• Figure 5-4 Video Interface Timing Diagram

CL1

CL2

D0-D7

M

FLM

tFH

tFS

tCWH

tR
tF

tCWH
tSCL1

tF

tR

tCWL
tDSU

tDH

tHCL1

tCYC tCM

SYMBOL ITEM MIN MAX

tCYC CL2 cycle time

tCWH CL2 pulse width (high)

tCWL CL2 pulse width (low)

tSCL1 CL1 setup time

tHCL1 CL1 hold time

tR, tF clock rise/fall time

tDSU Data setup time

tDH Data hold time

tCM M delay time

tFS FLM setup time
tFH FLM hold time

190 ns

95 ns

95ns

90 ns

90 ns

30 ns
60 ns

60 ns

100 ns

100 ns

-500ns +500ns

CHAPTER 5 Hardware 5-17

Contrast control

The contrast control for the flat panel display is derived from the
PWM (pulse width modulated) output of the power manager
processor. The modulation has 256 steps, which the user can set in
the Low to High range of the Screen Contrast control in the Control
Panel (see Figure 4-1).

The PWM signal is filtered to a DC signal by an RC network before
being applied to the display to control its contrast.

5-18 Developer Notes

This page is a blank

CHAPTER 5 Hardware 5-17

5.6 Permanent RAM array

The RAM interface in the Macintosh Portable is designed to support
between 1 MB and
 5 MB of CMOS static RAM. The RAM is in two areas:
1) 1 MB permanent main memory soldered to the main logic

board
2) Up to 4 MB of internally expandable RAM, on an optional

memory expansion card

Permanent main memory is 1 MB total, and is arranged as a 512K x
16 bit array. This RAM array is located in the system memory map
between addresses $00 0000 and $0F FFFF, and is overlayed by the
system ROM after a system reset and before the first ROM access.

There is one 68HC000 processor wait state when accessing memory
locations in permanent RAM. There is no device contention for
permanent memory bandwidth other than the 68HC000, and because
this memory array is built from static RAM there is no reason to
refresh it, as would be the case for dynamic RAM.

Permanent main memory is battery backed-up when the Macintosh
Portable is in the sleep state. This means that the contents of this
memory array are retained when the computer is not in use, as long
as the battery remains charged.

5.7 Permanent ROM array

The Macintosh Portable ROM is largely based on the Macintosh SE
ROM, and includes bug fixes from the Macintosh SE ROM. It also
includes a new ADB implementation, a new real-time clock
implementation, code to support communication with the power
manager, and code to support the various power-saving techniques
that the Macintosh Portable incorporates.

The ROM interface on the Macintosh Portable is designed to support
a minimum of 256 KB and an additional maximum of 4 MB of
CMOS ROM. The ROM configuration is in two areas:

5-18 Developer Notes

• 256 KB built-in, or permanent, ROM soldered to the printed circuit
board

• Up to 4 MB of expansion ROM, using an internal connector.
Expansion ROM address space is for you–the developer. See
Macintosh Technical Note #255 for further details. (Also, see the
“Internal ROM Expansion” section, later in this chapter).

Permanent ROM is 256 KB total, and is arranged as a 128K x 16 bit
array. The array is physically made of two 128K x 8-bit devices.

This ROM array is word addressable and is located in the system
memory map between addresses $90 0000 and $93 FFFF. Immediately
after system reset, however, its starting address is located at both $90
0000 and $00 0000, to allow the 68HC000 to access a standard default
set of exception vectors and trap addresses, as well as a starting
address to begin executing code. This process is known as RAM
overlay and is performed because it can be assumed that the contents
of RAM are not in any known or deterministic state. The first access
to $90 0000 (or any actual ROM addresses), however, will return
RAM to $00 0000 and ROM will be located only at $90 0000.

There are two 68HC000 processor wait states when accessing memory
locations in permanent ROM.

5.8 Memory Expansion

The growth of application program size makes it desirable to offer
the RAM expansion cards described in this section, as well as others.

The Apple ROM expansion card has two functions which lead to its
being called an upgrade and expansion card

• one side of the card contains a ROM to replace the one soldered to
the main logic board, in case a code upgrade is necessary

• the other side of the card contains provisions for you, the
developer, inserting ROM chips to utilize the address space shown
as available in Figure 3-1

CHAPTER 5 Hardware 5-19

The RAM and ROM expansion connectors provide you with
convenient access to the necessary signal lines in order to expand
system memory.

5-20 Developer Notes

Internal RAM Expansion

Internal RAM expansion is available through a single 50-pin
connector (also called a slot). See Figure 5-5. All of the appropriate
signals (address bus, data bus, and control) are brought up to the
memory expansion board where they are decoded into chip selects,
write signals, etc., by the RAM Expansion Buffer custom IC and
routed to address and data buffers. Table 5-3 provides signal names
and descriptions. Buffering the address and data bus is important to
reduce capacitive loading.

The memory expansion board contains either 1 MB or 4 MB of static
RAM, which allows for internal memory expansion to either a 2 MB
machine or a 4 MB machine. Each expansion board is self-
configured: no modifications (switches, jumpers, or other) to the
main logic board are necessary to change the RAM configuration.

The 1 MB expansion card is arranged as a 512K x 16 bit array. The
access time and cycle time for these devices is 100 ns.

The 4`MB expansion card is arranged as a 1.5 M x 16 bit array. The
access time and cycle time for these devices is 100 ns.

This RAM array is located in the system memory map between
addresses
$10 0000 and $1F FFFF (for the 1 MB expansion card) and between $10
0000 and $3F FFFF (for the 3 MB expansion card). When installed,
this memory array is always available and is unaffected by the state of
the overlay bit (unlike permanent main memory).

There is one 68HC000 processor wait state when accessing memory
locations in internal expansion RAM. Such an access requires a bus
cycle time of nominally 320 ns. Like permanent main memory,
there is no device contention for bandwidth other than the 68HC000,
and because this memory array is built from static RAM there is no
reason to refresh it, as would be the case for dynamic RAM.

Also like permanent main memory, internal expansion memory is
battery backed-up when the Macintosh Portable is in the sleep state.
This means that the contents of this memory array are retained
when the computer is not in use, as long as the battery remains
charged.

CHAPTER 5 Hardware 5-21

• Figure 5-5 Internal RAM expansion connector

GND

R/W

UDS/

LDS/

DELAY_CS

+5V --> +2V

D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

+5V(Always on)

A1

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17

A18

A19

A20

A21

A22

A23

1
2

3
4

5

6
7
8
9

1 0
1 1

1 2

1 3
1 4
1 5

1 6
1 7

1 8
1 9

2 0
2 1
2 2
2 3
2 4
2 5

2 6

2 7
2 8

2 9
3 0
3 1
3 2

3 3
3 4

3 5
3 6

3 7
3 8
3 9
4 0
4 1

4 2
4 3
4 4
4 5
4 6

4 7
4 8
4 9
5 0

GND

A2

SYS_PWR/

AS/

5-22 Developer Notes

• Table 5-3 Internal RAM Expansion Connector Signals

Pin Number Name Description

1 +5V Vcc
2–24 A1–23 Unbuffered 68HC000 address signals A1–23
25–26 GND Logic ground
27 /SYS_PWR This signal controls whether the CPU is in

the active or sleep state.
28 /AS 68HC000 address strobe signal
29 R/W Permanent ROM CS/ signal
30 /UDS 16 MHz system clock
31 /LDS External DTACK/ signal that is an input to
the Coarse Address Decode chip
32 DELAY_CS This signal is generated by the Coarse

Address Decode chip and is used to put the
RAM array into the idle mode

33–48 D0–15 68HC000 unbuffered data signals D0:15
49–50 +5V Vcc

Internal ROM Expansion

Up to 4 MB of expansion ROM address space is available. The
expansion ROM array is expandable to any size or capacity that fits
into the expansion address space. The implementation of expansion
ROM is very similar to that of internal expansion RAM (i.e., circuitry
for decoding, control, and buffering must be part of the expansion
board) except that the number of wait states is controlled by the
expansion board (instead of the Coarse Address Decode and GLU
chip, as is the case for RAM) via an external DTACK signal that is an
output of the ROM expansion card.

ROM expansion is available through a single 50-pin connector (slot).
See Figure 5-6. All of the appropriate signals (address bus, data bus,
and control) are brought up to the memory expansion slot where
they are decoded into chip selects, and also routed to address and data
buffers. Table 5-4 provides signal names and descriptions. Buffering
the address and data bus is important to reduce capacitive loading.

CHAPTER 5 Hardware 5-23

Replacing or upgrading the permanent ROM soldered to the main
logic board is possible by using this same mechanism. By installing a
board into the ROM expansion slot, and using the same /ROM CS
signal that controls permanent ROM, a virtual replacement for the
on-board ROM can be implemented.

5-24 Developer Notes

• Figure 5-6 Internal ROM Expansion Connector

CHAPTER 5 Hardware 5-25

• Table 5-4 Internal ROM Expansion Connector Signals

Pin Signal Signal

Number Name Description

1 +5V Vcc
2–24 A1–23 Unbuffered 68HC000 address signals A1–23
25–27 GND Logic Ground
28 /AS 68HC000 address strobe signal
29 /ROM.CS Permanent ROM chip select signal
30 16M 16 MHz system clock
31 /EXT.DTACK External /DTACK signal that
is an input to Coarse Address Decode
chip
32 DELAY.CS This signal is generated by Coarse Address
Decode chip and is used to put the RAM
array into the idle mode
33–48 D0–15 68HC000 unbuffered data signals D0–15
49–50 +5V Vcc

ROM expansion jumper on the main logic board

Figure 5-7 shows a detailed view of the jumper block on the
Macintosh Portable main logic board. Jumpers are required in
positions 1 or 2, and in position 3 when ROM on an expansion card
is to replace the ROM soldered on the main logic board. Jumper 4 is
used when an alternative power manager processor chip is mounted
on a card inserted into the ROM expansion slot.

5-26 Developer Notes

Figure 5-7 Internal ROM Expansion Jumper (see also Figure 1-2)

Jumper(s) Inserted
In Position Number

1) 2 wait-state ROM access
or
2) 1 wait-state ROM access

3) system ROM on expansion card
4) on-board power manager processor access 1 42 3

CHAPTER 5 Hardware 5-27

5.9 Coarse Address Decode and GLU

The Coarse Address Decode and GLU chip is a custom gate array
designed as a generalized logic chip for the Macintosh Portable. It
does coarse address decodes to system RAM and ROM as well as the
SCC, SCSI, VIA, SWIM, and Video Display Interface peripheral chips.
It controls the transmission direction of the RAM data buffers and
generates upper and lower RAM write strobes. It also provides
several support functions such as the CPU clock generator, sleep state
circuit, and DTACK generator.

5.10 Fine Address Decode and GLU

The Fine Address Decode and GLU chip is a custom CMOS gate array
chip that accepts partially decoded addresses from the Coarse Address
Decode and GLU chip and further decodes them to generate the chip
selects for RAM. It also provides power manager timing signals,
floppy disk drive enable signals, and serial port output signals.

5.11 VIA interface

The VIA is a 65C22A or 65C23 (depending on the manufacturer) CMOS
Versatile Interface Adapter containing multiple registers. Which of these
registers drives the 68000 data lines (a CPU read) or is driven by them (a CPU
write) is determined by the four RS (Register Select) pins which are connected
to four CPU address lines. Register A connects to the 8-bit I/O bus of the
power manager processor, and it is through this port that the communication
between the power manager and the central processor takes place. Another
function of the VIA is synchronous and asynchronous generation of
interrupts (for display vertical blanking every page scan, one-second intervals
from the real-time clock, SCSI pseudo-DMA, and power manager initiated
interrupts of the CPU). Control functions affect floppy disk head selection
and serial communications controller write signaling.

5-28 Developer Notes

5.12 SCSI Interface

The Small Computer System Interface (SCSI) consists of the NCR
53C80 chip between the CPU and an external DB-25 connector.
Multiple SCSI devices may be connected to the SCSI bus through this
connector; the 53C80 accomplishes the bus arbitration to allocate
access to the 68HC000 central processor. An internal SCSI connector
is used for connection to the optional internal hard disk drive.

The pinout for the external connector is shown in Table 5-5, and the
pinout for the internal connector in Table 5-6.

♦ WARNING: Any internal hard drive connected to the
Macintosh Portable SCSI bus should be a low-power
version in order to maximize operating time per
battery charge. ♦

The NCR 53C80 is a CMOS device designed to support the SCSI as
defined by the American National Standards Institute (ANSI) X3T9.2
Committee. This device supports arbitration of the SCSI bus,
including reselection. The chip is controlled through a set of read
and write registers that are byte addressable only, and which are
accessed through the SCSI Manager

The SCSI bus consists of eight data lines, a parity line, and nine
control signal lines; the remaining connector pins are for power
(supplied by the terminating device) or ground. A pseudo-DMA
mode allows read and write transfers at the faster bus-limited speed,
without processor control of every byte transfer. This interface is
unchanged from that in the Macintosh SE, except that the Macintosh
Portable does not supply the termination power.

The NCR 53C80 is connected directly to both the internal and
external connectors and is capable of sinking 48 mA through each of
the pins connected to the bus. The data and control lines on the SCSI
bus are active low signals driven by open-drain outputs.

CHAPTER 5 Hardware 5-29

Termination power is not supplied by the Macintosh Portable,
therefore it cannot be expected that the bus will remain in a known
state if all external SCSI devices are powered off. The normal
termination configuration connection is a 220Ω resistor to +5V and a
330Ω resistor to ground on each of the active signals. The internal
SCSI connector is an exception to this scheme, however. Internal
termination is supplied by the drive itself and is configured as a
single-ended 1.3KΩ pull-up resistor to +5V.

5-30 Developer Notes

• Table 5-5 SCSI External Connector Pinout

Connector SCSI Bus 53C80

Pin Number Name Pin Name

 1 /REQ /REQ
 2 /MSG /MSG
 3 I/O /I/O
 4 /RST /RST
 5 /ACK /ACK
 6 /BUSY /BSY
 7 GND
 8 /DATA0 /DB0
 9 GND
10 /DATA3 /DB3
11 /DATA5 /DB5
12 /DATA6 /DB6
13 /DATA7 /DB7
14 GND
15 C/D /C/D
16 GND
17 /ATN /ATN
18 GND
19 /SEL /SEL
20 /PARITY /DBP
21 /DATA1 /DB1
22 /DATA2 /DB2
23 /DATA4 /DB4
24 GND
25 NO CONNECTION

CHAPTER 5 Hardware 5-31

• Table 5-6 SCSI Internal Connector Pinout

Connector SCSI

Pin Number Bus Name

 1 /REQ
 2 GND
 3 /MSG
 4 /C/D
 5 /I/O
 6 GND
 7 /ACK
 8 /ATN
 9 /BSY
10 /RST
11 GND
12 /SEL
13 /DBP
14 /DB0
15 /DB1
16 GND
17 /DB2
18 /DB3
19 /DB4
20 /DB5
21 /DB6
22 /DB7
23 +5V
24 +5V
25 +12V
26 +12V
27 GND
28 GND
29-30 MOTOR GND
31-32 +12 V (MOTOR)
33-34 +5 V (MOTOR)

5-28 Developer Notes

5.13 SWIM floppy disk interface

The SWIM interface is a combination MFM/GCR controller that
connects directly to the CPU data bus. It is designed to replace the
Integrated Woz Machine (IWM) and is pin and function compatible
with the IWM. The SWIM chip is a combination of the traditional
IWM chip, an ISM chip, and a combination logic chip.

The SWIM (Super Woz Integrated Machine) supports all IWM
extensions including a status register, a mode register, and the
following modes of operation:

• asynchronous mode

• fast mode

• optional 1-second one-shot

See the section in Chapter 3, “FDHD, the high-density floppy disk
drive,” for a description of the application of the SWIM floppy disk
interface.

The SWIM also extends the IWM by providing an ISM mode
supporting a high-speed rate twice that of the IWM, and
programmable input clock frequencies. Other features of the ISM
mode are

• Supports standard MFM format

• Supports Apple GCR format

• Write precompensation

• Read postcompensation

• Asymmetry and speed error compensation

• Programmable parameters for using both variable and fixed speed
drives

• Two-byte data FIFO

• Motor time out

• Asynchronous mode with pollable handshake registers

CHAPTER 5 Hardware 5-29

The ISM makes it possible to read and write both MFM and Apple
GCR formats on the same disk drive, and also makes it possible to
write MFM format on a variable speed, 3.5-inch drive in such a way
that it can be read back on a fixed speed 3.5-inch drive.

The ISM provides the ability to do write precompensation to correct
for peak shift effects that occur in magnetically stored media.

The ISM also provides a very sophisticated, and rarely used, form of
read postcompensation which corrects for peak shift effects on disks
with insufficient precompensation.

The ISM uses a programmable parameter scheme that makes it
possible to read and write 3.5-inch variable and fixed speed drives, as
well as standard 5.25-inch drives.

The ISM contains a two-byte read and write FIFO stack to provide
more software flexibility.

A Motor Time Out is included which will keep the drive enabled for
0.5 s to 1 s to provide time for software to begin another read or write
operation without bringing the drive back up to speed.

The ISM makes it possible to program the phase lines as either
inputs or outputs, which make it possible to interface with a wide
variety of drives.

The SWIM interface consists of a single CMOS SWIM chip, an internal
ribbon connector, and an external DB-19 connector. The pinout for the
external connector is given in Table 5-7.

5-30 Developer Notes

• Table 5-7 SWIM Connector Pinouts

Pin Number External DB-19

 1 GND
 2 GND
 3 GND
 4 GND
 5 n.c.
 6 +5V
 7 +12
 8 +12
 9 n.c.
10 n.c.
11 PH0
12 PH1
13 PH2
14 PH3
15 /WREQ
16 HDSEL
17 /ENBL2
18 RD
19 W R

CHAPTER 5 Hardware 5-31

The SWIM is a CMOS device and is controlled through a set of read
and write registers that are byte addressable only and which are to be
accessed through the Device Manager and the driver as described in
Chapter 3, “Firmware,” under the heading “FDHD, the High Density
Floppy Disk Drive”.

The floppy disk drive can read and write on a 3.5-inch disk in any of
the following modes: 1 MB Apple GCR (Group Code Recording) on a
1 MB disk, 1 MB MFM (Modified Frequency Modulation) on a 1 MB
disk, and 2 MB MFM on a 2 MB disk.

The drive consists of two read/write heads, head positioning
mechanism, disk motor, interface logic circuitry, read/write circuitry,
and motor control circuitry. It includes auto inject/eject
mechanisms and uses a 3.5-inch floppy disk for data storage.

5.14 SCC Interface

The Serial Communications Controller (SCC) is an 8 MHz CMOS
Z8530 which has two independent ports for serial communication.
Each port can be independently programmed for asynchronous,
synchronous, or AppleTalk protocols.

Power is applied to these ports under control of the power manager
and this will occur only when you make the correct Toolbox calls.
See Chapter 2, “Software Developer Guidelines,” and Chapter 6, “The
Power Manager.”

The serial interface is connected to the output ports through two
eight-pin miniature DIN connectors. Each signal line contains a 47-
ohm series termination resistor. The pinout for the external
connector is given in Table 5-8.

5-32 Developer Notes

• Table 5-8 SCC Connector Pinout

Pin Number Port A Port B Description

1 HSKo HSKo Handshake output; Connected
to SCC RTS; Tri-stated when
DTR is inactive; Voh = 3.6V;
Vol = -3.6V; Rl = 450Ω

2 HSKi HSKi Handshake input;
Connected to SCC;CTS
and TRxC; Vih = 0.2V;
Vil = -0.2V; Ri = 12KΩ

3 TxD- TxD- Transmit data (inverted);
Connected to SCC TxD;
Tri-stated when DTR is
inactive; Voh = 3.6V;
Vol = -3.6V;Rl = 450Ω

4 SG SG Signal ground. Connected to
logic and chassis ground.

5 RxD- RxD- Receive data (inverted);
Connected to SCC RxD;
Vih = 0.2V; Vil = -0.2V;
Ri = 12KΩ

6 TxD+ TxD+ Transmit data; Connected
to SCC TxD; Tri-stated
when DTR is inactive;
Voh = 3.6V; Vol = -3.6V;
Rl = 450Ω

7 GPi GPi General purpose input;
Connected to SCC DCD;
Vih = 0.2V; Vil = -0.2V;
Ri = 12KΩ

8 RxD+ RxD+ Receive data;
Connected to SCC RxD.
Vih = 0.2V; Vil = -0.2V;
Ri = 12KΩ

CHAPTER 5 Hardware 5-33

• Figure 5-8 SCC Mini-8 Connector

In the SCC, register addressing is direct for the data registers only. In
all other cases (with the exception of WR0 and RR0), programming
the Write registers requires two write operations and reading the
Read registers requires both a write and a read operation. The first
write is to WR0 (the Command Register) and contains three bits that
point to the selected register. The second write (also to the
Command Register) is the actual control word for the selected
register; if the second operation is a read, the selected read register is
accessed. All the registers in the SCC, including the data registers,
may be accessed in this fashion. The pointer bits are automatically
cleared after the read or write operation so that WR0 (or RR0) is
addressed again. All address references to the SCC use offsets from
the constant sccRBase ($FD 0000) for reads, and sccWBase for writes,
as the base address and are byte-only addressable. These base
addresses are also available in the global variables SCCRd and
SCCWr. The offsets to the command and data registers are given in
Table 5-9.

5-34 Developer Notes

• Table 5-9 SCC Address Offsets

Device Base (R) Base (W) Register Offset

SCC $FD 0000 $FD 8000 Port A Command
$0002

Port A Data $0006
Port B Command

$0000
Port B Data $0004

The SCC has a timing restriction in the time between accesses to the
chip. Accesses to the chip must be at least 1.8 µsec from the end of
the first access to the beginning of the second. The hardware
implementation will prevent the next access until the appropriate
wait has occurred, making this constraint transparent to the
programmer.

5.15 Apple Desktop Bus (ADB)

The communication of data to the host 68HC000 from the keyboard,
keypad, trackball and any other input device is via the Apple Desktop
Bus (ADB), which consists of one serial, bi-directional data line, a 5
Vdc supply line, and ground, which is common for power and signal
return. The ADB transceiver functions are implemented in the
power manager processor while the keyswitch encoding is done by
an ADB keyboard processor.

The standard configuration of the Macintosh Portable contains a
miniature, low-power, ADB trackball. Input devices designated as
low-power typically operate on about one tenth the current of
standard types. The trackball module is designed to be installed—by
the factory, dealer, or end user—into the position normally occupied
by a numeric keypad in some other keyboards.

CHAPTER 5 Hardware 5-35

♦ WARNING: Any input devices connected, either internally or
externally, to the Macintosh Portable ADB should be
low-power versions in order to maximize operating
time per battery charge. This means that normal
keyboards and mouse devices from other members of
the Macintosh family are usable with the Macintosh
Portable, but at some sacrifice in reduced battery life
between recharges. ♦

The operator input area of the Macintosh Portable has provision for,
and comes equipped with, an alphanumeric keyboard module
(keyboard) and a trackball module (see Figure 1-1). The trackball
module may be placed by the user, either to the left or right of the
keyboard. The trackball may also be replaced by an optional numeric
keypad module (see Chapter 8, “Options”).

The keyboard processor

The keyboard processor is a Mitsubishi M50740 8-bit microcomputer
chip. The M50740’s distinctive features are

• 3072 bytes of ROM

• 96 bytes of RAM

• 15 mW power dissipation

• 8-bit timer

• 32 programmable I/O ports

The keyboard processor is used to interpret the keyboard and
numeric keypad matrix switch closures. The best way to visualize
the internal actions of this processor is to recognize that it is the same
as performed by the processors found in Apple's other keyboards. In
the Macintosh Portable, however, the processor physically resides on
the main logic board instead of the keyboard PCB.

The keyboard processor communicates with the power manager via
the ADB in exactly the same fashion as it would if it were a separate,
stand-alone keyboard.

5-36 Developer Notes

Low-Power keyboard

The alphanumeric keyboard module is an array of switches only,
without any active electronics. Each module has a steel plate into
which have been inserted the keyswitches. The switches are
interconnected by a PC board.

The alphanumeric keyboard has 63 keyswitches. The keyswitches are
quiet-tactile, full-travel, and low-profile. The keycaps are a tapered
style, and are platinum color.

The keyboard module is designed to be installable into the Macintosh
Portable from the outside, by the customer. The module may be
placed on the left or right side of the housing.

The alphanumeric keyboard module has two connectors, wired
identically in parallel. The trackball/numeric keypad module has
one connector. The connectors on the keyboard are wired with the
pinout in Table 5-10.

CHAPTER 5 Hardware 5-37

• Table 5-10 Keyboard Connectors Pinout

Signal Name Pin Number Pin Number Signal Name

GND3 1 • • 2 X0 (KEYMATRIX)
X1 3 • • 4 X2
X3 5 • • 6 X4
X5 7 • • 8 X6
X7 9 • • 10 X8
X9 11 • • 12 X10
Y0 13 • • 14 Y1
Y2 15 • • 16 Y3
Y4 17 • • 18 Y5
Y6 19 • • 20 Y7
CAPS LOCK 21 • • 22 SHIFT
CONTROL 23 • • 24 OPTION
COMMAND 25 • • 26 GND1
GND2 27 • • 28 (SPARE)
ADB 29 • • 30 BUTTON
See Note 8. 31 • • 32 See Note 8.
(SPARE) 33 • • 34 GND3

Notes:
1. This connector interfaces to the keyboard, the numeric keypad,

the trackball, or any compatible ADB device.
2. GND1 is keyboard common for contact closures.
3. GND2 is ADB systems signal/power return ground.
4. GND3 is ESD/EMC/Chassis ground.
5. Disposition of grounds is handled on main logic board.
6. Two cables/connectors are required on main logic board, one at

either side of computer housing.
7. Cable connectors from CPU board are to mate with 34-pin center-

polarized headers. (Molex 5342-NGS2 series, No. 39-26-7349, or
equivalent).

8. Pins 31 and 32 are connected together on the ISO (European)
keyboards; this connection is used to identify such keyboards.

5-38 Developer Notes

Low-power trackball

The trackball is electrically compatible with the ADB, although it
uses few of the pins in a large, shared connector instead of the
dedicated mini-circular type. Table 5-11 shows the pinout for the
trackball connector.

In the trackball's intended application, the host controls the flow of
power to the trackball, and it may be removed or restored at any
time. Although not a strict ADB spec requirement, this unit is
designed to be operational in the default mode, within 80 ms of the
application of power.

The trackball's default handler ID is 0001 and its address is 0011, the
same as a mouse.

Movement of the top of the ball's surface to the right is in the
Positive X direction, and movement Down is in the Positive Y
direction (see Figure 5-9).

There is one button for the trackball, which is the equivalent of the
button on a mouse The trackball and the button are equally available
to left- or right-handed users.

The 34-pin trackball connector, into which a cable from the 68HC000
CPU is plugged, is a dual-row, center-polarized header.

• Table 5-11 Trackball Connector Pinout

Pin Number Signal Name Function

Pin 27 GND2 Signal power ground return
Pin 28 +5V Power supply from host
Pin 29 ADB DATA Bi-directional serial data
Pins 1 and 34 GND3 Shield ground

♦ All other connector pins should NOT be connected.

CHAPTER 5 Hardware 5-39

• Figure 5-9 Trackball Direction Conventions

- Y

+Y

- X +X

5.16 Sound interface

The sound interface is designed to be upward compatible with
Macintosh sound using the Apple Sound Chip (ASC); it offers stereo
sound and other enhancements not available in the classic
Macintosh and Macintosh SE computers and available for the first
time in the Macintosh II. This chip has two output channels and
four major functional modes:
1. Four Voice Synthesis (mono)
2. Two Voice Synthesis (stereo)
3. Single Voice (stereo)
4. Single Voice (mono)

5-40 Developer Notes

The hardware of the Apple Sound Chip subsystem consists of these
components:

• the Apple Sound Chip (ASC)

• two analog sound-processing chips (the Sony sound chips)

• an internal high-impedance speaker

• a stereo phono jack

The speaker is a permanent magnet moving-coil type. The
Macintosh Portable stereo-phone jack is located on the rear of the
machine.

The features of this subsystem are available through the Macintosh
Sound Manager.

5.17 Macintosh Portable expansion bus interface

The Macintosh Portable expansion interface follows closely that of
the Macintosh SE. The 68HC000 signals are brought out on a
processor direct slot (PDS), which is a 96-pin Euro DIN connector,
allowing for expansion capabilities not available through other
features of the machine. The pinout for the expansion connector is
given in Table 5-12. Table 5-13 gives the signal descriptions.

CHAPTER 5 Hardware 5-41

• Table 5-12 PDS Expansion Connector Pinout

Pin Number Row A Row B Row C

1 GND GND GND
2 +5V +5V +5V
3 +5V +5V +5V
4 +5V +5V +5V
5 /DELAY.CS SYS.PWR/ VPA/
6 /VMA /BR /BGACK
7 /BG /DTACK R/W
8 /LDS /UDS /AS
9 GND +5/0 V A1

(Pmgr Switched)
10 A2 A3 A4
11 A5 A6 A7
12 A8 A9 A10
13 A11 A12 A13
14 A14 A15 A16
15 A17 A18 Reserved
16 Reserved Reserved Reserved
17 Reserved Reserved Reserved
18 Reserved Reserved Reserved
19 Reserved +12 V D0
20 D1 D2 D3
21 D4 D5 D6
22 D7 D8 D9
23 D10 D11 D12
24 D13 D14 D15
25 +5/3.7 V +5V GND
26 A19 A20 A21
27 A22 A23 E
28 FC0 FC1 FC2
29 /IPL0 /IPL1 /IPL2
30 /BERR /EXT.DTACK /SYS.RST
31 GND 16M GND
32 GND GND GND

5-42 Developer Notes

• Table 5-13 PDS Expansion Connector Signal Descriptions

Signal Designator Signal Description

GND Logic ground
D0–D15 68HC000 unbuffered data bus 0–15
A1–A23 68HC000 unbuffered address bus 1–23
16M 16 MHz clock
/EXT.DTACK External DTACK. This signal is an

input to the CPU logic glue and allows
for external generation of /DTACK.

E 68HC000 ECLK
/BERR 68HC000 Bus Error
IPL2–IPL0 68HC000 Interrupt Priority Level 2–0
/SYS.RST 68HC000 Reset
/AS 68HC000 Address Strobe
/UDS 68HC000 Upper Address Strobe
/LDS 68HC000 Lower Address Strobe
R/W 68HC000 Read/Write
/DTACK 68HC000 Data Acknowledge
/BG 68HC000 Bus Grant
/BGACK 68HC000 Bus Grant Acknowledge
/BR 68HC000 Bus Request
/VMA 68HC000 Valid Memory Address
/VPA 68HC000 Valid Peripheral Address
FC2–0 68HC000 Function Code 2:0

CHAPTER 5 Hardware 5-43

The current available to an expansion card inserted in the processor
direct slot (PDS) is given in Table 5-14. This current allocation is part
of a worst-case current budget that is estimated to reduce the system
operating time per battery charge by fifty percent.

• Table 5-14 Current Available To The Processor Direct Slot

Power Supply Operating State Sleep State

+ 5 V, Always-on 50 ma maximum 1 ma maximum
+ 5 V, Switched * 0 ma maximum
+ 12 V 25 ma maximum 0 ma maximum

* The 50 ma maximum applies to the sum of the loads on the
switched and unswitched (by the power manager) +5 V supplies.

5-44 Developer Notes

5.18 The Macintosh Portable I/O port connectors

This section describes the connectors on the rear of the Macintosh
Portable. Figure 5-10 shows these connectors. Descriptive names for
these connectors, from left to right in the figure, are

• Video

• External disk drive

• External SCSI device

• RJ-11 Telephone receptacle

• Apple Desktop Bus (ADB)

• Serial port (Modem)

• Serial port (Printer)

• Stereo sound

• Battery charger, DC power input

• Figure 5-10 I/O port connectors

1 2 3 4 5 6 7 8 9 10

Video 1
External floppy drive 2

SCSI 3
Security 4

Internal modem 5

ADB6
Printer7
External modem8
External speaker9
Recharger10

The connectors are described in the following sections. For each I/O
connector, there is a drawing showing the pin or socket location and
numbering. Each drawing is followed by a tabular description of
signal names and functions.

CHAPTER 5 Hardware 5-45

Video connector

The Macintosh Portable has a DB-15 connector at the rear that
provides the video output signals to an external video adapter. The
adapter produces video signals with Macintosh II, NTSC, or PAL
formats.

The physical connection is a "D" subminiature receptacle connector.
The pinout of this connector is shown in Figure 5-11. The signal
names and descriptions are given in Table 5-15.

• Figure 5-11 External video connector

 5 4 3 2 1

 7

13 12 11

 8 6910

1415

• Table 5-15 Video connector signal assignments

Pin number Signal name Signal description

1 D0 Data bit 0
2 D1 Data bit 1
3 +5V
4 D2 Data bit 2
5 D3 Data bit 3
6 D4 Data bit 4
7 GND Signal Ground
8 Vbb Battery Voltage
9 GND Signal Ground
10 D5 Data bit 5
11 D6 Data bit 6
12 D7 Data bit 7
13 +5V
14 New_Frame FLM from Video Display Interface chip, Begin

frame scan over

5-46 Developer Notes

15 New_Byte CL2 from Video Display Interface chip, Byte
clock

CHAPTER 5 Hardware 5-47

External disk drive connector

This port can be used to support the external 3.5-inch disks used by
all Macintosh computers, as well as the Apple Hard Disk 20.

The pinout of the external disk drive connector is given in Figure 5-
12. The connector is a receptacle, DB-19 type.

• Figure 5-12 External Disk Drive Connector

1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1

 9 8 7 6 5 4 3 2 11 0

5-48 Developer Notes

The signal names and descriptions for the external disk connector are
given in Table 5-16

• Table 5-16 External disk drive connector signal assignments

Pin number Signal name Signal Description

 1 GND Logic ground
 2 GND
 3 GND
 4 GND
 5 no connection
 6 +5V
 7 +12
 8 +12
 9 no connection
10 no connection
11 PH0 Phase 0
12 PH1 Phase 1
13 PH2 Phase 2
14 PH3 Phase 3
15 /WREQ
16 HDSEL Head select
17 /ENBL2 Enable
18 RD Read
19 WR Write

CHAPTER 5 Hardware 5-49

External SCSI connector

Like the Macintosh SE,the the Macintosh Portable has a built-in SCSI
port for high-speed parallel communications. The SCSI interface can
communicate with up to seven SCSI devices, such as hard disks,
streaming tapes, and high-speed line printers. The external SCSI port
is a DB-25 connector as shown in Figure 5-13.

• Figure 5-13 External SCSI connector

2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4

 9 8 7 6 5 4 3 2 11 01 3 1 2 1 1

2 5 2 4 2 3

Table 5-17 shows the signal assignments for the SCSI DB 25-pin
external connector. These signals are described in detail in the NCR
5380 SCSI Interface Chip Design Manual and the IEEE SCSI
specification—Section D, ANSIX3T9.2 (version 17B).

5-50 Developer Notes

• Table 5-17 External SCSI Connector Signal Assignments

Pin number Signal name Signal description

1 /REQ Request for a REQ/ACK data transfer
handshake
2 /MSG Indicates the Message phase
3 /I/O Controls the direction of data movement
4 /RST SCSI bus reset
5 /ACK Acknowledge for a REQ/ACK data transfer
handshake
6 /BSY SCSI data bus is busy
7 GND Ground
8 /DB0 Bit 0 of SCSI data bus
9 GND Ground
10 /DB3 Bit 3 of SCSI data bus
11 /DB5 Bit 5 of SCSI data bus
12 /DB6 Bit 6 of SCSI data bus

13 /DB7 Bit 7 of SCSI data bus
14 GND Ground
15 /C/D Indicates whether control or data is on the
SCSI bus
16 GND Ground
17 /ATN Indicates an attention condition
18 GND Ground
19 /SEL Select a target or an initiator
20 /DBP Parity bit for SCSI data bus
21 /DB1 Bit 1 of SCSI data bus
22 /DB2 Bit 2 of SCSI data bus
23 /DB4 Bit 4 of SCSI data bus
24 GND Ground
25 NC No connection

CHAPTER 5 Hardware 5-51

RJ-11 telephone receptacle

The RJ-11 receptacle, which is mounted on (and a part of) the
optional modem card, is accessable through the rear of the Macintosh
Portable. Figure 5-14 is a drawing of this connector.

• Figure 5-14 RJ-11 Telephone Receptacle

1.27 [.050]
2.36 [.093]

20.57 [.810]

14.99
[.590]

2.54 [.100]

10.54 [.413]

17.91 [.705]

Fits 0.89 ± 0.08
[.035 ± .003]
Dia. Hole

3.18 [.125]

16.00
[.630]

3.17
[.125]

8.89 [.350]

.123 Ø.013 ± .002 .018 ± .002

Dimensions are in units of mm [inch].

Apple Desktop Bus (ADB) connector

The ADB is a serial communications bus designed to accommodate
low-speed input devices. The ADB port is a 4-pin mini DIN
connector as shown in Figure 5-15.

5-52 Developer Notes

♦ WARNING: Any input devices connected, either internally or
externally, to the Macintosh Portable ADB should be
low-power versions in order to maximize operating
time per battery charge. This means that normal
keyboards and mouse devices from other members of
the Macintosh family are usable with the Macintosh
Portable, but at some sacrifice in reduced battery life
between recharges. ♦

CHAPTER 5 Hardware 5-53

• Figure 5-15 The Macintosh Portable ADB connector

34

1

3 4

21

Cable Connector Computer and ADB device Jac

2

• Table 5-18 The Macintosh Portable ADB signal assignments

Pin number Signal name Signal description

1 ADB The bidirectional data bus used for input
and output. It is pulled up to +5V through
a 470 ohm resistor on the logic board, and
is an open collector type signal.

2 n.c. Not connected
3 +5V +5V power
4 GND The logic ground and power return

5-54 Developer Notes

Serial ports (modem/printer)

The Macintosh Portable has two RS–422 serial I/O ports for printers,
modems, and other standard serial I/O devices. Two mini-8
connectors on the computer’s back panel are used for the serial ports.
As shown in Figure 5-10, the modem port is labeled with a phone
handset icon while the printer port is labeled with a printer icon.
Figure 5-16 details the pin numbering of the mini-8 connectors.

The Macintosh Portable incorporates an internal modem connector.
A compatible modem inserted into the modem slot connector is
connected to the modem port. (Hardware supports the internal
modem being switched to operate through either of the two ports,
but firmware accomodates operation only through the modem port.)

An external modem may be connected to either the modem or the
printer port when an internal modem is not used; the user of the
Macintosh Portable makes a selection through the Control Panel.
See Chapter 8, “Options,” for details on the Apple modem and the
interface to any card you might design to use in the modem slot
connector.

The two serial ports are identical except that the modem port has a
higher interrupt priority, making it more suitable for high-speed
communication. See Inside Macintosh, Volume III or Macintosh
Family Hardware Reference for additional details.

• Figure 5-16 Serial ports

Table 5-19 shows the signal assignments for the serial ports.

CHAPTER 5 Hardware 5-55

• Table 5-19 Serial Port Signal Assignments

Pin number Signal name Signal description

1 HSKo Output handshake
2 HSKi Input handshake or external clock
3 TxD– Transmit data –
4 SG Signal ground
5 RxD– Receive data –
6 TxD+ Transmit data +
7 GPi General purpose input
8 RxD+ Receive data +

Stereo phone jack

The stereo phone output is capable of driving headphones of 8 to 600
ohms and is short-circuit protected.

The connector is a miniature phone jack (receptacle) connector.

• Table 5-20 Stereo phone jack pinout

Pin Number Function

1 Ground
2 Left channel
3 Right channel

5-56 Developer Notes

DC power input for the battery recharger

The power jack is the interface between the Macintosh Portable and
the power adapter which recharges the battery. Table 5-21 provides
the pinout.

• Table 5-21 Power Jack Pinout

Pin Number Function

1 + Battery voltage
2 – Battery return
3 No connection

5.19 Battery recharger

The recharger is an enclosed, wall-mounted module provided with
an AC input plug; a DC output cable terminates in a connector that
mates with the battery recharger connector, whose location is shown
in Figure 1-2.

• Table 5-22 Electrical Requirements

Parameter Minimum Nominal Maximum Units

AC Input Voltage Range 85 120/240 270 VACrms
AC Input Frequency Range 48 50/60 62

Hz
DC Output Voltage Range 7.0 7.5 7.6

Volts
DC Output Current Range 0.005 1.5 2.0

Amperes

CHAPTER 5 Hardware 5-57

...

CHAPTER 6 The Power Manager 6-1

Chapter 6 The Power Manager

This section includes and introduction, a description of
the power manager states, power management hints to
hardware developers (software developers, see Chapter
2), and a list of power manager ROM calls. •

6-2 Developer Notes

6.1 Introduction

The power manager is an intelligent assistant to the 68000 CPU. The
Macintosh Portable power manager provides these functions:

• Power management activities (i.e., enabling or disabling clocks to
peripheral chips—like the SWIM chip—to reduce power
consumption during idle or sleep periods, and physically enabling
or disabling the various power planes).

• Performing the Macintosh real-time clock (RTC) functions.

• Performing the transceiver functions for the Apple Desktop Bus
(ADB).

• Generating the contrast signal level (via the PWM function) for
the flat panel display.

• Monitoring the temperature (via an A/D input and a thermistor)
inside the case to enable the CPU to either warn the customer, or
take some other protective action, in the event that the machine
becomes too hot.

• Monitoring the level of battery charge so that the customer can be
warned if it becomes too low, or if the machine should shut down
all activity in order to preserve its memory contents.

• Generating the 1 sec interrupt signal to the CPU.

The power manager communicates with the CPU by using an
asynchronous handshake mechanism and an 8-bit parallel data bus
in conjunction with the VIA. The power manager primarily
responds to commands from the 68HC000.

6.2 Power manager states—idling, sleeping, and waking

An important requirement of any portable computer is to conserve
battery power. Macintosh Portable accomplishes this in a number of
ways: powering down peripheral subsystems when not needed,
slowing (idling condition) or stopping (sleeping condition) the 68000
clock when full speed is not required.

CHAPTER 6 The Power Manager 6-3

The power manager goes into the sleep state for one of two reasons:
it detects a very low battery condition, or it receives the Sleep
command from the 68000. The 68000 sends the Sleep command
when the Macintosh Portable operating system has determined that
there is no user activity or when the user decides to stop work and to
shut down the system. Before sending the command, the operating
system and drivers save their state variables in RAM. These
variables are used later to restore the system when power is restored.
The power manager sets a flag indicating that the Sleep command
has been received and confirmed, then turns down all system power
with the exception of the keyboard processor and the ring-detect
circuitry of a modem card, if one is installed.

At the end of the power manager sleep code are two instructions that
toggle one of the power manager processor's output lines. This line
is connected to a circuit that disables the power manager processor's
own 3.9 MHz clock. This essentially "stops time" for the processor,
halting its execution and lowering its power consumption by two
orders of magnitude. The processor internal state is frozen, with all
internal RAM and control registers remaining intact. This is defined
as the power manager's sleep state—powered, yet stopped.

The 60 Hz external clock used as the basic power manager processor
time base, is also used to re-enable the 3.9 MHz clock. The rising edge
of the 60 Hz clock re-enables the 3.9 MHz clock, which starts the
power manager processor executing code. The power manager
resumes execution at the exact spot where it turned itself off and
begins the wake-up check loop. First, the clock and times are
updated, then the environment is checked for a reason to wake up
(return to the operating state).

There are three possible conditions that will end the sleep state:
1. If a key is down on the keyboard
2. If the wake-up timer is enabled and matches the real-time clock
3. If the Macintosh Portable internal modem is installed and set up

to watch for "ring detect"

If any one of these conditions is met, the power manager restores
itself and the system to normal activity (powers up the 68000, RAM,
ROM, etc). When main power returns, the 68000 restores itself and
the rest of the system to where it was before the sleep state. This is
called waking.

6-4 Developer Notes

BatteryMonitor Code on the 68000

The BatteryMonitor is a segment of code on the 68000 that is part of
the ROM image. The BatteryMonitor is called by the 1 sec interrupt
(from the power manager processor) and it monitors the CPU for
activity. More specifically it

• checks the battery level and looks to see if it is necessary to alert
the user that a
low-power condition exists

• looks at sleep and hard disk spin-down times (user selected) to see
if they've been changed, and updates them as necessary. These
times are stored in parameter RAM, which is implemented in the
power manager processor.

• turns off the high current drain sound circuit when it is not
needed

• updates the real-time clock, which is implemented in the power
manager processor

• checks the internal computer temperature to see if it is necessary
to alert the user that a high-temperature condition exists

• watches for when it is time to go into the sleep state, that is, it
waits for a sleep timeout to occur

• puts the system in the sleep state

Clearly, this code segment does a great deal more than its name
implies.

Idle/sleep code function

Idle/sleep code monitors, with the help of other parts of the system
ROM, the indications of activity. Any one of these types of activity
will prevent a sleep timeout:

• a call to Read or Write through IOCore

• calling PostEvent

• OSEventAvail returning true (events are in the queue)

• making sound (any access of an ADB sound chip)

• execution od an ADB completion routine

CHAPTER 6 The Power Manager 6-5

• a call to SetCursor that changes the cursor

• whenever the watch cursor is the cursor

6-6 Developer Notes

Criterion for idle

The criterion for idle is 15 seconds without user activity of any kind
(including communication through the serial port; for example,
modem use).

Software developers, you need to ensure that routines involving a
large amount of calculation perform at least one of the listed types of
activity to prevent the power manager commanding the 68000 into
the idle state.

In idle, the 68000 processor inserts 64 wait states into RAM and other
accesses to lower the processor effective frequency to near 1 MHz,
even though its clocking continues at 16 MHz. Interrupts still get
processed at 16 MHz, full speed, in the interrupt handler.

Criterion for sleep state

For the sleep state, the variable time used as an inactivity criterion is
user selected in the Battery desk accessory (see Figure 4-2). The same
measure of inactivity is used for the sleep state as for idle, but in
considering the transition from idle to sleep, the user established
sleep-time is counted down; if the countdown reaches zero without
indication of activity, the Macintosh Portable goes into sleep state.

During sleep there are four sections that remain turned on (powered
for full functionality):
1. RAM (both main memory and video memory) is backed up
2. Portions of a modem card, if one is installed
3. The VIA and the SCC are powered but their clocks have been

reduced to zero frequency, thereby reducing their power
consumption to almost zero.

4. The power manager processor, once the sleep call is made, saves
some state variables, systematically powers down all the
peripheral subsystems over which it has control (by stopping the
system clock signal to them), and then puts itself to sleep (powers
itself down).

1/60th of a second interrupts are generated continuously by the 60 Hz
clock as long as the battery is charged. When the power manager
processor receives an interrupt, it does the following:

CHAPTER 6 The Power Manager 6-7

• updates the real-time clock

• checks the wake-up timer to see if it matches the real-time clock

• checks for evidence of events that should end the sleep state, such
as 1) any keystroke at the built-in keyboard, 2) wake-up timer
timeout, or 3) Ring Detect from the modem is true and the
modem feature has been enabled at the Control Panel.

If no indication of activity survives the validity check then the
power manager powers itself down again. The periodic functions
take perhaps 200 microseconds out of the 16.7 milliseconds between
interrupts, so the power manager is powered down most of the time.

When someone presses a key or some other event occurs, the power
manager will recognize that event, restore itself, hold down (assert)
the RESET signal to the 68000, turn on power to the system, and then
raise (deassert) the RESET signal.

The 68000 has now been reset and its program counter returned to
location $00 0000; the execution of the second instruction asks the
question “Is this a return from sleep (a wake-up) or a true reset (from
activation of the reset switch) ”. If it's a return from sleep, the
program jumps off to the wake-up code, which restores each
subsystem to its state before it went into the sleep state and returns to
the calling program.

6.3 Power management hints (hardware)

The following hints may be of interest to hardware designers:
Chapter 2, “Software Developer Guidelines,” contains hints more
likely to be of interest to application designers.

6-8 Developer Notes

Microprocessor

The 68HC000 is a mostly static cell CMOS design and as such has a DC
component to the current drawn during operation (as well as an AC
component). This DC component (~10 mA) is always present while
power is on to the processor and is the reason the power to the
microprocessor is turned off during sleep. For the AC component,
three factors determine the amount of current drawn during idle or full
speed operation:

• Frequency of operation

• Number of gates switching

• Capacitance to be charged when switching

The frequency of operation cannot be taken to DC because there are
some dynamic nodes present in the design. Instead there is a
provision (in the Normandy ASIC, $FE xxxx space) to put the
processor into an idle mode where there are 64 wait states injected into
every RAM/ROM cycle. Introduction of the wait states reduces the
effective clock frequency for a large portion of the chip. The result of
power management is that the number of gates that are switching is
reduced as is the frequency at which they switch. The frequency at
which internal and external capacitive loads are being charged is also
proportionately reduced; therefore the contribution to overall power
consumption by address/data/control bus capacitance, and by the
RAM and ROM arrays, is reduced.

Permanent main memory

The RAM is a static cell CMOS design and as such has a significant
DC component (as well as an AC component) to the current drawn
only while it is selected. The RAM array is configured using x8 parts
in order to reduce this selected current (only 2 chips are selected in
the array, the rest are in standby—no matter how deep the array is).
The current drawn while operating is approximately proportional to
the duty cycle of use. For instance, when the 68HC000 processor is
put into idle mode (64 wait states are injected into each bus cycle) the
RAM will be selected only for the minimum amount of time to
guarantee proper operation (i.e., the select time remains about the
same but the overall duty cycle is reduced dramatically).

CHAPTER 6 The Power Manager 6-9

ROM memory

The ROM is a static cell CMOS design and as such has a significant
DC component to the current drawn only while it is selected (as well
as having an AC component). The current drawn while operating is
approximately proportional to the duty cycle of use. For instance,
when the 68HC000 processor is put into 'idle' mode (64 wait states
are injected into each bus cycle) the ROM will be selected only for the
minimum amount of time to guarantee proper operation (i.e., the
select time remains about the same but the overall duty cycle is
reduced dramatically).

6-10 Developer Notes

Floppy disk interface

The SWIM chip is a static cell CMOS design and as such has a
negligible DC component to the current drawn during operation (the
major contributing factor is the AC component). For the AC
component, three factors determine the amount of current drawn:

• Frequency of operation

• Number of gates switching

• Capacitance to be charged when switching

The strategy for power management on the SWIM chip is to control
the frequency of the clock (power is left on to this device even during
the sleep state). Specifically it is either on and switching at 16 MHz or
it is off (DC). Savings by using this technique have been measured to
be about 35 mA. The state of the clock is controlled via the power
manager processor through the Normandy ASIC. The normal state
of the clock is to be off (thus providing the lowest average power).
However, because the floppy drive is not able to interrupt the system
when a disk is inserted (and subsequently notify the system to turn
the SWIM chip clock on) the system must periodically turn the clock
on and check for a disk insert event. Of course, while a disk is
inserted and the drive is in operation, the clock should be on.

CHAPTER 6 The Power Manager 6-11

SCC Interface

The SCC chip is a static cell CMOS design and as such has a negligible
DC component to the current drawn during operation (the major
contributing factor is the AC component). For the AC component,
three factors determine the amount of current drawn:

• Frequency of operation

• Number of gates switching

• Capacitance to be charged when switching

The strategy for power management on the SCC chip is to control the
frequency of the clock (power is left on to this device even during the
sleep state). Specifically it is either on and switching at 8 MHz or it is
off (DC). The state of the clock is controlled via the power manager
processor through the Normandy ASIC. The normal state of the
clock is to be off (thus providing the lowest average power).
However, when the serial ports are in use, the clock must be on
100% of the time.

6-12 Developer Notes

Video Display Panel Interface

The active matrix display's current drain is dependent upon the
screen image. For instance a gray screen may draw up to three times
the current of an all white or all black screen. Savings of about 50-70
mA are achievable mainly if the gray desktop screen is avoided. The
default screen pattern has been designed to reduce this current drain.

CHAPTER 6 The Power Manager 6-13

6.4 Operating system interface (ROM calls)

You should already know what the sleep state is and how it is used
(see section 6.2 “Power Manager States-Idling, Sleeping, and Waking”
for information on the sleep state). Only specific parts of the system
should be calling sleep. It is more likely that you want to get into the
sleep queue, which is described later in this section.

Calling Sleep

Sleep request

A sleep request is called using the Sleep trap (_Sleep, or $A08A) and
it takes one parameter in D0, as shown below.

MOVE.L #SleepRequest,D0 ; SleepRequest = 1
_Sleep ; $A08A
BNE.S @didnotsleep ; Sleep indicator in the

 EQ ; condition code
@didsleep

All registers except D0 are preserved across the call.

A sleep request is only that, a request. If the system determines that
there is a reason why the system should not go to sleep, the request is
denied and the EQ condition code is set to not equal.

Entities that request sleep are sleeptimer, Finder, and Shutdown.

Sleep demand

A sleep demand is called using the Sleep trap (_Sleep, or $A08A) and
it takes one parameter in D0, as shown below.

MOVE.L #SleepDemand,D0 ; SleepDemand = 2
_Sleep ; $A08A

All registers except D0 are preserved across the call.

6-14 Developer Notes

A sleep demand is unconditional. The Macintosh Portable will go
into the sleep state even if some processes may be harmed. Sleep
demand is generally used to power off the machine when a critical
low-power condition arises.

The entity that demands sleep is low-power alert.

The Sleep Queue

As part of its preparation for sleep, the sleep trap goes through a
queue of procedures, executing each one and informing the
procedure of its intentions. The sleep trap may be trying to do any of
three things: request permission for sleep, alert for impending sleep,
or inform the procedure that wake-up is underway.

Entities that wish to be given CPU time before or after sleep must
place themselves in this queue. The sleep queue is a standard OS
queue. Shown below is the sleep queue record structure.

TYPE SleepQRec = RECORD

SleepqLink: QElemPtr;

SleepqType: Integer;

SleepqProc: ProcPtr; {Pointer to sleep routine}

SleepqFlags: Integer;

END

The sqFlags field contains two flags to be set by the sleep routine
before installing its record into the queue.

Flag Bit Indication
Sleep 0 Call procedure at sleep
WakeUp 1 Call procedure at wake up

The record owner may suspend calls to its sleep procedure by clearing
these bits as desired.

CHAPTER 6 The Power Manager 6-15

Installing a record

To install a record in the queue:
1. Fill the flags, type, and proc fields in the record
2. Load A0 with a pointer to this record
3. Call SlpQInstall
4. Call enqueue

Example:
MOVE.L MyRec(A2),A0 ; Pointer to my record
LEA MySleepProc,A1 ; Load pointer to my

 handler
MOVE.L A1,SleepqProc(A0) ; Fill proc field
MOVE #SlpQType,SleepqType(A0) ; Fill type field (#16)

 _SlpQInstall ; Add to queue ($A28A)

Removing a record

To remove a record from the queue:

1. Load A0 with pointer to the record
2. Call SlpQRemove

Example:

MOVE.L MyRec(A2),A0 ; Pointer to my record

_SlpQRemove ; Remove from queue ($A48A)

Sleep queue procedures are called with A0 pointing to the
procedure's sleep queue record. Procedures in the queue may be
called with any of the following values in D0. y.

1 = Sleep request
2 = Sleep demand
3 = Wake up

6-16 Developer Notes

Sleep Queue calls

A complete sleep call to each queue procedure consists of (in the case
of SleepDemand or SleepNow) a single call to each sleep procedure
with D0 containing the SleepRequest value or (in the case of
SleepRequest) two calls to each sleep procedure, the first passing
SleepRequest (in D0) followed by another call with SleepDemand (in
D0).

These calls should not be confused with the system level _Sleep
calls; the sleep queue procedures are merely called with the same
parameter that was passed to the Sleep trap. Sleep queue procedures
only see SleepRequest, SleepDemand, or SleepWakeUp passed to
them; SleepNow calls are converted to SleepDemand calls when
executing sleep queue procedures.

A test of the networking services in use is performed before the sleep
queue is traversed. (See “Network Services” below.)

Sleep Request

For sleep request, each queue entry gets called with D0 containing the
SleepRequest parameter and A0 pointing to the procedure's sleep
queue record. The sleep queue procedure may either allow or deny
this request and return its answer in D0. If the procedure allows
sleep, the queue is traversed and the next sleep queue procedure is
executed. If any one of the procedures denies the sleep request, sleep
queue traversal is halted and all procedures that had been called so
far get a SleepWakeUp call indicating that the sleep request is being
aborted.

It is probably best for entries not to actually do sleep preparation at
the time of request, as it is possible that the request may be denied by
another sleep queue entry. Instead the queue entry should wait until
the sleep demand call is made. SleepRequest is used to check with all
entries to see if sleep is OK and to indicate to sleep queue procedure
owners that they should lock out any activity that might make it not
OK.

To OK the sleep request, the sleep queue entry procedure must clear
D0. To deny the sleep request, D0 must be returned as a nonzero.

CHAPTER 6 The Power Manager 6-17

Once all the sleep queue procedures are called and none of them
denies the sleep request, each is called again , this time with the
SleepDemand parameter passed in D0. The SleepDemand call
cannot be denied.

6-18 Developer Notes

Sleep Demand

For a SleepDemand or SleepNow system level call, the sleep queue
procedures are called once. In either case the SleepDemand
parameter is passed in D0 (SleepNow is converted to SleepDemand
by the _Sleep trap before executing the queue procedures.) The
SleepDemand call cannot be denied. All entries in the sleep queue
must do the best they can to prepare for a sleep demand and
cooperate fully.

Since the _Sleep trap is not called at interrupt, the procedure can do
quite a bit to make sleep possible (even use the Memory mManager!).
In some cases it may be desirable to ask the user for an OK or to alert
the user of some problems that may occur, however this should be
avoided if possible. If many sleep queue procedures decide to put up
a dialog, things can get confusing. In addition, if no user is present to
answer your dialog, the machine will not go to sleep.

Sleep Wake Up

The SleepWakeUp call is made to each sleep queue entry upon wake
up and provides an opportunity to sleep queue procedures to restore
their state. This call cannot be denied.

Remember, choosy programs choose sleep.

Network services

A SleepRequest or SleepDemand call must pass a set of network
condition tests before the sleep operation can be granted. The
network tests take place before sleep queue procedures are called. If
the network test fails, the sleep queue procedures are not called. The
following matrix illustrates what happens.

CHAPTER 6 The Power Manager 6-19

Sleep Ca
N

et
w

o
rk

 S
er

vi
ce

s

Reque Deman Now

XPP/
Volume
Mounte

XPP

MPP
If on battery,
then close drive
else denied

If on battery,
then close drive
else denied

Denie

If user OKs,
then close dri
else denied

If user OKs, t
close drivers;
else denied

If user OKs, t
unmount serv
and close driv
else denied

Close driv

Close driv

Unmount ser
and close driv

For the (low priority) SleepRequest, sleep is denied if any network
services are actually in use. The exception here is when running on
battery where the overriding concern is conserving power. In the
demand case things are more interesting.

In the SleepDemand case the user is presented with one of three
alerts informing him of the possible consequences if sleep is chosen.
Level one alert is shown if the MPP driver or the XPP driver is open,
but no servers are mounted nor is the magic chooser bit set. The
language of the alert box informs the user of possible loss of
networking services. If a server volume is mounted, a more harsh
message appears informing of the loss of the volume, and so on. In
all cases the user is given the choice of canceling the sleep demand or
going ahead with it.

The SleepNow case stomps on everyone and takes no prisinors. No
dialogs appear.

6-20 Developer Notes

CHAPTER 7 Expansion Card Design Guides 7-1

Chapter 7 Expansion Card Design Guides

This chapter contains mechanical drawings to aid the
expansion card hardware developer.

7-2 Developer Notes

7.1 Main logic board with expansion connectors

Figure 7-1 shows the various elements of the main logic board.

• Figure 7-1 Main logic board

CHAPTER 7 Expansion Card Design Guides 7-3

7.2 Expansion card design guides

Figures 7-2 and 7-3 are design guides for Macintosh Portable
expansion cards.

7-4 Developer Notes

• Figure 7-2 RAM card design guide

CHAPTER 7 Expansion Card Design Guides 7-5

• Figure 7-3 Modem card design guide

7-6 Developer Notes

CHAPTER 8 Options 8-1

Chapter 8 OPTIONS

This chapter describes the options available to expand
the functionality of the Macintosh Portable. •

8-2 Developer Notes

8.1 The modem card

The following information is given to support developers who are

• Developing software to drive the Apple modem

• Developing hardware to fit into the modem slot, and the software
to go with it

The modem card is an "AT" compatible 2400/1200/300 bps auto-dial,
auto-answer modem. Its design is optimized for use in the
Macintosh Portable. As a result, the modem requires little power
while operating and has a sleep state in which only the ring detect
circuitry is powered.

Summary of modem card features

The features include

• 2400/1200/300 bps data rates; meets Bell 103 and 212A, and CCITT
V.21, V.22B and V.22 bis standards

• Automatic restoration of previous configuration at power up
(warm start)

• Software selectable Bell 212A/103 or CCITT V.22/V.21 modes (B
command)

• Data formats:
7 data bits, 1 parity bit (even, odd, mark, or space parity), 1 stop bit
7 data bits, no parity, 2 stop bits
8 data bits, no parity, 1 stop bit

• Subset of “AT” command set (Hayes 2400)

• Automatic Adaptive Equalization on the receive channel

• Asynchronous operation only

• Auto-dial and auto-answer

• Pulse and DTMF dialing

• Full call progress detection: busy, dial tone, ring, ringback, 2nd dial
tone

CHAPTER 8 Options 8-3

• Local analog and digital loopback self-test, and remote digital
loopback self-test with test pattern generation (AT&Tn
commands)

8-4 Developer Notes

• 40-character buffer memory

• Designed to meet FCC Part 68 and Part 15 class B

• Low power dissipation: 500 mW maximum / 450 mW typical

• ± 5 V operation

• Compact size: 14 in2 (3 in x 4.75 in)

• Single RJ-11 phone jack

• Analog output pin for audio monitoring of modem operation

• Sleep state: requires only +5 V for ring detect circuitry and
maintenance of configuration at power down

• Domestic/Canadian Data Access Arrangement (DAA) design

Hardware interface

The hardware interface between the Macintosh Portable and a
modem card inserted into the modem expansion slot is illustrated in
Figure 8-1.

CHAPTER 8 Options 8-5

• Figure 8-1 Macintosh Portable Serial Port Configuration and
Modem Interface

+5 VDC

-5 VDC

SCC
Z85C30

8 MHz

Channel
A

Data: TxD, RxD

Controls: /DCD, /RTS, /CTS, /DTR

Modem Sound (analog output)

 Modem

18 Pin Connector

RJ-11
Line Jack

+5.2 VDC – Always ON

To Power
Manager

To Sound
Circuitry

From Power
Manager

	

Power Manager controlled: -5 VDC

			

To Power
Manager

/Modem Installed

Sound Level (3 pins)From Apple
Sound Chip

UTAH

Drivers
and

Receivers

Modem
Port

Mini-
DIN 8

Modem_Sound_EnableTo Sound
Circuitry

/Modem_PowerFrom Power
Manager

To Power
Manager

/Modem_Busy

Channel
B

Drivers
and

Receivers

Printer
Port

Mini-
DIN 8

/Ring Detect Interrupt (RI_EXT)

8-6 Developer Notes

The data access between the Macintosh Portable CPU and the modem
is an 18–pin dual inline socket connector on the modem card. The
data is at TTL levels (VIL = 0 to 0.8 V; VIH = 2.8 to V+; IOL=1.6 mA;
IOH=-25 µA).

The internal connector that receives the modem card has pinouts as
in Table 8-1. Table 8-2 relates signal names and functional
descriptions.

• Table 8-1 Modem Connector Pinout

Pin number I/O Type Signal Name

 1 I (Input) /Modem_Pwr (controlled through the power
manager

processor)
 2 Ground GND
 3 I /RTS
 4 O (Output) /DCD (Carrier Detect)
 5 O RxD (Receive Data) [to SCC RxD]
 6 O /CTS
 7 O Modem_Sound (Analog Out)
 8 I TxD (Transmit Data) [to SCC TxD]
 9 O /RI_EXT (Ring Detect Interrupt)

10 –5V -5 VDC (controlled through the power
manager processor)
11 +5 V +5 VDC (always on)
12 I /DTR (Data Terminal Ready)
13 I V1 (volume control-LSbit)
14 I V3 (volume control-MSbit)
15 I V2 (volume control)
16 O Modem_Ins
17 O /Modem_Busy
18 O MS_Enable (Modem Sound Enable)

CHAPTER 8 Options 8-7

• Table 8-2 Modem Connector Signal Descriptions

Pin Number Signal Description

Pin 1 /Modem_Pwr – This active low signal comes from the
power manager. For details on the use of this pin, see
the section headed “Power Control Interface”.

Pin 2 GND – Electrical ground.
Pin 3 /RTS – The Request to Send signal from the Macintosh

Portable is ignored by the the modem since it is
meaningless in full duplex operation. This pin is a no-
connect on the modem.

Pin 4 /DCD – The behavior of the Data Carrier Detect pin
depends on the state of the &C command.

Pin 5 RxD – Data received by the modem is sent to the
Macintosh Portable over the RxD pin.

Pin 6 /CTS – Clear to Send is asserted whenever the modem
is powered. This pin is grounded on the modem.

Pin 7 Modem_Sound – This is the analog sound output for
the modem.

Pin 8 TxD – Data for the modem to transmit and commands
for the modem comes from the Macintosh Portable
over this serial pin.

Pin 9 /RI_EXT – This pin is used to signal the Macintosh
Portable that a ring is present (see the section “Ring
Detect Signal”). If the Macintosh Portable is in the sleep
state, the assertion of this pin will cause the Macintosh
Portable to return to the operating state and power-up
the modem.

Pin 10 -5VDC – The -5V supply is guaranteed to be present
whenever the /Modem_Pwr pin is asserted. However,
this pin may float or go to ground anytime following
the negation of /Modem_Pwr.

Pin 11 +5VDC unswitched – Whenever the Macintosh
Portable has power available, this pin will supply +5.2
VDC ± 5% (see the section “Power Supply and
Dissipation”).

Pin 12 /DTR – The behavior of the Data Terminal Ready pin
depends on the state of the &D command (see “&D:
DTR Options” under “Command Definitions”)

8-8 Developer Notes

• Table 8-2 Modem Connector Signal Descriptions (Continued)

Pin Number Signal Description

Pin 13 V1 – This is the least significant bit of the three volume
control bits. This pin may remain high following the
negation of /Modem_Pwr.

Pin 14 V3 – This is the most significant bit of the three volume
control bits. This pin may remain high following the
negation of /Modem_Pwr.

Pin 15 V2 – This is the second bit of the three volume control
bits. This pin may remain high following the negation
of /Modem_Pwr.

Pin 16 /Modem_Ins – This pin is always asserted (i.e., ground
on the modem) whenever the modem is installed in
the Macintosh Portable.

Pin 17 /Modem_Busy – This pin is asserted whenever the
modem is “busy.” For details on the use of this pin, see
the section “Power Control Interface.”

Pin 18 MS_Enable – The modem asserts the modem sound
enable pin (active high) whenever it has its sound
monitor “on.” Sound may be heard on the speaker of
the Macintosh Portable if the modem drives
Modem_Sound (pin 7) without asserting MS_Enable.

Analog output

The analog output (Modem_Sound) is as follows:
Output impedance: 5 Ω Max.
Output load : 500 Ω Max.
Output voltage: Typ. ± 0.65 V p-p

Max. ± 1.5 V p-p
Offset voltage: Typ. ± 3 mV

Max. ± 15 mV

CHAPTER 8 Options 8-9

Power supply and dissipation

The modem card operates from a ± 5 VDC ± 5% Macintosh Portable
supply (battery or battery and charger). The total power consumption
by the modem in a fully operational state is 500 mW Max / 450 mW
Typical; in the sleep state the consumption is 0.3 mW when no ring
is detected and 4.5 mW when a ring is detected. The power-up reset
time is less than 500 ms.

Under normal operation, +5 VDC is supplied by pin 11; -5 VDC is
supplied by pin 10. During the sleep state only +5 VDC is supplied.

8-10 Developer Notes

Power control interface

The modem is powered on or off through /Modem_Pwr and
/Modem_Busy. The modem asserts /Modem_Busy whenever any
of the following is true:

• the modem is executing its power-up sequence

• the modem is off-hook (for any reason)

• the modem is executing a command where “command execution”
begins with the <CR> at the end of an AT command sequence or
the “/” of the repeat last command sequence (“a/” or “A/”)

If the modem is executing any of the self-tests, it is considered to be
executing a command and therefore “busy.”

The power manager processor controls the /Modem_Pwr signal (see
the Power Up/Power Down Timing Diagram, Figure 8-2). If
/Modem_Pwr is negated (high), the modem should immediately
power-off regardless of what it is doing. The modem enters the sleep
state within at most 500 ms following the negation of /Modem_Pwr
(t5). Prior to sleeping, the modem forces all its outputs high (except
pins 7, 16, and 18 which are driven low), stores its operating
parameters and register values for restoration following sleep, and
reduces its power consumption to meet the maximum sleep power
limitation (see the previous section “Power Supply and Dissipation’).
All inputs to the modem, except for the three volume bits and
/Modem_Pwr, will be at ground within 50ns (t6) of the negation of
/Modem_Pwr. The volume bits will always reflect the current
volume setting.

CHAPTER 8 Options 8-11

• Figure 8-2 Power Up/Power Down Timing Diagram

+5 V to switchable modem
circuits

/Modem Prw

/Power Hold (internal)

/Modem_Busy

t1 t2 t3 t4

Power Up Seq.

TxD, /RTS, /DTR

V1, V2,
 V3

Modem Inputs:

Sleep
State

t5

Modem Outputs

t6

VCC

0v

-5 VDC

Time:

Min

Max

t1 t2 t3 t4 t5 t6 t7 t8

0

500ms

0_

_

*

* : t3 > 0 can be respected or not by the CPU

0

_ _

t7

Sleep
State

500ms 500ms 500ms

8-12 Developer Notes

Most often, the power manager will not negate /Modem_Pwr if the
modem has /Modem_Busy asserted. However, there are times
when the power manager must turn the modem off even though it
is “busy.” If this occurs, the modem stops its “busy” activity (e.g.,
goes on-hook) and performs the necessary activities in preparation
for the sleep state. If it is executing a command when it is put into
the sleep state, the modem should either complete the command or
ignore it and restore the state prior to beginning execution of the
command, whichever takes the least amount of time.

Ring detect signal

The /RI_EXT line (pin 9) is asserted during most of the AC cycle of a
ring and is used to signal the Macintosh Portable CPU that a ring is
present. Both ringing and pulse dialing will trigger the ring detector.
The microprocessor in the modem distinguishes between a ring and
pulse dialing by detecting the frequency of the signal. If the modem
is powered down, the Macintosh Portable can determine whether /RI
corresponds to a ring or pulse dial by powering up the modem and
reading the appropriate register or looking for the “RINGING” result
code.

Rings Pulse Dialing
Frequency 15–68 Hz 10 Hz
Duty Cycle 30–95 % <20 %

The drive capability of the /RI output is:
VOH = 2.8 V IOH = -35 µA
VOL = 0.5 V IOL = 500 µA

Telephone network interface (Data Access Arrangement)

The telephone interface is a balanced, two-wire telephone interface
design meeting FCC part 68 rules and DOC rules.

One eight-wire RJ-45 type jack is included and wired as follows:

Pin 4 for TIP signal
Pin 5 for RING signal

Pins 1, 2, 3, 6, 7, and 8 are not used.

CHAPTER 8 Options 8-13

The jack on the rear of the modem card is an RJ-11 type. This allows
a common RJ-11 plug used on single-line telephone equipment to be
be inserted, completing the connection of a phone to the modem.

8-14 Developer Notes

Standards information for reference

The following compilations of signal characteristics are provided for
reference only.

Compatibility and modulation

Standard Speed (bps) Modulation Baud

CCITT V.22 bis 2400 QAM 600
CCITT V.22B 1200 DPSK 600
CCITT V.21 300/110 FSK 300/110

Bell 212A 1200 bps DPSK 600
Bell 103 300/110 bps FSK 300/110

Transmit carrier frequencies

V.22 bis/V.22/212A Transmit Carrier
Originate 1200 Hz
Answer 2400 Hz

Bell 103 Mark Space
Originate 1270 1070
Answer 2225 2025

V.21 Mark Space
Originate 980 1180
Answer 1650 1850

Guard tone frequencies and transmit levels (CCITT only)

1800 Hz ± 20 Hz @ 6 ±1 dB below the transmit carrier level.
550 Hz ± 20 Hz @ 3 ±1 dB below the transmit carrier level.

Answer tone frequency

V.22 bis/V.22/V.21 2100 Hz
Bell 103/212A 2225 Hz

Received signal frequency tolerance

Offset frequency ± 7 Hz

CHAPTER 8 Options 8-15

Command Definitions

The modem implements the commands listed below. The
commands can be either uppercase or lowercase characters.
However, the attention characters must be either all uppercase or all
lowercase (i.e., “AT” or “at”). The action in response to a command
often depends upon the operating state of the modem, either local
command (command) or on-line:

• local command state—In the local command state, commands are
issued by the Macintosh Portable to set up the link parameters.
The modem listens while a command is being entered and does
not execute the command until the command terminating
character, specified in register S3, is received. The only exceptions
to this rule are the “A/” or “a/” command and the escape
command.

• on-line state—The modem goes on-line after connecting with the
remote terminal. In the on-line state, data is transmittted or
received.

1. AT: Attention Code

All commands must begin with the attention code AT. If not set, the
speed and parity of the Macintosh Portable interface are determined
from this command. The remainder of the command line contains
commands for the modem.

2. A/: Repeat Last Command

The A/ command instructs the modem to repeat the last command
line. A/ is used in place of the AT command. A command
termination character (register S3, default of <CR>) is not required
for execution of this command.

8-16 Developer Notes

3. +++: Return to the Local Command State (Escape Command)

The escape command, which consists of [Escape Guard Time
(S12)][three escape characters (S2)][Escape Guard Time (S12)], is used
to force the modem back to the local command state from the on-line
state. The actual escape character is specified by register S2, expressed
as the ASCII decimal value of the escape character (default is 43 =
“+”). After the escape command is executed, the modem sends an
“OK” result code to host. The escape guard time is the required delay
time prior to and following the three escape characters. The guard
time is determined by the value of the S12 register. The default
setting is S12 = 50 = 1 second (one unit = 20 ms).

Example (S12 = 50, S2 = 43):
Wait at least one second after the last character entered.
Enter: +++
Wait at least one second for the modem’s response.
Response from modem: OK

4. A: Enter Answer Mode

The “A” command forces the modem to go off-hook in the Answer
mode and starts sending the answer tone, regardless of the value of
register S0. If no carrier signal is received from the phone line
within the number of seconds specified by register S7 (default of 30
seconds), the modem goes on-hook, sends the “NO CARRIER” result
code to the Macintosh Portable, and returns to the local command
state. This command must be the last command on a command line.
Pressing any key aborts this command.

5. Bn: Communication Protocol Compatibility
The “B” command determines which protocol is used to connect at 300 or
1200 bps.
B0: CCITT V.21 or V.22 compatibility.
B1: Bell 103 or 212A compatibility (default).

The B command is ignored when the modem is communicating at 2400 bps.

[Cn command deleted]

CHAPTER 8 Options 8-17

6. Ds: Dialing

The dialing command takes the form Ds where s is a string of
characters. In the simplest form, s consists of actual dial (or DTMF)
characters. This set of dial characters for the modem consists of digits
(0 to 9), “A”, “B”, “C”, “D”, “*”, and “#”. However, there are several
dial modify commands that can be part of the dial string that allow
the modem to perform special dialing functions. These additional
commands can precede, be embedded in, or follow the actual number
to be dialed.

7. P: Pulse Dial

The P command determines the use of pulse dialing The dialing
speed is fixed at 10 pulses per second. The Make/Break ratio is
determined by the AT&Pn command . Any dial characters following
the P command are dialed using pulse dialing until the T command
is issued. This command can appear anywhere in the dial string.

8. T: Touch-Tone Dial (DTMF)

The T command determines the use of touch-tone, or DTMF,
dialing. The dialing speed is fixed at 70 ms for duration of tone and
70 ms for the blank period. Any dial characters following the T
command are dialed using DTMF dialing until the P command is
issued. This command can appear anywhere in the dial string.

9. R: Reverse Mode

The R command changes the modem from Originate mode to
Answer mode after the dialing process is complete. This command
is used only at the end of the dial string.

10. , (comma): Pause

The comma (,) command introduces the delay time before dialing
the next dial character or executing the next command in the dial
string. The pause time is the value of the S8 register.

8-18 Developer Notes

11. W: 2nd Dial Tone Detect

The W command is used to automatically detect the second dial-
tone. If the second dial-tone has been detected by the modem before
the S7 register time delay, the modem continues dialing the rest of
the dial characters in the dial string. If no dial tone is received the
modem goes on-hook, returns the “NO DIAL TONE” result code to
the Macintosh Portable, and enters the local command state. This
command is valid only when the result code command, X , is in X2
or X4 mode. This command can be embedded anywhere in the dial
string.
Example: ATDT9W5551234

12. @: Wait for Quiet Answer Before Dialing

The @ command forces the modem to wait out the S7 register time
delay for at least one ring followed by 5 seconds of silence (indicating
the call has been answered) before continuing execution of the dial
string. This command can be embedded anywhere in the dial string.

This command is used to access a system that requires entering
additional dial characters after answering the initial call.
Example: ATDT5551234@9876543

13. !: Flash

This command causes the modem to go on-hook for 0.5 sec and then
back off-hook, as if you had depressed the switch-hook button on the
telephone set. This command can be placed anywhere in the dial
string.

14. ; (semicolon): Return to Local Command State after Dialing

The semicolon (;) command must be put at the end of the dialing
command. It forces the modem back to the local command state after
dialing a number.

15. En: Echo Off/On

This command controls the echoing of characters sent to the modem
from the Macintosh Portable back to the Macintosh Portable when
the modem is in the local command state.
E0: Disable the echo of characters sent by the Macintosh Portable.
E1: Enable the echo of characters sent by the Macintosh Portable (default).

CHAPTER 8 Options 8-19

16. Fn: Half/Full Duplex

This command controls the echoing of characters sent to the modem
from the Macintosh Portable back to the Macintosh Portable when
the modem is in the on-line state.
F0: Enable the local echo when the modem is on-line.
F1: Disable the local echo when the modem is on-line (default).

17. Hn: Off/On Hook
H0: Force the modem on-hook (hanging up the phone).
H1: Force the modem off-hook (picking up the phone).

18. In: Information on Product Code/Checksum
I0: Requests the product code. The product code contains 3 digits in the form
24X (X= code revision number).
I1: Requests a checksum on the firmware. The first two digits are the
checksum of the microcontroller ROM. The last two digits are the checksum
of the DSP ROM.

This command is valid only when the modem is idle (not
connected).

19. Mn: Speaker Off/Auto/On
M0: Disable speaker.
M1: Sets the speaker “ON” until carrier is detected (default).
M2: Sets the speaker always “ON”.

20. O: Return to On-line State

The O command is used to return to the on-line state after using the
escape command to enter the local command state.

21. Qn: Quiet/Vocal Mode
Q0: Sends the result codes to the Macintosh Portable (default).
Q1: Disables the sending of result codes to the Macintosh Portable.

22. Sn?: Check Contents of Register n

The Sn? command (n= register number) is used for checking the
contents of a register and sending the value to the Macintosh
Portable. The result is always expressed as a three-digit number,
where the leading digits or all digits may be zero.

8-20 Developer Notes

23. Sn=X: Set Register n to Value X

The Sn=X command is used to change the value of register n. To
change the value of a register, the Macintosh Portable sends the
string “ATSn=X” where n is the register number and X is the value
to which the register should be set.

24. Vn: Numeric/Verbal Result Codes
V0: The modem sends the result code in numeric form.
V1: The modem sends the result code in verbal (English) form (default).

25. Xn: Active Result Codes
X0: Send the 0 to 4 result codes (compatible with Smartmodem 300).
X1: Send the 0 to 5 and 10 result codes (modem does not detect Busy,
Ring back, or Dial tone signals).
X2: Send the 0 to 5, 6 and 10 result codes (all CONNECT result codes
active and detection of dial tone before dialing occurs; modem does
not detect Busy or Ring back signals).
X3: Send the 0 to 5, 7, 10, and 11 result codes (modem detects Busy
and Ring back signals; Dial tone is not detected).
X4: Send all result codes (default).

Result codes are shown in Table 8-3:

• Table 8-3 Result codes

Verbal Numerical Description

OK 0 Command completed
CONNECT 1 Connection established *
RING 2 Incoming ring detected
NO CARRIER 3 No connection or carrier drop
ERROR 4 Bad command
CONNECT 1200 5 Connection established at
1200 bps
NO DIAL TONE 6 Dial tone not detected in S7
seconds
BUSY 7 Busy tone detected
CONNECT 2400 10 Connection established at
2400 bps
RINGING 11 Ringback signal detected

CHAPTER 8 Options 8-21

Note

* The “CONNECT” result code, for X0, means a connection was established at 300,
1200, or 2400 bps. However, for X1 to X4, this result code means a connection was
established at 300 bps.

26. Yn: Long Space Disconnect (Remote Disconnect)

This command allows the modem to disconnect if it receives a
continuous BREAK (SPACE) signal for longer than 1.6 seconds from
a remote modem. If the modem receives the long space, the modem
will reply with a continuous BREAK (SPACE) for 4 seconds prior to
going on-hook.
Y0: Disable the long space disconnect (default).
Y1: Enable the long space disconnect.

27. Z: Reset

The Z command performs a software reset and applies all of the
default values to the other commands. This command affects the
modem as if it experienced a power-on reset. Also, any commands
remaining on the original command line after the Z command are
ignored.

28. &C: DCD Options
&C0: DCD line (pin 4 of 18 pin interface) follows the actual carrier.
&C1: DCD line is always asserted (default).

29. &D: DTR Options
&D0: Modem ignores the \x\to /DTR line pin 12 (default).
&D1: Modem follows \x\to /DTR from the Macintosh Portable.

30. &Gn: Guard Tones

This command specifies whether a guard tone should be transmitted
and, if so, what frequency should be used. Guard tones are used in
some telephone systems to allow proper data transfer over the
network. Guard tones are not used in the USA.
&G0: Disables guard tone (default).
&G1: Sets 550 Hz guard tone.
&G2: Sets 1800 Hz guard tone.

8-22 Developer Notes

31. &Ln: Switched/Leased Line

This command affects the modem’s use of timeouts during the
handshake at the beginning of a connection.
&L0: Selects switched (dial-up) line (default). All timeouts are active
according to the definition of the handshake protocols.
&L1: Selects leased line. All timeouts are ignored during the handshake
process.

The &L1 setting may be useful for people using the modem on a
leased line where no “calls” will be made or received on the line.

32. &Pn: Pulse Dial Make/Break Ratio
&P0: Make = 39%, Break = 61%; for use in the United States and Canada
(default).
&P1: Make = 33% , Break = 67%; for use in United Kingdom and Hong Kong.
Dial Pulse specifications &P0 &P1
Break ratio 61% 67%
Break length 61 ms 67 ms
Dial pulse rate 10 pps 10 pps
Dial pulse length 100 ms 100 ms
Interdigit time 789 ms 783 ms

33. &Tn: Self Tests

The following diagnostic tests are provided:
Modem type Test Method
Bell 212A/103; CCITT V.21 Local Analog Loopback w/o Self-Test: &T1

Local Analog Loopback with Self-Test: &T8
Local Digital Loopback (no Self-Test mode): &T3

V.22 and V.22 bis Local Analog Loopback w/o Self-Test: &T1
Local Analog Loopback with Self-Test: &T8
Local Digital Loopback (no Self-Test mode): &T3

Remote Digital Loopback w/o Self-Test: &T6
Remote Digital Loopback with Self-Test: &T7
Respond to Remote Digital Loopback request: &T4
Ignore a Remote Digital Loopback request: &T5

&T0: Terminate the Self-Test
Used to terminate loopback test modes using self-test pattern generation and
error checking.

&T1: Local Analog Loopback

CHAPTER 8 Options 8-23

Initiates a Local Analog Loopback test. The escape sequence must be entered
to terminate this test. This mode tests the local modem and the local data
terminal equipment.

&T3: Local Digital Loopback
Initiates a Local Digital Loopback test. The modem echoes characters back to
the Macintosh Portable exactly as received.

&T4: Enable the Remote Digital Loopback
Enables the modem to respond to a remote modem attempting to place it in
the digital loopback test. If a remote modem places the local modem in the
remote digital loopback mode, the local modem will echo characters back to
the remote modem exactly as received from the remote modem.

8-24 Developer Notes

&T5: Disable the Remote Digital Loopback
Disables the modem from responding to a remote modem attempting to place
it in the digital loopback mode.

&T6: Remote Digital Loopback
Initiates a Remote Digital Loopback test. In this mode, characters sent to the
remote modem are echoed back to the local modem exactly as they were
received by the remote modem. This mode tests both local and remote
modems and the telephone circuit.

&T7: Remote Digital Loopback with Self-Test
Initiates a Remote Digital Loopback with self-test data pattern generation and
error checking.

&T8: Local Analog Loopback with Self-Test
Initiates a Local Analog Loopback with self-test data pattern generation and
error checking.

&T9: Constellation Point Output / Data Output
Toggles between constellation point output and data output modes.

The tests using the internal self-test pattern (&T7 and &T8) end after
the Macintosh Portable issues an &T0 or H0 command or the register
S18 time delay expires. The self-test data pattern is an internally
generated alternate binary ones-and-zeros signal. In the self-test
modes, an error counter will count the number of errors and send
the final result to the Macintosh Portable. The maximum number of
errors that can be counted is 255.

34. %A: Read A/D Converter

Upon receiving this command, the modem returns the current
value of the A/D converter in the analog front end. The result is a
three digit decimal number.
Example: AT%A<CR> (command)

n n n (current ADC value, 3 digit decimal)
OK

CHAPTER 8 Options 8-25

35. %Bnnn?: Read Microcontroller RAM Location

This command causes the modem to read the microcontroller RAM
location nnn, where nnn is the RAM address in decimal (range is 0
to 255), and return the value of the location as a three digit decimal
number (rang 0 to 255).
Example: AT%Bnnn?<CR> (command)

m m m (Current data at RAM address nnn)
OK

36. %Bnnn=yyy: Write Data yyy to Microcontroller RAM

This command causes the modem to write the value yyy (3 digit
decimal, 0 to 255) to the microcontroller RAM location nnn (3 digit
decimal, 0 to 255).
Example: AT%Bnnn=yyy<CR> (Command)

OK
NOTE: This command must be used with caution. The microcontroller is
actively using the RAM into which the value yyy may be written; disturbing
this data may cause unpredictable results.

37. %Cnnn?: Read DSP RAM Location

This command causes the modem to read the word at the digital
signal processing (DSP) RAM location specified by nnn (three digit
decimal, 0 to 255) and return the value as two three-digit decimal
numbers ranging 0 to 255. The first number represents the high data
byte, and the second represents the low data byte.
Example: AT%Cnnn? (Command)

m m m (High DSP RAM data byte)
www (Low DSP RAM data byte)
OK

38. %Cnnn=xxx,yyy: Write data xxx,yyy to DSP RAM

Upon receiving this command, the modem writes the data xxx to the
high data byte and yyy to the low data byte at DSP RAM location nnn.
xxx, yyy, and nnn are all three digit decimal numbers ranging 0 to
255.
Example: AT%Cnnn=xxx,yyy<CR> (Command)

OK
NOTE: This command must be used with caution. The DSP is actively using
the RAM into which the value xxx,yyy may be written; disturbing this data
may cause unpredictable results.

8-26 Developer Notes

39. %Dnnn: Set AGC Level

This command causes the automatic gain control (AGC) in the
analog front end to be set the decimal value nnn (range 0 to 255).
Example: AT%Dnnn (Command)

OK

40. %E: Test Microcontroller and DSP RAM

This command causes the modem to test select portions of DSP RAM
and all of microcontroller RAM using the “Triple Bit RAM Test
Algorithm.” The modem returns the result (OK or ERROR) for each
of the RAM tests with the result of the DSP RAM test first. The
response to this command is issued at 2400 bps after an effective reset
of the modem to its factory default state.
Example 1: AT%E (Command)

OK (DSP RAM test passed)
OK (Microcontroller RAM test passed)

Example 2: AT%E (Command)
OK (DSP RAM test passed)
ERROR (Microcontroller RAM test FAILED)

Example 3: AT%E (Command)
ERROR (DSP RAM test FAILED)
OK (Microcontroller RAM test passed)

41. Missing Parameter

A missing parameter is evaluated as zero.
Example: ATF = ATF0

THE APPLE PUBLISHING
SYSTEM

This Apple manual was
written, edited, and
composed on a desktop
publishing system using
Apple Macintosh®

computers and
Microsoft® Word
software. Proof and final
pages were created on
the Apple LaserWriter®

printers. Line art was
created using Adobe
Illustrator™.
POSTSCRIPT®, the page-
description language for
the LaserWriter, was
developed by Adobe
Systems Incorporated.
Text type and display
type are Apple’s
corporate font, a
condensed version of
Garamond. Bullets are
ITC Zapf Dingbats®.
Some elements, such as
program listings, are set
in Apple Courier.

	Macintosh Portable
	Contents
	Figures and tables
	About These Developer Notes
	Supplemental reference documents
	Terminology: Sleep State, Idling State, and the Operating State

	Introduction
	Features
	Optional additions
	Internal expansion interfaces
	Peripherals

	Software Developer Guidelines
	Firmware
	Overview
	Address map
	Changes to ROM

	System Software
	Overview
	The Macintosh Portable control panel cdev resource
	The Macintosh Portable battery desk accessory
	Macintosh Portable battery monitor

	Hardware
	The Macintosh Portable Specifications
	Comparison of the Portable and the Macintosh SE
	Block diagrams of the Portable and Macintosh SE
	The central processing unit (CPU)
	Video Display Interface chip
	Permanent RAM array
	Permanent ROM array
	Memory Expansion
	Coarse Address Decode and GLU
	Fine Address Decode and GLU
	VIA interface
	SCSI Interface
	SWIM floppy disk interface
	SCC Interface
	Apple Desktop Bus (ADB)
	Sound interface
	Macintosh Portable expansion bus interface
	The Macintosh Portable I/O port connectors
	Battery recharger

	The Power Manager
	Introduction
	Power manager states—idling, sleeping, and waking
	Power management hints (hardware)
	Operating system interface (ROM calls)

	Expansion Card Design Guides
	Main logic board with expansion connectors
	Expansion card design guides

	OPTIONS
	The modem card

